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Abstract

In this paper, we are interested in the efficient numerical resolution of one dimen-
sional two-parameter singularly perturbed systems; for simplicity, we only give the
theoretically details corresponding to the simplest case of systems with two equa-
tions. The diffusion parameters are distinct and can have a very different value; on
the other hand, the convection parameter is the same for both equations. Finally,
we assume that a large time delays term appears in the partial differential equation.
So, the exact solution has overlapping boundary layers at both end points of the
spatial interval, when the magnitude of the diffusion parameters is very different;
the behavior of the boundary layers depends on the value and the ratio between the
diffusion and the convection parameters. To approximate the exact solution of the
continuous problem, we construct a numerical method, which combines the Crank-
Nicolson method to discretize in time, which is constructed on a uniform mesh, and
a type of B-splines to dscretize in space, which are defined on a special nonuniform
Shishkin mesh. We prove that the fully discrete scheme is a uniformly convergent
method, having second order in time and almost second order in space. From a
practical point of view, higher order numerical methods are convenient because
they permit to obtain good numerical approximations with a small increase of the
computational cost. To corroborate in practice the good properties of the numerical
method, some test problems are solved; from the numerical results obtained for
these examples, clearly follows both the efficiency and the order of uniform con-
vergence of the numerical method, in agreement with the theoretical results.
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1 Introduction

In this work, we solve 1D systems of singularly perturbed delay parabolic IBVP on
M= M, x Mg =(0,1) x (0,S], which are defined by

LX = aa—x + Ly e X =—a(x)X(z,s —7) +f(x,s), (z,5) € M,(l.1a)
s
X(0,5) =pi(s) in My, X(1,s) =@.(s) in M,, X(z,s)=1(z,s)in My,
(1.1b)

where
M;={(0,5)] 0< 5 <8}, M, ={(1,5)] 0<5<S}, Mp =M, x A" =10,1] x (=7,0]
7 > 0isaconstant and £ = (L1, L2)T. Without loss of generality, we assume that
0 <e1 <ey <1land0 <L v < 1. Further, the operators £, ¢, -, and Ly, k = 1,2,
are defined as
2
Lm,sl,sg,y = *El% - EQP(x)% + Q(xa S)a

dX 89X 0Xp |«
,CkX:Tsk—€kﬁzk_Vpkk(x)T;+quj(xas)Xja k:132a
j=1

where E; = <501 502>,E2 — (6 S),P(x) — (pllo(w) p22()(x)>’
Qas) = (i) ).

Q21($, 5) q22(\Z, S

f(x’ S) = (fl(x7 8)7 fg(l‘, S))Ts X('Tv 5) = (Xl('rv S)a XQ(x7 S))Ts o
wi(s) = (1, (5), 12 (5)) ", () = (1, (8), o1, (5))". For each (z,5) € M and

x € M, the coefficients of matrices P(x) and Q(z, s) satisfy

pre(x) > ap >0, k=1,2, (1.2a)
Q(z, s) is an Lomatrix = qgj(z,8) <0,k # j, qer > 0, k,j = 1,2, (1.2b)
2

D ki, s) > @ >0, quilw, 8) > |qrs(z,8)|, k=12, k# . (1.2¢)

Jj=1

@ Springer



An effcient spline method to solve two-parameter 1D parabolic... Page 30f47 103

Below, we denote by a = min{ag, as},
n= min {qkl(:v,s) — i2(2,5) }, k=1,2,=(e1,e2)" and ¥ = (v,v)7T.
(2,5)EM Pik(T)

From a practical point of view, this type of systems is interesting because they are
a good model in many applications’areas, such as chemical reactor dynamics, brain
signal transmission, climate modelling, power system stability or epidemiology (see,
for instance, [11, 19, 20, 22, 25]). In all these applications, the solution of the physi-
cal phenomena has a multi-scale behavior due the presence of small diffusion and
convection parameters; moreover, the effects of temporal delays are caused by dif-
ferent characteristic as transport lags, feedback control loops or incubation periods,
depending on the particular problem. It is well known that, in general, the presence
of time delay and small perturbation parameters in both the diffusion and the convec-
tion terms, provokes that the solution has a very different behavior and very large step
gradients on different regions in the domain. The main characteristic of these systems
is the presence of positive parameters multiplying both the first and the second spatial
partial derivatives. Moreover, large time delays, such as the average process time of
a control loop, can cause boundary layers, oscillations and a negative impact on the
system’s stability of the numerical method used to solve the continuous problem.

In many physical, chemical and biological systems, the evolution of multiple
interacting species is governed by convection-reaction-diffusion mechanisms. The
interaction of slowly diffusing morphogens and faster-moving proteins drives the
establishment of spatial patterns in gene regulatory networks, where transcriptional
and translational delays cause past morphogen concentrations to control protein syn-
thesis. To analyze such processes, we consider a coupled system of convection-reac-
tion-diffusion equations with unequal diffusion parameters and a large time delay,
which captures the essential features of delayed feedback and multiscale spatial
transport. An example framework for studying these effects in a physiologically rel-
evant context is provided by the model that follows.

1.1 Motivating model: convection-reaction-diffusion system in gene regulatory
networks

This system can be modeled as a set of coupled singularly perturbed convection-reac-
tion-diffusion equations with different diffusion parameters and a large time delay,
given by

0X1 92X,

g —lef 7&1(1’)X1+f1(X1,X2), (13)

8X2 62X2 8*X2

s = GZW -V 2(35)% —az(x)Xo + fo(X1(z,5 — 7), X2), (1.4)

subject to the boundary and initial conditions

X1(0,8) = X1(1,8) =0, X2(0,s) = Xa(1,s) =0, s€]0,5],
Xi(z,s) = ¢1(z,8), Xa(z,s) = ¢a(x,s), se[-7,0], z€(0,1).
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In this case, X (z, s) and X5 (z, s) represent the morphogen and protein concentrations,
respectively. The diffusion coefficients of the morphogen and protein are represented by
the small positive parameters €; < €. Moreover, f1 and f> are nonlinear reaction terms
that approximate the morphogen auto-regulation and protein synthesis, the functions
a1(x) and az(x) indicate spatially changing degradation rates. The term X (x,s — 7)
introduces a delay 7 > 0 that accounts for the biological time-lag in protein synthesis
after the morphogen signal is detected. This delay is considered large in the sense that 7
is comparable to or greater than the characteristic reaction/diffusion timescale.
Important features of morphogen-controlled gene regulatory networks (GRNs)
throughout development are captured by the model. The system’s key features are:

e Different diffusion rates: ¢; # ¢; models the realistic scenario where morpho-
gens (large molecules) diffuse slowly compared to proteins, which can be trans-
ported more rapidly across tissues.

o Large delay: The delay 7 reflects the temporal gap due to the sequential pro-
cesses of transcription and translation in protein production.

e Spatio-temporal patterns: The interplay between differential diffusion and de-
lay can lead to complex spatial patterns and temporal oscillations, which are fun-
damental in biological pattern formation (e.g., stripes, spots).

Such models play a crucial role in elucidating developmental patterning mechanisms
and serve as valuable benchmarks for testing advanced numerical schemes.

Due to its broad relevance in control systems, chemical kinetics, population
dynamics and other real-world processes requiring time delays and small perturba-
tion parameters, the numerical analysis of singularly perturbed delay differential
equations (SPDDESs) has attracted a lot of attention. These issues are distinguished
by the existence of interior or boundary layers, which makes numerical approxi-
mation very difficult. The development of parameter-uniform methods is necessary
because traditional numerical approaches frequently fall short in accurately capturing
the rapid variations when the perturbation parameter is small. Several researchers
have proposed robust numerical techniques to address these issues, including fitted
operator schemes, layer-adapted meshes and spline-based collocation approaches.
Bansal and Sharma [3] developed a parameter-robust numerical scheme for time-
dependent singularly perturbed reaction-diffusion problems with large delay. Sharma
and Sharma [28] analyzed a fitted mesh method for delay singularly perturbed sys-
tems and Miller, O’Riordan and Shishkin [23] provided a comprehensive theoreti-
cal framework for parameter-uniform numerical methods. Furthermore, Kadalbajoo
and Patidar [14] discussed numerical techniques for delay differential equations with
singular perturbations, while Mohanty and Jha [24] proposed a cubic spline colloca-
tion approach for singularly perturbed time-delay systems. Such studies highlight the
ongoing efforts to construct efficient and uniformly convergent algorithms capable of
resolving the sharp boundary and interior layers present in SPDDEs.

The efficient numerical resolution of elliptic or parabolic coupled singularly per-
turbed systems in the cases of one or two dimensional problems in space, is a inter-
esting subject in the context of singularly perturbed problems, which has received
many attention in the last years. For instance, in [1], a semilinear parabolic problem
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was analyzed; in [2], a finite element method was used to solve a singularly perturbed
problem with two parameter; in [4], it was used a numerical method combining a
finite differences scheme together with the Successive Complementary Expansion
Method (SCEM); in [15], a fitted mesh B-spline collocation was employed to solve
a singularly perturbed differential-difference equations with large delays; in [31], a
numerical technique was used for a type of singularly perturbed parabolic time delay
convection-diffusion-reaction equations; in [17], a one dimensional efficient numeri-
cal method was introduced for singularly perturbed time-delayed parabolic problems
with two parameters; in [19], a time-dependent singularly perturbed system with
small shifts was solved, by using first the standard Taylor expansions to transform
the original problem and solving the resulting problem by using the Crank-Nicolson
method to discretize in time and a cubic B-spline collocation method, constructed on
an appropriated Shishkin mesh; in [7], a nonlinear singularly perturbed systems was
studied; the numerical scheme defined in that work combines an implicit method to
discretize in time, which uses a suitable component splitting, with a finite differences
scheme; in [8], a 2D elliptic singularly perturbed system was considered, having the
same diffusion parameters and also the same convection parameters in the equations
of the system; in [9], a similar technique was used for the case when the diffusion
parameters can be different and in [10] for the most general case for which both the
diffusion and the convection parameters can be all different; in [20], a similar prob-
lem to (1.1) for the simpler case when the diffusion parameters are the same, was
studied.

Here, we extend the ideas and techniques given in [20] to our most general and
difficult problem (1.1). The presence of distinct diffusion parameters at each equation
of the system, does more difficult the theoretical analysis of the asymptotic behavior
of the exact solution, because now, when those diffusion parameters has a different
order of magnitude, overlapping boundary layers can appear in the solution. Nev-
ertheless, we will prove that using again the Crank-Nicolson method to discretize
in time, on a uniform mesh, and a cubic spline-based method to discretize in space,
on an adequate piecewise uniform Shishkin mesh, we obtain a high order uniformly
convergent method, which is very efficient to solve numerically problem (1.1).

The paper is structured as follows. In Section 2, we analyze which is the asymp-
totic behavior of the exact solution of the continuous problem and we prove adequate
estimates for its partial derivatives, which show their dependence on the diffusion
parameters €1, €2 and the convection parameter v; more concretely, we will distin-
guish several cases depending on the value and the ratio between those three small
parameters. In Sect. 3, we construct the fully discrete scheme into two steps; in the
first one, we discretize in time on a uniform mesh and in the second one, we discretize
in space on an adequate piecewise uniform Shishkin mesh. In Sect. 4, we prove that
the fully discrete scheme is a uniformly convergent method, which gives second
order in time and almost second order in space. In Sect. 5, we show the numerical
results obtained by using our numerical algorithm for some test problems; from them,
we can observe both the efficiency and the uniform convergence of the numerical
algorithm, in agreement with the theoretical results. To finish, in Sect. 6, some con-
clusions are given.
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Henceforth, we denote by || - || the continuous maximum norm; moreover, for a
function ¥ = (¥, U,)T, [¥| = (|¥,|, |¥5|)7, and C denotes a generic positive con-
stant which is independent of the diffusion parameters €1, €2, the convection param-
eter v and also of the discretization parameters Ng and N,.

2 Asymptotic behavior of the exact solution

In this section, we study which is the asymptotic behavior of the exact solution of
(1.1) and we prove adequate estimates for its partial derivatives, which will be use-
ful in the posterior analysis of the uniform convergence of the proposed numerical
method.

Using standard techniques, well known in the literature (see [6, 12, 19, 26, 29],
for instance), we can obtain the following results, proving that the differential opera-
tor L satisfies a maximum principle and the stability for the continuous function X,
respectively.

Lemma 2.1 Let X € (CCHM)NCOO(M))? so that X >0 on A
(A= M UM, UMs,). Then LX >0, forall (z,s) € M provides
X >0, V(zx,s) € M.

Lemma 2.2 Let X be the exact solution of the continuous problem (1.1); then, it
holds

1
IXllxz < - Ifllz7 + max{lion(s)liz, ler(s)lz, 3

Following to [21] we can obtain initial estimates for the partial derivatives of the
exact solution which depend on both the diffusion and the convection parameters.

Lemma 2.3 Let X be the exact solution of the continuous problem (1.1). Then, for
I,m=0,1,2,3,4 with 0 < 2l + m < 4, its derivatives, on M, satisfy

al+7nX o U m
oan| <@ () @10
8l+mX1 m v m i
‘851817’" < C¢gy /2{1+ (\/a> }-I—CE% ; (2.1b)
alerX —m " —m —
’M S 052 /2{1 + <\/V€72> } + C&i /262 1. (210)

Nevertheless, the estimates given in Lemma 2.3 are not adequate, because they do
not reflect the presence of boundary layers in the exact solution of the continuous
problem. To obtain better estimates, as it is usual in the context of singularly per-
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turbed problems, we propose a decomposition of the exact solution X of the problem
(1.1), in its regular, X, left, X, and right, X g, singular components, in the form
X =X, + X, + Xg. These components are the solution of the problems

LX =0,X.|m =X — X, —Xg, X1 |m, chosen suitably, X (z, s)|m, =0,

LX, =f(z,s), X,(z,0), X,(x,1)chosen suitably, X,(z,s)|m, =¢(z,s),
LXr=0,Xp|m, =X —-X, — X, Xg|m,chosen suitably, Xg(z,s)|m, =0, (2.2)

respectively.

To obtain adequate bounds for the partial derivatives of each one of these three
components, we distinguish three different cases depending on the value and the ratio
between the diffusion and the convection parameters; these cases are the following:
Casel: o 2 <nep;Casell: a 2 > ey Caselll: e < o V2 < 1 ey

Following similar ideas of those ones used in [20], we can deduce adequate esti-
mates for the regular and the singular components, X,., X, and Xg, respectively.
First, we show the result for the regular component.

Lemma 2.4 Let 0 < 2l + m < 4 be; then, the regular component X,. satisfy the fol-
lowing bounds.

Case I: o v? < 1 e1. Then, we have

X (, t)
Ostdxm

OHmX o (z, 1)

Ostdxm

H O X, (2, )

<C,0 < <2
o] o me

H < 051_(m_2)/2,

3

IN

m < 4,

H <C0< m<A.

Case II: o v? > 1 &5. Then, it holds

6l+mXT1 (Z‘, t)

8l+mX 1(1‘ t)
T AU <00< m<2 < Cgy~(m=2)
H dstoz™ === dstoxm = e ’
l+m
3 <m<4 M < C0< m<A4.
’ 0slOx™ ’

Caselll: ne; < aV? < ney. Then, we have

8l+mX7«1 (CL‘, t)

8l+mXT1(J? t)

2l Il <00 < m<2 < Cey~(m=2)

H Oslox™ =T s Ostox™ = e ’
oHFmX t :

After that, we show the behavior for both singular components. To do that,
we consider the layer functions ¢, (z), ¢r, (z), k = 1, 2, given by
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e‘el””, av? < neL, 6_91(1_“"), av? < neL,
¢L1 (l’) = 67N17 al/2 > nea, ¢R1 (I) = eikl(lix)v (XVQ > ne2,

e ney < av? < ey, e M=) pes < an? < ng2, (2.3a)

6_62x7 a]/z S €1, 6_62(1_m)5 OA/2 S Ne1,
¢Lz (JC) = €7HI> 0”/2 > ne2, ¢R2 (‘Z) 67A2<1iw)7 aVZ > ne2,
e nep < av? < ey, e 070) ney < av? < nes,(2.3b)

where 0, = E7 A = %, K= i, fork=1,2.
Ek €k 2v

Lemma 2.5 The layer components Xp,, X satisfy the following bounds.

Case I: o v? < 1 ;. Then, we have

‘XL1 (T7f)| < C¢L2(m)7 |XL2 (Tf)‘ < C¢L2 (T)* ‘XR1 (T/ f)‘ < C¢R2 (T)7 |XR2('777t)| < C(z)Rz(T)

Case II: a v? > 1 &,. Then, it holds

XL,y (2, 0)] < Cor, (2), [Xp,(2,8)] < Cor, (2), | Xp, (2, )] < C, [Xg, (2,8)] < C.

CaseIII: 1 < o v? < 1) 3. Then, we have

X, (@, 0)] < Cor, (@), [Xpy (@, 0)] < Obr, (), X, (2.0)] < O, (@), Xy (2,6)] < Con, (2).

Proof Using the same methodology as described in [26], the proof may be completed.

3 The fully discrete method

In this section, we construct the numerical method used to solve the continuous prob-
lem (1.1). To do that, first we discretize in time and later on we discretize in space the
resulting problems of the time discretization.

3.1 Time-dependent discretization

Here, the Crank-Nicolson method, defined on a uniform mesh, is used to discretize
the time variable. We include the necessary details to understand how the method
is constructed and also we give the result proving the uniform convergence of this
discretization, full details can be found in [20].

Due the delay in time, we must use an interpolation/extrapolation to calculate the
grid points, necessary to define s — 7 in terms of the computational grid points and
also to calculate X(x, s — 7). To do that, we use the following algorithm
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1. Let N, be a given positive integer. Define the mesh set 2 in the s-direction as:

N = {5y =nAs | n=0,1,...,N,},
where As = ﬁ is the uniform step size in the s-domain.

2. Choose a delay parameter 7 > 0.
3. Define the function X(z, s) over the interval s € [—7,0] and along the spatial
boundaries using:

X(z,8) = ¢p(x,s), for —7<s<0, X(0,5)=¢pi(s), X(1,s)=p.(s).

4. Compute the non-negative integer K representing the index shift due to the delay:
T
- 5]
As

where |- | denotes the floor function.

5. For nodes s, with indices m =1,2,...,K, it holds that 0 < s, < 7. Thus,
s$m — T € (—7,0], and the delayed term X (z, s — 7) can be evaluated using the
known initial condition ¢(x,s — 7).

6. Forsi€ {s,|n=K+1,...,N;—1},i.e., forvalues of s satisfying 7 < s < 1,
the delayed argument s — 7 lies between the mesh points s;_x_; and s;_x.

7. Express s — T as a convex linear combination of the two mesh nodes bracketing
it:

S*T:aS[_K_1+(1*D)S[_K7 K+1§[<NS7
where the weight O is given by:

SI_K — S1+ T

0= As

> 0.

8. Using linear interpolation, approximate the delayed function value as:

X(z,s —7) =0 X(z,51-k-1) + (1 = 9) X(z,s51-k), K+1<I<N,.

Note 1. If 7 < As, then K = 0, and s — 7 lies within the interval (s;_1, s;).In such
cases, X (z, s — 7) is determined by interpolating between the adjacent nodes.

Note 2. If 7 > 0 and the value s — 7 is exactly one of the mesh nodes in 27+,
then there exists an index such that s — 7 = s;_xk. This yields © = 0, meaning inter-
polation is unnecessary. However, this is not typically the case, and interpolation is
generally required.

Then, at the (m + 1)-th time level, the Crank-Nicolson method, for the compo-

nents X', k = 1,2, is defined as
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—~ n+l

-Xk (I) = ¢(I7 5n+1)7 T e 'an (7K + 1) S n < 07 (313)
e R T | pZZ%(x) Tntl 1 qZ}f%(m) Fntl
LyX  (z)= _E(Xzz k() — VT(XI k() + v — Xp (=),
an (@) o
X (@) = 6" (), £ K (3.16)
Xpt0) = i (sn41), XPTH(1) = ¢r(sn41), 020, (3.1¢)

where

P E B, P (%) 20 1 g (@) gap G (2) 20
I @) = @) + S Xe) + PSSR @) + (- B ) K@) - S ).

We remember that the local truncation error is defined as
~n+1 ~n+1
Et =X(2,5011) =X (x), where X (x) is the solution given by (3.1)

changing in (3.2) X" by the exact solution X (z, s,).
On the other hand the global error is given by G"* = X(z, s,,) — Xr,

Theorem 3.1 The local truncation error and the global error, associated to the
Crank-Nicolson method, satisfy

[€7H < C(As)* and 7] < C(A5)°/%, n < -, respectively . (3.3)

T
As’
Proof Full details of the proof of this result can be seen, by instance, in [5]. o

Remark 3.2 The order reduction from 2 to 3/2 in previous result is due to the uniform
stability of the Crank-Nicolson method (see [5]). Nevertheless, as we will see in the
numerical experiments section, from a numerical point of view, this reduction does
not appear and the order of convergence in time is two.

3.2 Asymptotic behavior of the solution of the semidiscrete problems

Now, we analyze which is the asymptotic behavior of the exact solution of the prob-

lems (3.1) resulting from the time semidiscretization. To do that, first we decompose
~n+l S+l ontl Sntl

its exact solution in the form X (z) = X: (x) +X2 (z) +X; (z), just

like in (2.2).

~n+l ~n+l

Sntl
Lemma3.3 Let X: () =(X,, (x),X,, ()" the regular component. Then:

@ Springer



An effcient spline method to solve two-parameter 1D parabolic... Page 11 0of 47 103

o Ifa v? < n ey, we have

ox.

oz l

an+1

d’X
Ox!

<cegU2 3<i<y, <c,0<i<4 (34

o Ifa V2 > ey, it holds

e Finally, if n 1 < a v? < 1 &2, we have

oo+l
In second place, we show the estimates for the boundary layers function X z (x)

and )~(nR+1(x).

SQOSISZ‘

ox,
ozt

ax

Ox!

~n+l
! n+
X,

Ox!

§C70§l§27’

oo

‘§C73§l§4. (3.5)

s aIX
oX, SC,OSZSZ‘*

o <02 3<1<4. (3.6)

8]X
811

< Cer D) ‘

~n+l ~n+l ~n+1
Lemma 3.4 Let X @) =X (@), Xy (2)T and

~ntl ~ntl ~ntl
X;:r (x) = (X:lr (x),X;:,: (x))T the left and right boundary layer functions,
respectively. Then

e Ifav? <neq,wehave

X5 (@) < Cory(@), 1Ko (2)] < Cory(a),

aan+1
#() Cler o1, (2) + e3P or,(x), 1 <1< 4,

alﬁf(m)
ox!

~n+1

ox!

X (2)] < Comy (@), [ X ()] < Cor, (),

IXy (2)

ox!

l/2¢L2( )? 1 < l < 2;

< Cey M ey 0, () + 5P 0, (2)), 3<1 <4,

< C(e7pm, (2) + &5 P ory (x), 1 <1 <4,

< Oy, (2), 11 <2,

< Cey Y (e P hp () + 5 T P op, (), << 4
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o Jfa v > N €9, it holds

~n+1 ~n+1
(X1, (@) <Cor,(2), | X, ()] <Cor,(x),

< OV (e or, () + €5 dry(2)), 1 <1 < 4,

< C(e7"?¢r, (2) + &5 P dr,y (2)), 1 <1< 4,

< Ce, Pop, (), 1<1<2,

O'X (@)
ox!

< Cey ey T 0m, (@) + 23 TP P08, (2)), BT <4,
e Finally, ifn g1 < a v? < 1 &3, we have

~n+1 ~n+l

X, (@) <Cor,(z), | Xy, ()] <Cor,(z),

oX; (x)
ox!

X, (@)
ox!

IX;. (2)
ox!

X (2)] < Comy (@), Xy (@)] < Cony (@),

I ()
ox!

O'X (@)

ox!

DX ()
ox!

< C(Werlr, (x) +e5 P, (x)),1 <1< 4,

< CeyPor,(x),1<1<2,

< Cey M ey "o, () + e TV Pgr, (2)), 3<1 <4,

< C(e7?pm, (2) + &5 P dr,y (1)), 1 <1 < 4,
< CeyPop,(a), 1<1<2,

< Cey (7 2 pp, () + 25 TP 29, (x), B< 1< 4
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Proof The proof of this result follows the ideas and techniques used in [26], where a
scalar 1D convection-diffusion problem with parameters in the diffusion and convec-
tion terms was analyzed, and also those ones developed in [9] where a 2D elliptic
system having parameters in the diffusion and convection terms was studied. o

From the estimates given in Lemmas 3.3 and 3.4, we have adequate bounds for the
derivatives in the three different cases; they will be used posteriorly for the analysis
of the uniform convergence of the spatial discretization defined below.

3.3 Shishkin mesh generation

Now, we go discretize (3.1) with respect to the spatial variable. The first step to do
that is the construction of an adequate nonuniform mesh, which permits concentrate
the grid points in the boundary layer regions. Then, we consider the three different
cases analyzed previously in Section 2. The construction of the mesh follows liter-
ately the ideas given in [9]. Let IV, an integer positive multiple of 8.

Case 1: If o v2 < 1 €1, we subdivide the unit interval into five subintervals each
as

[0, 1] = [O,Tl] U [7’1,7’2} U [Tg,l —7'2} U [1 —7'2,1 — 7'1] U [1 —7'1,1]7

where the transition points 71 and 7o are defined by

/ 1
7'1—111111{7-2 gllan}, TQ:min{, 621an}. (3.7
27\ an 4"\ an

There are N,/8 + 1 uniformly spaced grid points on each of the subintervals
[0, 7], [r1,72],[1 — 72,1 —71], and [1—7,1]. On the remaining subinterval
[T2,1 — 73], there are N,./2 + 1 uniformly spaced grid points. Next, along the z-axis,
the grid points are provided by

]%7 7.17 if 0§Z§N1/87
T1 + N (2 —71)(i — %) if Np/8+1<i< N,

T =4 T2t N (1 _27'2)( %) if No/4+1<i<3N,/4,
L= — )i — ), i BN A+ 1< i< TN,/S,
1=+ oo (i — W), if 7TN,/8+1<i<N,.

Case 2: If a v? > 7 5, then, the unit interval is divided into four subintervals each
by the appropriate fitted non-uniform Shishkin mesh each as

[0, 1] = [O,Tl] U [7‘1,7’2] @] [Tg,l —0'1] U [1 —0'1,1],

where now the transition points 7y, 7 and o are defined by
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1 1
lemin{%,g—llnNm}, Ty = m1n{4 jilnNI}al:min{Z,%lnNz}. (3.9)

ro

There are N,./2 + 1 evenly spaced grid points on the subinterval [72, 1 — o], whereas
the remaining subinterval [0, 71], [71, T2] there are N, /8 + 1 uniformly spaced grid
points, and N, /4 + 1 uniformly spaced grid points on the subinterval [1 — o1, 1].
Next, along the x-axis, the mesh points are provided by

oL if 0<i<N,/83,
_ 7’1+N (7'2*7’1)(1.7%)7 if Nx/8+1§l§N’r/4y
ti= 72+N(1—72—al)¢—%), if N,/4+1<i<3N,/4,
1—o1+ 5o1(i — 2=), if 3N,/4+1<i<N,.

Case 3: If 1 < a v? < 1) &2, then, the unit interval [0, 1] is divided into five sub-
intervals each by the piecewise uniform Shishkin mesh each as

[0,1] = [0,7’1] U [7'1,7'2] U [7—271—7—2] U [1 —7'2,1 —0'1] U [1 —0'1,1],

where o1 and 71, T are the transition points, which are now defined by
1
71 = min E,E—llan , To =min<q —, E—Zlan , 01 = min E,Zlan .
2 va 4"V an 2'n (3.9)

There are N, /8 + 1 uniformly spaced grid points on each of the following subin-
tervals: [0, 71], [11,72], [l — 72,1 — 1], [l — 01, 1]; on the remaining subinterval,
[T2,1 — 73], there are N,;/2 + 1 uniformly spaced grid points. Next, along the z-axis,
the grid points are provided by

ST, if 0<m<N,/8,
Tl+Nx(T2_Tl)(m %)’ if Nm/8+1§m§Nz/47
Ty, = Tz+N%(1—272)(m—%), if N,/4+1<m<3N,/4,
l—m+ (e —o)(m— =), if 3N, /4+1<m <TN,/8,
1—7 + o1 (m — 15=), if 7N,/8+1<m<N,.

For each one of the ~cases, the step sizes are defined as

Em =Ty — Tm_1,m=1,2,..., N,.
3.4 The spatial discretization
We now construct the spatial discretization on the previous Shishkin mesh,

by using B-splines (see [13] by instance). As it is usual, to ensure the conti-
nuity at the domain boundaries, four fictitious nodes, z_2, z_1, Ta,,+1 and
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TN, +2, must be introduced. The nodes x_» and x_; are placed on the left side

of AN+, while w11 and war, 1o are positioned on the right side such that

T_1=x0—h1, T o=2_1—ho, TN, 41 = TN, +ha—1, TN 42 = TAL 41 + Do
It is well known (see [16, 18] for instance) that the B-splines are given by

(& — xm_2)?, Tz <& < Tp_1,
1 ’]l/?n""gﬁzn(aj_xmfl)+3ﬁm(m_~r7nfl)2_3(37_-7577171)37 Tm—1 < Sxmv
B (z) = = h3, +3h2 (i1 — @) + 3hm (Tt — )2 — 3(Tma1 — )%, T <2 < Ty,
B | (2gnye — )2, g1 < & < Tinyo,
0, otherwise.

Then, to obtain an approximate numerical solution at time s, 41 we consider the
function

Nz+1
X @) = Y i Bo(). (3.10)
m=—1

A system of linear equations for the unknown coefficients is obtained by substituting
the B-spline representation into the discretized version of the governing equations
(Eq. (3.1)). Then, from [20], we have

+3 n+3 +3
Loxm =t [*51 " VPT1 *(¥m) 4 1<L + @y (‘”m>>} FEEY N Z(L + @ (w’")>]
=" L o =

“ Lame, ahy,  6\4s 2 il 2 3\ As 2
+3 +3 +3
4t 1 71117?1 * (zm) + /1 + ‘1?1 * (@m) 4wl (1?2 * (@)
m+1;1 e T 6\ As B m—1;2 )
n+i n+i R n+d,
nt1 [ Gz - (@m) 1 Q12 > (@) _ i n &1 P (zm)
+ Wiz < 3 ) T Wik (712 g 7 (@m) + w1 e, U74Zm
+3 n+3
171 q?l * (#m) o e 2(1 @y °(Tm) 11
+E<A787 5 + Wy E?n +3 As ) (3 a)
41 1
+wl [—61 +1/p77171 ~(@m) + l(i 4 Q(wm)>:|
K DY 4h,, 6\ As 2

m

41 41 41
s @y * () n @iy * () o @ > (Tm)
— Whyo1;2 12 = W2 3 W12 12 s

+3 n+i n+i n+
Lo+l =ntl <‘1;1 2(1771')) n+1(‘121 2(1,,,,)) nt1 <‘Z21 2(-Tm>> n+1 [LEZ 4 P22 > (zm)

Sm-1;1 + W Wi tTWp_12 =

2 ’ E 2, Ak
: +3 n+1
(L, g (o) w22 201 a3 (o) nel [~ Py 2 (wm)
*5 (E T )| T me w2 sl t™ 5 )| twmbne e v T
nti ntl
L1 )| ()
5 =) | = - (g
+1 +1 1 o1
msl 3 mt 131 B 12| oy o il a4 5
nty n+3 ntl
" 2 2(1 922 ’ (l‘"L) n €2 P22 5 (mm) L 1 _ M
+ 71)7n,;2|: Efn + 3 (As D) + Wiy 412 QEfn +v yre + il 4 5 ,

(3.11b)
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and we must solve a linear system

Aw" ! = B, (3.12)

where B = Cw™ + D and the corresponding matrices are defined by

g [A A _fa ¢
Az Agl| Cs C4|°
T
n+1l __ n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
w = (w71,17w0,1 yee s WA 15 War 41,1 W12, Wo 2 ""’w/\/m,2’w/\fm+l,2) )
15¢ component gnd component
with

Ay =1[1/6,2/3,1/6,0,...,0; tridiag(p1 (), p2(m), P3(2m)); 0,...,0,1/6,2/3,1/6],
Ay =10,0,...,0; tridiag(q1 (@m), 42(m ), 91 (xm)); 0, . .., 0,0],

A3 =[0,0,...,0; tridiag(r1 (@m), r2(m), r1(2m)); 0, . .., 0,0],

Ay =11/6,2/3,1/6,0,...,0;tridiag(s1 (zm ), s2(zm),s3(zm));0,...,0,1/6,2/3,1/6],
C1 =[0,0,...,0; tridiag(t1(@m ), t2(xm), ts(zm)); 0, . ..,0,0],

Co = [0,0,...,0; tridiag(uy (zm), u2(2m ), w1 (m)); 0, ..., 0, 0],

C3 =[0,0,...,0; tridiag(vy(Zm), va(zm), v1(zm));0,...,0,0],

C4 =[0,0,...,0;tridiag(wi (Zm ), Wwa2(Tm ), W3 (Zm)); 0, ..., 0,0].

These matrices are tridiagonal and of order (N, +3) x (N +3), and for
m=0,1,...,N,, theirs elements are given by

n+3 n+3 n+d
R P11 ° ((@m) /1 qy ((zm) oy e 21 gy (Tm)
pi(m) = o +v o el t 3 s P2(em) = e ol At ;
n+3 n+% nti
’ __ &8 _ Pn (@m) 171 gy ((zm) _ 01 (Tm)
p3(Tm) = Q}NL?” v T 6\ As + B s di(@m) = o
n+3 n+3 n+3
Q12 " (Tm qs Tm q Tm
(12('77"1) = %()‘, Iy ('Twz) = 2117;)7 1‘2('7"771) =2 3( )
ntg nt3 n+i
. __ &2 P 2 (Tm) 101 ayp (wm) . _e 2/ 1 gy (wm)
81 (@m) = 27%7 +v T + o\ A + 3 , So(Tm) = E?n + 3\ s + ) s
nti n+d
€ . Tm 171 o 2 (Tm
s3(@m) = — ~21> -~ Vﬁzz ~( ) Y G2 ° (®m) i
2h2, 4h, 6\ As 2
1 1 1
RS S S ALICO DS W A5 SR A (GO A o 2( 1 g ()
t1(Tm) = —=— — v+ | — s te(Tm) = —=— 4+ | == — )
2h3, 4hy, 6\ As 23\ As 2
n+i n+i n+i
€1 P (Tm) 1/ 1 0 2 (@m) Qs * (¥m)
t3(Tm) = == A o —- . ) =
3(Tm) e} tv T, T35\ a5 D) s (@) 2
n+3 n+3 n+g
45 Tm q. Tm q: Tm
up(Ty) = *%()‘ vi((zm) = ,ﬂlié) va(Tm) = *%()7
U nty ntl
€ m 1/1 m 2(1 m
Wi(@m) = —2 — P22 ~(9C ) 4 7(7 g (= ))’ Wa(m) = _f2 T(* Oy (= ))
2]7,?"’ 4hm 6\ As 2 h?n 3\ As 2
n+3 n+3
€2 P2 > (Tm) 1( L da2 <(ﬂfm)>
w3(tym) = =—+rv—=—=—"-+ | — ——— 77|,
(@m) 2h2, 4hy, 6\ As 2
T
nts nt3 +3 ntd
D= (th(snﬂ)mf (20) -+ 91 2 (@0)s @y ($n11), Pla(sn11), 65 (T0)s -1 95 (M@)»%-z(snﬂ)) .

@ Springer



An effcient spline method to solve two-parameter 1D parabolic... Page 17 of 47 103

4 Uniform convergence of the numerical method

In this section we prove the uniform convergence of the numerical solution given by
(3.10). In the proof we use the well known following result.

Lemma 4.1 The cubic B-spline functions satisfy

Ne+1

> IBu(z)| <10, € 0,1].

n=-—1

Proof The proof may be completed using the methods outlined in [27].0

The first result that we will use in the proof of the uniform convergence is the dis-
crete analogous to the maximum principle for the continuous differential operator.
We denote LN+ = (L1, £2)7.

Lemma 4.2 Let W™t (z0) > 0, U™ (2 ) > 0 and LN=U" (2 ) <0 for all
T € AN=. Then, \AIVI”H(:cm) >0 forallx,, € AV

Next result gives the uniform convergence of almost second order of the spatial dis-
cretization constructed on the special piecewise uniform Shishkin mesh defined in
previous section.

Theorem 4.3 If g € C?[0,1] represent a generic function with continuous second
derivatives, used here to indicate the required regularity for the convergence esti-

mate, then the approximated solution X"+ (x) to the solution )NC(J;) of (3.1) on 22N>
at the (n + 1)-th time level satisfies

sup [T — X" < ON2(In ;)2

0<eq,eo,v<1

Then, the spatial discretization is an almost second order uniformly convergent
method.

Proof A specific spline interpolant X s, () is provided in order to solve the problem
(3.1), which is given by
Ne+1

Z w"HB

m=—1

Below, we represent X as X! for simplicity’s sake. From [13], we know that it
holds
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1D (X = X, ) (@)oo < CIX@R T, j=0,1,2.

The constants C'; and h = max Em are used and D7 represents the derivative of order
m

J.
By using the decomposition

X(2) =X (2) + Xp(2) + X (),
for the numerical solution, it immediately follows

1D (X = X, ) (@)oo < Cl| X (2) + X (@) + Xr(@) DR, j=0,1,2.

@.1)

Now, we study each one of the three different cases associated to the value and the
ratio between the diffusion and the convection parameters. Firstly, we consider the
regular component.

e Ifa v? <5 g holds, we have the estimations (4.1) and using Lemma 3.3, clearly
we can obtain

~ IL n T < @
605, () = £1(Kn | < (a4 5 ot 2 o 4 5 o2 ) 15 o)
gc(wzh T e wlﬁ%\%’f*m wi') (1),
1
e n n — (4)
L2, () — £ (2 SlIss e + 5 ‘mg“/? ¢0h4> X, ()]
<C (€2¢2h +v p;;l/Z g[)lh + ‘ %;+1/2 ’LZJ()EAL) R
where
+1 1 qiﬁfé(m)
R () = — 4 Kk 2
r (@) As + 5
Using that h L t
sing that h = —, we ge
g o vee
1£1X, (2) = L1(X,) | < ONG2, (4.2)
and also
|£2X (x) — L2(X) | < CN2. (4.3)

Then, we finally have
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|CN= 20— LN (X | < N2 (4.4)
e Ifa v?>1n ey, wehave
~ 7L n - el )
605, () = £1(Kn | < (a4 5 ot 2 o 4 5 o2 ) 15 o)
<c (wzmu e o+ o2 wont) ().
1
— n n 7 e C)
60 (0) = o, o | < (Zoah + 52 o + 3 g2 o) % o)
<C (ewﬁ + |2 el h” + ‘ RyT2 woﬁ“) ,
. — 1
Using that h = N we get
L1, (2) — L1(X,) 5 | < CNG2 (4.5)
and also
£2X(x) — L2(X) | < CNG2. (4.6)
Then, we finally have
[CN= 20— LN (X)) | < N2 (4.7)
e Finally, if de; < ar? < deq holds, we have
e € — Vi n — 1 n —4\ o @)
160% 0 = L1 | < (a4 g o2 o + o2 i) o
<C (511/)273 +ul[pi ek’ + Ry 1/)054> (;)
1
= - n S 1) & (@)
[£2X () = La(X, ). | < (%%mg e O woh“) X, ()]
R n R n T 1
<c (€2¢2h2 + oo [ + |y woh“) (g—)
2
. — 1
Using that h = N we get
1£1X,(2) — L1(X,) 5 | < CNG2, (4.8)
and also
|£2X (x) — L2(X) | < CN2. (4.9)
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So, we have

|£NJL Xrn+1 o ‘CNJL (X)T./\/,| < CN;Q (410)

Hence, by combining (4.4), (4.7) and (4.10), we obtain

|£NJL Xrn+1 o ‘CNJL (X)T./\/,| < CN;Q (411)

From (4.11) follows the uniform consistency for the regular component; then, the
discrete maximum principle proves that it holds

|Xm T — X0 | < CNG2, (4.12)

which is the required result for the regular component.

Sntl . .
Now, we will do the analysis for X 2 (z); again we distinguish three cases.
« If a v? < i &7 holds. The estimates (4.1) and the use of Lemma 3.4, clearly
shows that

1£1X 1, (2) = L1(XL,) v, |

€ —2 Vil n —4\ o (4)
< (Fuan + 5ot i) 1%z, @)

_ Hon
¢1h3 i 2Hmlﬂ/z

(4.13)
<C <slw2h2+u pi 2 B Hm”“” 1/)0714)
(51_2¢L1 (‘T) + 52_2¢L2 (l’)),
1LoX 1, (z) — Lo(X 1, ), |
13 —2 n n
< <221/12h + 3|5 ek + 5 Hm 72 ol >|XL1 ()]
(4.14)

72 n
<C <€2¢2h + V‘ p22+1/2

(5;2¢L1 (3?) + 552¢L2 (37)),

i+ Hm;“”

Vol )

Then, if x,, € (0,71] or [1—7,1), it holds exp(—61z,) <1 and
exp(—02(1 — x,,)) < exp(—01(1 — 71)) < N,. Thus, (4.13) and (4.14) yield

1£1X 1, (2) — L1(Xp,) | < C

s (4.15)

—2
<€1¢2h +v P11

¢1E3 + H%?-‘rlﬂ

¢oh4) (e7% 4+ €52)
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Using the suitable barrier functions, then we have

1£1X 1, (2) — L1(XL,) | < CN2(InNG)?, (4.16)

1L2X 1, () — L2(Xp, ), |

_ . i . @17
<c (smhz + |2l + H%’“” 2/1054) (72 +32).
Using the suitable barrier functions, then we have
1£2X 1, (2) — La(XL,) | < CN2(InN;)2 (4.18)

If 2 € (11,72) o (1 —79,1—11), h < CN; 2 < ON;2InN, /e, then we
have

£1X 1, (2) = L1(Xp, )y | < ONZP N /Ba(e 20, (1) + 23 201, (2),
and
1£2X 1, (2) — £2(X1,) .| € ONG 20N,V /Ea (%61, (@) + 25761, (2))-

Using the suitable barrier functions, then we have

L1X L, (2) = L1(Xe,) | € CNS (NG,
and also

|£2X 1, (@) = £2(X1, ), | < N2 (INAG)*.
So, we obtain

X — LN (X)), | < ONS2 (N2, (4.19)

When z,, € [12,1 — 72|, we can obtain the required bounds by using a method
similar to that used in the corresponding intervals of the previous cases. So, for all
0 <z <N, we have

[N, — LN (X)L | < ONG2(InNG)?, (4.20)

Cq. . ~n+1
which is the required result for the left layer component X 2 ().
By following the similar approach, we can prove the parameter uniform error esti-

—nt1 . -
mates for the component X , (z)for this case, obtaining

LN X" = LN (X) Ry | < ONG 2 (INN,)?, (4.21)

@ Springer



103 Page 22 of 47 P. Kumari, C. Clavero

+If o v2 < 1 g1 holds. The estimates (4.1) and the use of Lemma 3.4, clearly shows
that

1£1X L, (2) = L1(XL,) v, |

15 —2 V|l n -3 1|l —4\ o @
< (;wgh +2‘pn“/2 ik +2Hm1“/2 oh ) Xe, (@)l
(4.22)
92 n —3 n —4
S C (El’(/JQh +U p11+1/2 wlh + Hm1+1/2 ’(/Joh )
(v'er o, (z) + viey oL, (2)),
1L2X 1, (2) = L2(X1, ), |
13 —2 n n
< (;wzh + 2|52 ek + 5 Hm P ot >|XL1 ()
_ s _ 423
<C <€2w2h2+v phs 2| wa " + H%SH/Q voh ) -
’U4 ?)4
m(m) + %¢Lz (7)),

Then, if =z, € (0,71] or [1—7,1), it holds exp(—61z,) <1 and
exp(—02(1 — x,,)) < exp(—01(1 — 71)) < N,. Thus, (4.31) and (4.32) yield

1£1X 1, (2) = L1(Xp,) | < C

—2 n —3 " 4 3 (4.24)
(51¢2h +ol|pi P ek + Hml“” Yoh ) (vlert +vter ).
Using the suitable barrier functions, then we have
1£1X 1, (2) — L1(XL,) | < CN2(InN;)?, (4.25)
LoXp, () = L2(Xp, ), |
4 4
72 n+t1/2 73 n+t1/2 -4 v v
<C <62w2h TPy 7|1k + H% Yoh > (7&_153% (z) + 5324.26)
Using the suitable barrier functions, then we have
1£2X 1, (2) — L2(XL,) | < CN2(InN;)2 (4.27)

If 2, € (11, 72) o (1 —79,1—11), h < CN; 2, < ON;2In N, /e3, then we
have
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1£1X 1, (2) = L1(X L)y | € ONT2InN,VE2 (6720, (2) + e5 %61, (2)),
and
1£2X 1, (2) — £2(X1,) .| € ONG 210N, V/Ea (%61, (@) + 25761, (2))-
Using the suitable barrier functions, then we have
1£1X 1, (2) = £1(Xp,) pr, | € ONG (10N,
and also
|£2X L, (@) = L2(X, ), | < N2 (INAG)*.
So, we can obtain
[N 20,7 — LN (X)) 0 | < ONZ2In(N;)2, (4.28)
When z,, € [12,1 — 72|, we can obtain the required bounds by using a method
similar to that used in the corresponding intervals of the previous cases. So, for all
0 <z <N, we have

[N, — LN (X)L | < ONG2(InNG)?, (4.29)

Cq. . ~n+1
which is the required result for the left layer component X 2 ().
By following the similar approach, we can prove the parameter uniform error esti-

~n+l .
mates for the component X , (), obtaining

LN X" — LN (X) Ry | < ON 2 (In ;) (4.30)

e Finally, if §e; < ar? < deq holds, we have
LK1, () = L1(Xp,) |

€1 —2
< (L
_<2¢2h +

v

n+1/2
9 P11

<C (51¢2h2 +v p7111+1/2

(v'er o1, (2) + €301, (@),

?ﬂlﬁs + ‘
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1£2X 1, (2) = L2(X L), |

g2, =2 V||l n —3 1|l .n -4\ o @
< (;wzh +2‘p2;”2 ik +2Hm2“/2 woh ) Xr, (@)
(4.32)

(5515;2V¢L1 (3?) + 553¢L2 (.’1?))

Then, if z,, € (0,71] or [1—7,1), it holds exp(—6iz,,) <1 and
exp(—0a(1 — ) < exp(—61(1 — 1)) < N, Thus, (4.31) and (4.32) yield

1£1X 1, (2) = L1(X1,) |
_ . (4.33)
<C <€1¢2h2 +v P11+1/2

w1E3 + H%;H-I/Q

—4 _ _
Poh ) (Vler* +e37).
Using the suitable barrier functions, then we have

LK, (2) = £1(X1y)pr, | < NG P (A%,
“625{; (33) - £2(XL1)NE| <C (4.34)

2 n 73 n -4 -1 _— —
<€21/12h +v p22+1/2 z/;lhd + Hm2+1/2 oh ) (e3'er?v+¢3°).

Using the suitable barrier functions, then we have

|£oX 1, (@) = Lo(X1,) pr, | < CN2(InNG)2. (4.35)

If 2., € (11, 72) or (1 = 72,1 —71), h < ON; 21 < CN;2(InN;)?, /22, then
we have

L1 L, (2) = L1(X1y) | € ON2InN)VEs (e o, (2) + 2561, (),

and

LoXp, () = L2(X1,) pr | < N2 (IMN,)? Ve (67261, (2) + €561, ().

Using the suitable barrier functions, then we have

LKL, (2) = L1(X1, ), | € CNS P (InNG)?,

and also

|£2X 1, (@) = Lo(X1,) pr, | < CN2(InNG)2.

So, we can obtain
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[CN= 2,7 — LN (X)) 0 | < ONZ2 (I, (4.36)

When x,, € [r2,1 — 73], we can obtain the required bounds by using a method
similar to that used in the corresponding intervals of the previous cases. So, for
all 0 < z,,, < N, we have

LN, = LN (X | < CNG 2 (NG ), (4.37)

Sntl
which is the required result for the left layer component X 2 (x).
By following the similar approach, we can prove the parameter uniform error

Sn+tl
estimates for the component X ; () for this case, obtaining
LV X" — LV (X) Ry | < CNG 2 (IDNG)?. (4.38)
Hence, by combining 4.11, 4.20, 4.21, 4.29, 4.30, 4.37, 4.38, it follows

|LN X (20) — LV*X | < CNG2(InN,)2, 0 < n <N, for all the three cases.
(4.39)

|CNexm L — fNeX | = |g(zm) — LX | < CN2(InN,)2  (4.40)

Now, for all cases, let

LX 7, (@) = §(@m), X, (20) = (sn11), X, (2a7) = mi(s041),  which
results in the linear system

AWt = B,
Next, it follows
AW — W) — B B, (4.41)
where
Wit - WL = (W - W Wt - Wt W
W W - W W - TR

B — B = (g1(x0) — §1(x0), g1 (1) — Gi(21), .- ., g1 ()
— g1(xn, ), 92(20) — G2(20), - -, g2(2n,) — Galan, )"

Thus, employing (4.40), we get

|B - B|| < CN;2(InN,)2. (4.42)
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Following to [30], in a similar way that in [20], we can prove that it holds
A oo < C.
Then, from (4.41) and (4.42) we can deduce that it holds
W — W < A7Y|[[B = Bl| < CN; > (InN,)>. (4.43)
From boundary conditions, we get
W = W < CN R (I NG)?,
and

| -/7\l/+<|1“1 J(L/+i1|<CN (InN,)?,

and thus

max_ |[WPH - WP < N2 (In )2
—1<m<N,+1

Hence, we have

A" = X, (2)] < Wit =W

ma.
—1<m<N +1
Ne+1
| > Dm(@)] < CN; 2 (InN;)?,
m=—1

which provides

max X" — Xy (2)] < ON2(InN,)2

0<m< N,
Thus, using the triangle inequality leads to

sup  [|A"T — X < CNG 2 (In )2,

0<eq,e2,u<1

which is the required result.

Now, we split the global error at the time ¢,, in the form

[X(Sn)]gﬁ‘/s - X" = ([X(Sn)]gi\/s —X") + (X" - in)
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Then, using Theorems 3.1 and 4.3, we deduce that the fully discrete scheme is a
uniformly convergent method, which has second order in time variable and almost
second order in spatial variable.

5 Numerical experiments

In this section, we show the numerical results obtained by using our numerical algo-
rithm, for some different test problems of type (1.1). The first example is given by

Example 5.1
2
9% elfajgl — &L 4+ (5+2)X; —3Xy = — Xy (2,5 — 0.5) + s3(1 — s),2
9% %22 — %2 92X 4 (54 €%) Xy = —X;(z,5 — 0.5) + 22(1 — 2)°,

XI(I,S) = 07 X2(‘T75) = 07 (l‘75) € Mb
X1(0,8) =0, X1(1,8) =0, X2(0,8) =0, X5(1,s) =0, s €][0,1].

Figures 1, 2, 3 and 4 display the numerical solution obtained for a particular choice
of the value of the diffusion, convection and discretization parameters; from them, we
clearly observe the boundary layers at both end points of the spatial domain.

The exact solution of this problem is unknown; then, to approximate the maximum
errors, the double mesh approach (see [6]) is used. Then, we calculate

N, Ns Y Y _
Ek}sl,az’u = Ognnlzag)j\/'m |Xk($2»m_1, 32n—1) - Xk(x’rru Sn)| ’ k= 17 2a
0<n<N;

where X k, k =1,2, are the components of the solution of a mesh which have the
original grid points and its midpoints for both variables. From these values. We cal-
culate the approximated orders of convergence, in an usual way, by

k,e1,€2,v k.e1,e2,v/ “k,e1,e2,v

Ry= N = log, (EN””’NS /E2N*"2NS>, k=1,2.

Moreover, we calculate the component-wise uniform maximum point wise errors,

by using EQ/ “ ’NS, k=1,2, and from them, the uniform orders of convergence
RQ[” 7NS, k =1,2, as follows
No Ns 12Nz 2N
EszNs = max ENI‘7NS RNJHNs — log(Ek /Ek‘ ) k —1.2
k €1,€2,V k.e1,e2,07 k log 2 ’ )y 4

We use the Block Thomas Algorithm with each block of 2 x 2 matrix to solve the
linear systems resulting when we solve systems with two equations (Examples 1 and
2) and each block of 3 x 3 matrix to solve the linear systems resulting when we solve
systems with three equations (Example 3). Moreover, each table also shows the CPU
time (in seconds) taken for all values of the diffusion parameters at each column with
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N, and N, fixed. We can see from this table that the CPU time is small and is unaf-
fected by the values of the convection and the diffusion parameters.

Tables 1, 2 and 3 show the numerical results obtained by our algorithm for each
one of the three different cases, respectively, depending on the value and the ratio
between the diffusion and the convection parameters. From them, we clearly see the
almost second order of uniform convergence of the numerical method, in agreement
with the theoretical results.

Due that Tables 1, 2 and 3 show almost second order of uniform convergence, we
can conclude that, in this example, the errors associated to the spatial discretization
dominate in the global errors of the numerical method. To see numerically the second
order of the time discretization, in agreement with Remark 3.2, we include a new
table. Table 4 shows the numerical results obtained when the discretization parameter
N, is multiplied by 2 but the discretization parameter N, is multiplied by 4; from
this table, we clearly observe the second order of uniform convergence of the time
discretization according our theoretical result. Here, we only show the results for the
case when a v2 > 1 €5 holds; similar results are obtained for the other two cases,
avi<nerandne <av?<nes.

The second test problem that we consider is given by

Example 5.2
%7 TX1 1+m2+w>y%+(2m(l+s)2)X1 —2Xo = —Xq(z,s — 04) + exp(x)s(1 — s),

a2
0X. 02X 0X: .
8—; —e ot —(1+ Qm)u% — Xy + (102 4 1)s2(1 — 8)2 Xy = — Xy (2,5 — 0.4) + 22(1 — 2)2,
X1 (z,5) =0, Xa(x,5) =0, (z,5) € M,
X1(0,s) =sin(rz), X1(1,s) =0, X2(0,s) =sin(rz), Xo(1,s) =0, s €[0,1].

In this case, again the exact solution is unknown; then, we use the double mesh prin-
ciple to approximate the maximum errors and the numerical orders of convergence
obtained by using our algorithm.

Figures 5, 6, 7 and 8 display the numerical solution obtained for a particular choice
of the value of the diffusion, convection and discretization parameters; from them,
again the boundary layers at both end points of the spatial domain are observed.

o 02 n 0.15
X X
[ s
2 015 2
g 2 01
5 3
A o1 a
B 8 005
5 0,05 5
£ £
0 0 S 0
[¥] V)

1 1

0
0.5 ;
0.5 0.5

Spatial Direction 0 1 Temporal Direction ~ Spatial Direction 01 Temporal Direction

Fig.1 Wheney = 4722710 gy = 2722710 ;2 — 5-42-10 A/ — A/, = 128 for example 5.1
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5 - § 015
37 5
N 3
) 8 o1
° o
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£ 005 2
Q aQ
£ 2 0.05
Q 0
v 0

0 0

1 1

0.5 "y 0.5 0.5

i 0 1 A1 Nirect 0 1 B
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Fig.2 When e = 5722710 g9 = 3722710 12 — 2-29-10 A/, — N = 128 for example 5.1

0.2 0.15
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2 3
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Fig.3 Whene; = 6722710 g9 = 2722710 1,2 = 4=22-10 A/, = N = 128 for example 5.1
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Fig. 4 Contour plots when &1 = 4722710 g5 = 2722710 ;)2 — 5-42-10 A/ — A/, = 128 for
example 5.1
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Tables 5, 6 and 7 show the numerical results obtained for this example; from them,
the almost second order of uniform convergence of the numerical method can be
deduced.

To see that our method can be extended to systems with a bigger number of equa-
tions, we consider a new example, which is given by

Example 5.3

65}? —€1 8;;2‘ - 51/% + (4 +2)X; —2Xy — X3 = —X1(x,5s — 0.5) + s2(1 — 5),
88)? - 62% — 6022 _ 92X, + (4+sinz)Xs — X3 = —Xi(z,5 — 0.5) + (1 — x)z,

ox
8523 —€3 33;3 - 71/’9—);3 — X1 —Xo+ (44 cosz)Xs = —Xi(z, s —0.5) +e"(1 — ),
Xl(x7 3(3 =0, XQ(.’I/',S) =0, Xg(l‘,s) =0, (LE, S) € My,
X1(07 S) = Xl(lvs) =0, X2(075) = X2(178) =0, Xg(O,S) = X3(175) =0, se [07 1]

Similarly to the case of two equations, we assume that 0 < e; < g5 <e3 <1 and
0 < v < 1. To discretize this new system, we use the same discretization as before,
i.e., the Crank-Nicolson on a uniform mesh to discretize in time and the B-splines
to discretize in space on an adequate Shishkin mesh. The only new question is the
definition of the Shishkin mesh. To do that, now we distinguish four different cases.

Similarly to the case of two equations, we assume that 0 < e; < &5 < e3 < 1and
0 < v < 1. To discretize this new system, we use the same discretization as before,
i.e., the Crank-Nicolson on a uniform mesh to discretize in time and the B-splines
to discretize in space on an adequate Shishkin mesh. The only new question is the
definition of the Shishkin mesh. To do that, now we distinguish four different cases.

Case 1: If a v? < 5 £, we subdivide the unit interval into seven subintervals
each as

[0,1} = [077'1} U [T177'2] U [TQ,’T?,] U [7'371—7'3} U [1 —7'3,1 —’TQ] U [1 - T271 - Tl} U [1 — 7'1,1]./

where the transition points 71, 72 and 73 are defined by
. 1 ]
71 = min E, E—11n1\7,,, , To = min E, 8—2lnNm , 73 = min< —, E—dhq]\/';,c .
2 an 2 an 8 an

There, with N, a positive integer multiple of

12, we take are N, /12 4 1 uniformly spaced grid points on each of the subinter-

vals [0, 7], [T1, 72, [T2, 73], [1 — 73,1 — 72|, [1 — 72,1 — 7], and [1 — 74, 1]. On the

remaining subinterval [73, 1 — 73], there are N,./2 + 1 uniformly spaced grid points.

Case 2: If a v2 > 1) 3, then, the unit interval is divided into five subintervals
each by the appropriate fitted non-uniform Shishkin mesh each as

[0,1] = [0,71] U [r1, 2] U [12, 73] U [13,1 — 01] U [1 — 01, 1],

where now the transition points 7y, 7, 73 and o1 are defined by
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Fig. 8 Contour plots when e1 = 4722710 g5 = 2722710 ;2 — 5-49-10 Af — A/, = 128 for
example 5.2
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. T2 €1 . T3 €2
71 =min< —, —1In N, », 79 =min< =, —1In N, »,
2 va 2 va

1
8—?’lan},al = min{—,zlan}.
vo 4" n

. 1

T3 — INin { 87

There, with N, a positive integer multiple of 8, we take N, /2 4+ 1 evenly spaced

grid points on the subinterval [r3,1 — o], whereas the remaining subinterval

[0,7], [11,72], [2, T3] there are N,/8+ 1 uniformly spaced grid points, and
N, /4 + 1 uniformly spaced grid points on the subinterval [1 — o1, 1].

Case 3: If n e5 < a 2 < 1) e3, then, the unit interval is divided into six subinter-
vals each by the appropriate fitted non-uniform Shishkin mesh each as

[0, 1] = [0,7‘1] U [Tl,TQ] U [7’2,7’3] U [7'3,1 —T3] U [1 —7'3,1 —0'1} U [1 —0'1,1],

where now the transition points 71, 72, 73 and o are defined by

. T2 €1 . T3 €2
71 =min{ —, —1In N, ¢, 9 =min< —, —1In N, »,
2 va 2 va

1 1
T3 = min{ —, 8—31nNI ,01 = min —,ZlnN$ .
8\ an 8'n

Then, with NV, a positive integer multiple of 8, we take are 3N, /8 + 1 evenly
spaced grid points on the subinterval |73, 1 — 73], whereas the remaining subinter-
val [0, 71], [T1, 2], [T2, 73], [1 — 73,1 — 01] and [1 — o1, 1] there are N,/8 + 1 uni-
formly spaced grid points.

Case 4: If 1 < a v? < 1) &2, then, the unit interval [0,1] is divided into six
subintervals each by the piecewise uniform Shishkin mesh each as
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0,1] = [0, 7] U [11, T2 U [r2, 73] U [13,1 = T3] U [l — 73,1 — o1 ] U [1l — 0, 1],

where o7 and 71, T are the transition points, which are now defined by

71 = min E,S—lln]\fm , To = min 7—3, 8—Zlan ,
2 va 2 an
1 1
T3 =min< —, 8—31an ,01 = min ,,Klan .
8"\ an 8'n

Then, with N, a positive integer multiple of 8, we take are 3N, /8 + 1 evenly
spaced grid points on the subinterval [73,1 — 73], whereas the remaining subinter-
val [0, 7], [T1, 2], [72, 73], [l — 73,1 — 1] and [1 — o4, 1] there are N,./8 + 1 uni-
formly spaced grid points.

Figures 9, 10, 11 and 12 display the numerical solution obtained for a particular
choice of the value of the diffusion, convection and discretization parameters for all
the four cases; clearly, the boundary layers at both end points of the spatial domain
are observed.

Tables 8, 9, 10 and 11 show the numerical results obtained for this example;
from them, the second order of uniform convergence of the numerical method can
be deduced. Then, we see that the technique used in this work can be extended to
systems with a bigger number of equations; the numerical results show again the
efficiency and the order of uniform convergence of the numerical algorithm.

01

~ 015,

Computed Solution X,
Computed Solution X,
Computed Solution X,

0.5

Spatial Direction 0 Temporal Direction Spatial Direction 01 Temporal Directior Spatial Direction 01 Temporal Direction

Fig. 9 When g1 = 4722710 g9 =3722710 g3 = 2722710 2 — 54910 A = A, = 128
for example 5.3

°
°

o
°

°
Computed Solution X

Computed Solution X,
°

Computed Solution X,
-0

.

05 N

05 Gnsii 7
Spatial Direction

Spatial Direction [ Temporal Direction 1 Temporal Direction

Spatial Direction 0 Temporal Direction

Fig. 10 When g1 = 5722710 g9 = 4722710 g5 = 3722710 1,2 — 92910 A = N = 128
for example 5.3
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Fig. 11 When g1 = 8722710 g9 = 6722710 g3 = 2722710 2 — 42910 A — N = 128
for example 5.3
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Fig. 12 When g1 = 6722710 g = 3722710 3 = 2722710 ;)2 — 4=29-10 A, — A, = 128
for example 5.3

6 Conclusions

In this work we have approximated efficiently the exact solution of a type of one-
dimensional parabolic singularly perturbed systems for which the diffusion param-
eters are different at each equation of the system, but the convection parameter is the
same for all equations. Moreover, in the partial differential equation associated to the
continuous problem, a time delay term appears. In general, when the diffusion and
the convection parameters take small values, the exact solution of the continuous
problem has overlapping boundary layers at the end points, due to the different dif-
fusion parameters, of the spatial domain; the width of the boundary layers depends
on the value and the ratio between the diffusion and the convection parameters. To
approximate numerically the exact solution of the continuous problem, we use a
numerical method which combines the Crank-Nicolson method to discretize in time,
constructed on a uniform mesh, and a cubic spline collocation method to discretize
in space. Then, when the spatial discretization is constructed on and adequate non-
uniform Shishkin mesh, the fully discrete scheme is a uniformly convergent method,
having second order in time and almost second order in space. To see in practice
the efficiency and the uniform convergence of the numerical algorithm, the numeri-
cal results obtained for some test problems are showed. These examples show that
same technique, can be extended to systems with a larger number of equations. In
the future, we will try extend similar ideas to the most interesting case of parabolic
multidimensional singularly perturbed systems, again with small parameters in both
the diffusion and the convection terms.
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