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SUMMARY

Immunotherapies have recently emerged as a standard of care for advanced cancers, offering remarkable 

improvements in patient prognosis. However, only a small subset of patients benefit, and robust molecular 

predictors remain elusive. We present a computational framework leveraging sample-specific gene co- 

expression networks to identify features predictive of immunotherapy response in kidney cancer. Our results 

reveal that patients with similar clinical outcomes exhibit comparable gene co-expression patterns. Notably, 

increased gene connectivity and stronger negative gene-gene associations are hallmarks of poor re

sponders. We further developed sample-specific pathway-level network scores to detect dysregulated bio

logical pathways linked to treatment outcomes. Finally, incorporating these sample-level network features 

improves the predictive performance of gene expression-based machine learning models. This work high

lights the value of personalized gene network features for stratifying patients with cancer and optimizing 

immunotherapy strategies.

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the predominant histo

logical subtype of kidney cancer, with a high mortality rate 

following metastatic progression.1 Immune checkpoint inhibitors 

(ICIs) targeting programmed cell death protein 1 (PD-1) and pro

grammed cell death ligand 1, either as monotherapy or in com

bination with angiogenesis inhibitors, have become the standard 

of care for metastatic ccRCC in recent years.2,3 While these ther

apies have improved patient survival rates, the objective 

response rate to nivolumab, an ICI, has been reported to be 

only 34.1%.4 Among the response mechanisms to ICIs, trun

cating mutations in polybromo-1 and focal loss of 10q23.31 

have been positively associated with patient survival, likely due 

to the higher expression of angiogenesis genes and the loss of 

the tumor suppressor PTEN, respectively.5–7 Although immuno

therapy aims to enhance immune response against tumors, the 

proportion of CD8+ T cell infiltration has not been correlated 

with treatment outcomes.8 However, these findings have not 

been consistently observed in prior studies,9–11 underscoring 

the complex mechanisms of genomic mutations and T cells in tu

mor progression and therapy resistance. Therefore, the identifi

cation of novel predictive markers is crucial for optimizing patient 

therapies and advancing personalized medicine.

To model the complex disease system at the individual level, 

several methods have been developed to infer sample-specific 

networks that capture the unique network structures of multiple 

samples with different phenotypes. These include the sample- 

specific network (SSN) method,12 which estimates perturbations 

of the Pearson correlation coefficient for each pair of genes; SSN 

based on the partial correlations between genes (P-SSN)13; 

linear interpolation for inferring SSN (LIONESS)14; Bayesian 

optimized networks obtained by assimilating omic data 

(BONOBO)15; and sample-specific weighted correlation network 

(SWEET),16 which mitigates size imbalances between different 

subpopulations of a dataset.

With regard to the key differences between these methods, 

the SSN method infers an SSN using one case sample against 

iScience 28, 113061, August 15, 2025 © 2025 The Authors. Published by Elsevier Inc. 1 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ll
OPEN ACCESS

http://creativecommons.org/licenses/by/4.0/
mailto:christophe.battail@cea.fr
https://doi.org/10.1016/j.isci.2025.113061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2025.113061&domain=pdf


a set of control samples as a reference, based on differential 

Pearson correlation. SSNs have demonstrated strong perfor

mance on both simulated data and experimental tumor tran

scriptomes, highlighting their biological relevance in identifying 

deregulated pathways and driver genes.12,17 Similarly, the 

P-SSN method uses a differential partial correlation analysis 

between a set of control samples (m) and a specific sample 

plus the given samples (m + 1). By focusing on direct interac

tions and excluding indirect interactions, the P-SSN network 

distance can distinguish different cancer types or subtypes 

based on network edges.13 Both P-SSN and SSNs rely on a 

reference group of healthy samples, which may overlook the 

heterogeneity of patient samples across populations. To 

address this limitation, the LIONESS method uses linear inter

polation to estimate sample-specific networks by comparing 

an aggregated network of a group (m) and a perturbed network 

without a case sample (m − 1).14 While LIONESS can be 

affected by population size, the SWEET method introduces 

genome-wide sample weights into network inference to miti

gate this problem. These methods show that network degrees 

of PD-1 pathway genes and the TBC1D gene are associated 

with patient survival in glioblastoma and lung adenocarcinoma, 

respectively.16,18 Similarly, the BONOBO method constructs 

sample-specific co-expression networks without relying on 

external reference data and achieves gene network recon

struction performance on simulated data that are very similar 

to that of SWEET.15 While methods for inferring sample-spe

cific gene co-expression networks do exist, no study has yet 

comprehensively extracted and analyzed network features to 

assess their relevance in precision medicine, particularly as 

predictive markers of treatment response in patients with 

cancer.

In our study, we inferred SSNs and extracted a wide range of 

network features to investigate the relevance of gene co-expres

sion patterns in the stratification and treatment response of pa

tients with ccRCC. From sample-specific weighted co-expres

sion networks generated using the SWEET method, we 

explored not only network features such as gene connectivity 

and gene-gene associations but also network similarity and 

pathway network-based scores. These latter metrics account 

for the overall network structure to enable patient subtyping 

and integrate network information into signaling pathways. Us

ing transcriptomic profiling data from 309 patients with 

advanced ccRCC collected in clinical trial cohorts, we stratified 

patients into distinct clusters and identified gene co-expression 

patterns associated with patient survival using network similar

ity, network nodes, network edges, and pathway network-based 

scores. The network features improved the prediction perfor

mance of gene expression score-based machine learning (ML) 

models. Additionally, we validated the relevance of pathway 

network-based scores in an independent cohort of patients 

with advanced ccRCC treated with avelumab and axitinib. In 

summary, our method not only provides a comprehensive strat

egy to explore gene co-expression patterns from general 

network structure to specific network markers for patient 

stratification and treatment prediction but also complements 

sample-specific pathway enrichment analysis in current cancer 

research.

RESULTS

Inference of sample-specific gene co-expression 

networks

Sample-specific weighted gene co-expression networks (ssGCNs) 

were constructed with 20,545 genes using the SWEET method 

for each subcohort from a meta-cohort of 309 patients with 

advanced ccRCC included in CheckMate 009, CheckMate 010, 

and CheckMate 025 clinical trials (Figure 1A).8,16 To accurately 

study differences in patient treatment response, the meta-cohort 

was divided into four subcohorts based on both the therapy admin

istered and the site of tissue biopsy, either primary tumor or metas

tasis. Indeed, it has been shown that primary and metastatic sites in 

advanced kidney cancers harbored distinct molecular characteris

tics,19 which may influence the treatment response of patients. In 

details, these subcohorts consisted of 133 and 92 samples from 

primary tumor sites of patients treated with nivolumab (pN, anti- 

PD-1) or everolimus (pE, mammalian target of rapamycin [mTOR] 

inhibitor), respectively, and 47 and 37 samples from tumor metas

tases of patients treated with nivolumab (mN, anti PD-1) or evero

limus (mE, mTOR inhibitor), respectively (Table S1). Utilizing an 

optimal balance parameter set at 10% and a two-sided Z score 

threshold of 2.58, the ssGCNs attained an average network density 

of 1.6%, encompassing 20,357 nodes and 3,320,160 edges, with 

an average determination coefficient R2 of 0.696 for scale-free to

pology (Figure S1). It is widely acknowledged that an R2 value 

closer to 1 indicates that the ssGCNs adhere more closely to the 

anticipated power-law node-degree distribution observed for bio

logical networks. A further observation of note is that the R2 coeffi

cients for SSNs from primary tumor sites exhibited higher values 

compared to those derived from tumor metastases (0.774 vs. 

0.448, Wilcoxon rank-sum test, p value < 0.01) (Figure S2A). To 

assess whether subcohort size influenced the R2 coefficient of 

the gene-degree distribution, a simulation was performed on the 

pN subcohort by randomly selecting 40–120 samples. The results 

showed that a decrease in cohort size was associated with a reduc

tion in the mean of R2 coefficients, likely reflecting a loss of robust

ness of the gene network (Figure S2B).

Cancers often exhibited varied gene network complexities, 

with acquired network nodes demonstrating enrichment in 

metabolic and immune-related processes including regulation 

of immune response, T cell receptor signaling pathway, and 

podosome assembly.20 To explore whether our ssGCNs ex

hibited tumor-specific features, we compared their network 

density and enrichment of cancer-related genes to an aggre

gated network from expression data of normal renal cortex tis

sues (n = 85). The obtained results demonstrated that the 

ccRCC ssGCNs exhibited a higher network density (1.6%) in 

comparison to the normal network (0.46%). Furthermore, 

98.3% (304/309) of our ssGCNs demonstrated a higher enrich

ment of cancer-related genes among the top 1,000 genes of 

the highest degree when compared to the normal network 

(Figure S3). These characteristics validate the relevance 

of our ccRCC SSNs for further exploration using advanced 

network features.

To identify novel network-based markers for predicting immu

notherapy response, we focused on the pN and mN subcohorts 

of patients treated with nivolumab. The pE and mE subcohorts 
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were used primarily to validate the biological relevance of 

network features.

Adjusted network distance in Pearson correlation- 

based ssGCNs

Network distance, a measure of similarity, has been utilized to 

estimate gene regulation similarity between samples and accu

rately identify tumor subtypes.13 To assess whether network dis

tance could reflect clinical status similarity, we calculated pair

wise network distances between ssGCNs of patients in the pN 

subcohort (Equation 3). However, unsupervised clustering 

based on these network distances showed no significant associ

ation with survival data (Figure S4; log rank tests: p value > 0.2 for 

both overall survival [OS] and progression-free survival [PFS]). 

The limited sensitivity of network distance may be attributed to 

the relatively small divergence between gene networks of pa

tients with differing immunotherapy responses compared to 

those distinguishing tumor subtypes.

To address this limitation, we developed an adjusted version 

of network distance incorporating clinical outcome categoriza

tion collected from the Braun et al. publication (clinical benefit 

[CB], intermediate clinical benefit [ICB], and nonclinical benefit 

[NCB]). While this categorization was defined by objective re

sponses, tumor shrinkage, and PFS,8 the adjusted network dis

tance did not directly rely on PFS values, ensuring unbiased sub

sequent analyses. Adjusted distances were computed using 

edges between each sample and an aggregated network con

structed based on clinical outcomes. For the pN and mN subco

horts, CB-aggregated networks were derived from 44 and 13 

samples, resulting in 2,450,498 and 720,447 edges, respectively. 

NCB-aggregated networks were constructed from 46 and 20 

samples, yielding 2,853,404 and 1,758,449 edges, respectively. 

A

B

Figure 1. A computational framework for the inference of sample-specific gene co-expression networks and calculation of network features 

to stratify patients based on their response to antitumor therapies 

(A) Description of sample-specific gene network construction with the SWEET method. Each sample network was constructed with the difference between 

an aggregated correlation matrix and a sample-specific perturbed correlation matrix. Sample weight (W(S)), scale factor (n, i.e., number of samples), and 

balance parameter (K) were used to adjust for differences in proportions of sample subgroups within a cohort. Sn: the nth sample; Gn: the nth gene; Nij: the 

network of edges between gene i and gene j, i, j ∈ m (the number of genes); Nij
(G): aggregated network; Nij

(G− S): perturbed network; Nij
(S): sample specific 

network. 

(B) Description of our pipeline for patient subtyping, survival analysis, and treatment response predictions using network features calculated from sample-specific 

gene networks. Network similarity was measured by adjusted network distance. Gene connectivity and gene-gene edges were calculated using both the number 

and the strength of associations between genes. Biological pathway entropy and centrality scores embedded the complexity and the topology of gene network 

within each pathway.
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Three versions of adjusted network distances were computed 

relative to the CB network, the NCB network, and the difference 

between the two.

Univariate Cox regression analysis revealed a correlation be

tween adjusted network distances and survival data (Figure 2A). 

For the pN subcohort, network distances adjusted to the CB- 

aggregated network were favorable for OS and PFS, though not 

significantly. In contrast, distance adjusted with NCB-aggregated 

networks was significantly unfavorable for OS and PFS (the Cox 

model: p value < 0.05). Adjusted distances using both CB- and 

NCB-aggregated networks demonstrated more pronounced 

favorable associations with OS and PFS. A comparison between 

CB and NCB patients revealed that CB patients had significantly 

higher network distances when adjusted with CB or both CB 

and NCB networks and lower distances when adjusted with 

NCB networks alone (Figure 2B; Wilcoxon rank-sum test; p 

value < 0.01). Survival analysis based on adjusted network dis

tances showed that patients with higher distances were signifi

cantly associated with greater OS and PFS (Figure 2C; log rank 

tests, p value < 0.01). Furthermore, adjusted network distances 

correlated with OS for the mN subcohort and with both OS and 

PFS for the pE subcohort (Figures S5A–S5C). In summary, these 

Figure 2. Survival analysis with the adjusted network distance calculated on the subcohort of tumor primary sites from patients followed 

after immunotherapy by nivolumab 

(A) A forest plot depicting the univariate Cox regression results using adjusted network distances. Sample-specific network distances were adjusted with 

aggregated networks of clinical benefit (CB), nonclinical benefit (NCB), or the difference between them. 

(B) Comparison of the distributions of adjusted network distances between CB categories using Wilcoxon rank-sum tests. 

(C) Survival analysis using network distances adjusted with the differences between CB- and NCB-aggregated networks. Samples were divided into two groups 

based on the median value of the adjusted network distance (nd) (higher nd and lower nd groups). p values were calculated using the log rank tests. 

(**: p value < 0.01; *: p value < 0.05).
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Figure 3. Survival and exploratory analysis using gene connectivity (positive correlation) calculated on the subcohort of tumor primary sites 

from patients followed after immunotherapy by nivolumab 

(A) Volcano plots of gene connectivity association with patient overall survival (OS) and progression-free survival (PFS) (Cox’s proportional hazards model, 

p value < 0.01). 

(B) Unsupervised hierarchical clustering of samples into two groups (c1: 29 CB, 24 ICB, and 17 NCB patients and c2: 15 CB, 19 ICB, and 29 NCB patients) based 

on the connectivity of 21 genes significantly associated with both OS and PFS. Of these 21 genes, expression values of 8 genes (‘‘SLC39A12-AS1,’’ ‘‘WFDC10A,’’ 

‘‘MYO9B,’’ ‘‘TCIRG1,’’ ‘‘WFDC11,’’ ‘‘MIR31HG,’’ ‘‘DDX39B-AS1,’’ and ‘‘IGLV11-55’’) were also associated with survival data. 

(C) Survival analysis between the clusters c1 (blue) and c2 (pink) of samples. p values were calculated using the log rank tests. 

(D) Distribution of chromosomal mutations and gene mutations between the two clusters c1 and c2. Fisher’s test was conducted, and p values less than 0.05 were 

considered as significant (odds ratio [OR] was provided). MSKCC refers to Memorial Sloan Kettering Cancer Center prognostic model, widely used for outcome 

(legend continued on next page) 
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results demonstrate that within the context of ssGCNs generated 

from Pearson correlations, network distance adjusted with prior 

clinical knowledge effectively stratifies patients based on their 

response to nivolumab.

Gene connectivity is associated with treatment 

response

Gene degree, or connectivity, has been linked to cancer sub

types and survival outcomes.12,16 In weighted networks, gene 

connectivity refers to the sum of connection weights with other 

genes. We hypothesized that gene connectivity could differen

tiate patient treatment responses. To test this, we separately 

generated gene connectivity matrices from positive and negative 

correlations of ssGCNs to prevent the mixing of opposing asso

ciations. From positive correlation matrix, we identified 21 genes 

whose connectivity was significantly associated with OS and 

PFS in the pN subcohort (Figure 3A; Cox model: p value < 0.01; 

Table S2). Notably, only 8 of these genes were also linked to sur

vival based on their expression values. Using 21 genes’ connec

tivity, unsupervised clustering divided samples into two groups, 

including cluster 1 (29 CB, 24 ICB, and 17 NCB patients) and 

cluster 2 (15 CB, 19 ICB, and 29 NCB patients) (Fisher’s exact 

test: p value = 0.0203). Cluster 2 exhibited higher gene connec

tivity on average (Figure 3B) and significantly worse survival 

probability for both PFS and OS compared to cluster 1 

(Figure 3C; log rank tests: p value < 0.01). Next, we investigated 

whether genomic mutation and clinical features differed between 

the two clusters. Cluster 2 had significantly higher frequencies of 

chromosomal losses at 11q12.3 and 11q23.1, along with greater 

intratumor heterogeneity (ITH) (Figure 3D; Figure S6; Fisher’s 

exact test: p value < 0.05). Notably, 11q23 deletion has been 

linked with poor prognosis in several cancers,21,22 and ITH has 

been associated with tumor progression and response to immu

notherapy.23 Gene ontology analysis revealed that the 21 highly 

connected genes were enriched in cancer- and immune-related 

pathways such as MYC targets v1, oxidative phosphorylation, 

ribosome pathways, and natural killer (NK) T cell gene set (a 

cell population predictive of the response to anti-tumor treat

ments) (Figure 3E).24,25 Among these genes, NLRC5 and 

PLCB3, known for their involvement in ccRCC progression and 

tumor immunity, were also identified.

A similar analysis of gene connectivity from negative correlations 

identified 48 significant genes, where greater connectivity was 

associated with worse survival in cluster 2 (Figure S7). Notably, 

clustering based on positive and negative correlation-derived con

nectivity overlapped substantially, with 46 patients common be

tween the two cluster 1 groups (70 and 56 patients) and 53 patients 

common between the two cluster 2 groups (63 and 77 patients) 

(Figure S7G). To study the relevance of these findings in tumor me

tastases, we analyzed the mN subcohort and obtained 9 and 17 

genes (based on positive and negative associations, respectively) 

whose higher connectivity was significantly associated with lower 

OS and PFS (Table S2; Figures S8A and S8B). Interestingly, no 

overlap was found between these genes and those identified 

from the pN subcohort.

The same approach was applied to the pE and mE subco

horts. Consistently, higher gene connectivity correlated with 

worse survival outcomes, and clustering patterns were similar 

between positive and negative correlation-derived connectivity 

(Figures S9 and S10).

Overall, these findings demonstrate that the increase in gene 

connectivity—whether from positive or negative gene-gene cor

relations—is associated with poorer prognosis and shorter treat

ment recurrence. Moreover, the genes linked to survival or recur

rence varied depending on the tumor’s primary or metastatic 

location.

Highly negative gene-gene associations in patients 

without CBs

Investigating gene pairwise associations in sample-specific net

works has become a popular method for identifying cancer sub

types.13,26 To assess perturbations in gene-gene associations, 

we first focused on edges shared by all samples. In ssGCNs of 

the pN subcohort, we obtained 238,804 edges and filtered 

them based on variance, retaining the top 10,000 most varied 

edges. Among these, 214 and 224 significant edges were signif

icantly associated with OS and PFS values, respectively (Cox 

model: p value < 0.01), with 51 edges intersecting between 

both (Figure 4A; Table S3). A small subset of genes from these 

edges overlapped with those previously identified based on con

nectivity (Figure S11). Unsupervised clustering of these edges 

revealed that cluster 2 (10 CB, 14 ICB, and 28 NCB patients) ex

hibited stronger negative gene associations (Figure 4B) and was 

significantly associated with worse OS and PFS compared to 

cluster 1 (34 CB, 29 ICB, and 18 NCB patients; Fisher’s exact 

test: p value = 0.00065; Figure 4C; log rank test: p value < 0.01). 

However, no significant differences in genomic mutation or clin

ical features were observed between these clusters (Figure S12).

Further analysis of edge weights across patient categories re

vealed that NCB patients exhibited stronger negative correla

tions compared to CB patients (Figure 4D; Wilcoxon rank-sum 

test: p value < 0.01). It raised the question of whether transcrip

tion factors (TFs) regulated genes from these edges. Enrichment 

analysis identified three significant TFs (MZF1, ZNF692, and 

RBCK1), previously associated with cancer progression and 

prognosis in ccRCC (Table S4).27–29 Genes from these edges 

associated with both OS and PFS were overrepresented in ribo

some pathways and NK T cell gene sets (Figure 4E), with some 

known cancer-related genes (PRELID3B-TTLL3, BMPR2- 

MAN2C1, etc.) among them.30–32

In the mN subcohort, six edges were significantly associated 

with both OS and PFS values (Table S3). Clustering based on 

these edges identified cluster 2 with significantly shorter OS 

and PFS (Figures S13A and S13B). Similarly, 5 of these edges 

prediction of treatments. Chromosome gain and loss were counted for chromosomal mutations, and somatic point mutations (including splice sites, frameshift, 

missense, nonsense, and in-frame indel) were counted for gene mutation. 

(E) Gene ontology over-representation analysis. Genes were selected as the union of significant genes whose connectivity was associated with OS or PFS. Gene 

sets from KEGG, MSigDB hallmark, and Cellmarker databases were used. For each pathway, the color of each circle represents the adjusted p value, and the size 

of circles indicates the percentage of selected genes in the gene sets.
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Figure 4. Survival analysis of gene-gene associations using the subcohort of tumor primary sites from patients followed after immuno

therapy by nivolumab 

(A) Volcano plots of gene-gene weight association with overall survival (OS) and progression-free survival (PFS) (Cox’s proportional hazards model, 

p value < 0.01). 

(B) Unsupervised hierarchical clustering of samples into two groups (c1: 34 CB, 29 ICB, and 18 NCB patients; c2: 10 CB, 14 ICB, and 28 NCB patients) using 51 

edge weights significantly associated with both OS and PFS. 

(C) Survival analysis between the clusters c1 (blue) and c2 (pink) of samples. p values were calculated using the log rank tests. 

(legend continued on next page) 
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were highly negatively co-expressed in NCB patients compared 

with CB patients (Figure S13C). Functional enrichment analysis 

revealed similar pathway involvement as observed in the pN sub

cohort, while no significant differences in somatic mutation and 

clinical features were observed between the two clusters 

(Figures S13D–S13F).

In the pE and mE subcohorts, the same approach identified 40 

and 10 significant edges, respectively, which also stratified sam

ples into two clusters with distinct survival outcomes 

(Figures S14A and S14B). A visualization of the selected edges 

across all four subcohorts is provided (Figure S15). Overall, high

ly negative gene-gene associations were linked to poor progno

ses. Notably, the genes from significant edges weakly overlap

ped (46.9% for pN) with those identified based on their 

connectivity, indicating that edges and gene connectivity offer 

complementary insights into patient survival predictions. 

Furthermore, differences in significant edges between primary 

and metastatic tumor sites underscore the necessity of tumor 

site-specific analyses in cancer research.

Pathway entropy and centrality scores

Given that both gene connectivity and gene-gene associations 

revealed differences in patient response to treatments, we next 

asked whether the complexity and topological features of bio

logical pathways were also associated with patient survival. A 

previous study has shown that the complexity of signaling path

ways is linked to survival in pan-cancer molecular data.33 To 

explore this, we developed a tool to calculate topology-based 

pathway scores at the sample-specific level. This tool first ex

tracted pathway networks from our ssGCNs using Kyoto Ency

clopedia of Genes and Genomes (KEGG) gene sets, followed 

by the computation of pathway entropy and centrality scores. 

While entropy measures the randomness or complexity of a 

network, eigenvector centrality reflects the transitive influence 

of genes, closeness centrality indicates the average shortest dis

tance from one gene to the other, and edge betweenness cen

trality measures the influence of edges within a network.

To assess whether these pathway scores captured specific 

biologically meaningful information, we identified pathways 

significantly associated with OS or PFS values using the Cox 

model (p value < 0.05). We applied the same method to select 

significant pathways based on gene set variation analysis 

(GSVA) scores, but notably, there was little overlap between 

pathways identified by topology-based scores and those 

derived from GSVA using gene expression values (Figure S16). 

We then used the significant pathway scores to stratify patients 

into two clusters to assess their predictive power (Figure S17). In 

the pN subcohort, all categories of pathway scores successfully 

clustered patients according to OS (log rank test: p value < 0.05) 

(Figure 5, left). The most robust classifications were achieved 

with GSVA and edge betweenness centrality scores. For treat

ment response, all pathway score categories except edge 

betweenness centrality were significantly associated with PFS 

(Figure 5, right; log rank test: p value < 0.05), with eigenvector 

centrality showing the highest significance. Consistent with the 

patterns of gene connectivity and edges, patients with better 

survival exhibited lower entropy scores (Figure S17B).

Regarding the biological pathways involved, some were 

consistently associated with survival across multiple score cate

gories, while others were identified by only one type of score. The 

phosphatidylinositol pathway, known to play a central role in 

ccRCC,34 was notably found by all scores, except GSVA. The 

erythroblastic oncogene B (ERBB) signaling pathway, having a 

vital role in the initiation and progression of ccRCC,35 was iden

tified by GSVA and the eigenvector centrality score. Regarding 

specific pathways, the eigenvector centrality score revealed 

some of the main pathways associated with the pathogenesis 

of kidney cancer, such as mTOR, ascorbate and aldarate meta

bolism, unsaturated fatty acids, and mismatch repair.36–39 Addi

tionally, the circadian rhythm pathway linked to ccRCC prog

nosis was identified by the closeness centrality score.40

The relevance of pathway entropy and centrality scores in pre

dicting survival or recurrence was further confirmed in the mN, 

pE, and mE subcohorts (Figures S19 and S20). Overall, our find

ings demonstrate that pathway topology features provide com

plementary prognostic insights beyond conventional gene 

expression-based enrichment methods. The observed differ

ences between topology-based and GSVA-derived pathways 

underscore the importance of integrating network-based ap

proaches for a more comprehensive understanding of treatment 

response in ccRCC.

Combining network features and gene expression values in 

ML models better predicts immunotherapy response.

Gene network information from existing databases can 

enhance survival predictions in patients with cancer.41 We set 

out to investigate whether SSN features could improve the per

formance of gene expression-based ML models in predicting 

immunotherapy response (Figure 6A). For this analysis, we 

focused on 90 samples from the pN subcohort, excluding ICB 

patients, and classified 44 CB patients as responders and 46 

NCB patients as nonresponders.

Using logistic regression (LR) classification models (Figure S21

for model comparison, default hyperparameters) with leave-one- 

out cross-validation (LOOCV), we assessed predictive perfor

mance using gene expression, network features, and their combi

nations. The best-performing model combined gene expression 

and edges, achieving an accuracy of 0.755 and an F1 score 

of 0.75 (Figures 6B–6E, Fisher’s exact test, p value < 0.05; 

Figure S22 for feature selection; Figure S23; Tables S5 and S6). 

While gene expression alone provided a reasonable prediction 

(Table S6; accuracy: 0.7), integrating edges improved perfor

mance (accuracy: 0.755). Pathway entropy-based models also 

outperformed GSVA-based models (Figures 6D and 6E). This 

trend held across support vector machine model and deep neural 

(D) Distributions of Pearson correlation coefficients (PCCs) for pN samples from the clinical benefit (CB, blue), intermediate clinical benefit (ICB, gray), and 

nonclinical benefit (NCB, red) groups. The Wilcoxon rank-sum test was conducted between CB and NCB patients. 

(E) Gene ontology overrepresentation analysis. Genes were selected as the union of significant genes whose edge weight was associated with OS and PFS. Gene 

sets from KEGG, MSigDB hallmark, and Cellmarker databases were used. For each pathway, the color of each circle represents the adjusted p value, and the size 

of circles indicates the percentage of selected genes in the gene sets.
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Figure 5. Survival analysis of biological pathway entropy and centrality scores using the subcohort of tumor primary sites from patients 

followed after immunotherapy by nivolumab 

Several survival analyses were carried out with separation of the patient cohort according to topological pathway scores: use of 12 (OS) and 5 (PFS) significant 

pathways based on GSVA scores (A), use of 28 (OS) and 7 (PFS) significant pathways based on entropy scores (B), use of 8 (OS) and 10 (PFS) significant pathways 

based on gene eigenvector centrality scores (C), use of 16 (OS) and 3 (PFS) significant pathways based on gene closeness centrality scores (D), and use of 8 (OS) 

and 10 (PFS) significant pathways based on edge betweenness centrality scores (E). 

p values were calculated using the log rank tests.
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Figure 6. Prediction of drug response for immunotherapy-treated patients using gene expression values and network features 

(A) Overall scheme of LOOCV predictions of a logistic regression ML model (class weight was set to ‘‘balanced’’) based on gene expression value and network 

features as the input. 

(B–E) Predicted responders (Pred CB) and predicted nonresponders (Pred NCB) are plotted against real responders (light blue) and nonresponders (orange). The 

two-sided Fisher’s exact test was used to compute statistical significance. Gene expression values were used as the input (B). The combination of expression 

values and edges was the input (C). The accuracy (D) and F1 scores (E) were computed for gene expression (blue), network features (gray), and their combinations 

(red). 

(F) Across study prediction. The pN subcohort (n = 90) was used as the training set (30 features selected for both edges and expression, 50 features for their 

combination during the training process), and the mN subcohort was used as the test set (n = 33). 

The area under the curve (AUC) of the receiver operating characteristics curve was used here as a performance metric. We assumed that the pN subcohort shared 

biological mechanisms partially with the mN subcohort.
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network model, though not for random forest (RF) models 

(Figure S24). We noted that hyperparameter tuning did not gener

ally improve the prediction performance (Tables S7 and S8).

To test model generalizability, we trained LR and RF models 

(default hyperparameters) on the pN samples and tested the pre

diction performance on the mN samples (33 patients with 13 re

sponders and 20 nonresponders), assuming that pN patients 

and mN patients partially shared biological mechanisms in 

immunotherapy treatment response. We compared the predic

tive performance of treatment response models based on 

expression or edge features alone and the combined expression 

and edge feature set using the area under the curve of the 

receiver operating characteristics curve (Figures 6F and S25). 

We observed that the best performance in the across-study 

approach was achieved using edge features alone, followed by 

the expression and edge combination, and finally by expression 

features alone (hyperparameter tuning did not generally improve 

the prediction performance as presented in Figure S25). As tran

scriptomic profiles are known to differ substantially between pri

mary tumor sites and metastases,19,42 we anticipated a global 

decrease in the performance of the ML models. This was indeed 

observed when comparing results from the across-study evalu

ation to the LOOCV performance obtained independently on 

either primary or metastatic tumor data. Nevertheless, this 

across-study training-test set design suggests that edge fea

tures capture unique aspects of gene regulation from the primary 

tumor site that are also predictive of treatment response at met

astatic sites.

These findings suggest that integrating sample-level network 

features with gene or pathway markers could enhance ML model 

performance in predicting responses of patients with ccRCC to 

immunotherapy.

Validation of pathway entropy and centrality scores in 

another cohort

Having shown the ability of sample-specific pathway scores to 

predict the susceptibility of patients to nivolumab, we extended 

this analysis to an independent cohort of 354 patients with ccRCC 

followed after treatment with the therapeutic combination avelu

mab and axitinib (an immune checkpoint inhibitor and antiangio

Figure 7. Survival analysis using biological 

pathway entropy and centrality scores 

calculated using an independent patient 

cohort from Mozter et al. Clusters c1 (blue) 

and c2 (pink) of samples were defined using 

an unsupervised hierarchical clustering of 

pathway scores significantly associated 

with patient PFS values. p values were 

calculated using the log rank tests.

genic therapy).43 Following the same 

approach used for the pN cohort, we in

ferred sample-specific gene networks 

and calculated pathway scores to cluster 

samples into two groups (Figure S26). 

Respectively with eigenvector, closeness, 

and edge betweenness scores, clustering 

revealed a significant difference in treatment response (PFS) be

tween two clusters, using 10, 5, or 6 significant pathways 

(Figures 7 and S26). These pathways were already known to be 

deregulated in ccRCC such as those associated with the meta

bolism of amino acids and fatty acids or those involved with 

DNA repair.44–47 While no significance in survival was found with 

pathway entropy, the consistent divergence of metabolic path

ways between clusters suggests a key role in ccRCC progression 

(Figure S26).

To conclude, we validated the relevance of topology-based 

pathway scores derived from ssGCNs in an independent cohort 

of patients with ccRCC treated with combination immuno

therapy. These scores effectively stratified patients, reinforcing 

their potential as predictive biomarkers.

DISCUSSION

Detection of regulatory perturbations in sample-specific gene 

networks inferred from expression data has contributed to prog

ress in personalized medicine by refining the stratification of pa

tients into cancer subtypes.13,14,16,26,48 Our study introduced an 

innovative computational framework for SSN analysis, facili

tating the use of multiscale network features in cancer research. 

Our approach enabled a refined characterization of gene net

works for patients with ccRCC and revealed distinct gene co- 

expression patterns linked to immunotherapy response.

Network similarity facilitates the comparison of gene net

works, allowing for the clustering of networks that group patients 

with similar gene regulation patterns. While network distance has 

been effective in identifying tumor types in partial correlation- 

based networks,13 we detected a lack of sensitivity when 

applying it to Pearson correlation-based networks to classify pa

tients based on treatment responses. To enhance its efficacy, 

we improved network distance by comparing one sample to a 

selected group of patients with known medical outcomes. Our 

adjusted network distance revealed a high-resolution way to 

associate each sample-specific co-expression network with 

the patient’s clinical outcome.

Specific network markers such as node degree and edge 

weight further showed that higher gene connectivity and stronger 
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negative gene pairwise associations were prevalent in patients 

with poorer survival probability and worse treatment response. 

This finding suggests that heightened activity within cancer-asso

ciated networks reflects dysregulated gene interactions that pro

mote tumor progression, rather than effective biological response. 

Notably, the observed increase in connectivity and edges was 

observed only in a subset of differential networks between pa

tients, rather than in complete networks derived for patients. 

This distinction is crucial, as it indicates that the observed 

changes are specific to tumor-associated activity instead of gen

eral biological activity. Supporting this, many genes identified as 

network markers in our study have been previously implicated in 

tumor progression, metastasis, and resistance to antitumor treat

ments. Additionally, changes in these network features were 

associated with deletion_11q12.3 and deletion_11q23.1, and 

ITH in the subcohort pN, which were previously linked to cancer 

progression and prognosis.21–23 Furthermore, an increase in con

nectivity and co-expression may indicate changes in the tumor 

microenvironment, as they are enriched in NK T cells.24,25 This 

suggests that network-based markers capture distinct biological 

processes beyond traditional differentially expressed genes, 

providing novel and complementary predictors of treatment 

response in patients with ccRCC.

The topology of gene co-expression networks, characterized 

by varied gene connectivity and edges, could also be examined 

through the lens of biological pathway networks. Entropy-based 

measures of signaling pathways have already been proposed to 

assess their activation state for survival analysis in pan-cancer 

studies.49 To extend this concept, we calculated sample-spe

cific entropy and topology-based pathways scores, alongside 

the classic GSVA pathway score, to identify pathway co-expres

sion perturbation significantly associated with treatment 

response. While some pathways were consistently identified 

by several scoring methods, others were unique to a specific 

score, illustrating the complementary nature of these ap

proaches. Concerning pathway deregulation linked to nivolumab 

response, the eigenvector centrality score was effective for sam

ples from primary and metastatic sites of ccRCC tumors, supple

mented by the closeness and the edge betweenness centrality 

scores for metastases. Our findings suggest that entropy and to

pological pathway scores offer diverse and valuable perspec

tives to detect clinically relevant pathways, capturing complexity 

change or structural changes in the pathway co-expression 

network.

Traditional gene expression analysis also has the capacity to 

distinguish patients in treatment response, and we compared its 

predictive performance with gene connectivity and edges. Using 

the same method, we selected 64 genes for the pN subcohort 

and 65 genes for the mN subcohort based on expression values 

and performed unsupervised clustering (Figure S26; log rank 

tests: pN-OS, p value = 0.00015, pN-PFS, p value = 0.02559; 

mN-OS, p value = 0.00367; mN-PFS, p value = 0.00037). When 

comparing gene expression with gene connectivity or edges, we 

observed that edges exhibited higher predictive performance in 

the pN subcohort (Figure 4C), whereas gene connectivity was 

more predictive in the mN subcohort (Figures S8A and S8B). 

Furthermore, these network features not only demonstrated their 

ability in predicting patients’ CBs but also enhanced the prediction 

performance of gene expression-based ML models. Specifically, 

incorporating edges into gene expression-based ML models 

increased its prediction accuracy from 0.70 to 0.75. Although 

our pathway entropy provided a slight improvement over GSVA- 

based ML model due to the limited number of selected pathways, 

their predictive effectiveness was validated using another inde

pendent dataset. Consistent with other network-based prediction 

models,50,51 our results suggest that combining SSN features with 

gene expression enables more accurate predictions of patient 

response to immunotherapy. Nevertheless, the robustness and 

generalizability of our integrated ML models will need to be 

confirmed in additional independent patient cohorts.

In terms of potential novel predictors of treatment response in 

patients with ccRCC, we observed a substantial discrepancy in 

these lists of genes carrying co-expression patterns between 

primary and metastatic sites, aligning with previous studies that 

reported significant changes in expression profiles between pri

mary tumor sites and metastases.19,42 Furthermore, through 

pathway network analysis, we revealed that the deregulations 

of the ccRCC primary site associated with PFS values were rather 

captured by the phosphatidylinositol, ERBB, and mTOR signaling 

pathways and by the ascorbate and aldarate metabolism and the 

mismatch repair system, while those of metastases were linked 

to cytokine inflammation, sphingolipid metabolism, aminoacyl- 

tRNA biosynthesis, and citrate-tricarboxylic acid (TCA) cycle 

pathways, as well as the nucleotide excision process. These find

ings underscore the site-specific co-expression patterns and 

biological pathways that are differentially associated with patient 

survival depending on whether the sample originates from a pri

mary or metastatic site, consistent with the diversity of molecular 

characteristics observed between primary and metastatic sites in 

advanced kidney cancers.19 This specificity suggests the critical 

role of tumor site location in disease progression and treatment 

response, emphasizing the importance of considering the biopsy 

or surgery site in the development of predictive models and ther

apeutic strategies for ccRCC.

In conclusion, our approach demonstrates sample-specific 

gene co-expression network features as alternative markers to 

predict survival and treatment response in patients with 

advanced kidney cancer. It also enables the identification of per

turbed pathways based on sample-specific networks and facili

tates the routine application of sample-specific pathway 

network-based scores. Most importantly, our computational 

framework for investigating gene network features linked to pa

tient treatment responses provides a valuable tool to support the 

personalization of therapies in the clinic.

Limitations of the study

Our approach has several limitations and perspectives. The sam

ple size of clinical cohorts is limited, and detailed network markers 

observed from our analysis need to be further validated in other 

independent clinical drug trials and ultimately for different cancer 

types and treatments. Also, the small sample size may cause 

overfitting issue in the training process for ML models. Moreover, 

our approach may require the control of the heterogeneity of sam

ples in a group to maintain common edges for identifying specific 

edges. Also, our evaluation of the predictive potential of pathway- 

based scores within ML models, as presented in Figures 6D, 6E, 
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S21, S23, and S24, should be considered preliminary, as it was 

limited to GSVA (expression based) and entropy (network topol

ogy based) scores. Our primary objective was to demonstrate 

that a pathway-based score capturing gene network topology 

could complement traditional expression-based scores. Howev

er, future work should focus on the optimal selection and integra

tion of diverse pathway-based scores to develop more effective 

ML models for predicting treatment outcomes. Furthermore, po

tential confounding variables such as age, sex, and prior treat

ments were not adjusted for feature selections, and the difference 

in age was significantly detected between two clusters based on 

edges in the pN subcohort (Figure S27; 63.22 vs. 57.86; Student’s 

t test: p = 0.007). Finally, the biological meaning of co-expression 

patterns needs to be further defined. The change in co-expression 

networks from bulk RNA sequencing (RNA-seq) data may be influ

enced by the cellular content of the tumor immune microenviron

ment, tumor heterogeneity, or intercellular communication. The 

advent of single-cell RNA-seq datasets from patient tumors may 

provide an opportunity to explore network change at the scale 

of cellular subtypes to unravel intracellular factors from those in 

the microenvironment sources driving changes in co-expression.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study did not involve the recruitment of human participants or animal models. All analyses were conducted using publicly avail

able datasets. Details of the data sources, including sample characteristics and preprocessing methods, are provided in the STAR 

Methods, method details and data and code availability. The original datasets, obtained from the Braun et al.,8 and Motzer et al.,43

had been previously approved for public use by the respective data providers.

METHOD DETAILS

Data collection

Gene expression, genomic mutation, and clinical data of 309 ccRCC patients were obtained from the publication by Braun et al. 

(CheckMate 009, 010, 025).8 Clinical outcomes collected from the Braun et al. study classified patients into three categories: Patients 

with objective responses (complete or partial), or stable disease with tumor shrinkage and PFS of at least 6 months were classified as 

having clinical benefit (CB); Patients with progressive disease and PFS less than 3 months were classified as having no clinical benefit 

(NCB); All other patients were classified as intermediate clinical benefit (ICB). Sequencing data were generated prior to treatment, 

and survival data was collected after treatment. The expression data of these samples were split into four groups based on the treat

ment and cancer site in patients (Table S1). Ensembl gene ID was converted to gene symbol using a human gene annotation file 

(release v43) from the GENCODE database version 4353 and only immune genes, mitochondrial genes, long non-coding RNA genes, 

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Analyses, and resources related to gene 

network for ccRCC patients

This paper Zendo: https://doi.org/10.5281/zenodo.15723817

ccRCC Bulk RNA-seq Braun et al.8 N/A

Normal kidney cortex tissue Bulk RNA-seq GTEx https://www.gtexportal.org/home/downloads/ 

adult-gtex/bulk_tissue_expression

Cancer-related Genes Cancer Gene Census52 https://cancer.sanger.ac.uk/census#cl_search

ccRCC Bulk RNA-seq Motzer et al.43 N/A

Software and algorithms

SWEET Chen et al.16 https://github.com/SysMednet/SWEET

Network Distance Huang et al.13 N/A

Numpy Numpy https://numpy.org/news/#releases

Pandas PyData https://pandas.pydata.org/

Seaborn PyData https://seaborn.pydata.org/

Matplotlib Matplotlib https://matplotlib.org/

Lifelines Lifelines https://lifelines.readthedocs.io/en/latest/

scikit-survival scikit-survival https://scikit-survival.readthedocs.io/en/stable/

PyComplexHeatmap PyComplexHeatmap https://github.com/DingWB/PyComplexHeatmap

Gseapy GSEAPY https://gseapy.readthedocs.io/en/latest/ 

introduction.html

ChEA3 ChEA3 https://maayanlab.cloud/chea3/

GSVA BiocManager https://github.com/rcastelo/GSVA

Igraph Conda https://python.igraph.org/en/stable/

Venny4Py Venny4Py https://github.com/timyerg/venny4py

Sklearn Scikit-learn https://scikit-learn.org/stable/

ccRCC Bulk RNA-seq Motzer et al.43 N/A
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and protein-coding genes were kept for gene network inference. To validate the constructed networks, RNA-seq data from 85 normal 

kidney cortex tissue samples were obtained from the GTEx portal, and cancer-related genes were collected from the Cancer Gene 

Census database.52 Additionally, data from an independent ccRCC cohort were downloaded from the publication by Motzer et al.,43

including expression profiles of 354 patients treated with avelumab (anti PD-L1) and axitinib (anti-angiogenic). Gene expression 

values were normalized using the log2 transformation of transcripts per million (TPM).

Gene network inference

In this study, we used the recently developed SWEET method to construct sample-specific weighted gene co-expression networks 

(ssGCNs).16 An aggregated network (Nij
G) was first constructed using gene expression of all samples within a specific category. Sub

sequently, a perturbed network (Nij
G-S) was generated by removing one specific sample from the aggregated network (Figure 1A). 

Specifically, a sample-specific network N
(S)

ij was defined as

N
(S)

ij = W(S) × num×K ×
(

N
(G)

ij − N
(G − S)

ij

)
+ N

(G − S)

ij (Equation 1) 

where num was the total number of samples except the target sample in a group, W(S) was the sample weight, and K was a balance 

factor ranging from 0 to 1. The best performance was achieved with K = 10% as shown in Figure S1 and by the SWEET paper. The 

parameter K was a scale factor used to enlarge the differential correlation between the aggregated matrix and the perturbed matrix. 

The sample weight W(S) was added to the equation of sample-specific networks to neutralize the network edge number bias.16 W(S)

was calculated as

W(S) =

(
μ(SP)

PCC − min
(

PCCS

)
+ x

)

(
max

(
PCCS

)
− min

(
PCCS

)
+ x

) (Equation 2) 

where μ(SP)

PCC 
was the mean of Pearson Correlation Coefficient (PCC) between one specific sample S and the other samples, PCCS was 

the set of PCCs between two patients and x was a constant term added to avoid division by zero that we set to 0.01. To reduce the 

noise within the networks, the significance level of confidence scores for edges was assessed using Z score normalization, with a Z 

score threshold of 2.58, corresponding to a two-sided p-value of 0.01.

Network distance

Network distance (Nd) was introduced by Huang et al. as a measure of network similarity, primarily used to identify cancer types.13 Nd 

was defined as the ratio of the number of overlapped edges to the number of union edges between two partial correlation-based 

sample networks,

Nd =

(
Ei ∩ Ej

)

(
Ei ∪ Ej

) (Equation 3) 

where Ei and Ej represented the sets of edges from sample-specific networks. These edges correspond to direct interactions be

tween genes.

However, due to the difference between Pearson correlation and partial correlation, network distance may not be suitable for sub

typing patients when using Pearson correlation-based gene networks. Befitting the divergence of treatment response, we proposed 

an adjusted network distance, which calculated the similarity between an individual sample network and an aggregated network of a 

specific group. Adjusted distances were calculated using clinical benefits (CB) patients (Equation 4) or non-clinical benefits (NCB) 

patients aggregated networks (Equation 5). Also, the difference between CB distance and NCB distance was used for further analysis 

(Equation 6).

Ndcb =
(Ei ∩ Ecb)

(Ei ∪ Ecb)
(Equation 4) 

Ndncb =
(Ei ∩ Encb)

(Ei ∪ Encb)
(Equation 5) 

ΔNd =
(Ei ∩ Ecb)

(Ei ∪ Ecb)
−

(Ei ∩ Encb)

(Ei ∪ Encb)
(Equation 6) 

Network features

We explored two key network features: gene connectivity (weighted node degree) and gene-gene association (edges) (Figure 1B). 

Gene connectivity, which quantifies the total strength of all the associations of one gene with other genes, was calculated using 

the Python package igraph (version 0.10.4).54 To accurately identify whether the source of gene connectivity was from positive or 
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negative regulations, networks were divided into two: one containing positive correlation edges and the other containing negative 

correlation edges. To reduce the computation time, the analysis was limited to the top 5,000 most varied genes based on their 

connectivity.

To assess the impact of edges, we focused on common edges across all samples within a cohort and selected the top 10,000 most 

variable edges based on their weights. Furthermore, genes and edges were filtered using a univariate Cox regression model, retain

ing those with a p-value less than 0.01. To align with the definition of clinical benefits, network features were preserved if they were 

significantly associated with both overall survival (OS) and progression free survival (PFS).

Pathway entropy and topology scores

Sample-specific pathway networks were extracted from sample networks using gene sets of pathways from the KEGG database.55

To enable the calculation of pathway scores, both positive and negative edge values (converted to their absolute values) were consid

ered. Given that the noise elimination within ssGCNs led to a varying number of edges, pathway entropy was calculated based on the 

distribution of edges56 as follows:

H = −
∑m

k = 1

p(k)log2(p(k)) (Equation 7) 

where p(k) is the probability of an edge inside a selected pathway network, and m is the total number of edges inside that pathway 

network. The probability p(k) of each edge was determined by dividing the weight of the edge by the sum of all the edge weights inside 

the pathway network.

Additional pathway topological scores were calculated based on the average of gene eigenvector centrality, gene closeness cen

trality, and edge betweenness centrality.57 Alongside our entropy and topology scores, sample-level pathway scores based on gene 

expression were calculated using the gene set variation analysis (GSVA 1.46.0) method implemented in R (version: 4.2.3).58

Clustering of samples and survival analysis

Unsupervised hierarchical clustering was conducted using the Ward method and cosine metrics. To facilitate comparisons of treat

ment responses, we divided the samples into two clusters. To assess survival probability between clusters, Kaplan-Meier curves 

were plotted, and log rank tests were performed to determine whether the survival distribution of the two clusters were significantly 

different with a p value of 0.05. These analyses were conducted using the Python packages lifelines 0.27.7 and scikit-survival 

0.21.0.59,60

Gene sets and transcription factor (TF) enrichment analysis

The Molecular Signatures Database (MSigDB) hallmark, the KEGG canonical pathways, and the cell marker (augmented 2021) were 

obtained from the Human MSigDB website and Enrichr libraries.55,61,62 For over-representation analysis, significant pathways were 

identified using the Python package gseapy 1.0.563 and an adjusted p-value threshold of 0.05 was selected as a threshold. For the 

enrichment of transcription factors (TF), an online query was conducted on the CHEA3 online tool.64

Measuring the performance of machine learning (ML) predictions

To evaluate the prediction performance based on gene expression and network feature values, we used the Logistic Regression 

(LR) model, and also tested Random Forest (RF) model, Support Vector Classifier (SVC) models, and deep neural network (DNN) 

model.For leave-one-out cross-validation prediction, we used selectKbest function with f_classif parameter to select best 

features in the training process, and evaluated the performance using accuracy and F1 score. For gene expression, network 

features, and their combinations, the number of features (K) was selected based on prediction accuracy of models with K 

from 10 to 100 with a 10 step. For across study validation, we used the pN subcohort as the training set and used the mN sub

cohort as the test set, and the area under the receiver operating characteristic curve (AUC) was used as the main performance 

metric.

For the combination of gene expression and network features, gene expression matrix was horizontally merged with network fea

tures before feature selection in the training process. GSVA pathway matrix was merged with pathway entropy scores horizontally as 

well. These combined features were selected by selectedKbest function in the training process. We assumed that selected features 

from different categories could be complementary to the other to improve the performance of ML models. For hyperparameter tuning 

in LR models, we conducted 5-fold cross-validation in a training dataset with C ranging from 0.1 to 1 with a step of 0.1, and used 

GridSearchCV65 to identify optimal hyperparameters. The Grid range for other models can found in the Table S8. All analyses 

were implemented in Scikit-learn in Python.65

Validation of pathway scores

To assess whether our pathway scores were effective in other cohorts, we selected the data from 354 ccRCC patients treated with 

the combination of avelumab (anti-PD-L1) and axitinib (anti-angiogenic).43 For each sample in this cohort, sample-specific gene net

works were constructed and pathway networks were then derived as described above.
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QUANTIFICATION AND STATISTICAL ANALYSES

Sample specific networks were constructed using the SWEET method, and network features were extracted and generated accordingly. 

For adjusted network distance, the Cox model was used to test the association between the distance and survival data. For gene 

connectivity, edges, and pathway scores, the Cox model was used to filter out irrelevant features, and those features associated with 

both OS and PFS were used as the input of clustering using the function clustermap from the Python package seaborn. We performed 

Fisher’s exact test and computed the p value to observe the distribution of patients in two clusters. We also compared the distribution of 

somatic mutations between two clusters using Fisher’s exact test and compared the clinical features between two clusters using 

wilcoxon rank-sum test. Gene set enrichment analysis was performed using the function enrichr from the Python package GSEAPY. 

The specific test is mentioned in each context.
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