

Comfort settings and energy demand for residential nZEB in warm climates.

Silvia Guillén-Lambea^{1, 2,*}, Beatriz Rodríguez-Soria¹, José M. Marín²

3 ¹ University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.

4 *² Aragón Institute of Engineering Research (I3A), Thermal Engineering and Energy Systems Group,*

5 *University of Zaragoza, Edificio Torres Quevedo, C/Maria de Luna 3, 50018 Zaragoza, Spain.*

6

7 Abstract.

8 Building policies worldwide are becoming more demanding in terms of improving the energy performance
9 of buildings to ensure that the target for nearly zero-energy buildings (nZEB) will be reached.

10 Setting the thermal comfort parameters for a nZEB is a big challenge because the parameters must
11 provide adequate indoor thermal conditions while at the same time guaranteeing the sustainability of
12 buildings. Thermal comfort parameters for residential buildings have a strong impact on air conditioning
13 demand.

14 In this study, simulations have been performed to check the impact of comfort parameters on the air
15 conditioning energy demand for residential nZEBs following the Passivhaus standard. Fifteen cities
16 located in the south of Europe were selected for this study: twelve cities located in Spain, two located in
17 Italy and one in France as examples of the warm climate. Energy demand simulations have been carried
18 out for a range of temperatures and different degrees of air humidity in order to calculate their impact
19 depending on the climate data. The results obtained for a nZEB dwelling were compared with those
20 obtained for a traditional dwelling to provide information for the development of further standards and
21 norms concerning indoor climate and energy calculations.

22 Moreover, simulations have been performed following adaptive models where the comfort temperature
23 depends on the outdoor conditions. These results will help countries with warm climates, as southern
24 Europe, to define their thermal comfort parameters for nZEB.

25

26 **Keywords**

27 Residential nZEB, Thermal comfort, Building Energy demand, Mediterranean climate.

* Corresponding author. *Silvia Guillén-Lambea. University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.*

Email address: sguillen@unizar.es, tel. +34 976 739838

28 **1. Introduction.**

29 The residential sector in Europe is responsible for more than a third of the energy consumption and a
30 comparable part of the CO₂ emissions associated with human actions [1]. Building policies are becoming
31 more demanding in terms of improving the energy performance of buildings and reducing the associated
32 CO₂ emissions. The Energy Performance of Buildings Directive (EPBD) 2010/31 [2] was created to
33 regulate energy consumption in the building sector and requires that member states improve their
34 regulations to ensure that nZEB targets will be reached. Moreover, indoor thermal conditions should be
35 taken into account when putting the minimum energy requirements in place, but EU legislation does not
36 include clear directions as to how this can be achieved.

37 Thermal comfort parameters in residential buildings have a strong impact on the energy demand [3] and
38 must therefore be selected with extreme caution [4]. In order to obtain maximum optimization, their values
39 should be personalized depending on the climate area given that it has been demonstrated that indoor
40 thermal comfort parameters depend on the outdoor conditions [5,6] and more specifically the thermal
41 comfort in residential buildings shows a strong dependency on recent outdoor temperatures [7].

42 Nowadays, the northern European countries have already adapted their regulations to nZEB
43 requirements. Conversely, some southern countries have still to adapt their regulations to the new
44 objectives of energy demand. Therefore, new research about the influence of comfort parameters on
45 energy demand is needed since their impact is expected to be more important for warmer climates
46 (impact in percentage not in absolute values) but this is still not proven.

47 It has been shown that the adaptive comfort models yields energy savings for natural ventilated buildings
48 and ventilated systems without energy recovery. However, the Passivhaus standard, as a reference
49 implementing nZEB requirements in Europe [8], imposes mechanical ventilation systems with energy
50 recovery. Therefore, there should be further research to find out whether these comfort models offer the
51 same advantages for constructions built under this standard.

52 Fifteen southern Europe cities were selected for this research. Their climate is defined by Köppen-Geiger
53 climate worldwide classification as temperate climate [9,10], includes the Mediterranean area (in Europe:
54 South of Spain, South of Italy, Greece, Turkey, Lebanon, Israel ...and northern Africa countries such as
55 Morocco and Tunisia), and areas of southern Australia and of southern USA. The Passivhaus standard
56 has its own climate classification [11], since worldwide, it is divided in 7 climate areas. Europe has 5

57 climate areas (arctic, cold, cold temperate, warm temperate and warm) and Spain is divided in two areas
58 (warm and warm temperate).

59 To deal with all the previous questions, energy simulations are performed for a dwelling built under the
60 Passivhaus standard in different cities located in different climatic zones in the south of Europe (warm
61 and warm temperate). The dwelling selected for the study has been modeled in TRNSYS [12]. The
62 TRNSYS model has been validated with experimental data. Simulations provide sensible and latent
63 energy demand throughout one year on an hourly basis, depending on the comfort parameters set and
64 the climate data. Additionally, the results the nZEB dwelling were compared with those of a representative
65 dwelling such as those currently being built in southern Europe.

66 Moreover, simulations have been performed following adaptive models where the comfort temperature
67 depends on the outdoor conditions. Temperature ranges based on adaptive models, usually wider than
68 those required by the current standards, are evaluated for their possible inclusion in the nZEB
69 requirements for warm climates.

70

71 **2. Literature review.**

72 This section presents the state-of-the-art with respect to the influence of comfort set values to the building
73 air conditioning demand more specifically for warm and temperate climates for residential nZEB. The
74 content is intended to aid the reader in better understanding areas of active research in building energy
75 demand optimization.

76 Kwong et al. [13] provides a review of the energy efficiency in air conditioned tropical buildings by
77 considering thermal comfort of occupants, they state that the assessment of human thermal comfort
78 conditions should be incorporated into the building energy audit for enhancing energy efficiency. Several
79 studies have shown that substantial energy reductions can be made by modifying the summer set point
80 temperature (SST) [14,15]. Al Sanea [16] found a net saving in yearly energy-cost of about 4% per 1 °C
81 increase in the thermostat setting in summer within the thermal comfort zone in the hot desert area in
82 Riyadh.

83 Cetin et al. [17] investigates the effect of smart thermostats on thermal comfort and energy savings for
84 representative single family residential buildings located in 3 climate zones with dominant cooling loads.
85 They states than one degree increase in set point temperature is an important influencing factor in all
86 climate zones.

87 Rohdin et al. [18] present the performance of nine passive houses built in Sweden, the energy use in
88 these buildings is highly dependent on set point temperature. For a 20°C set point the specific annual
89 energy use for heating is around 21kWh/m²y, while it is about 35kWh/m²y for a 24°C set point.
90 A study carried out with TRNSYS for Copenhagen and Madrid for a detached single family home (energy
91 plus house) [19] showed that for Madrid moving the indoor temperature set point from 23°C to 25°C can
92 decrease the cooling need by 23% and reveals the interest to quantify the energy saving potential with
93 respect different temperature set points. The same authors publish a new study [20] presenting the
94 results of thermal environment measurements and energy use of the single family house during a one
95 year period. The operative temperature set-points were varied during the heating and cooling seasons
96 concluding that the adaptive actions of the occupants would play a crucial role in the thermal comfort and
97 on the annual energy performance of the building.
98 Ghahramani et al. [21] concluded that daily optimal set points based on outside temperature improves
99 energy efficiency for office buildings. They point out the choice of the set points as a factor very influential
100 (up to 30%) of energy savings, they simulated the DOE reference office buildings in all United States
101 climates zones.
102 In their review of thermal comfort models, Yang et al. [3] state that the static Predicted Mean Vote (PMV)
103 model works properly in air-conditioned buildings but does not work well in naturally ventilated buildings.
104 They conclude that adaptive comfort models have a wider range of comfort temperature and provide
105 significant energy savings.
106 Denmark is one of the first countries to include the adaptive thermal comfort approach in its building code
107 in 2015 [22]. This action is reflecting the effectiveness of controlling the comfort set points from the
108 energy savings point of view in cold climates. The still open question is if this action will be so effective
109 and interesting for countries located at warmer climates.
110 There are numerous publications investigating the effect of relative humidity on human thermal comfort in
111 hot and humid climates [23–25]. However, the relation between the humidity control and the energy
112 demand has not been studied in depth, and much less for temperate climates with medium moisture
113 loads such as the Mediterranean area.
114 The article [26] investigate the effect of indoor temperature and relative humidity on human thermal
115 comfort and energy consumption in a central air conditioning system in the south of China, concluding
116 that the influence of indoor relative humidity on energy consumption is greater than the indoor

117 temperature. There are researches related to the use of energy recovery devices to optimize the energy
118 performance of buildings [27–30] but the adequacy of the use of ERV in warm climates is still an open
119 question.

120 In summary, it is considered that previous research have not analyzed the savings from adjusting set points
121 with respect to other factors, such as the climate and construction type (nZEB versus traditional buildings).
122 There is a lack of research on examining the impact of comfort settings on energy demand in warm climate
123 and specifically these impact has not been studied on nZEB. It is hoped that findings of this study can help
124 to the establishment of procedures to achieve optimal thermal comfort and energy demand optimization in
125 nZEB residential buildings in the warm regions.

126 Section 3 includes a brief review of the thermal comfort concept and comfort models and Section 4 review
127 the current European comfort standards which should be considered to provide thermal satisfaction to the
128 occupants when optimizing the air conditioning energy demand.

129

130 **3. Thermal comfort in buildings. Theoretical background.**

131 The EN ISO 7730 standard [31] defines thermal comfort as '*that condition of mind which expresses*
132 *satisfaction with the thermal environment*'. It can thus be said that thermal comfort results from a
133 combination of environmental factors and personal factors. The environmental factors are the air
134 temperature (dry bulb temperature (DBT)), the air velocity (m/s), the radiant temperature of the
135 surroundings (including surfaces, heat generating equipment, the sun and the sky, usually expressed as
136 mean radiant temperature (MRT)) and the relative humidity (RH, expressed as a percentage).

137 The personal factors are clothing and metabolic heat (the heat produced through physical activity).

138 The norms and standards regulate the operative temperature (T_o) which depends on the indoor air
139 temperature (T_a) and the mean radiant temperature (T_{rm}). The T_{rm} is the mean radiant temperature of the
140 inner surface of the envelope that delimits the enclosure and 'a' is a factor which depends on the air
141 velocity. The operative temperature is calculated as follows [32]:

$$142 T_o = aT_a + (1 - a)T_{rm} \quad (1)$$

143 For an air velocity lower than 0.2 m/s, as recommended by Passivhaus for nZEB, the 'a' factor is 0.5.

144 T_{rm} is very similar to the temperature of the indoor air for nZEB due to the low U-values required for the
145 envelope.

146 Although human tolerance to humidity variations is much greater than tolerance to temperature variations,
147 humidity control is also important. High humidity can cause condensation problems on cold surfaces and
148 retards human heat loss by evaporative cooling, while low humidity tends to lead to dry throat and nasal
149 passages.

150 Nowadays, there are two different approaches defining thermal comfort, the heat balance or steady state
151 model and the adaptive thermal comfort model.

152

153 ***3.1. Steady-state comfort model.***

154 The steady-state comfort model is based on the work of Fanger who used data from climate chambers to
155 construct his theory [33]. The model uses the four factors related to the environment and the two personal
156 factors: the Predicted Mean Vote index (PMV) and the Predicted Percentage of Dissatisfied index (PPD).
157 The PMV predicts the mean value of thermal votes for a large group of people under the same
158 environmental conditions and the PPD defines how many people will fall outside the comfort limits
159 determining how many are thermally dissatisfied. Depending on the ranges PPD and PMV, three kinds of
160 comfort zones are defined. This empirical approach has been further developed over the years. Fanger's
161 equation subsequently became the basis for ISO 7730-1984 [34] and ASHRAE 55- 1992 [35] in which the
162 temperature ranges are based on steady-state studies.

163

164 ***3.2. Adaptive thermal comfort model.***

165 The adaptive model, incorporated in ASHRAE standard 55 [32], is based upon field surveys of people in
166 their normal surroundings and assumes that the thermal sense is an important element of
167 thermoregulatory behavior. The adaptive thermal comfort model considers that people having some
168 control over their personal thermal environment are more likely to adjust their expectations leading to a
169 wider comfort temperature range or humidity level and increased tolerance conditions. This tolerance
170 extends to season and climate. This would lead to potential energy savings. The energy savings potential
171 stated in the literature [36] ranges from 4 % to 60% using personalized ventilation with a lowered cooling
172 set point. Besides, extending the temperature range to 18-30°C with personalized control can save 40%
173 of the annual energy consumption. Regarding the control of indoor relative humidity, increasing the
174 relative humidity set-point in humid climates is the most effective strategy and thermal comfort can be still
175 acceptable up to 30 °C and 80% RH, without discomfort from the humidity [37].

176 The adaptive thermal comfort model defines the indoor thermal comfort as a function of the outdoor
177 conditions. In the 1970s, Humphreys [38] represented the comfort temperature depending on the monthly
178 mean outdoor temperature. He shows a clear difference between people in free running or heated and
179 cooled buildings. The relationship for free-running buildings is closely linear. However, for air conditioned
180 buildings the relationship is more complex.

181 McCartney et al. [5] subsequently collected and analyzed extensive data from five countries across
182 Europe (France, Greece, Portugal, Sweden and the UK) creating adaptive relations between climate and
183 comfort indoors. Five buildings were studied in each country for two types, naturally ventilated (NV) and
184 air conditioned buildings (AC). These authors obtained equations for calculating the comfort temperature
185 (T_c) depending the running mean outdoor temperature (T_{RM80}) for index 0.8 (see Eq. 2) for each country
186 and a general equation recommended for use in Europe (Eq. 3 and 4):

$$187 T_{RM80} = 0.8T_{RMn-1} + 0.2T_{DMn-1} \quad (2)$$

188 Where T_{DMn-1} is the daily mean outdoor temperature on day n-1 ($^{\circ}\text{C}$)

$$189 T_c = 0.302T_{RM80} + 19.39 \quad T_{RM80} > 10^{\circ}\text{C} \quad (3)$$

$$190 T_c = 22.88^{\circ}\text{C}; \quad T_{RM80} > 10^{\circ}\text{C} \quad (4)$$

191 Of the countries studied, Portugal and Greece have the most similar climate to the selected cities as they
192 are located at similar latitudes. The equation obtained for Portugal (Eq. 5) is the following:

$$193 T_c = 0.381T_{RM80} + 18.12 \quad (5)$$

194 For Greece, no equation has been defined for the winter period but for the summer season ($T_{RM80} > 10^{\circ}\text{C}$)
195 the equation obtained is the following (Eq.6):

$$196 T_c = 0.205T_{RM80} + 21.69 \quad (6)$$

197

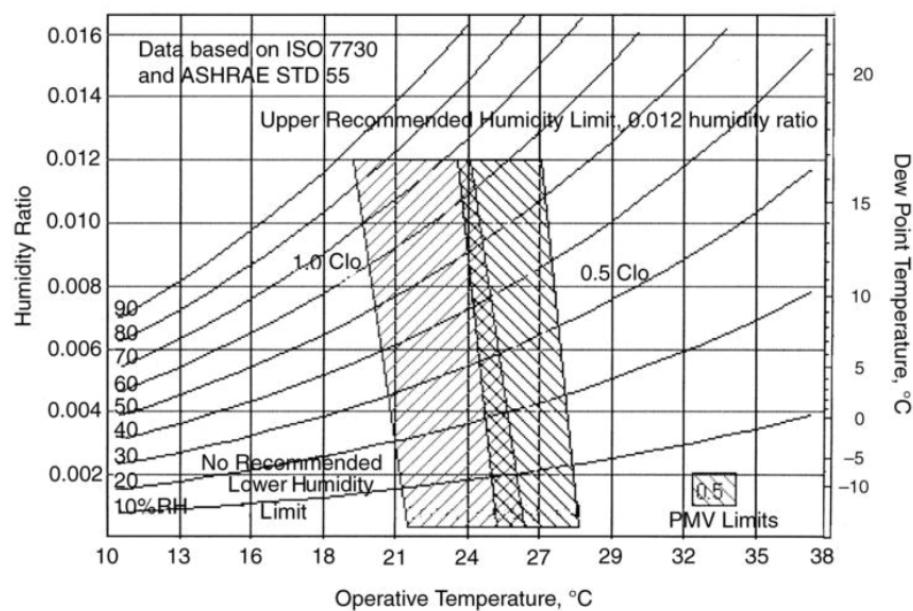
198 **4. Comfort standards**

199 The requirements for thermal comfort are prescribed in standards which establish variances in the
200 comfort parameters between naturally ventilated, mechanically ventilated and mixed-mode buildings.
201 Differences are found in the response of people in buildings with no heating or cooling and those with
202 mechanical control. This paper is focused on mechanically ventilated buildings and has taken a
203 Passivhaus dwelling as an example of a nZEB dwelling. A mechanical ventilation system including a heat
204 recovery ventilator (HRV) or an energy recovery ventilator (ERV) is a requirement of the Passivhaus
205 standard to achieve the energy demand objectives for nZEB [39]. The most relevant international

206 standards that should be considered for thermal comfort are ISO 7730:2005 [31], ASHRAE Standard 55:
207 2013 [40], and EN 15251:2008 [41].

208 **4.1. ISO 7730:2005.**

209 The international standard ISO 7730:2005 [31] provides methods to predict the thermal sensation and
210 degree of discomfort of people by using the PMV and the PPD. Humphreys [42] concludes that the ISO
211 PMV could lead to excessive cooling in warmer climates and unnecessary heating in cooler regions. The
212 parameter limits to guarantee the comfort set by ISO 7730 are shown in Table 1.


213 **4.2. ASHRAE Standard 55.**

214 The first ASHRAE standard, 55 -1992 [35], which was not adaptive, followed the ISO 7730 by
215 differentiating two temperature comfort ranges, one for summer and the other for winter.

216 The ASHRAE 55-2004 standard [43] introduced the differences in the comfort ranges for naturally
217 ventilated (NV) and for air conditioned buildings (AC) or mechanical ventilated buildings (MV)).The
218 standard proposed a method for determining acceptable thermal conditions for NV spaces, the comfort
219 bandwidths being dependent on the Prevailing Mean Outdoor Air Temperature. Figure 1 shows the
220 comfort range for MV buildings.

221 The maximum accepted humidity ratio was 0.012 kg/kg dry air, independent of the temperature and the
222 season.

223 The ASHRAE 55-2010 standard [32] specifies the relation between the environmental parameters and
224 personal parameters to provide thermal conditions acceptable to a majority of the building occupants.

225

226

Figure 1. Comfort range for MV buildings. ASHRAE 55-2004 [43].

227 **4.3. EN 15251:2008.**

228 The EN 15251 standard [41] was designed to set limits for indoor conditions to ensure that the EPBD [2]
229 did not compromise the comfort of occupants in the pursuit of energy reduction. The indoor parameters
230 for dimensioning the heating, cooling and ventilation systems for European buildings are defined in the
231 norm for design and energy performance calculations. Those values are different if the building is NV or
232 AC. The standard gives an equation to calculate the comfort temperature for naturally ventilated buildings
233 depending on the mean of the daily outdoor temperature.

234 For buildings with mechanical ventilation, the comfort limits are set using Fanger's Predicted Mean Vote
235 (PMV). The minimum temperature for winter and the maximum for summer are defined depending on the
236 clothing worn and the ambient categories, of which there are four depending on the expected level of
237 comfort. Category II (Normal) is suggested for new buildings. The recommended design temperature for
238 the air conditioning and values for relative humidity are shown in Table 1.

239 **4.4. European standards.**

240 Based on the requirements set by the European norm, European countries include in their national
241 standards the requirements or recommendations for lower and upper limits for indoor air temperature.
242 Some of the reviewed European standards do not include values for relative humidity. The current values
243 for residential buildings in Spain and other nearby countries are shown in Table 1 for comparison.

244

245 **Table 1.** Max. and Min. Operative temperature and RH range required or recommended by the standards for residential buildings.

Standard/ Norm	EN 15251 ^a [41]	ISO 7730 [31]	ASHRAE 55 [32]	Germany [44]	France ^c [45]	Italy ^d [46]	Spain [47]	Passivhaus [39]
Min. Temp winter	20°C ^g	20°C ⁱ	20°C ⁱ	20°C	18°C	20°C	21°C	20°C
Max. Temp. summer	26°C ^h	26°C ^h	26°C ^h	25°C- 27°C ^b	28°C	26°C	25°C	26°C
RH range	25-60% ^e	30-70 %	0.012 ^j	-- ^f	-- ^f	-- ^f	40-60 %	30-60 %

^a Recommended design values.

^b Germany is limited at 25°C, 26°C and up to 27°C in summer for climatic regions A, B and C respectively.

^c France: the max. temp. when Mechanical Ventilated building is 28°C, different limit value according to building type and external temp. in the case of Natural Ventilated building

^d Italy set the max. Temp. for heating system (with +2°C of tolerance) and the min. Temp. for cooling system (with - 2°C of tolerance)

^e Category II (Normal level of expectation)

^f No values in standards

^g For 1 clo and 1.2 met

^h For 0.5 clo and 1.2 met

ⁱ For 0.9 clo and 1.2 met

^j Max. Specific Humidity kg/kg dry air

246

247 **5. Model description.**

248 A dwelling is taken from a real project built in Spain and a model with the selected dwelling has been
249 developed using TRNSYS [28] software.

250 **5.1 Software.**

251 TRNSYS is a very powerful software tool widely used to carry out numerical studies on energy demand
252 for all kinds of buildings, nZEB included [48,49]. The main Types used in the model are:

- 253 • Type56 [50] (Multizone building model) to simulate the dwelling.
- 254 • Type667 [51] to simulate the energy recovery system (Energy Recovery Ventilator (ERV) or Heat
255 Recovery Ventilator (HRV)).
- 256 • Type 66 [52] in order to control the by-pass of the ERV or HRV. Type 66 triggers the Engineering
257 Equation Solver [53] (EES) which calculates the by-pass valve position depending on the
258 temperature, humidity and enthalpy of the air streams.

259 The simulations provide the air-conditioning energy demand on an hourly basis throughout one year for
260 the selected cities.

261 **5.2. TRNSYS model validation.**

262 The data collected from a real detached house has been used to validate the TRNSYS model. It is
263 located 70 Km north of Barcelona (Spain), not on the coast.

264 The house was built following the Passivhaus standard and was monitored and measured every 15
265 minutes from September 2015 until September 2016. The parameters and conditions of the monitored
266 house as an example of nZEB are similar to those of the simulated nZEB dwelling. Their technical
267 properties are shown in Table 2.

268

269 **Table 2.** Technical properties of real building and the simulated nZEB dwelling.

Room	Monitored house		Simulated Dwelling	
	Area (m ²)	Ventilation air flow (%)	Area (m ²)	Ventilation air flow (%)
Kitchen	32.00	Exhaust 45%	9.18	Exhaust 40%
Bathroom	5.30	Exhaust 35%	3.40	Exhaust 30%
Toilet	3.80	Exhaust 20%	3.00	Exhaust 30%
Bedroom 1	13.65	Supply 30%	12.16	Supply 20%
Bedroom 2	22.30	Supply 30%	12.00	Supply 20%
Bedroom 3	---	---	11.27	Supply 20%
Living room	18.00	Supply 40%	22.68	Supply 40%
Corridor	4.95	---	7.46	---
Total	100.00 (two floors)		81.15	

Enclosure parameters				
Window/ Ext. wall ratio	0.1 for north , 0.33 for south, 0.06 for east and 0.16 for west	0.35 for north, 0.37 for south, 0 for east and west	Transmittance U nZEB nZEB Southern Europe (W/m ² K)	Transmittance U nZEB Central and Northern Europe (W/m ² K)
	Transmittance U (W/m ² K)			
External wall	0.127		0.340	0.150
Floor	0.165		0.260	0.150
Roof	0.122		0.260	0.150
Windows	1.060		1.400	0.800
Airtightness n50 (ACH)	0.32		0.60	

270

271 The monitored values are: air temperatures (ground and first floor), ambient temperature, total electrical
 272 energy consumption of the house, and electrical energy consumption due to the mechanical ventilation
 273 system and due to the electric radiators. The ambient air temperature was measured and incorporated in
 274 the model while other climate data such as the solar radiation loads were taken from Meteonorm
 275 meteorological file for Barcelona city (the closest city).

276 Two adults and two children live in the house whose habits have been taken into consideration when
 277 defining the internal gains due to the presence of the occupants. The internal source loads have been
 278 obtained from the electrical energy consumption of the house. Regarding to occupation, a nominal value
 279 of 265 W sensible load and 245 W latent load have been considered (ISO 7730: 2005 [31]). For internal
 280 sources, a nominal load of 2.5 W/m² for lighting and other equipment and a computer with a monitor with
 281 a nominal load of 230W have been considered. The nominal latent and sensible loads are multiplied by a
 282 coefficient depending on the time of day, related to the occupancy indicated in Table 3.

283 **Table 3.** Coefficients of internal loads applied in the model depending on the time of day.

	TIME OF DAY- WORKING DAY					TIME OF DAY- WEEKEND				
	0-7	7-13	13-15	15-20	20-24	0-9	9-12	12-17	17-22	22-24
Multiplier factor for Sensible & Latent Loads due to occupancy	0.5	0.25	1	0.5	0.75	0.5	0.25	2	0.5	1
Multiplier factor for Lighting, Equipment and devices	0	0.5	0	1	0.5	0	0.5	1.5	1	0.5

284

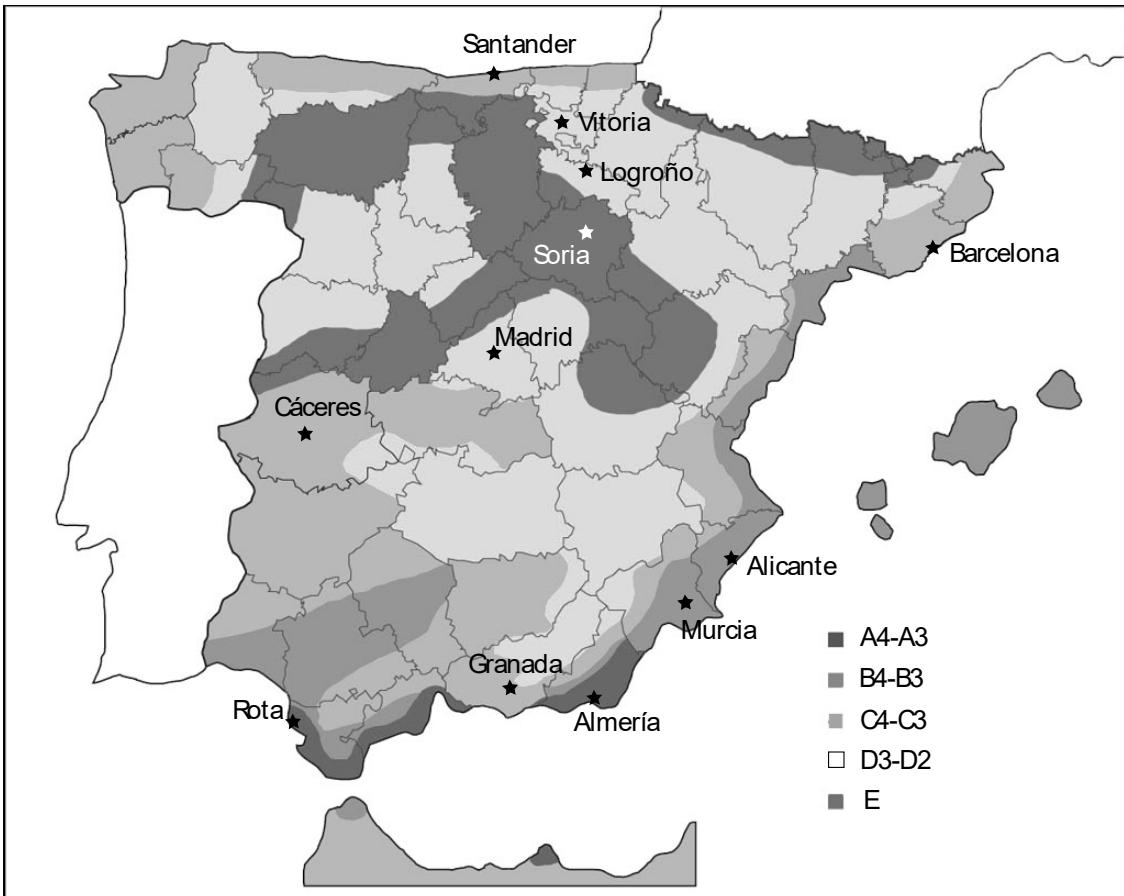
285 The house has a mechanical ventilation system, the ventilation air flow during occupied hours is 120 m³/h
 286 and the air flow rate for each room is shown in Table 3. The system includes an HRV which has a
 287 measured effectiveness of 0.84 at 120 m³/h.

288 The temperature set value for the house is 20°C in winter. The measured heating demand for one year
 289 (September-2015/2016) was 2.5 KWh/m²y and the ventilation system energy demand was 2.6 KWh/m²y.

290 The heating demand in winter was obtained through the electrical consumption of the radiators (heating
291 source), being 74.02 kWh (for electrical radiators) for February 2016, while the heating demand obtained
292 for the same month with the TRNSYS model was 70.68 kWh. The error obtained is 4.5%, small enough to obtain
293 guarantee that the results obtained from the simulated dwelling are sufficiently consistent to obtain
294 reliable conclusions. Furthermore, the results are comparative, the energy saving (%) obtained being
295 dependent on the comfort set parameter which changes from one simulation to other. The TRNSYS
296 model used for the real house is the same as that used for the simulations. The technical properties of the
297 real building have been replaced by the Type 56 proposed nZEB dwelling as shown in Table 3.

298

299 **5.3. Climate data and selection of cities.**


300 Fifteen cities located in southern Europe, area which can be categorized as warm climate region were
301 selected for this study.

302 The Basic Document HE1 of the Spanish Technical Building Code (CTE) [47,54] distinguishes five
303 geographical areas depending on the severity of the climate in winter (a letter indicates the severity from
304 lowest to highest: A, B, C, D and E) and four geographical areas depending on the climate severity in
305 summer (a number indicates the severity from lowest to highest: 1, 2, 3 and 4). A total of 12 climatic
306 zones are distinguished in the Spanish mainland (the climatic zones of the Canary Islands have not been
307 included in the study). A city from each Spanish climatic zone (Table 4 and Figure 2), one city located at
308 the south of France, Marseille and two cities from warm area of Italy: Rome and Palermo (Figure 2) were
309 selected. The climate data files are taken from the Meteonorm meteorological database [55].

310 **Table 4.** Representative cities from each of the climatic zones defined in the Spanish legislation [54].

Winter CS: Severity level A < B < C < D < E				
Summer CS: Severity level 4 > 3 > 2 > 1	A4	B4	C4	
	Almería	Alicante	Cáceres	
	A3	B3	C3	D3
	Rota	Murcia	Granada	Madrid
			C2	D2
			Barcelona	Logroño
			C1	D1
			Santander	Vitoria
				E1
				Soria

311

329 and Italian cities. The values recommended for Central & North of Europe for the Spanish cities located in
330 winter climatic zones D and E.

331 For traditional dwelling model, the envelope transmittance U-values are those recommended by current
332 Spanish regulations depending on the cities climatic area location (Table 5), as an example of existing
333 dwellings. For Marseille and Rome the transmittance values for building enclosure are the values of
334 Spanish climatic area C and for Palermo the values of Spanish climatic area A as those are their
335 equivalent climate regions.

336 **Table 5.** Average transmittance limit depending on the location of the building enclosure (W/(m²K)).

Average transmittance limit depending on the location of the building enclosure (W/(m ² K))								
TNRYS Model	nZEB dwelling model			Traditional dwelling model				
Norm/Standard	<i>Passivhaus: Provides different values for Central & North of Europe and Mediterranean countries.</i>				<i>DBHE1 (Spain)</i>			
Climatic zone	CENTRAL&NORTH	MEDIT.		A	B	C	D	E
External Walls	0.15	0.34		0.94	0.82	0.73	0.66	0.57
Floors	0.15	0.26		0.53	0.52	0.50	0.49	0.48
Roofs	0.15	0.26		0.50	0.45	0.41	0.38	0.35
Windows/ doors	0.80	1.40		4.10	3.25	2.48	2.48	2.48

337
338 2) The air infiltration flow for nZEB model correspond to the maximum value set for Passivhaus standard
339 $n_{50}=0.6$ ACH (air changes by hour) and for the traditional model $n_{50}=1.8$ ACH, which is a conservative
340 value according to the study done by Montoya el al. [58] for air leakage in Catalan existing dwellings
341 (northern Spain).

342 3) The nZEB model includes a mechanical ventilation system with a Heat Recovery Ventilator (or Energy
343 recovery Ventilator), an essential component for Passivhaus and the traditional dwelling model does not
344 have any recovery device.

345 Passivhaus standard, as an example of a nZEB standard, states that this value should be between 30
346 m³/h and 32 m³/h per person (for residential use) [39]. The minimum air flow rate recommended in the
347 regulations of some countries is reviewed by the authors in a previous paper [56]. Taking into account the
348 Passivhaus recommendation and the fact that the simulated dwelling is suitable for a family of 4, the total
349 air ventilation rate considered in the model is 120m³/h. The air ventilation flow is considered constant
350 throughout the year, except that an extra ventilation flow is added for high occupation during three hours
351 at the weekend (8 people at home) when the air ventilation flow is 240m³/h. The air flow distributions for

352 each room are those recommended by a company (Zehnder Group Ibérica IC S.A) which develops and
353 commercializes air ventilation systems and air heat exchangers for buildings certified under the
354 Passivhaus standard. The values for each room are shown in Table 2.
355 The rest of the models parameters as the internal loads are the same as the model used for model
356 validation.

357

358 **6. Methodology.**

359 After reviewing the comfort models and the current international standards, simulations were performed
360 changing the temperature and humidity settings, as shown in Table 6, and evaluating their impact on the
361 sensible and latent load. The values correspond to the minimum comfort temperature during winter and
362 the maximum comfort temperature during summer. The heating demand is obtained from October to May
363 and the cooling demand from June to September [59].

364 It is considered that the operative temperature for nZEB buildings is practically equal to the indoor air
365 temperature and equal to the temperature set for air conditioning systems, as is explained in Section 3.
366 The hypothesis has been verified on the nZEB model.

367 However this hypotheses cannot be applied to the traditional model were the operative temperature is
368 lower than the air room temperature (temperature set for air conditioning demand) due to a worst
369 envelope thermal insulation on the traditional model. The mean radiant temperature has been calculated
370 with TRNSYS by obtaining the walls inside temperature on the living room and them applying equation (1)
371 for $a=0.5$. The air temperature set for traditional model is finally one degree higher in winter to obtain
372 equivalent operative temperature. No adjustment is needed during summer due to a lower air
373 temperature difference between indoors and outdoors. (Bea esto voy a cambiarlo y a introducir en el
374 modelo la temperatura operativa calculada cada hora, pero las simulaciones las haré este finde).

375 **Table 6.** Temperature and humidity settings for the simulations performed.

		T_{operative} (°C)	Humidity	nZEB dwelling model	Traditional dwelling model
First set of simulations	Simulations performed at constant set temperature and constant set humidity	19	RH 30-60%	All cities: HRV	All cities
	WINTER: Heating energy demand	20			
		21			
Second set of simulations	Simulations performed at constant set temperature and constant set humidity	25	RH 60%	All cities: HRV and Mediterranean cities: ERV	All cities
	SUMMER: Cooling energy demand	26			
		27			
Third set of simulations	Simulations performed at constant set temperature and constant set humidity	20-26	RH 30-60% RH 30-65%	Mediterranean cities HRV and ERV	

WINTER AND SUMMER: Latent energy demand	RH 30-70%	-----
	Max. 0.012 kg/kg dry air	
Fourth set of simulations	Simulations performed at variable set temperature [5] and constant set humidity: heating and cooling demand	Portuguese model [5]

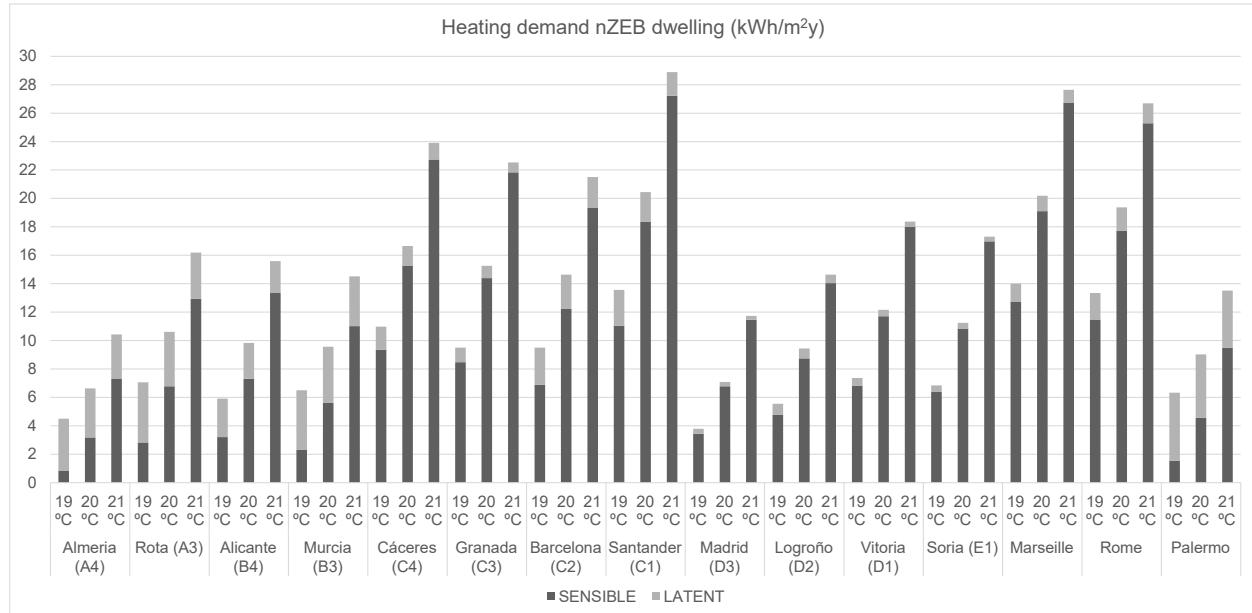
376

377 When installing a HRV on the ventilation system the by-pass mode operates if the outside temperature is
378 higher than the inside temperature during the winter season and lower during the summer season.

379 An ERV has been included (instead of an HRV) in the simulations for some cities located on the
380 Mediterranean coast where the latent energy in the ventilation air can be significant. The Mediterranean
381 cities selected are: Almería, Alicante, Rota, Murcia and Barcelona. Palermo was not selected because
382 has similar climate data than Almeria. In those cities, the effect of the ERV, when varying the relative
383 humidity set for air conditioning, is obtained.

384 As regards the control strategy for the ERV, during winter this is based only on the sensible energy which
385 is more important than the latent energy. During summer, the air supply will pass through the ERV when
386 the outdoor air temperature is higher than the indoor temperature. If not, the possible latent and sensible
387 demands that could be recovered from ventilation air by the ERV are calculated by Type 66 in the
388 TRNSYS model. If the humidity ratio of the outdoor air is higher than that in the dwelling and the latent
389 demand to be recovered is higher than the sensible demand to be added to the dwelling, the outside air
390 will cross the ERV or else the air will pass through the by-pass. The effectiveness of the ERV is 90% for
391 sensible energy and 60 % for latent energy, these being typical values provided by products currently
392 available on the market.

393 For the fourth set of simulations, the energy savings are calculated with the set point temperature
394 proposed by adaptive models, which depends on the outdoor climate. The simulations have been
395 performed using the adaptive control algorithm developed by McCartney et al. [5]. As Spain was not
396 included on their study, a comparison of the comfort temperatures obtained from the Portuguese model
397 (Eq.5), from the Greek model (only existing for summer, Eq.6) and from the general equations (Eq. 3 and
398 4) defined for Europe has been carried out for five cities (one for each Spanish climate area in winter).
399 Finally, the equation defined for Portugal (Eq. 4) has been used to calculate the air conditioning energy
400 demand.


401

402 **7. Results and discussion.**

403 **7.1. Heating demand depending on a constant set temperature.**

404 Simulations have been performed for set temperatures of 21°C (as required by the Spanish norm), 20°C
 405 (as required by most current international standards) and 19°C (as recommended by the Passivhaus
 406 standard if the T_{rm} of the inner surface of the envelope is close to the indoor temperature). The minimum
 407 RH setting is 30% and the maximum is 60%, but the humidification load for the selected cities is
 408 negligible.

409 For the nZEB dwelling, the heating demand obtained for each city is shown in Figure 3.

410

411 **Figure 3.** Heating energy demand (kWh/m²year). HRV system (nZEB dwelling).

412 The Spanish cities located in climatic zone C, Marseille and Rome have the highest heating demand
 413 because the adjustment between the external wall transmittances and the climate conditions is the worst.
 414 As expected, the impact on sensible energy is greater when the set temperature is increased from 20°C
 415 to 21°C than when it is lowered from 20°C to 19°C.

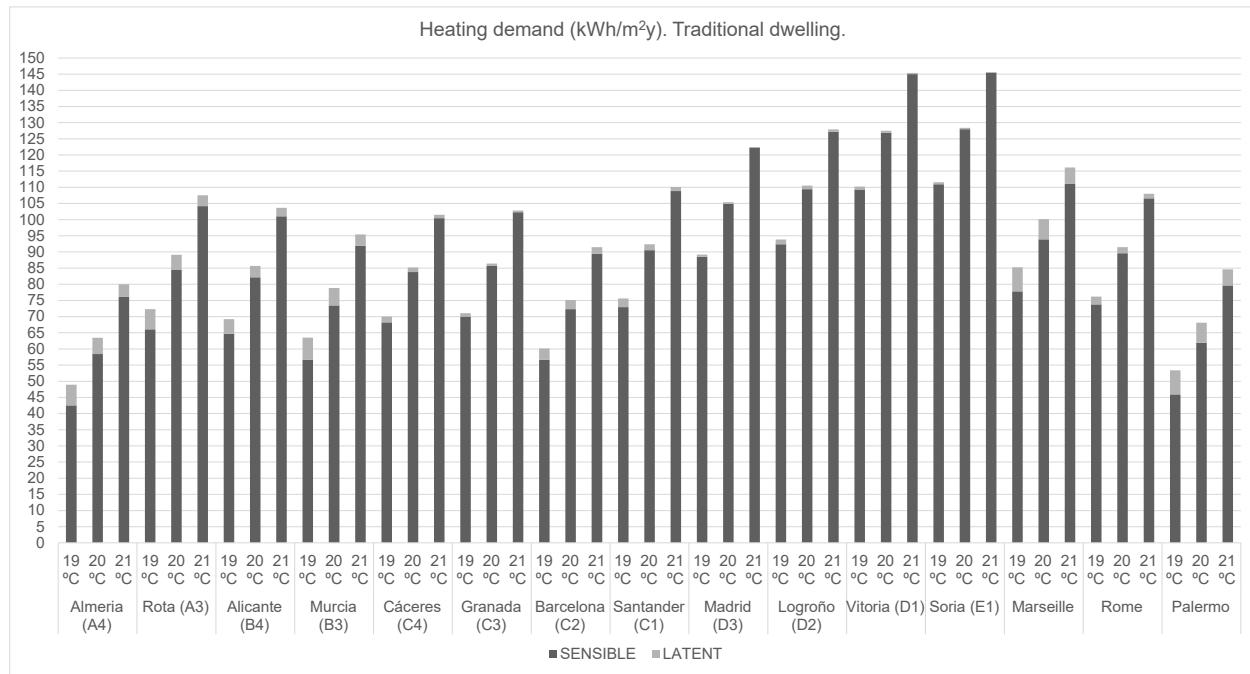
416 When the set temperature was reduced from 20°C to 19°C, the smallest savings were for the hottest city,
 417 Almería, with an absolute reduction of 2.3 kWh/m²y, where the heating sensible energy was less than 1
 418 kWh/m²y. The greatest savings were for Santander, where the sensible energy demand increased by 7.3
 419 kWh/m²y.

420 When the set temperature was increased from 20°C to 21°C, the greatest increment in the sensible
 421 energy demand was also for the cities located in winter climatic zone C, for Santander the increment was
 422 8.8 kWh/m²y. While the smallest increase was for one of the hottest cities, Almería, where the sensible
 423 energy demand increased by 4.1 kWh/m²y.

424 The impact of the latent energy was obviously smaller because the relative humidity setting was kept
425 invariable at 60%. However, a reduction in the set temperature resulted in an increase in the latent
426 energy demand while, in contrast, an increase in the set temperature from 20°C to 21°C had a saving
427 effect on the latent energy demand during winter. This is due to the fact that when reducing the set
428 temperature while maintaining constant RH, the air humidity ratio required is reduced and the latent
429 energy demand is thus increased and vice versa.

430 The Table 7 shows the impact (%) on heating energy demand when moving the thermostat from 20°C to
431 19°C and to 21°C.

432 **Table 7.** Impact on heating energy demand depending on thermostat setting (moving from 20°C). HRV system (nZEB dwelling).


Temp (°C)	Sensible		Latent		Total	
	19°C	21°C	19°C	21°C	19°C	21°C
Almeria (A4)	-73.3%	129.1%	5.9%	-9.3%	-32.1%	57.1%
Rota (A3)	-58.2%	90.9%	10.4%	-15.4%	-33.5%	52.6%
Alicante (B4)	-56.2%	82.3%	7.7%	-10.8%	-39.8%	58.5%
Murcia (B3)	-58.8%	96.1%	6.3%	-11.2%	-32.0%	51.8%
Cáceres (C4)	-38.7%	49.1%	15.7%	-16.1%	-34.1%	43.6%
Granada (C3)	-41.1%	51.7%	18.0%	-18.8%	-37.7%	47.7%
Barcelona (C2)	-43.7%	58.4%	8.9%	-11.2%	-35.1%	46.9%
Santander (C1)	-39.8%	48.4%	20.1%	-20.8%	-33.7%	41.3%
Madrid (D3)	-49.3%	69.2%	12.9%	-16.1%	-46.5%	65.4%
Logroño (D2)	-45.4%	60.5%	12.7%	-13.3%	-41.2%	55.1%
Vitoria (D1)	-41.7%	53.8%	18.9%	-19.6%	-39.4%	51.0%
Soria (E1)	-41.2%	56.6%	13.2%	-18.9%	-39.2%	53.9%
Marseille	-33.3%	39.8%	15.8%	-15.1%	-30.6%	36.9%
Rome	-35.2%	42.6%	13.8%	-14.3%	-31.1%	37.8%
Palermo	-66.1%	108.3%	7.2%	-10.1%	-29.9%	49.7%

433
434 The influence of temperature setting on the sensible energy demand is more important for the warmest
435 cities (Spanish zone climatic A and B and Palermo) the reductions are higher than -50%, and the
436 increases can be greater than the 100%.

437 For the latent energy, the reductions and the increases are similar, being around 15-20% for the coldest
438 cities and 10-15% for the warmest. Nevertheless, as the latent energy demand is considerably smaller
439 than the sensible energy demand, the impact on the total energy demand is not significant.

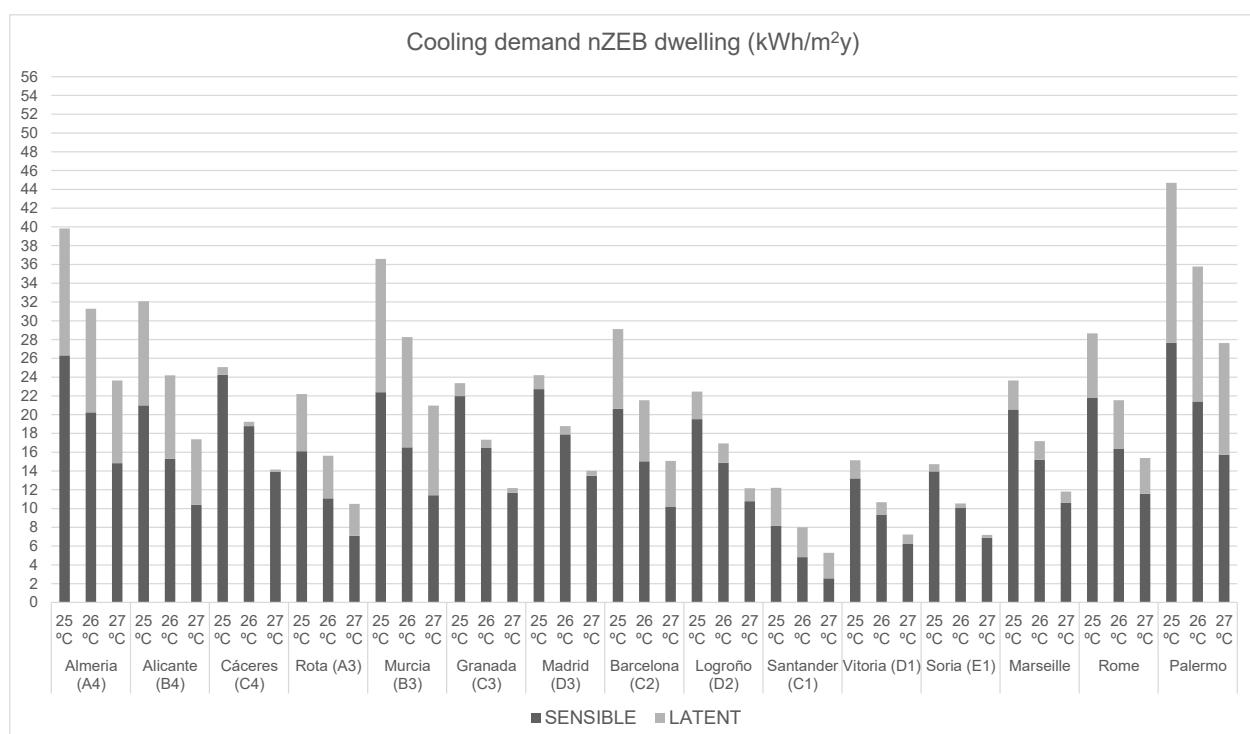
440 Looking to the total heating energy demand, reductions range between -30.6% and -46.5% and increases
441 between +36.9% and 65.4%.

442 The results obtained for the traditional dwelling, which is representative of the buildings that are currently
443 built in southern Europe, are show in Figure 4. and Table 8 for purpose of comparison.

446 **Figure 4.** Heating energy demand (kWh/m²year). Traditional dwelling.

447 As a first remark, the scale on the Figure 3 and Figure 4 has had to be changed as result of the important
 448 heating demand savings obtained for a nZEB comparing to the traditional dwelling.
 449 The result shows an homogeneity on the savings and increments for the sensible heating demand in
 450 absolute values, they are not much differences between the climatic zones. The reductions ranges from
 451 15.6 kWh/m²y to 17.6 kWh/m²y and the increases from 16.5 kWh/m²y to 19.8 kWh/m²y.
 452 Looking at the impacts (%) showed on Table 8, the values are lower for a traditional dwelling than for a
 453 nZEB dwelling. The average reduction on the total heating demand is -17.6% for a traditional dwelling
 454 and -35.7% for a nZEB dwelling. The average increment is 19.0% for a traditional dwelling and the 50.0%
 455 for a nZEB.

456 **Table 8.** Impact on heating energy demand depending on thermostat setting (moving from 20°C). Traditional dwelling.


Temp (°C)	Sensible		Latent		Total	
	19°C	21°C	19°C	21°C	19°C	21°C
Almeria (A4)	-27.2%	30.4%	26.1%	-24.6%	-22.9%	26.0%
Rota (A3)	-21.7%	23.4%	31.9%	-28.4%	-18.9%	20.7%
Alicante (B4)	-21.2%	23.0%	26.9%	-26.4%	-19.2%	21.0%
Murcia (B3)	-22.8%	25.2%	26.2%	-35.0%	-19.5%	21.1%
Cáceres (C4)	-18.6%	19.9%	27.5%	-26.0%	-17.9%	19.1%
Granada (C3)	-18.3%	19.4%	36.7%	-29.5%	-17.8%	18.9%
Barcelona (C2)	-21.6%	23.6%	24.2%	-24.3%	-19.9%	21.8%
Santander (C1)	-19.4%	20.2%	42.0%	-32.8%	-18.2%	19.2%
Madrid (D3)	-15.6%	16.4%	43.6%	-35.6%	-15.4%	16.2%

Logroño (D2)	-15.5%	16.2%	34.0%	-28.7%	-15.1%	15.8%
Vitoria (D1)	-13.9%	14.3%	51.4%	-37.8%	-13.6%	14.0%
Soria (E1)	-13.3%	13.6%	52.2%	-37.7%	-13.1%	13.5%
Marseille	-17.2%	18.3%	20.2%	-19.8%	-14.8%	16.0%
Rome	-17.7%	19.0%	27.9%	-26.6%	-16.7%	18.0%
Palermo	-25.8%	28.7%	20.2%	-19.8%	-21.6%	24.2%

457

458 **7.2. Cooling demand depending on a constant set temperature.**

459 Simulations have been performed for set temperatures of 25°C (as required by the Spanish norm), 26°C
 460 (as required for most current international standards) and 27°C (as required by the German standard for
 461 some climatic regions). The results for cooling energy demand (kWh/m²year) are shown in Figure 5.

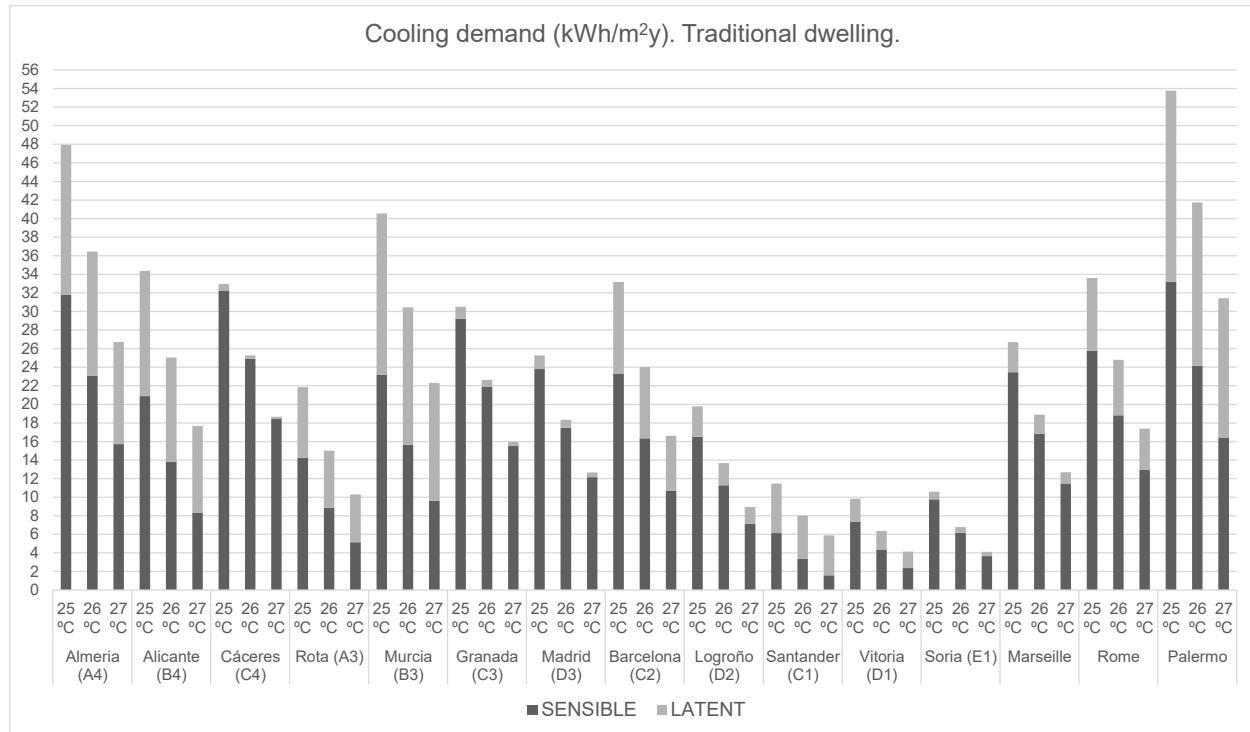
462

463 **Figure 5.** Cooling energy demand (kWh/m²year). HRV system.

464 As expected, the impact on the sensible cooling demand was less significant when the set temperature
 465 was increased from 26°C to 27°C compared to reducing it to 25°C.

466 When the set temperature was reduced from 26°C to 25°C, the greatest increment in the sensible energy
 467 demand was for one of the hottest city, Palermo, where the sensible energy demand increased by 6.2
 468 kWh/m²y. While the smallest increase was for Santander where the increment was 3.4 kWh/m²y followed
 469 by the coldest cities, Vitoria and Soria with an increment of 3.9 kWh/m²y.

470 When the set temperature was increased from 26°C to 27°C, the greatest savings were also for Palermo
 471 with an absolute reduction of 5.7 kWh/m²y and the smallest savings were for Vitoria, where the sensible
 472 energy demand was reduced by 3.1 kWh/m²y.
 473 The influence on the latent energy was obviously smaller because the relative humidity setting remained
 474 invariable at RH 60%. The effect was very low for cities not located on the Mediterranean coast, where
 475 the latent energy demand was very small. For Mediterranean cities, reducing the set temperature leads to
 476 an increase in the latent energy demand while increasing the set temperature from 26°C to 27°C has a
 477 saving effect on the latent energy demand. The reduction in the latent energy demand is smaller when
 478 increasing the set temperature to 27°C than the increase when reducing the temperature to 25°C.
 479 For Cáceres, Granada, Madrid and Soria, cities with a very insignificant latent energy demand, this
 480 demand is almost negligible when the set temperature is 27°C. Nevertheless, as the latent energy
 481 demand is smaller than the sensible cooling demand, the impact on the total energy demand is less
 482 significant.


483 Table 9 shows the impact on cooling energy demand when moving the thermostat from 26°C to 25°C and
 484 to 27°C.

485 **Table 9.** Impact on cooling energy demand depending on thermostat setting (moving from 26°C). HRV system (nZEB dwelling).

Temp (°C)	Sensible		Latent		Total	
	25°C	27°C	25°C	27°C	25°C	27°C
Almeria (A4)	30.0%	-26.7%	22.3%	-20.2%	27.3%	-24.4%
Alicante (B4)	37.2%	-32.0%	24.8%	-21.5%	32.6%	-28.2%
Cáceres (C4)	29.1%	-26.0%	78.2%	-45.5%	30.3%	-26.4%
Rota (A3)	45.1%	-36.0%	34.5%	-25.3%	42.0%	-32.9%
Murcia (B3)	35.6%	-30.9%	20.8%	-18.7%	29.4%	-25.8%
Granada (C3)	33.2%	-29.2%	66.5%	-39.8%	34.8%	-29.7%
Madrid (D3)	26.9%	-24.5%	66.7%	-42.3%	28.8%	-25.4%
Barcelona (C2)	37.2%	-32.1%	30.3%	-25.3%	35.1%	-30.0%
Logroño (D2)	31.2%	-27.5%	43.6%	-32.2%	32.7%	-28.1%
Santander (C1)	69.9%	-46.5%	26.4%	-14.7%	52.6%	-33.9%
Vitoria (D1)	42.0%	-33.1%	40.6%	-26.6%	41.8%	-32.3%
Soria (E1)	38.7%	-31.5%	60.1%	-35.5%	39.7%	-31.7%
Marseille	35.1%	35.1%	57.1%	-38.8%	37.6%	-31.2%
Rome	33.5%	-29.2%	32.0%	-26.4%	33.1%	-28.6%
Palermo	29.1%	-26.5%	18.6%	-17.3%	24.9%	-22.8%

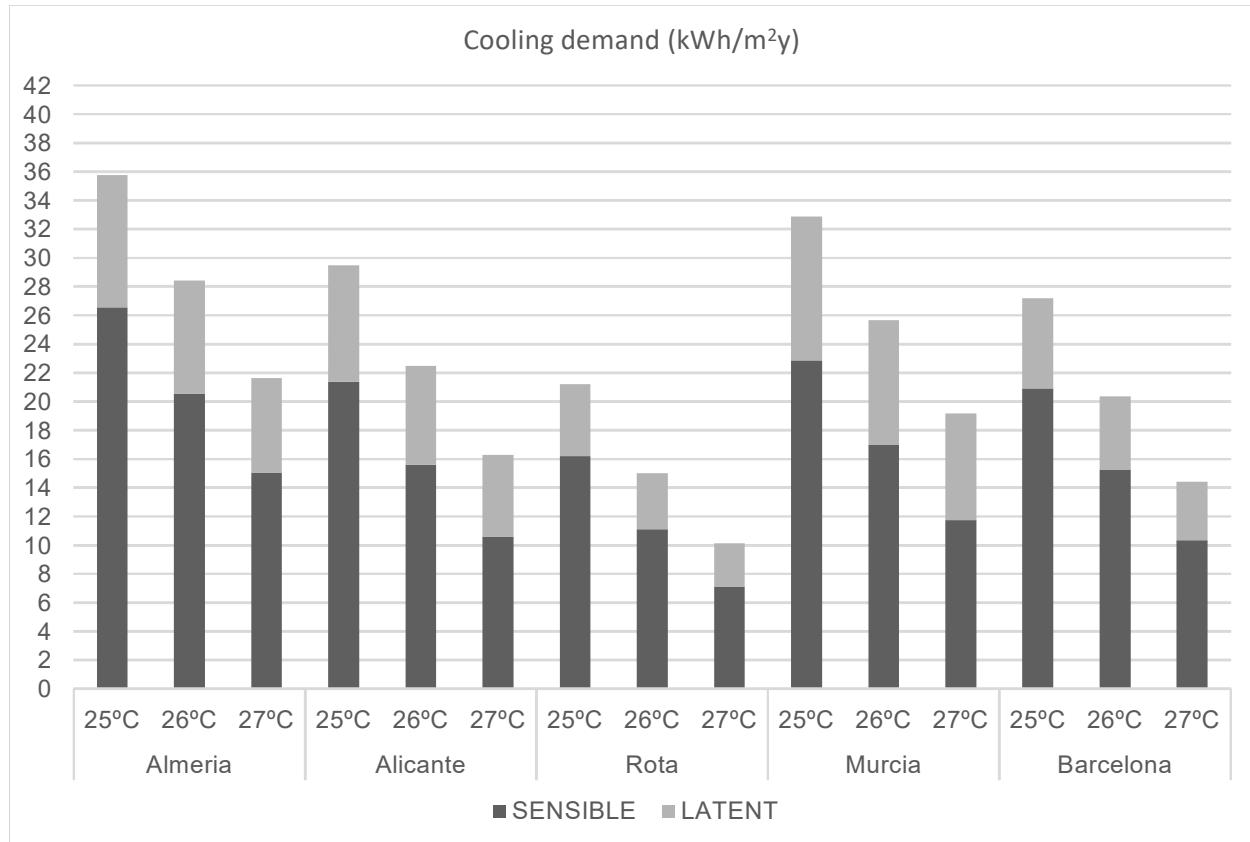
486
 487 The influence of temperature setting on the sensible cooling energy demand is more independent of the
 488 climate data than the sensible heating demand. The increment and reductions are more equal for all the

489 cities. The reductions ranges between -24.5% (Madrid) and -46.5% (Santander) and the increases ranges
 490 from +29.1% (Palermo) to +69.9% (Santander).
 491 Looking to the total heating energy demand, reductions range between -22.8% (Palermo) and -33.9%
 492 (Santander) and increases between +24.9% and 52.6%, also for Palermo and Santander respectively.
 493 The results obtained for the traditional dwelling are show in Figure 6 and Table 10 for purpose of
 494 comparison.

495
 496 **Figure 6.** Cooling energy demand (kWh/m²year). Traditional dwelling.
 497 **Table 10.** Impact on cooling energy demand depending on thermostat setting (moving from 26°C). Traditional dwelling.

Temp. (°C)	Sensible		Latent		Total	
	25°C	27°C	25°C	27°C	25°C	27°C
Almeria (A4)	37.9%	-31.9%	20.6%	-17.8%	31.5%	-26.7%
Alicante (B4)	50.9%	-40.0%	20.3%	-16.5%	37.2%	-29.5%
Cáceres (C4)	29.5%	-25.8%	91.5%	-49.0%	30.5%	-26.2%
Rota (A3)	60.7%	-41.9%	23.8%	-16.0%	45.6%	-31.3%
Murcia (B3)	48.2%	-38.4%	17.3%	-14.4%	33.2%	-26.7%
Granada (C3)	33.6%	-29.0%	72.3%	-41.3%	34.9%	-29.4%
Madrid (D3)	36.2%	-30.5%	68.9%	-40.8%	37.8%	-30.9%
Barcelona (C2)	42.5%	-34.4%	28.8%	-23.2%	38.1%	-30.8%
Logroño (D2)	46.2%	-36.6%	37.7%	-25.2%	44.7%	-34.6%
Santander (C1)	82.4%	-52.7%	14.6%	-7.6%	43.1%	-26.6%
Vitoria (D1)	68.9%	-45.6%	22.3%	-11.9%	54.3%	-35.1%
Soria (E1)	57.8%	-41.0%	40.9%	-20.3%	56.4%	-39.2%
Marseille	39.3%	-32.2%	59.1%	-37.5%	41.4%	-32.8%

Rome	36.9%	-31.1%	31.3%	-25.7%	35.5%	-29.8%
Palermo	37.6%	-31.9%	16.8%	-14.9%	28.8%	-24.7%


498

499 For cooling, the scale on the Figure 5 and Figure 6 are the same because the savings obtained for a
500 nZEB comparing to the traditional dwelling are not as relevant as for the heating demand.

501 Looking at the impacts (%) for sensible cooling demand showed on Table 10, at the contrary than for
502 sensible heating demand, the values are higher for a traditional dwelling than for a nZEB dwelling. The
503 average reduction on the total cooling demand is -30.3% for a traditional dwelling and -28.7% for a nZEB
504 dwelling. The average increment is 39.5% for a traditional dwelling and the 34.8% for a nZEB.

505 Additional simulations have been performed for some cities whose percentage of total latent energy
506 demand is higher than 25% when the comfort limits are the same as those recommended in the
507 international standards: 20°C for winter, 26°C for summer and a maximum of 60% RH. These selected
508 cities are Almería, Alicante, Rota, Murcia and Barcelona, all located on the Mediterranean coast. Palermo
509 was not selected because has similar climate data than Almeria. These simulations were performed
510 substituting the HRV by an ERV as the objective is to assess the impact on the energy demand in cases
511 where an ERV is placed in the ventilation system. The results for the cooling energy demand are shown
512 in Figure 7 and the relative impacts are shown in Table 11.

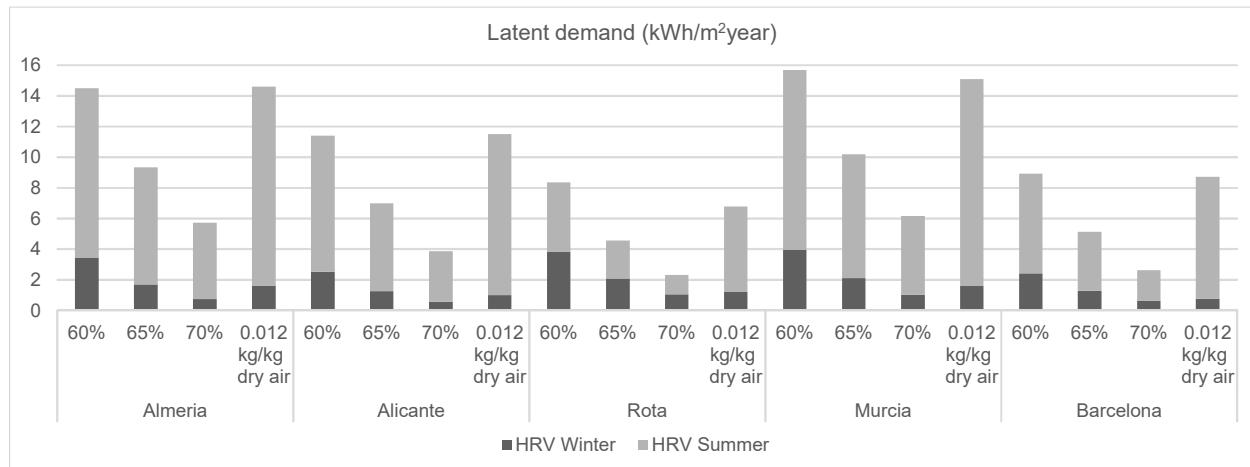
513

514

515 **Figure 7.** Cooling energy demand (kWh/m²year). ERV system.

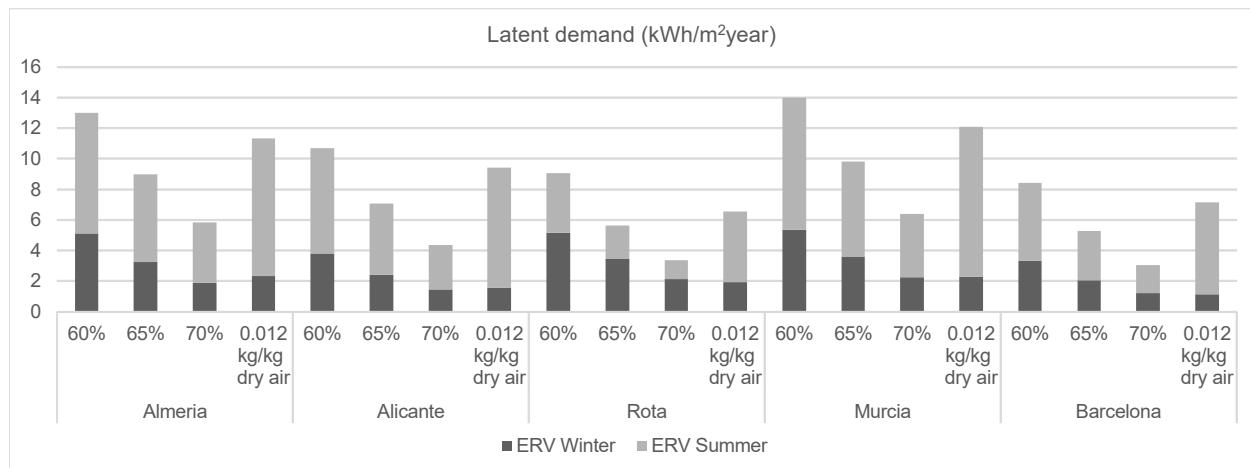
516 **Table 11.** Impact on cooling energy demand depending on thermostat setting (moving from 26°C). ERV system.

	Almeria (A4)	Alicante (B4)	Rota (A3)	Murcia (B3)	Barcelona (C2)
Sensible	25°C	29.3%	37.1%	45.7%	34.6%
	27°C	-26.8%	-32.1%	-35.9%	-31.0%
Latent	25°C	17.1%	18.2%	28.1%	15.4%
	27°C	-16.3%	-16.7%	-23.3%	-14.2%
Total	25°C	25.9%	31.3%	41.1%	28.1%
	27°C	-23.9%	-27.4%	-32.6%	-25.3%


517

518 The sensible cooling demand is slightly higher than when an HRV is used, but the relative impact due to a
 519 change in the temperature settings is the same whether using an HRV or an ERV. The dehumidification
 520 demand when using an ERV was reduced between 14% and 29 % depending on the city, compared with
 521 an HRV for a 26°C temperature setting. For all the cities, the impact on the latent cooling demand when
 522 modifying the set temperature is similar when using an ERV.

523 **7.3. Latent demand depending on a constant relative humidity setting.**


524 Simulations have been performed for temperature settings of 20°C (winter) and 26°C (summer) and
 525 relative humidity settings of 60%, 65%, 70% and a humidity ratio of 0.012 kg/kg dry air (as specified in the
 526 ASHRAE standard 55). The simulations have been done only for the cities located on the Mediterranean

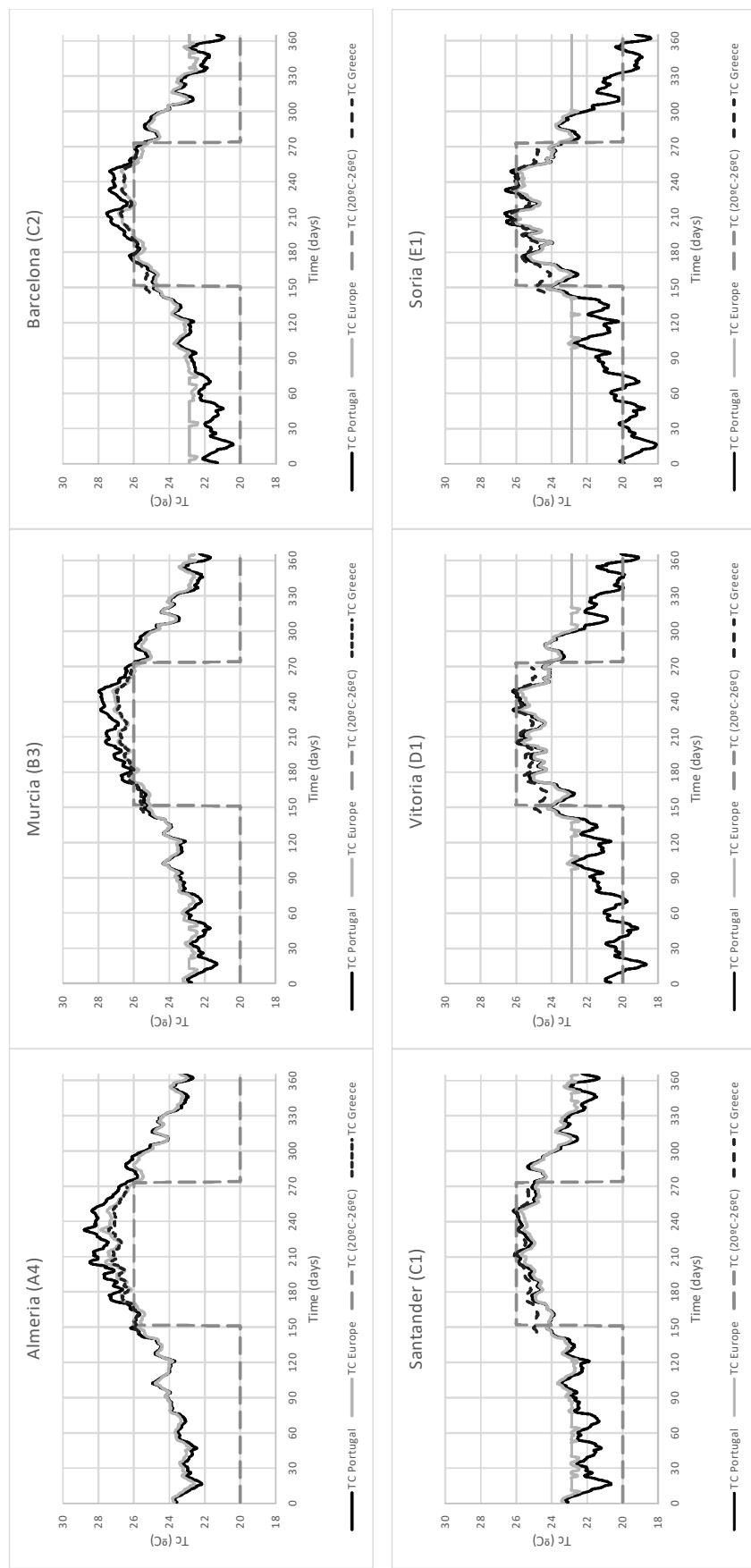
527 coast (Almería, Alicante, Rota, Murcia and Barcelona) as the latent energy demand is **very** low for the
 528 others. Figure 8 shows the results when an HRV is installed and Figure 9 when an ERV is **installed**.

529

530 **Figure 8.** Latent energy demand (kWh/m²year). HRV system.

531

532 **Figure 9.** Latent energy demand (kWh/m²year). ERV system.


533

534 The latent energy demand during winter for RH 70% and a humidity ratio of 0.012 kg/kg dry air is almost
 535 negligible. For Alicante, Rota and Barcelona the latent energy demand is almost the same whether using
 536 an HRV or an ERV. For Almería and Murcia (cities with the highest latent energy demand) the extra
 537 reduction obtained using an ERV instead an HRV is 10% for RH 60% and negligible when the relative
 538 humidity setting is increased.

539 **7.4. Energy demand for variable temperature setting: Adaptive model.**

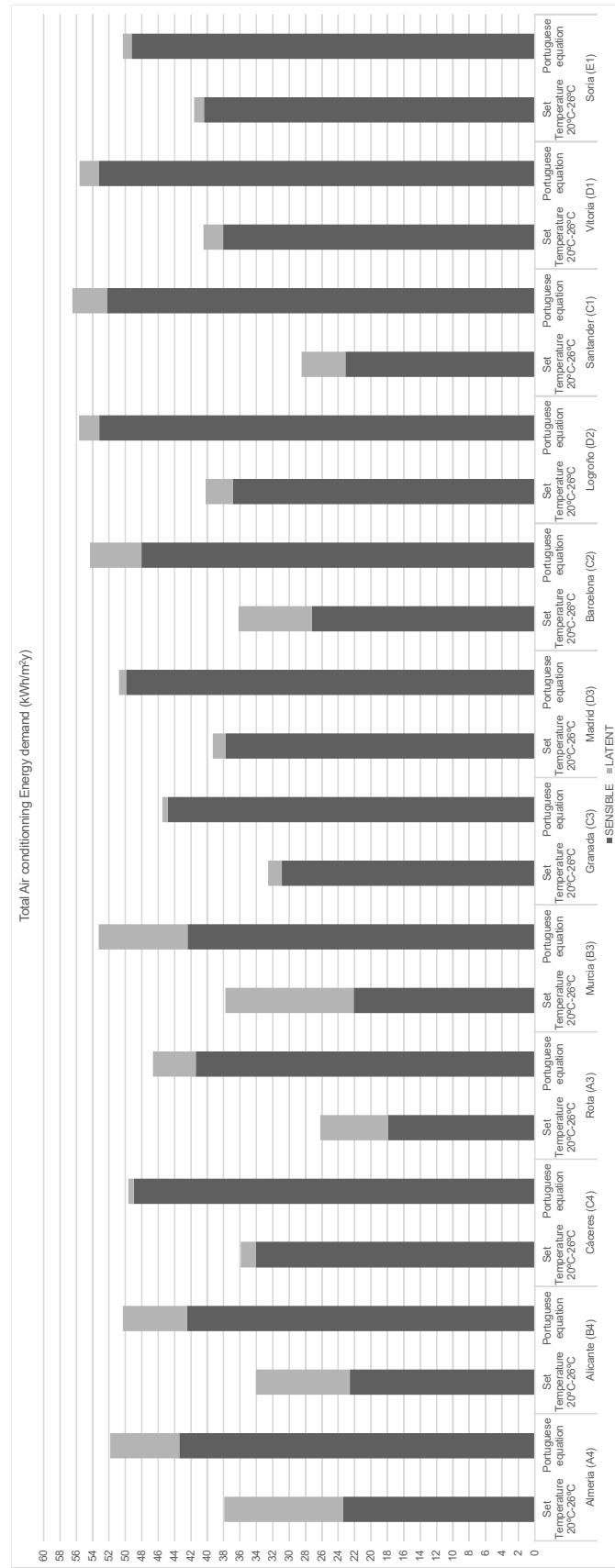
540 Figure 10 shows the comfort temperature profiles (set temperature) when applying the European model
 541 (Eq. 3 and 4), the Portuguese model (Eq.5), the Greek model (only for the summer season, Eq.6) and the
 542 constant set temperature (20-26°C) for one city from each Spanish climate area.

543

Figure 10. Temperature comfort profiles.

546 It is important to emphasize the great difference between the adaptive models and the constant set
547 temperature. In the warmest cities adaptive models provide higher comfort temperatures in both winter
548 and summer; however, in the coldest the difference is not as noticeable although they are lower in
549 summer. The comfort set temperature given by the Portuguese equation compared with that given by the
550 European equation is higher in summer and lower in winter for all the cities. Consequently, the air
551 conditioning energy demand will be lower. The Greek equation gives lower set temperatures than the
552 Portuguese and similar to the European for the hottest cities; however, the values are similar to the
553 Portuguese for the coldest ones.

554 For the colder cities, Vitoria and Soria, the European model sets the comfort temperature at 22.88°C for
555 winter, which is much higher than the temperature set by the Portuguese model.


556 In summary, the Portuguese model is the best in terms of energy demand for Spanish cities and therefore
557 the Portuguese comfort temperature profile has been included in the TRNSYS model. Figure 11 shows
558 the total sensible and latent energy demands for set temperatures of 20° (winter) - 26°C (summer) and
559 the adaptive model according to the Portuguese equations for direct comparison. The RH setting remains
560 constant at 60% (summer).

561
562 The sensible heating demand is considerably higher for all the cities. However, the increase is much
563 more significant for the warmest cities. The dehumidification energy demand during winter almost
564 disappears, due to the increase in the comfort set temperature. During summer, it is also reduced for the
565 Mediterranean cities. Almería has a reduction of 3.6 kWh/m²y (32.4%) and Murcia of 2.3 kWh/m²y
566 (19.6%). There is a substantial increase in the total sensible energy for all the cities. This is more
567 significant for the warmest cities due to the strong impact on the heating demand.

568 The total energy demand is increased for all the cities. The worst result is for Santander where the total
569 energy demand is doubled, followed by Rota which has an increase of 77.8%. The least affected are
570 Madrid and Soria with increases of 17.1% and 29.7%, respectively.

571

572

573

574 **Figure 11.** Total energy demands (Kwh/m²year). Set temperature 20°C-26°C and adaptive model (Portuguese equations) [5]. HRV
575 system.

576

577 **8. Conclusions.**

578 Simulations were performed to assess the impact of comfort parameters on the air conditioning energy
579 demand for a residential nZEB dwelling and for a traditional dwelling. Fifteen cities **were** selected for this
580 study: twelve cities located in Spain, one located in France and two located in Italy.

581 The following conclusions can be draw from this study:

582 1) The impact on air-conditioning energy demand is more significant when changing the winter set
583 temperature than the summer set temperature for all the selected **cities**.

584 2) The impact of the winter temperature set point on the heating demand (%) is higher for a nZEB
585 dwelling than for a traditional dwelling.

586 The heating energy savings when moving the temperature set from 20°C to 19°C are between 30% and
587 46% for nZEB and between 13 % and 23% for a traditional dwelling. The impact on the heating demand
588 is more important for the coldest cities for a nZEB **dwelling** while for a traditional dwelling higher
589 reductions are obtained for the warmer cities.

590 The heating energy demand is increased when moving the temperature set from 20°C to 21°C between
591 40% and 60% for nZEB and between 15 % and 25% for a traditional dwelling. The impact on the heating
592 energy demand is more important for the warmer cities for both nZEB and traditional dwelling.

593 3) The impact of the summer temperature set point on the cooling demand (%) is slightly lower for a
594 nZEB dwelling than for a traditional dwelling.

595 The cooling energy savings when moving the temperature set from 26°C to 27°C are between 23% and
596 34% for nZEB and between 25 % and 35% for a traditional dwelling.

597 The cooling energy demand is increased when reducing the temperature set from 26°C to 25°C between
598 25% and 52% for nZEB and between 29 % and 56% for a traditional dwelling. The impact on the cooling
599 energy demand is more important for the coldest cities for both nZEB and traditional dwelling.

600 4) The impact on the sensible cooling demand of changing temperature settings is the same for HRV and
601 ERV in Mediterranean cities. **The** study of the influence on the latent energy demand for different RH
602 settings in Mediterranean cities reveals that the impact on the latent energy demand when changing the
603 RH setting is similar when either an HRV or an ERV is installed in the ventilation system. Using an ERV,
604 there is a reduction between 3.2 kWh/m²y and 4.2 kWh/m²y of the latent energy demand (-31.0% and -
605 37.8%) when the RH setting is increased from 60% to 65%. The reduction reaches between 5.4 kWh/m²y
606 and 7.2 kWh/m²y (-55.3% and -62.9%) when the RH is increased to **70%**.

607 5) The equation proposed by McCartney et al.[5] to obtain the comfort temperature depending on the
608 running mean outdoor temperature (T_{RM80}) for Portugal, Greece (summer) and Europe has been applied
609 to the selected Spanish cities. The comfort temperature obtained from the Portuguese model is better for
610 energy savings than that obtained from the European model. The adaptive Portuguese model is very
611 effective for energy savings during the summer season for the warmest cities, but seems to be less well
612 adapted for winter as very high heating demands have been obtained for all the cities. The reduction in
613 the cooling demand is lower than the increase in the heating demand. However, the equation reveals
614 satisfactory results for the dehumidification demand.

615

616 To sum up, the results reveal that comfort parameters should be reviewed for residential nZEB in warm
617 climates. It is demonstrated that by adopting extended comfort ranges, significant energy savings would be
618 achieved in countries with temperate climates for a nZEB. It is recommended to develop new adaptive
619 control algorithm to define the comfort temperature in the different climate areas in the south of Europe to
620 optimized comfort parameters in terms of energy savings for nZEB.

621

622 **Acknowledgements**

623 The authors wish to thank the company Zehnder Group Iberica IC, S.A for their collaboration during this
624 study and the monitored data of the house used for the TRNSYS model validation.

625

626 This research did not receive any specific grant from funding agencies in the public, commercial, or not-
627 for-profit sectors.

628

629 **References**

- 630 [1] Expert Group on Energy Efficiency. Realizing the Potential of Energy Efficiency. Washington: 2007.
- 631 [2] European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19
632 May 2010 on the energy performance of buildings. Official Journal L153 2010:13–35.
- 633 [3] Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications – A review.
634 Appl Energy 2014;115:164–73. doi:10.1016/j.apenergy.2013.10.062.
- 635 [4] Moon JW, Han SH. Thermostat strategies impact on energy consumption in residential buildings.
636 Energy Build 2011;43:338–46.

637 [5] McCartney KJ, Fergus Nicol J. Developing an adaptive control algorithm for Europe. *Energy Build*
638 2002;34:623–35. doi:10.1016/S0378-7788(02)00013-0.

639 [6] Aktacir MA, Büyükalaca O, Bulut H, Yilmaz T. Influence of different outdoor design conditions on
640 design cooling load and design capacities of air conditioning equipments. *Energy Convers Manag*
641 2008;49:1766–73. doi:10.1016/j.enconman.2007.10.021.

642 [7] Peeters L, Dear R de, Hensen J, D'haeseleer W. Thermal comfort in residential buildings: Comfort
643 values and scales for building energy simulation. *Appl Energy* 2009;86:772–80.
644 doi:10.1016/j.apenergy.2008.07.011.

645 [8] Buildings Performance Institute Europe (BPIE). Principles for Nearly Zero-energy Buildings. Paving
646 the way for effective implementation of policy requirements. Brussels: 2011.

647 [9] Peel BL, Finlayson BL, McMahon T a. Updated world map of the Koppen-Geiger climate
648 classification.pdf. *Hydrol Earth Syst Sci* 2007;11:1633–44. doi:10.5194/hess-11-1633-2007.

649 [10] Kottke M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate
650 classification updated. *Meteorol Zeitschrift* 2006;15:259–63. doi:10.1127/0941-2948/2006/0130.

651 [11] Passive House Institute (PHI). Criteria for Passive House Component certification n.d.
652 http://passivehouse.com/03_certification/01_certification_components/02_certification_criteria/02_certification_criteria.htm (accessed March 7, 2017).

654 [12] Solar Energy Laboratory. TRNSYS 17. A Transient System Simulation tool. 2012.

655 [13] Kwong QJ, Adam NM, Sahari BB. Thermal comfort assessment and potential for energy efficiency
656 enhancement in modern tropical buildings: A review. *Energy Build* 2014;68:547–57.
657 doi:10.1016/j.enbuild.2013.09.034.

658 [14] AC R, J S, R de D. A preliminary evaluation of two strategies for raising indoor air temperature
659 setpoints in office buildings. *Archit Sci Rev* 2011;Volume 54:148–56.
660 doi:10.1016/j.apenergy.2015.12.115.

661 [15] Tzivanidis C, Antonopoulos KA, Gioti F. Numerical simulation of cooling energy consumption in
662 connection with thermostat operation mode and comfort requirements for the Athens buildings. *Appl*
663 *Energy* 2011;88:2871–84. doi:10.1016/j.apenergy.2011.01.050.

664 [16] Al-Sanea SA, Zedan MF. Optimized monthly-fixed thermostat-setting scheme for maximum energy-

665 savings and thermal comfort in air-conditioned spaces. *Appl Energy* 2008;85:326–46.
666 doi:10.1016/j.apenergy.2007.06.019.

667 [17] Cetin KS, Manuel L, Novoselac A. Effect of technology-enabled time-of-use energy pricing on
668 thermal comfort and energy use in mechanically-conditioned residential buildings in cooling
669 dominated climates. *Build Environ* 2016;96:118–30. doi:10.1016/j.buildenv.2015.11.012.

670 [18] Rohdin P, Molin A, Moshfegh B. Experiences from nine passive houses in Sweden – Indoor thermal
671 environment and energy use. *Build Environ* 2014;71:176–85. doi:10.1016/j.buildenv.2013.09.017.

672 [19] Kazanci OB, Olesen BW. The Effects of Set-Points and Dead-Bands of the HVAC System on the
673 Energy Consumption and Occupant Thermal Comfort. *Climamed'13 - 7th Mediterr Congr Clim Proc*
674 B 2013:224–32.

675 [20] Toftum J, Kazanci OB, Olesen BW. Effect of Set-point Variation on Thermal Comfort and Energy
676 Use in a Plus- energy Dwelling. *Wind* 2016 2016.

677 [21] Ghahramani A, Zhang K, Dutta K, Yang Z, Becerik-Gerber B. Energy savings from temperature
678 setpoints and deadband: Quantifying the influence of building and system properties on savings.
679 *Appl Energy* 2016;165:930–42. doi:10.1016/j.apenergy.2015.12.115.

680 [22] The Danish Ministry of Economic and Business Affairs Danish Enterprise and Construction. Danish
681 Building Regulations 2015 2015;2015:10–2.

682 [23] Indraganti M, Ooka R, Rijal HB, Brager GS. Adaptive model of thermal comfort for offices in hot and
683 humid climates of India. *Build Environ* 2014;74:39–53. doi:10.1016/j.buildenv.2014.01.002.

684 [24] Schiavon S, Melikov AK, Sekhar C. Energy analysis of the personalized ventilation system in hot
685 and humid climates. *Energy Build* 2010;42:699–707. doi:10.1016/j.enbuild.2009.11.009.

686 [25] Chen Y, Raphael B, Sekhar SC. Experimental and simulated energy performance of a personalized
687 ventilation system with individual airflow control in a hot and humid climate. *Build Environ*
688 2016;96:283–92. doi:10.1016/j.buildenv.2015.11.036.

689 [26] Wan JW, Yang K, Zhang WJ, Zhang JL. A new method of determination of indoor temperature and
690 relative humidity with consideration of human thermal comfort. *Build Environ* 2009;44:411–7.
691 doi:10.1016/j.buildenv.2008.04.001.

692 [27] Zhang LZ. Energy performance of independent air dehumidification systems with energy recovery

693 measures. *Energy* 2006;31:1228–42. doi:10.1016/j.energy.2005.05.027.

694 [28] Guillén-Lambea S, Rodríguez-Soria B, Marín JM. Control strategies for Energy Recovery Ventilators
695 in the South of Europe for residential nZEB. Quantitative analysis of the air conditioning demand.
696 *Energy Build* n.d.:under review.

697 [29] Zhou YP, Wu JY, Wang RZ. Performance of energy recovery ventilator with various weathers and
698 temperature set-points. *Energy Build* 2007;39:1202–10. doi:10.1016/j.enbuild.2006.12.010.

699 [30] Tafelmeier S, Pernigotto G, Gasparella A. Annual Performance of Sensible and Total Heat Recovery
700 in Ventilation Systems: Humidity Control Constraints for European Climates. *Buildings* 2017;7:28.
701 doi:10.3390/buildings7020028.

702 [31] ISO (International Organization for Standardization). ISO 7730:2005. Ergonomics of the thermal
703 environment — Analytical determination and interpretation of thermal comfort using calculation of
704 the PMV and PPD indices and local thermal comfort criteria. 2005.

705 [32] American Society of Heating Ventilating and Air-Conditioning Engineers. ASHRAE Standard 55-
706 2010: Thermal environmental conditions for human occupancy. Georgia, Atlanta: 2010.

707 [33] Fanger PO. Thermal comfort, analysis and application in environmental engineering. Copenhagen:
708 Danish Technical Press; 1970.

709 [34] ISO (International Organization for Standardization). ISO 7730:1984. Ergonomics of the thermal
710 environment — Analytical determination and interpretation of thermal comfort using calculation of
711 the PMV and PPD indices and local thermal comfort criteria. 1984.

712 [35] ASHRAE Standard 55-92: Thermal Environmental Conditions for Human Occupancy. 1992.

713 [36] Veselý M, Zeiler W. Personalized conditioning and its impact on thermal comfort and energy
714 performance – A review. *Renew Sustain Energy Rev* 2014;34:401–8.
715 doi:10.1016/j.rser.2014.03.024.

716 [37] Zhai Y, Zhang H, Zhang Y, Pasut W, Arens E, Meng Q. Comfort under personally controlled air
717 movement in warm and humid environments. *Build Environ* 2013;65:109–17.
718 doi:10.1016/j.buildenv.2013.03.022.

719 [38] Humphreys MA. Outdoor temperatures and comfort indoors. *Build Res Pract (Journal CIB)*
720 1978;6:92–105.

721 [39] Wassouf M. De la casa pasiva al estándar Passivhaus. La arquitectura pasiva en climas cálidos.
722 Editorial Gustavo Gili; 2014.

723 [40] American Society of Heating Ventilating and Air-Conditioning Engineers. American Society of
724 Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Standard 55, Thermal
725 Environment Conditions for Human Occupancy. 2013.

726 [41] European committee for Standardization. EN 15251:2007 Indoor environmental input parametres
727 for design and assessment of energy performance of buildings addressing indoor air quality, thermal
728 environment, lighting and acoustics. 2008.

729 [42] Humphreys Revd M. Thermal comfort temperatures world-wide - the current position. Renew Energy
730 1996;8:139–44. doi:10.1016/0960-1481(96)88833-1.

731 [43] ASHRAE, Standard 55-2004. Thermal environment conditions for human occupancy. 2004.

732 [44] Verordnung Bundesrepublik Deutschland. EnEV. Zweite Verordnung zur Änderung der
733 Energieeinsparverordnung. Vom 18 November 2013. Nr.67 2013.

734 [45] Minister of Construction and Housing and the Minister of Energy. Réglement Thermique 2012
735 (RT2012), Arrêté du 26 Octobre 2010 relatif aux caractéristiques thermiques et aux exigences de
736 performance énergétique des bâtiments nouveaux et des parties nouvelles des bâtiments. 2010.

737 [46] Decreto del Presidente della Republica 74/2013, Article 3 2013.

738 [47] Gobierno de España. Código técnico de la Edificación, Parte I. 2010. www.codigotecnico.org
739 (accessed October 22, 2016).

740 [48] Wang L, Gwilliam J, Jones P. Case study of zero energy house design in UK. Energy Build
741 2009;41:1215–22. doi:10.1016/j.enbuild.2009.07.001.

742 [49] Pineau D, Rivière P, Stabat P, Hoang P, Archambault V. Performance analysis of heating systems
743 for low energy houses. Energy Build 2013;65:45–54. doi:10.1016/j.enbuild.2013.05.036.

744 [50] University of Wisconsin-Madison, Solar Energy Laboratory. Trnsys 17. Multizone Building modeling
745 with Type56 and TRNBuild. 2013;5.

746 [51] Thermal Energy System Specialists TESS. TESSLibs 17. HVAC Library Mathematical Reference.
747 2014;6:161–5.

748 [52] University of Wisconsin-Madison, Solar Energy Laboratory. TRNSYS 17 . Mathematical Reference.

749 TRNSYS Libr Vol 4 Math Ref Sol Energy Lab Univ Wisconsin-Madison, USA 2009;4:1–486.

750 [53] Klein S, Alvarado F. Engineering equation solver. F-Chart Software, Box 2002:1–2.

751 [54] Ministerio de Fomento; Gobierno de España. Documento descriptivo climas de referencia 2015:1–

752 7.

753 [55] Meteonorm n.d. <http://meteonorm.com/> (accessed April 19, 2016).

754 [56] Guillén-Lambea S, Rodríguez-Soria B, Marín JM. Review of European ventilation strategies to meet

755 the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison

756 with the USA. *Renew Sustain Energy Rev* 2016;62:561–74. doi:10.1016/j.rser.2016.05.021.

757 [57] Rodríguez-Soria B, Domínguez-Hernández J, Pérez-Bella JM, del Coz-Díaz JJ. Quantitative

758 analysis of the divergence in energy losses allowed through building envelopes. *Renew Sustain*

759 *Energy Rev* 2015;49:1000–8.

760 [58] Montoya MI, Pastor E, Carrié FR, Guyot G, Planas E. Air leakage in Catalan dwellings: Developing

761 an airtightness model and leakage airflow predictions. *Build Environ* 2010;45:1458–69.

762 [59] Gobierno de España. Documento Básico HE Ahorro de Energía 2013.

763 http://www.codigotecnico.org/cte/export/sites/default/web/galerias/archivos/documentosCTE/DB_DBHE-2013-11-08.pdf (accessed October 31, 2016).

765