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SUMMARY

Immunotherapies have recently emerged as a standard of care for advanced cancers, offering remarkable
improvements in patient prognosis. However, only a small subset of patients benefit, and robust molecular
predictors remain elusive. We present a computational framework leveraging sample-specific gene co-
expression networks to identify features predictive of immunotherapy response in kidney cancer. Our results
reveal that patients with similar clinical outcomes exhibit comparable gene co-expression patterns. Notably,
increased gene connectivity and stronger negative gene-gene associations are hallmarks of poor re-
sponders. We further developed sample-specific pathway-level network scores to detect dysregulated bio-
logical pathways linked to treatment outcomes. Finally, incorporating these sample-level network features
improves the predictive performance of gene expression-based machine learning models. This work high-
lights the value of personalized gene network features for stratifying patients with cancer and optimizing

immunotherapy strategies.

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the predominant histo-
logical subtype of kidney cancer, with a high mortality rate
following metastatic progression.’ Immune checkpoint inhibitors
(ICls) targeting programmed cell death protein 1 (PD-1) and pro-
grammed cell death ligand 1, either as monotherapy or in com-
bination with angiogenesis inhibitors, have become the standard
of care for metastatic ccRCC in recent years.”* While these ther-
apies have improved patient survival rates, the objective
response rate to nivolumab, an ICI, has been reported to be
only 34.1%.% Among the response mechanisms to ICls, trun-
cating mutations in polybromo-1 and focal loss of 10g23.31
have been positively associated with patient survival, likely due
to the higher expression of angiogenesis genes and the loss of
the tumor suppressor PTEN, respectively.®~ Although immuno-
therapy aims to enhance immune response against tumors, the
proportion of CD8* T cell infiltration has not been correlated
with treatment outcomes.® However, these findings have not

been consistently observed in prior studies,”'" underscoring

the complex mechanisms of genomic mutations and T cells in tu-
mor progression and therapy resistance. Therefore, the identifi-
cation of novel predictive markers is crucial for optimizing patient
therapies and advancing personalized medicine.

To model the complex disease system at the individual level,
several methods have been developed to infer sample-specific
networks that capture the unique network structures of multiple
samples with different phenotypes. These include the sample-
specific network (SSN) method, '? which estimates perturbations
of the Pearson correlation coefficient for each pair of genes; SSN
based on the partial correlations between genes (P-SSN)'?;
linear interpolation for inferring SSN (LIONESS)'*; Bayesian
optimized networks obtained by assimilating omic data
(BONOBO)'®; and sample-specific weighted correlation network
(SWEET),"® which mitigates size imbalances between different
subpopulations of a dataset.

With regard to the key differences between these methods,
the SSN method infers an SSN using one case sample against
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a set of control samples as a reference, based on differential
Pearson correlation. SSNs have demonstrated strong perfor-
mance on both simulated data and experimental tumor tran-
scriptomes, highlighting their biological relevance in identifying
deregulated pathways and driver genes.'®'” Similarly, the
P-SSN method uses a differential partial correlation analysis
between a set of control samples (m) and a specific sample
plus the given samples (m + 1). By focusing on direct interac-
tions and excluding indirect interactions, the P-SSN network
distance can distinguish different cancer types or subtypes
based on network edges.’® Both P-SSN and SSNs rely on a
reference group of healthy samples, which may overlook the
heterogeneity of patient samples across populations. To
address this limitation, the LIONESS method uses linear inter-
polation to estimate sample-specific networks by comparing
an aggregated network of a group (m) and a perturbed network
without a case sample (m — 1)."* While LIONESS can be
affected by population size, the SWEET method introduces
genome-wide sample weights into network inference to miti-
gate this problem. These methods show that network degrees
of PD-1 pathway genes and the TBC1D gene are associated
with patient survival in glioblastoma and lung adenocarcinoma,
respectively.'®'® Similarly, the BONOBO method constructs
sample-specific co-expression networks without relying on
external reference data and achieves gene network recon-
struction performance on simulated data that are very similar
to that of SWEET.'® While methods for inferring sample-spe-
cific gene co-expression networks do exist, no study has yet
comprehensively extracted and analyzed network features to
assess their relevance in precision medicine, particularly as
predictive markers of treatment response in patients with
cancer.

In our study, we inferred SSNs and extracted a wide range of
network features to investigate the relevance of gene co-expres-
sion patterns in the stratification and treatment response of pa-
tients with ccRCC. From sample-specific weighted co-expres-
sion networks generated using the SWEET method, we
explored not only network features such as gene connectivity
and gene-gene associations but also network similarity and
pathway network-based scores. These latter metrics account
for the overall network structure to enable patient subtyping
and integrate network information into signaling pathways. Us-
ing transcriptomic profiing data from 309 patients with
advanced ccRCC collected in clinical trial cohorts, we stratified
patients into distinct clusters and identified gene co-expression
patterns associated with patient survival using network similar-
ity, network nodes, network edges, and pathway network-based
scores. The network features improved the prediction perfor-
mance of gene expression score-based machine learning (ML)
models. Additionally, we validated the relevance of pathway
network-based scores in an independent cohort of patients
with advanced ccRCC treated with avelumab and axitinib. In
summary, our method not only provides a comprehensive strat-
egy to explore gene co-expression patterns from general
network structure to specific network markers for patient
stratification and treatment prediction but also complements
sample-specific pathway enrichment analysis in current cancer
research.
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RESULTS

Inference of sample-specific gene co-expression
networks

Sample-specific weighted gene co-expression networks (ssSGCNs)
were constructed with 20,545 genes using the SWEET method
for each subcohort from a meta-cohort of 309 patients with
advanced ccRCC included in CheckMate 009, CheckMate 010,
and CheckMate 025 clinical trials (Figure 1A).%'® To accurately
study differences in patient treatment response, the meta-cohort
was divided into four subcohorts based on both the therapy admin-
istered and the site of tissue biopsy, either primary tumor or metas-
tasis. Indeed, it has been shown that primary and metastatic sitesin
advanced kidney cancers harbored distinct molecular characteris-
tics,'® which may influence the treatment response of patients. In
details, these subcohorts consisted of 133 and 92 samples from
primary tumor sites of patients treated with nivolumab (pN, anti-
PD-1) or everolimus (pE, mammalian target of rapamycin [nTOR]
inhibitor), respectively, and 47 and 37 samples from tumor metas-
tases of patients treated with nivolumab (mN, anti PD-1) or evero-
limus (ME, mTOR inhibitor), respectively (Table S1). Utilizing an
optimal balance parameter set at 10% and a two-sided Z score
threshold of 2.58, the ssGCNs attained an average network density
of 1.6%, encompassing 20,357 nodes and 3,320,160 edges, with
an average determination coefficient R? of 0.696 for scale-free to-
pology (Figure S1). It is widely acknowledged that an R? value
closer to 1 indicates that the ssGCNs adhere more closely to the
anticipated power-law node-degree distribution observed for bio-
logical networks. A further observation of note is that the R coeffi-
cients for SSNs from primary tumor sites exhibited higher values
compared to those derived from tumor metastases (0.774 vs.
0.448, Wilcoxon rank-sum test, p value < 0.01) (Figure S2A). To
assess whether subcohort size influenced the R? coefficient of
the gene-degree distribution, a simulation was performed on the
pN subcohort by randomly selecting 40-120 samples. The results
showed that a decrease in cohort size was associated with areduc-
tion in the mean of R? coefficients, likely reflecting a loss of robust-
ness of the gene network (Figure S2B).

Cancers often exhibited varied gene network complexities,
with acquired network nodes demonstrating enrichment in
metabolic and immune-related processes including regulation
of immune response, T cell receptor signaling pathway, and
podosome assembly.?® To explore whether our ssGCNs ex-
hibited tumor-specific features, we compared their network
density and enrichment of cancer-related genes to an aggre-
gated network from expression data of normal renal cortex tis-
sues (n = 85). The obtained results demonstrated that the
ccRCC ssGCNs exhibited a higher network density (1.6%) in
comparison to the normal network (0.46%). Furthermore,
98.3% (304/309) of our ssGCNs demonstrated a higher enrich-
ment of cancer-related genes among the top 1,000 genes of
the highest degree when compared to the normal network
(Figure S3). These characteristics validate the relevance
of our ccRCC SSNs for further exploration using advanced
network features.

To identify novel network-based markers for predicting immu-
notherapy response, we focused on the pN and mN subcohorts
of patients treated with nivolumab. The pE and mE subcohorts
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Figure 1. A computational framework for the inference of sample-specific gene co-expression networks and calculation of network features
to stratify patients based on their response to antitumor therapies

(A) Description of sample-specific gene network construction with the SWEET method. Each sample network was constructed with the difference between
an aggregated correlation matrix and a sample-specific perturbed correlation matrix. Sample weight (W®), scale factor (n, i.e., number of samples), and
balance parameter (K) were used to adjust for differences in proportions of sample subgroups within a cohort. S,,: the ny, sample; Gy.: the ny, gene; Nj;: the
network of edges between gene i and gene j, i, j € m (the number of genes); N;‘®: aggregated network; N;{®~9: perturbed network; N;®: sample specific
network.

(B) Description of our pipeline for patient subtyping, survival analysis, and treatment response predictions using network features calculated from sample-specific
gene networks. Network similarity was measured by adjusted network distance. Gene connectivity and gene-gene edges were calculated using both the number
and the strength of associations between genes. Biological pathway entropy and centrality scores embedded the complexity and the topology of gene network
within each pathway.

were used primarily to validate the biological relevance of tients with differing immunotherapy responses compared to

network features. those distinguishing tumor subtypes.

To address this limitation, we developed an adjusted version
Adjusted network distance in Pearson correlation- of network distance incorporating clinical outcome categoriza-
based ssGCNs tion collected from the Braun et al. publication (clinical benefit

Network distance, a measure of similarity, has been utilized to  [CB], intermediate clinical benefit [ICB], and nonclinical benefit
estimate gene regulation similarity between samples and accu-  [NCB]). While this categorization was defined by objective re-
rately identify tumor subtypes.'® To assess whether network dis-  sponses, tumor shrinkage, and PFS,® the adjusted network dis-
tance could reflect clinical status similarity, we calculated pair-  tance did not directly rely on PFS values, ensuring unbiased sub-
wise network distances between ssGCNs of patients in the pN  sequent analyses. Adjusted distances were computed using
subcohort (Equation 3). However, unsupervised clustering edges between each sample and an aggregated network con-
based on these network distances showed no significant associ-  structed based on clinical outcomes. For the pN and mN subco-
ation with survival data (Figure S4; log rank tests: p value > 0.2 for  horts, CB-aggregated networks were derived from 44 and 13
both overall survival [OS] and progression-free survival [PFS]). samples, resulting in 2,450,498 and 720,447 edges, respectively.
The limited sensitivity of network distance may be attributed to  NCB-aggregated networks were constructed from 46 and 20
the relatively small divergence between gene networks of pa- samples, yielding 2,853,404 and 1,758,449 edges, respectively.
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Figure 2. Survival analysis with the adjusted network distance calculated on the subcohort of tumor primary sites from patients followed

after immunotherapy by nivolumab

(A) A forest plot depicting the univariate Cox regression results using adjusted network distances. Sample-specific network distances were adjusted with
aggregated networks of clinical benefit (CB), nonclinical benefit (NCB), or the difference between them.

(B) Comparison of the distributions of adjusted network distances between CB categories using Wilcoxon rank-sum tests.

(C) Survival analysis using network distances adjusted with the differences between CB- and NCB-aggregated networks. Samples were divided into two groups
based on the median value of the adjusted network distance (nd) (higher nd and lower nd groups). p values were calculated using the log rank tests.

(**: p value < 0.01; *: p value < 0.05).

Three versions of adjusted network distances were computed
relative to the CB network, the NCB network, and the difference
between the two.

Univariate Cox regression analysis revealed a correlation be-
tween adjusted network distances and survival data (Figure 2A).
For the pN subcohort, network distances adjusted to the CB-
aggregated network were favorable for OS and PFS, though not
significantly. In contrast, distance adjusted with NCB-aggregated
networks was significantly unfavorable for OS and PFS (the Cox
model: p value < 0.05). Adjusted distances using both CB- and
NCB-aggregated networks demonstrated more pronounced

4 iScience 28, 113061, August 15, 2025

favorable associations with OS and PFS. A comparison between
CB and NCB patients revealed that CB patients had significantly
higher network distances when adjusted with CB or both CB
and NCB networks and lower distances when adjusted with
NCB networks alone (Figure 2B; Wilcoxon rank-sum test; p
value < 0.01). Survival analysis based on adjusted network dis-
tances showed that patients with higher distances were signifi-
cantly associated with greater OS and PFS (Figure 2C; log rank
tests, p value < 0.01). Furthermore, adjusted network distances
correlated with OS for the mN subcohort and with both OS and
PFS for the pE subcohort (Figures S5A-S5C). In summary, these
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Figure 3. Survival and exploratory analysis using gene connectivity (positive correlation) calculated on the subcohort of tumor primary sites
from patients followed after immunotherapy by nivolumab

(A) Volcano plots of gene connectivity association with patient overall survival (OS) and progression-free survival (PFS) (Cox’s proportional hazards model,
p value < 0.01).

(B) Unsupervised hierarchical clustering of samples into two groups (c1: 29 CB, 24 ICB, and 17 NCB patients and c2: 15 CB, 19 ICB, and 29 NCB patients) based
on the connectivity of 21 genes significantly associated with both OS and PFS. Of these 21 genes, expression values of 8 genes (“SLC39A12-AS1,” “WFDC10A,”
“MYO9B,” “TCIRG1,” “WFDC11,” “MIR31HG,” “DDX39B-AS1,” and “IGLV11-55") were also associated with survival data.

(C) Survival analysis between the clusters c1 (blue) and c2 (pink) of samples. p values were calculated using the log rank tests.

(D) Distribution of chromosomal mutations and gene mutations between the two clusters c1 and c2. Fisher’s test was conducted, and p values less than 0.05 were
considered as significant (odds ratio [OR] was provided). MSKCC refers to Memorial Sloan Kettering Cancer Center prognostic model, widely used for outcome

(legend continued on next page)
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results demonstrate that within the context of ssGCNs generated
from Pearson correlations, network distance adjusted with prior
clinical knowledge effectively stratifies patients based on their
response to nivolumab.

Gene connectivity is associated with treatment
response

Gene degree, or connectivity, has been linked to cancer sub-
types and survival outcomes.'®'® In weighted networks, gene
connectivity refers to the sum of connection weights with other
genes. We hypothesized that gene connectivity could differen-
tiate patient treatment responses. To test this, we separately
generated gene connectivity matrices from positive and negative
correlations of ssGCNs to prevent the mixing of opposing asso-
ciations. From positive correlation matrix, we identified 21 genes
whose connectivity was significantly associated with OS and
PFS in the pN subcohort (Figure 3A; Cox model: p value < 0.01;
Table S2). Notably, only 8 of these genes were also linked to sur-
vival based on their expression values. Using 21 genes’ connec-
tivity, unsupervised clustering divided samples into two groups,
including cluster 1 (29 CB, 24 ICB, and 17 NCB patients) and
cluster 2 (15 CB, 19 ICB, and 29 NCB patients) (Fisher’s exact
test: p value = 0.0203). Cluster 2 exhibited higher gene connec-
tivity on average (Figure 3B) and significantly worse survival
probability for both PFS and OS compared to cluster 1
(Figure 3C; log rank tests: p value < 0.01). Next, we investigated
whether genomic mutation and clinical features differed between
the two clusters. Cluster 2 had significantly higher frequencies of
chromosomal losses at 11912.3 and 11923.1, along with greater
intratumor heterogeneity (ITH) (Figure 3D; Figure S6; Fisher’s
exact test: p value < 0.05). Notably, 11923 deletion has been
linked with poor prognosis in several cancers,”"** and ITH has
been associated with tumor progression and response to immu-
notherapy.?® Gene ontology analysis revealed that the 21 highly
connected genes were enriched in cancer- and immune-related
pathways such as MYC targets v1, oxidative phosphorylation,
ribosome pathways, and natural killer (NK) T cell gene set (a
cell population predictive of the response to anti-tumor treat-
ments) (Figure 3E).>**° Among these genes, NLRC5 and
PLCB3, known for their involvement in ccRCC progression and
tumor immunity, were also identified.

A similar analysis of gene connectivity from negative correlations
identified 48 significant genes, where greater connectivity was
associated with worse survival in cluster 2 (Figure S7). Notably,
clustering based on positive and negative correlation-derived con-
nectivity overlapped substantially, with 46 patients common be-
tween the two cluster 1 groups (70 and 56 patients) and 53 patients
common between the two cluster 2 groups (63 and 77 patients)
(Figure S7G). To study the relevance of these findings in tumor me-
tastases, we analyzed the mN subcohort and obtained 9 and 17
genes (based on positive and negative associations, respectively)
whose higher connectivity was significantly associated with lower

iScience

OS and PFS (Table S2; Figures S8A and S8B). Interestingly, no
overlap was found between these genes and those identified
from the pN subcohort.

The same approach was applied to the pE and mE subco-
horts. Consistently, higher gene connectivity correlated with
worse survival outcomes, and clustering patterns were similar
between positive and negative correlation-derived connectivity
(Figures S9 and S10).

Overall, these findings demonstrate that the increase in gene
connectivity —whether from positive or negative gene-gene cor-
relations—is associated with poorer prognosis and shorter treat-
ment recurrence. Moreover, the genes linked to survival or recur-
rence varied depending on the tumor’s primary or metastatic
location.

Highly negative gene-gene associations in patients
without CBs

Investigating gene pairwise associations in sample-specific net-
works has become a popular method for identifying cancer sub-
types.'®?® To assess perturbations in gene-gene associations,
we first focused on edges shared by all samples. In ssGCNs of
the pN subcohort, we obtained 238,804 edges and filtered
them based on variance, retaining the top 10,000 most varied
edges. Among these, 214 and 224 significant edges were signif-
icantly associated with OS and PFS values, respectively (Cox
model: p value < 0.01), with 51 edges intersecting between
both (Figure 4A; Table S3). A small subset of genes from these
edges overlapped with those previously identified based on con-
nectivity (Figure S11). Unsupervised clustering of these edges
revealed that cluster 2 (10 CB, 14 ICB, and 28 NCB patients) ex-
hibited stronger negative gene associations (Figure 4B) and was
significantly associated with worse OS and PFS compared to
cluster 1 (34 CB, 29 ICB, and 18 NCB patients; Fisher’s exact
test: p value = 0.00065; Figure 4C; log rank test: p value < 0.01).
However, no significant differences in genomic mutation or clin-
ical features were observed between these clusters (Figure S12).

Further analysis of edge weights across patient categories re-
vealed that NCB patients exhibited stronger negative correla-
tions compared to CB patients (Figure 4D; Wilcoxon rank-sum
test: p value < 0.01). It raised the question of whether transcrip-
tion factors (TFs) regulated genes from these edges. Enrichment
analysis identified three significant TFs (MZF1, ZNF692, and
RBCKT1), previously associated with cancer progression and
prognosis in ccRCC (Table S4).°”?° Genes from these edges
associated with both OS and PFS were overrepresented in ribo-
some pathways and NK T cell gene sets (Figure 4E), with some
known cancer-related genes (PRELID3B-TTLL3, BMPR2-
MAN2C1, etc.) among them.%%?

In the mN subcohort, six edges were significantly associated
with both OS and PFS values (Table S3). Clustering based on
these edges identified cluster 2 with significantly shorter OS
and PFS (Figures S13A and S13B). Similarly, 5 of these edges

prediction of treatments. Chromosome gain and loss were counted for chromosomal mutations, and somatic point mutations (including splice sites, frameshift,

missense, nonsense, and in-frame indel) were counted for gene mutation.

(E) Gene ontology over-representation analysis. Genes were selected as the union of significant genes whose connectivity was associated with OS or PFS. Gene
sets from KEGG, MSigDB hallmark, and Cellmarker databases were used. For each pathway, the color of each circle represents the adjusted p value, and the size

of circles indicates the percentage of selected genes in the gene sets.
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Figure 4. Survival analysis of gene-gene associations using the subcohort of tumor primary sites from patients followed after immuno-
therapy by nivolumab

(A) Volcano plots of gene-gene weight association with overall survival (OS) and progression-free survival (PFS) (Cox’s proportional hazards model,
p value < 0.01).

(B) Unsupervised hierarchical clustering of samples into two groups (c1: 34 CB, 29 ICB, and 18 NCB patients; c2: 10 CB, 14 ICB, and 28 NCB patients) using 51
edge weights significantly associated with both OS and PFS.

(C) Survival analysis between the clusters c1 (blue) and c2 (pink) of samples. p values were calculated using the log rank tests.

(legend continued on next page)
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were highly negatively co-expressed in NCB patients compared
with CB patients (Figure S13C). Functional enrichment analysis
revealed similar pathway involvement as observed in the pN sub-
cohort, while no significant differences in somatic mutation and
clinical features were observed between the two clusters
(Figures S13D-S13F).

In the pE and mE subcohorts, the same approach identified 40
and 10 significant edges, respectively, which also stratified sam-
ples into two clusters with distinct survival outcomes
(Figures S14A and S14B). A visualization of the selected edges
across all four subcohorts is provided (Figure S15). Overall, high-
ly negative gene-gene associations were linked to poor progno-
ses. Notably, the genes from significant edges weakly overlap-
ped (46.9% for pN) with those identified based on their
connectivity, indicating that edges and gene connectivity offer
complementary insights into patient survival predictions.
Furthermore, differences in significant edges between primary
and metastatic tumor sites underscore the necessity of tumor
site-specific analyses in cancer research.

Pathway entropy and centrality scores

Given that both gene connectivity and gene-gene associations
revealed differences in patient response to treatments, we next
asked whether the complexity and topological features of bio-
logical pathways were also associated with patient survival. A
previous study has shown that the complexity of signaling path-
ways is linked to survival in pan-cancer molecular data.*® To
explore this, we developed a tool to calculate topology-based
pathway scores at the sample-specific level. This tool first ex-
tracted pathway networks from our ssGCNs using Kyoto Ency-
clopedia of Genes and Genomes (KEGG) gene sets, followed
by the computation of pathway entropy and centrality scores.
While entropy measures the randomness or complexity of a
network, eigenvector centrality reflects the transitive influence
of genes, closeness centrality indicates the average shortest dis-
tance from one gene to the other, and edge betweenness cen-
trality measures the influence of edges within a network.

To assess whether these pathway scores captured specific
biologically meaningful information, we identified pathways
significantly associated with OS or PFS values using the Cox
model (p value < 0.05). We applied the same method to select
significant pathways based on gene set variation analysis
(GSVA) scores, but notably, there was little overlap between
pathways identified by topology-based scores and those
derived from GSVA using gene expression values (Figure S16).
We then used the significant pathway scores to stratify patients
into two clusters to assess their predictive power (Figure S17). In
the pN subcohort, all categories of pathway scores successfully
clustered patients according to OS (log rank test: p value < 0.05)
(Figure 5, left). The most robust classifications were achieved
with GSVA and edge betweenness centrality scores. For treat-
ment response, all pathway score categories except edge

iScience

betweenness centrality were significantly associated with PFS
(Figure 5, right; log rank test: p value < 0.05), with eigenvector
centrality showing the highest significance. Consistent with the
patterns of gene connectivity and edges, patients with better
survival exhibited lower entropy scores (Figure S17B).

Regarding the biological pathways involved, some were
consistently associated with survival across multiple score cate-
gories, while others were identified by only one type of score. The
phosphatidylinositol pathway, known to play a central role in
ccRCC,*" was notably found by all scores, except GSVA. The
erythroblastic oncogene B (ERBB) signaling pathway, having a
vital role in the initiation and progression of ccRCC,*° was iden-
tified by GSVA and the eigenvector centrality score. Regarding
specific pathways, the eigenvector centrality score revealed
some of the main pathways associated with the pathogenesis
of kidney cancer, such as mTOR, ascorbate and aldarate meta-
bolism, unsaturated fatty acids, and mismatch repair.*°° Addi-
tionally, the circadian rhythm pathway linked to ccRCC prog-
nosis was identified by the closeness centrality score.*®

The relevance of pathway entropy and centrality scores in pre-
dicting survival or recurrence was further confirmed in the mN,
pE, and mE subcohorts (Figures S19 and S20). Overall, our find-
ings demonstrate that pathway topology features provide com-
plementary prognostic insights beyond conventional gene
expression-based enrichment methods. The observed differ-
ences between topology-based and GSVA-derived pathways
underscore the importance of integrating network-based ap-
proaches for a more comprehensive understanding of treatment
response in ccRCC.

Combining network features and gene expression values in
ML models better predicts immunotherapy response.

Gene network information from existing databases can
enhance survival predictions in patients with cancer.*’ We set
out to investigate whether SSN features could improve the per-
formance of gene expression-based ML models in predicting
immunotherapy response (Figure 6A). For this analysis, we
focused on 90 samples from the pN subcohort, excluding ICB
patients, and classified 44 CB patients as responders and 46
NCB patients as nonresponders.

Using logistic regression (LR) classification models (Figure S21
for model comparison, default hyperparameters) with leave-one-
out cross-validation (LOOCV), we assessed predictive perfor-
mance using gene expression, network features, and their combi-
nations. The best-performing model combined gene expression
and edges, achieving an accuracy of 0.755 and an F1 score
of 0.75 (Figures 6B-6E, Fisher’'s exact test, p value < 0.05;
Figure S22 for feature selection; Figure S23; Tables S5 and S6).
While gene expression alone provided a reasonable prediction
(Table S6; accuracy: 0.7), integrating edges improved perfor-
mance (accuracy: 0.755). Pathway entropy-based models also
outperformed GSVA-based models (Figures 6D and 6E). This
trend held across support vector machine model and deep neural

(D) Distributions of Pearson correlation coefficients (PCCs) for pN samples from the clinical benefit (CB, blue), intermediate clinical benefit (ICB, gray), and
nonclinical benefit (NCB, red) groups. The Wilcoxon rank-sum test was conducted between CB and NCB patients.

(E) Gene ontology overrepresentation analysis. Genes were selected as the union of significant genes whose edge weight was associated with OS and PFS. Gene
sets from KEGG, MSigDB hallmark, and Cellmarker databases were used. For each pathway, the color of each circle represents the adjusted p value, and the size

of circles indicates the percentage of selected genes in the gene sets.

8 iScience 28, 113061, August 15, 2025



iScience ¢? CellPress
OPEN ACCESS

A GSVA
2 1.00 A 21.0-
= — C] -5 — C]
8 0.75 - — 2 2 — C2
o o
2 0.50 A 2 0.5+
3 = p = 0.01579
> 0254p = le-05 3
- 2
N T T ! ! 3 0.0 - T T T T T T T
0 20 40 60 0 10 20 30 40 50 60
Time: months (OS) Time: months (PFS)
B Entropy
;‘ 1.00 4 ;‘ 1.0 4
3 = C; 3 —_— cl
0.75 - - C © — 2
3 3
2 950 4 3 0.5+
5 %0 = p =0.01867
2 _ 2
2 025{P = 0.01481 S
a2 ' J J ! A 0.0 T T T — T
0 20 40 60 0 10 20 30 40 50 60
Time: months (0S) ) Time: months (PFS)
c Eigenvector centrality
2 1.00 A 21.04
= — C1 E — C]
8 0.75 — 2 S — 2
< o
Q a 0.5
3 030 = p = 0.0013
2 >
2 0.254p = 0.00628 2
=) =
n T T T T @ 0.0, T T T T T T
0 20 40 60 0 10 20 30 40 50 60
Time: months (OS) Time: months (PFS)
D Closeness centrality
21.00 4 2104
= — = —_— cl
S —_— 2 © —_— 2
80.75 1 c o
° °
s a 0.5
= 0.50 1 = p = 0.002
2 2
> dn = 2
£ 0.254p = 0.02511 5 00
w T T T T 0 T T T T T T T
0 20 40 60 0 10 20 30 40 50 60
Time: months (OS) Time: months (PFS)
E Edge betweeness centrality
2 1.00 1 21.04
= — C] 3
20.751 —_—c2 3
) o
2 0.50 2057
© ©
2 >
2 0.25-4p = 0.00343 2
0 T T T T 0 0.0 *— T T T T T T
0 20 40 60 0 10 20 30 40 50 60
Time: months (OS) Time: months (PFS)

Figure 5. Survival analysis of biological pathway entropy and centrality scores using the subcohort of tumor primary sites from patients
followed after immunotherapy by nivolumab

Several survival analyses were carried out with separation of the patient cohort according to topological pathway scores: use of 12 (OS) and 5 (PFS) significant
pathways based on GSVA scores (A), use of 28 (OS) and 7 (PFS) significant pathways based on entropy scores (B), use of 8 (OS) and 10 (PFS) significant pathways
based on gene eigenvector centrality scores (C), use of 16 (OS) and 3 (PFS) significant pathways based on gene closeness centrality scores (D), and use of 8 (OS)
and 10 (PFS) significant pathways based on edge betweenness centrality scores (E).

p values were calculated using the log rank tests.
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Figure 6. Prediction of drug response for immunotherapy-treated patients using gene expression values and network features

(A) Overall scheme of LOOCYV predictions of a logistic regression ML model (class weight was set to “balanced”) based on gene expression value and network
features as the input.

(B-E) Predicted responders (Pred CB) and predicted nonresponders (Pred NCB) are plotted against real responders (light blue) and nonresponders (orange). The
two-sided Fisher’s exact test was used to compute statistical significance. Gene expression values were used as the input (B). The combination of expression
values and edges was the input (C). The accuracy (D) and F1 scores (E) were computed for gene expression (blue), network features (gray), and their combinations
(red).

(F) Across study prediction. The pN subcohort (n = 90) was used as the training set (30 features selected for both edges and expression, 50 features for their
combination during the training process), and the mN subcohort was used as the test set (n = 33).

The area under the curve (AUC) of the receiver operating characteristics curve was used here as a performance metric. We assumed that the pN subcohort shared
biological mechanisms partially with the mN subcohort.
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network model, though not for random forest (RF) models
(Figure S24). We noted that hyperparameter tuning did not gener-
ally improve the prediction performance (Tables S7 and S8).

To test model generalizability, we trained LR and RF models
(default hyperparameters) on the pN samples and tested the pre-
diction performance on the mN samples (33 patients with 13 re-
sponders and 20 nonresponders), assuming that pN patients
and mN patients partially shared biological mechanisms in
immunotherapy treatment response. We compared the predic-
tive performance of treatment response models based on
expression or edge features alone and the combined expression
and edge feature set using the area under the curve of the
receiver operating characteristics curve (Figures 6F and S25).
We observed that the best performance in the across-study
approach was achieved using edge features alone, followed by
the expression and edge combination, and finally by expression
features alone (hyperparameter tuning did not generally improve
the prediction performance as presented in Figure S25). As tran-
scriptomic profiles are known to differ substantially between pri-
mary tumor sites and metastases, '°** we anticipated a global
decrease in the performance of the ML models. This was indeed
observed when comparing results from the across-study evalu-
ation to the LOOCV performance obtained independently on
either primary or metastatic tumor data. Nevertheless, this
across-study training-test set design suggests that edge fea-
tures capture unique aspects of gene regulation from the primary
tumor site that are also predictive of treatment response at met-
astatic sites.

These findings suggest that integrating sample-level network
features with gene or pathway markers could enhance ML model
performance in predicting responses of patients with ccRCC to
immunotherapy.

Validation of pathway entropy and centrality scores in
another cohort

Having shown the ability of sample-specific pathway scores to
predict the susceptibility of patients to nivolumab, we extended
this analysis to an independent cohort of 354 patients with ccRCC
followed after treatment with the therapeutic combination avelu-
mab and axitinib (an immune checkpoint inhibitor and antiangio-

T
10

Time:month (PFS)

0 and calculated pathway scores to cluster
samples into two groups (Figure S26).
Respectively with eigenvector, closeness,
and edge betweenness scores, clustering

revealed a significant difference in treatment response (PFS) be-

tween two clusters, using 10, 5, or 6 significant pathways

(Figures 7 and S26). These pathways were already known to be

deregulated in ccRCC such as those associated with the meta-

bolism of amino acids and fatty acids or those involved with

DNA repair.**~*" While no significance in survival was found with

pathway entropy, the consistent divergence of metabolic path-

ways between clusters suggests a key role in ccRCC progression

(Figure S26).

To conclude, we validated the relevance of topology-based
pathway scores derived from ssGCNs in an independent cohort
of patients with ccRCC treated with combination immuno-
therapy. These scores effectively stratified patients, reinforcing
their potential as predictive biomarkers.

T
15

DISCUSSION

Detection of regulatory perturbations in sample-specific gene
networks inferred from expression data has contributed to prog-
ress in personalized medicine by refining the stratification of pa-
tients into cancer subtypes.'®'*1526:48 Qur study introduced an
innovative computational framework for SSN analysis, facili-
tating the use of multiscale network features in cancer research.
Our approach enabled a refined characterization of gene net-
works for patients with ccRCC and revealed distinct gene co-
expression patterns linked to immunotherapy response.

Network similarity facilitates the comparison of gene net-
works, allowing for the clustering of networks that group patients
with similar gene regulation patterns. While network distance has
been effective in identifying tumor types in partial correlation-
based networks,’® we detected a lack of sensitivity when
applying it to Pearson correlation-based networks to classify pa-
tients based on treatment responses. To enhance its efficacy,
we improved network distance by comparing one sample to a
selected group of patients with known medical outcomes. Our
adjusted network distance revealed a high-resolution way to
associate each sample-specific co-expression network with
the patient’s clinical outcome.

Specific network markers such as node degree and edge
weight further showed that higher gene connectivity and stronger
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negative gene pairwise associations were prevalent in patients
with poorer survival probability and worse treatment response.
This finding suggests that heightened activity within cancer-asso-
ciated networks reflects dysregulated gene interactions that pro-
mote tumor progression, rather than effective biological response.
Notably, the observed increase in connectivity and edges was
observed only in a subset of differential networks between pa-
tients, rather than in complete networks derived for patients.
This distinction is crucial, as it indicates that the observed
changes are specific to tumor-associated activity instead of gen-
eral biological activity. Supporting this, many genes identified as
network markers in our study have been previously implicated in
tumor progression, metastasis, and resistance to antitumor treat-
ments. Additionally, changes in these network features were
associated with deletion_11912.3 and deletion_11g23.1, and
ITH in the subcohort pN, which were previously linked to cancer
progression and prognosis.”'?® Furthermore, an increase in con-
nectivity and co-expression may indicate changes in the tumor
microenvironment, as they are enriched in NK T cells.?*?° This
suggests that network-based markers capture distinct biological
processes beyond traditional differentially expressed genes,
providing novel and complementary predictors of treatment
response in patients with ccRCC.

The topology of gene co-expression networks, characterized
by varied gene connectivity and edges, could also be examined
through the lens of biological pathway networks. Entropy-based
measures of signaling pathways have already been proposed to
assess their activation state for survival analysis in pan-cancer
studies.”® To extend this concept, we calculated sample-spe-
cific entropy and topology-based pathways scores, alongside
the classic GSVA pathway score, to identify pathway co-expres-
sion perturbation significantly associated with treatment
response. While some pathways were consistently identified
by several scoring methods, others were unique to a specific
score, illustrating the complementary nature of these ap-
proaches. Concerning pathway deregulation linked to nivolumab
response, the eigenvector centrality score was effective for sam-
ples from primary and metastatic sites of ccRCC tumors, supple-
mented by the closeness and the edge betweenness centrality
scores for metastases. Our findings suggest that entropy and to-
pological pathway scores offer diverse and valuable perspec-
tives to detect clinically relevant pathways, capturing complexity
change or structural changes in the pathway co-expression
network.

Traditional gene expression analysis also has the capacity to
distinguish patients in treatment response, and we compared its
predictive performance with gene connectivity and edges. Using
the same method, we selected 64 genes for the pN subcohort
and 65 genes for the mN subcohort based on expression values
and performed unsupervised clustering (Figure S26; log rank
tests: pN-OS, p value = 0.00015, pN-PFS, p value = 0.02559;
mN-OS, p value = 0.00367; mN-PFS, p value = 0.00037). When
comparing gene expression with gene connectivity or edges, we
observed that edges exhibited higher predictive performance in
the pN subcohort (Figure 4C), whereas gene connectivity was
more predictive in the mN subcohort (Figures S8A and S8B).
Furthermore, these network features not only demonstrated their
ability in predicting patients’ CBs but also enhanced the prediction
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performance of gene expression-based ML models. Specifically,
incorporating edges into gene expression-based ML models
increased its prediction accuracy from 0.70 to 0.75. Although
our pathway entropy provided a slight improvement over GSVA-
based ML model due to the limited number of selected pathways,
their predictive effectiveness was validated using another inde-
pendent dataset. Consistent with other network-based prediction
models,”*®" our results suggest that combining SSN features with
gene expression enables more accurate predictions of patient
response to immunotherapy. Nevertheless, the robustness and
generalizability of our integrated ML models will need to be
confirmed in additional independent patient cohorts.

In terms of potential novel predictors of treatment response in
patients with ccRCC, we observed a substantial discrepancy in
these lists of genes carrying co-expression patterns between
primary and metastatic sites, aligning with previous studies that
reported significant changes in expression profiles between pri-
mary tumor sites and metastases.'®*? Furthermore, through
pathway network analysis, we revealed that the deregulations
ofthe ccRCC primary site associated with PFS values were rather
captured by the phosphatidylinositol, ERBB, and mTOR signaling
pathways and by the ascorbate and aldarate metabolism and the
mismatch repair system, while those of metastases were linked
to cytokine inflammation, sphingolipid metabolism, aminoacyl-
tRNA biosynthesis, and citrate-tricarboxylic acid (TCA) cycle
pathways, as well as the nucleotide excision process. These find-
ings underscore the site-specific co-expression patterns and
biological pathways that are differentially associated with patient
survival depending on whether the sample originates from a pri-
mary or metastatic site, consistent with the diversity of molecular
characteristics observed between primary and metastatic sites in
advanced kidney cancers.'® This specificity suggests the critical
role of tumor site location in disease progression and treatment
response, emphasizing the importance of considering the biopsy
or surgery site in the development of predictive models and ther-
apeutic strategies for ccRCC.

In conclusion, our approach demonstrates sample-specific
gene co-expression network features as alternative markers to
predict survival and treatment response in patients with
advanced kidney cancer. It also enables the identification of per-
turbed pathways based on sample-specific networks and facili-
tates the routine application of sample-specific pathway
network-based scores. Most importantly, our computational
framework for investigating gene network features linked to pa-
tient treatment responses provides a valuable tool to support the
personalization of therapies in the clinic.

Limitations of the study

Our approach has several limitations and perspectives. The sam-
ple size of clinical cohorts is limited, and detailed network markers
observed from our analysis need to be further validated in other
independent clinical drug trials and ultimately for different cancer
types and treatments. Also, the small sample size may cause
overfitting issue in the training process for ML models. Moreover,
our approach may require the control of the heterogeneity of sam-
ples in a group to maintain common edges for identifying specific
edges. Also, our evaluation of the predictive potential of pathway-
based scores within ML models, as presented in Figures 6D, 6E,
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S21, S23, and S24, should be considered preliminary, as it was
limited to GSVA (expression based) and entropy (network topol-
ogy based) scores. Our primary objective was to demonstrate
that a pathway-based score capturing gene network topology
could complement traditional expression-based scores. Howev-
er, future work should focus on the optimal selection and integra-
tion of diverse pathway-based scores to develop more effective
ML models for predicting treatment outcomes. Furthermore, po-
tential confounding variables such as age, sex, and prior treat-
ments were not adjusted for feature selections, and the difference
in age was significantly detected between two clusters based on
edges in the pN subcohort (Figure S27; 63.22 vs. 57.86; Student’s
t test: p = 0.007). Finally, the biological meaning of co-expression
patterns needs to be further defined. The change in co-expression
networks from bulk RNA sequencing (RNA-seq) data may be influ-
enced by the cellular content of the tumor immune microenviron-
ment, tumor heterogeneity, or intercellular communication. The
advent of single-cell RNA-seq datasets from patient tumors may
provide an opportunity to explore network change at the scale
of cellular subtypes to unravel intracellular factors from those in
the microenvironment sources driving changes in co-expression.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Analyses, and resources related to gene This paper Zendo: https://doi.org/10.5281/zenodo.15723817
network for ccRCC patients

ccRCC Bulk RNA-seq Braun et al.® N/A

Normal kidney cortex tissue Bulk RNA-seq GTEx https://www.gtexportal.org/home/downloads/

Cancer-related Genes
ccRCC Bulk RNA-seq

Cancer Gene Census®

Motzer et al.*®

adult-gtex/bulk_tissue_expression
https://cancer.sanger.ac.uk/census#cl_search
N/A

Software and algorithms

SWEET Chen et al.'® https://github.com/SysMednet/SWEET
Network Distance Huang et al."® N/A

Numpy Numpy https://numpy.org/news/#releases
Pandas PyData https://pandas.pydata.org/

Seaborn PyData https://seaborn.pydata.org/

Matplotlib Matplotlib https://matplotlib.org/

Lifelines Lifelines https://lifelines.readthedocs.io/en/latest/

scikit-survival

scikit-survival

https://scikit-survival.readthedocs.io/en/stable/

PyComplexHeatmap PyComplexHeatmap https://github.com/DingWB/PyComplexHeatmap

Gseapy GSEAPY https://gseapy.readthedocs.io/en/latest/
introduction.html

ChEA3 ChEA3 https://maayanlab.cloud/chea3/

GSVA BiocManager https://github.com/rcastelo/GSVA

Igraph Conda https://python.igraph.org/en/stable/

Venny4Py Venny4Py https://github.com/timyerg/venny4py

Sklearn Scikit-learn https://scikit-learn.org/stable/

ccRCC Bulk RNA-seq Motzer et al.*® N/A

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study did not involve the recruitment of human participants or animal models. All analyses were conducted using publicly avail-
able datasets. Details of the data sources, including sample characteristics and preprocessing methods, are provided in the STAR
Methods, method details and data and code availability. The original datasets, obtained from the Braun et al.,® and Motzer et al.,*®
had been previously approved for public use by the respective data providers.

METHOD DETAILS

Data collection

Gene expression, genomic mutation, and clinical data of 309 ccRCC patients were obtained from the publication by Braun et al.
(CheckMate 009, 010, 025).2 Clinical outcomes collected from the Braun et al. study classified patients into three categories: Patients
with objective responses (complete or partial), or stable disease with tumor shrinkage and PFS of at least 6 months were classified as
having clinical benefit (CB); Patients with progressive disease and PFS less than 3 months were classified as having no clinical benefit
(NCB); All other patients were classified as intermediate clinical benefit (ICB). Sequencing data were generated prior to treatment,
and survival data was collected after treatment. The expression data of these samples were split into four groups based on the treat-
ment and cancer site in patients (Table S1). Ensembl gene ID was converted to gene symbol using a human gene annotation file
(release v43) from the GENCODE database version 43°° and only immune genes, mitochondrial genes, long non-coding RNA genes,
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and protein-coding genes were kept for gene network inference. To validate the constructed networks, RNA-seq data from 85 normal
kidney cortex tissue samples were obtained from the GTEx portal, and cancer-related genes were collected from the Cancer Gene
Census database.®” Additionally, data from an independent ccRCC cohort were downloaded from the publication by Motzer et al.,*®
including expression profiles of 354 patients treated with avelumab (anti PD-L1) and axitinib (anti-angiogenic). Gene expression
values were normalized using the log, transformation of transcripts per million (TPM).

Gene network inference

In this study, we used the recently developed SWEET method to construct sample-specific weighted gene co-expression networks
(ssGCNs)."® An aggregated network (N,/G) was first constructed using gene expression of all samples within a specific category. Sub-
sequently, a perturbed network (N,-,-G'S) was generated by removing one specific sample from the aggregated network (Figure 1A).
Specifically, a sample-specific network N,(js) was defined as

) )

N = W xcnum x K x (N = NP9 ) + N (Equation 1)

where num was the total number of samples except the target sample in a group, W) was the sample weight, and K was a balance
factor ranging from 0 to 1. The best performance was achieved with K = 10% as shown in Figure S1 and by the SWEET paper. The
parameter K was a scale factor used to enlarge the differential correlation between the aggregated matrix and the perturbed matrix.
The sample weight WS was added to the equation of sample-specific networks to neutralize the network edge number bias.'® W
was calculated as

(ﬂgg —lnm(PCCS>+x)

we =
(nmx(PCCS)——rnm(PCCS>+x)

(Equation 2)

where ﬂf,sc% was the mean of Pearson Correlation Coefficient (PCC) between one specific sample S and the other samples, PCCS was

the set of PCCs between two patients and x was a constant term added to avoid division by zero that we set to 0.01. To reduce the
noise within the networks, the significance level of confidence scores for edges was assessed using Z score normalization, with a Z
score threshold of 2.58, corresponding to a two-sided p-value of 0.01.

Network distance

Network distance (Nd) was introduced by Huang et al. as a measure of network similarity, primarily used to identify cancer types. ' Nd
was defined as the ratio of the number of overlapped edges to the number of union edges between two partial correlation-based
sample networks,

Nd = (E’ mEl)

Equation 3
(E UE) (Eq )

where E; and E; represented the sets of edges from sample-specific networks. These edges correspond to direct interactions be-
tween genes.

However, due to the difference between Pearson correlation and partial correlation, network distance may not be suitable for sub-
typing patients when using Pearson correlation-based gene networks. Befitting the divergence of treatment response, we proposed
an adjusted network distance, which calculated the similarity between an individual sample network and an aggregated network of a
specific group. Adjusted distances were calculated using clinical benefits (CB) patients (Equation 4) or non-clinical benefits (NCB)
patients aggregated networks (Equation 5). Also, the difference between CB distance and NCB distance was used for further analysis
(Equation 6).

_ (EINEw) .
Ndg, = (E UE.p) (Equation 4)

_ (Ei N Encb) .
Ndpep = (E/UEps) (Equation 5)

_(ENEw)  (EiNEne) .
and = (EFUEw)  (EiUEpe) (Equation 6)

Network features

We explored two key network features: gene connectivity (weighted node degree) and gene-gene association (edges) (Figure 1B).
Gene connectivity, which quantifies the total strength of all the associations of one gene with other genes, was calculated using
the Python package igraph (version 0.10.4).>* To accurately identify whether the source of gene connectivity was from positive or
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negative regulations, networks were divided into two: one containing positive correlation edges and the other containing negative
correlation edges. To reduce the computation time, the analysis was limited to the top 5,000 most varied genes based on their
connectivity.

To assess the impact of edges, we focused on common edges across all samples within a cohort and selected the top 10,000 most
variable edges based on their weights. Furthermore, genes and edges were filtered using a univariate Cox regression model, retain-
ing those with a p-value less than 0.01. To align with the definition of clinical benefits, network features were preserved if they were
significantly associated with both overall survival (OS) and progression free survival (PFS).

Pathway entropy and topology scores

Sample-specific pathway networks were extracted from sample networks using gene sets of pathways from the KEGG database.”®
To enable the calculation of pathway scores, both positive and negative edge values (converted to their absolute values) were consid-
ered. Given that the noise elimination within ssGCNs led to a varying number of edges, pathway entropy was calculated based on the
distribution of edges®® as follows:

H = = plk)log,(p(k)) (Equation 7)
k=1
where p(k) is the probability of an edge inside a selected pathway network, and m is the total number of edges inside that pathway
network. The probability p(k) of each edge was determined by dividing the weight of the edge by the sum of all the edge weights inside
the pathway network.
Additional pathway topological scores were calculated based on the average of gene eigenvector centrality, gene closeness cen-
trality, and edge betweenness centrality.>” Alongside our entropy and topology scores, sample-level pathway scores based on gene
expression were calculated using the gene set variation analysis (GSVA 1.46.0) method implemented in R (version: 4.2.3).°®

Clustering of samples and survival analysis

Unsupervised hierarchical clustering was conducted using the Ward method and cosine metrics. To facilitate comparisons of treat-
ment responses, we divided the samples into two clusters. To assess survival probability between clusters, Kaplan-Meier curves
were plotted, and log rank tests were performed to determine whether the survival distribution of the two clusters were significantly
different with a p value of 0.05. These analyses were conducted using the Python packages lifelines 0.27.7 and scikit-survival
0.21.0.5%°

Gene sets and transcription factor (TF) enrichment analysis

The Molecular Signatures Database (MSigDB) hallmark, the KEGG canonical pathways, and the cell marker (augmented 2021) were
obtained from the Human MSigDB website and Enrichr libraries.>>®":®? For over-representation analysis, significant pathways were
identified using the Python package gseapy 1.0.5°° and an adjusted p-value threshold of 0.05 was selected as a threshold. For the
enrichment of transcription factors (TF), an online query was conducted on the CHEAS online tool.®*

Measuring the performance of machine learning (ML) predictions

To evaluate the prediction performance based on gene expression and network feature values, we used the Logistic Regression
(LR) model, and also tested Random Forest (RF) model, Support Vector Classifier (SVC) models, and deep neural network (DNN)
model.For leave-one-out cross-validation prediction, we used selectKbest function with f_classif parameter to select best
features in the training process, and evaluated the performance using accuracy and F1 score. For gene expression, network
features, and their combinations, the number of features (K) was selected based on prediction accuracy of models with K
from 10 to 100 with a 10 step. For across study validation, we used the pN subcohort as the training set and used the mN sub-
cohort as the test set, and the area under the receiver operating characteristic curve (AUC) was used as the main performance
metric.

For the combination of gene expression and network features, gene expression matrix was horizontally merged with network fea-
tures before feature selection in the training process. GSVA pathway matrix was merged with pathway entropy scores horizontally as
well. These combined features were selected by selectedKbest function in the training process. We assumed that selected features
from different categories could be complementary to the other to improve the performance of ML models. For hyperparameter tuning
in LR models, we conducted 5-fold cross-validation in a training dataset with C ranging from 0.1 to 1 with a step of 0.1, and used
GridSearchCV®® to identify optimal hyperparameters. The Grid range for other models can found in the Table S8. All analyses
were implemented in Scikit-learn in Python.®®

Validation of pathway scores

To assess whether our pathway scores were effective in other cohorts, we selected the data from 354 ccRCC patients treated with
the combination of avelumab (anti-PD-L1) and axitinib (anti-angiogenic).** For each sample in this cohort, sample-specific gene net-
works were constructed and pathway networks were then derived as described above.
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QUANTIFICATION AND STATISTICAL ANALYSES

Sample specific networks were constructed using the SWEET method, and network features were extracted and generated accordingly.
For adjusted network distance, the Cox model was used to test the association between the distance and survival data. For gene
connectivity, edges, and pathway scores, the Cox model was used to filter out irrelevant features, and those features associated with
both OS and PFS were used as the input of clustering using the function clustermap from the Python package seaborn. We performed
Fisher’s exact test and computed the p value to observe the distribution of patients in two clusters. We also compared the distribution of
somatic mutations between two clusters using Fisher’s exact test and compared the clinical features between two clusters using
wilcoxon rank-sum test. Gene set enrichment analysis was performed using the function enrichr from the Python package GSEAPY.
The specific test is mentioned in each context.

iScience 28, 113061, August 15, 2025 e4



	Sample-specific network analysis identifies gene co-expression patterns of immunotherapy response in clear cell renal cell  ...
	Introduction
	Results
	Inference of sample-specific gene co-expression networks
	Adjusted network distance in Pearson correlation-based ssGCNs
	Gene connectivity is associated with treatment response
	Highly negative gene-gene associations in patients without CBs
	Pathway entropy and centrality scores
	Validation of pathway entropy and centrality scores in another cohort

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Method details
	Data collection
	Gene network inference
	Network distance
	Network features
	Pathway entropy and topology scores
	Clustering of samples and survival analysis
	Gene sets and transcription factor (TF) enrichment analysis
	Measuring the performance of machine learning (ML) predictions
	Validation of pathway scores

	Quantification and statistical analyses



