000168424 001__ 168424 000168424 005__ 20260205155159.0 000168424 0247_ $$2doi$$a10.1016/j.apenergy.2017.05.163 000168424 0248_ $$2sideral$$a99646 000168424 037__ $$aART-2017-99646 000168424 041__ $$aeng 000168424 100__ $$0(orcid)0000-0003-3269-023X$$aGuillén-Lambea, S. 000168424 245__ $$aComfort settings and energy demand for residential nZEB in warm climates 000168424 260__ $$c2017 000168424 5060_ $$aAccess copy available to the general public$$fUnrestricted 000168424 5203_ $$aBuilding policies worldwide are becoming more demanding in terms of improving the energy performance of buildings to ensure that the target for nearly zero-energy buildings (nZEB) will be reached. Setting the thermal comfort parameters for a nZEB is a big challenge because the parameters must provide adequate indoor thermal conditions while at the same time guaranteeing the sustainability of buildings. Thermal comfort parameters for residential buildings have a strong impact on air conditioning demand. In this study, simulations have been performed to check the impact of comfort parameters on the air conditioning energy demand for residential nZEBs following the Passivhaus standard. Fifteen cities located in the south of Europe were selected for this study: twelve cities located in Spain, two in Italy and one in France as examples of a warm climate. Energy demand simulations have been carried out for a range of temperatures and different degrees of air humidity in order to calculate their impact depending on the climate data. The results obtained for a nZEB dwelling were compared with those obtained for a traditional dwelling to provide information for the development of further standards and norms concerning indoor climate and energy calculations. Moreover, simulations have been performed following adaptive models where the comfort temperature depends on the outdoor conditions. These results will help countries with warm climates, like those in southern Europe, to define their thermal comfort parameters for nZEB. 000168424 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es 000168424 590__ $$a7.9$$b2017 000168424 591__ $$aENGINEERING, CHEMICAL$$b4 / 136 = 0.029$$c2017$$dQ1$$eT1 000168424 591__ $$aENERGY & FUELS$$b8 / 96 = 0.083$$c2017$$dQ1$$eT1 000168424 592__ $$a3.162$$b2017 000168424 593__ $$aEnergy (miscellaneous)$$c2017$$dQ1 000168424 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1 000168424 593__ $$aBuilding and Construction$$c2017$$dQ1 000168424 593__ $$aNuclear Energy and Engineering$$c2017$$dQ1 000168424 593__ $$aFuel Technology$$c2017$$dQ1 000168424 593__ $$aManagement, Monitoring, Policy and Law$$c2017$$dQ1 000168424 593__ $$aMechanical Engineering$$c2017$$dQ1 000168424 593__ $$aCivil and Structural Engineering$$c2017$$dQ1 000168424 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000168424 700__ $$0(orcid)0000-0001-5215-7112$$aRodríguez-Soria, B. 000168424 700__ $$0(orcid)0000-0002-2463-7271$$aMarín, J.M.$$uUniversidad de Zaragoza 000168424 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi. 000168424 773__ $$g202 (2017), 471-486$$pAppl. energy$$tApplied Energy$$x0306-2619 000168424 8564_ $$s1143287$$uhttps://zaguan.unizar.es/record/168424/files/texto_completo.pdf$$yPostprint 000168424 8564_ $$s1572204$$uhttps://zaguan.unizar.es/record/168424/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000168424 909CO $$ooai:zaguan.unizar.es:168424$$particulos$$pdriver 000168424 951__ $$a2026-02-05-14:36:15 000168424 980__ $$aARTICLE