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with heatwaves, which are defined and measured at the 
daily scale (Yang et al. 2024; Tian et al. 2025). Therefore, 
in this work we focus on this time scale and, specifically, 
on calendar-day records, i.e., the record-breaking events 
in each time series corresponding to each day of the year, 
across years; see Elguindi et al. (2013) and Pan et al. (2013) 
for further discussion of the advantages of using calendar 
day records in climate studies.

Formal investigation of record-breaking events implies 
analyzing both their occurrence and their value. Castillo-
Mateo et al. (2025) presented a spatio-temporal model for 
the occurrence of record-breaking events, including com-
plex dependence structures. However, to the best of our 
knowledge, no spatio-temporal modeling of the values of 
record-breaking events, whether for temperature or other 
variables, has been presented in the literature. The aim of 
this work is to fill that gap. Moreover, instead of model-
ing the record values directly, we propose an approach that 
models the increments relative to the previous record value, 

1  Introduction

The study of record-breaking values is of significant interest 
in environmental sciences, especially in areas such as wave 
height, flood levels, wind speed, climate studies related to 
precipitation Lehmann et al. (2015, 2018) and, most nota-
bly, temperature (Newman et al. 2010; Wergen et al. 2014; 
Sousa et al. 2019; Jiang et al. 2024). Temperature data, and 
consequently their record-breaking events, can be analyzed 
across various time scales; however, the most significant 
impacts on human health and biodiversity are associated 
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Abstract
The study of record-breaking values is of significant interest in environmental sciences. Studying records implies analyz-
ing both their occurrence and their magnitude. Further, the study of this phenomenon within a spatio-temporal framework 
is vital for evaluating seasonal behaviors, identifying spatial patterns, and quantifying the effect of climate change on it. 
With interest in record-breaking temperatures, we specify models for these observations rather than models for the entire 
daily temperature stream. Models specifically designed for record-breaking events must consider two random components: 
the occurrence and the magnitude of each record. With primary interest in the magnitudes, we model the magnitude data 
given the occurrence data, with the goal of making inference about their evolution within a spatio-temporal framework. We 
employ a set of 40 geo-referenced time series of daily temperatures across peninsular Spain. From these, we extract the 
series of occurrences and values of record-breaking events during the summer months, June, July, and August, spanning 
from 1960 to 2021. The results reveal that the behavior of the increments is neither spatially nor temporally homogeneous, 
and that there is significant dependence on the previous day: the occurrence of a record increases the posterior mean of 
the next day’s increment by between 0.3 and 0.6 °C. It is also found that the posterior mean of the average increment 
on a record-breaking day during the decade 2012–2021 is approximately 1 °C inland, increasing to around 2°C in some 
coastal areas. After 30 years, mean increments stabilize near 1°C with a mild downward trend.
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conditional on a record-breaking event having occurred 
(i.e., positive increments). This approach is simpler to 
implement since increments can be treated as conditionally 
independent, whereas record values are subject to a left cen-
soring order constraint. In addition, increments offer a con-
sistent basis for comparison across sites and time periods by 
removing site-specific baselines, much like the temperature 
anomalies used in climate studies. Note that by focusing on 
positive increments, we can confine ourselves to conditional 
modeling, i.e., modeling the increment given that a record 
has occurred.

Using this model, we aim to address key climate-related 
questions, such as evaluating trends in record values over 
time, examining differences within the summer months, 
identifying factors that influence record-breaking tempera-
tures, and assessing the presence of serial correlation. We 
also investigate these issues spatially, both to assess spatial 
dependence and variation, and to characterize annual trends 
across regions with different environmental characteristics. 
Modeling within a hierarchical Bayesian spatio-temporal 
framework enables us to obtain full posterior predictive 
distributions to address the following questions, and to 
quantify the associated uncertainty: (i) Do we observe dif-
ferences in seasonal behavior? (ii) Can we identify spatial 
patterns? (iii) Can we detect decadal temporal patterns to 
quantify the effects of climate change on record-breaking 
temperatures? (iv) Is there an effect of a previous day’s 
record-breaking event on increments? (v) Can we predict 
increment behavior at unobserved locations? The answers 
to these questions will be of significant value to the climate 
research community.

Another question of interest in climate research is to 
quantify the deviation of the observed behavior of record-
breaking temperatures from what would be expected 
under a stationary climate, i.e., in i.i.d. sequences. To this 
end, it is useful to exploit the probabilistic properties of 
record-breaking events in i.i.d. series. For the occurrence 
of record-breaking events, these properties are simple and 
distribution-free, making such comparisons straightforward 
(Castillo-Mateo et al. 2025). Unfortunately, for the values 
of the records, the properties are more complex. The dis-
tribution of the increments of record-breaking values in 
i.i.d. sequences depends on the underlying distribution of 
the sequence (Arnold et al. 1998, Section 2.10), and there-
fore general distribution-free results are not available. Some 
analytical results exist for specific distributions, such as the 
exponential, Pareto, Weibull, and extreme value distribu-
tions (Arnold et al. 1998, Chapter 3), but they are not appli-
cable in our context.

Here, models are fitted within a Bayesian framework, 
which allows us to incorporate dependence over time 
and space using relevant covariates and random effects. 

Additionally, the Bayesian framework provides generative 
models, which enable us to propose a Monte Carlo (MC) 
approach to validate them and draw inference from them. 
Specifically, this MC approach serves as a powerful tool for 
making inferences about arbitrary characteristics of interest 
of the distribution of the records and, as a result, addressing 
the research questions of interest.

It could be argued that one seemingly straightforward 
approach for analyzing calendar-day record-breaking tem-
perature series would be to model the entire distribution 
of temperatures. A generative model for daily temperature 
could theoretically produce samples of record-breaking 
events, which can then be used to infer the distribution of 
the occurrence and magnitude of these records. However, 
developing a model that accurately represents the full range 
of daily temperatures, particularly the record-breaking 
events, presents significant challenges, especially within a 
spatio-temporal framework. Models designed to capture the 
entire temperature distribution tend to perform well in fit-
ting the bulk of the distribution, where more data are avail-
able, but often perform poorly in the tails of the distribution 
(Keellings and Waylen 2015; Shaby et al. 2016). Addition-
ally, these models will usually impose a single trend across 
both central and extreme values and will assume uniform 
seasonal effects and covariate influences. This assumption, 
however, is unrealistic (Schliep et al. 2021; Castillo-Mateo 
et  al. 2023). That is the reason why models for extreme 
events focus on alternative approaches such as exceed-
ance thresholds, block maxima, or specific quantiles (Coles 
2001). Such models allow for a more flexible and accurate 
representation of the behavior of the tails.

Similarly, given that our interest is in temperatures asso-
ciated with record-breaking, it seems more appropriate to 
confine ourselves to modeling temperature increments asso-
ciated with these events. In what follows, we extract incre-
ment data associated solely with record-breaking events and 
we focus on models specifically for such data. Such a focus 
enables us to specify simpler models that achieve good 
explanatory and predictive performance. It is worth noting 
that our data is no longer a daily time series but rather a 
sequence of event times with an associated mark, a tempera-
ture increment.

The proposed approach is applied to a set of 40 geo-ref-
erenced time series of daily temperatures across peninsular 
Spain. From these, we extract the series of occurrences and 
values of record-breaking events during the three summer 
months, June, July, and August (JJA), spanning from 1960 
to 2021. We model the increments of calendar-day records, 
i.e., the records for each day within the three-month window 
at each site, resulting in 92 yearly series per site.

The remainder of the manuscript is organized as follows. 
Section 2 presents the daily temperature data and an EDA of 
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the records. Section 3 describes the modeling framework for 
the increments introduced in this work. Section 4 introduces 
the specific structure of the proposed spatio-temporal mod-
els, outlines the selection process used to identify the most 
adequate model, and presents the final selected model. Once 
the best model is selected, Sect. 5 presents validation tools 
to assess its adequacy, and Sect. 6 reports post-model infer-
ence results obtained via MC simulation based on the condi-
tional and marginal distributions of the increments provided 
by the final model. Finally, Sect. 7 concludes with a sum-
mary and directions for future research. Additional details 
and graphics are provided in the Supplementary Material.

2  Data and exploratory analysis

2.1  Data and study area

The study area is peninsular Spain, defined as the region of 
Spain within the Iberian Peninsula, covering approximately 
492,175  km2. The dataset is point-referenced to a collec-
tion of monitoring stations and includes daily maximum 
temperature observations from January 1, 1960, to Decem-
ber 31, 2021. Specifically, it is extracted from the European 
Climate Assessment & Dataset (ECAD; Klein Tank et  al. 
2002), spanning 40 weather stations. The Spanish tempera-
ture series available in ECAD are provided by AEMET and 
are measured to the nearest 1/10 ◦C.

For analyses focused on daily temperature record indica-
tors across years, the dataset is organized into 365 binary 
series (with February 29 removed for convenience) of 

length 62 for each site. In this study, we consider only the 
92 series corresponding to the days in JJA. Figure 1 shows 
the locations of the stations within the Iberian Peninsula. 
Spain is geographically diverse, featuring several mountain 
ranges such as the Pyrenees in the northeast, the Inner Pla-
teau in the center, and the Sierra Nevada near the southern 
Mediterranean coast. The region has an extensive coastline 
bordered by the Atlantic Ocean to the north and west, and 
the Mediterranean Sea to the south and east.

The stations are irregularly distributed across Spain in 
an effort to represent its varied climatic zones. The stations 
also span a wide range of elevations, including five located 
above 800 m, and 16 situated along the coast. The stations 
considered in this study have a negligible amount of missing 
data, with an average missing rate of 0.07%. It is assumed 
that no record-breaking observations occurred on those 
days; a simulation study conducted by Castillo-Mateo et al. 
(2025) using the same dataset showed that the missing data 
had a negligible impact on the results. To summarize, the 
dataset used to fit the model consists of the record incre-
ments, Jtℓ(si), where ℓ ∈ L = {1, . . . , 92} corresponds to 
days from June 1 to August 31, t ∈ T = {2, . . . , 62} repre-
sents years from 1961 to 2021, and si ∈ S = {s1, . . . , s40} 
are the geographic coordinates for the 40 weather stations.

2.2  Exploratory analysis of record increment values

An exploratory data analysis (EDA) is conducted to iden-
tify the key features for inclusion in the model. To achieve 
this, we compute and plot the empirical densities of record 
increments across different time periods and conditions; the 

Fig. 1  Map of the 40 Spanish sta-
tions (red points), and the predic-
tion grid (black points)
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further indicate that the distribution varies across days, 
years, and space, particularly as a function of distance to 
the coast, and that there is dependence on the previous day, 
which also varies with distance to the coast. Consequently, 
the model should consider the inclusion of trend and sea-
sonal terms, the effect of the previous day, the influence of 
distance to the coast, and the necessary interactions among 
these components.

3  Modeling structure of the increments

The modeling structure for this problem presents some 
methodological challenges. Let t denote years, ℓ days 
within years, and si observed sites, with the set of all 
observed combinations of years, days, and sites defined as 
A = T × L × S. To explain the positive increments (or 
jumps), i.e., the set J = {Jtℓ(si) : (t, ℓ, si) ∈ A}, we need 
the set of indicator variables I = {Itℓ(si) : (t, ℓ, si) ∈ A}, 
where Itℓ(si) indicates whether a record-breaking tempera-
ture occurred in year t on day ℓ at site si, i.e., whether the 
temperature on that specific day and location exceeds all 
previous observations for the same calendar day at that site. 
Since I may serve as a regressor in explaining J, and because 
it is stochastic, we need to model increments conditional on 
these indicators. Furthermore, our goal is to model only the 
positive increments, i.e., the values Jtℓ(s) associated with 
Itℓ(s) = 1. Given that I is observed, we therefore consider 
the conditional distribution J | I. For simplicity, we will 
refer to these positive increments simply as increments.

As we demonstrated in the previous section, a critical 
predictor in explaining Jtℓ(s) is It,ℓ−1(s), i.e., whether or 
not there was a record-breaking event on the previous day. 
Thus, we cannot consider only Itℓ(s) = 1, and instead must 
retain the conditional structure J | I in our modeling. How-
ever, this reveals an awkward prediction challenge. To make 
prediction of the increments at unobserved sites using the 

densities are estimated using the Beta boundary kernel by 
Chen (1999) for positive variables. This section presents the 
results that highlight the most relevant features.

Probability distribution and decadal evolution Figure 2 
(left) presents the empirical densities for 10-year periods 
(except for the first one, which covers 1961–1971), obtained 
from all stations. The shape of the empirical density in each 
period suggests that a Gamma distribution may be appropri-
ate. Notably, the mode of the empirical density is far from 
zero in all cases, indicating that a simpler distribution, such 
as the Exponential distribution, will not be adequate. A tem-
poral evolution is observed, with the early years exhibiting 
greater variability than the later period, as expected from 
record behavior.

Previous day effect Due to the strong serial correlation 
in daily temperature, a record occurrence on previous days 
may influence the increment value. Figure 2 (right) presents 
the empirical density of increments when the previous day 
was a record versus when it was not, for the last decade. The 
increments tend to be higher when the previous day was a 
record. This effect appears stable over time, as a similar pat-
tern is observed in the 1992–2001 period.

Seasonal behavior The behavior of increments is not 
homogeneous within the JJA period and the monthly distri-
butions vary across decades, see the plots in Section 1 of the 
Supplementary Material.

Spatial variability It is well known that elevation influ-
ences temperature-related variables, but other geographical 
factors, such as coastal proximity, may also play a role. To 
investigate this effect, we compare the empirical density of 
increments for stations located within 50 km of the coast 
versus those farther inland, revealing distinct distributions. 
Furthermore, this difference depends on whether a record 
occurred the previous day or not, see the plots in Section 1 
of the Supplementary Material.

In summary, the EDA suggests that a Gamma distribu-
tion is appropriate for modeling the increments. The results 
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where ϕ > 0 is a constant shape parameter, µtℓ(s) > 0 is the 
mean and var (Jtℓ(s)) = µtℓ(s)2/ϕ. The logarithm of the 
mean is modeled as a linear predictor,

log(µtℓ(s)) = ηtℓ(s) = β0 + Z⊤
tℓ(s)β + wtℓ(s).

Here, β0 is a global intercept, Ztℓ(s) denotes a column vec-
tor of spatial and temporal covariates, β denotes the cor-
responding column vector of regression coefficients, and 
wtℓ(s) is a component of random effects.

The models are fitted using R-INLA (Rue et al. 2024). 
In order to properly define the time dependencies, R-INLA 
requires the use of a complete time series, with time points 
where a record-breaking temperature has not occurred are 
filled with NA values. More details on the fit of the model 
and the priors used in the estimation can be found in Section 
2 of the Supplementary Material, and details on the INLA 
methodology in Rue et al. (2009).

The remainder of this section first describes the procedure 
used to select the covariates which are relevant for modeling 
the increments. Once the covariates in the linear predictor 
are fixed, we consider alternative specifications for the ran-
dom effects to capture remaining dependence across time 
and space. Model selection is then carried out using two in-
sample criteria and a simple out-of-sample metric. Finally, 
the key output of the final selected model is presented.

4.1  Selecting the covariates

The EDA identified a set of covariates that appear to influ-
ence the value of the increments. The need to include these 
covariates in the model was assessed using 95% credible 
intervals (CIs) obtained from a model without random 
effects. After the selection procedure, the final set of covari-
ates included in the model are: log(t) and its square, which 
capture the annual trend, geographical variables such as the 
logarithm of elevation, logElev (s), and distance to the coast, 
logDC (s), measured in meters and kilometers respectively, 
and the interaction between the latter and log(t); to avoid 
undefined values logDC (s) is defined as log(1 + DC(s)). 
To account for the serial correlation, a Markovian structure 
represented by the previous day’s record indicator, It,ℓ−1(s), 
and its interaction with logDC (s) are also included. The 
interactions log(t) × logDC (s) and It,ℓ−1(s) × logDC (s) 
allow the time trend and persistence to vary spatially. 
Given the differences observed across the three considered 
months, we explored including harmonic terms; however, 
they were not flexible enough to capture the complex behav-
ior. Instead, seasonal differences will be captured using ran-
dom effects as detailed below. Finally, due to the effect of 
large warm fronts that affect the entire peninsula and last for 
several days, joint spatio-temporal dependence is expected. 

regression model, we will assume that the indicator for that 
year, day, and location is 1. However, we will need the pre-
vious day indicator and this will not be known.

There are several alternatives within a hierarchical Bayes-
ian framework. The first is to present two posterior predic-
tive distributions, one given the previous day indicator was 
equal to 1 and one when it was equal to 0. Comparison of 
these two distributions will be informative in assessing how 
the previous day’s information influences the distribution of 
the increment.

Further, we can also consider the marginal posterior 
predictive distribution, which does not require specifica-
tion of the previous day’s indicator. We can obtain this as a 
mixture distribution using mixture weights that provide the 
probability for the previous day’s indicator to be equal to 1 
and therefore, equal to 0. An elementary choice would arise 
from the classical stationary record-breaking model (Arnold 
et al. 1998, Chapter 2) where, the probability of record at 
time t is 1/t, but this is not a reasonable assumption under 
global warming. If we adopt a parametric model for record 
breaking, e.g., a linear drift model (Rahmstorf and Cou-
mou 2011; Coumou et al. 2013) or a fully developed spatial 
record-breaking model, as in Castillo-Mateo et al. (2025), 
then the probability for the previous day’s indicator to equal 
1 is a parametric function, a random variable in the Bayes-
ian setting. With a posterior distribution for this probability, 
we obtain a posterior distribution for the marginal predic-
tive distribution. A convenient summary of this predictive 
distribution is the posterior mean that can be obtained by 
averaging with the posterior mean probability that the previ-
ous day’s indicator is equal to 1 as well as 0; note that these 
probabilities of record can be readily estimated, either by 
the simplistic empirical proportions of records or by more 
sophisticated estimation techniques.

4  A space-time model for record-breaking 
increments in daily maximum temperatures

Increments are positive and asymmetric quantities, so 
that a Gamma distribution may be an appropriate model. 
This assumption is further supported by the EDA in Sec-
tion 2.2; see the empirical density estimators in Fig. 2 and 
the accompanying comments. Consequently, it is assumed 
that Jtℓ(s) | Itℓ(s) = 1 follows a Gamma distribution with 
the following density function:

fJtℓ(s)(y) =
(

ϕ

µtℓ(s)

)ϕ 1
Γ(ϕ)

yϕ−1 exp
(

− ϕy

µtℓ(s)

)
, y > 0,
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where ϵtℓ ∼ N(0, σ2
ϵ ) are independent Gaussian errors. 

These temporal terms account for serial correlation between 
days not explained by the autoregressive covariates, as well 
as interannual variations in seasonal behavior, as indicated 
by the EDA; see Section 2 of the Supplementary Material 
for details on the autoregressive structure.

More complex random effects were tried, including a 
term represented by a latent spatio-temporal process which 
changes in time with first-order autoregressive dynamics 
and spatially correlated errors. However, these additions did 
not improve model performance.

4.3  Model comparison and selection

Model selection among M1, MS1, MS2 and MS3 is per-
formed employing three different metrics. First, an in sample 
comparison is implemented using the deviance information 
criterion (DIC) and the root mean square error

RMSE =

√√√√ 1
N

∑
(t,ℓ,si)∈A1

[
Jtℓ(si) − post_mean(Jtℓ(si))

]2
,

where A1 = {(t, ℓ, si) ∈ A : Itℓ(si) = 1} denotes the set of 
days and sites with a record, and N =

∑
(t,ℓ,si)∈A Itℓ(si) 

is its size, i.e., the total number of records observed in the 
92 × 40 series across 62 years considered, excluding the 
first trivial year.

The third comparative metric is an out-of-sample spatial 
evaluation using RMSE and a 10-fold testing scheme. In 
each iteration, the model is fitted while excluding data from 
four sites. Predictions and residuals for these excluded sites 
are then computed. This process is repeated 10 times, ensur-
ing that each receives one out-of-sample prediction. Finally, 
RMSEos, the RMSE from these predictions, is calculated.

Table 1 shows the three metrics used to compare and select 
the best model, DIC, RMSE and RMSEos, for models M1, 
MS1, MS2, MS3 and a baseline model M0 with constant 
parameters. To demonstrate the need for a Gamma distri-
bution, we also consider a Model MS3exp, which includes 
the same fixed and random effects in the linear predictor 
as model MS3 but with an Exponential distribution with 
parameter λtℓ(s) = 1/µtℓ(s) where log(µtℓ(s)) = ηtℓ(s). 
The improvement from including the covariates, model M1, 
is clear both in terms of the DIC and the RMSE. The same 
applies to model MS1, that incorporates a spatially varying 
intercept. Regarding temporal dependence, although model 
MS2, which includes annual random effects, improves per-
formance, model MS3, incorporating daily effects with an 
autoregressive structure, performs even better, providing an 
improvement comparable to the inclusion of covariates. The 

To capture this structure, we introduce a global covariate 
ISp

t,ℓ−1 that provides the observed number of records in the 
previous day over all of the weather stations. The model 
including all these covariates is denoted Model M1.

Other covariates were considered, such as a function of 
the record position k, exp(−k), the time to the previous 
record occurrence, exp(−(tk − tk−1)), and interactions of 
the lag record indicator and the year trend with logElev (s); 
none of them were found significant.

4.2  Including random effects

Although both spatial and temporal covariates have been 
included in the model, they may not capture well enough 
dependence over time and across space. Therefore, in this 
section, we assess whether adding random effects to the pre-
vious model is necessary to capture the remaining depen-
dence structure. To this end, we consider three options: 
MS1, which includes a spatially-varying intercept, and MS2 
and MS3, which build on this intercept by adding different 
terms to capture potential temporal structure.

Model MS1. This model includes only a spatially-varying 
intercept, i.e., wtℓ(s) = w(s). This term aims to capture spa-
tial dependence and enables local adjustments to the global 
intercept, accounting for influences such as geographical 
characteristics not captured by the fixed effects. Spatial 
dependence is modeled using a SPDE approach, in which a 
Matérn Gaussian random field is approximated by discretiz-
ing the domain over a mesh and representing the field as a 
Gaussian Markov random field, resulting in a sparse preci-
sion matrix (Lindgren et al. 2022). The range and smooth-
ness of the spatial correlation are governed by the SPDE 
parameters; see Section 2 of the Supplementary Material for 
more details.

Model MS2 This model considers annual intercepts that 
may capture a time trend potentially more complex than that 
modeled by the fixed effects, that is the covariates related 
to log(t). The resulting random effects are additive, taking 
the form,

wtℓ(s) = w(s) + wt,

where the annual intercepts are modeled as independent 
with wt ∼ N(0, σ2

1). We also considered modeling them 
using an AR(1) structure across years but the temporal 
dependence was found not to be significant.

Model MS3 This model assumes a more complex tempo-
ral structure represented by daily intercepts with a Markov-
ian AR(1) structure. That is,

wtℓ(s) = w(s) + wtℓ, with wtℓ = ρwt,ℓ−1 + ϵtℓ,� (1)

1 3
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Finally, the posterior mean of the Gamma shape param-
eter ϕ is 1.8 with 95% CI (1.78, 1.86), which clearly does 
not include 1, the value corresponding to an Exponential 
distribution.

5  Adequacy of the final model MS3

This section presents validation and inference tools to assess 
the adequacy of the selected model MS3. These include an 
evaluation of the coverage of daily increments and compari-
sons between empirical averages of interest and the corre-
sponding posterior means and CIs provided by the model. 
Specifically, we examine the proportion of increments 
below a given threshold (cumulative probabilities) and the 
spatial averages for selected years and days within the year. 
These tools rely on MC methods, which are feasible since 
MS3 can be employed as a generative model of daily incre-
ments. As additional validation tools, some graphical analy-
ses of the residuals and fitted values are presented in Section 
3 of the Supplementary Material.

5.1  Coverage of the daily increments

Coverage analysis is a useful tool for evaluating model ade-
quacy. In our case, we assess the coverage of daily incre-
ments on days when a record is observed, using a hold out 
approach. For each of these days, we compute 95% CIs for 

results for model MS3exp further confirm the benefit of a 
Gamma distribution over an Exponential one.

The spatial out-of-sample metric RMSEos confirms the 
selection of model MS3 as the best model, with the inclu-
sion of covariates and daily random effects providing the 
greatest improvement.

4.4  Description of the final selected model

Based on the previous results, our final selected model is 
MS3, a model with a Gamma distribution that includes eight 
covariates, a global and a spatially varying intercept, and 
daily effects with an autoregressive structure, see Equa-
tion 1. Figure 3 (left) summarizes the posterior mean and 
the 95% CIs for the eight covariate coefficients. Only the CI 
of logDC (s) includes zero, but this term is retained in the 
model since both interaction terms, log(t) × logDC (s) and 
It,ℓ−1(s) × logDC (s) are significant.

Regarding random effects, Fig. 3 (right) presents a map 
of the posterior mean of the spatial intercept, showing that 
many coastal areas, specifically the Basque Country and 
Galicia in the north, as well as the southeastern regions, 
exhibit an increase relative to the global intercept. With 
respect to the dependence on the previous day captured by 
the temporal random effect, the posterior mean of ρ is 0.58 
with 95% CI (0.51, 0.63), suggesting that the autoregressive 
terms It,ℓ−1(s) and It,ℓ−1(s) × logDC (s) account for only 
part of the existing serial dependence.

Table 1  DIC, and RMSE (in ◦C) for models M1, MS1, MS2 and MS3 with a Gamma distribution and MS3 with an exponential distribution
M0 M1 MS1 MS2 MS3 MS3exp

DIC 129,120 125,578 124,842 124,612 122,634 125,650
RMSE 2.00 1.80 1.75 1.73 1.51 2.87
RMSEos 2.01 1.81 1.78 1.77 1.63 −
RMSEos is only computed for models with a Gamma distribution

log(t)

�log�t��2

It� l�1�s�

logElev

logDC

log(t)*logDC

It� l�1�s� � logDC

It� l�1
Sp

−0.2 0.0 0.2
Estimate

Fig. 3  Left: Posterior mean and 95% CI of the covariate coefficients in the model MS3. Right: Spatial random effects from the model MS3 over 
peninsular Spain
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where 1(·) denotes the indicator variable of an event, 
A1(si) = {(t, ℓ) ∈ T × L : Itℓ(si) = 1} denotes the set of 
days with a record at si, and N(si) =

∑
(t,ℓ)∈T ×L Itℓ(si) is 

its size, i.e., the total number of records at si. If we generate 
B samples of increments, we obtain a sample of B obser-
vations of the proportions for each x, and then the corre-
sponding posterior mean and 95% CI. Using the observed 
sample, we calculate the empirical counterpart. Figure  4 
summarizes the posterior means, the CIs of the proportions 
for x = 0, 1, 2, . . . (in °C) together with the empirical coun-
terparts for four illustrative sites in the last 30 years, the 
period 1992–2021. These four sites represent different areas 
and climates of the peninsula. Bilbao, on the northern Can-
tabrian coast, has a humid Atlantic climate, Huelva, on the 
southern coast, features a Mediterranean climate; Daroca 
and Vitoria are both inland locations, but the former has 
a continental-Mediterranean climate, while the latter has 
a continental climate with Atlantic influence. The results 
show that the predictive CIs capture the observed propor-
tions at nearly all 40 sites.

5.3  Analyzing spatial averages

Another key aspect of the model to be validated is its ability 
to capture behavior over time and the joint spatial behavior. 
We will assess this by comparing various empirical averages 
of interest with the corresponding averages from the realiza-
tions of the posterior predictive distribution. Since we are 
computing spatial averages, the out-of-sample validation 
approach, omitting one station at a time, is no longer fea-
sible. Instead, we will apply a MC method using the model 
fitted with data from all 40 sites to generate the samples.

First, to characterize the annual evolution across Spain, 
we compute the spatial average increment for year t across 
the days in JJA,

J̄t = 1
Nt

∑
(ℓ,si)∈A1,t

Jtℓ(si),

where A1,t = {(ℓ, si) ∈ L × S : Itℓ(si) = 1} denotes the 
set of days and sites with a record on year t, and Nt its size, 
i.e., the number of increments at year t in the 92 × 40 con-
sidered series.

Analogously, replacing the year t with the day ℓ, we com-
pute the spatial average increments for each day ℓ within the 
year t in the observed period of years 1961–2021,

J̄ℓ = 1
Nℓ

∑
(t,si)∈A1,ℓ

Jtℓ(si).

Figure 5 displays the posterior mean, the 95% CI, and the 
empirical values of the spatial average increments, J̄t and 

the increments, and then check whether the actual observed 
increment lies within the corresponding interval. As valida-
tion metrics, we report the overall average coverage as well 
as average coverage by year, by day of the year, and by site, 
to assess potential weaknesses in the model’s ability to cap-
ture key characteristics.

To implement the hold out approach, the model is fitted 
excluding the series from 4 of the 40 available sites. Next, 
using the joint posterior distribution of all the parameters 
in the model, B = 1000 samples of the mean for each day, 
along with the shape hyperparameter of the distribution, are 
generated. These parameters are then used to generate B 
samples of increments for each day with an observed record 
in the four excluded sites, utilizing the distribution defined 
by the generated parameters. From these samples, a 95% CI 
for the increment on each day with a record is computed. To 
increase the sample size for computing validation metrics, 
this procedure is repeated 10 times, so that out-of-sample 
predictions are obtained for all sites. The same random sets 
of four locations used in Sect. 4.3 are applied here.

The average 95% coverage across all data is 0.93, indi-
cating good model performance. The average coverage 
values for different years, days within the year, and sites 
are summarized in Section 4 of the Supplementary Mate-
rial, and they indicate that the model effectively captures the 
evolution of increments over time. Similarly, the model cap-
tures seasonal patterns well, with most of the coverage val-
ues falling between 0.90 and 0.96, and seven values ranging 
from 0.85 to 0.90. The model also accounts for spatial varia-
tion adequately, although coverage falls between 0.80 and 
0.90 at seven sites.

5.2  Analyzing cumulative probabilities

The previous MC approach can also be used to implement 
an out-of-sample validation of the model by comparing 
cumulative probabilities of the conditional distribution of 
the increments obtained from the model with their empiri-
cal counterparts. Specifically, for each site si in the sample, 
we consider the probabilities P (Jtℓ(si) ≤ x), given the 
observed indicator of the previous day, for a set of dis-
crete values x = 0, 1, 2, . . . (in °C). Using the previously 
described out-of-sample method, we generate samples of 
increments for the sites omitted from estimation, for each 
day on which a record was observed at those sites, and 
conditional on the observed value of It,ℓ−1(si). Given a 
generated sample, we can obtain one observation of the pro-
portion of increments lower than or equal to x across the 
considered period,

1
N(si)

∑
(t,ℓ)∈A1(si)

1(Jtℓ(si) ≤ x),
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seasonal cycle of daily temperatures in Spain, where peak 
values typically occur in late July and early August (AEMET 
2011), providing additional insight into how extreme values 
evolve differently from seasonal trends in the mean.

J̄ℓ, computed for the observed period 1961–2021. The CIs 
encompass the empirical values in all cases, and the model 
effectively captures the observed time trend and also the 
seasonal behavior within the year, confirming the adequacy 
of the model to capture these features.

From a descriptive perspective, the results indicate that, 
as expected, the mean of the increments declines during the 
early years and stabilizes after the early 1980  s. Interest-
ingly, the seasonal pattern of the increments differs from the 

Fig. 5  Posterior mean and 95% 
CIs of the spatial averages J̄t (left) 
and J̄ℓ (right), and corresponding 
empirical values, in °C
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sample approach and empirical 
counterparts, in four illustrative 
sites

 

1 3

Page 9 of 16     24 



Stochastic Environmental Research and Risk Assessment           (2026) 40:24 

time, given that the previous day was record-breaking and 
given it was not,

1
920

∑
t∈D

∑
ℓ∈JJA

[
Jtℓ(s) | (It,ℓ−1(s) = 1) − Jtℓ(s) | (It,ℓ−1(s) = 0)

]
.

For illustration, the decade 2012–2021 (D6) is presented in 
Fig. 6. The results indicate that record-breaking days lead 
to higher temperature increments on the following day. The 
mean increase is approximately 0.4 ◦C inland, reaching 
around 0.6 ◦C in some areas along the northern and south-
ern coasts. However, in the northeastern coastal region, the 
increase is slightly lower, around 0.3 ◦C. A similar pattern is 
observed during decades D3 to D5, see maps in Section 5.1 
of the Supplementary Material, although the differences are 
slightly higher in 1982–1991.

6.2  Marginal posterior distribution

The marginal posterior predictive distribution of the incre-
ments is a useful tool for characterizing the behavior of 
increments over time and across space. It does not require 
specifying the previous day’s indicator but does rely on 
knowledge of its distribution, specifically, the probability 
that the previous day was a record. The simplest approach 
is to estimate this probability using the proportion of the 
previous day’s records, conveniently aggregated by day, 
year, or region, as appropriate for each context. However, 
more sophisticated and specific estimators can provide 
improved results. Here, we use the space-time varying esti-
mators provided by the occurrence model of Castillo-Mateo 
et al. (2025), although it is important to highlight that any 
other estimators of the probability of a record could also be 
applied. This occurrence model consists of a rich Bayesian 
hierarchical mixed effects logistic regression model for the 
indicator events which define record-breaking sequences. It 
includes explicit trend behavior, autoregression, distance to 
the coast, interactions, and daily spatial random effects.

The resulting marginal posterior distributions are use-
ful to compare and make inference based on MC methods, 
about the evolution of the increments or their averages in 
periods of interest both across time and space, as we illus-
trate in the following sections.

6.2.1  Spatial analysis of increments

To evaluate the spatial differences in the behavior of the 
increments, we first consider the average of the increments 
during the three summer months over a decade D at a given 
point s, J̄D,JJA(s) =

∑
t∈D

∑
ℓ∈JJA Jtℓ(s)/920. The maps 

of the posterior mean, along with the 5th and 95th percen-
tiles of this average increments for the most recent decade, 

6  Post-model inference using Monte Carlo 
simulation

One important feature of model MS3 is its ability to predict 
increments at unobserved sites. More specifically, MS3 is 
a generative model capable of producing samples of incre-
ments during the observed period at any location within the 
study region, using both the conditional and marginal dis-
tributions described in Sect. 3. The first step in this process 
is to obtain the conditional or marginal posterior predictive 
distribution of increments on the 0.25 ◦ × 0.25 ◦ grid shown 
in Fig.  1. These posterior distributions allow direct infer-
ence on the increments and, by drawing samples from them, 
enable the use of MC methods to analyze more complex 
measures of interest based on the increments.

In this section, we apply this procedure with model MS3 
to characterize the temporal evolution of increments both 
across and within the year for different regions. In addition, 
the approach allows us to generate maps that describe the 
spatial behavior of the increments and to quantify the uncer-
tainty associated with these estimators.

6.1  Conditional posterior distribution given the 
previous day indicator

The conditional distribution, given the previous day’s indi-
cator, can be easily derived from the model and serves as 
a useful tool for evaluating the effect of persistence in the 
increments. Specifically, it allows us to assess how a record 
occurrence on the previous day influences the distribution 
of increments. To achieve this, we compare the posterior 
predictive distributions when the previous day’s indicator is 
1 versus 0. For example, we can obtain maps of the poste-
rior mean of the difference between the average increments 
across all JJA days during a decade D or another period of 

Fig. 6  Posterior mean of the average of the differences between the 
increments (in °C) given that the previous day was a record and given 
that it was not, across days in JJA and the last decade
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(1992–2001). Although the magnitude of these differences 
is small, the map highlights some consistent spatial varia-
tions over time. While inland regions exhibit a decrease 
of approximately 0.04 ◦C in the posterior mean of average 
increments, coastal areas show an increase of around 0.05 ◦

C. Furthermore, given the uncertainty of these differences 
expressed by the 5th and 95th percentiles, there is no evi-
dence that coastal changes are significantly different from 
zero, whereas inland regions show a slight decline. Maps 
showing the differences between each decade and D6 are 
also presented in Section 5.2 of the Supplementary Mate-
rial. Similar conclusions are obtained in the comparison 
of all the decades although, inland, larger differences are 
observed in the earlier decades. However, in none of the 
cases do the differences along the coast show evidence of 
being significantly different from zero, supporting the con-
clusion that the posterior mean of the increments in coastal 
areas is not decreasing.

Another approach to evaluating spatial and temporal dif-
ferences in average increments is through probabilities. We 
use this method to assess whether a seasonal pattern exists 
within the summer, given that the magnitude of differences 
during this period is very small. To do this, we compare 
increments among months. Specifically, we compute the 
probabilities PD

(
J̄t,M1(s) > J̄t,M2(s)

)
 where J̄t,M (s) is 

the average increment in month M at year t and the prob-
ability is computed over the 10 years t within the decade D. 
Figure 9 shows the probabilities comparing July and June, 
August and June, and August and July in the last decade D6, 

2012–2021, are shown, as an illustration, in Fig.  7. The 
posterior mean is approximately °C across most of Spain, 
except in certain coastal areas, including the Basque Coun-
try, Galicia in the north, and the southern Mediterranean 
coast, where the mean approaches 2 ◦C. In these regions, 
and more generally in coastal areas, the distribution of aver-
age increments is asymmetric, exhibiting a heavier right tail 
with the 95th percentile showing a greater increase rela-
tive to the mean. This pattern aligns with empirical values 
observed in coastal sites. For instance, the highest observed 
average increments in the same period occur in San Sebas-
tián, Bilbao, Santander, Santiago, and Coruña, measuring 
2.7 ◦C, 2.1 ◦C, 2.2 ◦C, 2.1 ◦C, and 1.9 ◦C, respectively.

The maps of the mean and the percentiles for decades D2 
to D6 and for the entire period, are shown in Section 5.2 of 
the Supplementary Material; decade D1 is omitted due to 
high variability in the increments during the early stage. As 
could be expected, the mean of the increments decreases 
over the decades: while in D2 the mean across most of 
inland Spain ranges from 1 to 1.5 °C, in D6 it ranges from 
0.5 to 1 °C. However, the decrease between decades is much 
smaller in the aforementioned coastal areas.

To better assess the temporal behavior of increments 
within a spatial framework, we compare average increments 
across different decades by computing the posterior distri-
bution of their difference, J̄D1,JJA(s) − J̄D2,JJA(s). Fig-
ure 8 presents the posterior mean of this difference between 
the most recent decade (2012–2021) and two decades prior 

Fig. 8  Posterior mean and 5th and 95th percentiles of J̄D6,JJA(s) − J̄D4,JJA(s), in °C, where D6 and D4 are the decades 2012–2021 and 
1992–2001, respectively

 

Fig. 7  Posterior mean and 5th and 95th percentiles of the average increments, in °C, over decade 2012–2021
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6.2.2  Time evolution of increments

Our first objective in this section is to characterize the annual 
evolution of the increments over Spain. Figure 10 shows the 
posterior mean, and the 90% CI of the annual average of the 
increments across Spain,

J̄t,JJA(G) = 1
92 × |G|

∑
ℓ∈JJA

∑
sj∈G

Jtℓ(sj),

where G is the grid of points covering peninsular Spain and 
|G| = 844 is the number of points in that grid. As expected, 
increments in the early years (which correspond mainly to 
the first records) are higher, but they become more stable 
over time. After the first 30 years, the mean moves around 
°C. Although no clear trend has been observed in recent 
decades, we can assess whether the increments continue to 
decrease using the probabilities that compare two decades 
DA and DB , PG(J̄DA,JJA(s) < J̄DB ,JJA(s)). The poste-
rior mean of these probabilities for comparing D6 and D4, 

as illustration. The results show that, over the last decade, 
the probability of the average increment in July tends to be 
slightly lower than in June and in August. Although the dif-
ferences are small and some uncertainty exists in the estima-
tions, this result remains spatially consistent. Maps showing 
the probabilities for decades D2 to D6 and for the entire 
period are also presented in Section 5.2 of the Supplemen-
tary Material. The behavior across months is not consistent 
over all the decades. However, the increments in June are 
generally higher than those in July and August, except dur-
ing decade D3. Notably, this seasonal pattern of the incre-
ments, peaking in June, contrasts with the typical summer 
temperature cycle in Spain, where July and August record 
the highest temperatures (AEMET 2011). This provides 
the novel suggestion that extreme temperatures in June are 
increasing more rapidly than in the rest of the summer.

Fig. 10  Left: Posterior mean and the 90% CI of the annual average of the increments, in °C, over peninsular Spain. Right: Posterior mean of 
PD,G(J̄t,JJA(s) > x) for different values x, in °C, across the 6 decades

 

Fig. 9  Probabilities of the average increments in July being higher than in June, and in August being higher than in June and July, over decade D6
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distinguishing among three coastal regions (northern, east-
ern, and southern). However, no significant differences were 
found; see Section 6 of the Supplementary Material for fur-
ther illustration.

6.3  Additional inference tools: Cumulative 
increments across a period of time

An additional advantage of the conditional model J | I pro-
posed in this work is that it can be combined with a model 
for the occurrence of records to make inference on mea-
sures that depend on the joint distribution of record occur-
rences and their increments, that is the vector (I, J). More 
precisely, by specifying the factorization [I | θ1][J | I, θ2] 
with θ1 denoting all of the unknowns in a model for record-
breaking indicators, θ2 denoting all the unknowns in a 
model for the increment given a record and assuming that 
θ1 and θ2 are different sets of parameters, I and J | I can be 
modeled separately and their combination yields the joint 
distribution of (I, J).

This joint distribution enables, among others, the quan-
tification of the cumulative increment over a period of 
time in the record temperature value for a given day of 
the year at a specific site. It also enables the characteriza-
tion of the record-breaking value of a series in a given 
year, provided the temperature value for the first year of 
the series is available. Note that using the proposed model, 
since the conditional distribution of the increments Jtℓ(s) 
is Gamma (µtℓ(s), ϕ) and the temperature increments are 
conditionally independent given their parameters, the mar-
ginal distribution of the cumulative increment during a 

and D6 and D5 are 0.80 and 0.69, respectively. These results 
suggest that the increments continue to decrease, although 
at a progressively slower rate.

Figure  10 (right) compares the posterior mean of 
PD,G(J̄t,JJA(s) > x), the probability that the average JJA 
increment in a given year exceeds x, for different values of 
x, where the probability is computed over Spain and one 
decade, for each of the 6 considered decades. The densities 
of the previous probabilities for two of the values x = 1 ◦

C and 1.5 ◦C are shown in Fig.  11; the results show that 
while the distribution of the average JJA increments evolves 
over time, changes occur differently in the tails. Specifi-
cally, although the center of the distribution has continued 
to decrease in recent decades, the upper tail has remained 
stable over the last 30 years.

Comparison of the time evolution of increments across 
inland and coastal areas. Some previous results show small 
differences in the behavior of increments between inland 
and certain coastal areas, particularly the Basque Country, 
Galicia, and parts of the southern coast. To assess a potential 
general difference between inland and coastal behavior, we 
analyze the average increments over a region on a given 
day, defined as, J̄tℓ(GR) =

∑
sj∈GR

Jtℓ(sj)/|GR|, where 
sj  represents the points in a prediction grid GR covering 
the region of interest and |GR| is the total number of such 
points. Based on these spatial averages, additional tempo-
ral averages can be computed, either across days within 
year and/or across years. Several analyses have been con-
ducted in this regard, including comparisons of annual 
trends between inland and coastal regions (with inland areas 
defined as those more than 50 km from the coast) and also 

Fig. 11  Densities of the probabilities PD,G(J̄t,JJA(s) > x) per decades for x = 1 ◦C and 1.5 ◦C
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of daily temperature extremes. To explore this, we propose 
an approach that does not require modeling the temperature 
distribution over an entire space-time dataset. Rather, it is 
sufficient to model the conditional distribution of record 
values or their increments, i.e., we only need to model the 
temperature increments given that a record has occurred. 
This approach has an important advantage: the increments 
can be treated as conditionally independent and are not con-
strained by the ordering that affects record values.

Within this framework, we introduce a novel regression 
model, implemented within a hierarchical Bayesian frame-
work, which analyzes increments across years, by day in 
the summer season, and by site. This approach allows us to 
identify covariates that effectively explain the increments, 
while also assessing variation across time and space (spe-
cifically by year, within summer months, and between sites) 
thereby providing a deeper understanding of the record-
breaking process. Importantly, the proposed approach cap-
tures the underlying dependencies and heterogeneity that 
fixed effects cannot explain. Spatial dependence is mod-
eled using spatial Gaussian processes, temporal autocorre-
lation is addressed through autoregressive random effects, 
with interactions between spatial and temporal components 
incorporated as needed.

Another advantage of the proposed model is its ability to 
characterize both the conditional distribution of the incre-
ments, given the previous day’s record-breaking indicator, 
and their marginal distribution, obtained by marginalizing 
over that indicator. Additionally, it allows for the charac-
terization of the cumulative increment of the record value 
over a specified period, provided a posterior distribution 
for the daily record probabilities is available. The Bayesian 
framework facilitates the use of the increments model and 
MC simulation for performing a rich range of inference to 
enable appreciation of spatial variation over the region of 
study, as well as comparison over the years. This approach 
yields not only estimates of mean values but also quantifies 
their uncertainty through the posterior distribution. Further-
more, it supports the derivation of useful inference tools, 
such as the probabilities of events of interest and the genera-
tion of maps displaying either these probabilities, posterior 
means or other summary measures of parameters of interest.

Conclusions on record increments of daily tempera-
ture over Spain. Using data from peninsular Spain, span-
ning from 1960 to 2021, we conclude that a Gamma model 
for the increments performs far better than an Exponential 
model. Our analysis also reveals that key spatial informa-
tion is captured by the logarithm of elevation and the loga-
rithm of the distance to the coast. Temporal covariates are 
also essential: a second-order polynomial trend effectively 
models long-term evolution, while the inclusion of the pre-
vious day’s record indicator captures serial correlation. The 

period of years T  is Gamma(
∑

t∈T1,ℓ(s) µtℓ(s), ϕ), where 

T1,ℓ(s) = {t ∈ T : Itℓ(s) = 1}. This highlights that distri-
bution of the cumulative increment depends on the distribu-
tion of the record indicators.

Given two separate models for I and J | I, we can pro-
ceed as follows. First, we generate posterior samples of the 
record indicators. Next, we generate posterior samples of 
the increments when a record has occurred. These samples 
allow us to characterize the posterior distribution of the 
cumulative increment over a period of years T  given by

∑
t∈T1,ℓ(s)

Jtℓ(s).

Finally, we can illustrate the spatial behavior of the poste-
rior mean of the cumulative increment for a given day or 
summarize it over a month or a year.

As an illustration, we use posterior samples of the record 
indicators generated by the model for I of Castillo-Mateo 
et  al. (2025), introduced at the beginning of Section 6.2. 
However, it is noteworthy that any model capable of gen-
erating samples of I can be used in this approach. Figure 12 
presents a map of the posterior mean of the average cumula-
tive increments in the last 30 years over the summer months 
JJA; the cumulative increase of the value of record from 
1992 to 2021 in some coastal areas such as Basque country 
and Galicia is of almost 3 ◦C, while inland it varies from 1 
to 2 ◦C.

7  Summary and future work

We argue that while explaining the incidence of record-
breaking events is important, analyzing the magnitudes of 
these records also offers valuable insight into the dynamics 

Fig. 12  Posterior mean of the average cumulative increments, in °C, in 
the last 30 years over the summer months JJA
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effects of these time covariates vary spatially so that inter-
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the past decade across peninsular Spain.

	● The cumulative increment in record values from 1992 
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