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Abstract— Objetive: This study aims to evaluate the QT
adaptation time following gradual heart rate changes esti-
mated from exercise stress test (EST) ECGs as a marker of
sudden cardiac death (SCD) risk. The predicted risk value
for any cardiovascular death (CVD) is also evaluated.

Methods: Three ECG-derived markers related to QT-RR
adaptation time were estimated during the exercise phase
of EST, τ̌e, during the recovery phase, τ̌r, and as the differ-
ence between them, ∆τ̌ . The values were computed from
patients with coronary artery disease (CAD) from ARTEMIS
study (N=1472; median follow-up of 8.9 years). These mark-
ers are calculated as the delay between the observed
RR interval series and a patient-specific memoryless RR se-
ries computed from the QT interval (RR-based strategy).
Alternatively, the estimates were calculated as the delay
between the observed QT intervals and a patient-specific
instantaneous QT series computed from the RR intervals
(QT-based strategy). The relation between the markers and
CAD or SCD was evaluated.

Results: The marker τ̌r is more robustly estimateed with
the RR-based strategy and is able to stratify survivors
and victims of either SCD or CVD (p-value equal to 0.022
and 0.065, respectively). Multivariable regression models
for predicting SCD and CVD include the QT-RR adaptation
time estimated in the recovery phase of EST using the
RR-based strategy.

Conclusion: A prolonged QT-RR adaptation time during
the recovery phase of the EST ECG, calculated with the
RR-based strategy, can predict SCD and CVD, providing
complementary information to other clinical markers.

Index Terms— QT-RR modeling, QT-RR adaptation time
lag, exercise stress test, sudden cardiac death.
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I. INTRODUCTION

CORONARY artery disease (CAD) is the most common
underlying substrate of sudden cardiac death (SCD),

often due to ventricular arrhythmias (VAs), which progress
from ventricular tachycardia to ventricular fibrillation [1]. Ven-
tricular fibrillation is characterized by uncoordinated electrical
impulses due to division of the cardiac impulse along multiple
pathways, leading to rapid and ineffective ventricular contrac-
tions. Enhanced ventricular repolarization heterogeneity can
contribute to an increased risk of VAs and SCD [2], [3]. Today,
SCD remains a major public health problem and accounts for
15-20% deaths in Western societies [4].

The 2022 European Society of Cardiology guidelines in-
dicate that a multifaceted approach that incorporates cardiac
magnetic resonance imaging, genetic testing, and clinical
history is required in the management of VAs and the pre-
vention of SCD by guiding the implantation of cardioverter
defibrillators (ICDs) [5]. Moreover, the importance of ECG
analysis is recognized, even if many previously proposed ECG
markers are still not included in existing risk calculators [6].
This is because the ECG remains the most commonly used
cardiovascular diagnostic tool due to its wide availability, low
cost and rapid interpretation [7]–[9].

The most established ECG marker for arrhythmic risk
prediction is the QT interval [10]. This interval presents a
strong dependence on heart rate and is usually corrected for its
effects [10]–[12]. The QT-RR adaptation time lag, measured
in response to sudden heart rate (or RR interval) changes using
different strategies, has been shown to provide information on
the risk of arrhythmic complications and SCD [13]. In particu-
lar, a prolonged QT adaptation time has been associated with
a higher probability of dying from arrhythmic causes [14]–
[17]. Other ECG markers related to malignant ventricular
arrhythmias include those quantifying T wave characteristics
[8], such as the width of the T wave [18], the relation between
the T peak-to-T end and the RR intervals [19], and the time
and amplitude variability of the T wave with the RR interval
quantified by metrics derived from time warping [20], [21].
Periodic depolarization dynamic (PRD) is another technique
analyzing the depo-to-repo variability [22] mediated by the
ventricular sympathetic innervation.

We recently proposed a model-based method to estimate
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the QT-RR adaptation time lag from ECGs recorded during
an exercise stress test (EST) [23]. This methodology was
proposed as an alternative to those that require sudden RR
changes because gradual changes in heart rate are always
observed during EST, resulting in a less strenuous maneuver,
in contrast to sudden changes in the RR interval which are less
frequently seen in Holter recordings used in the studies men-
tioned previously. In [23] The QT-RR time lag was estimated
as the delay between the observed QT interval series and the
instantaneous QT interval series derived from the RR intervals
using a QT-RR regression formula (QT-based strategy). The
parameters of the regression were estimated using [QT, RR]
data pairs taken from three different learning windows along
EST: one taken in the rest phase before the EST started (Wb),
another at the end of the EST, which corresponds to a rest
area at the late recovery phase (Wlr), and the last was selected
centered on the peak exercise (We). Rest phases were defined
as areas in which the mean heart rate does not change much,
that is, the RR series can be assumed to be stationary.

The results in [23] indicated that a prolonged QT-RR
adaptation time lag during the exercise phase of the EST and a
shortened lag during the recovery phase were associated with
a higher risk of CAD. Furthermore, the difference between
QT-RR adaptation time lags in the exercise and recovery
phases was significantly greater in low-risk patients compared
to high-risk patients.

Additionally, we demonstrated that modifying the QT values
in the [QT, RR] data pairs within the peak exercise learning
window We helps mitigate the non-stationarity of the [QT,
RR] pairs. This modification involves the replacement of the
QT values with modified instantaneous QT interval values.
The latter incorporates the expected evolution of QT interval
if sufficient time had been given for it to converge to the corre-
sponding RR intervals. This leads to more accurate estimates
of the patient-specific QT-RR regression formula [24].

In this context, the present study introduces two key in-
novations. First, we propose and validate a novel method to
estimate the QT-RR adaptation time lag, which reverses the
conventional modeling approach by using the QT interval to
predict the RR interval. We hypothesized that this strategy
offers greater robustness due to the wider dynamic range of
the RR series during an EST. Second, we demonstrate the SCD
and cardiovascular death (CVD) risk predictive value of some
of the proposed markers (QT-RR adaptation time lag estimated
in exercise and recovery phases, separately, and the difference
between them) in a large cohort of CAD patients.

The structure of the paper is as follows. Section II introduces
the clinical dataset, the QT-RR model that relates the observed
QT series with the observed RR series, and the method to
estimate the QT adaptation time lag. Sections III and IV
present and discuss the results, respectively, and Section V
provides the main conclusions.

II. METHODS

A. Database

The ARTEMIS study collected patients with CAD who
underwent coronary angiography at the Division of Cardiology

at Oulu University Hospital, Oulu, Finland [25] (ClinicalTri-
als.gov identifier NCT1426685). Patients who met the criteria
for prophylactic implantation of ICD, including all with left
ventricular ejection fraction <35%, were excluded from the
study regardless of whether an ICD was implanted. The study
was carried out according to the Declaration of Helsinki
and with the approval of the institutional ethics committee
of research ethics of the Northern Ostrobothnia Hospital
District [25]. All subjects provided written informed consent.
An incremental symptom-limited maximal EST on a bicycle
ergometer was implemented. The work rate was increased by
15 W in men and 10 W in women every minute from an
initial 30 W workload. The test started in a supine resting
position, followed by an exercise phase until peak exercise and
finally a 1-2 minute post-exercise phase without a cooldown
period. The study population comprised 1886 8-lead standard
ECGs recorded during EST. Of these, 1472 recordings were
analyzed after excluding those with the absence of rest phases
at the beginning or end of the EST, poor general ECG quality
or poor T wave signal-to-noise ratio and presence of large
areas with non-sinus rhythm. The mean follow-up time was
8.9 years.

Patients were classified as a function of their degree of CAD
according to the SYNTAX score (SXscore), whose value was
calculated by evaluating each coronary lesion with diameter
stenosis ≥50% in vessels ≥1.5 mm. The low-risk (SXscore-
LR), mild-risk (SXscore-MR) and high-risk (SXscore-HR)
SXscore groups were defined as [26]:

• SXscore-LR: SXscore < 23
• SXscore-MR: 23 ≤ SXscore < 33
• SXscore-HR: 33 ≤ SXscore.

The number of patients in each group was 1128, 136 and
93, respectively. The SXscore values were not available for
115 patients from the 1472 patients.

The primary endpoint in this study was SCD or resusci-
tation from sudden cardiac arrest (SCA), whichever occurred
first. Secondary endpoints included any CVD. The cause of
death was defined by an endpoint committee based on death
certificates, interviews with the closest relatives of victims and
autopsy reports. The study population included 49 patients
with SCD and 63 patients with CVD, of which 11 and 12
were women, respectively.

The typical EST is characterized by the presence of four
distinct phases. The initial phase, also known as the rest
or basal phase, occurs before any alterations in workload.
This is followed by the exercise and recovery phases, which
correspond to the physical exertion and subsequent recovery
periods, respectively. The final phase, known as the late
recovery phase, corresponds to a period of rest that follows
the recovery phase [24].

Demographic variables, the median heart rate, and QT in-
terval values at window Wb defined at the beginning of the
test, at peak exercise window We, and at window Wlr defined
at the end of late recovery phase for each SXscore group are
shown in Table I. The method for choosing the duration of
these windows is described in Section II-B.
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TABLE I: Demographic information in patient groups including heart rate (HR) and QT interval median values (± interquartile
range), in windows Wj , j ∈ {b, e, lr}, denoted HRWj and QTWj , respectively. The number of Cardiovascular Death (CVD)
and Sudden Cardiac Death (SCD) victims in each group is also included.

Clinical variables
SXscore-LR SXscore-MR SXscore-HR Not available p-value

Gender [M/All] 753/1128 103/136 74/93 91/115 0.004
Age (years) 66.0± 11.0 68.0± 12.0 68.0± 11.0 69.0± 10.0 < 0.001

BMI (kg/m2) 27.0± 5.0 27.0± 5.3 27.0± 4.0 28.0± 5.4 0.576
CVD (SCD) 34 (34) 7 (3) 9 (4) 13 (8) < 0.001 (0.130)

ECG-derived variables
SXscore-LR SXscore-MR SXscore-HR Not available p-value

HRWb (bpm) 59.6± 12.1 58.5± 9.6 61.0± 14.7 59.5± 11.0 0.113
HRWe (bpm) 126.1± 29.3 115.0± 26.9 114.8± 31.5 106.8± 25.2 < 0.001
HRWlr (bpm) 75.5± 14.4 70.7± 14.4 73.01± 15.3 70.3± 13.2 < 0.001

QTWb (ms) 415.8± 41.0 421.9± 33.0 418.0± 46.0 423.1± 33.6 0.082
QTWe (ms) 303.7± 41.4 317.4± 42.0 320.7± 47.0 335.0± 45.8 < 0.001
QTWlr (ms) 391.6± 38.6 400.0± 34.3 402.0± 44.0 408.0± 36.4 < 0.001

Results are statistically significant (p < 0.05) between pairs of groups SXscore-LR/SXscore-MR and SXscore-LR/SXscore-HR for age, HRWe , HRWlr , QTWe and QTWlr .

B. QT-RR modeling

In a previous work, we defined a procedure to estimate
the QT-RR adaptation time lag using the observed dRR(n)
series of ECGs recorded during EST as input of the QT-RR
modeling [24]. In that model, the QT-RR adaptation time lag
was estimated as the delay between the observed QT interval
series dQT(n) and an instantaneous series diQT(n), related to
the series dRR(n) through a memoryless transformation; see
Fig. 1(a). This strategy is referred to as QT-based strategy.

A differentiable hyperbolic function

diQT(n) = gf (dRR(n);α, β) = β +
α

dRR(n)
(1)

was used in the first block to account for the calculation
of the instantaneous series diQT(n). The α and β parameters
of the model were estimated using the [QT, RR] data pair
information from the three learning windows Wb, We and
Wlr. An example of the RR and QT series computed from
an ECG recorded during an EST and the location of the three
learning windows are shown in Fig. 2(a).

Motivated by the fact that the series dRR(n) exhibits a wider
dynamic range than the series dQT(n) during EST, as can be
observed in Fig. 2(b), in this study we alternatively proposed
to revert the model in Fig. 1(a) to use the series dQT(n) as
input and estimate the delay from the series related to dRR(n).
The new modeling strategy proposed in this study is shown in
Fig. 1(b), and can be derived by a direct inversion of the model
used in [27]. Note that the two system blocks in Fig. 1(b) are in
reverse order to what a direct model inversion of the model in
Fig. 1(a) would have given. Since g(·) function is non-linear,
this block reversal is not generally acceptable. However, it
has been proved that for typical RR interval dynamics, the
effective system memory –length of h(n)– allows to consider
the RR interval during this length to vary in a range where the
g(·) function can be approximated as linear [24]. Under these
conditions, the two system blocks, and thus the two models
in Fig. 1, become interchangeable.

With this alternative model, the estimation of the
QT-RR adaptation time lag was calculated as the delay be-
tween the observed RR intervals dRR(n) and a memoryless

(a)

(b)

Fig. 1: (a) Model relating the observed RR series dRR(n) to
the observed QT series dQT(n) [24]. The intermediate gener-
ated output of the memoryless transformation g (dRR(n);α, β)
is an instantaneous QT series diQT(n) that, when filtered
by a single-pole lineal filter h(n), models the QT series
dmQT(n). The observed dQT(n) is modeled as the sum of
dmQT(n) and noise w(n). The QT-RR adaptation time lag
τ is estimated as the delay between diQT(n) and dQT(n),
referred to as QT-based strategy. (b) Reverted model relating
the observed QT series dQT(n) to the observed RR series
dRR(n). The generated output of the memoryless transforma-
tion g−1 (dQT(n);α, β) is now the instantaneous RR series
diRR(n) that, when filtered by a linear, time-invariant, anti-
causal, filter hinv(n), models the RR series dmRR(n). The
observed dRR(n) is modeled as the sum of dmRR(n) and
noise w′(n). The QT-RR adaptation time lag τ is estimated
as the delay between diRR(n) and dRR(n), referred to as
RR-based strategy.

series diRR(n) related to the observed QT intervals dQT(n)
by the inverse memorylees transformation g−1

f (·), referred as
to RR-based strategy. Note that for sufficient low-frequency
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Fig. 2: (a) An observed RR series, dRR(n), and QT series,
dQT(n), are presented together with the learning windows
positioned at rest Wb, peak exercise We and late recovery
Wlr, which are indicated by boxes. (b) The observed QT series
dQT(n) (green line) overplotted with the related instantaneous
QT series diQT(n) (black line) are shown, where the intervals
for time lag estimation are delimited by ne,o and ne,e for
exercise and nr,o and nr,e for recovery. The observed RR se-
ries dRR(n) (blue line) and the related instantaneous RR series
diRR(n) (light blue line) are also represented, showing clearly
the differences in dynamic range of the series during EST.

components of QT trend oscillations, filter h(n) can be well
approximated by a pure delay system [24], so its inverse filter
hinv(n) becomes a pure advance filter. We hypothesized that
this RR-based strategy for the calculation of the QT-RR time
lag could offer improved estimation performance as a result of
the larger dynamic range of the RR series as compared to the
QT series during EST. Thus, the series diRR(n) was delayed
with respect to dRR(n).

Therefore, the differentiable function

diRR(n) = g−1
f (dQT(n);α, β) =

α

dQT(n)− β
(2)

was used in the first block to account for the calculation of the
memoryless series diRR(n). The series diRR(n) kept the same
temporal variation as dQT(n), but its values were comparable
to those of the series dRR(n).

The two scalar parameters α and β were estimated previ-
ously to the QT-RR model, independently for each patient,
using [QT, RR] data pairs from the three learning windows.
Two of the windows were defined in the RR assumed station-
ary areas at the first 40 s of baseline rest before exercise Wb

and at the last 40 s of late recovery Wlr, respectively, where
the series are assumed to be stationary. The third window was
centered at peak exercise We with a length of 20 s, taking
the last 10 s of exercise and the first 10 s of recovery. The
window at peak exercise was taken to include the greatest
possible range of [QT, RR] values when estimating the model
parameters. However, data in We window is far from a steady
state. Consequently, the [QT, RR] pairs may not show the same
relation as they would in a stationary state, as is required for
model parameter identification [24]. To account for the lack of
stationarity, the QT interval values within the We window were
modified using a first QT–RR adaptation time lag estimated

in the exercise phase, τ̂e. By combining τ̂e with the estimated
rate of change of the QT interval at peak exercise, denoted by
s, we derive new modified QT values based on a stationarity
approach. Specifically, if stationarity had been reached, these
new values would be expressed as QT-(s · τ̂e). Consequently,
new estimates of the parameters of the model were performed
using the data pairs [QT-(s · τ̂e), RR] at We, see [23], [24]
for details. Therefore, this new series was denoted as ďiRR(n)
or ďiQT(n), depending on the modeling strategy used (see
[24] for a detailed analysis). Concatenated series in windows
Wb ∪ We ∪ Wlr (before or after modifying peak exercise
window We) should contain a wide range of RR or QT values
to produce a more reliable least-squares fit that ensures the
best estimation of model parameters. Data from window We
were replicated twice to ensure the three regions were equally
weighted in the estimation of the model parameters α and β.

C. QT-RR adaptation time lag estimation
The right part of the proposed model in Fig. 1(b) represents

the RR-based strategy for QT-RR adaptation time lag estima-
tion, which considers the observed RR interval series dRR(n)
and the instantaneous series ďiRR(n).

A Laplacian estimator [28], [29] was used to compute the
delay between the time series dRR(n) and ďiRR(n) in exercise
and recovery phases, τ̌e and τ̌r, independently:

τ̌x = arg min
−I≤τ≤I

nb∑
n=na

|dRR(n)− ďiRR(n+ τ)|, x ∈ {e, r} (3)

where the delay τ̌ was restricted to be contained in the
search range [−I, I]. Thus, the maximum likelihood estimator
was identical to minimizing the least absolute error between
dRR(n) and ďiRR(n + τ), in RR-based strategy. Changing
dRR(n) and ďiRR(n+ τ), for dQT(n) and ďiQT(n− τ), re-
spectively, we obtain the estimates with QT-based strategy.
The minimization interval [na, nb] was determined using the
methodology proposed in [23]. These points define the onset
and the end of the exercise and the recovery areas, sepa-
rately, and they were calculated for each RR and QT series.
Figure 2(b) illustrates those onsets and ends of the intervals
used for estimating the time lags during exercise and recovery,
separately.

The difference between τ̌r and τ̌e was also computed, which
resulted in the third evaluated marker, ∆τ̌ .

Furthermore, for comparison purposes, the markers τ̌e, τ̌r
and ∆τ̌ were also computed using the QT-based strategy, the
model of which is represented in Fig. 1(a) [24].

Calculating the marker τ̌e with the RR-based strategy (or
QT-based strategy) required an initial estimate of τ̂e to correct
the learning pairs of the [QT, RR] data at We [24], as
previously noted in Sec. II-B. This estimated τ̂e, obtained
by learning the model parameters with the raw [QT, RR]
data pairs at We, could take non-physiologically plausible
values (negative, or lower than 20 s), leading to erroneous
[QT, RR] data pairs modification for the estimation of τ̌e.
To mitigate this problem and reduce the number of non-
physiological values of τ̂e, the following rule was introduced.
When τ̂e < 20s, τ̂e was replaced by a value between 20 s
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and 70 s, chosen as the minimum value within this range that
allowed obtaining a τ̌e value equal or higher than 20 s. The
reference value of 20 s for τ̂e corresponded to the lowest τ̂e
obtained in a previous study using a different low-risk CAD
patients dataset [23]. In cases in which the search did not
provide any results, τ̂e was set to 20 s. This rule allowed us
to compute a τ̌e in all the cases.

D. Comparison of QT-based strategy to RR-based
strategy in simulated ECGs

In this work, we reproduced the simulation study from
[24], which generates EST ECGs with specific τ values
corresponding to given signal-to-noise ratios (SNR). The idea
was to compare the estimated adaptation time lag using either
the RR- or the QT-based strategy in a controlled environment,
as simulated EST ECGs, in which the true adaptation time was
known. Moreover, the robustness of each strategy was also
evaluated using simulated EST ECGs with different SNR.

Two of the three ECG subsets used in [24] were selected and
grouped to assess the improvement in QT-RR adaptation time
lag estimation when the RR-based strategy is applied. The first
ECG subset consists of simulated EST ECG generated using
linear transition trends of the mean heart rate when moving
from rest to peak exercise and from peak exercise to late
recovery. This subset was denoted as Dt in [24]. The second
subset, denoted as Dr, was generated using 25 different EST
heart rate series extracted from real EST ECGs (see [24] for
details).

In total, the simulated EST ECG dataset used in this study
consists of 50 ECGs (25 from Dt and 25 from Dr), for all
possible combinations of τ and SNR, assuming the following
values:

τ = {20, 30, 40, 50} s, (4)
SNR = {27, 30, 35, 40} dB, (5)

where the different SNRs correspond to the following root
mean square noise values: {45, 32, 18, 10} µV, resulting in a
total of 50 · 4 · 4 = 800 EST ECGs.

The QT-RR adaptation time lag estimation performance was
quantified by the error ϵτ between the estimated time lag τ̌x,
x ∈ {e, r}, and the true time lag τ,

ϵτ (x) = τ̌x − τ, (6)

The results are expressed in terms of mean bias mϵτ and
standard deviation σϵτ of the time lag error ϵτ computed over
the entire simulated ECG dataset, and presented separately for
exercise and recovery.

E. Statistical Analysis

All clinical data values were presented as median ± in-
terquartile range (IQR) values. The QT-RR adaptation time
lag estimates were represented in box plot diagrams, in which
both the mean and median values were displayed. Estimates
were also presented as mean ± standard deviation values along
the text to allow numerical comparison with data from other
studies.

In multiple comparisons, the Kruskal-Wallis test was used
to assess differences in continuous clinical variables and ECG-
derived variables.

The Mann-Whitney U test was applied for the comparison
of continuous variables, such as the three proposed markers τ̌e,
τ̌r and ∆̌τ , between groups. The Chi-square test was applied to
assess differences in the categorical variable gender. p < 0.05
was chosen to considered statistical significance.

Univariable and multivariable Cox regression analyses were
performed to independently determine the predictive value of
risk markers for the two primary endpoints, i.e. SCD and
CVD. Only variables with significant individual association
with the endpoint in the univariable analysis were included
to define the multivariable model. The C-index was used to
evaluate the detection performance of the model. A backward
stepwise regression analysis was performed to optimize the
model and retain only the independent variables associated
with the endpoint. Hazard ratio (HZR) results are presented
per increment/decrement of one IQR, with such hazard ratio
denoted as HZRIQR or, in some cases, per increments of k
units of the variable, denoted as HZRk.

III. RESULTS

A. Evaluation in simulated ECGs

Mean error mϵτ and standard deviation σϵτ values computed
from the simulated ECG dataset are displayed in Fig. 3 for
the QT-based strategy and RR-based strategy, separately. It
can be observed that the mean error is closer to zero when
the RR-based strategy is implemented as compared to the
QT-based strategy. Besides, the standard deviation values are
slightly lower when the RR-based strategy is employed. These
observations support the hypothesis that more robust estimates
should be obtained using the RR-based strategy.

B. Clinical characteristics

Demographic information for each group of patients, to-
gether with the median of the heart rate and the QT intervals
at basal, peak exercise and late recovery windows Wj , j ∈
{b, e, lr}, HRWj

and QTWj
, respectively, is given in Table I.

The median age and BMI and the proportion of males vs
females were higher in the groups with higher SXscore. Note
that the median heart rate at peak exercise, HRWe , decreased
significantly with increasing SXscore.

The capacity of the proposed markers τ̌e, τ̌r and
∆̌τ , estimated using either the QT-based strategy or the
RR-based strategy, for CAD stratification and SCD prediction,
was evaluated. Patients resulting in either negative τ̌e or
negative τ̌r were removed from the analysis due to their non-
physiological interpretation.

C. QT-RR adaptation time lag for CAD stratification

In this section, the statistical potential of the proposed
markers to stratify patients with different SXscore is evaluated.
First, the QT adaptation time lags were estimated following
the QT-based strategy. The results are presented in the first
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Fig. 3: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ calculated from simulated ECGs with different values
of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and (e)–(h), respectively. Results were computed in exercise,
in recovery and as the difference between these estimated time lags. Results are obtained using the RR-based strategy (green)
and QT-based strategy (orange), separately.

column of Fig. 4. SXscore-LR, SXscore-MR and SXscore-
HR groups are finally composed of 837, 109 and 75 patients,
respectively, after discarding patients with non-physiological
τ . It can be seen from Fig. 4 that the highest risk group was
associated with the highest values of τ̌e and the lowest values
of ∆τ̌ . In addition, statistically significant differences, or bor-
derline p-values, are obtained between SXscore-LR/SXscore-
HR and SXscore-MR/SXscore-HR for the two mentioned
markers. However, the distribution of the estimated τ̌r values
is similar along groups.

Next, the analysis was repeated following the
RR-based strategy, whose results are shown in the second
column of Fig. 4. In this case, SXscore-LR, SXscore-MR
and SXscore-HR groups were composed of 888, 112 and
75 patients, respectively, after discarding patients with
non-physiological τ . Note that the number of discarded
patients is lower with the RR-based strategy than with the
QT-based strategy. Statistically significant differences between
the SXscore groups were observed for the RR-based strategy
estimated delay in exercise, τ̌e. However, no statistical
significance was observed using the other two markers.

D. QT-RR adaptation time lag for SCD risk prediction
The distribution of estimated delays for patients who suf-

fered SCD and those who suffered CVD is represented in
the box plots of Fig. 5, for delays estimated using the
QT-based strategy and RR-based strategy. The number of
measurable survivors and victims of SCD was 1074 and 39
when the analysis was based on the QT-based strategy, and
1128 and 37 using the RR-based strategy. For CVD, the
numbers were 1060 and 53 for QT-based strategy and 1112
and 57 for RR-based strategy.

The marker τ̌r could discriminate between victims and
survivors of SCD when delays were estimated using the
RR-based strategy (Fig. 5(e)). Patients who suffered from
SCD had higher values of τ̌r (mτ̌r = 53.17± 27.28 s) than
those who survived to SCD (mτ̌r = 42.96± 28.02 s), with
the differences being statistically significant. These statistical
differences were also observed using ∆τ̌ (Fig. 5(f)), with
m∆τ̌ = 1.78 ± 45.26 s for SCD survivors and m∆τ̌ =
14.05±41.21 s for SCD victims. When the endpoint was CVD,
the marker τ̌r led to borderline significant differences between
victims and survivors of CVD (mτ̌r = 51.62± 26.10 s and
mτ̌r = 42.89± 28.08 s, respectively). Similar behavior was
observed when τ̌r was calculated using the QT-based strategy
(Fig. 5(b)).

The univariable and multivariable Cox analyses for SCD
and CVD prediction are summarized in Table II and Table III,
respectively. The median QTc values for the learning windows
Wj , j ∈ {b, e, lr}, were computed using the Fridericia correc-
tion [30] and were included in the predictive models.

The best univariable model for SCD was obtained with
QTWe (C-index close to 0.70), calculated using either the
QT-based strategy or the RR-based strategy. The observed dif-
ferences can be attributed to the slight variation in the patient
population under study. In contrast, the best univariable model
for CVD was obtained with HRWe (C-index = 0.73) calculated
using the QT-based strategy and with HRWe or QTWe (C-
index = 0.73) calculated using the RR-based strategy.

The proposed marker τ̌r was associated with both
SCD and CVD when the delay was estimated using the
RR-based strategy, with a C-index equal to 0.62 and 0.57, re-
spectively. The corresponding values of HZR were HZRIQR

equal to 1.55 (95%, CI 1.05-2.30) and 1.44 (95%, CI
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TABLE II: Univariable and multivariable association with sudden cardiac death.

Series ďiQT(n) ďiRR(n)

Risk factor median ± IQR
or count

Univariable analysis Multivariable analysis median ± IQR
or count

Univariable analysis Multivariable analysis
HZRIQR

(95% CI)
p-value

HZRIQR
(95% CI)

p-value
HZRIQR

(95% CI)
p-value

HZRIQR
(95% CI)

p-value

Sex (female) 385
0.46

(0.21-1.00) 0.05*
0.33

(0.15-0.72) 0.01* 384
0.45

(0.20-1.03) 0.06 ... ...

Age (years) 67.0 ± 11.0
1.52

(0.96-2.39) 0.07 ... ... 67.0 ± 12.0
1.35

(0.83-2.20) 0.23 ... ...

BMI (Kg/m2 ) 28.0 ± 5.8
1.11

(0.75-1.66) 0.60 ... ... 27.0 ± 5.0
1.19

(0.84-1.67) 0.33 ... ...

HRWb (bpm) 59.5 ± 11.8
1.56

(1.10-2.20) 0.01*
2.24

(1.50-3.35) <0.01* 59.3 ± 11.7
1.43

(0.99-2.07) 0.05*
1.99

(1.32-3.00) <0.01*

HRWe (bpm) 119.51 ± 27.9
0.40

(0.25-0.65) <0.01*
0.32

(0.19-0.56) <0.01* 122.5 ± 29.3
0.43

(0.26-0.71) <0.01*
0.46

(0.23-0.93) 0.03

HRWlr (bpm) 73.0 ± 14.0
0.90

(0.60-1.35) 0.62 ... ... 73.6 ± 14.3
0.84

(0.55-1.28) 0.41 ... ...

QTWb (ms) 418.0 ± 39.0
1.21

(0.81-1.78) 0.35 ... ... 417.9 ± 38.4
1.27

(0.85-1.88) 0.24 ... ...

QTWe (ms) 313.0 ± 42.0
2.20

(1.56-3.11) <0.01* ... ... 308.0 ± 41.6
2.06

(1.46-2.90) <0.01* ... ...

QTWlr (ms) 396.0 ± 38.0
1.34

(0.92-1.96) 0.13 ... ... 394.0 ± 38.4
1.41

(0.96-2.07) 0.08 ... ...

QT
Wb
c (ms) 416.0 ± 28.0

1.69
(1.22-2.34) <0.01*

1.66
(1.16-2.38) 0.01* 415.7 ± 27.0

1.69
(1.22-2.33) <0.01* ... ..

QTWe
c (ms) 392.6 ± 26.5

2.00
(1.46-2.72) <0.01* ... ... 390.6 ± 27.1

2.01
(1.46-2.77) <0.01*

1.50
(0.95-2.39) 0.08

QT
Wlr
c (ms) 423.2 ± 25.8

1.34
(0.93-1.93) 0.11 ... ... 423.0 ± 25.5

1.37
(0.95-1.99) 0.09 ... ...

τ̌e (s) 29.3 ± 32.5
1.08

(0.76-1.54) 0.67 ... ... 34.5 ± 33.8
0.93

(0.62-1.40) 0.74 ... ...

τ̌r (s) 33.0 ± 27.3
1.18

(0.82-1.70) 0.37 ... ... 37.5 ± 39.5
1.55

(1.05-2.30) 0.03*
1.85

(1.25-2.74) <0.01*

∆τ̌ (s) 0.75 ± 48.3
1.04

(0.71-1.52) 0.85 ... ... 1.5 ± 54.5
1.39

(0.93-2.07) 0.11 ... ...

C-index 0.69 (with QTWe ) 0.80 0.68 (with QTWe ) 0.75

HR = heart rate, Wb = learning window defined in the first basal phase, We = learning window defined at peak exercise, Wlr = learning window defined in the late recovery phase.
∗ Note that differences in values between diQT(n) and diRR(n) columns for variables not related with τ in the univariable analysis are due to the different rejection patient set when calculating both series.

TABLE III: Univariable and multivariable association with cardiovascular death.

Series ďiQT(n) ďiRR(n)

Risk factor median ± IQR
or count

Univariable analysis Multivariable analysis median ± IQR
or count

Univariable analysis Multivariable analysis
HZRIQR

(95% CI)
p-value

HZRIQR
(95% CI)

p-value
HZRIQR

(95% CI)
p-value

HZRIQR
(95% CI)

p-value

Sex (female) 385
0.37

(0.18-0.76) 0.01*
0.27

(0.13-0.55) <0.01* 384
0.40

(0.20-0.82) 0.01*
0.29

(0.14-0.59) <0.01*

Age (years) 67.0 ± 11.0
3.41

(2.19-5.30) <0.01*
2.37

(1.48-3.79) <0.01* 67.0 ± 12.0
3.46

(2.18-5.50) <0.01*
2.22

(1.34-3.65) <0.01*

BMI (Kg/m2 ) 28.0 ± 5.8
0.92

(0.63-1.32) 0.64 ... ... 27.0 ± 5.0
1.02

(0.75-1.39) 0.88 ... ...

HRWb (bpm) 59.5 ± 11.8
1.05

(0.74-1.48) 0.80 ... ... 59.3 ± 11.7
1.10

(0.78-1.54) 0.59 ... ...

HRWe (bpm) 119.51 ± 27.9
0.27

(0.17-0.42) <0.01*
0.33

(0.21-0.53) <0.01* 122.5 ± 29.3
0.27

(0.17-0.42) <0.01*
0.31

(0.20-0.50) <0.01*

HRWlr (bpm) 73.0 ± 14.0
0.56

(0.39-0.81) <0.01* ... ... 73.6 ± 14.3
0.52

(0.36-0.76) <0.01* ... ...

QTWb (ms) 418.0 ± 39.0
1.33

(0.96-1.85) 0.09 ... ... 417.9 ± 38.4
1.30

(0.93-1.80) 0.12 ... ...

QTWe (ms) 313.0 ± 42.0
2.43

(1.83-3.24) <0.01* ... ... 308.0 ± 41.6
2.38

(1.81-3.13) <0.01* ... ...

QTWlr (ms) 396.0 ± 38.0
1.53

(1.12-2.10) 0.01* ... ... 394.0 ± 38.4
1.61

(1.18-2.21) <0.01* ... ...

QT
Wb
c (ms) 416.0 ± 28.0

1.42
(1.05-1.92) 0.02* ... ... 415.7 ± 27.0

1.41
(1.06-1.89) 0.02* ... ...

QTWe
c (ms) 392.6 ± 26.5

1.93
(1.48-2.51) <0.01* ... ... 390.6 ± 27.1

2.00
(1.54-2.61) <0.01* ... ...

QT
Wlr
c (ms) 423.2 ± 25.8

1.09
(0.78-1.52) 0.61 ... ... 423.0 ± 25.5

1.12
(0.80-1.56) 0.51 ... ...

τ̌e (s) 29.3 ± 32.5
1.14

(0.85-1.52) 0.39 ... ... 34.5 ± 33.8
1.20

(0.89-1.62) 0.23 ... ...

τ̌r (s) 33.0 ± 27.3
1.49

(1.13-1.96) 0.01*
1.47

(1.14-1.90) <0.01* 37.5 ± 39.5
1.44

(1.03-2.01) 0.03*
1.62

(1.17-2.25) <0.01*

∆τ̌ (s) 0.75 ± 48.3
1.17

(0.84-1.64) 0.35 ... ... 1.5 ± 54.5
1.21

(0.87-1.68) 0.25 ... ...

C-index 0.73 (with HRWe ) 0.81 0.73 (with HRWe or QTWe ) 0.79

HR = heart rate, Wb = learning window defined in the first basal phase, We = learning window defined at peak exercise, Wlr = learning window defined in the late recovery phase.
∗ Note that differences in values between diQT(n) and diRR(n) columns for variables not related with τ in the univariable analysis are due to the different rejection patient set when calculating both series.

1.03-2.01), respectively, resulting in HZR1s = 1.01 in both
cases. However, when this marker was calculated using the
QT-based strategy, it was only related to CVD, with a C-
index equal to 0.58. The corresponding values of HZR were
HZRIQR equal to 1.49 (95%, CI 1.13-1.96), resulting in
HZR1s = 1.01. Markers τ̌e and ∆τ̌ did not yield statistically
significant results.

Using the QT-based strategy, the best multivariable model
for SCD prediction included sex, HRWb , HRWe and QTWb

c .

The covariables with the greatest influence were sex, with
males having a 67% increase in the risk of SCD (HZRIQR

of 0.33 (95%, CI 0.15-0.72)), and HRWb , with an increment
of 1 beat-pear-minute (bpm) being associated with 7% in-
crease in the risk of SCD (HZR1bpm = 1.07). Using the
RR-based strategy, the best multivariable model for SCD
included the variables HRWb , HRWe , QTWe

c and τ̌r, with
an increment of 1 bpm in HRWb being associated with 6%
higher probability of suffering SCD (HZR1bpm = 1.06), and
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SXscore-LR SXscore-MR SXscore-HR

Fig. 4: First column: box plots of the estimated time delay
with the QT-based strategy for (a) exercise, resulting in τ̌e,
and (b) recovery, resulting in τ̌r. In (c), box plots of the
difference between recovery and exercise, resulting in ∆τ̌ are
displayed. The dotted and continuous lines in red correspond
to the mean and the median values, respectively. The color
code for the Syntax Score groups is: SXscore-LR (green),
SXscore-MR (yellow) and SXscore-HR (red). The p-values
in separating patient groups are plotted on top of the box plot
pairs. The analysis was repeated for the RR-based strategy,
second column, and the estimated τ̌e, τ̌r and ∆τ̌ are displayed
in (d), (e) and (f) graphs, respectively.

an increment of 10 s in τ̌r being associated with 17% higher
likelihood of suffering SCD (HZR10s = 1.17).

In the case of CVD, the best multivariable model included
the variables sex, age, HRWe , QTWlr , QTWb

c and τ̌r, for
any strategy selected to calculate the delays. An inverse
relationship was found between HRWe and CVD. Men and
older patients were more likely to die from CVD.

All multivariable models had a C-index greater than 0.7,
suggesting that these models can stratify individuals according
to their risk of SCD or CVD. The values of the C-index were
higher than those of the best univariable model in each case,
thus showing that the predictive accuracy is enhanced with the
inclusion of additional covariables.

IV. DISCUSSION

This work introduces several novelties, including the intro-
duction of a reverted model, RR-based strategy, to estimate the
QT adaptation time using the observed RR series. This is due

Fig. 5: First column: box plots of the estimated time delay
using the QT-based strategy. The results were obtained after
applying the rule to reduce the number of non-physiological τe
estimates, which were required to compute τ̌x, x ∈ {e, r}. The
estimates were obtained for (a) exercise, τ̌e, and (b) recovery,
τ̌r. (c) Box plots of the difference between recovery and exer-
cise, ∆τ̌ . The dotted and continuous lines in red correspond to
the mean and the median values, respectively. The color code
is: survivors (green) and victims (red) for both SCD and CVD.
The p-values in separating patient groups are overprinted on
top of the box plot pairs. The analysis was repeated using the
RR-based strategy, second column, whose τ̌e, τ̌r and ∆τ̌ are
displayed in (d), (e) and (f) graphs, respectively.

to the fact that the RR series has a wider dynamic range value
than their observed QT series counterpart, offering more robust
estimates, as corroborated in the simulation study. In addition,
the study evaluated the QT-RR adaptation time estimated from
exercise stress testing ECG as a marker of SCD and CVD.

In particular, three ECG-derived markers, τ̌e, τ̌r, and ∆τ̌ ,
are proposed, which correspond to the adaptation time esti-
mated during the exercise phase, the recovery phase and the
difference between them, respectively. The predictive ability of
these markers is also assessed using two multivariable models:
one based on the QT intervals and another one based on the
RR intervals.

The percentage of patients whose estimated τe is lower than
20 s is 53% using diQT(n) (39% for diRR(n)). The application of
the rule described in Sec.II-C allows to reduce the number of
discarded patients to only 18% using ďiQT(n) (11% for ďiRR(n))
due to non-physiological negative values of τ̌e. The proportion
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of patients with initial non-physiological estimates appears
to be notably high. However, the validity of this correction
rule is supported by previous simulation studies [24], which
demonstrated that applying the rule yields adaptation time
estimates closer to the known ground-truth values. Since the
true adaptation time cannot be determined from patient data,
this simulation study suggests that the rule strengthens, rather
than compromises, the final estimates and their validity for
risk stratification.

A. QT-RR adaptation time lag and its power for SCD risk
prediction

The main finding is the relevance of the proposed marker
τ̌r for (a) stratifying survivors and victims of SCD or CVD,
and (b) defining multivariable regression models to predict
SCD or CVD when the QT-RR adaptation time lag is es-
timated between the series ďiRR(n) and dRR(n), that is, us-
ing the RR-based strategy. When the recovery time lag is
estimated between ďiQT(n) and dQT(n), that is, using the
QT-based strategy, the recovery time can only predict CVD.
Thus, using the RR-based strategy is more advantageous from
a clinical perspective both for the separation of CAD groups
and for the prediction of SCD or CVD.

From a methodological perspective, a detailed analysis of
Fig. 3 aligns with previous findings, showing that the RR-
based strategy outperforms the QT-based strategy in estimating
the QT-RR adaptation time. The RR-based strategy consis-
tently exhibits lower mean error and reduced variance, particu-
larly at low SNR values. This advantage becomes increasingly
pronounced as the values of τ—which are associated with
cardiovascular risk—increase, supporting the superior clinical
stratification power of the RR-based strategy. At high SNR
values, the improvement in both mean error and variance is
less significant, reflecting the reduced impact of the larger
dynamic range of the RR series compared to the QT series
when both signals are cleaner. Nonetheless, for τ = 50 and
high SNR, the RR-strategy still shows a visible performance
benefit

The importance of the marker τ̌r estimated by the
RR-based strategy is observed not only in univariable but also
in multivariable analyses, since this variable is part of the best
models to predict SCD and CVD. An increase of 10 s in τ̌r
leads to a 17% increase in the risk of SCD and a 12% increase
in the risk of dying from CVD.

In addition, other demographic variables, such as sex, and
other ECG-derived interval variables measured during peak
exercise, such as HRWe and QTWe , show a strong correlation
with the two investigated endpoints.

The multivariable Cox regression model for predicting
CVD has also been studied using only sex, age, HRWe ,
HRWlr and τ̌r variables, that is, removing any variable re-
lated to the QT interval. Using information derived from the
RR-based strategy, the final multivariable model after applying
the Akaike criterion is composed of the variables HRWe and
HRWlr , with their associated hazard ratios HZRIQR being
0.22 (95%, CI 0.12-0.42) and 1.50 (95%, CI 0.90-2.50),
respectively. In this multivariable model, a direct relation

between HRWlr variable and CVD can be observed, with
higher values of HRWlr corresponding to higher mortality
risk. However, the HZR of this variable in the univariable
model is below one (HZRIQR of 0.52 (95%, CI 0.36-0.76)),
thus presenting an inverse relationship with mortality risk (see
Table III). Taken together, our results should be interpreted
in light of the changes in different variables. Particularly in
the case of HRWlr , they should be interpreted in light of the
changes in HRWe . From the multivariable analysis, our results
show that, when HRWlr increases for a given HRWe , the risk
of CVD increases.

Clinically, it could mean that patients with a higher mortality
risk achieve an elevated HR in the rest area after recovery, so
they cannot completely recover or have a high heart rate at
rest. In terms of RR series, the risk of CVD increases when
RRWlr decreases for a given RRWe . This analysis can also
explain the opposite tendency of the HZR value of QTWlr

obtained in the multivariable regression model in Table III, as
compared to the univariable model.

Some considerations related to Cox analysis should be
noted. First, the SXscore information is not included because
a nonsignificant relationship was found between this variable
and any of the two investigated endpoints. Second, a stan-
dardization of the variables was performed based on their
median and IQR after observing that not all variables followed
a normal distribution. Dichotomizing the variables would have
been another option. This would require setting a threshold on
e.g. τ̌r, which has not been studied in the literature yet.

B. Clinical implications

Prior studies [21], [31], [32] have emphasized that increased
spatio-temporal variability in T-wave morphology and QT in-
tervals reflects elevated arrhythmogenic risk, and these ECG-
derived markers are independent predictors of SCD. However,
the dispersion and variability studied in most of these works
have been analyzed in the ECG from resting conditions.

Our work builds on this by linking the relation between
RR and QT intervals to autonomic function and ventricular
repolarization dynamics, showing an association between a
longer QT-RR adaptation time lag in recovery τ̌r and SCD
in patients with mild to high risk of CAD. Autonomic activity
significantly impacts ventricular repolarization in general, and
the QT interval in particular, due to the direct autonomic
innervation on the ventricular myocardium and as well as
of the sinoatrial node activity and its modulation of heart
rate [33]. Based on this, the ANS exerts an influence on the QT
adaptation to heart rate changes. The study referenced in [34]
shows how temporal variations in sympathetic activity have
an effect on the QT adaptation time. The study referenced
in [35] shows that this phenomenon is discernible in EST
stages characterized by increasingly higher sympathetic dom-
inance, where the estimated QT-RR adaptation time becomes
successively reducedwhen sympathetic activity is increased.
Consequently, the findings of this study suggest a potential
association between the observed QT-RR adaptation time lag
and the characteristics of ventricular autonomic regulation
during EST.
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Research on QT dynamics early after exercise suggests
that impaired autonomic modulation from sympathetic ac-
tivation to vagal dominance during recovery contributes to
arrhythmogenic substrates [34], [36], which is in agreement
with our observations. Vuoti et al. [37] found that reduced
heart rate variability (HRV) in resting conditions predicts
adverse outcomes in CAD patients, supporting the role of
RR-based metrics in reflecting autonomic dysfunction. Com-
bining QT-RR adaptation time lag metrics with established
markers such as T-wave dispersion and HRV could improve
risk stratification. For example, previous studies have shown
that combining ECG-based variability measures improves the
identification of high-risk individuals [37].

Wong et al. [4] emphasized the global burden of SCD,
particularly among CAD patients, and highlighted the need for
improved tools to identify high-risk individuals. Our approach
provides a complementary perspective to the existing literature
by measuring temporal ECG changes during exercise and
recovery. The proposed markers may help refine criteria for
interventions such as implantable cardioverter defibrillators or
targeted medical therapy.

Finally, the results obtained when the QT-RR adapta-
tion time lag in exercise ECG stress testing were com-
puted between the instantaneous ďiQT(n)/ď

i
RR(n) and observed

dQT(n)/dRR(n) series are in line with the findings of our
previous study that analyzed another clinical database [23]:
elevated values of τ̌e are indicative of high risk of CAD.

C. Limitations
Although the number of ECGs discarded due to negative

estimated time lags was greatly reduced after applying the
rule described in Sec.II-C, it would be interesting to inves-
tigate different models to fit the data from the exercise and
recovery phases of the EST to account for time-varying intra-
subject variability and evaluate its impact on the percentage
of discarded patients.

The 40-second duration of the selected windows for model
identification was chosen as a compromise between the dy-
namics of the EST protocol (one-minute steps) and data rep-
resentativeness. Although no significant impact of the selection
is expected, a detailed study remains as future work.

Establishing clinical marker thresholds from large clinical
studies is essential to confirm the statistical findings and
integrate the proposed markers into clinical practice.

Comparing the clinical relevance of the markers presented
in this study with other characteristics, or markers, extracted
from EST ECGs, such as the area of the QT-RR hysteresis
curve, or other methods to estimate the QT-RR adaptation time
lag, are an interesting future step to corroborate the relevance
of the time lag between the QT and the RR series to predict
SCD.

V. CONCLUSIONS

The prolongation of QT-RR adaptation time evaluated dur-
ing the recovery phase of an exercise stress test ECG, calcu-
lated as the delay between the observed RR series dRR(n) and
a memoryless RR series, that is, using the RR-based strategy,

has been identified as a predictor of SCD and CVD. In
contrast, estimating this delay using the dQT(n) series, that
is, the QT-based strategy, results in a marginally significant
prediction of CVD and not significant prediction of SCD.
These findings, in conjunction with the enhanced robustness to
noise demonstrated in simulations for the RR-based strategy,
suggest that estimates based on dRR(n) series are the most
reliable to stratification of patients according to their risk of
SCD and CVD.
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A. B. de Luna, J. P. Martı́nez, P. Laguna, and E. Pueyo, “Sudden cardiac
death and pump failure death prediction in chronic heart failure by
combining ecg and clinical markers in an integrated risk model,” PLoS
ONE, vol. 12, 10 2017.

[21] J. Ramı́rez, A. Kiviniemi, S. van Duijvenboden, A. Tinker, P. D.
Lambiase, J. Junttila, J. S. Perkiömäki, H. V. Huikuri, M. Orini, and
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Piira, T. Kenttä, J. S. Perkiömäki, O. H. Ukkola, R. J. Myerburg, and
H. V. Huikuri, “Type 2 diabetes and coronary artery disease: Preserved
ejection fraction and sudden cardiac death,” Heart Rhythm, vol. 15, pp.
1450–1456, 2018.

[26] P. W. Serruys, M.-C. Morice, A. P. Kappetein, A. Colombo, D. R.
Holmes, M. J. Mack, E. Stahle, T. E. Feldman, M. van den Brand, E. J.
Bass, N. V. Dyck, K. Leadley, K. D. Dawkins, and F. W. Mohr, “Per-
cutaneous coronary intervention versus coronary-artery bypass grafting

for severe coronary artery disease,” New England Journal of Medicine,
vol. 360, pp. 961–972, 3 2009.

[27] E. Pueyo, M. Malik, and P. Laguna, “A dynamic model to characterize
beat-to-beat adaptation of repolarization to heart rate changes,” Biomed.
Signal Process. Control, vol. 3, no. 1, pp. 29–43, 2008.

[28] S. Romagnoli, A. Sbrollini, L. Burattini, J. P. Martı́nez, and P. Laguna,
“Characterization of QT-interval adaptation time lag in response to sport-
induced heart rate changes measured from wearable ECG recording,”
IEEE Trans. Biomed. Eng., vol. 71, no. XX, pp. xx–xx, 2025.
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Supplementary Material

LIST OF ACRONYMS

This list provides definitions of specific acronyms used in this article.
• SCD: Sudden Cardiac Death

• CAD: Coronary Artery Disease

• ICD: Implantable Cardioverter Defibrillator

• CVD: Cardiovascular Death

• dRR(n): observed RR series.

• dQT(n): observed QT series.

• diRR(n): memoryless RR series related to the observed QT series through a memoryless transformation, using information
from the concatenated windows Wb ∪We ∪Wlr to compute the model parameters α and β.

• diQT(n): instantaneous QT series related to the observed RR series through a memoryless transformation, using information
from the concatenated windows Wb ∪We ∪Wlr to compute the model parameters α and β.

• ďiRR(n): memoryless RR series related to the observed QT series through a memoryless transformation, after modifying
[QT, RR] data pairs of window We.

• ďiQT(n): instantaneous QT series related to the observed RR series through a memoryless transformation, after modifying
[QT, RR] data pairs of window We.

• EST: exercise stress test.

• HZR: hazard ratio.

• SXscore: SYNTAX score.

• SXscore-LR: low-risk group with a SXscore lower than 23.

• SXscore-MR: mild-risk group with a SXscore between 23 and 33.

• SXscore-HR: high-risk group with a SXscore higher than 33.

• Wb: learning window taken in the baseline rest phase before the EST started.

• We: learning window centered on the peak exercise.

• Wlr: learning window taken at the end of the EST, which corresponds to a rest area at the late recovery phase.

• τ̌e: QT-RR adaptation time lag estimate during the exercise phase of EST, after modifying [QT, RR] data pairs from
window We.

• τ̌r: QT-RR adaptation time lag estimate during the recovery phase of EST, after modifying [QT, RR] data pairs from
window We.

• ∆τ̌ : Difference between τ̌r and τ̌e.

• τ̂e: initial estimate of QT-RR adaptation time lag during the exercise phase of EST necessary to modify data pairs from
We.

• ϵτ : error between the estimated QT-RR adaptation time lag and the true time lag between the RR and QT series using
simulated EST ECGs.
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