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Abstract

We investigate how information-spreading mechanisms affect opinion dynamics and vice versa via an agent-based simulation on
adaptive social networks. First, we characterize the impact of reposting on user behavior with limited memory, a feature that
introduces novel system states. Then, we build an experiment mimicking information-limiting environments seen on social media
platforms and study how the model parameters can determine the configuration of opinions. In this scenario, different posting
behaviors may sustain polarization or reverse it. We further show the adaptability of the model by calibrating it to reproduce the
statistical organization of information cascades as seen empirically in a microblogging social media platform. Our model combines
mechanisms for platform content recommendation, connection rewiring, and limited-attention user behavior, paving the way for a
robust understanding of echo chambers as a specialized phenomenon of opinion polarization.

Significance Statement

Polarization and information diffusion are often studied separately, yet in online environments they are deeply intertwined. We pre-
sent an agent-based model that incorporates limited memory, reposting, and recommendation algorithms, capturing how real social
media feeds shape both cascades of information and opinion dynamics. Small changes in posting or recommendation rules can flip a
system from consensus to polarization. Moreover, the parameters that reproduce empirical cascade statistics from the Brexit and vac-
cine debates also yield polarized opinion states. This mechanistic link provides a framework for understanding echo chambers and
suggests practical guides for intervention, advancing both fundamental research and policy-relevant insights into digital democracy.

Introduction

The term echo chamber was popularized by Jamieson and Cappella
(1) to describe a bounded media space that amplifies messages
while insulating them from rebuttal. With the rise of social media,
echo chambers, often conflated with filter bubbles (2), have become
central to debates on misinformation, democratic resilience, and
collective decision-making (3, 4). These information-limiting envi-
ronments are thought to exacerbate polarization by restricting ex-
posure to diverse viewpoints (5, 6).

Despite their importance, the mechanisms driving echo cham-
bers remain difficult to pin down. Online behavior arises from a
multilayered interplay between individual activity and platform-
level algorithms. Features such as feed ranking, recommendation,
and follow/unfollow dynamics evolve continuously and are rarely
transparent. To understand and eventually mitigate polarization,
it is crucial to develop mechanistic models that disentangle user-
driven interactions from algorithmic interventions and allow sys-
tematic exploration of their effects.

Opinion dynamics models have long provided insights into how
interactions shape collective beliefs (7-11). Beyond static interac-
tions, adaptive rewiring shows how homophily can fragment net-
works into polarized communities (12-15). Recommendation
mechanisms can further sharpen polarization, even when rewir-
ingisunbiased (16, 17). Yet, the role of information diffusion itself, in-
cluding limited attention and reposting, has received
comparatively less mechanistic treatment.

Empirical studies show that individuals do not scale their at-
tention with the abundance of available content (18). Instead, re-
posting, memory limits, and competition among posts produce
heavy-tailed popularity distributions and critical-like dynamics
(19-21). While such mechanisms are central to the physics of so-
cial media (22), their connection to polarization and echo-
chamber formation remains underexplored.

Here, we investigate the interplay between information spreading
and opinion polarization using an agent-based model on adaptive
networks. We extend the framework of de Arruda et al. (16) by

Received: August 28, 2025. Accepted: November 23, 2025

OXFORD

UNIVERSITY PRESS

Competing Interest: The authors declare no competing interests.

© The Author(s) 2025. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article dis-
tributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For com-

mercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained
through our RightsLink service via the Permissions link on the article page on our site—for further information please contact

journals.permissions@oup.com.

920z Aienigae 0 Uo Jasn eo910J8WSH BUIDIPSI 9P pelnoed Aq L8€/0¥8/20v1ebd/ | /s/eonle/snxauseud/woo dno-oiwspese//:sdny wolj papeojumoq


https://orcid.org/0000-0002-0464-7050
https://orcid.org/0000-0002-4325-6888
https://orcid.org/0000-0002-0895-1893
mailto:kleber.oliveira@ul.ie
mailto:henrique.ferraz@bifi.es
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/pnasnexus/pgaf402

2 | PNAS Nexus, 2026, Vol. 5, No. 1

equipping agents with limited memory, enabling reposting of past
content as in real-world feeds. This extension lets us track infor-
mation cascades while studying how posting, recommendation,
and rewiring interact with opinion dynamics.

We address three questions: (i) How does reposting under lim-
ited memory alter the states of consensus and polarization? (ii)
Under what conditions do information-limiting environments
sustain polarization or allow depolarization? (iii) Can the model
reproduce empirical cascade patterns observed in polarized de-
bates, and what does this imply about the mechanisms behind po-
larization? Through extensive simulations and calibration against
datasets on Brexit and vaccine debates (23), we show that the
same mechanisms that generate realistic cascade distributions
also reproduce polarized opinion states. This provides a mechanis-
tic link between diffusion and polarization.

The agent-based model

Our model extends the one introduced by de Arruda et al. (16).
That model represents social media platform interactions and
treats opinion as a continuous variable, bounded between -1
and 1, held by each user. Social media users are represented as no-
des in an adaptive directed network. A user points to another if
they receive content from them (followership relation); that is,
the content is spread following the opposite direction of edges.

Each iteration of the model follows successive steps, which act
as filters that determine whether a randomly activated user goes
to the next step.

In this work, we extend the model by allowing users to post pre-
viously existing content. Each piece of content has a fixed opinion
value 6, always drawn uniformly at random upon its creation.
However, here each user is equipped with a memory list of size
a, filled as they receive content from neighbors (i.e. a social media
feed). Each user’'s memory can be seen as an ordered list of 6 val-
ues from previous posts.

Memory lists are updated in such a way that the last piece of
content received is prioritized. We index the memory list with
0c,suchthatce (1, ..., o}, and the lower the index, the more likely
the content will be posted. New pieces of content are introduced
from the beginning of the list (61) based on what users receive
from their neighbors. In this case, existing pieces of content
move to a lower order (i.e. Ocr1 < 6c).

When the list is at full capacity (there are o pieces of content)
and new content is received, the piece at the bottom (6,) is re-
moved, and all other pieces move one position lower so that the
new one is placed at the top.

When reposting, users choose the first piece of content in their
memory lists (6;). Once the content is posted, it moves from the be-
ginning to the end of the list, so it will be picked last. Hence, the opin-
ion of the content which was just posted becomes 6, in the memory
list, and each other piece moves to a higher order (i.e. 6. < 0c41).

We further introduce a new parameter called the innovation
probability x, which, at the posting step, controls how many iter-
ations inject new content into the system. That is, when u=1,
the base model from de Arruda et al. (16) is recovered regardless
of the memory lists.

Each iteration of our model is described by the following steps:

1. Activating: a user i, chosen uniformly at random, becomes
active.

2. Posting: the active user i either creates a new content with
probability u, or chooses the content at the top of their

memory list (9=06,) with probability 1—u. The content is
posted according to a probabilistic filter function (Eq. 1) of
their opinion b; and the content opinion 6.

3. Receiving: Each follower j of node i receives the content ac-
cording to another probabilistic filter function (Eq. 2) of b;, b;
and a parameter ¢. When they do, the content is added to
their memory list from the top. The control of this filter
through ¢ is a proxy for a social media recommendation
algorithm.

4. Realigning: Each opinion b; of followers who successfully re-
ceived the contentincreases or decreases by a constant4. The
opinions are repelled away from the post with probability |0 —
b;|/2 and attracted otherwise.

5. Rewiring: Each follower j may stop following i and start fol-
lowing another user at random through a probability propor-
tional to the difference between b; and b;.

These steps are visually summarized in Fig. 1. In our model ex-
tension, we implement rules to define user behavior, which were
previously studied in Refs. (16, 24). In particular, we set the prob-
abilistic rule acting as the posting filter as

Py(0, by) = cos? (510 - bil), (1)

where 6 is the opinion of the content (whether created or picked
from the memory list), and b; is the opinion of the active node i.
This is referred to in Ref. (24) as conflicting posting, which is the

same as PP from Eq. 2 in Ref. (16).
Correspondingly, the receiving filter is given by

Pu(by, by, ¢) = cos? (5 b; = bjl + ). @

This filter was previously studied as the function P!, from Eq. 5 in
Ref. (16). We refer to the parameter ¢ as the recommendation control.
It determines where the cosine-squared function begins, which
enables us to adjust the initial behavior of the recommendation
algorithm. Thatis, it may let information propagate between pairs
of users who agree with each other or the opposite. Notice the re-
celving step does not consider the content opinion .

Opinion polarization measures

The main system state we are interested in measuring is the dis-
tribution of user opinions. In particular, we characterize a state
as polarized when the opinion distribution is bimodal.

To measure the bimodality of the opinion distributions, we
adopt the bimodality coefficient used by Arruda et al. (16), which
ranges from O to 1. The bimodality coefficient BC(b) (25) is defined
as

9> +1
3(n—1)°
-2(n-3)

BC(b) =
k+

3)

where g is the sample skewness (26) and k is the excess kurtosis (26) of
the opinion distribution b. The distribution b is typically consid-
ered bimodal when BC(b) > 5/9, as empirically shown in (25).

Another way to measure how the opinion distribution changes
towards polarization is via the moment ratio diagram, which is
composed of bounded versions of the third- and fourth-moment
ratios of the distribution called L-moments (27). That is, given
the opinion distribution b and its kth order statistic by, its sample
rth L-moment 4, is defined by
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Fig. 1. Schematics of the model iterations: the diagram represents each
iteration step. In the first (activating), user u was chosen at random and
has three followers (users a, b, and c). Each node features a memory list
with previous content, but only u’s is shown. Next, the posting step may
happen in two ways. With probability x4, user u posts new content (whose
opinion was drawn as 6 = 0.3) that was not in his memory list; otherwise,
with probability 1 — g, the first content of user u’s list is selected and
posted (6, = 0.43). Following on to the receiving step and assuming u
introduced the new content (6. = 0.3), the probabilistic filter (defined in Eq.
2) does not allow the new content to be incorporated into a’s memory list,
but only to the other two neighbors. Then in the realigning step, neighbors
who incorporated the new content have their opinion either attracted or
repelled towards 6 by a constant factor (A =0.2 in the example). Finally,
those neighbors whose opinions are sufficiently different than u rewire
their followership edge to another random node in the rewiring step.

-1 .
w=r () (7 @
by <-+<bg<--by) J

Fig. 2. New system states introduced with the parameter x: the same
parameterization except for different innovation probability x can lead to
consensus in a homogeneous topology or two polarized communities. In
a), the opinion distribution is in the other two panels, where hexagon
markers represent the network in (b) and triangle markers the one in (c).
In b), the innovation probability x=1.In c), u=0.1.

The moment ratio diagram is composed of the L-skewness
73 :=13/)p, which is bounded between -1 and 1, and the
L-kurtosis z4 := A4/, Which is bounded between —1/4 and 1.

We choose these over the conventional moments (which are
unscaled) to compare different stages in the evolution of the opin-
ion distribution under the same scale. However, the L-moments
share many of the properties of their conventional counterparts.
For example, a distribution with high L-skewness would be inter-
preted as being skewed. We work out a small example with syn-
thetic distributions to show how these measures behave in the
Supporting Information S1.

Results

Innovation probability introduces new states

As the first step to characterize our model, we run an experiment
on a known parametrization in de Arruda’s model to understand
the impact of the innovation probability x. To this end, we use an
Erdés-Rényi network of size N = 10* and mean in-degree z = 10.21,
and pick parameters known to lead the system to a consensus
scenario when the original model is recovered (x = 1).

However, running the simulation with the same parameters
but a different innovation probability (u=0.1) yields a polarized
system. We compare the two configurations for the same number
of iterations in Fig. 2. In Fig. 2a, the opinion distributions are
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Fig. 3. Characterizing the effect of innovation on opinion evolution: the
moment ratio diagram for the evolution of the opinion distribution in an
Erdés-Rényi network of size N = 10° and mean in-degree z = 10.21 for the
minimum and maximum innovation probability 4. Both
parameterizations are tested with 100 different trajectories starting from
the same initial opinion distribution (uniformly random between —1 and
1), omitted in the diagram for clarity. Each trajectory has 100 points, and
every two consecutive points are produced from steps of 10N iterations of
the model.

plotted against each other. We also show how each network struc-
ture is wired in each case, with nodes colored according to their
opinions. Figure 2b shows the case for u =1, which is statistically
the same as the initial network, and opinions are homogeneously
spread around 0. Figure 2c reveals that, for the polarized state at
u=0.1, the network becomes separated into two densely con-
nected groups of largely opposing opinions.

In order to characterize the impact of the innovation probabil-
ity xin the opinion distribution, we run a hundred simulations on
the same network for u =0 (no innovation) and u =1 (de Arruda’s
original model). We then use each of these simulations to produce
a trajectory of opinion distributions with 100 points. These trajec-
tories are then compared via the moment ratio diagram of Fig. 3,
which uses L-moments to describe these distributions. The
L-skewness and L-kurtosis are bounded counterparts to the sam-
ple skewness and excess kurtosis. Skewness measures the asym-
metry of a distribution, indicating whether the distribution of
opinions is skewed. Kurtosis indicates whether the data has heav-
ier or lighter tails compared to a normal distribution, with higher
kurtosis indicating more extreme values.

We show in Fig. 3 how opinion distributions become very sepa-
rated, even though they share the same starting point for both u =
0 and u=1. This starting point was omitted to improve visibility,
but it is found around (3, ©4) = (0.16,0.16), corresponding to an
opinion distribution which is approximately uniform (considering
the finite-sized network) between —1 and 1.

The final point of the x=1 trajectories is around (0.65,0.3),
while that of the x4 =0 trajectories is nearly the extreme coordi-
nates (1,1). The extreme coordinates correspond to distributions
accumulated into a few specific values, as u = 0 prevents the cre-
ation of posts with different opinions 6 once the system is initial-
ized. This is the same as the predominance of very few values of
across the system (see Supporting Information S2).

Simulating an information-limiting environment

Next, we implement an experiment to investigate opinion dynam-
ics parameterized to hinder the spread of information. This is

done by running simulations on a network with two communities
via a stochastic block model, where users in one community are
initialized with opinion 1, and those in the other are initialized
with opinion —1. Each community has 500 users with a mean in-
degree and out-degree of z=8, and only 1% of edges bridge the
two communities. Users are forced to remain in their community
as we disable the possibility of rewiring. Furthermore, we specify
an alternate posting filter (Eq. 5) and compare simulation out-
comes between this filter and the original one (Eq. 1). See
Materials and methods for more details.

The spread of information is measured by looking at the max-
imum size reached by cascades, which is the same as the number
of users who share the same piece of content. In Fig. 4a and b, we
show how cascades can grow according to the relationship be-
tween the innovation probability x and the recommendation con-
trol ¢, each for a specific posting filter (Eq. 1 for (a), Eq. 5 for (b)). For
each pair of y and ¢, we observe the maximum cascade size in each
of the 500 simulations and average them to obtain the solid line,
with shades representing the difference to the corresponding SD.

As expected, the lower the innovation probability x is, the great-
er the sizes cascades can reach since fewer posts are competing
with each other. Both posting filters have qualitatively similar be-
havior, with the conflicting posting showing a slightly higher SD
for 4 =0. Our experiment setup is shown to limit the spread of in-
formation around ¢ = z/2, where the receiving filter (Eq. 2) hinders
communication within and between communities. Next, we
measure how contents spread in this scenario regarding their
opinion 6. By fixing x=0.2 and three values of ¢, Fig. 4c and d
shows that the less permissive recommendation control regime
(¢ ==/2) favors extreme content opinion, while the most permis-
sive (¢ = 0) punishes it. However, the middle regime (¢ = 37/8) dis-
plays different behaviors for each posting filter. In Fig. 4c, it
noticeably hinders the growth of moderate content (i.e. # around
0). In Fig. 4d, this effect is less pronounced, meaning the dynamics
still permit the spread of content from the entire 6 range.

Then, we demonstrate in Fig. 5 how the increase of content var-
iety through the parameter x affects the final opinion distribution
for users locked into the two communities starting with extreme
opinions. To do this, we use the bimodality coefficient BC. In
Fig. 5a, the conflicting posting filter blocks moderate posts (by
not allowing their cascades to grow, as seen in Fig. 4c). However,
when the aligned posting filter is employed (Fig. Sb), the system
is depolarized as the variety of content increases with u. For
¢ =n/2, cascade growth is hindered, and therefore, the system re-
mains polarized throughout the range of u for both filters, well
above the line indicating the BC threshold at 5/9. But when the
aligned posting filter is used, for ¢ =3z/8 and ¢ =0, we see that
even though the BC values of the final opinion distribution show
a wide dispersion at small g, they narrow into unimodal opinion
distributions as soon as x=0.3 and remain under the dashed
threshold 5/9 for most of the remaining x range.

Model calibration against data

We implement a calibration task to see how our model conforms
to real-world scenarios. Given the availability of network struc-
ture, user opinions, and cascade sizes in the datasets, we opt to fo-
cus on the latter as the target of our model calibration. Thatis, we
consider the empirical cascade size distribution to be aggregated
over time, while the network structure and user opinions are
left as degrees of freedom in the time evolution of our model
(even though all simulations start from the same network
structure).
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Fig. 4. Effects of model calibration on information spreadingin a syntheticinformation-limiting environment: In a and b), for two different posting filters,
the maximum cascade size produced for a range of recommendation control ¢ and five values of innovation probability u. For each pair of x and ¢, we run
500 simulations and obtain the maximum cascade size in each of them; the solid line is the average among the 500 maximum cascade sizes, while the
shade is the average added or subtracted to the corresponding SD. In ¢ and d), again for each respective posting filter, we compare the maximum cascade
size with content opinion 6 for three values of recommendation control ¢ on a fixed innovation probability 4 = 0.2. Since each cascade is associated with
an opinion content 4, which is continuous, we group cascades into each of a thousand bins between —1 and 1. From these, we extract those with the
maximum cascade size; the resulting values are represented with lines smoothed via the Savitzky-Golay filter (28).

Thus, we formulate the model calibration as an optimization
task to reproduce the closest possible distribution of cascade sizes
over our parameter space. In particular, we search for the param-
eters that control the behavior of the dynamics: the innovation
probability u, the recommendation control ¢, the opinion variation
4, and the number of iterations ny,,. The precise formulation of
the optimization task is given in Materials and methods.

In Fig. 6, we show the results for simulations parameterized ac-
cording to the lowest values of KS statistic observed, which are at
a =27 for the Brexit dataset and a = 29 for the VaxNoVax dataset.
For values of a < 30, there is no significant difference in the KS re-
sults, indicating that a does not play a major role in the model’s
dynamic outcomes. More details regarding the optimization are
shown in Supporting Information S4.

For both datasets, the optimized models represent most of the
cascades found in the real data. Specifically, the values of the KS
statistics are on average (3.617 +0.595)x 10~ for Brexit and
(1.385 + 0.146) x 10~2 for VaxNoVax. Note that a common choice
to consider the KS statistic as a good fit is 0.05. In the case of our
results, the values obtained are significantly lower. We acknow-
ledge that there is a limitation in the tails of the distributions,
which are not well represented. However, since the plot axes fol-
low logarithmic scales, the discrepancy between data and simula-
tion is much more pronounced at the extreme events (see Fig. 6).

To further understand the opinion dynamics and the effect of
the cascades on the opinions, we calculate the bimodality

coefficient of the resulting opinions BC(b). On average, BC(b) is
(0.892 + 0.007) for Brexit and (0.623 + 0.010) for VaxNoVax. Both
values indicate that the opinion distributions are bimodal, and
thus, the opinions are polarized. Interestingly, the parameters
that generate cascades compatible with the real data also polarize
opinions in the synthetic system. Furthermore, the bimodality of
VaxNoVax is consistent with the results found in real data in
our previous study (16), reported to be between 0.60 and 0.67.

The methodology used considers that the best result is not ne-
cessarily when the dynamics converge to a fixed result. However,
for the best results obtained here, we found that BC does not
change significantly even when the simulation runs for many
more iterations.

Discussion and conclusion

We introduced an agent-based model that captures the two-way
coupling between information diffusion and opinion polarization
on adaptive social networks. By incorporating limited memory
and reposting behavior, the model reflects key features of social
media feeds, enabling us to study how cascades of information
interact with the dynamics of opinion formation.

Our findings reveal several insights. First, the innovation prob-
ability (i.e. the likelihood of introducing new content) acts as a crit-
ical switch between consensus and polarization. Low innovation
reduces content diversity, allowing entrenched narratives to
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Conflicting posting (Eq. 1)
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Fig. 5. Polarized communities reacting to the increase of content innovation: for each combination of posting filter (Eq. 1 in (a), Eq. 5 in (b)), each
recommendation control ¢ (coded by color) and each value of innovation probability x, a thousand simulations are run and represented by scatter points
corresponding to the bimodality coefficient BC associated to the final opinion distribution. Colored dashed lines are the median of the 1,000 points at each
value of 4. After being initialized with extreme opposite opinions in each module, the experiment is performed without rewiring, and the resulting opinion
distributions are obtained after 10° iterations. The dark dashed line at BC = 5/9 signalizes where opinion distributions are considered bimodal.

dominate and splitting the network into polarized camps. Second,
in information-limiting environments polarization is sustained or
mitigated, even when users cannot rewire their social ties. Third,
by calibrating the model to empirical cascade data from Brexit
and vaccine debates, we showed that the parameter regimes
that best reproduce real cascade statistics also lead to polarized
opinion states.

Conceptually, our work offers a mechanistic explanation of
echo chambers as emergent phenomena arising from the com-
bined effects of user memory, reposting, and recommendation.
Methodologically, it bridges theoretical opinion dynamics with
empirical observations, showing that calibrated agent-based
models can reproduce not only qualitative patterns but also stat-
istical properties of real data. Practically, our results suggest that
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Fig. 6. Calibrating the model against data: complementary cumulative
distribution function (CCDF) of cascade sizes obtained from the optimal
simulation against those from each dataset. The green line corresponds
to the average of 100 simulations, while the shades account for the SD of
simulated cascade sizes. In a), the model is calibrated against cascades
from the Brexit dataset, and the set of optimal simulation parameters
found is (i, A, @, Nier) = (0.658, 0.373, 1.366, 6.379 x 10°) for a feed size
a=27. The KS statistic between the sample distribution from data and
those from simulations averages at (3.617 + 0.595) x 10. In b), the model
is calibrated against cascades from the VaxNoVax dataset, and the set of
optimal parameters is (4, A, ¢, Nite,) = (0.093, 0.724, 2.863, 6.474 x 10°) fora
feed size a =29. The KS statistic between the sample distribution from
data and those from simulations averages at (1.385 + 0.146) x 1072

interventions targeting platform parameters, such as increasing
content diversity or modifying reposting incentives, may help re-
duce polarization.

While our study advances understanding of polarized online
environments, open challenges remain. Extreme events in cas-
cade growth, not fully captured here, call for incorporating bursty
dynamics and heterogeneity in user activity (21, 29, 30).
Additionally, richer datasets combining structural, temporal,
and opinion measures would enable more comprehensive calibra-
tion and validation. One may also want to understand how effect-
ive interventions can be designed from the insights of our model,
which would involve modeling incentives via evolutionary game
theory (31, 32). Furthermore, the study of agent-based models
powered by large language models (LLMs) is gaining traction in
the field of social simulations (33).

In conclusion, polarization and information diffusion cannot
be studied inisolation. By tracking how cascades unfold alongside
opinion shifts, our model provides a framework for investigating
the mechanisms that sustain or dissolve echo chambers and of-
fers a foundation for designing interventions to foster healthier
online discourse.

Materials and methods

Datasets

In our study, we consider two datasets published by Minici et al.
(23). They were collected from the social platform Twitter under
a background of strongly polarized debates. These datasets con-
tain measurements of network structure, cascades of retweets,
and opinions of either users or posts. All of these measures are
represented in our model, which makes the data good candidates
for empirical studies.

The first dataset, named “Brexit,” was measured in the context of
the Brexit referendum in the United Kingdom between May and July
of 2016. It features a network with 7,589 nodes and 532,460 edges.
The number of cascades is 19,963, with minimum and maximum
sizes of 2 and 256, respectively. The complementary cumulative dis-
tribution function (CCDF) of the cascade sizes is shown in Fig. 6a.

The second dataset, dubbed “VaxNoVax,” was collected during
vaccine debates in Italy in 2018. Its associated network has 14,315
nodes and 1,714,180 edges. It contains 43,923 cascades ranging in
size from 2 to 1,468 (see Fig. 6b). We also provide the degree distri-
bution of both networks in Supporting Information S3.

Parameter characterization

To produce Fig. 2 and 3, we set up the simulation on an
Erdés-Rényi network of size N =10%, with recommendation con-
trol ¢==/2, opinion variation A=0.1 and feed size a=1.
Opinions are initialized as a uniformly random number between
-1 and 1, and we execute 10° iterations for Fig. 2, and 100 steps
of 10N iterations for each value of x in Fig. 3.

Information-limiting environment experiment

Here, we describe how our experiment in an information-limiting
environment is designed and set. First, we produce a synthetic
network with two communities separated by very few edges. We
employ the Poisson degree-corrected stochastic block model as
implemented in Ref. (34) to generate a network with size
N =103, with both in-degree and out-degree distributions from
Poisson with an average z =38 and two modules. Only 1% of the
edges connect the two modules.

We want to design a polarized scenario where users are locked
into two distinct communities, both separated by opinion and net-
work structure. Hence, this experiment is executed with the re-
wiring rule disabled, and users have opinions initialized as 1 in
one module and —1in the other. Thatis, the system always starts
fully polarized in this experiment.

We also highlight an important distinction to the original mod-
el setup. Instead of the posting filter from Eq. 1, we opt to use the
following:

cosz<g|9— bi\), if10-b <1
0, otherwise.

Pp(0, by) = { (%)
This change means that, in practice, a user i will never post a con-
tent of opinion § when the difference |0 — b;| is greater than one.
Since each user is initialized with an opinion of either 1 or -1,
they will not post any content whose 6 has a different sign to their
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opinion unless it has changed since the beginning of the
simulation.

Then, we set the opinion variation A=0.1 and feed size a=1
and proceed to understand how these features impact the growth
of cascades of content posting by systematically testing how pa-
rameters react to each other, especially the recommendation con-
trol ¢ and innovation probability u.

To produce Fig. 4a and b, we fix each value of y and arange of 41
values of ¢ between 0 and #. For each pair of x and ¢, we run 500
simulations of 10° iterations each and annotate what is the max-
imum cascade size resulting from each. The solid line represents
the average of the 500 maximum cascade sizes, and the shades
are the corresponding SD added or subtracted from the average.

We obtain Fig. 4c and d by fixing u = 0.2, three values of ¢ and
running 100 simulations for 10° iterations each. Each value of ¢
then generates a large number of cascades: 9,372,911 cascades
for ¢ =0, 8,901,320 cascades for ¢ =3z/8 and 5,090,826 cascades
for ¢ = x/2. These are binned through a thousand values of content
opinion 6§, which we then use to extract a maximum cascade size.
Finally, the maximum cascade sizes for each bin of ¢ are repre-
sented together through smoothed lines via the Savitzky-Golay
filter (28).

Finally, Fig. 5 considers a range of 41 values of », from 0.1 t0 0.9,
and the three previously tested values of ¢ (0, 3z/8, and n/2). At
each point given by a combination of parameters, we run 1,000
simulations.

Model calibration task

Our model is calibrated via a search in a multidimensional space
made of four parameters, which are g, ¢, 4, and nj,. In particular,
we minimize the Kolmogorov-Smirnov (KS) distance via a single-
objective genetic algorithm from the implementation in Ref. (35)
by considering the feed size a as a fixed parameter when the heur-
istic is initialized. The values of « are selected considering the KS
statistic obtained for a range up to a = 45, found in the Supporting
Information S4.

Since the datasets are a small sample (36) of the activity in sub-
sets of the Twitter platform retrieved by the first version of the
API, itis a challenging task to accurately estimate the parameters
a priori due to their dependence on time. We cannot know how the
volume of activity represented in the sample maps to the actual
one in the system at the time. In essence, it is not trivial to match
one simulation iteration to a time scale in the real world.

As such, two of our parameters encapsulate the time frame we
are trying to match: the number of iterations ny.,, but also the
opinion variation 4 as it modulates how intense changes in user
opinion are. Intuitively, a high value of 4 means fewer iterations
are needed for the system to reach stable configurations. Once
there is a time window set by n;.e, and 4, the innovation probability
w1 1s fundamental to fix the maximum cascade size.

Finally, the recommendation control ¢, mentioned back in sec-
tion “The agent-based model” as related to how users receive
posts of different opinions, can drive the system towards various
states of opinion polarization (as observed in previous works (16,
24)).

Let d be the empirical distribution of cascade sizes from data
and s the sample distribution of cascade sizes obtained from the
simulation. As each dataset has a fixed distribution of cascade
sizes, let the empirical cumulative distribution function of d be
given by F,(x). As for the sample distribution s, it is parameterized
with the innovation probability x4, the recommendation control ¢,
the opinion variation 4, and the number of iterations nje,.

We are then interested in finding the simulation parameters
that minimize the Kolmogorov-Smirnov (KS) statistic (37) be-
tween the two samples. That is, the model calibration task is

HL%%,ZQ sup [Fa() = Fs(X, t, ¢, A, @, Niger)| (6a)
subject to 0.01 < <0.99 (6b)
O0<¢<=m (60)

0<A<1 (6d)

1.5x10° < Niger < 6.5%x 10° (6€)

where Fs(x, i, A, ¢, a, Nier) 1s the empirical cumulative distribution
of cascade sizes from simulations parameterized accordingly.

After fixing a value of o, which we obtain by testing the KS stat-
istic for different ranges of parameters (see Supporting
Information S4), we obtain an optimal set of parameters with
the genetic algorithm. From this set of parameters, Fig. 6 is pro-
duced by comparing the empirical cascade size tail distribution
in the datasets to the one produced by averaging 100 simulations
with the set of parameters.

These simulations are executed using the empirical network
structure from the dataset, with opinions initialized uniformly
at random between the entire interval [-1,1]. Each iteration fol-
lows the description of section “The agent-based model,” includ-
ing the posting filter given by Eq. 1.

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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Data Availability

The data used in this article was published by Minici et al. (2022)
[DOI:10.1145/3511808.3557253] and are available in a GitHub reposi-
tory at https://github.com/mminici/Echo-Chamber-Detection. They
were downloaded on 2023 Feb 21 (Brexit dataset) and 2023 Mar 17
(VaxNoVax dataset). A Python library named DOCES (Dynamical
Opinion Clusters Exploration Suite) (38) implements the model
described in our paper and is available at https:/github.com/
hfarruda/doces.
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