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Abstract
In this paper, we are interested in the efficient numerical resolution of one dimen-
sional two-parameter singularly perturbed systems; for simplicity, we only give the 
theoretically details corresponding to the simplest case of systems with two equa-
tions. The diffusion parameters are distinct and can have a very different value; on 
the other hand, the convection parameter is the same for both equations. Finally, 
we assume that a large time delays term appears in the partial differential equation. 
So, the exact solution has overlapping boundary layers at both end points of the 
spatial interval, when the magnitude of the diffusion parameters is very different; 
the behavior of the boundary layers depends on the value and the ratio between the 
diffusion and the convection parameters. To approximate the exact solution of the 
continuous problem, we construct a numerical method, which combines the Crank-
Nicolson method to discretize in time, which is constructed on a uniform mesh, and 
a type of B-splines to dscretize in space, which are defined on a special nonuniform 
Shishkin mesh. We prove that the fully discrete scheme is a uniformly convergent 
method, having second order in time and almost second order in space. From a 
practical point of view, higher order numerical methods are convenient because 
they permit to obtain good numerical approximations with a small increase of the 
computational cost. To corroborate in practice the good properties of the numerical 
method, some test problems are solved; from the numerical results obtained for 
these examples, clearly follows both the efficiency and the order of uniform con-
vergence of the numerical method, in agreement with the theoretical results.
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1  Introduction

In this work, we solve 1D systems of singularly perturbed delay parabolic IBVP on 
M = Mx × Ms = (0, 1) × (0, S], which are defined by 

	
LX := ∂X

∂s
+ Lx,ε1,ε2,νX = −a(x)X(x, s − τ) + f(x, s), (x, s) ∈ M,�(1.1a)

	 X(0, s) = φl(s) in Ml, X(1, s) = φr(s) in Mr, X(x, s) = ψ(x, s) in Mb,

� (1.1b)

where 
Ml = {(0, s)| 0 ≤ s ≤ S}, Mr = {(1, s)| 0 ≤ s ≤ S}, Mb = Mx × Λ∗ = [0, 1] × (−τ, 0], 
τ > 0 is a constant and L = (L1, L2)T . Without loss of generality, we assume that 
0 < ε1 ≤ ε2 ≤ 1 and 0 ≤ ν ≤ 1. Further, the operators Lx,ε1,ε2,ν  and Lk, k = 1, 2, 
are defined as 

	

Lx,ε1,ε2,ν = −E1
∂2

∂x2 − E2P (x) ∂

∂x
+ Q(x, s),

LkX = ∂Xk

∂s
− εk

∂2Xk

∂x2 − ν pkk(x)∂Xk

∂x
+

2∑
j=1

qkj(x, s)Xj , k = 1, 2,

where E1 =
(

ε1 0
0 ε2

)
, E2 =

(
ν 0
0 ν

)
, P (x) =

(
p11(x) 0

0 p22(x)

)
,

Q(x, s) =
(

q11(x, s) q12(x, s)
q21(x, s) q22(x, s)

)
,

f(x, s) = (f1(x, s), f2(x, s))T , X(x, s) = (X1(x, s), X2(x, s))T ,
φl(s) = (φl1(s), φl2(s))T , φr(s) = (φr1(s), φr2(s))T . For each (x, s) ∈ M and 
x ∈ Mx, the coefficients of matrices P (x) and Q(x, s) satisfy 

	 pkk(x) ≥ αk > 0, k = 1, 2,� (1.2a)

	 Q(x, s) is an L0 matrix ⇒ qkj(x, s) ≤ 0, k ̸= j, qkk > 0, k, j = 1, 2,�(1.2b)

	

2∑
j=1

qkj(x, s) ≥ Φ > 0, qkk(x, s) > |qkj(x, s)|, k, j = 1, 2, k ̸= j.� (1.2c)
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Below, we denote by α = min{α1, α2}, 

η = min
(x,s)∈M

{
qk1(x, s) − qk2(x, s)

pkk(x)

}
, k = 1, 2, ⃗ε = (ε1, ε2)T  and ν⃗ = (ν, ν)T .

From a practical point of view, this type of systems is interesting because they are 
a good model in many applications’areas, such as chemical reactor dynamics, brain 
signal transmission, climate modelling, power system stability or epidemiology (see, 
for instance, [11, 19, 20, 22, 25]). In all these applications, the solution of the physi-
cal phenomena has a multi-scale behavior due the presence of small diffusion and 
convection parameters; moreover, the effects of temporal delays are caused by dif-
ferent characteristic as transport lags, feedback control loops or incubation periods, 
depending on the particular problem. It is well known that, in general, the presence 
of time delay and small perturbation parameters in both the diffusion and the convec-
tion terms, provokes that the solution has a very different behavior and very large step 
gradients on different regions in the domain. The main characteristic of these systems 
is the presence of positive parameters multiplying both the first and the second spatial 
partial derivatives. Moreover, large time delays, such as the average process time of 
a control loop, can cause boundary layers, oscillations and a negative impact on the 
system’s stability of the numerical method used to solve the continuous problem.

In many physical, chemical and biological systems, the evolution of multiple 
interacting species is governed by convection-reaction-diffusion mechanisms. The 
interaction of slowly diffusing morphogens and faster-moving proteins drives the 
establishment of spatial patterns in gene regulatory networks, where transcriptional 
and translational delays cause past morphogen concentrations to control protein syn-
thesis. To analyze such processes, we consider a coupled system of convection-reac-
tion-diffusion equations with unequal diffusion parameters and a large time delay, 
which captures the essential features of delayed feedback and multiscale spatial 
transport. An example framework for studying these effects in a physiologically rel-
evant context is provided by the model that follows.

1.1  Motivating model: convection-reaction-diffusion system in gene regulatory 
networks

This system can be modeled as a set of coupled singularly perturbed convection-reac-
tion-diffusion equations with different diffusion parameters and a large time delay, 
given by 

	
∂X1

∂s
= ϵ1

∂2X1

∂x2 − νb1(x)∂X1

∂x
− a1(x)X1 + f1(X1, X2),� (1.3)

	
∂X2

∂s
= ϵ2

∂2X2

∂x2 − νb2(x)∂X2

∂x
− a2(x)X2 + f2(X1(x, s − τ), X2),� (1.4)

subject to the boundary and initial conditions 

	

X1(0, s) = X1(1, s) = 0, X2(0, s) = X2(1, s) = 0, s ∈ [0, S],
X1(x, s) = ϕ1(x, s), X2(x, s) = ϕ2(x, s), s ∈ [−τ, 0], x ∈ (0, 1).
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In this case, X1(x, s) and X2(x, s) represent the morphogen and protein concentrations, 
respectively. The diffusion coefficients of the morphogen and protein are represented by 
the small positive parameters ϵ1 ≪ ϵ2. Moreover, f1 and f2 are nonlinear reaction terms 
that approximate the morphogen auto-regulation and protein synthesis, the functions 
a1(x) and a2(x) indicate spatially changing degradation rates. The term X1(x, s − τ) 
introduces a delay τ > 0 that accounts for the biological time-lag in protein synthesis 
after the morphogen signal is detected. This delay is considered large in the sense that τ  
is comparable to or greater than the characteristic reaction/diffusion timescale.

Important features of morphogen-controlled gene regulatory networks (GRNs) 
throughout development are captured by the model. The system’s key features are:

	● Different diffusion rates: ϵ1 ̸= ϵ2 models the realistic scenario where morpho-
gens (large molecules) diffuse slowly compared to proteins, which can be trans-
ported more rapidly across tissues.

	● Large delay: The delay τ  reflects the temporal gap due to the sequential pro-
cesses of transcription and translation in protein production.

	● Spatio-temporal patterns: The interplay between differential diffusion and de-
lay can lead to complex spatial patterns and temporal oscillations, which are fun-
damental in biological pattern formation (e.g., stripes, spots).

Such models play a crucial role in elucidating developmental patterning mechanisms 
and serve as valuable benchmarks for testing advanced numerical schemes.

Due to its broad relevance in control systems, chemical kinetics, population 
dynamics and other real-world processes requiring time delays and small perturba-
tion parameters, the numerical analysis of singularly perturbed delay differential 
equations (SPDDEs) has attracted a lot of attention. These issues are distinguished 
by the existence of interior or boundary layers, which makes numerical approxi-
mation very difficult. The development of parameter-uniform methods is necessary 
because traditional numerical approaches frequently fall short in accurately capturing 
the rapid variations when the perturbation parameter is small. Several researchers 
have proposed robust numerical techniques to address these issues, including fitted 
operator schemes, layer-adapted meshes and spline-based collocation approaches. 
Bansal and Sharma [3] developed a parameter-robust numerical scheme for time-
dependent singularly perturbed reaction-diffusion problems with large delay. Sharma 
and Sharma [28] analyzed a fitted mesh method for delay singularly perturbed sys-
tems and Miller, O’Riordan and Shishkin [23] provided a comprehensive theoreti-
cal framework for parameter-uniform numerical methods. Furthermore, Kadalbajoo 
and Patidar [14] discussed numerical techniques for delay differential equations with 
singular perturbations, while Mohanty and Jha [24] proposed a cubic spline colloca-
tion approach for singularly perturbed time-delay systems. Such studies highlight the 
ongoing efforts to construct efficient and uniformly convergent algorithms capable of 
resolving the sharp boundary and interior layers present in SPDDEs.

The efficient numerical resolution of elliptic or parabolic coupled singularly per-
turbed systems in the cases of one or two dimensional problems in space, is a inter-
esting subject in the context of singularly perturbed problems, which has received 
many attention in the last years. For instance, in [1], a semilinear parabolic problem 
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was analyzed; in [2], a finite element method was used to solve a singularly perturbed 
problem with two parameter; in [4], it was used a numerical method combining a 
finite differences scheme together with the Successive Complementary Expansion 
Method (SCEM); in [15], a fitted mesh B-spline collocation was employed to solve 
a singularly perturbed differential-difference equations with large delays; in [31], a 
numerical technique was used for a type of singularly perturbed parabolic time delay 
convection-diffusion-reaction equations; in [17], a one dimensional efficient numeri-
cal method was introduced for singularly perturbed time-delayed parabolic problems 
with two parameters; in [19], a time-dependent singularly perturbed system with 
small shifts was solved, by using first the standard Taylor expansions to transform 
the original problem and solving the resulting problem by using the Crank-Nicolson 
method to discretize in time and a cubic B-spline collocation method, constructed on 
an appropriated Shishkin mesh; in [7], a nonlinear singularly perturbed systems was 
studied; the numerical scheme defined in that work combines an implicit method to 
discretize in time, which uses a suitable component splitting, with a finite differences 
scheme; in [8], a 2D elliptic singularly perturbed system was considered, having the 
same diffusion parameters and also the same convection parameters in the equations 
of the system; in [9], a similar technique was used for the case when the diffusion 
parameters can be different and in [10] for the most general case for which both the 
diffusion and the convection parameters can be all different; in [20], a similar prob-
lem to (1.1) for the simpler case when the diffusion parameters are the same, was 
studied.

Here, we extend the ideas and techniques given in [20] to our most general and 
difficult problem (1.1). The presence of distinct diffusion parameters at each equation 
of the system, does more difficult the theoretical analysis of the asymptotic behavior 
of the exact solution, because now, when those diffusion parameters has a different 
order of magnitude, overlapping boundary layers can appear in the solution. Nev-
ertheless, we will prove that using again the Crank-Nicolson method to discretize 
in time, on a uniform mesh, and a cubic spline-based method to discretize in space, 
on an adequate piecewise uniform Shishkin mesh, we obtain a high order uniformly 
convergent method, which is very efficient to solve numerically problem (1.1).

The paper is structured as follows. In Section 2, we analyze which is the asymp-
totic behavior of the exact solution of the continuous problem and we prove adequate 
estimates for its partial derivatives, which show their dependence on the diffusion 
parameters ε1, ε2 and the convection parameter ν; more concretely, we will distin-
guish several cases depending on the value and the ratio between those three small 
parameters. In Sect. 3, we construct the fully discrete scheme into two steps; in the 
first one, we discretize in time on a uniform mesh and in the second one, we discretize 
in space on an adequate piecewise uniform Shishkin mesh. In Sect. 4, we prove that 
the fully discrete scheme is a uniformly convergent method, which gives second 
order in time and almost second order in space. In Sect. 5, we show the numerical 
results obtained by using our numerical algorithm for some test problems; from them, 
we can observe both the efficiency and the uniform convergence of the numerical 
algorithm, in agreement with the theoretical results. To finish, in Sect. 6, some con-
clusions are given.
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Henceforth, we denote by ∥ · ∥ the continuous maximum norm; moreover, for a 
function Ψ⃗ΨΨ = (Ψ1, Ψ2)T , |Ψ⃗ΨΨ| = (|Ψ1|, |Ψ2|)T , and C denotes a generic positive con-
stant which is independent of the diffusion parameters ε1, ε2, the convection param-
eter ν and also of the discretization parameters Ns and Nx.

2  Asymptotic behavior of the exact solution

In this section, we study which is the asymptotic behavior of the exact solution of 
(1.1) and we prove adequate estimates for its partial derivatives, which will be use-
ful in the posterior analysis of the uniform convergence of the proposed numerical 
method.

Using standard techniques, well known in the literature (see [6, 12, 19, 26, 29], 
for instance), we can obtain the following results, proving that the differential opera-
tor L satisfies a maximum principle and the stability for the continuous function X, 
respectively.

Lemma 2.1  Let X ∈ (C(2,1)(M) ∩ C(0,0)(M))2 so that X ≥ 0 on Λ 
(Λ = Ml ∪ Mr ∪ Mb). Then LX ≥ 0, forall (x, s) ∈ M provides 
X ≥ 0, ∀ (x, s) ∈ M.

Lemma 2.2  Let X be the exact solution of the continuous problem (1.1); then, it 
holds 

	
∥X∥M ≤ 1

α
∥f∥M + max{∥φl(s)∥Ms

, ∥φr(s)∥Ms
}.

Following to [21] we can obtain initial estimates for the partial derivatives of the 
exact solution which depend on both the diffusion and the convection parameters.

Lemma 2.3  Let X be the exact solution of the continuous problem (1.1). Then, for 
l, m = 0, 1, 2, 3, 4 with 0 ≤ 2l + m ≤ 4, its derivatives, on M, satisfy 

	

∣∣∣∣
∂l+mX
∂sl∂xm

∣∣∣∣ ≤ C (⃗ε)−m/2
{

1 +
(

ν⃗√
ε⃗

)m}
,� (2.1a)

	

∣∣∣∣
∂l+mX1

∂sl∂xm

∣∣∣∣ ≤ Cε
−m/2
1

{
1 +

(
ν

√
ε1

)m}
+ Cε2−m

1 ,� (2.1b)

	

∣∣∣∣
∂l+mX2

∂sl∂xm

∣∣∣∣ ≤ Cε
−m/2
2

{
1 +

(
ν

√
ε2

)m}
+ Cε

1−m/2
1 ε−1

2 .� (2.1c)

Nevertheless, the estimates given in Lemma 2.3 are not adequate, because they do 
not reflect the presence of boundary layers in the exact solution of the continuous 
problem. To obtain better estimates, as it is usual in the context of singularly per-
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turbed problems, we propose a decomposition of the exact solution X of the problem 
(1.1), in its regular, Xr, left, XL, and right, XR, singular components, in the form 
X = Xr + XL + XR. These components are the solution of the problems 

	

{ LXr = f(x, s), Xr(x, 0), Xr(x, 1)chosen suitably, Xr(x, s)|Mb
= ψ(x, s),

LXL = 0, XL|Ml
= X − Xr − XR, XL|Mrchosen suitably, XL(x, s)|Mb

= 0,
LXR = 0, XR|Mr

= X − Xr − XL, XR|Ml
chosen suitably, XR(x, s)|Mb

= 0,� (2.2)

respectively.
To obtain adequate bounds for the partial derivatives of each one of these three 

components, we distinguish three different cases depending on the value and the ratio 
between the diffusion and the convection parameters; these cases are the following: 
Case I: α ν2 ≤ η ε1; Case II: α ν2 ≥ η ε2; Case III: η ε1 < α ν2 < η ε2

Following similar ideas of those ones used in [20], we can deduce adequate esti-
mates for the regular and the singular components, Xr, XL and XR, respectively. 
First, we show the result for the regular component.

Lemma 2.4  Let 0 ≤ 2l + m ≤ 4 be; then, the regular component Xr satisfy the fol-
lowing bounds.

Case I: α ν2 ≤ η ε1. Then, we have

	

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, 0 ≤ m ≤ 2,

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ Cε1
−(m−2)/2,

3 ≤ m ≤ 4,

∥∥∥∥
∂l+mXr2(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, 0 ≤ m ≤ 4.

Case II: α ν2 ≥ η ε2. Then, it holds

	

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, 0 ≤ m ≤ 2,

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ Cε1
−(m−2),

3 ≤ m ≤ 4,

∥∥∥∥
∂l+mXr2(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, 0 ≤ m ≤ 4.

Case III: η ε1 < α V 2 < η ε2. Then, we have

	

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, 0 ≤ m ≤ 2,

∥∥∥∥
∂l+mXr1(x, t)

∂sl∂xm

∥∥∥∥ ≤ Cε1
−(m−2),

3 ≤ m ≤ 4,

∥∥∥∥
∂l+mXr2(x, t)

∂sl∂xm

∥∥∥∥ ≤ C, ε1
−(m−2)/2, 3 ≤ m ≤ 4.

After that, we show the behavior for both singular components. To do that,
we consider the layer functions ϕLk

(x), ϕRk
(x), k = 1, 2, given by
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ϕL1(x) =




e−θ1x, αν2 ≤ ηε1,
e−κx, αν2 ≥ ηε2,
e−κx, ηε1 < αν2 < ηε2,

ϕR1(x) =




e−θ1(1−x), αν2 ≤ ηε1,
e−λ1(1−x), αν2 ≥ ηε2,
e−λ1(1−x), ηε1 < αν2 < ηε2,� (2.3a)

	
ϕL2(x) =





e−θ2x, αν2 ≤ ηε1,
e−κx, αν2 ≥ ηε2,
e−θ2x, ηε1 < αν2 < ηε2,

ϕR2(x)





e−θ2(1−x), αν2 ≤ ηε1,
e−λ2(1−x), αν2 ≥ ηε2,
e−λ2(1−x), ηε1 < αν2 < ηε2,� (2.3b)

where θk =
√

ηα

εk
, λk = αν

εk
, κ = η

2ν
, for k = 1, 2.

Lemma 2.5  The layer components XL, XR satisfy the following bounds.

Case I: α ν2 ≤ η ε1. Then, we have 

	|XL1(x, t)| ≤ CϕL2(x), |XL2(x, t)| ≤ CϕL2(x), |XR1(x, t)| ≤ CϕR2(x), |XR2(x, t)| ≤ CϕR2(x).

Case II: α ν2 ≥ η ε2. Then, it holds 

	|XL1(x, t)| ≤ CϕL2(x), |XL2(x, t)| ≤ CϕL2(x), |XR1(x, t)| ≤ C, |XR2(x, t)| ≤ C.

Case III: η ε1 < α ν2 < η ε2. Then, we have 

	|XL1(x, t)| ≤ CϕL1(x), |XL2(x, t)| ≤ CϕL2(x), |XR1(x, t)| ≤ CϕR1(x), |XR2(x, t)| ≤ CϕR2(x).

Proof  Using the same methodology as described in [26], the proof may be completed.□

3  The fully discrete method

In this section, we construct the numerical method used to solve the continuous prob-
lem (1.1). To do that, first we discretize in time and later on we discretize in space the 
resulting problems of the time discretization.

3.1  Time-dependent discretization

Here, the Crank-Nicolson method, defined on a uniform mesh, is used to discretize 
the time variable. We include the necessary details to understand how the method 
is constructed and also we give the result proving the uniform convergence of this 
discretization; full details can be found in [20].

Due the delay in time, we must use an interpolation/extrapolation to calculate the 
grid points, necessary to define s − τ  in terms of the computational grid points and 
also to calculate X(x, s − τ). To do that, we use the following algorithm
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1.	 Let Ns be a given positive integer. Define the mesh set ΩNs
s  in the s-direction as:

	  

	 ΩNs
s = {sn = n∆s | n = 0, 1, . . . , Ns} ,

	 where ∆s = 1
Ns

 is the uniform step size in the s-domain.
2.	 Choose a delay parameter τ > 0.
3.	 Define the function X(x, s) over the interval s ∈ [−τ, 0] and along the spatial 

boundaries using: 

	 X(x, s) = ϕ(x, s), for − τ ≤ s ≤ 0, X(0, s) = φl(s), X(1, s) = φr(s).

4.	 Compute the non-negative integer K representing the index shift due to the delay: 

	
K =

⌊ τ

∆s

⌋
,

	 where ⌊·⌋ denotes the floor function.
5.	 For nodes sm with indices m = 1, 2, . . . , K, it holds that 0 < sm ≤ τ . Thus, 

sm − τ ∈ (−τ, 0], and the delayed term X(x, s − τ) can be evaluated using the 
known initial condition ϕ(x, s − τ).

6.	 For sl ∈ {sn | n = K + 1, . . . , Ns − 1}, i.e., for values of s satisfying τ < s < 1, 
the delayed argument s − τ  lies between the mesh points sl−K−1 and sl−K.

7.	 Express s − τ  as a convex linear combination of the two mesh nodes bracketing 
it: 

	 s − τ = ⅁ sl−K−1 + (1 − ⅁) sl−K, K + 1 ≤ l < Ns,

	 where the weight ⅁ is given by: 

	
⅁ = sl−K − sl + τ

∆s
≥ 0.

8.	 Using linear interpolation, approximate the delayed function value as: 

	 X(x, s − τ) ≈ ⅁X(x, sl−K−1) + (1 − ⅁) X(x, sl−K), K + 1 ≤ l < Ns.

Note 1. If τ < ∆s, then K = 0, and s − τ  lies within the interval (sl−1, sl).In such 
cases, X(x, s − τ) is determined by interpolating between the adjacent nodes.

Note 2. If τ > 0 and the value s − τ  is exactly one of the mesh nodes in Ω̄Ns
s , 

then there exists an index  such that s − τ = sl−K. This yields ⅁ = 0, meaning inter-
polation is unnecessary. However, this is not typically the case, and interpolation is 
generally required.

Then, at the (m + 1)-th time level, the Crank-Nicolson method, for the compo-
nents X̃n+1

k , k = 1, 2, is defined as 

1 3
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	 X̃XXk

n+1
(x) = ϕϕϕ(x, sn+1), x ∈ Ωb, (−K + 1) ≤ n < 0,� (3.1a)

	
LkX̃XX

n+1
(x) ≡ −ϵk

2
(X̃n+1

xx )k(x) − ν
p
n+ 1

2
kk (x)

2
(X̃n+1

x )k(x) +
(

1
∆s

+
q
n+ 1

2
kk (x)

2

)
X̃n+1

k (x),

	
+

q
n+ 1

2
lk (x)

2
X̃n+1

l (x) = g̀k
n+1(x), l ̸= k,� (3.1b)

	 X̃n+1
k (0) = φlk

(sn+1), X̃n+1
k (1) = φrk

(sn+1), n ≥ 0,� (3.1c)

where 

	
g̀n+1

k (x) = f
n+ 1

2
k (x) + ϵk

2
(X̃n

xx)k(x) + ν
p
n+ 1

2
kk (x)

2
X̃n

k (x) +
(

1
∆s

−
q
n+ 1

2
kk (x)

2

)
X̃n

k (x) −
q
n+ 1

2
lk (x)

2
X̃n

l (x).
� (3.2)

We remember that the local truncation error is defined as 

En+1 = X(x, sn+1) − ˜̃
XXX

n+1
(x), where ˜̃

XXX
n+1

(x) is the solution given by (3.1) 
changing in (3.2) X̃n by the exact solution X(x, sn).

On the other hand the global error is given by Gn = X(x, sn) − X̃n.

Theorem 3.1  The local truncation error and the global error, associated to the 
Crank-Nicolson method, satisfy 

	
∥EEEn+1∥ ≤ C(∆s)3 and ∥GGGn∥ ≤ C(∆s)3/2, n ≤ T

∆s
, respectively .� (3.3)

Proof  Full details of the proof of this result can be seen, by instance, in [5].� □

Remark 3.2  The order reduction from 2 to 3/2 in previous result is due to the uniform 
stability of the Crank-Nicolson method (see [5]). Nevertheless, as we will see in the 
numerical experiments section, from a numerical point of view, this reduction does 
not appear and the order of convergence in time is two.

3.2  Asymptotic behavior of the solution of the semidiscrete problems

Now, we analyze which is the asymptotic behavior of the exact solution of the prob-
lems (3.1) resulting from the time semidiscretization. To do that, first we decompose 

its exact solution in the form X̃XX
n+1

(x) = X̃XX
n+1
r (x) + X̃XX

n+1
L (x) + X̃XX

n+1
R (x), just 

like in (2.2).

Lemma 3.3  Let X̃XX
n+1
r (x) = (X̃XX

n+1
r1

(x), X̃XX
n+1
r2

(x))T  the regular component. Then:
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• If α ν2 ≤ η ε1, we have 

∥∥∥∥
∂lX̃XX

n+1
r1

∂xl

∥∥∥∥ ≤ C, 0 ≤ l ≤ 2,

∥∥∥∥
∂lX̃XX

n+1
r1

∂xl

∥∥∥∥ ≤ Cε
−(l−2)/2
1 , 3 ≤ l ≤ 4,

∥∥∥∥
∂lX̃XX

n+1
r2

∂xl

∥∥∥∥ ≤ C, 0 ≤ l ≤ 4.� (3.4)

• If α ν2 ≥ η ε2, it holds 

∥∥∥∥
∂lX̃XX

n+1
r

∂xl

∥∥∥∥ ≤ C, 0 ≤ l ≤ 2,

∥∥∥∥
∂lX̃XX

n+1
r1

∂xl

∥∥∥∥ ≤ Cε
−(l−2)
1 ,

∥∥∥∥
∂lX̃XX

n+1
r2

∂xl

∥∥∥∥ ≤ C, 3 ≤ l ≤ 4.� (3.5)

• Finally, if η ε1 < α ν2 < η ε2, we have 

∥∥∥∥
∂lX̃XX

n+1
r

∂xl

∥∥∥∥ ≤ C, 0 ≤ l ≤ 2,

∥∥∥∥
∂lX̃XX

n+1
r1

∂xl

∥∥∥∥ ≤ Cε
−(l−2)
1 ,

∥∥∥∥
∂lX̃XX

n+1
r2

∂xl

∥∥∥∥ ≤ Cε
−(l−2)/2
2 , 3 ≤ l ≤ 4.� (3.6)

In second place, we show the estimates for the boundary layers function X̃XX
n+1
L (x) 

and X̃XX
n+1
R (x).

Lemma 3.4  Let X̃XX
n+1
L (x) = (X̃XX

n+1
L1

(x), X̃XX
n+1
L2

(x))T  and 

X̃XX
n+1
R (x) = (X̃XX

n+1
R1

(x), X̃XX
n+1
R2

(x))T  the left and right boundary layer functions, 
respectively. Then

	● If α ν2 ≤ η ε1, we have 

	

|X̃XX
n+1
L1

(x)| ≤ CϕL2(x), |X̃XX
n+1
L2

(x)| ≤ CϕL2(x),
∣∣∣∣
∂lX̃XX

n+1
L1

(x)
∂xl

∣∣∣∣ ≤ C(ε−l/2
1 ϕL1(x) + ε

−l/2
2 ϕL2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
L2

(x)
∂xl

∣∣∣∣ ≤ Cε
−l/2
2 ϕL2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂lX̃XX

n+1
L2

(x)
∂xl

∣∣∣∣ ≤ Cε−1
2 (ε−(l−2)/2

1 ϕL1(x) + ε
−(l−2)/2
2 ϕL2(x)), 3 ≤ l ≤ 4,

|X̃XX
n+1
R1

(x)| ≤ CϕR2(x), |X̃XX
n+1
R2

(x)| ≤ CϕL2(x),
∣∣∣∣
∂lX̃XX

n+1
R1

(x)
∂xl

∣∣∣∣ ≤ C(ε−l/2
1 ϕR1(x) + ε

−l/2
2 ϕR2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε
−l/2
2 ϕR2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε−1
2 (ε−(l−2)/2

1 ϕR1(x) + ε
−(l−2)/2
2 ϕR2(x)), 3 ≤ l ≤ 4.
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	● If α ν2 ≥ η ε2, it holds 

	

|X̃XX
n+1
L1

(x)| ≤ CϕL2(x), |X̃XX
n+1
L2

(x)| ≤ CϕL2(x),
∣∣∣∣
∂lX̃XX

n+1
L1

(x)
∂xl

∣∣∣∣ ≤ Cνl(ε−l
1 ϕL1(x) + ε−l

2 ϕL2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
L2

(x)
∂xl

∣∣∣∣ ≤ Cνlε−l
2 ϕL2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂3X̃XX

n+1
L2

(x)
∂x3

∣∣∣∣ ≤ C

(
ν3

ε1ε2
2

ϕL1(x) + ν3

ε3
2

ϕL2(x)
)

,

∣∣∣∣
∂4X̃XX

n+1
L2

(x)
∂x4

∣∣∣∣ ≤ C

(
ν4

ε1ε3
2

ϕL1(x) + ν4

ε4
2

ϕL2(x)
)

,

|X̃XX
n+1
R1

(x)| ≤ CϕR2(x), |X̃XX
n+1
R2

(x)| ≤ CϕR2(x),
∣∣∣∣
∂lX̃XX

n+1
R1

(x)
∂xl

∣∣∣∣ ≤ C(ε−l/2
1 ϕR1(x) + ε

−l/2
2 ϕR2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε
−l/2
2 ϕR2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε−1
2 (ε−(l−2)/2

1 ϕR1(x) + ε
−(l−2)/2
2 ϕR2(x)), 3 ≤ l ≤ 4.

	● Finally, if η ε1 < α ν2 < η ε2, we have 

	

|X̃XX
n+1
L1

(x)| ≤ CϕL1(x), |X̃XX
n+1
L2

(x)| ≤ CϕL2(x),
∣∣∣∣
∂lX̃XX

n+1
L1

(x)
∂xl

∣∣∣∣ ≤ C(νlε−l
1 ϕL1(x) + ε

−l/2
2 ϕL2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
L2

(x)
∂xl

∣∣∣∣ ≤ Cε
−l/2
2 ϕL2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂lX̃XX

n+1
L2

(x)
∂xl

∣∣∣∣ ≤ Cε−1
2 (νε

−(l−2)
1 ϕL1(x) + ε

−(l−2)/2
2 ϕL2(x)), 3 ≤ l ≤ 4,

|X̃XX
n+1
R1

(x)| ≤ CϕR2(x), |X̃XX
n+1
R2

(x)| ≤ CϕR2(x),
∣∣∣∣
∂lX̃XX

n+1
R1

(x)
∂xl

∣∣∣∣ ≤ C(ε−l/2
1 ϕR1(x) + ε

−l/2
2 ϕR2(x)), 1 ≤ l ≤ 4,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε
−l/2
2 ϕR2(x), 1 ≤ l ≤ 2,

∣∣∣∣
∂lX̃XX

n+1
R2

(x)
∂xl

∣∣∣∣ ≤ Cε−1
2 (ε−(l−2)/2

1 ϕR1(x) + ε
−(l−2)/2
2 ϕR2(x)), 3 ≤ l ≤ 4.
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Proof  The proof of this result follows the ideas and techniques used in [26], where a 
scalar 1D convection-diffusion problem with parameters in the diffusion and convec-
tion terms was analyzed, and also those ones developed in [9] where a 2D elliptic 
system having parameters in the diffusion and convection terms was studied.� □

From the estimates given in Lemmas 3.3 and 3.4, we have adequate bounds for the 
derivatives in the three different cases; they will be used posteriorly for the analysis 
of the uniform convergence of the spatial discretization defined below.

3.3  Shishkin mesh generation

Now, we go discretize (3.1) with respect to the spatial variable. The first step to do 
that is the construction of an adequate nonuniform mesh, which permits concentrate 
the grid points in the boundary layer regions. Then, we consider the three different 
cases analyzed previously in Section 2. The construction of the mesh follows liter-
ately the ideas given in [9]. Let Nx an integer positive multiple of 8.

Case 1: If α ν2 ≤ η ε1, we subdivide the unit interval into five subintervals each 
as 

	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, 1 − τ2] ∪ [1 − τ2, 1 − τ1] ∪ [1 − τ1, 1],

where the transition points τ1 and τ2 are defined by 

	
τ1 = min

{
τ2

2
,

√
ε1

αη
ln Nx

}
, τ2 = min

{
1
4

,

√
ε2

αη
ln Nx

}
.� (3.7)

There are Nx/8 + 1 uniformly spaced grid points on each of the subintervals 
[0, τ1], [τ1, τ2], [1 − τ2, 1 − τ1], and [1 − τ1, 1]. On the remaining subinterval 
[τ2, 1 − τ2], there are Nx/2 + 1 uniformly spaced grid points. Next, along the x-axis, 
the grid points are provided by 

	

xi =





8i
Nx

τ1, if 0 ≤ i ≤ Nx/8,

τ1 + 8
Nx

(τ2 − τ1)(i − Nx

8 ), if Nx/8 + 1 ≤ i ≤ Nx4,

τ2 + 2
Nx

(1 − 2τ2)(i − Nx

4 ), if Nx/4 + 1 ≤ i ≤ 3Nx/4,

1 − τ2 + 8
Nx

(τ2 − τ1)(i − 3Nx

4 ), if 3Nx/4 + 1 ≤ i ≤ 7Nx/8,

1 − τ1 + 8
Nx

τ1(i − 7Nx

8 ), if 7Nx/8 + 1 ≤ i ≤ Nx.

Case 2: If α ν2 ≥ η ε2, then, the unit interval is divided into four subintervals each 
by the appropriate fitted non-uniform Shishkin mesh each as 

	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, 1 − σ1] ∪ [1 − σ1, 1],

where now the transition points τ1, τ2 and σ1 are defined by 
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τ1 = min
{

τ2

2
,

ε1

να
ln Nx

}
, τ2 = min

{
1
4

,
ε2

να
ln Nx

}
, σ1 = min

{
1
4

,
ν

η
ln Nx

}
.� (3.8)

There are Nx/2 + 1 evenly spaced grid points on the subinterval [τ2, 1 − σ1], whereas 
the remaining subinterval [0, τ1], [τ1, τ2] there are Nx/8 + 1 uniformly spaced grid 
points, and Nx/4 + 1 uniformly spaced grid points on the subinterval [1 − σ1, 1]. 
Next, along the x-axis, the mesh points are provided by 

	

xi =




8i
Nx

τ1, if 0 ≤ i ≤ Nx/8,

τ1 + 8
Nx

(τ2 − τ1)(i − Nx

8 ), if Nx/8 + 1 ≤ i ≤ Nx/4,

τ2 + 2
Nx

(1 − τ2 − σ1)(i − Nx

4 ), if Nx/4 + 1 ≤ i ≤ 3Nx/4,

1 − σ1 + 4
Nx

σ1(i − 3Nx

4 ), if 3Nx/4 + 1 ≤ i ≤ Nx.

Case 3: If η ε1 < α ν2 < η ε2, then, the unit interval [0, 1] is divided into five sub-
intervals each by the piecewise uniform Shishkin mesh each as 

	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, 1 − τ2] ∪ [1 − τ2, 1 − σ1] ∪ [1 − σ1, 1],

where σ1 and τ1, τ2 are the transition points, which are now defined by 

	
τ1 = min

{
τ2

2
,

ε1

να
ln Nx

}
, τ2 = min

{
1
4

,

√
ε2

αη
ln Nx

}
, σ1 = min

{
τ2

2
,

ν

η
ln Nx

}
.

� (3.9)

There are Nx/8 + 1 uniformly spaced grid points on each of the following subin-
tervals: [0, τ1], [τ1, τ2], [1 − τ2, 1 − σ1], [1 − σ1, 1]; on the remaining subinterval, 
[τ2, 1 − τ2], there are Nx/2 + 1 uniformly spaced grid points. Next, along the x-axis, 
the grid points are provided by 

	

xm =




8m
Nx

τ1, if 0 ≤ m ≤ Nx/8,

τ1 + 8
Nx

(τ2 − τ1)(m − Nx

8 ), if Nx/8 + 1 ≤ m ≤ Nx/4,

τ2 + 2
Nx

(1 − 2τ2)(m − Nx

4 ), if Nx/4 + 1 ≤ m ≤ 3Nx/4,

1 − τ2 + 8
Nx

(τ2 − σ1)(m − 3Nx

4 ), if 3Nx/4 + 1 ≤ m ≤ 7Nx/8,

1 − τ1 + 8
Nx

σ1(m − 7Nx

8 ), if 7Nx/8 + 1 ≤ m ≤ Nx.

For each one of the cases, the step sizes are defined as 

h̃m = xm − xm−1, m = 1, 2, . . . , Nx.

3.4  The spatial discretization

We now construct the spatial discretization on the previous Shishkin mesh, 
by using B-splines (see [13] by instance). As it is usual, to ensure the conti-
nuity at the domain boundaries, four fictitious nodes, x−2, x−1, xNx+1 and 
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xNx+2, must be introduced. The nodes x−2 and x−1 are placed on the left side 
of ΛNx , while xNx+1 and xNx+2 are positioned on the right side such that 
x−1 = x0 − h1, x−2 = x−1 − h2, xNx+1 = xNx

+ hNx−1, xNx+2 = xNx+1 + hNx−2.

It is well known (see [16, 18] for instance) that the B-splines are given by 

	

Bm(x) = 1
h̃3

m





(x − xm−2)3, xm−2 ≤ x ≤ xm−1,

h̃3
m + 3h̃2

m(x − xm−1) + 3h̃m(x − xm−1)2 − 3(x − xm−1)3, xm−1 ≤ x ≤ xm,

h̃3
m + 3h̃2

m(xm+1 − x) + 3h̃m(xm+1 − x)2 − 3(xm+1 − x)3, xm ≤ x ≤ xm+1,
(xm+2 − x)3, xm+1 ≤ x ≤ xm+2,
0, otherwise.

Then, to obtain an approximate numerical solution at time sn+1 we consider the 
function 

	
X n+1

k (x) =
Nx+1∑
m=−1

wn+1
m;k Bm(x).� (3.10)

A system of linear equations for the unknown coefficients is obtained by substituting 
the B-spline representation into the discretized version of the governing equations 
(Eq. (3.1)). Then, from [20], we have 

	

L1XXX n+1 ≡n+1
m−1;1

[
−ε1

2h̃2
m

+ ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

11 (xm)
2

)]
+ wn+1

m;1

[
ε1

h̃2
m

+ 2
3

(
1

∆s
+ q

n+ 1
2

11 (xm)
2

)]

+ wn+1
m+1;1

[
−ε1

2h̃2
m

− ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

11 (xm)
2

)]
+ wn+1

m−1;2

(
q

n+ 1
2

12 (xm)
12

)

+ wn+1
m;2

(
q

n+ 1
2

12 (xm)
3

)
+ wn+1

m+1;2

(
q

n+ 1
2

12 (xm)
12

)
= g

n+ 1
2

1 (xm) + wn
m−1;1

[
ε1

2h̃2
m

− ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

11 (xm)
2

)]
+ wn

m;1

[
− ε1

h̃2
m

+ 2
3

(
1

∆s
− q

n+ 1
2

11 (xm)
2

)]

+ wn
m+1;1

[
ε1

2h̃2
m

+ ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

11 (xm)
2

)]

− wn
m−1;2

(
q

n+ 1
2

12 (xm)
12

)
− wn

m;2

(
q

n+ 1
2

12 (xm)
3

)
− wn

m+1;2

(
q

n+ 1
2

12 (xm)
12

)
,

� (3.11a)

L2XXX n+1 ≡n+1
m−1;1

(
q

n+ 1
2

21 (xm)
12

)
+ wn+1

m;1

(
q

n+ 1
2

21 (xm)
3

)
+ wn+1

m+1;1

(
q

n+ 1
2

21 (xm)
12

)
+ wn+1

m−1;2

[
−ε2

2h̃2
m

+ ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)]
+ wn+1

m;2

[
ε2

h̃2
m

+ 2
3

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)]
+ wn+1

m+1;2

[
−ε2

2h̃2
m

− ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)]
= g

n+ 1
2

2 (xm) − wn
m−1;1

(
q

n+ 1
2

21 (xm)
12

)

− wn
m;1

(
q

n+ 1
2

21 (xm)
3

)
− wn

m+1;1

(
q

n+ 1
2

21 (xm)
12

)
+ wn

m−1;2

[
ε2

2h̃2
m

− ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

22 (xm)
2

)]

+ wn
m;2

[
− ε2

h̃2
m

+ 2
3

(
1

∆s
− q

n+ 1
2

22 (xm)
2

)]
+ wn

m+1;2

[
ε2

2h̃2
m

+ ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

22 (xm)
2

)]
,

�

(3.11b)
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and we must solve a linear system 

	 Awwwn+1 = B,� (3.12)

where B = Cwwwn + D and the corresponding matrices are defined by 

	

A =
[
A1 A2
A3 A4

]
, C =

[
C1 C2
C3 C4

]
,

wwwn+1 =
(

wn+1
−1,1, wn+1

0,1 , . . . , wn+1
Nx,1, wn+1

Nx+1,1︸ ︷︷ ︸
1stcomponent

, wn+1
−1,2, wn+1

0,2 , . . . , wn+1
Nx,2, wn+1

Nx+1,2︸ ︷︷ ︸
2ndcomponent

)T

,

with 

	

A1 = [1/6, 2/3, 1/6, 0, . . . , 0; tridiag(p1(xm), p2(xm), p3(xm)); 0, . . . , 0, 1/6, 2/3, 1/6],
A2 = [0, 0, . . . , 0; tridiag(q1(xm), q2(xm), q1(xm)); 0, . . . , 0, 0],
A3 = [0, 0, . . . , 0; tridiag(r1(xm), r2(xm), r1(xm)); 0, . . . , 0, 0],
A4 = [1/6, 2/3, 1/6, 0, . . . , 0; tridiag(s1(xm), s2(xm), s3(xm)); 0, . . . , 0, 1/6, 2/3, 1/6],
C1 = [0, 0, . . . , 0; tridiag(t1(xm), t2(xm), t3(xm)); 0, . . . , 0, 0],
C2 = [0, 0, . . . , 0; tridiag(u1(xm), u2(xm), u1(xm)); 0, . . . , 0, 0],
C3 = [0, 0, . . . , 0; tridiag(v1(xm), v2(xm), v1(xm)); 0, . . . , 0, 0],
C4 = [0, 0, . . . , 0; tridiag(w1(xm), w2(xm), w3(xm)); 0, . . . , 0, 0].

These matrices are tridiagonal and of order (Nx + 3) × (Nx + 3), and for 
m = 0, 1, . . . , Nx, theirs elements are given by 

	

p1(xm) = − ε1

2h̃2
m

+ ν
p

n+ 1
2

11 ((xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

11 ((xm)
2

)
, p2(xm) = ε1

h̃2
m

+ 2
3

(
1

∆s
+ q

n+ 1
2

11 (xm)
2

)
,

p3(xm) = − ε1

2h̃2
m

− ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

11 ((xm)
2

)
, q1(xm) = q

n+ 1
2

12 (xm)
12

,

q2(xm) = q
n+ 1

2
12 (xm)

3
, r1(xm) = q

n+ 1
2

21 (xm)
12

, r2(xm) = q
n+ 1

2
21 (xm)

3
,

s1(xm) = − ε2

2h̃2
m

+ ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)
, s2(xm) = ε2

h̃2
m

+ 2
3

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)
,

s3(xm) = − ε2

2h̃2
m

− ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
+ q

n+ 1
2

22 (xm)
2

)
,

t1(xm) = ε1

2h̃2
m

− ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

11 ((xm)
2

)
, t2(xm) = − ε1

h̃2
m

+ 2
3

(
1

∆s
− q

n+ 1
2

11 (xm)
2

)
,

t3(xm) = ε1

2h̃2
m

+ ν
p

n+ 1
2

11 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

11 (xm)
2

)
, u1(xm) = −q

n+ 1
2

12 (xm)
12

,

u2(xm) = −q
n+ 1

2
12 (xm)

3
, v1((xm) = −q

n+ 1
2

21 (xm)
12

, v2(xm) = −q
n+ 1

2
21 (xm)

3
,

w1(xm) = ε2

2h̃2
m

− ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

22 ((xm)
2

)
, w2(xm) = − ε2

h̃2
m

+ 2
3

(
1

∆s
− q

n+ 1
2

22 (xm)
2

)
,

w3(xm) = ε2

2h̃2
m

+ ν
p

n+ 1
2

22 (xm)
4h̃m

+ 1
6

(
1

∆s
− q

n+ 1
2

22 ((xm)
2

)
,

D =
(

φl1(sn+1), g
n+ 1

2
1 (x0), . . . , g

n+ 1
2

1 (xNx), φr1(sn+1), φl2(sn+1), g
n+ 1

2
2 (x0), . . . , g

n+ 1
2

2 (xNx), φr2(sn+1)
)T

.
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4  Uniform convergence of the numerical method

In this section we prove the uniform convergence of the numerical solution given by 
(3.10). In the proof we use the well known following result.

Lemma 4.1  The cubic B-spline functions satisfy 

	

Nx+1∑
n=−1

|Bn(x)| ≤ 10, x ∈ [0, 1].

Proof  The proof may be completed using the methods outlined in [27].□

The first result that we will use in the proof of the uniform convergence is the dis-
crete analogous to the maximum principle for the continuous differential operator. 
We denote LNx = (L1, L2)T .

Lemma 4.2  Let Ψ̃n+1(x0) ≥ 0, Ψ̃n+1(xNx) ≥ 0 and LNxΨ̃n+1(xNx) ≤ 0 for all 
xm ∈ ΛNx . Then, Ψ̃n+1(xm) ≥ 0 for all xm ∈ ΛNx .

Next result gives the uniform convergence of almost second order of the spatial dis-
cretization constructed on the special piecewise uniform Shishkin mesh defined in 
previous section.

Theorem 4.3  If g ∈ C2[0, 1] represent a generic function with continuous second 
derivatives, used here to indicate the required regularity for the convergence esti-
mate, then the approximated solution XXX n+1(x) to the solution X̃XX(x) of (3.1) on ΩNs

s  
at the (n + 1)-th time level satisfies 

	
sup

0<ε1,ε2,ν≤1
∥XXX n+1 − X̃n+1∥ ≤ CN −2

x (ln Nx)2.

Then, the spatial discretization is an almost second order uniformly convergent 
method.

Proof  A specific spline interpolant XNx
(x) is provided in order to solve the problem 

(3.1), which is given by 

	
XXXNx(x) =

Nx+1∑
m=−1

wn+1
m;l Bm(x).

Below, we represent X̃ as X̃n+1 for simplicity’s sake. From [13], we know that it 
holds 
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	 ∥Dj(X̃ − XNx
)(xm)∥∞ ≤ Cj∥X̃(4)∥h

4−j
, j = 0, 1, 2.

The constants Cj  and h = max
m

h̃m are used and Dj  represents the derivative of order 

j.
By using the decomposition 

	 X̃XX(x) = X̃XXr(x) + X̃XXL(x) + X̃XXR(x),

for the numerical solution, it immediately follows 

	 ∥Dj(X̃ − XNx
)(xm)∥∞ ≤ Cj∥X̃XXr(x) + X̃XXL(x) + X̃XXR(x)(4)∥h

4−j
, j = 0, 1, 2.

� (4.1)

Now, we study each one of the three different cases associated to the value and the 
ratio between the diffusion and the convection parameters. Firstly, we consider the 
regular component.

	● If α ν2 ≤ η ε1 holds, we have the estimations (4.1) and using Lemma 3.3, clearly 
we can obtain 

	

|L1X̃r1(x) − L1(Xr1)Nx
| ≤

(
ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃r1

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
) (

1
ε1

)
,

|L2X̃r2(x) − L2(Xr2)Nx
| ≤

(
ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃r2

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

,

	 where 

	
R

m+ 1
2

k (x) = 1
∆s

+
q

m+ 1
2

kk (x)
2

.

	 Using that h = 1
Nx

, we get 

	 |L1X̃r(x) − L1(Xr)Nx
| ≤ CN −2

x ,� (4.2)

	 and also 

	 |L2X̃r(x) − L2(Xr)Nx
| ≤ CN −2

x .� (4.3)

	 Then, we finally have 
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	 |LNxX n+1
r − LNx(X)rNx

| ≤ CN −2
x .� (4.4)

	● If α ν2 ≥ η ε2, we have 

	

|L1X̃r1(x) − L1(Xr1)Nx
| ≤

(
ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃r1

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
) (

1
ε1

)
,

|L2X̃r(x) − L2(Xr)Nx
| ≤

(
ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃r

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

,

	 Using that h = 1
Nx

, we get 

	 |L1X̃r(x) − L1(Xr)Nx
| ≤ CN −2

x .� (4.5)

	 and also 

	 |L2X̃r(x) − L2(Xr)Nx
| ≤ CN −2

x .� (4.6)

	 Then, we finally have 

	 |LNxX n+1
r − LNx(X)rNx

| ≤ CN −2
x .� (4.7)

	● Finally, if δε1 < αν2 < δε2 holds, we have 

	

|L1X̃r(x) − L1(Xr)Nx
| ≤

(
ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃r

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
) (

1
ε1

)
,

|L2X̃r(x) − L2(Xr)Nx
| ≤

(
ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃r

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
) (

1
ε2

)
,

	 Using that h = 1
Nx

, we get 

	 |L1X̃r(x) − L1(Xr)Nx
| ≤ CN −2

x ,� (4.8)

	 and also 

	 |L2X̃r(x) − L2(Xr)Nx
| ≤ CN −2

x .� (4.9)
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	 So, we have 

	 |LNxXr
n+1 − LNx(X)rNx

| ≤ CN −2
x .� (4.10)

	 Hence, by combining (4.4), (4.7) and (4.10), we obtain 

	 |LNxXr
n+1 − LNx(X)rNx

| ≤ CN −2
x .� (4.11)

From (4.11) follows the uniform consistency for the regular component; then, the 
discrete maximum principle proves that it holds 

	 |X n+1
r − XrNx

| ≤ CN −2
x ,� (4.12)

which is the required result for the regular component.
 

Now, we will do the analysis for X̃XX
n+1
L (x); again we distinguish three cases.

• If α ν2 ≤ η ε1 holds. The estimates (4.1) and the use of Lemma 3.4, clearly 
shows that 

	

|L1X̃L1(x) − L1(XL1)Nx
|

≤
(

ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(ε−2
1 ϕL1(x) + ε−2

2 ϕL2(x)),

� (4.13)

	

|L2X̃L1(x) − L2(XL1)Nx
|

≤
(

ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

(ε−2
1 ϕL1(x) + ε−2

2 ϕL2(x)),

� (4.14)

 Then, if xm ∈ (0, τ1] or [1 − τ1, 1), it holds exp(−θ1xm) ≤ 1 and 
exp(−θ2(1 − xm)) ≤ exp(−θ1(1 − τ1)) ≤ Nx. Thus, (4.13) and (4.14) yield 

	

|L1X̃L1(x) − L1(XL1)Nx
| ≤ C(

ε1ψ2h
2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(ε−2
1 + ε−2

2 ).
� (4.15)
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Using the suitable barrier functions, then we have

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,� (4.16)

	

|L2X̃L1(x) − L2(XL1)Nx
|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

(ε−2
1 + ε−2

2 ).
� (4.17)

Using the suitable barrier functions, then we have

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.� (4.18)

 If xm ∈ (τ1, τ2] or (1 − τ2, 1 − τ1), h̄ ≤ CN −2
x τ2 ≤ CN −2

x ln Nx
√

ε2, then we 
have 

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x ln Nx
√

ε2(ε−2
1 ϕL1(x) + ε−2

2 ϕL2(x)),

and 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2√
ε2(ε−2

1 ϕL1(x) + ε−2
2 ϕL2(x)).

Using the suitable barrier functions, then we have 

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,

and also 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.

So, we obtain 

	 |Xr
n+1 − LNx(X)rNx

| ≤ CN −2
x ln(Nx)2.� (4.19)

When xm ∈ [τ2, 1 − τ2], we can obtain the required bounds by using a method 
similar to that used in the corresponding intervals of the previous cases. So, for all 
0 ≤ xm ≤ Nx, we have 

	 |LNxXL
n+1 − LNx(X)LNx

| ≤ CN −2
x (ln Nx)2,� (4.20)

which is the required result for the left layer component X̃XX
n+1
L (x).

By following the similar approach, we can prove the parameter uniform error esti-
mates for the component X̃XX

n+1
R (x)for this case, obtaining 

	 |LNxXR
n+1 − LNx(X)RNx

| ≤ CN −2
x (ln Nx)2.� (4.21)
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• If α ν2 ≤ η ε1 holds. The estimates (4.1) and the use of Lemma 3.4, clearly shows 
that 

	

|L1X̃L1(x) − L1(XL1)Nx
|

≤
(

ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(v4ε−4
1 ϕL1(x) + v4ε−4

2 ϕL2(x)),

� (4.22)

	

|L2X̃L1(x) − L2(XL1)Nx
|

≤
(

ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

( v4

ε1ε3
2ϕL1

(x) + v4

ε4
2

ϕL2(x)),

� (4.23)

 Then, if xm ∈ (0, τ1] or [1 − τ1, 1), it holds exp(−θ1xm) ≤ 1 and 
exp(−θ2(1 − xm)) ≤ exp(−θ1(1 − τ1)) ≤ Nx. Thus, (4.31) and (4.32) yield 

	

|L1X̃L1(x) − L1(XL1)Nx
| ≤ C(

ε1ψ2h
2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(v4ε−4
1 + v4ε−4

2 ).
� (4.24)

 
Using the suitable barrier functions, then we have

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,� (4.25)

	

|L2X̃L1(x) − L2(XL1)Nx
|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

( v4

ε1ε3
2ϕL1

(x) + v4

ε4
2

).� (4.26)

Using the suitable barrier functions, then we have 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.� (4.27)

 If xm ∈ (τ1, τ2] or (1 − τ2, 1 − τ1), h̄ ≤ CN −2
x τ2 ≤ CN −2

x ln Nx
√

ε2, then we 
have 
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	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x ln Nx
√

ε2(ε−2
1 ϕL1(x) + ε−2

2 ϕL2(x)),

and 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2√
ε2(ε−2

1 ϕL1(x) + ε−2
2 ϕL2(x)).

Using the suitable barrier functions, then we have 

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,

and also 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.

So, we can obtain 

	 |LNxXr
n+1 − LNx(X)rNx

| ≤ CN −2
x ln(Nx)2.� (4.28)

When xm ∈ [τ2, 1 − τ2], we can obtain the required bounds by using a method 
similar to that used in the corresponding intervals of the previous cases. So, for all 
0 ≤ xm ≤ Nx, we have 

	 |LNxXL
n+1 − LNx(X)LNx

| ≤ CN −2
x (ln Nx)2,� (4.29)

which is the required result for the left layer component X̃XX
n+1
L (x).

By following the similar approach, we can prove the parameter uniform error esti-
mates for the component X̃XX

n+1
R (x), obtaining 

	 |LNxXR
n+1 − LNx(X)RNx

| ≤ CN −2
x (ln Nx)2.� (4.30)

	● Finally, if δε1 < αν2 < δε2 holds, we have 

	

|L1X̃L1(x) − L1(XL1)Nx
|

≤
(

ε1

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(ν4ε−4
1 ϕL1(x) + ε−2

2 ϕL2(x)),

� (4.31)
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|L2X̃L1(x) − L2(XL1)Nx
|

≤
(

ε2

2
ψ2h

2 + ν

2

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 + 1

2

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

|X̃L1

(4)
(x)|

≤ C

(
ε2ψ2h

2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

(ε−1
2 ε−2

1 νϕL1(x) + ε−3
2 ϕL2(x)).

� (4.32)

	 Then, if xm ∈ (0, τ1] or [1 − τ1, 1), it holds exp(−θ1xm) ≤ 1 and 
exp(−θ2(1 − xm)) ≤ exp(−θ1(1 − τ1)) ≤ Nx. Thus, (4.31) and (4.32) yield 

	

|L1X̃L1(x) − L1(XL1)Nx
|

≤ C

(
ε1ψ2h

2 + ν

∥∥∥∥p
n+1/2
11

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
1

∥∥∥∥ψ0h
4
)

(ν4ε−4
1 + ε−2

2 ).
�(4.33)

	 Using the suitable barrier functions, then we have 

	

|L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,

|L2X̃L1(x) − L2(XL1)Nx
| ≤ C(

ε2ψ2h
2 + ν

∥∥∥∥p
n+1/2
22

∥∥∥∥ψ1h
3 +

∥∥∥∥Rn+1/2
2

∥∥∥∥ψ0h
4
)

(ε−1
2 ε−2

1 ν + ε−3
2 ).

� (4.34)

	 Using the suitable barrier functions, then we have 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.� (4.35)

	 If xm ∈ (τ1, τ2] or (1 − τ2, 1 − τ1), h̄ ≤ CN −2
x τ2 ≤ CN −2

x (ln Nx)2√
ε2, then 

we have 

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2√
ε2(ε−2

1 ϕL1(x) + ε−2
2 ϕL2(x)),

	 and 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2√
ε2(ε−2

1 ϕL1(x) + ε−2
2 ϕL2(x)).

	 Using the suitable barrier functions, then we have 

	 |L1X̃L1(x) − L1(XL1)Nx
| ≤ CN −2

x (ln Nx)2,

	 and also 

	 |L2X̃L1(x) − L2(XL1)Nx
| ≤ CN −2

x (ln Nx)2.

	 So, we can obtain 
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	 |LNxXr
n+1 − LNx(X)rNx

| ≤ CN −2
x (ln Nx)2.� (4.36)

	 When xm ∈ [τ2, 1 − τ2], we can obtain the required bounds by using a method 
similar to that used in the corresponding intervals of the previous cases. So, for 
all 0 ≤ xm ≤ Nx, we have

	  

	 |LNxXL
n+1 − LNx(X)LNx

| ≤ CN −2
x (ln Nx)2,� (4.37)

	 which is the required result for the left layer component X̃XX
n+1
L (x).

	 By following the similar approach, we can prove the parameter uniform error 
estimates for the component X̃XX

n+1
R (x) for this case, obtaining 

	 |LNxXR
n+1 − LNx(X)RNx

| ≤ CN −2
x (ln Nx)2.� (4.38)

	 Hence, by combining 4.11, 4.20, 4.21, 4.29, 4.30, 4.37, 4.38, it follows 

	 |LNxX̃(xm) − LNxXNx
| ≤ CN −2

x (ln Nx)2, 0 ≤ n ≤ Nx, for all the three cases.
� (4.39)

	 |LNxX n+1 − LNxXNx | = |g(xm) − LXNx | ≤ CN −2
x (ln Nx)2.� (4.40)

	 Now, for all cases, let 
L̂XNx

(x) = g̃(xm), XNx
(x0) = l1(sn+1), XNx

(xNx
) = m1(sn+1), which 

results in the linear system 

	 AW̃n+1 = B̃.

	 Next, it follows 

	 A(Wn+1 − W̃n+1) = B − B̃,� (4.41)

	 where 

	

Wn+1 − W̃n+1 = (W n+1
0;1 − W̃ n+1

0;1 , W n+1
1 ; 1 − W̃ n+1

1 ; 1, . . . W n+1
Nx;1

− W̃ n+1
Nx;1, W n+1

0;2 − W̃ n+1
0;2 , . . . W n+1

Nx;2 − W̃ n+1
Nx;2)T ,

B − B̃ = (g1(x0) − g̃1(x0), g1(x1) − g̃1(x1), . . . , g1(xNx)
− g̃1(xNx), g2(x0) − g̃2(x0), . . . , g2(xNx) − g̃2(xNx))T .

	 Thus, employing (4.40), we get 

	 ∥B − B̃∥ ≤ CN −2
x (ln Nx)2.� (4.42)
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	 Following to [30], in a similar way that in [20], we can prove that it holds 

	 ∥A−1∥∞ ≤ C.

	 Then, from (4.41) and (4.42) we can deduce that it holds 

	 ∥Wn+1 − W̃n+1∥ ≤ ∥A−1∥∥B − B̃∥ ≤ CN −2
x (ln Nx)2.� (4.43)

	 From boundary conditions, we get 

	 |W n+1
−1 − W̃ n+1

−1 | ≤ CN −2
x (ln Nx)2,

	 and 

	 |W n+1
Nx+1 − W̃ n+1

Nx+1| ≤ CN −2
x (ln Nx)2,

	 and thus 

	
max

−1≤m≤Nx+1
|W n+1

m − W̃ n+1
m | ≤ CN −2

x (ln Nx)2.

	 Hence, we have 

	

|X n+1 − XNx
(x)| ≤ max

−1≤m≤Nx+1
|W n+1

m − W̃ n+1
m

|
Nx+1∑
m=−1

|Dm(x)| ≤ CN −2
x (ln Nx)2,

	 which provides 

	
max

0≤m≤Nx

|X n+1 − XNx(x)| ≤ CN −2
x (ln Nx)2.

	 Thus, using the triangle inequality leads to 

	
sup

0<ε1,ε2,µ≤1
∥X n+1 − X̃n+1∥ ≤ CN −2

x (ln Nx)2,

	 which is the required result.

□
Now, we split the global error at the time tn in the form 

	 [X(sn)]ΩNs
s

− X̃n = ([X(sn)]ΩNs
s

− XXX n) + (XXX n − X̃n).
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Then, using Theorems 3.1 and 4.3, we deduce that the fully discrete scheme is a 
uniformly convergent method, which has second order in time variable and almost 
second order in spatial variable.

5  Numerical experiments

In this section, we show the numerical results obtained by using our numerical algo-
rithm, for some different test problems of type (1.1). The first example is given by

Example 5.1   

	




∂X1
∂s − ε1

∂2X1
∂x2 − 7ν ∂X1

∂x + (5 + x)X1 − 3X2 = −X1(x, s − 0.5) + s3(1 − s),
∂X2
∂s − ε2

∂2X2
∂x2 − 7ν ∂X2

∂x − 2X1 + (5 + ex)X2 = −X1(x, s − 0.5) + x2(1 − x)2
,

X1(x, s) = 0, X2(x, s) = 0, (x, s) ∈ Mb

X1(0, s) = 0, X1(1, s) = 0, X2(0, s) = 0, X2(1, s) = 0, s ∈ [0, 1].

Figures 1, 2, 3 and 4 display the numerical solution obtained for a particular choice 
of the value of the diffusion, convection and discretization parameters; from them, we 
clearly observe the boundary layers at both end points of the spatial domain.

The exact solution of this problem is unknown; then, to approximate the maximum 
errors, the double mesh approach (see [6]) is used. Then, we calculate 

	
ENx,Ns

k,ε1,ε2,ν = max
0≤m≤Nx

0≤n≤Ns

(
|X̃k(x2m−1, s2n−1) − X̃k(xm, sn)|

)
, k = 1, 2,

where X̃k, k = 1, 2, are the components of the solution of a mesh which have the 
original grid points and its midpoints for both variables. From these values. We cal-
culate the approximated orders of convergence, in an usual way, by 

	
RNx,Ns

k,ε1,ε2,ν = log2

(
ENx,Ns

k,ε1,ε2,ν/E2Nx,2Ns

k,ε1,ε2,ν

)
, k = 1, 2.

Moreover, we calculate the component-wise uniform maximum point wise errors, 
by using ENx,Ns

k , k = 1, 2, and from them, the uniform orders of convergence 
RNx,Ns

k , k = 1, 2, as follows 

	
ENx,Ns

k = max
ε1,ε2,ν

ENx,Ns

k,ε1,ε2,ν , RNx,Ns

k =
log(ENx,Ns

k /E2Nx,2Ns

k )
log 2

, k = 1, 2.

We use the Block Thomas Algorithm with each block of 2 × 2 matrix to solve the 
linear systems resulting when we solve systems with two equations (Examples 1 and 
2) and each block of 3 × 3 matrix to solve the linear systems resulting when we solve 
systems with three equations (Example 3). Moreover, each table also shows the CPU 
time (in seconds) taken for all values of the diffusion parameters at each column with 

1 3

Page 27 of 47    103 



P. Kumari, C. Clavero

Nx and Ns fixed. We can see from this table that the CPU time is small and is unaf-
fected by the values of the convection and the diffusion parameters.

Tables 1, 2 and 3 show the numerical results obtained by our algorithm for each 
one of the three different cases, respectively, depending on the value and the ratio 
between the diffusion and the convection parameters. From them, we clearly see the 
almost second order of uniform convergence of the numerical method, in agreement 
with the theoretical results.

Due that Tables 1, 2 and 3 show almost second order of uniform convergence, we 
can conclude that, in this example, the errors associated to the spatial discretization 
dominate in the global errors of the numerical method. To see numerically the second 
order of the time discretization, in agreement with Remark 3.2, we include a new 
table. Table 4 shows the numerical results obtained when the discretization parameter 
Ns is multiplied by 2 but the discretization parameter Nx is multiplied by 4; from 
this table, we clearly observe the second order of uniform convergence of the time 
discretization according our theoretical result. Here, we only show the results for the 
case when α ν2 ≥ η ε2 holds; similar results are obtained for the other two cases, 
α ν2 ≤ η ε1 and η ε1 < α ν2 < η ε2.

The second test problem that we consider is given by

Example 5.2 	 


∂X1

∂s
− ε1

∂2X1

∂x2 −
(

1 + x2 + sin(πx)
2

)
ν

∂X1

∂x
+ (2x(1 + s)2)X1 − 2X2 = −X1(x, s − 0.4) + exp(x)s(1 − s),

∂X2

∂s
− ε2

∂2X2

∂x2 − (1 + 2x)ν ∂X2

∂x
− X1 + (10x + 1)s2(1 − s)2X2 = −X1(x, s − 0.4) + x2(1 − x)2,

X1(x, s) = 0, X2(x, s) = 0, (x, s) ∈ Mb

X1(0, s) = sin(πx), X1(1, s) = 0, X2(0, s) = sin(πx), X2(1, s) = 0, s ∈ [0, 1].

In this case, again the exact solution is unknown; then, we use the double mesh prin-
ciple to approximate the maximum errors and the numerical orders of convergence 
obtained by using our algorithm.

Figures 5, 6, 7 and 8 display the numerical solution obtained for a particular choice 
of the value of the diffusion, convection and discretization parameters; from them, 
again the boundary layers at both end points of the spatial domain are observed.

Fig. 1  When ε1 = 4−22−10, ε2 = 2−22−10, ν2 = 5−42−10, Nx = Ns = 128 for example 5.1
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Fig. 4  Contour plots when ε1 = 4−22−10, ε2 = 2−22−10, ν2 = 5−42−10, Nx = Ns = 128 for 
example 5.1

 

Fig. 3  When ε1 = 6−22−10, ε2 = 2−22−10, ν2 = 4−22−10, Nx = Ns = 128 for example 5.1

 

Fig. 2  When ε1 = 5−22−10, ε2 = 3−22−10, ν2 = 2−22−10, Nx = Ns = 128 for example 5.1
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Tables 5, 6 and 7 show the numerical results obtained for this example; from them, 
the almost second order of uniform convergence of the numerical method can be 
deduced.

To see that our method can be extended to systems with a bigger number of equa-
tions, we consider a new example, which is given by

Example 5.3 	



∂X1
∂s − ε1

∂2X1
∂x2 − 5ν ∂X1

∂x + (4 + x)X1 − 2X2 − X3 = −X1(x, s − 0.5) + s2(1 − s),
∂X2
∂s − ε2

∂2X2
∂x2 − 6ν ∂X2

∂x − 2X1 + (4 + sin x)X2 − X3 = −X1(x, s − 0.5) + x(1 − x)2
,

∂X3
∂s − ε3

∂2X3
∂x2 − 7ν ∂X3

∂x − X1 − X2 + (4 + cos x)X3 = −X1(x, s − 0.5) + ex(1 − x),
X1(x, s) = 0, X2(x, s) = 0, X3(x, s) = 0, (x, s) ∈ Mb,

X1(0, s) = X1(1, s) = 0, X2(0, s) = X2(1, s) = 0, X3(0, s) = X3(1, s) = 0, s ∈ [0, 1].

Similarly to the case of two equations, we assume that 0 < ε1 ≤ ε2 ≤ ε3 ≤ 1 and 
0 ≤ ν ≤ 1. To discretize this new system, we use the same discretization as before, 
i.e., the Crank-Nicolson on a uniform mesh to discretize in time and the B-splines 
to discretize in space on an adequate Shishkin mesh. The only new question is the 
definition of the Shishkin mesh. To do that, now we distinguish four different cases.

Similarly to the case of two equations, we assume that 0 < ε1 ≤ ε2 ≤ ε3 ≤ 1 and 
0 ≤ ν ≤ 1. To discretize this new system, we use the same discretization as before, 
i.e., the Crank-Nicolson on a uniform mesh to discretize in time and the B-splines 
to discretize in space on an adequate Shishkin mesh. The only new question is the 
definition of the Shishkin mesh. To do that, now we distinguish four different cases.

Case 1: If α ν2 ≤ η ε1, we subdivide the unit interval into seven subintervals 
each as 

	[0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, τ3] ∪ [τ3, 1 − τ3] ∪ [1 − τ3, 1 − τ2] ∪ [1 − τ2, 1 − τ1] ∪ [1 − τ1, 1],

 where the transition points τ1, τ2 and τ3 are defined by 

	
τ1 = min

{
τ2

2
,

√
ε1

αη
ln Nx

}
, τ2 = min

{
τ3

2
,

√
ε2

αη
ln Nx

}
, τ3 = min

{
1
8

,

√
ε3

αη
ln Nx

}
.

� (5.1)

 There, with Nx a positive integer multiple of 
12, we take are Nx/12 + 1 uniformly spaced grid points on each of the subinter-
vals [0, τ1], [τ1, τ2], [τ2, τ3], [1 − τ3, 1 − τ2], [1 − τ2, 1 − τ1], and [1 − τ1, 1]. On the 
remaining subinterval [τ3, 1 − τ3], there are Nx/2 + 1 uniformly spaced grid points.

Case 2: If α ν2 ≥ η ε3, then, the unit interval is divided into five subintervals 
each by the appropriate fitted non-uniform Shishkin mesh each as 

	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, τ3] ∪ [τ3, 1 − σ1] ∪ [1 − σ1, 1],

 where now the transition points τ1, τ2, τ3 and σ1 are defined by 
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An effcient spline method to solve two-parameter 1D parabolic…

Fig. 5  When ε1 = 4−22−10, ε2 = 2−22−10, ν2 = 5−42−10, Nx = Ns = 128 for example 5.2

 

Fig. 6  When ε1 = 6−22−10, ε2 = 2−22−10, ν2 = 4−22−10, Nx = Ns = 128 for example 5.2

 

Fig. 7  When ε1 = 5−22−10, ε2 = 3−22−10, ν2 = 2−22−10, Nx = Ns = 128 for example 5.2
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τ1 = min
{

τ2

2
,

ε1

να
ln Nx

}
, τ2 = min

{
τ3

2
,

ε2

να
ln Nx

}
,

τ3 = min
{

1
8

,
ε3

να
ln Nx

}
, σ1 = min

{
1
4

,
ν

η
ln Nx

}
.

 There, with Nx a positive integer multiple of 8, we take Nx/2 + 1 evenly spaced 
grid points on the subinterval [τ3, 1 − σ1], whereas the remaining subinterval 
[0, τ1], [τ1, τ2], [τ2, τ3] there are Nx/8 + 1 uniformly spaced grid points, and 
Nx/4 + 1 uniformly spaced grid points on the subinterval [1 − σ1, 1].

Case 3: If η ε2 < α ν2 < η ε3, then, the unit interval is divided into six subinter-
vals each by the appropriate fitted non-uniform Shishkin mesh each as 

	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, τ3] ∪ [τ3, 1 − τ3] ∪ [1 − τ3, 1 − σ1] ∪ [1 − σ1, 1],

 where now the transition points τ1, τ2, τ3 and σ1 are defined by 

	

τ1 = min
{

τ2

2
,

ε1

να
ln Nx

}
, τ2 = min

{
τ3

2
,

ε2

να
ln Nx

}
,

τ3 = min
{

1
8

,

√
ε3

αη
ln Nx

}
, σ1 = min

{
1
8

,
ν

η
ln Nx

}
.

 Then, with Nx a positive integer multiple of 8, we take are 3Nx/8 + 1 evenly 
spaced grid points on the subinterval [τ3, 1 − τ3], whereas the remaining subinter-
val [0, τ1], [τ1, τ2], [τ2, τ3], [1 − τ3, 1 − σ1] and [1 − σ1, 1] there are Nx/8 + 1 uni-
formly spaced grid points.

Case 4: If η ε1 < α ν2 < η ε2, then, the unit interval [0, 1] is divided into six 
subintervals each by the piecewise uniform Shishkin mesh each as 

Fig. 8  Contour plots when ε1 = 4−22−10, ε2 = 2−22−10, ν2 = 5−42−10, Nx = Ns = 128 for 
example 5.2
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	 [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, τ3] ∪ [τ3, 1 − τ3] ∪ [1 − τ3, 1 − σ1] ∪ [1 − σ1, 1],

 where σ1 and τ1, τ2 are the transition points, which are now defined by 

	

τ1 = min
{

τ2

2
,

ε1

να
ln Nx

}
, τ2 = min

{
τ3

2
,

√
ε2

αη
ln Nx

}
,

τ3 = min
{

1
8

,

√
ε3

αη
ln Nx

}
, σ1 = min

{
1
8

,
ν

η
ln Nx

}
.

 Then, with Nx a positive integer multiple of 8, we take are 3Nx/8 + 1 evenly 
spaced grid points on the subinterval [τ3, 1 − τ3], whereas the remaining subinter-
val [0, τ1], [τ1, τ2], [τ2, τ3], [1 − τ3, 1 − σ1] and [1 − σ1, 1] there are Nx/8 + 1 uni-
formly spaced grid points.

Figures 9, 10, 11 and 12 display the numerical solution obtained for a particular 
choice of the value of the diffusion, convection and discretization parameters for all 
the four cases; clearly, the boundary layers at both end points of the spatial domain 
are observed.

Tables 8, 9, 10 and 11 show the numerical results obtained for this example; 
from them, the second order of uniform convergence of the numerical method can 
be deduced. Then, we see that the technique used in this work can be extended to 
systems with a bigger number of equations; the numerical results show again the 
efficiency and the order of uniform convergence of the numerical algorithm.

Fig. 9  When ε1 = 4−22−10, ε2 = 3−22−10, ε3 = 2−22−10, ν2 = 5−42−10, Nx = Ns = 128 
for example 5.3

 

Fig. 10  When ε1 = 5−22−10, ε2 = 4−22−10, ε3 = 3−22−10, ν2 = 2−22−10, Nx = Ns = 128 
for example 5.3
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6  Conclusions

In this work we have approximated efficiently the exact solution of a type of one-
dimensional parabolic singularly perturbed systems for which the diffusion param-
eters are different at each equation of the system, but the convection parameter is the 
same for all equations. Moreover, in the partial differential equation associated to the 
continuous problem, a time delay term appears. In general, when the diffusion and 
the convection parameters take small values, the exact solution of the continuous 
problem has overlapping boundary layers at the end points, due to the different dif-
fusion parameters, of the spatial domain; the width of the boundary layers depends 
on the value and the ratio between the diffusion and the convection parameters. To 
approximate numerically the exact solution of the continuous problem, we use a 
numerical method which combines the Crank-Nicolson method to discretize in time, 
constructed on a uniform mesh, and a cubic spline collocation method to discretize 
in space. Then, when the spatial discretization is constructed on and adequate non-
uniform Shishkin mesh, the fully discrete scheme is a uniformly convergent method, 
having second order in time and almost second order in space. To see in practice 
the efficiency and the uniform convergence of the numerical algorithm, the numeri-
cal results obtained for some test problems are showed. These examples show that 
same technique, can be extended to systems with a larger number of equations. In 
the future, we will try extend similar ideas to the most interesting case of parabolic 
multidimensional singularly perturbed systems, again with small parameters in both 
the diffusion and the convection terms.

Fig. 11  When ε1 = 8−22−10, ε2 = 6−22−10, ε3 = 2−22−10, ν2 = 4−22−10, Nx = Ns = 128 
for example 5.3

 

Fig. 12  When ε1 = 6−22−10, ε2 = 3−22−10, ε3 = 2−22−10, ν2 = 4−22−10, Nx = Ns = 128 
for example 5.3
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