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Abstract
We investigate how information-spreading mechanisms affect opinion dynamics and vice versa via an agent-based simulation on 
adaptive social networks. First, we characterize the impact of reposting on user behavior with limited memory, a feature that 
introduces novel system states. Then, we build an experiment mimicking information-limiting environments seen on social media 
platforms and study how the model parameters can determine the configuration of opinions. In this scenario, different posting 
behaviors may sustain polarization or reverse it. We further show the adaptability of the model by calibrating it to reproduce the 
statistical organization of information cascades as seen empirically in a microblogging social media platform. Our model combines 
mechanisms for platform content recommendation, connection rewiring, and limited-attention user behavior, paving the way for a 
robust understanding of echo chambers as a specialized phenomenon of opinion polarization.
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Introduction
The term echo chamber was popularized by Jamieson and Cappella 
(1) to describe a bounded media space that amplifies messages 
while insulating them from rebuttal. With the rise of social media, 
echo chambers, often conflated with filter bubbles (2), have become 
central to debates on misinformation, democratic resilience, and 
collective decision-making (3, 4). These information-limiting envi
ronments are thought to exacerbate polarization by restricting ex
posure to diverse viewpoints (5, 6).

Despite their importance, the mechanisms driving echo cham
bers remain difficult to pin down. Online behavior arises from a 
multilayered interplay between individual activity and platform- 
level algorithms. Features such as feed ranking, recommendation, 
and follow/unfollow dynamics evolve continuously and are rarely 
transparent. To understand and eventually mitigate polarization, 
it is crucial to develop mechanistic models that disentangle user- 
driven interactions from algorithmic interventions and allow sys
tematic exploration of their effects.

Opinion dynamics models have long provided insights into how 
interactions shape collective beliefs (7–11). Beyond static interac

tions, adaptive rewiring shows how homophily can fragment net

works into polarized communities (12–15). Recommendation 

mechanisms can further sharpen polarization, even when rewir

ing is unbiased (16, 17). Yet, the role of information diffusion itself, in

cluding limited attention and reposting, has received 

comparatively less mechanistic treatment.
Empirical studies show that individuals do not scale their at

tention with the abundance of available content (18). Instead, re
posting, memory limits, and competition among posts produce 
heavy-tailed popularity distributions and critical-like dynamics 
(19–21). While such mechanisms are central to the physics of so
cial media (22), their connection to polarization and echo- 
chamber formation remains underexplored.

Here, we investigate the interplay between information spreading 
and opinion polarization using an agent-based model on adaptive 
networks. We extend the framework of de Arruda et al. (16) by 
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equipping agents with limited memory, enabling reposting of past 
content as in real-world feeds. This extension lets us track infor
mation cascades while studying how posting, recommendation, 
and rewiring interact with opinion dynamics.

We address three questions: (i) How does reposting under lim
ited memory alter the states of consensus and polarization? (ii) 
Under what conditions do information-limiting environments 
sustain polarization or allow depolarization? (iii) Can the model 
reproduce empirical cascade patterns observed in polarized de
bates, and what does this imply about the mechanisms behind po
larization? Through extensive simulations and calibration against 
datasets on Brexit and vaccine debates (23), we show that the 
same mechanisms that generate realistic cascade distributions 
also reproduce polarized opinion states. This provides a mechanis
tic link between diffusion and polarization.

The agent-based model
Our model extends the one introduced by de Arruda et al. (16). 
That model represents social media platform interactions and 
treats opinion as a continuous variable, bounded between −1 
and 1, held by each user. Social media users are represented as no
des in an adaptive directed network. A user points to another if 
they receive content from them (followership relation); that is, 
the content is spread following the opposite direction of edges.

Each iteration of the model follows successive steps, which act 
as filters that determine whether a randomly activated user goes 
to the next step.

In this work, we extend the model by allowing users to post pre
viously existing content. Each piece of content has a fixed opinion 
value θ, always drawn uniformly at random upon its creation. 
However, here each user is equipped with a memory list of size 
α, filled as they receive content from neighbors (i.e. a social media 
feed). Each user’s memory can be seen as an ordered list of θ val
ues from previous posts.

Memory lists are updated in such a way that the last piece of 
content received is prioritized. We index the memory list with 
θc, such that c ∈ {1, . . . , α}, and the lower the index, the more likely 
the content will be posted. New pieces of content are introduced 
from the beginning of the list (θ1) based on what users receive 
from their neighbors. In this case, existing pieces of content 
move to a lower order (i.e. θc+1 ← θc).

When the list is at full capacity (there are α pieces of content) 
and new content is received, the piece at the bottom (θα) is re
moved, and all other pieces move one position lower so that the 
new one is placed at the top.

When reposting, users choose the first piece of content in their 
memory lists (θ1). Once the content is posted, it moves from the be
ginning to the end of the list, so it will be picked last. Hence, the opin
ion of the content which was just posted becomes θα in the memory 
list, and each other piece moves to a higher order (i.e. θc ← θc+1).

We further introduce a new parameter called the innovation 
probability μ, which, at the posting step, controls how many iter
ations inject new content into the system. That is, when μ = 1, 
the base model from de Arruda et al. (16) is recovered regardless 
of the memory lists.

Each iteration of our model is described by the following steps: 

1. Activating: a user i, chosen uniformly at random, becomes 
active.

2. Posting: the active user i either creates a new content with 
probability μ, or chooses the content at the top of their 

memory list (θ = θ1) with probability 1 − μ. The content is 
posted according to a probabilistic filter function (Eq. 1) of 
their opinion bi and the content opinion θ.

3. Receiving: Each follower j of node i receives the content ac
cording to another probabilistic filter function (Eq. 2) of bj, bi 

and a parameter ϕ. When they do, the content is added to 
their memory list from the top. The control of this filter 
through ϕ is a proxy for a social media recommendation 
algorithm.

4. Realigning: Each opinion bj of followers who successfully re

ceived the content increases or decreases by a constant Δ. The 
opinions are repelled away from the post with probability |θ − 
bj|/2 and attracted otherwise.

5. Rewiring: Each follower j may stop following i and start fol
lowing another user at random through a probability propor
tional to the difference between bi and bj.

These steps are visually summarized in Fig. 1. In our model ex
tension, we implement rules to define user behavior, which were 
previously studied in Refs. (16, 24). In particular, we set the prob
abilistic rule acting as the posting filter as

Pp(θ, bi) = cos2 π
2
|θ − bi|

􏼐 􏼑
, (1) 

where θ is the opinion of the content (whether created or picked 
from the memory list), and bi is the opinion of the active node i. 
This is referred to in Ref. (24) as conflicting posting, which is the 

same as Ppol
t from Eq. 2 in Ref. (16).

Correspondingly, the receiving filter is given by

Pr(bi, bj, ϕ) = cos2 π
2
|bi − bj| + ϕ

􏼐 􏼑
. (2) 

This filter was previously studied as the function PI
d from Eq. 5 in 

Ref. (16). We refer to the parameter ϕ as the recommendation control. 
It determines where the cosine-squared function begins, which 
enables us to adjust the initial behavior of the recommendation 
algorithm. That is, it may let information propagate between pairs 
of users who agree with each other or the opposite. Notice the re
ceiving step does not consider the content opinion θ.

Opinion polarization measures
The main system state we are interested in measuring is the dis
tribution of user opinions. In particular, we characterize a state 
as polarized when the opinion distribution is bimodal.

To measure the bimodality of the opinion distributions, we 
adopt the bimodality coefficient used by Arruda et al. (16), which 
ranges from 0 to 1. The bimodality coefficient BC(b) (25) is defined 
as

BC(b) =
g2 + 1

k +
3(n − 1)2

(n − 2)(n − 3)

, (3) 

where g is the sample skewness (26) and k is the excess kurtosis (26) of 
the opinion distribution b. The distribution b is typically consid
ered bimodal when BC(b) > 5/9, as empirically shown in (25).

Another way to measure how the opinion distribution changes 
towards polarization is via the moment ratio diagram, which is 
composed of bounded versions of the third- and fourth-moment 
ratios of the distribution called L-moments (27). That is, given 
the opinion distribution b and its kth order statistic b(k), its sample 
rth L-moment λr is defined by
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λr = r−1
􏼒

n
r

􏼓−1 􏽘

b(1)<···<b(j)<···b(r)

( − 1)r−j
􏼒

r − 1
j

􏼓

b(j). (4) 

The moment ratio diagram is composed of the L-skewness 
τ3 := λ3/λ2, which is bounded between −1 and 1, and the 
L-kurtosis τ4 := λ4/λ2, which is bounded between −1/4 and 1.

We choose these over the conventional moments (which are 
unscaled) to compare different stages in the evolution of the opin
ion distribution under the same scale. However, the L-moments 
share many of the properties of their conventional counterparts. 
For example, a distribution with high L-skewness would be inter
preted as being skewed. We work out a small example with syn
thetic distributions to show how these measures behave in the 
Supporting Information S1.

Results
Innovation probability introduces new states
As the first step to characterize our model, we run an experiment 
on a known parametrization in de Arruda’s model to understand 
the impact of the innovation probability μ. To this end, we use an 
Erdős–Rényi network of size N = 103 and mean in-degree z = 10.21, 
and pick parameters known to lead the system to a consensus 
scenario when the original model is recovered (μ = 1).

However, running the simulation with the same parameters 
but a different innovation probability (μ = 0.1) yields a polarized 
system. We compare the two configurations for the same number 
of iterations in Fig. 2. In Fig. 2a, the opinion distributions are 

a

b c

Fig. 2. New system states introduced with the parameter μ: the same 
parameterization except for different innovation probability μ can lead to 
consensus in a homogeneous topology or two polarized communities. In 
a), the opinion distribution is in the other two panels, where hexagon 
markers represent the network in (b) and triangle markers the one in (c). 
In b), the innovation probability μ = 1. In c), μ = 0.1.

Fig. 1. Schematics of the model iterations: the diagram represents each 
iteration step. In the first (activating), user u was chosen at random and 
has three followers (users a, b, and c). Each node features a memory list 
with previous content, but only u’s is shown. Next, the posting step may 
happen in two ways. With probability μ, user u posts new content (whose 
opinion was drawn as θ = 0.3) that was not in his memory list; otherwise, 
with probability 1 − μ, the first content of user u’s list is selected and 
posted (θ1 = 0.43). Following on to the receiving step and assuming u 
introduced the new content (θc = 0.3), the probabilistic filter (defined in Eq. 
2) does not allow the new content to be incorporated into a’s memory list, 
but only to the other two neighbors. Then in the realigning step, neighbors 
who incorporated the new content have their opinion either attracted or 
repelled towards θ by a constant factor (Δ = 0.2 in the example). Finally, 
those neighbors whose opinions are sufficiently different than u rewire 
their followership edge to another random node in the rewiring step.
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plotted against each other. We also show how each network struc
ture is wired in each case, with nodes colored according to their 
opinions. Figure 2b shows the case for μ = 1, which is statistically 
the same as the initial network, and opinions are homogeneously 
spread around 0. Figure 2c reveals that, for the polarized state at 
μ = 0.1, the network becomes separated into two densely con
nected groups of largely opposing opinions.

In order to characterize the impact of the innovation probabil
ity μ in the opinion distribution, we run a hundred simulations on 
the same network for μ = 0 (no innovation) and μ = 1 (de Arruda’s 
original model). We then use each of these simulations to produce 
a trajectory of opinion distributions with 100 points. These trajec
tories are then compared via the moment ratio diagram of Fig. 3, 
which uses L-moments to describe these distributions. The 
L-skewness and L-kurtosis are bounded counterparts to the sam
ple skewness and excess kurtosis. Skewness measures the asym
metry of a distribution, indicating whether the distribution of 
opinions is skewed. Kurtosis indicates whether the data has heav
ier or lighter tails compared to a normal distribution, with higher 
kurtosis indicating more extreme values.

We show in Fig. 3 how opinion distributions become very sepa
rated, even though they share the same starting point for both μ = 
0 and μ = 1. This starting point was omitted to improve visibility, 
but it is found around (τ3, τ4) = (0.16,0.16), corresponding to an 
opinion distribution which is approximately uniform (considering 
the finite-sized network) between −1 and 1.

The final point of the μ = 1 trajectories is around (0.65,0.3), 
while that of the μ = 0 trajectories is nearly the extreme coordi
nates (1,1). The extreme coordinates correspond to distributions 
accumulated into a few specific values, as μ = 0 prevents the cre
ation of posts with different opinions θ once the system is initial
ized. This is the same as the predominance of very few values of θ 
across the system (see Supporting Information S2).

Simulating an information-limiting environment
Next, we implement an experiment to investigate opinion dynam
ics parameterized to hinder the spread of information. This is 

done by running simulations on a network with two communities 
via a stochastic block model, where users in one community are 
initialized with opinion 1, and those in the other are initialized 
with opinion −1. Each community has 500 users with a mean in- 
degree and out-degree of z = 8, and only 1% of edges bridge the 
two communities. Users are forced to remain in their community 
as we disable the possibility of rewiring. Furthermore, we specify 
an alternate posting filter (Eq. 5) and compare simulation out
comes between this filter and the original one (Eq. 1). See 
Materials and methods for more details.

The spread of information is measured by looking at the max
imum size reached by cascades, which is the same as the number 
of users who share the same piece of content. In Fig. 4a and b, we 
show how cascades can grow according to the relationship be
tween the innovation probability μ and the recommendation con
trol ϕ, each for a specific posting filter (Eq. 1 for (a), Eq. 5 for (b)). For 
each pair of μ and ϕ, we observe the maximum cascade size in each 
of the 500 simulations and average them to obtain the solid line, 
with shades representing the difference to the corresponding SD.

As expected, the lower the innovation probability μ is, the great
er the sizes cascades can reach since fewer posts are competing 
with each other. Both posting filters have qualitatively similar be
havior, with the conflicting posting showing a slightly higher SD 
for μ = 0. Our experiment setup is shown to limit the spread of in
formation around ϕ = π/2, where the receiving filter (Eq. 2) hinders 
communication within and between communities. Next, we 
measure how contents spread in this scenario regarding their 
opinion θ. By fixing μ = 0.2 and three values of ϕ, Fig. 4c and d 
shows that the less permissive recommendation control regime 
(ϕ = π/2) favors extreme content opinion, while the most permis
sive (ϕ = 0) punishes it. However, the middle regime (ϕ = 3π/8) dis
plays different behaviors for each posting filter. In Fig. 4c, it 
noticeably hinders the growth of moderate content (i.e. θ around 
0). In Fig. 4d, this effect is less pronounced, meaning the dynamics 
still permit the spread of content from the entire θ range.

Then, we demonstrate in Fig. 5 how the increase of content var
iety through the parameter μ affects the final opinion distribution 
for users locked into the two communities starting with extreme 
opinions. To do this, we use the bimodality coefficient BC. In 
Fig. 5a, the conflicting posting filter blocks moderate posts (by 
not allowing their cascades to grow, as seen in Fig. 4c). However, 
when the aligned posting filter is employed (Fig. 5b), the system 
is depolarized as the variety of content increases with μ. For 
ϕ = π/2, cascade growth is hindered, and therefore, the system re
mains polarized throughout the range of μ for both filters, well 
above the line indicating the BC threshold at 5/9. But when the 
aligned posting filter is used, for ϕ = 3π/8 and ϕ = 0, we see that 
even though the BC values of the final opinion distribution show 
a wide dispersion at small μ, they narrow into unimodal opinion 
distributions as soon as μ = 0.3 and remain under the dashed 
threshold 5/9 for most of the remaining μ range.

Model calibration against data
We implement a calibration task to see how our model conforms 
to real-world scenarios. Given the availability of network struc
ture, user opinions, and cascade sizes in the datasets, we opt to fo
cus on the latter as the target of our model calibration. That is, we 
consider the empirical cascade size distribution to be aggregated 
over time, while the network structure and user opinions are 
left as degrees of freedom in the time evolution of our model 
(even though all simulations start from the same network 
structure).

Fig. 3. Characterizing the effect of innovation on opinion evolution: the 
moment ratio diagram for the evolution of the opinion distribution in an 
Erdős–Rényi network of size N = 103 and mean in-degree z = 10.21 for the 
minimum and maximum innovation probability μ. Both 
parameterizations are tested with 100 different trajectories starting from 
the same initial opinion distribution (uniformly random between −1 and 
1), omitted in the diagram for clarity. Each trajectory has 100 points, and 
every two consecutive points are produced from steps of 10N iterations of 
the model.
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Thus, we formulate the model calibration as an optimization 
task to reproduce the closest possible distribution of cascade sizes 
over our parameter space. In particular, we search for the param
eters that control the behavior of the dynamics: the innovation 
probability μ, the recommendation control ϕ, the opinion variation 
Δ, and the number of iterations niter. The precise formulation of 
the optimization task is given in Materials and methods.

In Fig. 6, we show the results for simulations parameterized ac
cording to the lowest values of KS statistic observed, which are at 
α = 27 for the Brexit dataset and α = 29 for the VaxNoVax dataset. 
For values of α < 30, there is no significant difference in the KS re
sults, indicating that α does not play a major role in the model’s 
dynamic outcomes. More details regarding the optimization are 
shown in Supporting Information S4.

For both datasets, the optimized models represent most of the 
cascades found in the real data. Specifically, the values of the KS 
statistics are on average (3.617 ± 0.595) × 10−3 for Brexit and 
(1.385 ± 0.146) × 10−2 for VaxNoVax. Note that a common choice 
to consider the KS statistic as a good fit is 0.05. In the case of our 
results, the values obtained are significantly lower. We acknow
ledge that there is a limitation in the tails of the distributions, 
which are not well represented. However, since the plot axes fol
low logarithmic scales, the discrepancy between data and simula
tion is much more pronounced at the extreme events (see Fig. 6).

To further understand the opinion dynamics and the effect of 
the cascades on the opinions, we calculate the bimodality 

coefficient of the resulting opinions BC(b). On average, BC(b) is 
(0.892 ± 0.007) for Brexit and (0.623 ± 0.010) for VaxNoVax. Both 
values indicate that the opinion distributions are bimodal, and 
thus, the opinions are polarized. Interestingly, the parameters 
that generate cascades compatible with the real data also polarize 
opinions in the synthetic system. Furthermore, the bimodality of 
VaxNoVax is consistent with the results found in real data in 
our previous study (16), reported to be between 0.60 and 0.67.

The methodology used considers that the best result is not ne
cessarily when the dynamics converge to a fixed result. However, 
for the best results obtained here, we found that BC does not 
change significantly even when the simulation runs for many 
more iterations.

Discussion and conclusion
We introduced an agent-based model that captures the two-way 
coupling between information diffusion and opinion polarization 
on adaptive social networks. By incorporating limited memory 
and reposting behavior, the model reflects key features of social 
media feeds, enabling us to study how cascades of information 
interact with the dynamics of opinion formation.

Our findings reveal several insights. First, the innovation prob
ability (i.e. the likelihood of introducing new content) acts as a crit
ical switch between consensus and polarization. Low innovation 
reduces content diversity, allowing entrenched narratives to 

a b

c d

Fig. 4. Effects of model calibration on information spreading in a synthetic information-limiting environment: In a and b), for two different posting filters, 
the maximum cascade size produced for a range of recommendation control ϕ and five values of innovation probability μ. For each pair of μ and ϕ, we run 
500 simulations and obtain the maximum cascade size in each of them; the solid line is the average among the 500 maximum cascade sizes, while the 
shade is the average added or subtracted to the corresponding SD. In c and d), again for each respective posting filter, we compare the maximum cascade 
size with content opinion θ for three values of recommendation control ϕ on a fixed innovation probability μ = 0.2. Since each cascade is associated with 
an opinion content θ, which is continuous, we group cascades into each of a thousand bins between −1 and 1. From these, we extract those with the 
maximum cascade size; the resulting values are represented with lines smoothed via the Savitzky-Golay filter (28).
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dominate and splitting the network into polarized camps. Second, 
in information-limiting environments polarization is sustained or 
mitigated, even when users cannot rewire their social ties. Third, 
by calibrating the model to empirical cascade data from Brexit 
and vaccine debates, we showed that the parameter regimes 
that best reproduce real cascade statistics also lead to polarized 
opinion states.

Conceptually, our work offers a mechanistic explanation of 
echo chambers as emergent phenomena arising from the com
bined effects of user memory, reposting, and recommendation. 
Methodologically, it bridges theoretical opinion dynamics with 
empirical observations, showing that calibrated agent-based 
models can reproduce not only qualitative patterns but also stat
istical properties of real data. Practically, our results suggest that 

Fig. 5. Polarized communities reacting to the increase of content innovation: for each combination of posting filter (Eq. 1 in (a), Eq. 5 in (b)), each 
recommendation control ϕ (coded by color) and each value of innovation probability μ, a thousand simulations are run and represented by scatter points 
corresponding to the bimodality coefficient BC associated to the final opinion distribution. Colored dashed lines are the median of the 1,000 points at each 
value of μ. After being initialized with extreme opposite opinions in each module, the experiment is performed without rewiring, and the resulting opinion 
distributions are obtained after 106 iterations. The dark dashed line at BC = 5/9 signalizes where opinion distributions are considered bimodal.
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interventions targeting platform parameters, such as increasing 
content diversity or modifying reposting incentives, may help re
duce polarization.

While our study advances understanding of polarized online 
environments, open challenges remain. Extreme events in cas
cade growth, not fully captured here, call for incorporating bursty 
dynamics and heterogeneity in user activity (21, 29, 30). 
Additionally, richer datasets combining structural, temporal, 
and opinion measures would enable more comprehensive calibra
tion and validation. One may also want to understand how effect
ive interventions can be designed from the insights of our model, 
which would involve modeling incentives via evolutionary game 
theory (31, 32). Furthermore, the study of agent-based models 
powered by large language models (LLMs) is gaining traction in 
the field of social simulations (33).

In conclusion, polarization and information diffusion cannot 
be studied in isolation. By tracking how cascades unfold alongside 
opinion shifts, our model provides a framework for investigating 
the mechanisms that sustain or dissolve echo chambers and of
fers a foundation for designing interventions to foster healthier 
online discourse.

Materials and methods
Datasets
In our study, we consider two datasets published by Minici et al. 
(23). They were collected from the social platform Twitter under 
a background of strongly polarized debates. These datasets con
tain measurements of network structure, cascades of retweets, 
and opinions of either users or posts. All of these measures are 
represented in our model, which makes the data good candidates 
for empirical studies.

The first dataset, named “Brexit,” was measured in the context of 
the Brexit referendum in the United Kingdom between May and July 
of 2016. It features a network with 7,589 nodes and 532,460 edges. 
The number of cascades is 19,963, with minimum and maximum 
sizes of 2 and 256, respectively. The complementary cumulative dis
tribution function (CCDF) of the cascade sizes is shown in Fig. 6a.

The second dataset, dubbed “VaxNoVax,” was collected during 
vaccine debates in Italy in 2018. Its associated network has 14,315 
nodes and 1,714,180 edges. It contains 43,923 cascades ranging in 
size from 2 to 1,468 (see Fig. 6b). We also provide the degree distri
bution of both networks in Supporting Information S3.

Parameter characterization
To produce Fig. 2 and 3, we set up the simulation on an 
Erdős-Rényi network of size N = 103, with recommendation con
trol ϕ = π/2, opinion variation Δ = 0.1 and feed size α = 1. 
Opinions are initialized as a uniformly random number between 
−1 and 1, and we execute 105 iterations for Fig. 2, and 100 steps 
of 10N iterations for each value of μ in Fig. 3.

Information-limiting environment experiment
Here, we describe how our experiment in an information-limiting 
environment is designed and set. First, we produce a synthetic 
network with two communities separated by very few edges. We 
employ the Poisson degree-corrected stochastic block model as 
implemented in Ref. (34) to generate a network with size 
N = 103, with both in-degree and out-degree distributions from 
Poisson with an average z = 8 and two modules. Only 1% of the 
edges connect the two modules.

We want to design a polarized scenario where users are locked 
into two distinct communities, both separated by opinion and net
work structure. Hence, this experiment is executed with the re
wiring rule disabled, and users have opinions initialized as 1 in 
one module and −1 in the other. That is, the system always starts 
fully polarized in this experiment.

We also highlight an important distinction to the original mod
el setup. Instead of the posting filter from Eq. 1, we opt to use the 
following:

Pp(θ, bi) = cos2 π
2
|θ − bi|

􏼐 􏼑
, if |θ − bi| ≤ 1

0, otherwise.

􏼨

(5) 

This change means that, in practice, a user i will never post a con
tent of opinion θ when the difference |θ − bi| is greater than one. 
Since each user is initialized with an opinion of either 1 or −1, 
they will not post any content whose θ has a different sign to their 

a

b

Fig. 6. Calibrating the model against data: complementary cumulative 
distribution function (CCDF) of cascade sizes obtained from the optimal 
simulation against those from each dataset. The green line corresponds 
to the average of 100 simulations, while the shades account for the SD of 
simulated cascade sizes. In a), the model is calibrated against cascades 
from the Brexit dataset, and the set of optimal simulation parameters 
found is (μ, Δ, ϕ, niter) = (0.658, 0.373, 1.366, 6.379 × 105) for a feed size 
α = 27. The KS statistic between the sample distribution from data and 
those from simulations averages at (3.617 ± 0.595) × 10−3. In b), the model 
is calibrated against cascades from the VaxNoVax dataset, and the set of 
optimal parameters is (μ, Δ, ϕ, niter) = (0.093, 0.724, 2.863, 6.474 × 105) for a 
feed size α = 29. The KS statistic between the sample distribution from 
data and those from simulations averages at (1.385 ± 0.146) × 10−2.
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opinion unless it has changed since the beginning of the 
simulation.

Then, we set the opinion variation Δ = 0.1 and feed size α = 1 
and proceed to understand how these features impact the growth 
of cascades of content posting by systematically testing how pa
rameters react to each other, especially the recommendation con
trol ϕ and innovation probability μ.

To produce Fig. 4a and b, we fix each value of μ and a range of 41 
values of ϕ between 0 and π. For each pair of μ and ϕ, we run 500 
simulations of 106 iterations each and annotate what is the max
imum cascade size resulting from each. The solid line represents 
the average of the 500 maximum cascade sizes, and the shades 
are the corresponding SD added or subtracted from the average.

We obtain Fig. 4c and d by fixing μ = 0.2, three values of ϕ and 
running 100 simulations for 106 iterations each. Each value of ϕ 
then generates a large number of cascades: 9,372,911 cascades 
for ϕ = 0, 8,901,320 cascades for ϕ = 3π/8 and 5,090,826 cascades 
for ϕ = π/2. These are binned through a thousand values of content 
opinion θ, which we then use to extract a maximum cascade size. 
Finally, the maximum cascade sizes for each bin of θ are repre
sented together through smoothed lines via the Savitzky–Golay 
filter (28).

Finally, Fig. 5 considers a range of 41 values of μ, from 0.1 to 0.9, 
and the three previously tested values of ϕ (0, 3π/8, and π/2). At 
each point given by a combination of parameters, we run 1,000 
simulations.

Model calibration task
Our model is calibrated via a search in a multidimensional space 
made of four parameters, which are μ, ϕ, Δ, and niter. In particular, 
we minimize the Kolmogorov–Smirnov (KS) distance via a single- 
objective genetic algorithm from the implementation in Ref. (35) 
by considering the feed size α as a fixed parameter when the heur
istic is initialized. The values of α are selected considering the KS 
statistic obtained for a range up to α = 45, found in the Supporting 
Information S4.

Since the datasets are a small sample (36) of the activity in sub
sets of the Twitter platform retrieved by the first version of the 
API, it is a challenging task to accurately estimate the parameters 
a priori due to their dependence on time. We cannot know how the 
volume of activity represented in the sample maps to the actual 
one in the system at the time. In essence, it is not trivial to match 
one simulation iteration to a time scale in the real world.

As such, two of our parameters encapsulate the time frame we 
are trying to match: the number of iterations niter, but also the 
opinion variation Δ as it modulates how intense changes in user 
opinion are. Intuitively, a high value of Δ means fewer iterations 
are needed for the system to reach stable configurations. Once 
there is a time window set by niter and Δ, the innovation probability 
μ is fundamental to fix the maximum cascade size.

Finally, the recommendation control ϕ, mentioned back in sec
tion “The agent-based model” as related to how users receive 
posts of different opinions, can drive the system towards various 
states of opinion polarization (as observed in previous works (16, 
24)).

Let d be the empirical distribution of cascade sizes from data 
and s the sample distribution of cascade sizes obtained from the 
simulation. As each dataset has a fixed distribution of cascade 
sizes, let the empirical cumulative distribution function of d be 
given by Fd(x). As for the sample distribution s, it is parameterized 
with the innovation probability μ, the recommendation control ϕ, 
the opinion variation Δ, and the number of iterations niter.

We are then interested in finding the simulation parameters 
that minimize the Kolmogorov–Smirnov (KS) statistic (37) be
tween the two samples. That is, the model calibration task is

minimize
μ,ϕ,Δ,niter

sup
x
|Fd(x) − Fs(x, μ, ϕ,Δ, α,niter)| (6a) 

subject to 0.01 ≤ μ ≤ 0.99 (6b) 

0 ≤ ϕ ≤ π (6c) 

0 ≤ Δ ≤ 1 (6d) 

1.5 × 105 ≤ niter ≤ 6.5 × 105 (6e) 

where Fs(x, μ, Δ, ϕ, α, niter) is the empirical cumulative distribution 
of cascade sizes from simulations parameterized accordingly.

After fixing a value of α, which we obtain by testing the KS stat
istic for different ranges of parameters (see Supporting 
Information S4), we obtain an optimal set of parameters with 
the genetic algorithm. From this set of parameters, Fig. 6 is pro
duced by comparing the empirical cascade size tail distribution 
in the datasets to the one produced by averaging 100 simulations 
with the set of parameters.

These simulations are executed using the empirical network 
structure from the dataset, with opinions initialized uniformly 
at random between the entire interval [−1,1]. Each iteration fol
lows the description of section “The agent-based model,” includ
ing the posting filter given by Eq. 1.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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