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ABSTRACT Diminished stress reactivity is frequently reported in individuals with depression and anxiety.
Smartphone-camera photoplethysmography (SCPPG) could offer an innovative, objective, and ambulatory
metric for monitoring these conditions. This study aims to evaluate the use of SCPPG to monitor anxiety and
depression by analyzing stress responses. Specifically, it examines the autonomic nervous system through
heart rate variability using pulse rate variability (PRV) metrics derived from SCPPG. The study involved
79 participants, including patients diagnosedwith generalized anxiety disorder andmajor depressive disorder
(n = 22), as well as a control group (n = 57). SCPPG signals were compared with those from a
validated device during a stress-inducing protocol, consisting of baseline, stress tests (Trail Making Test
and Stroop Test), and recovery phases. Pearson’s correlation and Bland-Altman analysis were used to assess
the agreement. The results indicate a high correlation (r ≥ 0.96, p < 0.001) between PRV metrics derived
from SCPPG and those from reference devices. Additionally, exhibited minimal bias (1 ≤ 2%) with the
exception of RMSSD (1 = 12%). Notably, SCPPG reliably detects stress reactivity differences between
patient and control groups across all PRV metrics (p < 0.05). The study highlights the significance of
SCPPG in understanding and personalizing mental health treatments, considering factors such as stress
reactivity and recovery. Future research directions include longitudinal studies and improving SCPPG
accuracy, particularly for patients with tremors or during dynamic tasks.

INDEX TERMS Anxiety, depression, heart rate variability (HRV), photoplethysmography (PPG),
smartphone, stress, wearables.

I. INTRODUCTION
The human body functions as a dynamic system, con-
stantly adjusting to its environment to maintain homeostasis.
Interactions with the environment create various situations
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typically classified as either stressful or relaxing. Beyond the
subjective feelings these situations produce, the autonomic
nervous system (ANS) regulates energy expenditure during
relaxation by decreasing heart rate, expanding blood vessels,
and slowing breathing. The opposite processes occur in
stressful or threatening situations. Although this physiolog-
ical response is innate and shared by all mammals, providing
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an evolutionary advantage [1], [2], it can be affected by
factors such as chronic stress, generalized anxiety disorder
(GAD), and major depressive disorder (MDD) [2], [3],
[4], [5]. Beyond acute autonomic adjustments, psychological
stress is associated with endocrine, autonomic, and immune
alterations that influence disease risk [6], which motivates
objective and scalable stress quantification.

Numerous studies have documented diminished stress
reactivity in individuals with depression and anxiety [2],
[3], [4], [7], [8], [9], [10], [11], [12], [13]. This hypore-
activity is interpreted as a reduction in parasympathetic
withdrawal and parasympathetic overactivation during stress,
although the literature on the latter is inconsistent [3].
Some studies, however, indicate increased reactivity [5],
[14], [15], [16], while others report both trends depend-
ing on the type of stressor [17], [18]. The causality of
altered stress reactivity remains unclear: it may be a risk
factor for developing GAD and MDD, or these disorders
could be the cause. Alternatively, a shared pathway might
exist that includes GAD, MDD, and compromised stress
reactivity [17], [19].

Understanding the pathophysiology of GAD and MDD is
rudimentary compared to other diseases, primarily due to the
challenges in studying brain changes [20]. The evaluation
of these disorders often relies on subjective assessments,
including symptoms that frequently overlap between condi-
tions [20]. Thus, investigating objective metrics to enhance
understanding and personalize treatment for depression,
anxiety, and related disorders is crucial.

Assessing the ANS through heart rate variability (HRV)
provides objective data that complements other techniques,
such as neuroimaging. High HRV levels at rest and greater
reactivity are associated with attention and emotion processes
that facilitate adaptive stress responses, better regulation, and
executive function [2]. Moreover, HRV can improve under-
standing of the interactions among various pathologies with
established connections, such as the relationship between
depression and sleep apnea or cardiovascular disease, which
are also examined through HRV [2], [18], [21].

Initially, the study of HRV focused on electrocardiographic
signals. However, pulse photoplethysmography (PPG) has
emerged as a popular alternative. Many wearable devices
nowadays use PPG to derive a surrogate for HRV, known
as Pulse Rate Variability (PRV), that is well known to show
high correlation [22]. PPG uses an optical sensor to measure
the light passing through tissue over time with a steady light
source. Smartphones can capture this signal by using the
camera as an optical sensor and the flashlight as an emitter.
The ubiquitous presence of smartphones presents significant
potential for this technology [23].

This study evaluates the use of smartphone-camera
photoplethysmography (SCPPG) to derive PRV metrics
for monitoring depression and anxiety. SCPPG signals
may exhibit lower quality compared to those obtained
from conventional PPG devices. Movements, along with

variations in finger pressure on the camera, are the primary
factors causing artifacts. Therefore, validation for different
applications must be conducted within each specific scenario.
SCPPG has previously been validated for obtaining PRV
metrics [24], [25] and has been utilized in wellness and
healthcare applications [23], [26], [27]. However, to the best
of the authors’ knowledge, this study represents the first
instance of SCPPG being validated in a protocol specifically
designed to monitor anxiety and depression.

This study includes a comparison between SCPPG and
a validated device within a stress assessment protocol,
administered to individuals diagnosed with MDD and/or
GAD, as well as a control group. The aim is to determine
whether the ANS-related metrics obtained from the SCPPG
are consistent with those obtained from the reference device.
An initial study demonstrated a strong concordance of PRV
metrics in a limited group of healthy individuals [28].
Additionally, this research aims to further evaluate whether
SCPPG can accurately identify stress reactivity and if the
variations between the patient and control groups align
with those observed using the reference device. Successful
validation would add a broadly accessible tool to the existing
methods for monitoring anxiety and depression.

The novelty of this work is the validation of the PRV
metrics using SCPPG in a protocol designed for monitoring
anxiety and depression, including tasks involving movement
and speech (see Section II-B). These metrics include the
sympathovagal balance obtained by orthogonal subspace
decomposition of the heart modulation signal from the
SCPPG and a respiration signal (see Section II-E), which
enhances the accuracy of HRV analysis by separating
respiration-related fluctuations [29].

II. METHODS
A. DATASET
A total of 82 individuals participated in a depression
assessment protocol. Among them, 24 were diagnosed with
GAD and/or MDD (patient group), whereas 58 were healthy
individuals (control group). Exclusion criteria ensured that
participants in both groups did not have any cardiac, neu-
rological, or endocrine conditions, nor any other psychiatric
disorders, to prevent potential confounders. Participants
taking tricyclic antidepressants, beta-blockers, and antipsy-
chotics were also excluded due to their effects on the
autonomic control of the heart [1], [30], [31], [32]. Out of
the 82 participants, 3 individuals (2 patients and 1 control)
experienced difficulties with finger stability on the camera
due to tremors (this issue is addressed in Section IV). As a
result, these participants were excluded from subsequent
analyses, leaving a final sample size of 79 subjects, consisting
of 22 patients and 57 controls. Patients were recruited by the
Hospital ClÍnico Universitario (Zaragoza, Spain) and by SOS
Adolescentes (Huesca, Spain), while controls were recruited
by social networks.
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FIGURE 1. SCPPG (black) and reference (blue) signals, expressed in arbitrary units (a.u.).
The image consists of 10-second segments extracted from different stages of the
protocol, which have been assembled together. The time axis is shown as a reference; it
does not indicate continuity.

TABLE 1. Demographic characteristics. Significative differences between paired controls and patients (p < 0.05) in bold.

Participants were instructed to sit down and minimize
their movements throughout the procedure. They used their
non-dominant hand to hold a Pocophone F1 (Xiaomi Inc.)
smartphone and covered the camera with their index finger.
The camera’s placement on this device, approximately
5 mm to the right of the camera, allows the user to hold
the smartphone comfortably without directly touching the
flashlight, which can produce uncomfortable heat during
prolonged recording sessions. The flashlight remained on
during the recordings, and both the autofocus and autoex-
posure functions of the camera were disabled to prevent
nonphysiological oscillations in the SCPPG signal. This
step is essential since such oscillations usually occur at a
frequency similar to that of the blood pulses and potentially
cause confusion.

A Medicom system (Medicom MTD), referred to as the
Reference, was simultaneously used to record a conventional
PPG signal from the ring finger of the same hand for
comparison, with a sampling rate of 250 Hz (see Figure 1).

Besides this PPG signal, this device also recorded the respi-
ratory effort from the chest at the same sampling rate. The
smartphone app used was created in-house to record SCPPG
data using Flutter (Google LLC). The software analyzes the
video stream, which has a resolution of 320 × 240 pixels
and uses RGB encoding, by summing the green-channel
intensity over all pixels in each 320 × 240 frame (full-
frame region of interest) to produce a single SCPPG trace.
In terms of reproducibility of the results, averaging or
summation are equivalent up to a constant scale and do not
affect downstream analyses. The frame rate is approximately
24 frames per second, although it can vary based on the
operating system’s workload. The signal is then upsampled to
250 Hz using cubic splines to match the reference sampling
rate, provide a smooth, differentiable representation, and
enable consistent sub-frame peak timing within a unified
processing pipeline. Interpolation and further processing
were conducted offline using MATLAB (MathWorks Inc.).
Recordings were exported as CSV files with one row per
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frame, including UNIX timestamps (milliseconds) and the
RGB intensities; these timestamps defined the time base for
subsequent processing.

Before initiating the stress protocol, participants were
interviewed to gather their personal information and confirm
the inclusion and exclusion criteria. During this interview,
participants completed four tests to evaluate their self-
perceived stress: the Perceived Stress Scale (PSS), the
State-Trait Anxiety Inventory (STAI), which is divided into
state (S-STAI) and trait (T-STAI) components, and two
custom tests named ES3 and ES3-V [33]. The population
data and test results are shown in Table 1. All 79 participants
were included in the validation of SCPPG’s agreement with
the reference. Following this, SCPPG’s capability to assess
stress reactivity was evaluated. For this evaluation, reactivity
was compared to the reference, and the control and patient
groups were separated. Subjects from the control group
were matched with those from the patient group based on
age, sex, and body mass index (BMI). A total of 22 pairs
were matched: 5 pairs of men and 17 pairs of women.
The complete experimental protocol, including participant
recruitment, inclusion and exclusion criteria, and informed
consent, was approved by the ethical committee of the
Gobierno de Aragón (CEICA, PI20/430), and all participants
signed an informed consent.

B. STRESS PROTOCOL
The protocol included: i) 5 minutes of Basal state; ii) a
Trail Making Test (TMT); iii) a Stroop Test (ST); iv) and
5 minutes of Recovery. During the Basal stage, participants
were instructed to relax with the help of an audio guide. Next,
they performed a TMT,which startedwith a page of randomly
placed numbers that participants had to trace in ascending
order using the index finger of their dominant hand, without
lifting it from the tablet. The second page consisted of a
sequence of numbers and letters, alternating between the two
(1-A-2-B-3-C, etc.). The ST involved three pages. The first
page had the words ‘‘red,’’ ‘‘green,’’ and ‘‘blue’’ randomly
arranged in black ink for participants to read. The second
page displayed the colors (red, green, and blue inks) that
participants had to name. The third page showed the same
words written in mismatched ink colors, and participants had
to identify the ink color instead of the word. The Recov-
ery phase involved unguided relaxation immediately after
the ST.

C. FILTERING AND ARTIFACT REMOVAL
The Reference PPG and the SCPPG are subjected to
third-order Butterworth high-pass filtering at 0.3 Hz and
low-pass filtering at 10 Hz, applied in a forward–backward
manner to achieve zero-phase response. In order to reduce
motion artifacts, which often affect SCPPG signals and lead
to incorrect or missed pulse detections, an artifact detector is
used. This detector sets upper and lower limits for the Hjorth
parameters [34], [35], calculated from signal data within

4-second sliding windows with a 25% overlap. The Hjorth
parameters are defined as:

Activity :H0(m) = w̄0(m)

Mobility :H1(m) =

√
w̄2(m)
w̄0(m)

Complexity :H2(m) =

√
w̄4(m)
w̄2(m)

−
w̄2(m)
w̄0(m)

, (1)

where w̄i represents the i-th order spectral moment. w̄i is
estimated using the temporal expression of the moments in
the m-th window of P samples:

ˆ̄wi(m) ≈
2π
P

mP∑
n=(m−1)P+1

(x i/2(n))2, (2)

being x(n) either the Reference or the SCPPG, and P
the number of samples corresponding to 4 seconds, i.e.,
1000 samples. For each parameter, the windowed series was
smoothed with a 15-sample moving median and allowed
the following upper and lower limits from this median:
−5/+3 for H0, −2/+2 for H1, and −0.8/+1 for H2.
Windows in which any parameter fell outside its allowed
range were flagged as artifacts and discarded from further
pulse detection.

Both SCPPG and Reference signals were analyzed
in arbitrary units (a.u.), as their amplitudes depend on
device-specific factors such as light intensity, camera sensi-
tivity, and finger pressure, as well as on individual optical
tissue properties. Although these factors prevent absolute
calibration, they do not affect the relative waveform dynamics
or variability metrics, which are the basis for the subsequent
analysis.

D. PULSE DETECTION
Pulses are identified using the adaptive threshold algo-
rithm described in [36]. This algorithm acquires the event
series (tk ), which represents the timestamps of pulse occur-
rences at their maximum upslope. The following parameters
were used: α = 0.3 (fraction that sets the lower bound
of the adaptive threshold relative to its current maximum);
refractory period = 300 ms (interval after each detection
during which additional detections are suppressed and the
threshold is held constant); τRR = 0.4 (fraction of the
estimated pulse interval over which the threshold decays
from its maximum to its minimum to adapt to rate changes);
and low-pass-differentiator filter transition band from 4.4 Hz
to 4.5 Hz. Parameter optimization was performed manually
based on visual assessment of the data. Before performing
PRV analysis, it is essential to identify and rectify any
misdetection. To achieve this, the pulse-to-pulse interval
series are calculated using the interval function dIF (t),
defined as

dIF (t) =

∑
k

(tk − tk−1)δ(t − tk ), (3)
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FIGURE 2. SCPPG (black) and reference (blue) modulating signals m(t), expressed in dimensionless units (dim.), obtained with the
IPFM model for each stage.

FIGURE 3. OSP decomposition. Respiratory rate outside LF band. Left side top to bottom: respiratory signal, modulation of the heart rate,
modulation linearly related with respiration, residual component. Right side top: respiratory signal (blue) and modulation of the heart rate
(gray) spectra. Right side bottom: modulation of the heart rate (gray), modulation linearly related with respiration (black) and residual
component (dotted) spectra.

where k denotes the pulse index. Each event that occurs in
time tk is represented by a unit impulse function δ(t − tk )
scaled by the length of the preceding interval. False positives
produce an abrupt shortening of this scaling due to the
introduction of an additional spurious pulse between two
actual pulses. A moving median of 30 samples is used
to detect these outliers. The moving median produces an

expected pulse-to-pulse interval (dEPPI ) at each tk :

dEPPI (tk ) = med{dIF (ti)}; i ∈ [k − 14, · · · , k + 15]. (4)

The interval at tk is considered a false positive if
dIF (tk ) < (0.7 × dEPPI (tk)). These false positives are
removed from the tk series, and dIF (tk ) is computed again.
Next, the intervals at tk are considered false negatives
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FIGURE 4. OSP decomposition. Respiratory rate within LF band. Left side top to bottom: respiratory signal, modulation of the heart rate,
modulation linearly related with respiration, residual component. Right side top: respiratory signal (blue) and modulation of the heart rate
(gray) spectra. Right side bottom: modulation of the heart rate (gray), modulation linearly related with respiration (black) and residual
component (dotted) spectra.

if dIF (tk ) > (1.3 × dEPPI (tk )). The treatment of false
negatives is not the same for all PRV metrics, following
the recommendations of [37]. This treatment is detailed in
Section II-E.

E. PRV METRICS
Three time-domain and three frequency-domain metrics
were calculated. The metrics in the time domain were
the mean heart rate (MHR), the standard deviation of the
normal-to-normal interval (SDNN), and the root mean square
of successive differences (RMSSD) [38]. Based on [37],
gap filling of false negatives is not recommended for
these metrics. Therefore, they were calculated from dIF (tk ),
excluding outliers in the tk series.

Regarding frequency-domain metrics, an exploratory anal-
ysis revealed that respiratory frequency often fell within
the low-frequency (LF) range, i.e., 0.04 to 0.14 Hz,
prompting an improved analysis of HRV metrics based
on Orthogonal Subspace Projection (OSP) [29], [39]. The
heart rate modulating signal, m(t), which is presumed to
carry information from the ANS, is calculated at 4 Hz
using the time-varying integral pulse frequency modulation
(IPFM) model [39] (see Figure 2). m(t) is decomposed
by the respiratory signal, r(t), into a respiration-related
linear component, m̂r (t), and a residual component, m̂⊥(t),
containing other modulators. m̂r (t) and m̂⊥(t) are detrended
with a 4th order Butterworth high-pass filter with a cutoff
frequency of 0.03 Hz. Subsequently, the spectral densities
Ŝmr (f ) and Ŝm⊥

(f ) are estimated using Welch periodograms

with 120-second Hamming windows and 30-second overlap
within all available data in each phase of the protocol.

Spectral powers Pr,LF+HF , representing the parasympa-
thetic nervous system, and P⊥,LF , representing the sym-
pathetic, are calculated by integrating Ŝmr (f ) and Ŝm⊥

(f )
over 0.04-Fmax Hz and 0.04-0.15 Hz, respectively, using
trapezoidal numerical integration. Fmax is the upper limit
of the spectrum, computed as half of the MHR, which
could be seen as the Nyquist criterion since the heart rate
is sampled beat-to-beat. Figures 3 and 4 illustrate the OSP
decomposition of m(t), presenting one scenario where the
respiratory rate exceeds the LF range and another where it
is within the LF range. Observe that the former scenario is
expected to yield results comparable to the conventional LF
and high-frequency (HF) ranges, whereas the latter scenario
results in significantly different outcomes.

Sympathovagal balanceR′ was computed as

R′
=

P⊥,LF

Pr,LF+HF + P⊥,LF
(5)

For a more detailed explanation of the chosen frequency-
domain metrics, refer to [39]. The gaps detected in the tk
series were filled by an algorithm based on piecewise cubic
Hermite interpolating polynomials [37] before computing the
metrics in the frequency domain.

Then, the metrics are evaluated for physiological
verosimilitude. The permissible ranges for these metrics are
set at [40,180] bpm for MHR; [5,140] ms for SDNN and
RMSSD; [0,0.003] a.u. for P⊥,LF ; and [0,0.05] a.u. for
Pr,LF+HF . These ranges were derived from the highest and
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TABLE 2. PRV metrics median and standard deviation, error median and standard deviation, Pearson correlation coefficient, number of missing cases,
and bland-altman mean difference. All subjects.

lowest values observed with the Reference, including ample
allowance. Any metrics that fall outside the specified ranges
are identified and removed from the agreement and reactivity
analysis. Instead, the count of these cases is presented in
Section III.

F. STATISTICAL ANALYSIS
PRV metrics derived from the SCPPG are compared to those
from the Reference. The Pearson correlation is evaluated (r)
with a significance threshold of α = 0.05. Bland-Altman’s
mean difference (1), given as a percentage with its 95%
confidence interval, is used to assess bias. To determine
if the reactivity of controls and patients comes from
probability distributions with different medians, a Wilcoxon
rank sum test is conducted assuming nonnormal distributions.
This assumption is supported by the presence of both
normal and nonnormal distributions across different stages,
as determined by a Shapiro-Wilk test. Although subjects in
the control and patient groups are matched, as detailed in
Section II-A, the statistical test is unpaired, as the primary
estimand was the marginal between-group difference rather
than within-pair contrasts. The effect size of the reactivity is
measured using Cliff’s Delta [40].

G. SOFTWARE AND APP AVAILABILITY
The smartphone acquisition app BSICoS used in this work
is available on Google Play and on the Apple App Store.
Android package: com.bsicos.bsicos_app. App Store ID:

6746410527. The app uses our open-source scppg library,
available at pub.dev/scppg [41].

III. RESULTS
A. AGREEMENT
Table 3 presents the percentages of artifact-free time as
determined by the Hjorth-based automatic detector. The
stability of the SCPPG is demonstrated with 98.8% of the
time being artifact-free, which is only 0.7% lower than
the Reference value. Across different stages, no significant
differences are observed, with a decrease of only 2.4%
between the Basal and ST stages, representing the maximum
andminimum values, respectively. The minimum value in the
Reference is also observed in the ST stage, though it is only
1.2% lower than the Basal value.

The PRV values, along with the corresponding absolute
errors, Pearson correlation coefficients, and the bias relative
to the Reference, are presented in Table 2. The last column

TABLE 3. Percentage of artifact-free time according to Hjorth-based
automatic detection.
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FIGURE 5. Regression and bland-altman plots of relative differences
for each metric. All stages together. First: MHR. Second: SDNN. Third:
RMSSD. Fourth: P⊥,LF. Fifth: Pr ,LF+HF.

represents the number of missing values. The errors are
at least an order of magnitude smaller than the values of
the metrics. Notably, the MHR error is exceptionally small,
with an error magnitude three orders smaller than the metric
value. All metrics exhibit high correlation, with coefficients
exceeding 0.98, except for the RMSSD at the TMT stage,
where the correlation is still substantial at 0.89. The p-values
for all correlation tests were less than 0.001.

The number of missing values results from both the
restrictions in the allowable range (see Section II-E),
indicating a failure in the calculation, and the requirement of
a minimum duration of 60 seconds for spectrum computation
in frequency-domain metrics. For the time-domain metrics,
the instances of unreliable measurements are less than
2.5%. In contrast, frequency-domain metrics display higher
percentages of missing values, with the TMT stage reaching

FIGURE 6. Boxplots for each metric. Significant differences are marked
with asterisks: * for p < 0.05 and ** for p < 0.001. Values after
asterisks indicate the effect size. Top: MHR. Bottom: SDNN.

up to 22.8%. Excluding the TMT stage, the percentage of
missing cases is less than 6.4%.

The bias is nearly negligible across all metrics except for
RMSSD. This particular metric shows a steady positive bias
in all phases, ranging from 13.6% to 21.2%.

Figure 5 presents the linear regressions and Bland-Altman
plots for all combined stages. Every correlation has a p-value
below 0.001, with the lowest correlation being 0.96. Once
more, only the RMSSD exhibits a significant bias, though the
overall effect of the stages diminishes this bias to 12%.

B. STRESS REACTIVITY
Figures 6 and 7 illustrate the distributions of PRV metrics
across different stages for both control and patient groups.
In the control group, increases in MHR and R′ are
observed during stress phases (TMT and ST) compared
to relaxation phases (Basal and Recovery). Conversely,
SDNN and RMSSD exhibit a decreasing trend. Significant
differences and effect sizes are indicated in the graphs.
Notably, significant differences were found in all metrics
between the Basal stage and the two stress tests in the control
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FIGURE 7. Boxplots for each metric. Significant differences are marked
with asterisks: * for p < 0.05 and ** for p < 0.001. Values after
asterisks indicate the effect size. Top: RMSSD. Bottom: R′ .

group. Additionally, significant differences are present in
MHR, SDNN, and RMSSD between the stress tests and the
Recovery phase.

In the patient group, reduced stress reactivity is observed.
No significant differences are found between the Basal stage
and the stress tests in MHR or RMSSD. However, differences
in SDNN between Basal and TMT are observed, although
with a reduced effect size (from 0.71 to 0.51). Significant
differences are also noted inR′ between Basal and both stress
tests, with a smaller effect size between Basal and ST. The
differences in MHR, RMSSD, and SDNN between the stress
tests and the Recovery phase are either not significant or
have reduced effect sizes. An exception is found inR′, where
differences are more pronounced in the patient group due to
a significant increase during the TMT.

There is a high degree of agreement between the distri-
butions obtained from the SCPPG and the Reference. The
statistical tests for both the SCPPG and the Reference show
consistent results in terms of statistical significance and effect
size when there is good agreement.

The control group completed the TMT in 106±30 seconds,
while the patient group took 118 ± 32 seconds. For the ST,
the control group finished in 211 ± 31 seconds, compared to
233 ± 57 seconds for the patient group. The differences in
median test durations between the groups are not statistically
significant (p = 0.25 and p = 0.33).

IV. DISCUSSION
A. SCPPG FOR PRV MONITORING
Although quantitative indices such as correlation, bias, and
absolute errors provide a descriptive view of agreement, their
interpretationmust be framedwithin the context of use. In this
study, agreement was not assessed as an end but to evaluate
whether SCPPG-derived metrics maintain the physiological
variability required for stress assessment. Therefore, bias
and absolute error were considered the main indicators of
metrological correspondence, while correlation was inter-
preted as a complementary descriptor of rank-consistency
across the measurement range. In combination, these metrics
demonstrate a coherent level of agreement that supports
the reliability of SCPPG for stress-monitoring applications.
Overall, the agreement results should therefore be interpreted
considering the intended application, emphasizing func-
tional consistency in stress assessment over strict numerical
equivalence.

The concordance between the PRV metrics derived from
the SCPPG and the reference is exceptionally high. Notably,
a correlation exceeding 0.96 (p < 0.001) indicates that the
smartphone is as reliable as a commercial pulse oximeter,
with correctable bias. The capability of the metrics obtained
from the SCPPG to identify stress reactivity matches that of
the reference device in terms of both statistical significance
and effect size. Furthermore, the observed differences in
reactivity between the control and patient groups support
the use of the SCPPG for monitoring stress reactivity in
the context of anxiety and depression assessments. The
difference between stress stages and the Recovery was lower
in subjects from the patient group, which is in agreement with
the results found in [8]. The study of impaired recovery is
highly intriguing, as research has connected it to a heightened
risk factor for cardiovascular disease [8], [42]. Differential
resting levels are evident between the patient and control
groups. This is in agreement with the literature and may be
a valuable measure, especially in longitudinal studies, given
its relationship to the regulation of emotions and attention in
addition to physiological regulation [2].

The overestimation of RMSSDmay be attributed to the low
sampling rate of SCPPG as lower sampling rates are more
susceptible to noise, leading to signal distortion and reduced
temporal resolution. Choi et al. [43] note that RMSSD
requires a higher sampling frequency for robustness, unlike
MHR, which averages out variability and remains robust.
They recommend a minimum sampling frequency of 25 Hz.
Similarly, Beres et al. [44] suggest that RMSSD demands
higher sampling rates compared to metrics like MHR and
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SDNN, reducing the necessary rate to 20 Hz. Thus, the
camera’s 24 Hz sampling rate is marginal or potentially
insufficient, especially given Android’s inconsistent handling
of the camera, leading to lower sampling rates. Therefore,
future research will explore higher sampling frequencies,
supported by newer devices, and non-Android platforms for
more stable sampling rates [45]. The positive bias observed
in RMSSD does not compromise its interpretability. The bias
remains relatively constant across phases, can be corrected
post-hoc if required, and does not mask the phase-dependent
differences relevant to stress reactivity. This suggests that the
bias does not affect the metric’s capacity to reflect autonomic
modulation during stress.

Frequency domain metrics are derived through the integra-
tion of power spectral density estimates, which are calculated
using Welch’s method. The durations of the TMT and ST
stages are notably shorter compared to those of the Basal
and Recovery stages. Specifically, the TMT stage lasted an
average of 109 seconds, with a range from 61 to 186 seconds.
The ST stage had an average duration of 223 seconds, ranging
from 153 to 368 seconds. Consequently, the number of
segments available for Welch averaging is reduced in the
shorter stages, resulting in increased variance. Additionally,
the brief duration of the TMT stage often leads to a
high number of missing cases in frequency domain metrics
because it frequently does notmeet theminimum requirement
of 60 seconds necessary for spectrum calculation. It is
important to highlight that although the test may exceed
the minimum required duration, artifacts and misdetections
can reduce the length of the valid signal used for metric
computation, as gaps exceeding 10 seconds are prohibited.
When larger gaps are present, the algorithm retains the
longest segment without 10-second gaps [37]. The significant
increase inR′ observed during the TMT in the patient group
might be attributed to the reduction in the number of cases.
Although themetrics in the frequency domain are comparable
to those in the time domain in terms of both correlation and
error, a frequency domain metric could not be obtained in
nearly a quarter of the TMT stages. For future applications,
methods to lengthen the test duration should be investigated
to guarantee sufficient data for reliable spectral estimation.
It is noteworthy that only in one instance, the unique missing
case in the Recovery stage, the Reference was able to obtain
the metric where the SCPPG could not. In all other cases
where the SCPPG failed, the Reference also failed. When
using frequency domain metrics, it must be considered that
they have more restrictive requirements and that the duration
of the test is a crucial factor. Significant differences in HF
and LF/HF ratio, calculated without OSP, are reported in
the literatures [1] and [46]. To our knowledge, this study
represents the first application of R′ in the surveillance of
stress reactivity, overcoming limitations in the respiratory
rate.

One of the primary challenges in SCPPG is the significant
exposure to the relative movement of the finger in relation

to the camera. This problem is particularly detrimental
to patients with tremors, even if the tremors are minor.
Three subjects had tremors incompatible with the SCPPG
recording. This represents 3.7% of the studied population.
The sample is small to extrapolate this percentage to the
general population, but it represents an important problem to
be solved in the automation of monitoring. Using clamp-type
sensors, similar to those used in clinical settings, connected
to the smartphone would negate the main advantage of this
system, which is the widespread availability of sensors in
people’s pockets. During the recording sessions, participants
had to hold the smartphone in the same hand that had a pulse
oximeter on the ring finger, leading to an uncomfortable and
awkward grip. It is anticipated that the signal quality would
be better if the free hand were used.

It is noteworthy the percentage of time and cases in which
metrics can be obtained. Setting aside subjects excluded due
to difficulties in remaining still, the percentage of artifact-free
time is 98.78%, comparable to the Reference. This percentage
is very high considering that hand movements are clearly
transferred to the signal. It is likely that this percentage is
mediated by a protocol design that allows for comfortably
maintaining a stable position. The relaxation stages are
performed in complete stillness, and the ST is a spoken
task. The only stage that demands movement is the TMT.
This test was conducted with the dominant hand while
holding the smartphone with the non-dominant hand. This
independence contributed to the stability of the recording.
When designing other stress-inducing tasks, particularly
those that involve interacting with the recording device -
centralizing all interactions on a single device is an ideal
scenario-, it is recommended to consider that such interaction
might introduce artifacts. This matter is presently under
investigation. The stage with the highest number of artifacts
was the ST. This was also the stage where subjects reported
the highest stress. This, combined with the longer duration of
the test and the consequent fatigue, suggests that the induced
stress level is more determinant for the quality of the signals
than the manner of interacting with the device. An interesting
line of work involves the interplay between human-device
interaction design and stress-inducing tasks that facilitate
functionality. It should be noted that artifact-free time has
been measured with an automatic detector. This does not
imply that the non-rejected segments have a good signal-
to-noise ratio nor that the detections are error-free. The
Hjorth-based detector rejects segments with energy peaks
and those presenting high complexity, that is, segments
with a relatively wide frequency spectrum. The steps of
correcting errors and discarding values that fall outside
of reasonable ranges are essential for achieving reliable
measurements.

B. STRESS REACTIVITY
The nature of the stressor, although not studied in this
work, appears to significantly influence stress reactivity.
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In the study by Hu et al. [17], individuals with depression
exhibited hyperreactivity when subjected to a stressor in the
form of an interview, whereas hyporeactivity was observed
during a cognitively challenging task. It was suggested
by the authors that individuals suffering from depression
might demonstrate reduced motivation to achieve positive
outcomes in tasks requiring cognitive effort. Conversely,
their response to emotional distress experienced in daily
life, such as that induced by interviews, may be heightened.
Studies reviewed by Kibler and Ma [18] also demonstrated
an increase in reactivity during speech tasks. Based on
this hypothesis, the hyporeactivity observed in both the ST
and the TMT was anticipated. Furthermore, as noted by
Salomon et al. [47], diminished cardiovascular response
and compromised recovery in individuals with current
major depression could be influenced by their mood state.
This primarily indicates deficiencies in motivation rather
than physiological abnormalities within the cardiovascular
system.

Although the distributions of the metrics differ between
patient and control groups, the variability between subjects is
substantial. Therefore, establishing thresholds to determine
whether the reactivity corresponds to a healthy or diseased
nervous system does not appear to be the optimal approach.
Instead, the trend of reactivity should be examined in
subsequent measurements. An increase in reactivity during
treatment would suggest an improvement in mental health.
To evaluate the feasibility and effectiveness of this follow-up,
a longitudinal study is required. Specifically, it is crucial to
investigate the effects of performing stressor tests recurrently.
As patients become accustomed to these tasks, they may
exhibit decreased interest in optimal performance, resulting
in reduced stress levels. Additionally, an enhanced ability to
complete tasksmay contribute to reduced stress. Investigating
the variations in habituation between individuals with and
without depression could be a compelling area of research.
This is particularly pertinent given the theory that decreased
engagement in cognitively demanding activities underlies
the blunted stress response observed in individuals with
depression [17]. Furthermore, Brindle et al. [10] suggested
that stress reactivity is mediated by stress experience rather
than stress exposure. Including test scores as an additional
metric could provide valuable insights into the patients’
commitment to the tasks.

Although PRV is not identical to HRV due to the inclusion
of electromechanical delay, vascular timing (pre-ejection
period, pulse transit time), and fiducial differences in PPG,
the literature supports PRV as a surrogate of HRV [22], while
anticipating larger discrepancies for short-lag metrics such
as RMSSD. In the context of stress reactivity, this difference
could be not detrimental: sympathetic vasoconstriction, blood
pressure changes and transient increases in arterial stiffness
are integral components of the autonomic stress response and
modulate PRV. Thus, PRV provides additional physiologi-
cally relevant information that may be advantageous in this
application.

The effects of anxiety are difficult to remove and the
comorbidity of anxiety and depression is frequent. Numerous
studies have observed the inclusion of patients with both
depression and anxiety, complicating the attribution of effects
solely to depression. Instead, these effects may be attributed
to the broader spectrum of anxiety and depression [3].
Several reports in the literature have not identified significant
differences when comparing groups with depression and
anxiety, either in stress reactivity [7], [17] or in basal
levels [7]. Conversely, other studies have yielded different
findings. For instance, [48] reported that HF power levels
were elevated in patients with comorbid MDD and GAD
compared to thosewith onlyGAD.Additionally, an investiga-
tion that examined skin conductance, skin temperature, pupil
diameter, and heart rate in participants exposed to unpleasant,
pleasant, and neutral images indicated that anxiety and
depression influence autonomic output reactivity differently.
This distinction may aid in differentiating individuals with
anxiety from those with depression [49]. Furthermore,
in [12], individuals with generalized anxiety disorder exhib-
ited reduced reactivity compared to the control group, while
those with social anxiety disorder demonstrated increased
reactivity. The incorporation of objective measures, such
as HRV, in longitudinal investigations of these conditions
could enhance the understanding of their interconnections
and distinctions [50].

Two patients reported benzodiazepine use. To assess
potential confounding, a sensitivity analysis was performed
excluding the two corresponding patient-control pairs. All
previously significant contrasts remained significant, no non-
significant contrast became significant, and effect sizes
changed only marginally (|1| ≤ 0.1). Due to the limited
number of benzodiazepine cases, these findings should be
approached with caution and are insufficient for making
subgroup inferences. Larger sample sizes are necessary
to elucidate the effects of benzodiazepines on baseline
levels and stress reactivity. With respect to non-tricyclic
antidepressants, Hu et al. [17] demonstrated that although
antidepressant medication affects baseline levels, it does not
influence stress reactivity.

PPG morphological metrics have been employed to
evaluate stress responses, demonstrating distinct differences
between individuals with depression and those who are
healthy [13]. It is recommended that future research
investigate whether similar assessments can be conducted
using SCPPG.

C. LIMITATIONS
Differences in stress reactivity between men and women
have been documented. Additionally, variations in women
depending on the menstrual cycle phase have been noted [3].
In this study, the groups were matched by sex, though the
menstrual phase was not accounted for.

The study utilized a single smartphone model, the
Xiaomi Pocophone F1, released in 2018, which limits the
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ability to generalize findings to newer devices. However,
most modern smartphones are equipped with cameras and
sensors that offer superior optical capabilities. Therefore,
hardware performance is unlikely to be a significant con-
straint. Instead, future evaluations should concentrate on
examining the efficacy of various devices in measuring
stress reactivity using the proposed or similar protocols,
rather than focusing on HRV agreement without contextual
application. In addition, camera resolution is not a critical
factor for PRV estimation. SCPPG signals are obtained
by spatially averaging the green channel over the entire
frame, which suppresses sensor noise and makes the method
robust even at low resolutions. In this study, a resolution
of 320×240 pixels was used. Higher resolutions do not
provide additional physiological information for PRV since
temporal sampling, and not spatial detail, is the limiting
factor.

It should be noted that the validation was performed
on participants able to maintain finger stability, excluding
three cases (3.7%) affected by tremor. While this ensures
comparable signal quality between SCPPG and the reference,
it also restricts the evaluation to users capable of holding the
smartphone still. Importantly, this percentage likely reflects
a lower bound of real-world failure rates, since tremor preva-
lence increases in older populations and may be exacerbated
by anxiety, psychomotor agitation, or medication effects.
As a result, SCPPG may systematically underperform in
subgroups for whom stress monitoring is especially relevant,
introducing potential selection bias and limiting usability
in longitudinal deployment. Future developments should
therefore focus on improving robustness—through enhanced
signal-quality control, motion-aware pulse-timing extraction,
and interaction designs that mitigate micro-movements to
reduce the proportion of users for whom SCPPG becomes
unusable.

The validation was performed under controlled laboratory
conditions, where participants were instructed to remain
seated and minimize movement. While this approach ensured
signal stability and allowed for a reliable comparison with the
reference device, it does not reflect the full range of situations
expected in ambulatory monitoring. Therefore, the present
results should be interpreted as representative of performance
under stable conditions. Future studies should extend the
validation to less controlled environments and naturalistic
settings to evaluate the robustness of SCPPG during daily
activities.

The analysis conducted assumes stationarity within each
phase of the protocol, which may not hold true for all cases,
particularly in the recovery phase performed immediately
after the stressor. Significant differences may exist between
the first and last minutes of this phase. Stress accumulation
during the tests and relaxation during the basal phase could
also impact results. Additional research and supporting
evidence are needed to validate these assumptions and
understand their implications.

The respiratory signal captured by a band was used for
the decomposition of the modulating signal. In cases where
only a smartphone is utilized, this respiratory signal must
be extracted from the SCPPG. This process is complex and
requires thorough investigation, as discussed in [51].

Additionally, the stress-inducing tasks were selected
because their autonomic response and sensitivity to cognitive
load are well established in the literature. However, it is
not assumed that they are the most suitable for all contexts.
In longitudinal studies, repeated exposure to the same tasks
could lead to habituation and attenuated stress responses.
Therefore, future work should evaluate alternative stressors
or task designs to maintain their efficacy over repeated
assessments.

Ultimately, depression measurements were not performed,
preventing a correlation analysis with stress reactivity
levels.

D. FUTURE LINES
Measurement robustness and physiological specificity will
be enhanced, generalizability will be expanded, and clinical
utility will be established through longitudinal assessment.
Robustness to motion, illumination changes, and finger-
pressure variability will be increased by integrating signal-
quality control and artifact-resilient pulse-timing extraction.
Autonomic contributions will be better isolated by explicitly
accounting for respiratory influences when appropriate.
To improve comparability across sessions, within-subject
normalization that considers time-of-day and common
behavioral or pharmacological confounders will be applied.
In parallel, broader and more diverse cohorts (age, sex,
skin tone, comorbidities) will be enrolled to characterize
population-level variability and to derive more generalizable
reference values for stress reactivity.

Longitudinal use will be evaluated to determine whether
SCPPG-derived stress reactivity can track treatment progress
over time and yield clinically meaningful change met-
rics suitable for routine follow-up. Practical measurement
schedules for repeated assessments will be defined, and
the types of stressors most informative in longitudinal
settings will be identified while habituation is mitigated.
Responses to real-world stressors will be examined so that the
translation of laboratory findings to everyday contexts can be
assessed.

Validation under real-world usage conditions will be
further extended. Performance will be evaluated in parallel
with continuous-monitoring wearables, and data collection
will be carried out using each participant’s own smartphone,
thereby capturing heterogeneity in camera hardware and
operating systems. Usability, adherence, and energy effi-
ciency will be examined to refine acquisition workflows, and
the implementation of on-device processing pipelines will be
prioritized so that data transfer is minimized and privacy is
maximized. In this regard, the first steps have already been
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taken with the validation of a mobile application design [52],
this time focused on use by patients, and the creation of
a minimum viable product (MVP) desktop application for
healthcare professionals [53].

V. CONCLUSION
The results of this study support the effectiveness of SCPPG
technology in evaluating the stress response, making it
suitable for monitoring depression and anxiety. The PRV
metrics show a strong correlation (r ≥ 0.96, p < 0.001)
and minimal bias (1 ≤ 2%) for all metrics excluding
RMSSD. While RMSSD presents some bias (1 = 12%),
it does not conceal the differences between patient and control
groups, and the correlation remains significant (r = 0.96,
p < 0.001). Consequently, this technology proves valuable
for evaluating both baseline states and stress reactivity. One of
the most promising applications of this technology involves
investigating it within expanded longitudinal cohorts, par-
ticularly given the ubiquitous integration of smartphones in
modern society.
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