Rev. Real Academia de Ciencias. Zaragoza. 77: [I|-77, (2017).
ISSN: 0370-3207

Yuansi Chen’s result on the KLS conjecture

David Alonso-Gutiérrez, Jesis Bastero

Departamento de Matematicas-1.U.M.A.
Universidad de Zaragoza
Campus Plaza San Francisco
50009 Zaragoza, Spain

alonsod@unizar.es, basteroQunizar.es

Resumen
Estas notas constituyen un anexo del trabajo previo de los autores [AB2]. Aqui
se incluye la demostracion del reciente resultado de Yuansi Chen [Ch], en el que se
mejoran sustancialmente los resultados incluidos en [AB2], y que fue simultaneo a su
publicacién. Se siguen las pautas de la exposicion hecha por Bo’az Klartag en [K|, pero
manteniéndose dentro del esquema de demostracién utilizado en el anterior trabajo
[AB2].

Abstract
These notes constitute an annex to the previous work by the authors [AB2]. We
include here the proof of the recent result by Yuansi Chen [Ch|, in which the results
included in [AB2| are substantially improved, and which was simultaneous to its
publication. We follow the guidelines in the exposition made by Bo’az Klartag in [K],

but remaining inside the scheme of the proof used in our previous work [AB2].

1 Introduction

The Kannan-Lovasz-Simonovits (KLS) conjecture is a major open problem in asymptotic
geometric analysis, which concerns Cheeger-type isoperimetric inequalities for log-concave
probabilities, i.e., probabilities ;1 on R”™ of the form du(z) = e V®dx, with V : R* —

(—00, 00| a convex function. It was posed in [KLS| and can be stated in the following way:



Conjecture 1.1 (KLS spectral gap conjecture). There exists an absolute constant C' > 0

such that, for any log-concave probability p in R™

C
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min{u(A), u(A9)}, for any Borel set A C R"

where e A
pt(A) = lim inf pA%) — u(4)

e—0 £

being A° ={a+z:a € A, x| <e}, and ||Couv,lop is the operator norm of the covariance

matriz of .

Given a log-concave probability measure p on R", let us denote by v, the largest

constant such that
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Let us also denote by 1, the infimum of the constants v, when p runs over all log-concave

pt(A) > min{u(A), u(A%)} for any Borel set A C R".

probability measures on R"™. That is,
Y, = inf{¢, : p is a log-concave probability on R"}.

Therefore, the KLS conjecture asks about the existence of a positive absolute constant
C > 0 such that v,, > C for every n € N. Let us point out that it is well known that there
exists an absolute constant such that 1, < C for every log-concave probability measure
and that the KLS conjecture and can be reduced to the setting of isotropic log-concave
probabilities, which are centered log-concave probabilities whose covariance matrix Cov,, is
the identity matrix.

In a recent article [AB2] in this journal, the authors presented FEldan’s localization
scheme and proved, in a unified framework, the two best known estimates for v, which had

been proved by Eldan [E| and Lee & Vempala [LV]. It can be stated in the following way:

Theorem 1.1. Let 1), be the best constant such that for any isotropic log-concave probability

win R™ the following isoperimetric inequality holds

put(A) > 1, min{u(A), u(A°)}  for any Borel set A C R".



Then, there exists an absolute constant C' > 0 such that

C

min{o, logn, n1/4}’

Vp =

where o, = \/sup Eu‘|X| - \/5‘2 and the sup runs over all isotropic log-concave random

vectors X in R™.

Simultaneously to the publication of [AB2|, Yuansi Chen improved the best known

estimate of v, by proving the following theorem:

Theorem 1.2 (Y. Chen [Ch]). There exists absolute constants ¢y, co > 0 such that for any

wsotropic log-concave probability  in R™ the following isoperimetric inequality holds

pu(A) > cpexp ( — \/logn -loglog n) min{u(A), u(A%)}

for any Borel set A C R™.

This paper tries to be an Appendix to the aforementioned paper [AB2|, in which we
include the proof of Chen’s estimate in the framework developed there. The proof that we
present here follows the original idea appearing in Eldan’s seminal paper [E]. The same
idea was also used by Lee & Vempala in their approach [LV] and also in our previous paper
[AB2]. However the proof by [Ch| presents some formal differences. Namely, he preferred
to take expectations in the isoperimetric inequalities instead of control how the measure of
the individual 1/2-Borel sets evolves throughout Eldan’s stochastical localization scheme.
In order to get Chen’s result we mimic the method used by Klartag |[KJ|, which uses a

stopping time instead of the original reiteration method by Chen.

2 Preliminary results

We will follow the framework developed in [AB2], which we recall here in order to improve
the readability of this annex. Nevertheless, we refer the reader to [AB2] for more detailed

explanations.



2.1 A first reduction

We already mentioned in the introduction that one can only consider isotropic log-concave
probability measures. It was also showed in [AB2] that it is enough to prove Conjecture
for isotropic log-concave measures with compact support. This condition ensured the
existence and uniqueness of solution on the system of stochastic differential equations con-
sidered in the proof (see below). One can reduce even further the class of isotropic
log-concave probability measures to consider, by also assuming that their support is con-
tained in a Euclidean ball r, B} of some large (but not “too large”) radius r,,. We state it

in the following lemmas:

Lemma 2.1. There exists an absolute constant C > 0 such that if for every isotropic

log-concave probability measure p with supp u C Cn®BY we have that
Yy > c1Chy,

where ¢y is an absolute constant, then, we have that
Yy > 10y,

where ¢; 18 another absolute constant.
Proof. Let du(x) = e~V @ dx be an isotropic log-concave probability measure on R” and let

eV X sy () da

fn5BéL e—V(I) dx

dpy =

On the one hand, notice that, by Paouris’ inequality [BGVV, Theorem 5.2.1|, there

exists an absolute constant ¢ > 0 such that

/ eV Ody = p{o e R" : |z] > n®} < e .
R™\n® BY

On the other hand, notice that for any # € S"!, by Holder’s inequality and by Borell’s



inequality, (see [BGVV] Theorem 2.4.6|)

1/2 1/2
/ (z,0)%”" Wdz < / eV dy (/ (z, 9>46_V(x)d$) < Che™.
R \n5 B2 Rn\n5 By n

Therefore, for every § € S"1

1
A<1—Ce ™ <E, (X,0)?<

—1l—e

where A, B are positive absolute constants and then A < ||Cov,, ||, < B and then, if we
take dug(z) = dpi(Tx) such that uy is isotropic, we have that supp pa C Cn®BY, where
C' is an absolute constant. Assume that for this absolute constant C' we can ensure that
Y, > c1Cy and then v, > ¢1C,.

For every integrable locally Lipschitz function g : R” — R such that E,g = 0 we have
that

E,..9| e V@ dy = E.g—E.qg| e V@) dy

5Rn 5RN
n® By n° By

= ‘( / g(x)e_v(x)> (1— / e_V(”)d:v> —~ ( / g(x)e—wwdx) ( / e—wx)dx)
nb B'Zn nd B; R”\n5 B; nd B;
1/2 1/2
S (Eug2>1/2 (/ e—V(l‘)dx> (/ 6—V(x)> + (/ 6—V(a:)> (/ e_v(x)d:p)
n®BY R7\n5BY R7\n5BY ndBY

< (Bug?)? [ 4 5] < 2075 (B,6%) /2 = 2757 (Var,g) V2

and

1/2
/ lg(x)|e™V P dz < </ e_vmdx) (Var,g)'/? < e (Var,g)'/?.
R"\n® By R"\nS B}

Therefore, taking into account the relation between Cheeger-type isoperimetric inequali-
ties and Poincaré-type inequalities, and the equivalence between the constants in different

Poincaré-type inequalities (see, for instance, [ABI, Theorem 1.11]), we have that for every



integrable locally Lipschitz function g : R" — R such that E,g =0

E,|g = E,u |4l / V@ 1 / g(@)eV @ de
n®BY R7\n5BY

<Eulg —Eugl [ eV do+[Bgl [ 7 Wdr+ / lg()|e”" @ dz
TL5B£L 7L5B§L Rn\n5B§L
< 2]]5“1 |v9| e V@ dy + 2€_§n5 (Varug)l/Q + 6—0n5 (\/ar,ug)l/2
wﬂl ndBY
¢ < C C c
< 2B, |Vl [ e Ode 436757 (Var,g)/? < 2B, |Vg| + e 5 (B, |Vg?) .
M1 ndBY qpm ¢u

Since by Lee & Vempala’s result and the fact that ¢, is bounded from above by an absolute

constant, there exist absolute constants such that

C3 _c.5 _c, 5
—e 2" §c4n1/4e 2 <y <

K 238

Ce

and then, for every integrable locally Lipschitz function g : R" — R such that E,g = 0,

Cr

E.lg] <
! Vi

11V 3llle-

Therefore, since for every integrable locally Lipschitz function g : R® — R we have that
g1 = g—E, g verifies that E,g; = 0 and Vg; = Vg, we have that for every integrable locally
Lipschitz function g : R — R

Cr
Eulg —E.g| <

11V 3llle-

M1
Thus,
77[];1 Z CS’QZ};n Z 51071
[

Remark 2.2. Let us point out that the same proof would work with any power of n larger

1, 5
than 3 instead of n’.



2.2 The general strategy

From now on, we will consider u to be an isotropic log-concave probability measure such
that supp u € Cn®BY where C is the absolute constant in Lemma . Let us recall that
we consider Lee & Vempala’s choice in the system of stochastic differential equations in

Eldan’s localization scheme. That is,
(2) dCt = btdt + th, Co = 0

where W, a n-dimensional Wiener process and b, is the barycenter of the density f;(x) given
by

N elevm)=alel® f(g)
(3) ft(‘lj) - fRn €<ct’w>7%‘$|2f($)dfﬂ

by = /n zfi(z)d.

The probability measure with density f;(x) will be denoted by p, and its covariance matrix
will be denoted by A;.

Let us recall that, given p an isotropic log-concave probability, our goal is to find two
values ©,C' > 0 such that for any Borel set £ C R™ with u(E) = 1/2.

WEC\E) = C

in order to apply the following proposition:

Proposition 2.3 (|[M]). Let p be a log-concave probability on R™. Assume that there exist
two positive numbers ©,C > 0 such that

WEC\E) > C

for any Borel set E € R" such that u(E) = %, where E® is the O-dilation of E, i.e.
E® ={e+z€R":c€ E,|z|<O}. Then,

pt(A) > % min{u(A), n(A°)} for any Borel set A C R".

In order to control the probability of dilations of Borel sets, the following concentration

results for more log-concave than Gaussian probabilities can be applied



Proposition 2.4. Let ¢ be a convex function ¢ : R — R and let t > 0. Assume that
dp(z) = e=®@) =315 gg.

s a centered probability on R™. Then for every Borel set A C R™ such that

1

9
< (A < —
10 S A = 15

we have

D 95
A\/f) >
“( = 100’

where D > 0 1s a suitably chosen absolute constant independent of every other parameter
and APVt is the D /\/t-dilation of A.

Remark 2.5. Notice that, due to the fact that

elevn)=slel® £(1)da

du(z) = 5
() fR" e(Cz,r>—§’|m|2f(:E)dﬂU

15 more log-concave than the Gaussian probability, as a trivial application of both proposi-
tions,
i (A) > erv/tming g (A), (A9}, for any Borel set A C R",

where, a fortiori, 0 < ¢y < 1 4s an absolute constant.

In the sequel du(z) = f(x)dz is an isotropic log-concave probability on R” and E is a
fixed Borel set in R™ such that p(E) = 1/2. We introduce the stochastic process

g2(t) = 9(t) = pu(E) = /E fi@)dz,  t>0,

where p; and f;(x) are defined by the system of stochastic differential equations and by
[@B). It is obvious that g(0) = 1/2, Vw € Q, since fo(z) = f(z) for every w € . Besides,
(g(t))e>o0 is a martingale (see [AB2]) and for every t > 0 the expected value of g(t) is
Epg(t) = 1/2.

Let T > 0 be a time to be precised later and notice that for any © > 0, since also



(gpe\p(t))i>0 is a martingale,

W(E°\E) = [

E

=Ep /@\ fr(z)dr = Epup(E® \ E).

f(x)dx = / Ep fr(z)dx
O\E EO\E

In order to apply the preceding propositions we will consider the event
G={weQ:|g(T)—1/2| < 1/4}.

By Proposition and the way that the densities f; are defined, we will have that there
exists some absolute constant D > 0 such that for w € G we will have uT(ED/‘/T) > 0.95
and therefore, by Markov’s inequality,

W(EPVT B = Bppur(EPVT\ E) > (0.95 — 0.5)P(G) — 2% P(G).

Hence, if we find T, C; > 0 independent of E such that P(G) > C; then we will get that

ut(A) > Cll\)/Tmin{,u(A), w(A9)} VA Borel set C R".

2.8  FEstimating the probability of G

In order to bound from below P{|g(T) — 1/2| < 1/4} by a positive absolute constant, for

a particular choice of a time T', we recall that, as obtained in [AB2],
1 T T
oT) = 5 =alT) = g0) = [ dgte) = [ (n,awi)
0 0

where 7, = / fi(z)(x — by)dx, being f; the density of the probability measure p, defined
in (.
The function g(t) is a martingale and so, by Dambis, Dubins-Schwarz theorem, [AB2]

Proposition 2.7|, we have that in distribution

9(T) — g(0) = W,



where W, is a Wiener process and [g]r is the quadratic variation of g, which is,

T
[g]:r=/ ||t
0

Hence, for any M > 0,

0<t<M 4

PAlo(T) — 1/21 > 1/4) = Py > 1/4) < Plgle > M} + P { g [ 1] > 1}

We will bound both summands from above for an appropriate choice of M. Taking into

account that for every t > 0

1| = <77t,%> = /Eft(a:) <(3: —by), %>d:p

T
gl < / 1Al dt

we have that

and then
W Pl > ) <B{ [ [Aat > ).

On the other hand, (—Wt)t>0 is also a Brownian motion and then, by the reflection

principle, [AB2 Proposition 2.6], we have

_ 1 - 1 - 1
IP{ max |Wy| > —} gIP{ max W, > —}+IP’{ max —W, > —}
(5) 0<t<M 4 0<t<M 4 0<t<M 4
- 1 1
= 4P — <4 —— .

Hence

P{lg(T) — 1/2| > 1/4} < IP{/OT 1A, dt > M} +dexp <—32LM) |

10



Our purpose is to find a suitable M > 0 and 7" > 0 such that we can ensure that
the latter upper bound on the probability of G¢ is strictly smaller than 1. We will take
M = 1/256. Then

PﬂﬂTy—UM>1M}§P{A WMH@#>£%}+4MpE&

and, by showing that for an appropriate choice of T the latter probability is bounded above

by 1—10, we will obtain the desired lower bound on the probability of G.

3 Chen’s estimate on || A,

Let us recall that the main result, which allowed to obtain Theorem by following the

described strategy, was the following:

Proposition 3.1. [AB2, Proposition 5.1] Given the system of stochastic differential equa-
tions , let Ay be the covariance matriz of the measure p, defined by . Let p > 2 be an
integer. Then

d(Tr(A})) = 6;dt + (v, dWV;)

where 0; is an adapted, with bounded variation process, such that

5 < CpPo2lognTr(A}) o, if p >3
— o (A, ifp=2

and
vy < CpTr(AD)F5 Wp>2,

where C > 0 is an absolute constant and o2 = sup E‘ | X| — \/ﬁ}g and the sup runs over all

1sotropic log-concave random vectors in R™.

In this section we present Chen’s improvement on Proposition and some conse-

quences on the estimates of || A¢||op-

Proposition 3.2. Given the system of stochastic differential equations , let A; be the
covariance matriz of the measure p; defined by . Let p > 3 be an integer. Then

A(Tr(AD)) = 8,dt + (vy, dWV;)

11



where 0, is an adapted, with bounded variation process, such that

1 [[Adlop

5,5 < CPZTT'(Af) min{t, w2

}, o] < CpTHAD) 5,

where C' > 0 is an absolute constant and 1y, is defined as in Theorem [1.1]

Proof. The estimate for |v;| is the same appearing in Proposition We will follow the
ideas appearing in [K]| in order to estimate d,. Let us recall that, after Lee & Vempala’s
result collected in Theorem , we know that v, > nl% for some absolute constant C' and
that one trivially has v,, < C for another absolute constant C'.

According to the proof of Proposition [3.1]

n

1 _ ke
or < 529(]9 - 1) Z(au‘)p 21€ul* + Z (cvia)* ()P~ 21651
1 - _ _
< §p(p —1) Z(aii)p ?1&al* + 2 Z ()P €51
<plp— 1) Y ()" Gl +plp — 1) Y ()" (&5
i=1 1<J
<plp—1) Y () 216,
ij=1

where (v;)!; is an orthonormal basis of eigenvectors of the covariance matrix A, a;; =
a;j(t) = (Aw;,v;), ordered in such a way that a;y > a9 > -+ > y,, and &;; are the
vectors &; = & ;(t) = E, (@ — by, v;) (x — by, v;)(z — b)) € R™

Let, for any 1 <i < n, & be the symmetric matrix
& = Ep (@ — by, vi) (x — b) @ (. — by).

Then,

n n

Te(&) = Y (Bulz — b vg) (e — b, o)z — by o)) = D |61

jk=1 j=1

Therefore,

0 <plp— 1)) ()’ >Tr(&)).

=1



Furthermore, since
& =& oE, (v —b,v)(x—b) @ (x—b) =By, (2 — by, vi)(x — b) @ &(w — by)
and, for every 1 <i <n, E,, (z — b;,v;) = 0 we have that

Tr(&7) = By, (2 — b, vi) (@ — by, &(z — by))
= Eut<$ — by, v5) (& = by, & — by)) — Eﬂt<y — by, &y — b))
< (by Cauchy-Schwarz inequality)

< Vi Vary, (@ = b, &z — b)),

Taking into account the well-known relationship of Cheeger-type isoperimetric inequalities
with Poincare’s inequality (see, for instance, [AB1, Theorems 1.1 and 1.8]) we have that

for any locally Lipschitz integrable function g and any log-concave probability p in R”

CHCOVHHOP
Y2

for some absolute constant C' > 0. Besides, by Remark for any locally Lipschitz

Var,g < IE,AVg\Q

integrable function g

C
var#t (g) < ?E,U«t ’Vg‘z'

Therefore,

1Al
Va o b6z b)) < Cmin { 1, 1l

bB 9o = 0o = b0

Since

V<9€ - bt,fi(l" - bt)> = (fi + ff)(x - bt) = 25i(9€ - bt),

13



we have that

Tr(&2) <C\/Oé_u\/m1n 1 uel&i(x — by)|?
<o\/a7\/mm L wgp}\/ﬂmt@?)-

Hence,

=1

i(amf’ 2Tr<£)sc\/min{%,—”f;2°p} ol % Tr(A})

IN

(by Cauchy-Schwarz inequality)

< C'\/min {1, “AtHOp} Z “\ iafiBTr<At§2)
i=1

C\/min{%,%} Tr(A}) Zap STr(AL£2).

Now, since the matrix A, is diagonal in the basis (v;)7_, and the entry (£7);; of the

matrix &2 is

n

(€)= (B, (a — by vi){z — by, v) (& — b, u))* = €512,

k=1

we have that

n

-3 2
Zaﬁ Tr(A Zoz a;;(€ Zoc a5

=1 3,j=1 4,j=1

For every 1 <, j < n we have that ozfi_?’ozjj < max{ozfi } < al; 24 ozp % Thus,

’JJ

Z&p STrAff)giaZQ\fijP—l—ia ]fZJ\Z—ZZa ]5”\2—220/’ *Tr(&:

ij=1 ij=1 ij=1

14



and then

Z(au)p 2Tr(¢?) < C\/min {%, %} Zap *Tr(£2

i=1

where C' is an absolute constant. Therefore,
n

> (o) < omin {7, 1 e
i=1 n

and

& At )
50 o= 1) S e () < Cpfmin {1 {14,

where C' is an absolute constant. O

Proposition 3.3. There exists an absolute constant ¢ > 0 and ng € N such that if Ty =

2
Yn , then for every p > 3 and every n > ng, we have
logn
max EPHAtHop <3 and max Ep( Tr(AP))YP < 3n'/P,
te[0,T t€[0,To]

Proof. First of all notice that, since 1, is bounded from above by an absolute constant, we

01@/12

102C Tog 120 loan’ where C' is the constant

can choose an absolute 0 < ¢; < 1/2 and take Tj :=
appearing in Proposition [3.2]

Let us consider the stopping time 7(w) = inf {t > 0 || Aelop > 2}. It is clear that, by
continuity, for w € Q and t < 7(w), || Atllop < 2. We define the following stochastic process

Xi(w) = Tr(A} (o) 1t is an Ito process. Indeed, dX; = S¢dt + (v, dW;) where

{@ if t < 7(w) ) {vt if ¢ < 7(w)
;= and v, =

0, otherwise 0, otherwise .

If0<t<r7(w),

8 =6, < Cp? ETr(Ap) Cp? ¢2

Since the latter inequality is trivially true if ¢ > 7(w) we have that it holds for every t > 0.
It is clear that the stochastic process given by Z; = fot (vs, dWs) is a martingale and

15



then EpZ; = 0. Hence the deterministic function EpX, verifies

d 2
%EIF’Xt < CPZE]EPXM a.e. t>0.

n

Then, taking into account that Ep Xy = n and that 0 < ¢; < %, we have that for every
t € [0,To)

n

2Cp2 p2
EpX; < nexp ( 02 T()) < nexp (m

Optimizing for p = [40logn] we obtain
EpX, < nexp(logn) = n? vt € [0, Tp).
Therefore, since for this value of p and n > 3

Xrw) = Tr(A[401ogn}) > HAT(W)Hgglogn _ 23010gn’ vt € [0, Ty]

(W)

we achieve, using Markov’s inequality, that for every ¢ € [0, Tp]

#zm&z/

{w:t>7(w)}

X dP = / Xy dP > 202" Pl : ¢ > 7(w)}
{w:t>7(w)}

and then

n2

Plw:t>71(w)} < —0) vt € [0, Tp).
n
Then, for every n > ng, for some ng € N

12
EellAillop < Ci g +2<3 Vi € [0.T)
where we have used that
| Atllop = supE,, (x — b;, 0)* < 4(diameter(supp ,ut))2 = 4(diameter(supp ,u))z < COyn'?.
0

Besides, since for any p > 3,

1
[Allop < (Tr(AD) Y < || Ayl opn7?

16



we have that
Ep(Tr(AD)) 7 < 307 vt e[0,Ty).

O

2
Lemma 3.4. Let Ty = clwn as in Propositiong. Let T1,T5 > 0 be such that 0 < T < Ty
ogn

and 0 < Ty <T;. Then, for every p > 3 and n > ngy, for some nyg € N, we have that

Ty 1
P Afllppdt > — 3 < 1536 T
{/ 1Ay _512}_ 1

Ts 1 Y T2 Cp
P Alldt > — Y < 153607 ( 22) T,
([ e ()

Proof. By Markov’s inequality, since Ty < T and, as seen in Proposition 3.3} Ep||A;|[op < 3
for every t € [0, Tp),

and

T 1 Ty Ty
P {/ | A |opdt > 5@} < 512Ep/ 1A lopdt = 512/ Ep|As|lopdt < 153671
0 0 0

Consider the stochastic process H, = (Tr(AY))"/? which is an It6 process. Therefore,

by 1t6’s formula,

1

P\\1/p—1 p 1 1 p\\1/p—2 p —
dH, = 5(Tr(At)) / d(Tr(At)) + 2_p (— — 1) (TY(A,:)) / d[Tr(A7)): = medt + d M,

p

where, by Proposition dM; is a martingale with My = 0 and 7, is an adapted process
such that 7, < C?H;. Taking expectation we have

d

d
—EeH, < C ]% EeH, ¢ - log (EzH,) < C

|3

Integrating in the interval [T}, ¢] C [T7, T3] we deduce that for any T} < ¢t < T

£\ P
EpH, < EpHr, (—) .
T,

Taking into account that, by Proposition , EpHy, < 3n'/P, for any value of p > 3, we

17



obtain
T T> T> ) Cp Cp
1/p t 1/p Iy
E]}D ||At||0pdt § ]E[[D tht = E]thdt S 3n — dt S 3n p— TQ.
Ty T Ty Th 1 T
Hence, by Markov’s inequality,

T 1 T> Ty Cp
1}»{/ | Adllopdt > 51—2} < 512]EP/ | Aullopdt < 1536017 <?) T,

To T 1

4 Proof of Chen’s Theorem

In this section we complete the proof of Chen’s estimate of ,,.

2

Proof of Theorem[1.2 Let Ty = cllﬁn for some absolute constant ¢, as in Proposition
ogn

logn S .~ o .
and let 7Y =Ty, p = /| ————, and Ty = an @ 0T """ for this fixed value of p and
log logn
some 0 < a < 1 to be precised later.

There are two possibilities: either 7o < T, or Ty > Ty. Assume first that T, < Tj.

According to Lemma [3.4] and taking into account that v, < C for some positive absolute

constant C, we have that

T2 1 T2 1
P Afllopdt > — » < P Allopdt > — » < 1536 T:
L e = s b <2 d [ 1dar = ) < 1530,
1

1536¢y)2
e <
logn — 10

< 15367 <

for every n > ng, for some ng € N.

Assume now that T, > Tj. By Lemma [3.4] and taking into account that 1 4+ x < 2x
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whenever z > 1, we have

T 1 Ty 1 Ty 1
P Alloodt > — L < p Alloodt > — b 4P Allondt > ——
L 1> b <2 [ 1t = s { [ et > 15}
T2 Cp T2 Cp+1
<1536 [Ty +n'/? (=) T, | =1536T [ L+n'/? | =
Ty Ty

A Cp+1 1
<3072Tyn'/? | = =3072aP" < —
= or (TO) “ 10
whenever n > nq, for some n; € N, by choosing 0 < o < 1 small enough.

Therefore, we can fix 0 < a < 1 such that there exists ng such that if n > ng

E 1 1
P Allgpdt > — b < —

By the arguments exposed in Section [2] we have that there exists an absolute constant
c1 > 0 such that

Cp
Cp+1

Yy > e/ T > co/an” BEHAD T = ¢y /an” 2@ ——————.
(1og n) 2(Cp+1)

Since this inequality is true for any isotropic log-concave probability whose support is
contained in Cn°BY, where C| is the absolute constant in Lemma we obtain that

Cp
Cp+1
n

1
wn > 64\/&71 2p(Cp+1) —
(log n)m

and then

_ L
chp = C5 €Xp ( - cﬁ\/logn . loglogn),

(log n)
which finishes the proof. m

wn Z <C4\/a) vt
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