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Abstract

The study of record-breaking values is of significant interest in environmental sciences. Studying records implies analyz-
ing both their occurrence and their magnitude. Further, the study of this phenomenon within a spatio-temporal framework
is vital for evaluating seasonal behaviors, identifying spatial patterns, and quantifying the effect of climate change on it.
With interest in record-breaking temperatures, we specify models for these observations rather than models for the entire
daily temperature stream. Models specifically designed for record-breaking events must consider two random components:
the occurrence and the magnitude of each record. With primary interest in the magnitudes, we model the magnitude data
given the occurrence data, with the goal of making inference about their evolution within a spatio-temporal framework. We
employ a set of 40 geo-referenced time series of daily temperatures across peninsular Spain. From these, we extract the
series of occurrences and values of record-breaking events during the summer months, June, July, and August, spanning
from 1960 to 2021. The results reveal that the behavior of the increments is neither spatially nor temporally homogeneous,
and that there is significant dependence on the previous day: the occurrence of a record increases the posterior mean of
the next day’s increment by between 0.3 and 0.6 °C. It is also found that the posterior mean of the average increment
on a record-breaking day during the decade 20122021 is approximately 1 °C inland, increasing to around 2°C in some
coastal areas. After 30 years, mean increments stabilize near 1°C with a mild downward trend.

Keywords Bayesian hierarchical model - Conditional model - INLA - Record-breaking temperatures - Record-breaking
values - Space-time model

1 Introduction with heatwaves, which are defined and measured at the

daily scale (Yang et al. 2024; Tian et al. 2025). Therefore,

The study of record-breaking values is of significant interest
in environmental sciences, especially in areas such as wave
height, flood levels, wind speed, climate studies related to
precipitation Lehmann et al. (2015, 2018) and, most nota-
bly, temperature (Newman et al. 2010; Wergen et al. 2014;
Sousa et al. 2019; Jiang et al. 2024). Temperature data, and
consequently their record-breaking events, can be analyzed
across various time scales; however, the most significant
impacts on human health and biodiversity are associated

>< Ana C. Cebrian
acebrian@unizar.es

Departamento de Métodos Estadisticos, Universidad de
Zaragoza, Zaragoza, Spain

Department of Statistical Science, Duke University, Durham,
NC, USA

Published online: 13 January 2026

in this work we focus on this time scale and, specifically,
on calendar-day records, i.e., the record-breaking events
in each time series corresponding to each day of the year,
across years; see Elguindi et al. (2013) and Pan et al. (2013)
for further discussion of the advantages of using calendar
day records in climate studies.

Formal investigation of record-breaking events implies
analyzing both their occurrence and their value. Castillo-
Mateo et al. (2025) presented a spatio-temporal model for
the occurrence of record-breaking events, including com-
plex dependence structures. However, to the best of our
knowledge, no spatio-temporal modeling of the values of
record-breaking events, whether for temperature or other
variables, has been presented in the literature. The aim of
this work is to fill that gap. Moreover, instead of model-
ing the record values directly, we propose an approach that
models the increments relative to the previous record value,
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conditional on a record-breaking event having occurred
(i.e., positive increments). This approach is simpler to
implement since increments can be treated as conditionally
independent, whereas record values are subject to a left cen-
soring order constraint. In addition, increments offer a con-
sistent basis for comparison across sites and time periods by
removing site-specific baselines, much like the temperature
anomalies used in climate studies. Note that by focusing on
positive increments, we can confine ourselves to conditional
modeling, i.e., modeling the increment given that a record
has occurred.

Using this model, we aim to address key climate-related
questions, such as evaluating trends in record values over
time, examining differences within the summer months,
identifying factors that influence record-breaking tempera-
tures, and assessing the presence of serial correlation. We
also investigate these issues spatially, both to assess spatial
dependence and variation, and to characterize annual trends
across regions with different environmental characteristics.
Modeling within a hierarchical Bayesian spatio-temporal
framework enables us to obtain full posterior predictive
distributions to address the following questions, and to
quantify the associated uncertainty: (i) Do we observe dif-
ferences in seasonal behavior? (ii) Can we identify spatial
patterns? (iii) Can we detect decadal temporal patterns to
quantify the effects of climate change on record-breaking
temperatures? (iv) Is there an effect of a previous day’s
record-breaking event on increments? (v) Can we predict
increment behavior at unobserved locations? The answers
to these questions will be of significant value to the climate
research community.

Another question of interest in climate research is to
quantify the deviation of the observed behavior of record-
breaking temperatures from what would be expected
under a stationary climate, i.e., in i.i.d. sequences. To this
end, it is useful to exploit the probabilistic properties of
record-breaking events in i.i.d. series. For the occurrence
of record-breaking events, these properties are simple and
distribution-free, making such comparisons straightforward
(Castillo-Mateo et al. 2025). Unfortunately, for the values
of the records, the properties are more complex. The dis-
tribution of the increments of record-breaking values in
i.i.d. sequences depends on the underlying distribution of
the sequence (Arnold et al. 1998, Section 2.10), and there-
fore general distribution-free results are not available. Some
analytical results exist for specific distributions, such as the
exponential, Pareto, Weibull, and extreme value distribu-
tions (Arnold et al. 1998, Chapter 3), but they are not appli-
cable in our context.

Here, models are fitted within a Bayesian framework,
which allows us to incorporate dependence over time
and space using relevant covariates and random effects.

@ Springer

Additionally, the Bayesian framework provides generative
models, which enable us to propose a Monte Carlo (MC)
approach to validate them and draw inference from them.
Specifically, this MC approach serves as a powerful tool for
making inferences about arbitrary characteristics of interest
of the distribution of the records and, as a result, addressing
the research questions of interest.

It could be argued that one seemingly straightforward
approach for analyzing calendar-day record-breaking tem-
perature series would be to model the entire distribution
of temperatures. A generative model for daily temperature
could theoretically produce samples of record-breaking
events, which can then be used to infer the distribution of
the occurrence and magnitude of these records. However,
developing a model that accurately represents the full range
of daily temperatures, particularly the record-breaking
events, presents significant challenges, especially within a
spatio-temporal framework. Models designed to capture the
entire temperature distribution tend to perform well in fit-
ting the bulk of the distribution, where more data are avail-
able, but often perform poorly in the tails of the distribution
(Keellings and Waylen 2015; Shaby et al. 2016). Addition-
ally, these models will usually impose a single trend across
both central and extreme values and will assume uniform
seasonal effects and covariate influences. This assumption,
however, is unrealistic (Schliep et al. 2021; Castillo-Mateo
et al. 2023). That is the reason why models for extreme
events focus on alternative approaches such as exceed-
ance thresholds, block maxima, or specific quantiles (Coles
2001). Such models allow for a more flexible and accurate
representation of the behavior of the tails.

Similarly, given that our interest is in temperatures asso-
ciated with record-breaking, it seems more appropriate to
confine ourselves to modeling temperature increments asso-
ciated with these events. In what follows, we extract incre-
ment data associated solely with record-breaking events and
we focus on models specifically for such data. Such a focus
enables us to specify simpler models that achieve good
explanatory and predictive performance. It is worth noting
that our data is no longer a daily time series but rather a
sequence of event times with an associated mark, a tempera-
ture increment.

The proposed approach is applied to a set of 40 geo-ref-
erenced time series of daily temperatures across peninsular
Spain. From these, we extract the series of occurrences and
values of record-breaking events during the three summer
months, June, July, and August (JJA), spanning from 1960
to 2021. We model the increments of calendar-day records,
i.e., the records for each day within the three-month window
at each site, resulting in 92 yearly series per site.

The remainder of the manuscript is organized as follows.
Section 2 presents the daily temperature data and an EDA of
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the records. Section 3 describes the modeling framework for
the increments introduced in this work. Section 4 introduces
the specific structure of the proposed spatio-temporal mod-
els, outlines the selection process used to identify the most
adequate model, and presents the final selected model. Once
the best model is selected, Sect. 5 presents validation tools
to assess its adequacy, and Sect. 6 reports post-model infer-
ence results obtained via MC simulation based on the condi-
tional and marginal distributions of the increments provided
by the final model. Finally, Sect. 7 concludes with a sum-
mary and directions for future research. Additional details
and graphics are provided in the Supplementary Material.

2 Data and exploratory analysis
2.1 Data and study area

The study area is peninsular Spain, defined as the region of
Spain within the Iberian Peninsula, covering approximately
492,175 km?. The dataset is point-referenced to a collec-
tion of monitoring stations and includes daily maximum
temperature observations from January 1, 1960, to Decem-
ber 31, 2021. Specifically, it is extracted from the European
Climate Assessment & Dataset (ECAD; Klein Tank et al.
2002), spanning 40 weather stations. The Spanish tempera-
ture series available in ECAD are provided by AEMET and
are measured to the nearest 1/10 °C.

For analyses focused on daily temperature record indica-
tors across years, the dataset is organized into 365 binary
series (with February 29 removed for convenience) of

Fig. 1 Map of the 40 Spanish sta-
tions (red points), and the predic-
tion grid (black points)
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length 62 for each site. In this study, we consider only the
92 series corresponding to the days in JJA. Figure 1 shows
the locations of the stations within the Iberian Peninsula.
Spain is geographically diverse, featuring several mountain
ranges such as the Pyrenees in the northeast, the Inner Pla-
teau in the center, and the Sierra Nevada near the southern
Mediterranean coast. The region has an extensive coastline
bordered by the Atlantic Ocean to the north and west, and
the Mediterranean Sea to the south and east.

The stations are irregularly distributed across Spain in
an effort to represent its varied climatic zones. The stations
also span a wide range of elevations, including five located
above 800 m, and 16 situated along the coast. The stations
considered in this study have a negligible amount of missing
data, with an average missing rate of 0.07%. It is assumed
that no record-breaking observations occurred on those
days; a simulation study conducted by Castillo-Mateo et al.
(2025) using the same dataset showed that the missing data
had a negligible impact on the results. To summarize, the
dataset used to fit the model consists of the record incre-
ments, Jio(s;), where £ € L ={1,...,92} corresponds to
days from June 1 to August 31,¢ € T = {2,...,62} repre-
sents years from 1961 to 2021, and s; € S = {s1,...,840}
are the geographic coordinates for the 40 weather stations.

2.2 Exploratory analysis of record increment values

An exploratory data analysis (EDA) is conducted to iden-
tify the key features for inclusion in the model. To achieve
this, we compute and plot the empirical densities of record
increments across different time periods and conditions; the
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densities are estimated using the Beta boundary kernel by
Chen (1999) for positive variables. This section presents the
results that highlight the most relevant features.

Probability distribution and decadal evolution Figure 2
(left) presents the empirical densities for 10-year periods
(except for the first one, which covers 1961-1971), obtained
from all stations. The shape of the empirical density in each
period suggests that a Gamma distribution may be appropri-
ate. Notably, the mode of the empirical density is far from
zero in all cases, indicating that a simpler distribution, such
as the Exponential distribution, will not be adequate. A tem-
poral evolution is observed, with the early years exhibiting
greater variability than the later period, as expected from
record behavior.

Previous day effect Due to the strong serial correlation
in daily temperature, a record occurrence on previous days
may influence the increment value. Figure 2 (right) presents
the empirical density of increments when the previous day
was a record versus when it was not, for the last decade. The
increments tend to be higher when the previous day was a
record. This effect appears stable over time, as a similar pat-
tern is observed in the 1992-2001 period.

Seasonal behavior The behavior of increments is not
homogeneous within the JJA period and the monthly distri-
butions vary across decades, see the plots in Section 1 of the
Supplementary Material.

Spatial variability 1t is well known that elevation influ-
ences temperature-related variables, but other geographical
factors, such as coastal proximity, may also play a role. To
investigate this effect, we compare the empirical density of
increments for stations located within 50 km of the coast
versus those farther inland, revealing distinct distributions.
Furthermore, this difference depends on whether a record
occurred the previous day or not, see the plots in Section 1
of the Supplementary Material.

In summary, the EDA suggests that a Gamma distribu-
tion is appropriate for modeling the increments. The results

By Decades
0.6
— 1961-1971
— 1972-1981
— 1982-1991
0.4 —
> 1992-2001
B — 2002-2011
S 2012-2021
a
0.2
0.0
0 2 4 6
Increments

further indicate that the distribution varies across days,
years, and space, particularly as a function of distance to
the coast, and that there is dependence on the previous day,
which also varies with distance to the coast. Consequently,
the model should consider the inclusion of trend and sea-
sonal terms, the effect of the previous day, the influence of
distance to the coast, and the necessary interactions among
these components.

3 Modeling structure of the increments

The modeling structure for this problem presents some
methodological challenges. Let ¢ denote years, ¢ days
within years, and s; observed sites, with the set of all
observed combinations of years, days, and sites defined as
A=T x L xS. To explain the positive increments (or
jumps), i.e., the set J = {Jw(s;) : (¢, 4,s;) € A}, we need
the set of indicator variables I = {I;(s;) : (¢,4,8;) € A},
where I1(s;) indicates whether a record-breaking tempera-
ture occurred in year ¢ on day £ at site s;, i.e., whether the
temperature on that specific day and location exceeds all
previous observations for the same calendar day at that site.
Since I may serve as a regressor in explaining J, and because
it is stochastic, we need to model increments conditional on
these indicators. Furthermore, our goal is to model only the
positive increments, i.e., the values Jy(s) associated with
I0(s) = 1. Given that I is observed, we therefore consider
the conditional distribution J | I. For simplicity, we will
refer to these positive increments simply as increments.

As we demonstrated in the previous section, a critical
predictor in explaining Jy(s) is Iy ¢—1(s), i.e., whether or
not there was a record-breaking event on the previous day.
Thus, we cannot consider only I;4(s) = 1, and instead must
retain the conditional structure J | I in our modeling. How-
ever, this reveals an awkward prediction challenge. To make
prediction of the increments at unobserved sites using the
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Fig.2 Empirical density of the record increments, in °C, per periods across time (left), and conditioned on the occurrence of a record the previous

day in last decade (right)
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regression model, we will assume that the indicator for that
year, day, and location is 1. However, we will need the pre-
vious day indicator and this will not be known.

There are several alternatives within a hierarchical Bayes-
ian framework. The first is to present two posterior predic-
tive distributions, one given the previous day indicator was
equal to 1 and one when it was equal to 0. Comparison of
these two distributions will be informative in assessing how
the previous day’s information influences the distribution of
the increment.

Further, we can also consider the marginal posterior
predictive distribution, which does not require specifica-
tion of the previous day’s indicator. We can obtain this as a
mixture distribution using mixture weights that provide the
probability for the previous day’s indicator to be equal to 1
and therefore, equal to 0. An elementary choice would arise
from the classical stationary record-breaking model (Arnold
et al. 1998, Chapter 2) where, the probability of record at
time ¢ is 1/¢, but this is not a reasonable assumption under
global warming. If we adopt a parametric model for record
breaking, e.g., a linear drift model (Rahmstorf and Cou-
mou 2011; Coumou et al. 2013) or a fully developed spatial
record-breaking model, as in Castillo-Mateo et al. (2025),
then the probability for the previous day’s indicator to equal
1 is a parametric function, a random variable in the Bayes-
ian setting. With a posterior distribution for this probability,
we obtain a posterior distribution for the marginal predic-
tive distribution. A convenient summary of this predictive
distribution is the posterior mean that can be obtained by
averaging with the posterior mean probability that the previ-
ous day’s indicator is equal to 1 as well as 0; note that these
probabilities of record can be readily estimated, either by
the simplistic empirical proportions of records or by more
sophisticated estimation techniques.

4 A space-time model for record-breaking
increments in daily maximum temperatures

Increments are positive and asymmetric quantities, so
that a Gamma distribution may be an appropriate model.
This assumption is further supported by the EDA in Sec-
tion 2.2; see the empirical density estimators in Fig. 2 and
the accompanying comments. Consequently, it is assumed
that Jie(s) | Ire(s) = 1 follows a Gamma distribution with
the following density function:

Frosy) = (Mj(s)y ﬁyqﬁ_l exp (—M%S)) , >0,

where ¢ > 0 is a constant shape parameter, fi¢(s) > 0 is the
mean and var (Jy(s)) = pe(s)?/¢. The logarithm of the
mean is modeled as a linear predictor,

log(pee(s)) = me(s) = Bo + Zjy(s) B + wee(s)-

Here, [y is a global intercept, Z(s) denotes a column vec-
tor of spatial and temporal covariates, 8 denotes the cor-
responding column vector of regression coefficients, and
wye(s) is a component of random effects.

The models are fitted using R—INLA (Rue et al. 2024).
In order to properly define the time dependencies, R-INLA
requires the use of a complete time series, with time points
where a record-breaking temperature has not occurred are
filled with NA values. More details on the fit of the model
and the priors used in the estimation can be found in Section
2 of the Supplementary Material, and details on the INLA
methodology in Rue et al. (2009).

The remainder of this section first describes the procedure
used to select the covariates which are relevant for modeling
the increments. Once the covariates in the linear predictor
are fixed, we consider alternative specifications for the ran-
dom effects to capture remaining dependence across time
and space. Model selection is then carried out using two in-
sample criteria and a simple out-of-sample metric. Finally,
the key output of the final selected model is presented.

4.1 Selecting the covariates

The EDA identified a set of covariates that appear to influ-
ence the value of the increments. The need to include these
covariates in the model was assessed using 95% credible
intervals (Cls) obtained from a model without random
effects. After the selection procedure, the final set of covari-
ates included in the model are: log(¢) and its square, which
capture the annual trend, geographical variables such as the
logarithm of elevation, logElev (s), and distance to the coast,
logDC (s), measured in meters and kilometers respectively,
and the interaction between the latter and log(t); to avoid
undefined values logDC (s) is defined as log(1 + DC(s)).
To account for the serial correlation, a Markovian structure
represented by the previous day’s record indicator, I; ¢—1 (s),
and its interaction with logDC (s) are also included. The
interactions log(t) x logDC (s) and I; ¢—1(s) x logDC (s)
allow the time trend and persistence to vary spatially.
Given the differences observed across the three considered
months, we explored including harmonic terms; however,
they were not flexible enough to capture the complex behav-
ior. Instead, seasonal differences will be captured using ran-
dom effects as detailed below. Finally, due to the effect of
large warm fronts that affect the entire peninsula and last for
several days, joint spatio-temporal dependence is expected.

@ Springer



24 Page 6 of 16

Stochastic Environmental Research and Risk Assessment

(2026) 40:24

To capture this structure, we introduce a global covariate

If ;. that provides the observed number of records in the

previous day over all of the weather stations. The model
including all these covariates is denoted Model M1.

Other covariates were considered, such as a function of
the record position &, exp(—k), the time to the previous
record occurrence, exp(—(tx — tx—1)), and interactions of
the lag record indicator and the year trend with logElev (s);
none of them were found significant.

4.2 Including random effects

Although both spatial and temporal covariates have been
included in the model, they may not capture well enough
dependence over time and across space. Therefore, in this
section, we assess whether adding random effects to the pre-
vious model is necessary to capture the remaining depen-
dence structure. To this end, we consider three options:
MS1, which includes a spatially-varying intercept, and MS2
and MS3, which build on this intercept by adding different
terms to capture potential temporal structure.

Model MSI. This model includes only a spatially-varying
intercept, i.e., we¢(s) = w(s). This term aims to capture spa-
tial dependence and enables local adjustments to the global
intercept, accounting for influences such as geographical
characteristics not captured by the fixed effects. Spatial
dependence is modeled using a SPDE approach, in which a
Matérn Gaussian random field is approximated by discretiz-
ing the domain over a mesh and representing the field as a
Gaussian Markov random field, resulting in a sparse preci-
sion matrix (Lindgren et al. 2022). The range and smooth-
ness of the spatial correlation are governed by the SPDE
parameters; see Section 2 of the Supplementary Material for
more details.

Model MS?2 This model considers annual intercepts that
may capture a time trend potentially more complex than that
modeled by the fixed effects, that is the covariates related
to log(t). The resulting random effects are additive, taking
the form,

wye(s) = w(s) + wy,

where the annual intercepts are modeled as independent
with w; ~ N(0,0%). We also considered modeling them
using an AR(1) structure across years but the temporal
dependence was found not to be significant.

Model MS3 This model assumes a more complex tempo-
ral structure represented by daily intercepts with a Markov-
ian AR(1) structure. That is,

wi(s) = w(s) + wye, With wy = pwye—1 + €, (1)

@ Springer

where €y ~ N(0,02) are independent Gaussian errors.
These temporal terms account for serial correlation between
days not explained by the autoregressive covariates, as well
as interannual variations in seasonal behavior, as indicated
by the EDA; see Section 2 of the Supplementary Material
for details on the autoregressive structure.

More complex random effects were tried, including a
term represented by a latent spatio-temporal process which
changes in time with first-order autoregressive dynamics
and spatially correlated errors. However, these additions did
not improve model performance.

4.3 Model comparison and selection

Model selection among M1, MS1, MS2 and MS3 is per-
formed employing three different metrics. First, an in sample
comparison is implemented using the deviance information
criterion (DIC) and the root mean square error

2

RMSE= | 3 [Juso) —post_mean(Ju(s:))]’,

(t,4,s:)€A

where A; = {(¢,¢,s;) € A: I14(s;) = 1} denotes the set of
days and sites with a record, and N = 3", ;o e 1 Lee(si)
is its size, i.e., the total number of records observed in the
92 x 40 series across 62 years considered, excluding the
first trivial year.

The third comparative metric is an out-of-sample spatial
evaluation using RMSE and a 10-fold testing scheme. In
each iteration, the model is fitted while excluding data from
four sites. Predictions and residuals for these excluded sites
are then computed. This process is repeated 10 times, ensur-
ing that each receives one out-of-sample prediction. Finally,
RMSE,, the RMSE from these predictions, is calculated.

Table 1 shows the three metrics used to compare and select
the best model, DIC, RMSE and RMSE,, for models M1,
MS1, MS2, MS3 and a baseline model MO with constant
parameters. To demonstrate the need for a Gamma distri-
bution, we also consider a Model MS3exp, which includes
the same fixed and random effects in the linear predictor
as model MS3 but with an Exponential distribution with
parameter Ay (s) = 1/pe(s) where log(pe(s)) = nee(s).
The improvement from including the covariates, model M1,
is clear both in terms of the DIC and the RMSE. The same
applies to model MS1, that incorporates a spatially varying
intercept. Regarding temporal dependence, although model
MS2, which includes annual random effects, improves per-
formance, model MS3, incorporating daily effects with an
autoregressive structure, performs even better, providing an
improvement comparable to the inclusion of covariates. The
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Table 1 DIC, and RMSE (in °C') for models M1, MS1, MS2 and MS3 with a Gamma distribution and MS3 with an exponential distribution

MO Ml MS1 MS2 MS3 MS3exp
DIC 129,120 125,578 124,842 124,612 122,634 125,650
RMSE 2.00 1.80 1.75 1.73 1.51 2.87
RMSE 2.01 1.81 1.78 1.77 1.63 -
RMSE,s is only computed for models with a Gamma distribution
Spatial random effect
> 4 _’,. e '“' 4 - (/H
i, - =
) : = . -
I 11(s) * logDC - & = = .
: & s 0.4
log(t)*logDC - g - e:; 1.9 {7 . 02
ghC S 3 g 7 Log o 0.0
logElev o A L “: B
5 £ !
t -1 g & P~ o _ |
It 14(s) w _ 15 e 0.4
2 o z - — g
e © ﬂ e e
log(t) W BW W 4w 2W 0° 2°E 4E

-02 0.0 0.2
Estimate

Longitude

Fig. 3 Left: Posterior mean and 95% CI of the covariate coefficients in the model MS3. Right: Spatial random effects from the model MS3 over

peninsular Spain

results for model MS3exp further confirm the benefit of a
Gamma distribution over an Exponential one.

The spatial out-of-sample metric RMSE,s confirms the
selection of model MS3 as the best model, with the inclu-
sion of covariates and daily random effects providing the
greatest improvement.

4.4 Description of the final selected model

Based on the previous results, our final selected model is
MS3, a model with a Gamma distribution that includes eight
covariates, a global and a spatially varying intercept, and
daily effects with an autoregressive structure, see Equa-
tion 1. Figure 3 (left) summarizes the posterior mean and
the 95% Cls for the eight covariate coefficients. Only the CI
of logDC (s) includes zero, but this term is retained in the
model since both interaction terms, log(¢) x logDC (s) and
I 0—1(s) x logDC (s) are significant.

Regarding random effects, Fig. 3 (right) presents a map
of the posterior mean of the spatial intercept, showing that
many coastal areas, specifically the Basque Country and
Galicia in the north, as well as the southeastern regions,
exhibit an increase relative to the global intercept. With
respect to the dependence on the previous day captured by
the temporal random effect, the posterior mean of p is 0.58
with 95% CI (0.51, 0.63), suggesting that the autoregressive
terms I; y—1(s) and I; ¢_1(s) x logDC (s) account for only
part of the existing serial dependence.

Finally, the posterior mean of the Gamma shape param-
eter ¢ is 1.8 with 95% CI (1.78, 1.86), which clearly does
not include 1, the value corresponding to an Exponential
distribution.

5 Adequacy of the final model MS3

This section presents validation and inference tools to assess
the adequacy of the selected model MS3. These include an
evaluation of the coverage of daily increments and compari-
sons between empirical averages of interest and the corre-
sponding posterior means and Cls provided by the model.
Specifically, we examine the proportion of increments
below a given threshold (cumulative probabilities) and the
spatial averages for selected years and days within the year.
These tools rely on MC methods, which are feasible since
MS3 can be employed as a generative model of daily incre-
ments. As additional validation tools, some graphical analy-
ses of the residuals and fitted values are presented in Section
3 of the Supplementary Material.

5.1 Coverage of the daily increments
Coverage analysis is a useful tool for evaluating model ade-
quacy. In our case, we assess the coverage of daily incre-

ments on days when a record is observed, using a hold out
approach. For each of these days, we compute 95% Cls for
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the increments, and then check whether the actual observed
increment lies within the corresponding interval. As valida-
tion metrics, we report the overall average coverage as well
as average coverage by year, by day of the year, and by site,
to assess potential weaknesses in the model’s ability to cap-
ture key characteristics.

To implement the hold out approach, the model is fitted
excluding the series from 4 of the 40 available sites. Next,
using the joint posterior distribution of all the parameters
in the model, B = 1000 samples of the mean for each day,
along with the shape hyperparameter of the distribution, are
generated. These parameters are then used to generate B
samples of increments for each day with an observed record
in the four excluded sites, utilizing the distribution defined
by the generated parameters. From these samples, a 95% CI
for the increment on each day with a record is computed. To
increase the sample size for computing validation metrics,
this procedure is repeated 10 times, so that out-of-sample
predictions are obtained for all sites. The same random sets
of four locations used in Sect. 4.3 are applied here.

The average 95% coverage across all data is 0.93, indi-
cating good model performance. The average coverage
values for different years, days within the year, and sites
are summarized in Section 4 of the Supplementary Mate-
rial, and they indicate that the model effectively captures the
evolution of increments over time. Similarly, the model cap-
tures seasonal patterns well, with most of the coverage val-
ues falling between 0.90 and 0.96, and seven values ranging
from 0.85 to 0.90. The model also accounts for spatial varia-
tion adequately, although coverage falls between 0.80 and
0.90 at seven sites.

5.2 Analyzing cumulative probabilities

The previous MC approach can also be used to implement
an out-of-sample validation of the model by comparing
cumulative probabilities of the conditional distribution of
the increments obtained from the model with their empiri-
cal counterparts. Specifically, for each site s; in the sample,
we consider the probabilities P(Jy(s;) < x), given the
observed indicator of the previous day, for a set of dis-
crete values z =0,1,2,... (in °C). Using the previously
described out-of-sample method, we generate samples of
increments for the sites omitted from estimation, for each
day on which a record was observed at those sites, and
conditional on the observed value of I, o1 (s;). Given a
generated sample, we can obtain one observation of the pro-
portion of increments lower than or equal to x across the
considered period,

1
N(si) Z

(t0)€A(s:)

1(Jpe(si) < ),
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where 1(-) denotes the indicator variable of an event,
Ai(s;) = {(¢,€) € T x L: Iy(s;) = 1} denotes the set of
days with a record at s;, and N(s;) = Z(M)Q-Xﬁ Tie(s;) is
its size, i.e., the total number of records at s;. If we generate
B samples of increments, we obtain a sample of B obser-
vations of the proportions for each x, and then the corre-
sponding posterior mean and 95% CI. Using the observed
sample, we calculate the empirical counterpart. Figure 4
summarizes the posterior means, the Cls of the proportions
forz =0,1,2,...(in °C) together with the empirical coun-
terparts for four illustrative sites in the last 30 years, the
period 1992-2021. These four sites represent different areas
and climates of the peninsula. Bilbao, on the northern Can-
tabrian coast, has a humid Atlantic climate, Huelva, on the
southern coast, features a Mediterranean climate; Daroca
and Vitoria are both inland locations, but the former has
a continental-Mediterranean climate, while the latter has
a continental climate with Atlantic influence. The results
show that the predictive Cls capture the observed propor-
tions at nearly all 40 sites.

5.3 Analyzing spatial averages

Another key aspect of the model to be validated is its ability
to capture behavior over time and the joint spatial behavior.
We will assess this by comparing various empirical averages
of interest with the corresponding averages from the realiza-
tions of the posterior predictive distribution. Since we are
computing spatial averages, the out-of-sample validation
approach, omitting one station at a time, is no longer fea-
sible. Instead, we will apply a MC method using the model
fitted with data from all 40 sites to generate the samples.

First, to characterize the annual evolution across Spain,
we compute the spatial average increment for year ¢ across
the days in JJA,

- 1
Ji = — Z Jte(sz‘)7

t (Z,Sq‘,)E.Al,t

where A;; = {({,8;) € L XS : Iiy(s;) = 1} denotes the
set of days and sites with a record on year ¢, and IV, its size,
i.e., the number of increments at year ¢ in the 92 x 40 con-
sidered series.

Analogously, replacing the year ¢ with the day ¢, we com-
pute the spatial average increments for each day £ within the
year ¢ in the observed period of years 1961-2021,

Z th(SZ').

£ (t,3:)€AL .

_ 1

Figure 5 displays the posterior mean, the 95% CI, and the
empirical values of the spatial average increments, J; and
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Jy, computed for the observed period 1961-2021. The Cls
encompass the empirical values in all cases, and the model
effectively captures the observed time trend and also the
seasonal behavior within the year, confirming the adequacy
of the model to capture these features.

From a descriptive perspective, the results indicate that,
as expected, the mean of the increments declines during the
early years and stabilizes after the early 1980 s. Interest-
ingly, the seasonal pattern of the increments differs from the

2000

2020
Days

seasonal cycle of daily temperatures in Spain, where peak
values typically occur in late July and early August (AEMET
2011), providing additional insight into how extreme values
evolve differently from seasonal trends in the mean.
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6 Post-model inference using Monte Carlo
simulation

One important feature of model MS3 is its ability to predict
increments at unobserved sites. More specifically, MS3 is
a generative model capable of producing samples of incre-
ments during the observed period at any location within the
study region, using both the conditional and marginal dis-
tributions described in Sect. 3. The first step in this process
is to obtain the conditional or marginal posterior predictive
distribution of increments on the 0.25° x 0.25 ° grid shown
in Fig. 1. These posterior distributions allow direct infer-
ence on the increments and, by drawing samples from them,
enable the use of MC methods to analyze more complex
measures of interest based on the increments.

In this section, we apply this procedure with model MS3
to characterize the temporal evolution of increments both
across and within the year for different regions. In addition,
the approach allows us to generate maps that describe the
spatial behavior of the increments and to quantify the uncer-
tainty associated with these estimators.

6.1 Conditional posterior distribution given the
previous day indicator

The conditional distribution, given the previous day’s indi-
cator, can be easily derived from the model and serves as
a useful tool for evaluating the effect of persistence in the
increments. Specifically, it allows us to assess how a record
occurrence on the previous day influences the distribution
of increments. To achieve this, we compare the posterior
predictive distributions when the previous day’s indicator is
1 versus 0. For example, we can obtain maps of the poste-
rior mean of the difference between the average increments
across all JJA days during a decade D or another period of

Decade 2012-21

o, o

Latitude

[ [ T
10°wW 8°wW 6°W 4°W 2°'W 0° 2E 4°E

Longitude
Fig. 6 Posterior mean of the average of the differences between the

increments (in °C) given that the previous day was a record and given
that it was not, across days in JJA and the last decade
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time, given that the previous day was record-breaking and
given it was not,

o35 20 0 ) | (T (s) = 1) = Jues) | (T a(5) = 0)].

teDLeJJA

For illustration, the decade 2012-2021 (D6) is presented in
Fig. 6. The results indicate that record-breaking days lead
to higher temperature increments on the following day. The
mean increase is approximately 0.4°C inland, reaching
around 0.6 °C in some areas along the northern and south-
ern coasts. However, in the northeastern coastal region, the
increase is slightly lower, around 0.3 °C. A similar pattern is
observed during decades D3 to DS, see maps in Section 5.1
of the Supplementary Material, although the differences are
slightly higher in 1982—-1991.

6.2 Marginal posterior distribution

The marginal posterior predictive distribution of the incre-
ments is a useful tool for characterizing the behavior of
increments over time and across space. It does not require
specifying the previous day’s indicator but does rely on
knowledge of its distribution, specifically, the probability
that the previous day was a record. The simplest approach
is to estimate this probability using the proportion of the
previous day’s records, conveniently aggregated by day,
year, or region, as appropriate for each context. However,
more sophisticated and specific estimators can provide
improved results. Here, we use the space-time varying esti-
mators provided by the occurrence model of Castillo-Mateo
et al. (2025), although it is important to highlight that any
other estimators of the probability of a record could also be
applied. This occurrence model consists of a rich Bayesian
hierarchical mixed effects logistic regression model for the
indicator events which define record-breaking sequences. It
includes explicit trend behavior, autoregression, distance to
the coast, interactions, and daily spatial random effects.

The resulting marginal posterior distributions are use-
ful to compare and make inference based on MC methods,
about the evolution of the increments or their averages in
periods of interest both across time and space, as we illus-
trate in the following sections.

6.2.1 Spatial analysis of increments

To evaluate the spatial differences in the behavior of the
increments, we first consider the average of the increments
during the three summer months over a decade D at a given
points, Jp 77a(s) = > icp D vesa Jee(s)/920. The maps
of the posterior mean, along with the 5th and 95th percen-
tiles of this average increments for the most recent decade,
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Fig. 8 Posterior mean and 5th and 95th percentiles of Jp,,774(s) — Jp,,774(s), in °C, where D6 and D4 are the decades 20122021 and

1992-2001, respectively

2012-2021, are shown, as an illustration, in Fig. 7. The
posterior mean is approximately °C across most of Spain,
except in certain coastal areas, including the Basque Coun-
try, Galicia in the north, and the southern Mediterranean
coast, where the mean approaches 2 °C. In these regions,
and more generally in coastal areas, the distribution of aver-
age increments is asymmetric, exhibiting a heavier right tail
with the 95th percentile showing a greater increase rela-
tive to the mean. This pattern aligns with empirical values
observed in coastal sites. For instance, the highest observed
average increments in the same period occur in San Sebas-
tian, Bilbao, Santander, Santiago, and Corufia, measuring
2.7°C,2.1°C,2.2°C,2.1°C, and 1.9°C, respectively.

The maps of the mean and the percentiles for decades D2
to D6 and for the entire period, are shown in Section 5.2 of
the Supplementary Material; decade D1 is omitted due to
high variability in the increments during the early stage. As
could be expected, the mean of the increments decreases
over the decades: while in D2 the mean across most of
inland Spain ranges from 1 to 1.5 °C, in D6 it ranges from
0.5to 1 °C. However, the decrease between decades is much
smaller in the aforementioned coastal areas.

To better assess the temporal behavior of increments
within a spatial framework, we compare average increments
across different decades by computing the posterior distri-
bution of their difference, le,JJA(s) — jDQ’.].]A(S). Fig-
ure 8 presents the posterior mean of this difference between
the most recent decade (2012—-2021) and two decades prior

(1992-2001). Although the magnitude of these differences
is small, the map highlights some consistent spatial varia-
tions over time. While inland regions exhibit a decrease
of approximately 0.04 °C in the posterior mean of average
increments, coastal areas show an increase of around 0.05 °
C. Furthermore, given the uncertainty of these differences
expressed by the 5th and 95th percentiles, there is no evi-
dence that coastal changes are significantly different from
zero, whereas inland regions show a slight decline. Maps
showing the differences between each decade and D6 are
also presented in Section 5.2 of the Supplementary Mate-
rial. Similar conclusions are obtained in the comparison
of all the decades although, inland, larger differences are
observed in the earlier decades. However, in none of the
cases do the differences along the coast show evidence of
being significantly different from zero, supporting the con-
clusion that the posterior mean of the increments in coastal
areas is not decreasing.

Another approach to evaluating spatial and temporal dif-
ferences in average increments is through probabilities. We
use this method to assess whether a seasonal pattern exists
within the summer, given that the magnitude of differences
during this period is very small. To do this, we compare
increments among months. Specifically, we compute the
probabilities Pp (Jy,ar, () > Jy,n, (s)) where Jy a(s) is
the average increment in month M at year ¢ and the prob-
ability is computed over the 10 years ¢ within the decade D.
Figure 9 shows the probabilities comparing July and June,
August and June, and August and July in the last decade D6,
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Fig. 10 Left: Posterior mean and the 90% CI of the annual average of the increments, in °C, over peninsular Spain. Right: Posterior mean of

Pp.c(Ji,754(s) > ) for different values x, in °C, across the 6 decades

as illustration. The results show that, over the last decade,
the probability of the average increment in July tends to be
slightly lower than in June and in August. Although the dif-
ferences are small and some uncertainty exists in the estima-
tions, this result remains spatially consistent. Maps showing
the probabilities for decades D2 to D6 and for the entire
period are also presented in Section 5.2 of the Supplemen-
tary Material. The behavior across months is not consistent
over all the decades. However, the increments in June are
generally higher than those in July and August, except dur-
ing decade D3. Notably, this seasonal pattern of the incre-
ments, peaking in June, contrasts with the typical summer
temperature cycle in Spain, where July and August record
the highest temperatures (AEMET 2011). This provides
the novel suggestion that extreme temperatures in June are
increasing more rapidly than in the rest of the summer.

@ Springer

6.2.2 Time evolution of increments

Our first objective in this section is to characterize the annual
evolution of the increments over Spain. Figure 10 shows the
posterior mean, and the 90% CI of the annual average of the
increments across Spain,

- 1
Jt,JJA(G) = m Z Z Jte(Sj),

(eJTAs;€G

where G is the grid of points covering peninsular Spain and
|G| = 844 is the number of points in that grid. As expected,
increments in the early years (which correspond mainly to
the first records) are higher, but they become more stable
over time. After the first 30 years, the mean moves around
°C. Although no clear trend has been observed in recent
decades, we can assess whether the increments continue to
decrease using the probabilities that compare two decades
D4 and Dp, Pg(JDAJJA(S) < JDB“]‘]A(S)). The poste-
rior mean of these probabilities for comparing D6 and D4,
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and D6 and D5 are 0.80 and 0.69, respectively. These results
suggest that the increments continue to decrease, although
at a progressively slower rate.

Figure 10 (right) compares the posterior mean of
PD7G(jt“]JA<S) > x), the probability that the average JJA
increment in a given year exceeds x, for different values of
x, where the probability is computed over Spain and one
decade, for each of the 6 considered decades. The densities
of the previous probabilities for two of the values x = 1°
C and 1.5°C are shown in Fig. 11; the results show that
while the distribution of the average JJA increments evolves
over time, changes occur differently in the tails. Specifi-
cally, although the center of the distribution has continued
to decrease in recent decades, the upper tail has remained
stable over the last 30 years.

Comparison of the time evolution of increments across
inland and coastal areas. Some previous results show small
differences in the behavior of increments between inland
and certain coastal areas, particularly the Basque Country,
Galicia, and parts of the southern coast. To assess a potential
general difference between inland and coastal behavior, we
analyze the average increments over a region on a given
day, defined as, Jy(Ggr) = ZsjeGR Jie(s5)/|Gr|, where

s; represents the points in a prediction grid Gr covering
the region of interest and |G| is the total number of such
points. Based on these spatial averages, additional tempo-
ral averages can be computed, either across days within
year and/or across years. Several analyses have been con-
ducted in this regard, including comparisons of annual
trends between inland and coastal regions (with inland areas
defined as those more than 50 km from the coast) and also
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distinguishing among three coastal regions (northern, east-
ern, and southern). However, no significant differences were
found; see Section 6 of the Supplementary Material for fur-
ther illustration.

6.3 Additional inference tools: Cumulative
increments across a period of time

An additional advantage of the conditional model J | I pro-
posed in this work is that it can be combined with a model
for the occurrence of records to make inference on mea-
sures that depend on the joint distribution of record occur-
rences and their increments, that is the vector (I, J). More
precisely, by specifying the factorization [I | 81][J | I, 5]
with 8, denoting all of the unknowns in a model for record-
breaking indicators, €2 denoting all the unknowns in a
model for the increment given a record and assuming that
6, and 0, are different sets of parameters, I and J | I can be
modeled separately and their combination yields the joint
distribution of (I, J).

This joint distribution enables, among others, the quan-
tification of the cumulative increment over a period of
time in the record temperature value for a given day of
the year at a specific site. It also enables the characteriza-
tion of the record-breaking value of a series in a given
year, provided the temperature value for the first year of
the series is available. Note that using the proposed model,
since the conditional distribution of the increments Ji(s)
is Gamma (p0(s), ¢) and the temperature increments are
conditionally independent given their parameters, the mar-
ginal distribution of the cumulative increment during a
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Fig. 11 Densities of the probabilities Pp ¢ (J;, 774 (s) > ) per decades for = 1°C and 1.5 °C
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Fig. 12 Posterior mean of the average cumulative increments, in °C, in
the last 30 years over the summer months JJA

period of years 7 is Gamma(}_, . o(s) Hte(8), @), where

T1,0(s) ={t € T : Iy(s) = 1}. This highlights that distri-
bution of the cumulative increment depends on the distribu-
tion of the record indicators.

Given two separate models for I and J | I, we can pro-
ceed as follows. First, we generate posterior samples of the
record indicators. Next, we generate posterior samples of
the increments when a record has occurred. These samples
allow us to characterize the posterior distribution of the
cumulative increment over a period of years 7 given by

Z Ji(s).

teT1,e(s)

Finally, we can illustrate the spatial behavior of the poste-
rior mean of the cumulative increment for a given day or
summarize it over a month or a year.

As an illustration, we use posterior samples of the record
indicators generated by the model for I of Castillo-Mateo
et al. (2025), introduced at the beginning of Section 6.2.
However, it is noteworthy that any model capable of gen-
erating samples of I can be used in this approach. Figure 12
presents a map of the posterior mean of the average cumula-
tive increments in the last 30 years over the summer months
JJA; the cumulative increase of the value of record from
1992 to 2021 in some coastal areas such as Basque country
and Galicia is of almost 3 °C, while inland it varies from 1
to 2°C.

7 Summary and future work
We argue that while explaining the incidence of record-

breaking events is important, analyzing the magnitudes of
these records also offers valuable insight into the dynamics
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of daily temperature extremes. To explore this, we propose
an approach that does not require modeling the temperature
distribution over an entire space-time dataset. Rather, it is
sufficient to model the conditional distribution of record
values or their increments, i.e., we only need to model the
temperature increments given that a record has occurred.
This approach has an important advantage: the increments
can be treated as conditionally independent and are not con-
strained by the ordering that affects record values.

Within this framework, we introduce a novel regression
model, implemented within a hierarchical Bayesian frame-
work, which analyzes increments across years, by day in
the summer season, and by site. This approach allows us to
identify covariates that effectively explain the increments,
while also assessing variation across time and space (spe-
cifically by year, within summer months, and between sites)
thereby providing a deeper understanding of the record-
breaking process. Importantly, the proposed approach cap-
tures the underlying dependencies and heterogeneity that
fixed effects cannot explain. Spatial dependence is mod-
eled using spatial Gaussian processes, temporal autocorre-
lation is addressed through autoregressive random effects,
with interactions between spatial and temporal components
incorporated as needed.

Another advantage of the proposed model is its ability to
characterize both the conditional distribution of the incre-
ments, given the previous day’s record-breaking indicator,
and their marginal distribution, obtained by marginalizing
over that indicator. Additionally, it allows for the charac-
terization of the cumulative increment of the record value
over a specified period, provided a posterior distribution
for the daily record probabilities is available. The Bayesian
framework facilitates the use of the increments model and
MC simulation for performing a rich range of inference to
enable appreciation of spatial variation over the region of
study, as well as comparison over the years. This approach
yields not only estimates of mean values but also quantifies
their uncertainty through the posterior distribution. Further-
more, it supports the derivation of useful inference tools,
such as the probabilities of events of interest and the genera-
tion of maps displaying either these probabilities, posterior
means or other summary measures of parameters of interest.

Conclusions on record increments of daily tempera-
ture over Spain. Using data from peninsular Spain, span-
ning from 1960 to 2021, we conclude that a Gamma model
for the increments performs far better than an Exponential
model. Our analysis also reveals that key spatial informa-
tion is captured by the logarithm of elevation and the loga-
rithm of the distance to the coast. Temporal covariates are
also essential: a second-order polynomial trend effectively
models long-term evolution, while the inclusion of the pre-
vious day’s record indicator captures serial correlation. The
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effects of these time covariates vary spatially so that inter-
action terms with the logarithm of the distance to the coast
are also necessary. Finally, a daily effect with an autoregres-
sive structure is required to account for serial correlation but
also for seasonal variation within the summer month and its
interannual variability. Using different MC inference tools
we conclude:

e The occurrence of a record on the previous day increas-
es the posterior mean of the increment by between 0.3
and 0.6 °C, depending on the region.

e The posterior mean of the average increment on a record-
breaking day during the decade 2012-2021 is around
1°C in most inland regions. This value increases to ap-
proximately 2 °C in coastal areas, such as the Basque
Country, Galicia, and the southern Mediterranean coast.

e Regarding the long-term evolution, as expected, the
magnitude and variability of increments decreases over
time, with a slower rate of decline after 30 years, that
varies around 1°C. Notably, the evolution of the tails
differs from that of the bulk of the distribution, with the
tails being more stable over the last 30 years.

e Although changes in increment behavior are observed
across summer months, they do not align with the typi-
cal seasonal pattern of daily temperature; July, for in-
stance, has shown the lowest average increments over
the past decade across peninsular Spain.

e The cumulative increment in record values from 1992
to 2021 reaches nearly 3 °C in the most affected coast-
al regions, while inland areas show cumulative values
ranging from 1 to 2 °C.Future work. Since our work is
applicable to general daily temperature datasets, or even
other environmental series, users may readily apply
it to other spatial domains. Also, our model is a mean
model. If interest was, perhaps, in extremes of incre-
ments, our models could be modified to quantile re-
gression specifications. Finally, if our temperature data
provided daily maximum temperatures and daily mini-
mum temperatures, we could offer different definitions
of record breaking and therefore different realizations of
increments. Following our ideas here, we could develop
modeling for these increments.

Supplementary Information The online version  contains
supplementary material available at https://doi.org/10.1007/s00477-0
25-03159-x.

Acknowledgements This work was supported by MCIN/
AEI/10.13039/501100011033 and Unién Europea NextGenerationEU
under Grants TED2021-130702B-100, and PID2023-150234NB-100,
and Gobierno de Aragon under Research Group E46 23R: Modelos
Estocasticos and research project PROY T21 24-HIDROGIF.

Author contributions All authors contributed to the conception and re-

vision of this manuscript. A.C. implemented the analyses. All authors
have read and approved the final version of the article.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. Open access funding provided thanks
to the CRUE-CSIC agreement with Springer Nature

Data availability The dataset and R code/functions used in this manu-
script are publicly available at the following GitHub repository: https:
//github.com/anaccebrian/RecordIncrements/

Declarations
Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.o
rg/licenses/by/4.0/.

References

AEMET (2011) Atlas climatico ibérico/iberian climate atlas. Tech.
rep., Agencia Estatal de Meteorologia. Madrid, Spain, https://doi.
org/10.31978/784-11-002-5

Arnold BC, Balakrishnan N, Nagaraja HN (1998) Records. Wiley
series in probability and statistics, John, New York. https://doi.or
2/10.1002/9781118150412

Castillo-Mateo J, Asin J, Cebrian AC, Gelfand AE, Abaurrea J (2023)
Spatial quantile autoregression for season within year daily maxi-
mum temperature data. Annal Appl Stat 17(3):2305-2325. https:/
/doi.org/10.1214/22-AOAS1719

Castillo-Mateo J, Gelfand AE, Gracia-Tabuenca Z, Asin J, Cebrian AC
(2025) Spatio-temporal modeling for record-breaking tempera-
ture events in Spain. J Am Stat Assoc 120(550):645-657. https://
doi.org/10.1080/01621459.2024.2427430

Chen SX (1999) Beta kernel estimators for density functions. Compu-
tat Stat Data Anal 31(2):131-145

Coles S (2001) An introduction to statistical modeling of extreme val-
ues. Springer Series in Statistics, Springer, London

Coumou D, Robinson A, Rahmstorf S (2013) Global increase in
record-breaking monthly-mean temperatures. Clim Change
118(3-4):771-782. https://doi.org/10.1007/s10584-012-0668-1

Elguindi N, Rauscher SA, Giorgi F (2013) Historical and future
changes in maximum and minimum temperature records over
Europe. Clim Change 117:415-431. https://doi.org/10.1007/s10
584-012-0528-z

Jiang N, Zhu C, Hu ZZ, McPhaden MJ, Chen D, Liu B, Ma S, Yan
Y, Zhou T, Qian W et al (2024) Enhanced risk of record-break-
ing regional temperatures during the 2023-24 El Nifio. Sci Rep
14(1):2521

Keellings D, Waylen P (2015) Investigating teleconnection drivers
of bivariate heat waves in Florida using extreme value analysis.
Clim Dyn 44(11):3383-3391

@ Springer


https://github.com/anaccebrian/RecordIncrements/
https://github.com/anaccebrian/RecordIncrements/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.31978/784-11-002-5
https://doi.org/10.31978/784-11-002-5
https://doi.org/10.1002/9781118150412
https://doi.org/10.1002/9781118150412
https://doi.org/10.1214/22-AOAS1719
https://doi.org/10.1214/22-AOAS1719
https://doi.org/10.1080/01621459.2024.2427430
https://doi.org/10.1080/01621459.2024.2427430
https://doi.org/10.1007/s10584-012-0668-1
https://doi.org/10.1007/s10584-012-0528-z
https://doi.org/10.1007/s10584-012-0528-z
https://doi.org/10.1007/s00477-025-03159-x
https://doi.org/10.1007/s00477-025-03159-x

24 Page 16 of 16

Stochastic Environmental Research and Risk Assessment

(2026) 40:24

Klein Tank AMG, Wijngaard JB, Kénnen GP, Bohm R, Demarée G,
Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C,
Heino R, Bessemoulin P, Miiller-Westermeier G, Tzanakou M,
Szalai S, Palsdéttir T, Fitzgerald D, Rubin S, Capaldo M, Petrovic
P (2002) Daily dataset of 20th-century surface air temperature
and precipitation series for the European Climate Assessment. Int
J Climatol 22(12):1441-1453. https://doi.org/10.1002/joc.773

Lehmann J, Coumou D, Frieler K (2015) Increased record-break-
ing precipitation events under global warming. Clim Change
132(4):501-515. https://doi.org/10.1007/s10584-015-1434-y

Lehmann J, Mempel F, Coumou D (2018) Increased occurrence of
record-wet and record-dry months reflect changes in mean rain-
fall. Geophys Res Lett 45(24):13468—13476. https://doi.org/10.1
029/2018GL079439

Lindgren F, Bolin D, Rue H (2022) The SPDE approach for Gaussian
and non-Gaussian fields: 10 years and still running. Spatial Stat
50:100599

Newman WI, Malamud BD, Turcotte DL (2010) Statistical properties
of record-breaking temperatures. Phys Rev E-Statist Nonlinear
Soft Matter Phys 82(6):066111

Pan Z, Wan B, Gao Z (2013) Asymmetric and heterogeneous fre-
quency of high and low record-breaking temperatures in China
as an indication of warming climate becoming more extreme. J
Geophys Res Atmos 118(12):6152—6164. https://doi.org/10.100
2/jgrd.50467

Rahmstorf S, Coumou D (2011) Increase of extreme events in a warm-
ing world. Proc Natl Acad Sci 108(44):17905-17909. https://doi.
org/10.1073/pnas. 1101766108

Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace

@ Springer

approximations. J Royal Stat Soc Ser B (Statistical Methodology)
71(2):319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.
X

Rue H, Riebler A, et al. (2024) R-INLA: Bayesian computing with
INLA. https://www.r-inla.org, R package version 24.6.27

Schliep EM, Gelfand AE, Abaurrea J, Asin J, Beamonte MA, Cebrian
AC (2021) Long-term spatial modelling for characteristics of
extreme heat events. J R Stat Soc Ser A Stat Soc 184(3):1070-1092

Shaby BA, Reich BJ, Cooley D, Kaufman CG (2016) A Markov-
switching model for heat waves. Annal Appl Stat 10(1):74-93. ht
tps://doi.org/10.1214/15-AOAS873

Sousa PM, Barriopedro D, Ramos AM, Garcia-Herrera R, Espirito-
Santo F, Trigo RM (2019) Saharan air intrusions as a relevant
mechanism for Iberian heatwaves: the record breaking events of
August 2018 and June 2019. Weather Clim Extremes 26:100224.
https://doi.org/10.1016/j.wace.2019.100224

Tian P, Zhang F, Yan Y, Liu Y, Zhang H, LiJ (2025) Spatial inequalities
in global population exposure to extreme heats and heatwaves.
Appl Geogr 174:103474

Wergen G, Hense A, Krug J (2014) Record occurrence and record val-
ues in daily and monthly temperatures. Clim Dyn 42(5):1275—
1289. https://doi.org/10.1007/s00382-013-1693-0

Yang X, Xu X, Wang Y, Yang J, Wu X (2024) Heat exposure impacts
on urban health: a meta-analysis. Sci Total Environ 947:174650.
https://doi.org/10.1016/j.scitotenv.2024.174650

Publisher's Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://www.r-inla.org
https://doi.org/10.1214/15-AOAS873
https://doi.org/10.1214/15-AOAS873
https://doi.org/10.1016/j.wace.2019.100224
https://doi.org/10.1016/j.wace.2019.100224
https://doi.org/10.1007/s00382-013-1693-0
https://doi.org/10.1016/j.scitotenv.2024.174650
https://doi.org/10.1016/j.scitotenv.2024.174650
https://doi.org/10.1002/joc.773
https://doi.org/10.1007/s10584-015-1434-y
https://doi.org/10.1029/2018GL079439
https://doi.org/10.1029/2018GL079439
https://doi.org/10.1002/jgrd.50467
https://doi.org/10.1002/jgrd.50467
https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1073/pnas.1101766108

	﻿Spatio-temporal analysis of record-breaking temperature increments across Spain
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Data and exploratory analysis
	﻿2.1﻿ ﻿Data and study area
	﻿﻿2.2﻿ ﻿Exploratory analysis of record increment values

	﻿﻿3﻿ ﻿Modeling structure of the increments
	﻿﻿4﻿ ﻿A space-time model for record-breaking increments in daily maximum temperatures
	﻿4.1﻿ ﻿Selecting the covariates
	﻿4.2﻿ ﻿Including random effects
	﻿﻿4.3﻿ ﻿Model comparison and selection
	﻿4.4﻿ ﻿Description of the final selected model

	﻿﻿5﻿ ﻿Adequacy of the final model MS3
	﻿5.1﻿ ﻿Coverage of the daily increments
	﻿5.2﻿ ﻿Analyzing cumulative probabilities
	﻿5.3﻿ ﻿Analyzing spatial averages

	﻿﻿6﻿ ﻿Post-model inference using Monte Carlo simulation
	﻿6.1﻿ ﻿Conditional posterior distribution given the previous day indicator
	﻿﻿6.2﻿ ﻿Marginal posterior distribution
	﻿6.2.1﻿ ﻿Spatial analysis of increments
	﻿6.2.2﻿ ﻿Time evolution of increments


	﻿6.3﻿ ﻿Additional inference tools: Cumulative increments across a period of time
	﻿﻿7﻿ ﻿Summary and future work
	﻿References


