

Air infiltrations and energy demand for residential low energy buildings in warm climates

1 Silvia Guillén-Lambea^{1, 2,*}, Beatriz Rodríguez-Soria¹, José M. Marín²
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

¹ University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.

² Aragón Institute of Engineering Research (I3A), Thermal Engineering and Energy Systems Group, University of Zaragoza, EdificioTorres Quevedo, C/Maria de Luna 3, 50018 Zaragoza, Spain.

Abstract

European building legislation is establishing increasingly stricter requirements to reduce the energy demand of buildings as a measure to decrease energy use and associated carbon emissions. In order to comply with the new standards, the most impactful parameters are subject to important revisions.

Airtightness is revealed as an impacting parameter on air conditioning energy demand for nearly Zero Energy Buildings (nZEB). Currently the Passivhaus standard, taken as a constructive reference for nZEB in Europe, establishes 0.6 ACH as the maximum infiltration at 50 Pa for all new buildings irrespective of the climate zone. Nevertheless, the influence of infiltrations on the energy demand is lower in warm climates.

This study estimates the potential heating and cooling energy demand for different levels of infiltration rates in southern Europe. For this purpose, a dwelling equipped with a mechanical ventilation system with a heat exchanger has been simulated in TRNSYS. The calculations have been performed in different cities with different levels of infiltrations.

This research provides the information required to set airtightness parameters in residential buildings in southern Europe to satisfy the new requirements for nZEB.

Keywords

Air Infiltrations; Mediterranean climate; Residential dwellings; Building energy demand; nZEB

1. Introduction

The building sector accounts for more than 40% of the total energy consumption, with estimated saving energy potential of 28% which represents a massive 11% of total European Union final energy use [1].

Reduction of energy consumption in the building sector constitutes an important part of the measures needed to reduce greenhouse gas emissions and comply with the Kyoto Protocol and with the 20-20-20 European commitment [2]. The EU Green Paper for Energy Efficiency [3] estimates that

1 by 2020, 41 MTOE (million tons of oil equivalent) can be saved by improving heating and cooling
2 demands in buildings.

3 The term Zero Energy Building (ZEB) is now extensively used internationally in building design. The
4 main drawback for the implementation of this concept in international standards since 2010 has
5 been the lack of a clear and consistent definition and a common method to calculate energy
6 consumption. Some countries have already adopted a common definition for nZEB building but the
7 standardization of the calculation procedure seems to be a rather complicated task [4]. The prefix n
8 preceding this term has different meanings- nearly in Europe and net in the USA- but the target is the
9 same. The Energy Performance of Building Directive (EPDB) defines this concept as follows [5]:
10
11

12 According to article 2.2. *“nearly zero-energy building’ means a building that has a very high energy*
13 *performance, as determined in accordance with Annex I. The nearly zero or very low amount of*
14 *energy required should be covered to a very significant extent by energy from renewable sources,*
15 *including energy from renewable sources produced on-site or nearby;” Article 9.1. regulates that*
16 *“Member States shall ensure that by 31 December 2020, all new buildings are nearly zero-energy*
17 *buildings (1a) and after 31 December 2018, new buildings occupied and owned by public authorities*
18 *are nearly zero energy buildings.”*

19 While the EPBD sets the framework definition of NZEBs, its detailed application in practice (e.g. what
20 is a ‘very high energy performance’ and what would be the recommended significant contribution of
21 ‘energy from renewable sources’) is the responsibility of the Member States when they transpose
22 Article 9 of the Directive into their national systems [6]:
23
24

25 *“the Member State’s detailed application in practice of the definition of nearly zero-energy buildings,*
26 *reflecting their national, regional or local conditions, and including a numerical indicator of primary*
27 *energy use expressed in kWh/m² per year. Primary energy factors used for the determination of the*
28 *primary energy use may be based on national or regional yearly average values and may take into*
29 *account relevant European standards;”*

30 At the European level the problem is that, given the great diversity of building and climatic cultures,
31 the EPDB does not establish any line of action to implement the nZEB. Neither does it define
32 accepted values for their energy consumption and nor does it set out a procedure to calculate the
33 energy balance. So, although the methodology was defined by a regulation in 2012, quantitative
34 values for the factors that determine the energy efficiency of buildings do not yet exist [7]. This
35 situation has provoked considerable discrepancies in the reference values adopted by every country
36 for energy consumption [8]. In order to increase the number of buildings with low energy
37 consumption, the national plans must translate the concept of nZEB to their standards and
38 implement useful and practical measures.

39 The Buildings Performance Institute Europe (BPIE) published on 2011 a guide [9]to actually
40 implement these targets. At the time, more than half of the European countries had not yet included
41 the nZEB definition in their legal standards. The existing definitions had great differences. In
42 particular, it should be pointed out that:

1 • Most of the definitions set limitations on the primary energy consumption, but there are big
2 differences in the ways of calculating and representing this (e.g., by built surface area or by net
3 surface area).

4 • The preexisting definitions do not specify any fraction of energy coming from renewable
5 sources in the total consumption. The EPDB is not clear in this respect as it states only that the share
6 of renewable energy must be relevant. The EU Commission has adopted the Passivhaus standard as
7 example of nZEB.

8

9

10 In 2016, the BPIE published a report on the situation of all the EU members plus Norway as regards
11 the definition of nZEB buildings [10]. At that date, 15 countries (besides Brussels and Flanders) had
12 included a nZEB definition in their legislation and three countries had defined the requirements to be
13 fulfilled by a nZEB building, but these were yet to be included in their national standards. The
14 remaining countries were still in the previous debate and development stage. In most countries, the
15 nZEB definition takes as its main indicator the maximum primary energy consumption; in some
16 countries (such as the UK and Norway) the main indicator is the CO₂ emissions, while in others
17 (Austria, Romania and Spain) the CO₂ emissions are a complementary criterion to the primary energy
18 limitation.

19

20

21

22

23 Xiaodong et al. have reviewed the current situation in Europe, China and the USA [11]. Their paper
24 provides an overview of building energy consumption situations and the recent proposals for ZEBs to
25 address increasing building energy demands. They discuss the influence of global climate change on
26 the evolution of building energy use in the future, stating that climate change significantly impacts
27 building energy performance, particularly in space heating and cooling, and concluding that
28 improvements in the building envelope and ventilation can play an important role in reducing air-
29 conditioning energy consumption.

30

31

32

33

34 There are many publications in Europe illustrating a number of nZEB concepts and examples.
35 Examples of very low energy buildings with clearly defined requirements in the European Member
36 States are: German Passive House [12] (Passivhaus standard), the French Effinergie [13], the Swiss
37 Minergie [14] and the Italian CasaClima [15]. The Passivhaus is generally the best-known type of very
38 low energy since it is the oldest concept having been devised in Germany in the 1990s. It is generally
39 recognized that the requirement for calling a building passive is that it lives up to the standards
40 developed by the German Passive House Institute. The Passivhaus standard is increasingly being
41 considered across Europe as a leader in terms of introducing regulatory changes to adapt buildings to
42 nZEB. Fundamentally, it consists of a total primary energy consumption limit of 120 kWh/m²y and an
43 energy demand for heating and cooling of 15 kWh/m²y each [16]. The limit for airtightness is 0.6 ACH
44 (air changes per hour) for a pressure drop of 50 Pa.

45

46

47

48

49

50 The energy demand of air conditioning is mainly produced by the heat transfer losses through the
51 building envelope, the heat losses due to forced ventilation and the losses of air infiltration
52 determined by the airtightness of the building enclosure.

53

54

55 Maximum infiltration-level requirements have been included in the building codes of many European
56 countries (e.g. in Belgium, Denmark, France, Germany, Sweden and the United Kingdom). The trend
57 in countries in central and northern Europe shows that their aim is to achieve the values required by
58 the Passivhaus standard: n₅₀ < 0.6 ACH. However, countries located in warmer climates

59

60

61

62

(Mediterranean countries) do not have the same concern and, in consequence, the airtightness requirements for dwellings are not regulated in building codes.

Several publications relating to residential buildings contain measured results for existing dwellings in several countries, for example Finland [17], the UK [18], the north of China [19], and Spain [20,21]. A recent research study [20] concludes that infiltration represents between 10.5 and 27.4% of winter energy demand in buildings built under the current Spanish building code for buildings located in north central Spain. Also, as a representative of the Mediterranean/southern European type of climate, Sfakianaki et al. [22] show results from experimental studies conducted to measure the infiltration in 40 single-family buildings in Greece. The buildings were rated according to their measured air tightness from 1.8 ACH (Air Changes per Hour at 50Pa) to 13.1 ACH.

However, the influence of airtightness in dwellings located in mild climates has not been sufficiently investigated. Sherman et al. [23] state that in buildings with designed ventilation systems, especially those with heat recovery, airtightness may be a determining factor in the performance of the system, because the infiltrated air cannot be heated by the heat exchanger and thus reduces the efficiency of the heat recovery system.

This research demonstrates that the maximum value for infiltration set by Passivhaus for all climatic zones may be too restrictive for residential buildings located in the warm climates found in southern Europe. The aim of this work is to find the maximum value of n_{50} which would be acceptable for Mediterranean countries in residential nZEB. For this purpose, simulations have been performed in TRNSYS [24] for several levels of infiltration in the selected dwelling in numerous European cities, in order to ascertain the influence of airtightness on the heating and cooling demands. The parameters to convert n_{50} to the real infiltration level (n_{average} to be used by the model) for nZEB have been proposed.

2. Theory review for airtightness

Building airtightness, which represents the resistance of the building envelope to inward or outward air leakage, is a crucial aspect of energy performance in buildings. No building is 100% airtight and all buildings allow some level of air flow through the building envelope. The term air permeability is also used and means the opposite of airtightness.

Infiltration is the uncontrolled leakage of air inward into a space through walls, crack openings around doors and windows or through the building materials used in the structure. It is difficult to estimate the heat gain or loss through infiltration as there are numerous factors involved. Infiltration is natural ventilation that is driven by the indoor-outdoor temperature and pressure difference and the outdoor wind speed through envelope leaks. Wind will increase infiltration and tall buildings have a stack effect that draws air into the bottom of the building and forces it out at the top. The effect is minor during warm weather but significant in winter, which is verified by the simulation results demonstrated in Section 5.

2.1. Blower door test.

The method for measuring the infiltrations of buildings through fan pressurization is described in the European Standard EN 13829 [25]. The test should be carried out at a pressure difference across the building envelope at 50Pa. This pressure is high enough to be independent of weather influences.

1 The method is based on the mechanical pressurization or depressurization of a dwelling, using a
2 blower door mounted in the front door with all ventilation sealed.

3 The basic technique involves measuring the steady-state flow through the fan necessary to maintain
4 a steady pressure across the building envelope. The measurement method is not complicated but the
5 interpretation of the results requires a degree of knowledge.
6
7

8 Most countries express their airtightness requirements as n_{50} , however, 50Pa is not the real pressure
9 difference throughout the building envelope. Real pressures would be in the 1-4 Pa range for houses
10 [26], but it is very difficult to obtain a precise measurement of air flow at such low pressures.
11
12

13 The pressurization test is a required test for the Passivhaus standard, since it is important to maintain
14 a certain level of building airtightness to optimize the energy efficiency of a building. The test result
15 to meet this standard is $n_{50} \leq 0.6$ ACH. This value is quite demanding compared with the current
16 European legislation requirements. For example, in Germany the requirement is 1.5 ACH for
17 dwellings.
18
19

20 **2.2. Correlation factor N**
21
22

23 Several studies have addressed the correlation between the airtightness of a building envelope at
24 50Pa and an annual infiltration rate for residential buildings. The correlation factor N relates the
25 Blower door data to the average air change rate following the simple Equation 1:
26
27

$$n_{\text{average}} = n_{50}/N \quad (1)$$

28 The N factor varies from 10 to 30. Kronvall and Persily [27] obtained the widely used “rule of thumb”
29 for an annual infiltration rate of N=20 from test results measured in houses in Sweden and the USA
30 (New Jersey). It is interesting to remark that the value is taken from houses located in cold areas.
31
32

33 Persily [28] used the data to correlate the infiltration against the leakage for more than 40 houses
34 and achieved the following result (Equation 2):
35
36

$$n_{\text{average}} = n_{50}/18-0.08 \quad (2)$$

37 Sherman [29,30] developed the Lawrence Berkeley Laboratory (LBL) infiltration model obtaining a
38 new expression to convert n_{50} to ‘natural’ air-leakage. The value of N ranges between 17 and 23 for
39 most of the US, depending on the climate zone (Figure 1). The procedure gives a more accurate
40 conversion factor N (the “LBL Factor”) based on correction coefficients for the regional climate, the
41 number of stories, and the amount of shelter from the wind. It is important to remark than those
42 values come from existing dwellings which do not follow the new requirements for low energy
43 demand. The n-factor values are shown in Table 1, these values ranging from 9.8 for a 3-storey
44 building with no shielding in a cold climate zone to 29.4 for a well-shielded, 1-storey building in a
45 warm climate zone.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

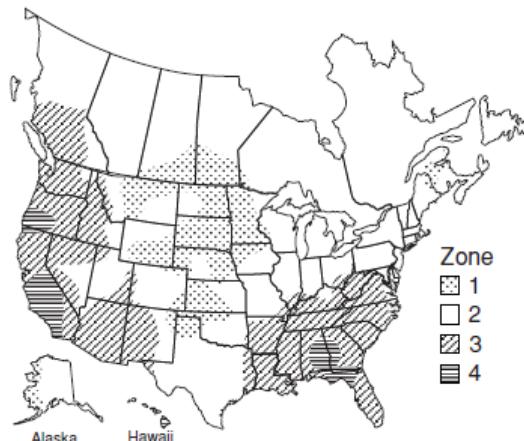


Figure 1. USA Climate zone for LBL infiltration model [29,30]

Table 1. N-factor table [29,30]

Climate zone	House stories	1	1.5	2	3
1	Well-shielded	18.6	16.7	14.9	13.0
	Normal	15.5	14.0	12.4	10.9
	Exposed	14.0	12.6	11.2	9.8
2	Well-shielded	22.2	20.0	17.8	15.5
	Normal	18.5	16.7	14.8	13.0
	Exposed	16.7	15.0	13.3	11.7
3	Well-shielded	25.8	23.2	20.6	18.1
	Normal	21.5	19.4	17.2	15.1
	Exposed	19.4	17.4	15.5	13.5
4	Well-shielded	29.4	26.5	23.5	20.6
	Normal	24.5	22.1	19.6	17.2
	Exposed	22.1	19.8	17.6	15.4

More recently, a study analyzed more than 70,000 air leakage measurements in houses across the United States and found that $N= 16$ gives the best fit for the data available in the US [31]. Jokisalo et al. [17] concluded that the corrected approximations of annual infiltration rates for a typical one- and two-storey house with a balanced ventilation system in sheltered wind conditions in Finnish climate zones were $n_{50}/39$ and $n_{50}/ 24$, respectively.

The ISO 13789 [32] estimates the annual infiltration rate as n_{50}/N , where $N=20$, and many standards for energy balance refer to this steady-state calculation method.

For example, the German standard DIN 18599 [33] applies $1/N = 0.07$, in France there is also a constant coefficient for energy balance calculations of $1/N= 0.06$, based on EN 12831[34].

2.3. Power law

The air infiltration measurements fit a power law which has the form shown in Equation 3. The subscript f is related to the fan induced pressure or flow:

$$Q_f = \kappa \cdot \Delta P_f^n \quad (3)$$

1
2
3
Where

4
5
6
7
 Q_f is the air flow rate (m^3/s) passing through the building envelope,

8
9
10
11
 κ is the leakage coefficient that is related to the size of the opening (m^3/sPa^n),

12
13
 ΔP_f is the pressure difference (Pa),

14
15
16
17
18
19
20
21
22
23
24
25
26
and n is the flow exponent characterizing the flow regime (-).

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The pressure exponent is between 0.5 and 1.0. An exponent of 0.5 denotes fully turbulent flow and an exponent of 1.0 represents laminar flow. The flow exponent is in the vicinity of 0.65 [35]. The exponent provides an indication of the relative size of the dominant leaks. If the leakage paths are dominated by short leaks (e.g. orifices) the expected value for the exponent is closer to 0.5; though if the leakage is dominated by long-path leaks the exponent value should be closer to 1. A flow exponent closer to 1 indicates a very airtight building whereas an n closer to 0.5 indicates a very leaky building. The n values for northern Europe in existing homes are usually higher than for warmer climates. An analysis of 170 Finnish detached houses [17] shows that the average flow exponent was 0.73; over 90% of the flow exponents in this study being in the range 0.73 ± 0.1 . Orme et al, found the average exponent to be approximatively 0.65 from a large dataset [36].

55
56
57
58
59
60
61
62
63
64
65
The EN 15242:2007 standard [37] recommends using the conventional value for the exponent of 0.667. The norm indicates that for leaky buildings, the exponent is lower than 0.667, and higher for airtight constructions.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
The building leakage at different pressure drops through the envelope can be calculated using eq.3, assuming that the leakage coefficient remains constant, giving Equation 4.

$$\frac{Q_{\Delta P_1}}{\Delta P_1^n} = \frac{Q_{\Delta P_2}}{\Delta P_2^n} \quad (4)$$

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
70100
70101
70102<br

$$Q_f = ELA \cdot s \quad (5)$$

The ELA of a building is equal to the area of a perfect nozzle (discharge coefficient of unity) which, at a fan induced pressure, would pass the same amount of air as the building envelope. The ELA (m^2) characterizes the leakage of the envelope and can be obtained from the blower door test and is defined as follows:

$$ELA = Q_{f\cdot} \cdot \frac{\sqrt{\rho/2\Delta p_r}}{c_D} \quad (6)$$

Where ρ (kg/m³) is the density of air.

Assuming that Equation (3) and Equation (6) characterize the flow at some reference pressure difference Δp_r , and the discharge coefficient $C_D=1$, the ELA can be calculated from the blower door data:

$$ELA = \kappa \cdot \Delta P_r^{n-1/2} \sqrt{\frac{\rho}{2}} \quad (7)$$

Which leads to:

$$Q_f = ELA \cdot \left(\frac{\Delta P_f}{\Delta P_r} \right)^n \cdot \sqrt{\frac{2P_r}{\rho}} \quad (8)$$

50 Pa is used as the reference pressure in Europe, while 10 Pa is used as the reference pressure in Canada and the Netherlands. ELA is computed at 4 Pa in the ASHRAE standards.

s is the specific infiltration (m/s) as a function of the temperature difference, wind speed and dwelling parameters.

The LBL model defines the specific infiltration as

$$s \equiv \sqrt{f_{\sim}^2 \cdot |\Delta T| + f_{\omega}^2 \cdot V^2} \quad (9)$$

Where

AT ($^{\circ}\text{C}$) is the indoor-outdoor temperature difference

V (m/s) is the wind speed at the local weather station

f_c is the stack factor ($\text{m}^2/\text{s} K^{1/2}$) calculated from eq.10

$$f_s = \left(\frac{1+R/2}{3} \right) \cdot \left(1 - \frac{X^2}{(2-R)^2} \right)^{3/2} \cdot \left(\frac{g \cdot H}{T_c} \right) \quad (10)$$

where R and X are measurements of leakage distribution, H is the height of the building and T_0 the outside temperature.

f_w (-) is the wind factor given as follows:

$$f_w = C \cdot (1 - R)^{1/3} \cdot A \cdot \left(\frac{H}{10m}\right)^B \quad (11)$$

C is an empirical shielding parameter whose values are given in Table 2. The second term corrects the wind speed. A and B are terrain parameters whose values are indicated in Table 3.

Table 2. Local shielding classes [30]

Shelter class	Shielding parameter C	Description
1	0.34	No obstructions
2	0.30	Light local shielding, few obstructions
3	0.25	Moderate local shielding, some obstructions
4	0.19	Heavy shielding, typical suburban shielding
5	0.11	Very heavy shielding, typical downtown shielding

Table 3. Terrain parameters values [30]

A	B	Terrain Description
1.30	0.10	Ocean or other body of water
1.00	0.15	Flat terrain with some isolated obstacles
0.85	0.20	Rural areas
0.67	0.25	Urban, industrial or forest areas
0.47	0.35	Center of a large city

For the Sherman and Grimsrud model these factors (f_s and f_w) are replaced by the coefficients C_s and C_w . The model is semi empirical, requiring that the user enter a stack coefficient C_s ($(l/s)^2/(cm^2K)$) and a wind coefficient (C_w) ($(l/s)^2/(cm^4 (m/s)^2)$). These coefficients are functions of a factor that it calls the shelter class together with the height of the building (in stories).

$$s = \sqrt{C_s \cdot \Delta T + C_w \cdot V^2} \quad (12)$$

Table 4. Stack coefficient Cs [38]

House stories	1	2	3
C_s	0.000145	0.00029	0.000435

Table 5. Wind coefficient Cw [38]

C_w	House stories		
	Shelter class	1	2
1	1	0.000319	0.000420
	2	0.000246	0.000325
	3	0.000174	0.000231
	4	0.000104	0.000137
	5	0.000032	0.000042

2.5. Infiltrations according to the Passivhaus standard

The infiltration air change rate as a result of leaks is determined by the PH standard on the basis of a simple approximation equation found also in the EN ISO 13790 until 2008 [41]. (Eq. 13).

$$n_{\text{average}} = \frac{V_{50}}{V} \cdot n_{50} \cdot e \quad (13)$$

In balanced ventilation systems with heat recovery, the rate of air leakage depends on the fan pressurization test result (n_{50}) and the wind screening coefficient (e) according to EN 832 [42]. The values are listed in Table 6. Also, a correction factor is applied, the relation between V_{50} (air volume during blower door test) and V (theoretical air volume contained in the house).

Table 6. Wind protection coefficient according to EN 832.

Coefficient e for screening class	Wind protection coefficient	
	Several sides exposed	One side exposed
No screening	0.10	0.03
Moderate screening	0.07	0.02
High screening	0.04	0.01

The default value for infiltration for PHPP (Passivhaus Projecting Package, which is the standard tool developed by PH to calculate the energy demand for low energy buildings) is 0.042 ACH, which corresponds to $n_{50}=0.6$ and a value for the wind coefficient corresponding to moderate screening of 0.07. This value is considered constant throughout the year in the PHPP for energy calculations. The worst value admitted accepted by Passivhaus corresponds to no screening and then n_{average} will be 0.06.

3. Computational model

In order to simulate the energy demand for heating and cooling of the selected residential housing a computational model has been developed using TRNSYS [43] software. The building model in TRNSYS incorporates all the requirements set by the Passivhaus standard as an example of a nZEB dwelling, including the heat recovery ventilation system. Simulations have been run for different cities with varied climate conditions. The infiltration rates change in order to check the impact on heating and cooling demand for a year for Mediterranean and northern European cities.

3.1. Dwelling description and model parameters

The dwelling is taken from a real project and it is representative of a family of 4 persons. The apartment has a kitchen, a living room, three bedrooms and two bathrooms. It has a net area of 81.15m² and the ceiling height is 2.5m. The apartment is located on the third floor of a building of 3 floors. As regards the orientation, the dwelling has windows on the north facade in the living room and in one bedroom, and on the south facade in the kitchen, bathroom and two bedrooms. Only the hall, corridor and toilet have no exterior windows. The layout has been previously been considered by the authors [44,45] and the TRNSYS model has been calibrated and validated in a previous research [46].

Moreover, the selected dwelling fulfills the requirements defined by the Spanish Institute for Energy Diversification and Saving (IDAE) [47] concerning the percentage of the windows and external wall

areas versus the net area of the dwelling. This guarantees a representative percentage of heat gains (internal gains and solar gains) and heat losses (external walls, windows and ventilation losses). The total area of the windows and door in the dwelling is 21.20 m^2 , including the entrance main door. The percentage of openings related to the net area of the dwelling is 26.07% and it is detailed in Table 7.

Table 7. Dwelling enclosure areas.

Building enclosure	Area (m^2)
External walls	North: 24.10 South: 29.00 East: 20.00
External wall to neighbor	West: 24.90
Floor to neighbor	81.15
Flat roof	81.15
Windows	North: 8.40 South: 10.80
Main door (internal)	West: 2.00

The input parameters considered to define the dwelling in TRNSYS which remain constant in all simulations meet the Passivhaus requirements. The recommended envelope transmittance limit values for central and northern European countries are different from those for Mediterranean countries. For Central and Northern Europe: $0.15 \text{ W/m}^2\text{K}$ for exterior walls, floors and roofs and $0.8 \text{ W/m}^2\text{K}$ for windows and doors. For Mediterranean countries: $0.34 \text{ W/m}^2\text{K}$ for exterior walls, $0.26 \text{ W/m}^2\text{K}$ for floors and roofs and $1.4 \text{ W/m}^2\text{K}$ for windows and doors.

Russell et al. made a complete review of residential ventilation technologies [26]. The mechanical air ventilation system including heat recovery is decisive for reducing the air ventilation losses and consequently is an obligatory requirement for the Passivhaus standard. Average ventilation volumetric flow recommended by Passivhaus standard is $30 \text{ m}^3/\text{h}$ per person in the household. For the model the whole air flow ventilation is $120 \text{ m}^3/\text{h}$ (4 persons) and is considered to be constant all through the year. The supply air ventilation flow is 40% for living room, and 20% for each of the three sleeping rooms. For exhaust air flow the 40% is leaving the kitchen and 20% is leaving each of the two bathrooms.

Mardiana et al. made a review of residential ventilation technologies [48] and presents and discusses physical and performance parameters of heat recovery unit and the significances of these parameters on operation and efficiency of the system [49]. The efficiency of the heat exchanger, following the Passivhaus recommendations, has to be greater than 75%. The heat exchanger efficiency in the model is 85%, representative efficiency of what currently exists in the market, where it is not uncommon to find exchangers with an efficiency of up to 95% for Passivhaus constructions. The by-pass mode operates if the outside temperature is higher than the inside temperature during the winter season and lower during the summer season.

1 The set temperature values are different depending on the countries' regulations [46]. The
2 simulations were performed with a room temperature set at 20°C for heating and 26°C for cooling,
3 following the Passivhaus recommendations and those of the European Standard EN 15251:2007 [50].
4

5 The calculations have been done with the strategy of free cooling. The south Mediterranean cities
6 have high solar radiation, and free cooling is needed to maintain cooling demand at reasonable
7 levels. Values obtained for cooling demand will be much lower when implementing free cooling
8 strategies. The regulations in some Mediterranean countries such as Spain require this strategy for
9 energy calculation [51] consisting of opening windows during summer months from 01:00a.m to
10 08:00a.m. This strategy is not specifically for houses with mechanical ventilation systems where
11 opening windows is only justified for its impact on the cooling demand. For the simulations, a mid-
12 way strategy has been applied. Windows will be open in summer months for 3 hours during the night
13 and for 3 hours during the early morning. The free cooling has been applied to all the simulated cities
14 in order to compare the results.
15

16 The model includes sensible loads due to occupation. During nights four people are in the house (2 in
17 the double room and one each in the sleeping rooms), during days an occupational calendar is
18 applied by considering also four people in the house: 2 people in the kitchen and 2 people in the
19 living room. The heat generated according to different degrees of activity follows the values detailed
20 in the ISO 7730: 2005 [52].
21

22 For internal sources, a load of 2.5 W/m² for lighting and equipment and a computer with monitor in
23 the living room with a load of 230W, have been considered. The nominal sensible loads are
24 multiplied by a coefficient depending on the time of day, related to the occupancy.
25

32 **3.2. Climate data and city selection**

33 Several locations across Europe were selected to test the sensitivity of the infiltrations on the heating
34 and cooling demand depending on the climate. As there is no clear guide as to whether a city has a
35 central European or a Mediterranean climate, the climatic stratification of the environment of
36 Europe according to Metzger et al.[53] has been used. The locations have been chosen in accordance
37 with a high-resolution climatic stratification of Europe within 13 environmental zones. The cities
38 selected are shown in Table 8, three of them located in northern Europe for the purposes of
39 comparison.
40

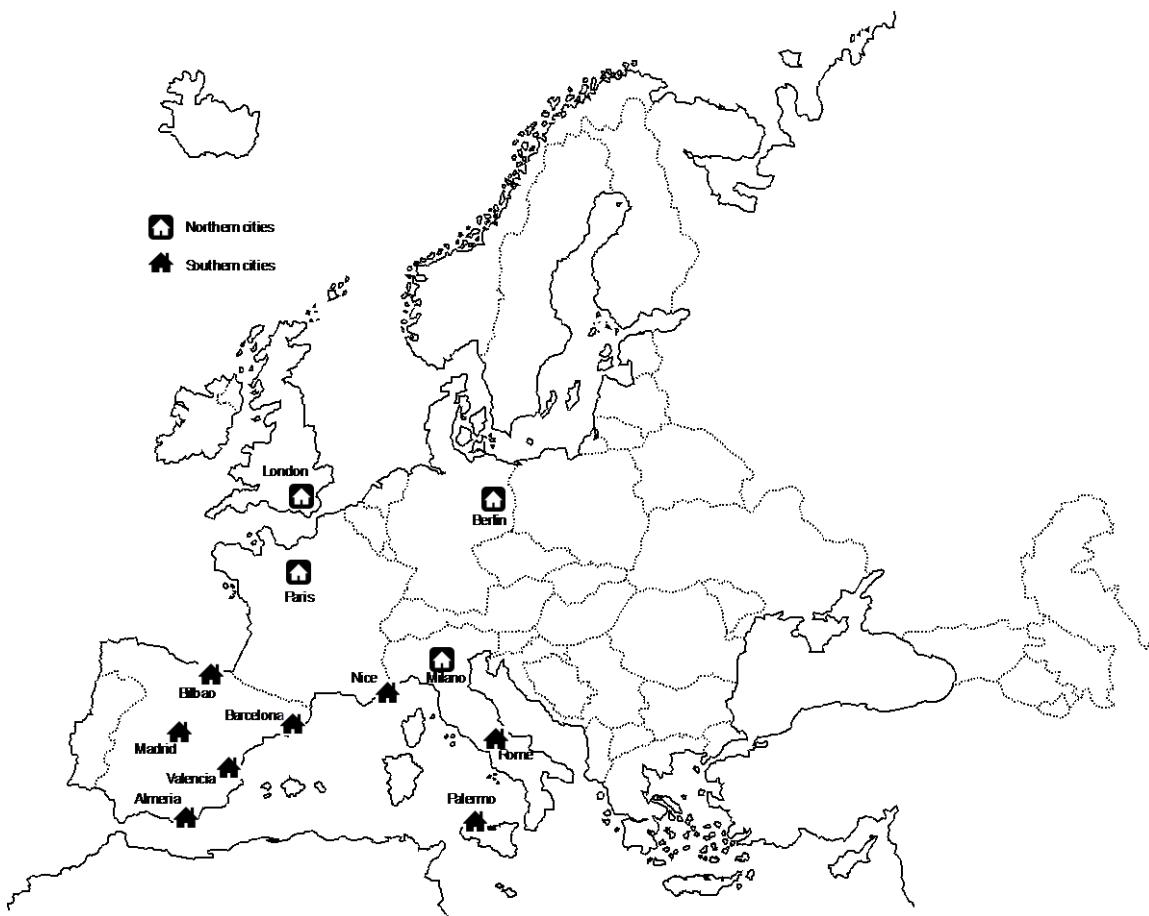
41 **Table 8. Selected cities.**

	COUNTRY	CITY	CLIMATIC ZONE
SPAIN		Almería	MDS
		Valencia	MDS
		Barcelona	MDS
		Bilbao	LS
FRANCE		Madrid	MDS
		Nice	MDN
ITALY		Paris	ATC
		Milan	MDM

	Rome	MDN
1	Palermo	MDS
2	Berlin	CONT
3	London	ATC
4		
5		
6		

7 MDS: Mediterranean South

8 MDM: Mediterranean Mountains


9 MDN: Mediterranean North

10 ATC: Atlantic Central

11 CONT: Continental

12 LS: Lusitanian

13 The southern and northern cities are indicated in Figure 2.

52 Figure 2. City locations.

53 The climate data files are taken from the Meteonorm meteorological database [54]. The Typical
 54 Meteorological Year (TMY 2) weather data format is compatible with TRNSYS using a Type15-6 and
 55 contains hourly weather data for yearly building energy analysis.

56
 57 **4. Methodology**

To investigate the impact of different degrees of infiltration in terms of energy demand for heating and cooling, the degree of infiltration included in the model simulations throughout a year should be under natural driving pressures and real temperatures. Unfortunately, the infiltration rate at 50 Pa is not the quantity of interest, and the maximum set value of 0.6 ACH cannot be directly incorporated in the model. Several difficulties are involved in converting the most common normalized airtightness metric, n_{50} , to the real average infiltration rate in real conditions, n_{average} .

The average pressure across a leak in a building envelope is closer to 1Pa, 2.5Pa or 4Pa [35] than to 50Pa. Therefore, the average infiltration rate (n_{average}) should be changed to n_{50} (at 50Pa) in order to check directly the impact on energy demands of the value imposed by the Passivhaus standard.

Simulations were performed in two steps. For the first step, an average remained constant every hour throughout the year (as for the PHPP tool). The reverse conversion to n_{50} could be done applying the Correlation factor N, where the difficulty is the lack of information regarding the value of N (Eq. 1) for houses with heat recovery ventilation. The reverse conversion can also be carried out by applying the Power Law (Eq. 3), where the difficulty is to define the value for the flow exponent (n). The incertitude of this conversion is fairly high.

Taking in account the values recommended by Sherman, the simulated dwelling which is carefully chosen to be located on the last floor, the correction factor N will vary depending on the climate zone (for $n_{50}=0.6$ ACH). In the case of a well-shielded apartment, N is 20.6 for the warmest US climate area (similar to Mediterranean cities, climate zone 4) and 15.5 for the cities located in Northern Europe (climate zone 2). In the case of exposed apartments, N is 15.4 and 11.7 respectively.

The results certainly give conclusions related to the impact on energy demand in the cities selected depending on the level of infiltrations. The heating and cooling demand for warmer locations can be compared with the coldest ones under the same conditions. The conversion values according to the recommended correlation factor N and the Power law with different flow exponent values are shown in Table9.

Table 9 shows very significant discrepancies in the conversion of the n_{average} to n_{50} . This is due to the fact that the correlations are mostly based on existing dwellings which are not representative of new constructions which are more focused on reducing energy consumption. There is a lack of information regarding the correlation factor for houses with heat recovery ventilation. The correlation factors found in the bibliography come from existing dwellings, mainly located in the United States, Canada and Northern Europe, which are ventilated primarily through leaks in the building envelope rather than by mechanical ventilation systems.

As a first step, simulations were performed varying the n_{average} in steps of 0.04ACH, from 0 to 0.24ACH (shorter intervals give too insignificant variations in energy demand). A value for n_{50} greater than 2 ACH could be proposed in terms of energy demand, but for n_{50} greater than 3 the ventilation system cannot be run with energy efficiency [23].

Table 9. n_{average} and the corresponding n_{50} value

	n_{average} (value to the simulation model)	0.04	0.08	0.12	0.16	0.2	0.24
n_{50} Applying correlation	Kronvall and Persily and ISO 13789 (N=20)	0.80	1.60	2.40	3.20	4.00	4.80
	Persily (Eq.2)	0.80	1.52	2.24	2.96	3.68	4.40

1	factor N	Sherman LBL (zone 4- well-shielded*) N=20.6	0.82	1.65	2.47	3.30	4.12	4.94
2		Sherman LBL (zone 2- well-shielded*) N=15.5	0.62	1.24	1.86	2.48	3.10	3.72
3		Sherman LBL (zone 4- exposed*) N=15.4	0.62	1.23	1.85	2.46	3.08	3.70
4		Sherman LBL (zone 2- exposed*) N=11.7	0.47	0.94	1.40	1.87	2.34	2.81
5		Chan et al. (N=16)	0.64	1.28	1.92	2.56	3.20	3.84
6		Germany DIN V 18599 (1/N=0.07)	0.57	1.14	1.71	2.29	2.86	3.43
7		France EN 12831 (1/N=0.06)	0.67	1.33	2.00	2.67	3.33	4.00
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								
50								
51								
52								
53								
54								
55								
56								
57								
58								
59								
60								
61								
62								
63								
64								
65								

* Tree stories

In a second step, an infiltration model was added to the simulation project as described in Section 2.4, where the infiltration air flow is calculated on an hourly basis and depends on the climatic conditions (wind speed and outside temperature). The infiltrations are simulated in the TRNSYS project using the Type932 Sherman Grimsrud infiltration model from the TESS library (Thermal Engineering System Specialists) [55]. The values used were $C_s = 0.000435$, which is the recommended value for three storeys, and $C_w = 0.000494$ and $C_w = 0.000049$, which are the recommended values for three storey shelter class 1 and 5. The value of ELA_4 is 25.4 cm^2 ($n_{50}=0.6$).

4.1. Single zone model or multi-zone model

The models presented are single zone models, developed to be applied for single family houses. Multi-zone models are applied to high-rise buildings to calculate air flow and contaminant transport between zones. The measurement of air leakage on a building- wide scale requires similar basic equipment to that used for component testing (fans, flow measurement devices, etc.), only on a much larger scale.

For mid-to-high rise construction, additional fans may be required to provide even pressure distribution throughout the full height of the space. This is not the case for the dwelling under study, were the air leakage measurement should come from an independent blower door test as recommended by the Passivhaus standard.

The inconvenience of applying the single model to the dwelling is that the model does not distinguish the air leakage location (from outside or from the neighbors or common areas). For the dwelling under study, it is not possible to estimate separately the leakage to the outside and the leakage to other adjacent units. However, in a summary report, Gulay et al. [56] tabulated the percentage distribution of the whole building leakage by component: 42% windows, 26% doors, 14% vertical shafts, and 6% building envelopes.

Taking into account that building envelope leakage is not very significant and that only the main entry door is located at the common areas of the building, the air leakage coming from those areas will not be so important. Consequently, the hypothesis of the most unfavorable situation for the energy demand will be assumed: the infiltration air entering the house is at the outside temperature.

5. Results and discussion

Figure 3 shows the heating energy demand for each city depending on the n_{average} (constant for every hour throughout the year). The graph also represents the values obtained applying the Sherman Grimsrud infiltration model (n_{avSG} values represented by a triangle). The n_{avSG} represented for each city is the mean value obtained during the winter months (from October to May).

Simulations have been performed for two cases:

Squares: Sherman Grimsrud infiltration model for wind coefficient $C_w = 0.000494$ for no wind obstructions, class 1.

Triangles: Sherman Grimsrud infiltration model for wind coefficient $C_w = 0.000049$ for local shielding, class 5: shelter produced by buildings or other structures that are immediately adjacent.

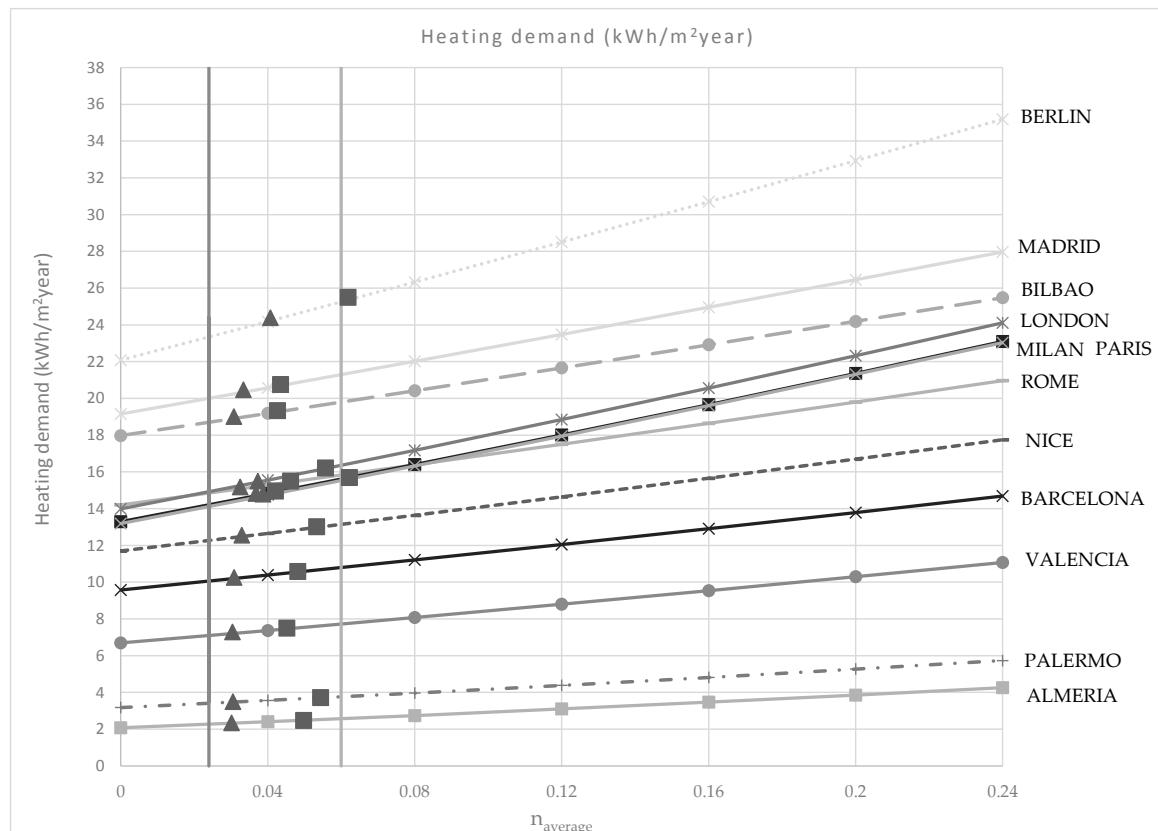


Figure 3. n_{average} and heating energy demand depending on the air infiltration

The vertical lines represent the n_{average} value for the Passivhaus standard. For $e = 0.1$ (no screening), the n_{average} is 0.06 while for $e = 0.04$ (high screening) the n_{average} is 0.024. The n_{average} values converted by Passivhaus are more demanding than the result obtained by applying the Sherman Grimsrud model in the cases of windy locations and less demanding for protected dwellings (third floor) for all the cities except for Milan and Berlin.

1 One northern city (Berlin) and two southern cities (Bilbao and Madrid) do not fulfill the heating
2 demands set by the Passivhaus standard for this dwelling even for zero infiltrations. It is evident that
3 additional specific strategies and design modifications could be implemented to reach the required
4 level (15 kWh/m² y), as for example increasing the heat exchanger efficiency, optimizing the window
5 size and location or controlling the air ventilation rate as a function of the dwelling occupancy.
6

7 The increase in the heating energy demand for each increase in the air infiltration grows slightly at
8 every step. For example, for Berlin increasing the n_{average} from 0.04 to 0.08 ACH increases the heating
9 demand by 2.09 kWh/m² y and for the last step a variation of the n_{average} from 0.2 to 0.24 ACH
10 increases the heating demand by 2.26 kWh/m² y. The increase in heating demand depends on the
11 climate and, as expected, the greatest impact is seen in Berlin, the coldest city. Meanwhile, for cities
12 located in southern Europe, such as Almeria and Palermo, the heating demand increases by only 0.34
13 and 0.40 kWh/m² y respectively, when increasing the n_{average} from 0.04 to 0.08 ACH.
14

15 The infiltration values n_{avSG} obtained (average for winter months) are from 0.042 ACH (lowest value
16 for Milan) to 0.062 ACH (highest value for Berlin and Paris) for class 1, and from 0.030 ACH (lowest
17 value for Almeria and Valencia) to 0.041 ACH (highest value for Berlin) for class 5.
18

19 The cooling demand depending on the n_{average} for each city is shown in Figure 4. As expected, the
20 cooling demand is slightly affected by infiltrations. The graph also represents the values obtained
21 applying the Sherman Grimsrud infiltration model (n_{avSG} values represented by a triangle). The n_{avSG}
22 represented for each city is the mean value obtained during the summer months (from June to
23 September).
24

25 Simulations have been performed for two cases:
26

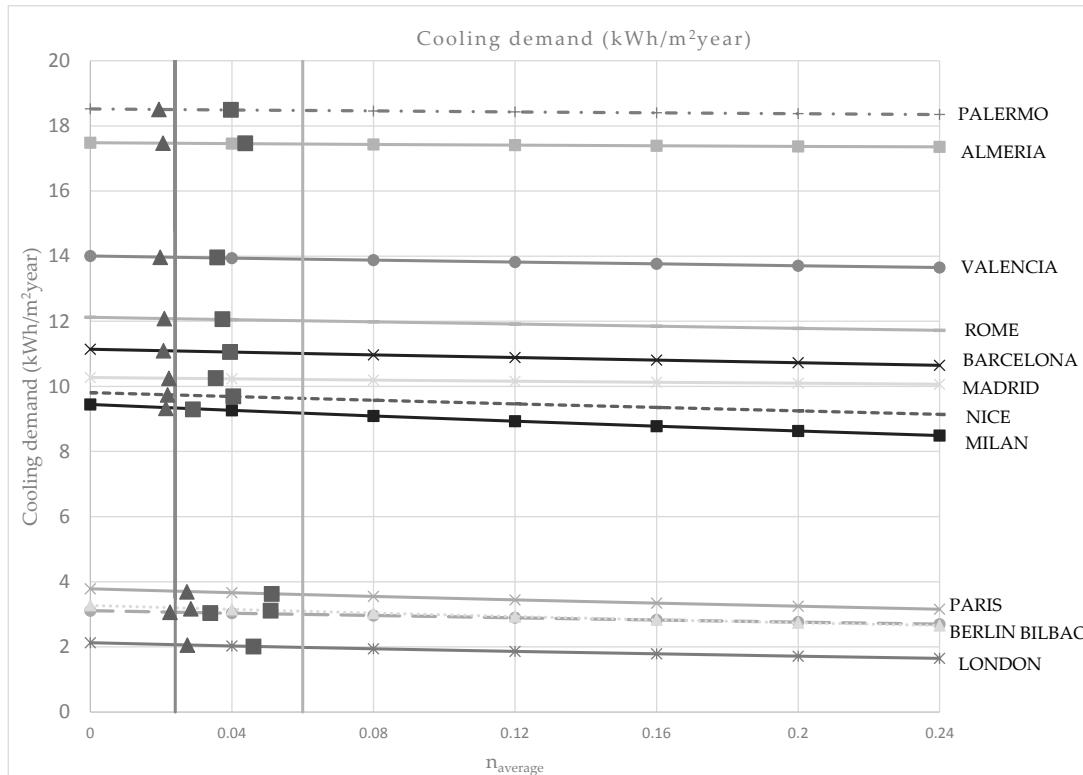
27 Squares: Sherman Grimsrud infiltration model for wind coefficient $C_w = 0.000494$ for no wind
28 obstructions, class 1.
29

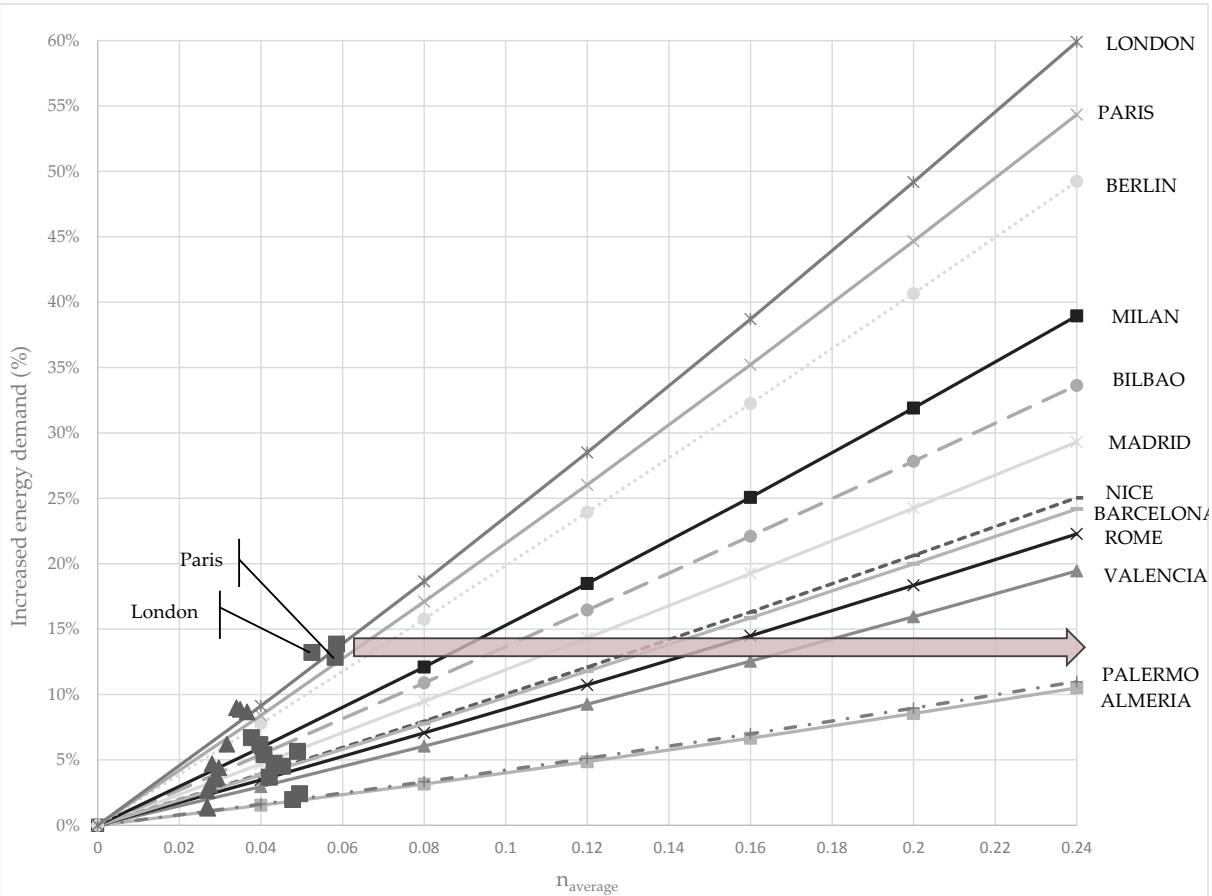
30 Triangles: Sherman Grimsrud infiltration model for wind coefficient $C_w = 0.000049$ for local shielding,
31 class 5: shelter produced by buildings or other structures that are immediately adjacent.
32

33 The vertical lines represent the n_{average} value for the Passivhaus standard, as in Figure 4. The n_{average}
34 values considered by Passivhaus are more demanding in all the cities for class 1 and in warm cities
35 for class 5 (third floor).
36

37 Four Mediterranean cities, Almeria, Valencia, Barcelona and Palermo, have a higher cooling demand
38 than heating demand. The results show that strategies such as opening windows are necessary and
39 highly recommended for Mediterranean cities, which have some difficulties in meeting the
40 Passivhaus requirements for cooling demands. Two cities, Almeria and Palermo, do not fulfill the
41 cooling demands of the Passivhaus standard for this dwelling. Additional specific strategies and
42 design modifications could be implemented to reach the required level (15 kWh/m² y), such as high
43 performance shading devices or an optimal orientation as well as extending the time for opening
44 windows.
45

46 Increasing the air flow due to infiltrations reduces the cooling demand in all the cities, in contrast to
47 the heating demand.
48




Figure 4. n_{average} and cooling energy demand depending on the air infiltration

The values obtained applying the Sherman Grimsrud infiltration model, the n_{avSG} values, which are the mean values obtained during the summer months (from June to September), range from 0.029 ACH (lowest value for Milan) to 0.051 ACH (highest value for Berlin and Paris) for class 1, and from 0.019 ACH (lowest value for Palermo) to 0.028 ACH (highest value for Berlin) for class 5.

Figure 5 represents the increase in the total air conditioning energy demand (heating plus cooling) throughout the year.

These results indicate that for southern Europe the impact of the infiltration level on energy demand is much lower than for northern Europe. For example, for 0.08 ACH, the energy demand is increased by 3% for Almeria and by 19% for London. For central Mediterranean cities (Madrid, Barcelona, Rome and Nice) the impact, although not as significant as in the north, remains lower: for example, 8% for Rome versus 17% for Munich. The coldest cities, London, Berlin and Paris have increases of 19%, 17% and 16 %, respectively, in the total energy demand for 0.08 ACH.

The n_{avSG} values are represented by a triangle (class 5) and by a square (class 1) for each city. The value is the mean infiltration rate applied with the Sherman Grimsrud model throughout the year.

30 **Figure 5. Increased energy demand (%) depending on the air infiltration n_{average} .**

31
32 The total energy demand increased by around 13% for the coldest cities (Paris, London and Berlin) for n_{average} values equal to 0.06 (worst case) comparing with zero infiltrations. Maintaining this
33 increase in the energy demand, the n_{average} for Mediterranean cities could be relaxed. For Milan,
34 Bilbao and Madrid the n_{average} could be increased between 0.09 ACH and 0.12 ACH; for Nice,
35 Barcelona, Rome and Valencia between 0.13 ACH and 0.17 ACH; and even more than 0.24 ACH for
36 Palermo and Almeria.
37
38

39 In the case of Almeria, the infiltration from 0 to 0.24 ACH increases the total energy demand by only
40 2 kWh/m²y, whereas the impact in Berlin is 12.5 kWh/m²y and in London 9.7 kWh/m²y.
41
42

43 The mean infiltration values (n_{avSG}) obtained applying the Sherman Grimsrud infiltration model
44 throughout the year range from 0.038 ACH (lowest value for Milan) to 0.059 ACH (highest value for
45 Paris) for class 1, and from 0.027 ACH (lowest value for Almeria, Valencia, Barcelona and Palermo) to
46 0.037 ACH (highest value for Berlin) for class 5.
47
48

49 For the Mediterranean cities the values obtained for n_{avSG} are over the curve found when applying a
50 constant n_{average} throughout the year. This is due to the fact that the variations in the infiltration rate
51 for each month are minor since the stack effect caused by the temperature difference between
52 indoor and outdoor air is not as relevant as for colder cities. The total air conditioning demand
53 obtained for colder cities is slightly greater because the infiltration during winter is higher than
54 during summer.
55
56

Figure 6 shows both effects more clearly:

1) The same value obtained from the Blower door test (0.6 ACH for all the cities) gives the same ELA in the dwelling, but the infiltration rate depends on the climate conditions. The highest n_{SGav} values are obtained for the coldest cities (more important stack effect).

2) Similar values of n_{SGav} have a much greater impact on heating and cooling energy demand for colder cities. The outdoor temperature for colder cities during winter is much lower.

These effects suggest than infiltration requirements for cities located in warmer climates could be relaxed.

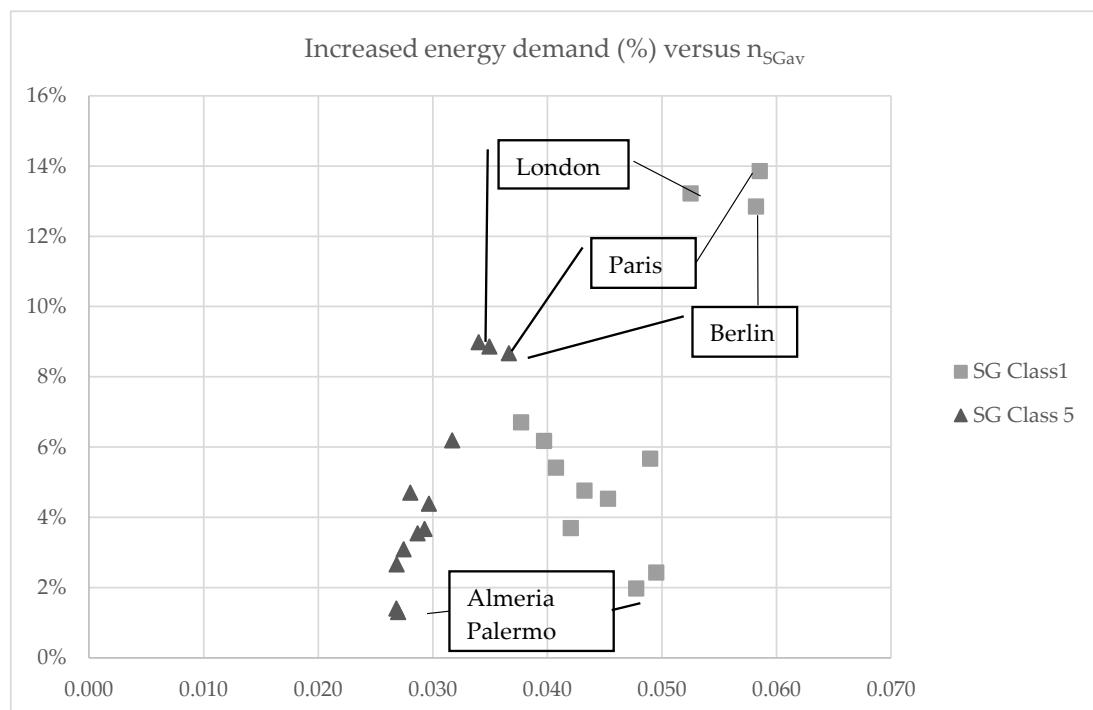


Figure 6. Increased energy demand (%) depending on the air infiltration $n_{average}$.

The variation of the air infiltration rate during different months of the year can be seen in Figure 7 for class 1 and in Figure 8 for class 5.

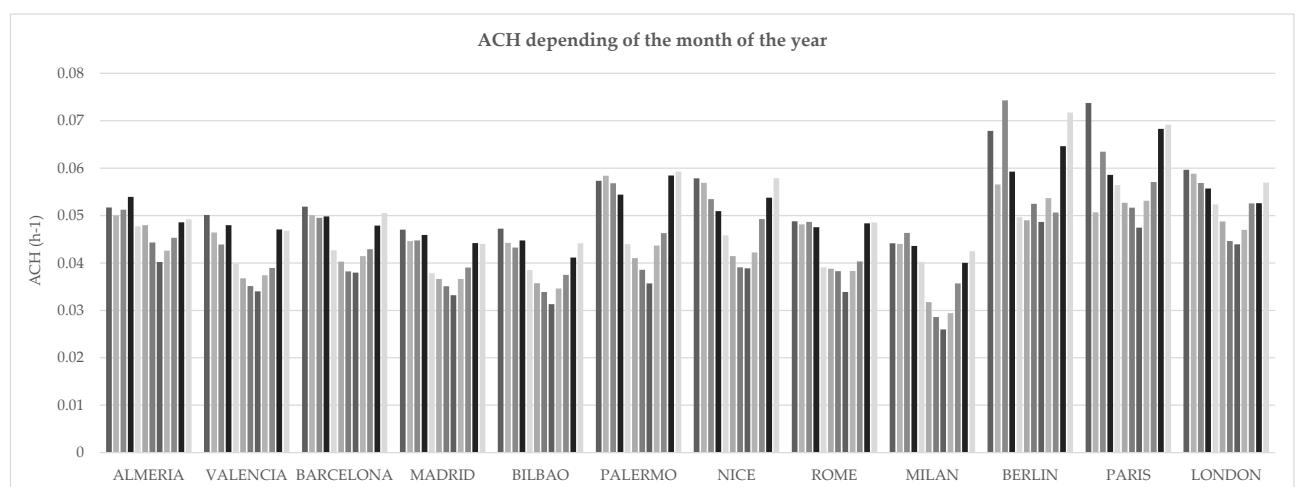


Figure 7. ACH depending on the month of the year. Sherman Grimsrud model Class 1.

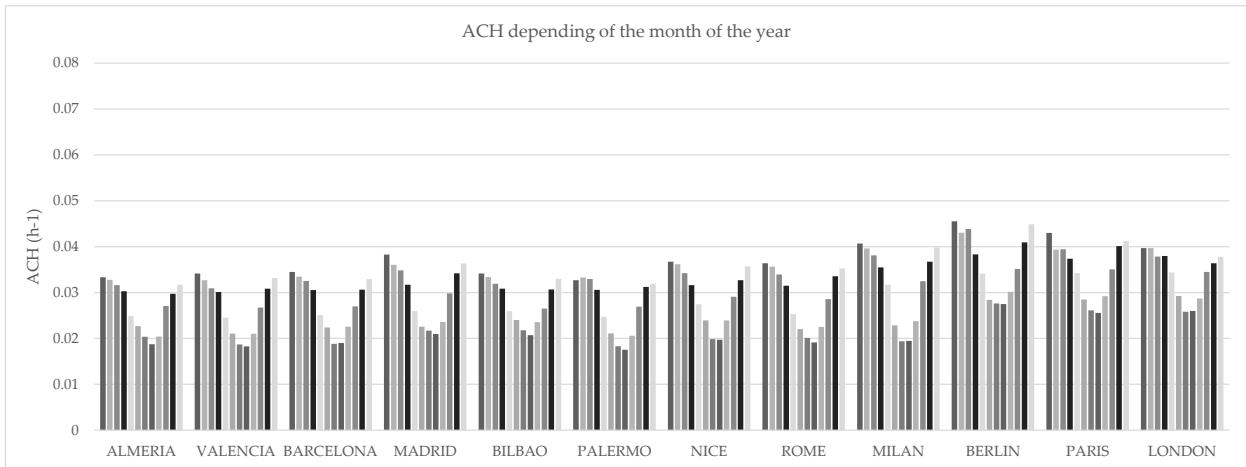


Figure 8. ACH depending of the month of the year. Sherman Grimsrud model Class 5.

The difference in the air infiltration rate between the months of August and January, due to the greater temperature difference between indoors and outdoors in winter, is significant in cities such as Paris where the difference is 0.026 ACH but minor in Almeria with a difference of 0.012 ACH for class 1.

For class 5, the differences all the year round are as significant as for class 1. The greatest difference is obtained for Milan, with 0.021 ACH, and the lowest for Bilbao with 0.013 ACH.

Looking at the ACH values during the winter months, the differences between southern and northern European cities are substantial. As an example, Berlin has 0.045 ACH and Almeria 0.032 ACH in December. The difference is due mainly to the fact that the temperature difference between indoors and outdoors is greater in Berlin than in Almeria.

The N correlation factor was calculated (Equation 1) with the n_{avSG} obtained for nZEB dwellings located in areas without wind obstructions (class 1) and in city centres (well-shielded). The values are shown in Table 10.

For class 1, the correlation factor value is between 12 and 14 for all the Mediterranean cities and approximatively 10 for cities located in northern Europe.

For class 5, the correlation factor value is between 20 and 22 for all the Mediterranean cities and approximatively 17 for cities located in northern Europe.

Table 10. N correlation factor obtained from Sherman Grimsrud model.

CITY	ACH average (year).		ACH average (year).	
	Sherman Grimsrud model Wind coef. $C_w = 0.000494$	Correlation factor N	Sherman Grimsrud model Wind coef. $C_w = 0.000049$	Correlation factor N
ALMERIA	0.048	12.57	0.027	22.25
VALENCIA	0.042	14.27	0.027	22.35
BARCELONA	0.045	13.25	0.027	21.86
MADRID	0.041	14.73	0.030	20.23
BILBAO	0.040	15.11	0.028	21.40
PALERMO	0.049	12.12	0.027	22.37

1	NICE	0.049	12.26	0.029	20.51
2	ROME	0.043	13.88	0.029	20.93
3	MILAN	0.038	15.92	0.032	18.95
4	BERLIN	0.058	10.31	0.037	16.39
5	PARIS	0.059	10.25	0.035	17.18
6	LONDON	0.052	11.43	0.034	17.65

12. Conclusions

14 The correlation factor N has been calculated for an airtight dwelling located in several cities in
 15 Europe. The real infiltration average values corresponding to $n_{50}=0.6$ ACH have been obtained from
 16 simulations performed with TRNSYS applying the Sherman Grimsrud model. The air infiltration
 17 impact on cooling and heating demand has been calculated.

20 The cooling is less affected by infiltrations compared with the energy losses occasioned during the
 21 heating season. Therefore, in cities where the nZEB cooling demand is higher than the heating
 22 demand, the infiltration value should not be so restrictive. The air flow rate achieved by mechanical
 23 ventilation systems is not enough to cool homes at night in hot climates.

27 For cities located in northern Europe the air conditioning energy demand increases by 13% when the
 28 value set for infiltration is 0.6 ACH (50Pa) while for cities located in the Mediterranean area this
 29 impact is 4 % to 7 %. Moreover, the impact is even lower for southern European cities such as
 30 Almeria and Palermo where the increases are lower than 3%.

33 The energy demand due to the infiltration air flow (for the same n_{50} value) is higher in cities located
 34 in colder climates due to two effects: first, the greater temperature difference between outdoors
 35 and indoors increases the air flow due to infiltrations and, second, the outdoor air temperature is
 36 lower. These effects are not considered in the Passivhaus standard, which established identical
 37 limitations for n_{50} irrespective of the climate area.

41 The infiltration air flow is higher during winter than during summer. This is another fact not taken
 42 into account by the Passivhaus standard which established a constant value for n_{50} throughout the
 43 year.

46 The results of this research suggest that the current maximum value for infiltrations (0.6 ACH at 50
 47 Pa) required by the Passivhaus standard is excessive for residential buildings located in warm
 48 climates found in the Mediterranean area. For cities located in the Mediterranean area the maximum
 49 n_{50} value for nZEB could be relaxed to 1 ACH. Furthermore, for cities in the south of the
 50 Mediterranean the value could be increased even further to 2 ACH to achieve the same percentage
 51 increase in air conditioning demand posed by 0.6 ACH in cities in northern Europe. These values are
 52 low enough to ensure that the ventilation system will be energy efficient.

56 A recommended value for the correlation factor N to convert n_{50} to n_{average} for nZEB has been
 57 obtained from the Sherman Grimsrud model depending on the shielding of the dwelling. For local
 58 shielding its value is approximatively 12 for Mediterranean cities and 10 for cities located in northern

Europe while for city centre dwellings its value is approximatively 22 for Mediterranean cities and 17 for cities located in northern Europe.

Acknowledgements

The authors thank the Spanish Ministry of Economy and Competitiveness for the funding of this work within the framework of project ENE2014- 57262-R, with the additional support of the Government of Aragon (Spain) and the European Union (FEDER Program).

References

- [1] Expert Group on Energy Efficiency, Realizing the Potential of Energy Efficiency, Washington, 2007. http://www.se4all.org/wp-content/uploads/2013/09/realizing_potential_energy_efficiency.pdf.
- [2] European Commission, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal L153, (2010) 13–35.
- [3] European Commission, Green Paper on energy efficiency., 2005.
- [4] A.J. Marszal, P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, A. Napolitano, Zero Energy Building - A review of definitions and calculation methodologies, Energy Build. 43 (2011) 971–979. doi:10.1016/j.enbuild.2010.12.022.
- [5] European Commission: Directorate-General for Energy and Transport., Implementation of the Energy Performance of Buildings Directive Country reports 2008, Brussels, 2008.
- [6] Commission Recommendation (EU) 2016/1318 of 29 July 2016 on guidelines for the promotion of nearly zero-energy buildings and best practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings, n.d. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016H1318>.
- [7] European Commission, Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating, (2012) Official Journal L 81, 21/3/ 2012, 18–36.
- [8] European Commission, Energy Efficiency Plan 2011. COM(2011) 109., Brussels, 2011.
- [9] Buildings Performance Institute Europe (BPIE)., Principles for Nearly Zero-energy Buildings. Paving the way for effective implementation of policy requirements., Brussels, 2011.
- [10] D.D. Agostino, Synthesis Report on the National Plans for Nearly Zero Energy Buildings (NZEBs) Progress of Member States towards NZEBs, 2016. doi:10.2790/659611.
- [11] X. Cao, X. Dai, J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy Build. 128 (2016) 198–213. doi:10.1016/j.enbuild.2016.06.089.
- [12] Passive House Institute (PHI), Passive House Institute, (n.d.). <http://passiv.de/en/> (accessed January 15, 2019).
- [13] Association Effinergie, Effinergie, (n.d.). <http://www.effinergie.org> (accessed January 15, 2019).

1 [14] Minergie Institut, Minergie, (n.d.). <http://www.minergie.ch/> (accessed January 15, 2019).

2 [15] Agenzia CasaClima, CasaClima, (n.d.). <http://www.agenziacasaclima.it/> (accessed January 15,

3 2019).

4 [16] M. Wassouf, De la casa pasiva al estándar Passivhaus. La arquitectura pasiva en climas

5 cálidos., Editorial Gustavo Gili, 2014.

6 [17] J. Jokisalo, J. Kurnitski, M. Korpi, T. Kalamees, J. Vinha, Building leakage, infiltration, and

7 energy performance analyses for Finnish detached houses, *Build. Environ.* 44 (2009) 377–387.

8 [18] W. Pan, Relationships between air-tightness and its influencing factors of post-2006 new-build

9 dwellings in the UK, *Build. Environ.* 45 (2010) 2387–2399.

10 <http://dx.doi.org/10.1016/j.buildenv.2010.04.011>.

11 [19] S. Chen, M.D. Levine, H. Li, P. Yowargana, L. Xie, Measured air tightness performance of

12 residential buildings in North China and its influence on district space heating energy use,

13 *Energy Build.* 51 (2012) 157–164.

14 [20] A. Meiss, J. Feijó-Muñoz, The energy impact of infiltration: a study on buildings located in

15 north central Spain, *Energy Effic.* 8 (2014) 51–64. <http://link.springer.com/10.1007/s12053-014-9270-x>.

16 [21] M.I. Montoya, E. Pastor, F.R. Carrié, G. Guyot, E. Planas, Air leakage in Catalan dwellings:

17 Developing an airtightness model and leakage airflow predictions, *Build. Environ.* 45 (2010)

18 1458–1469.

19 [22] A. Sfakianaki, K. Pavlou, M. Santamouris, I. Livada, M.N. Assimakopoulos, P. Mantas, A.

20 Christakopoulos, Air tightness measurements of residential houses in Athens, Greece, *Build.*

21 *Environ.* 43 (2008) 398–405.

22 [23] M.H. Sherman, R. Chan, Building airtightness: Research and Practice, Lawrence Berkeley Natl.

23 Lab. Report n° (2004) 1–46. doi:10.4324/9781849770620.

24 [24] Solar Energy Laboratory, TRAnsient SYstem Simulation program. TRNSYS 17., (2012).

25 [25] European Standard, EN 13829. Thermal Performance of Buildings—Determination of Air

26 Permeability of Buildings—Fan Pressurization Method., (2001).

27 [26] M. Russell, M. Sherman, A. Rudd, Review of Residential Ventilation Technologies, *HVAC&R*

28 Res. 13 (2007) 325–348.

29 [27] J. Kronvall, Testing of houses for air leakage using a pressure method., 1978.

30 [28] A. Persily, Understanding Air Infiltration in Homes., 1982.

31 [29] M.H. Sherman, Estimation of infiltration from leakage and climate indicators, *Energy Build.* 10

32 (1987) 81–86.

33 [30] M. Sherman, M. Modera, Comparison of measured and predicted infiltration using the LBL

34 infiltration model., 1984.

35 [31] W.R. Chan, W.W. Nazaroff, P.N. Price, M.D. Sohn, A.J. Gadgil, Analyzing a database of

36 residential air leakage in the United States, *Atmos. Environ.* 39 (2005) 3445–3455.

37 [32] European committee for Standardization, EN ISO 13789:1999. Thermal performances of

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

buildings. Transmission heat loss coefficient. Calculation method, (1999).

1 [33] E. Bewertung, V.G. Berechnung, E.- Primärenergiebedarfs, DIN V 18599-6 Energy efficiency of
2 buildings — Calculation of the energy needs , delivered energy and primary energy for heating
3 , cooling , ventilation , domestic hot water and lighting — Part 6 : Delivered energy for
4 ventilation systems and air heating , (2007).
5

6 [34] European committee for Standardization, EN 12831. Heating systems in buildings — Method
7 for calculation of the design heat load, Management. (2003).
8

9 [35] M.H. Sherman, R. Chan, Building Airtightness : Research and Practice, Buildings. (2004) 1–46.
10

11 [36] W.A. Orme M., Lindament M., An analysis and data summary of the AIVC's numerical
12 database., Conventry, 1994.
13

14 [37] European committee for Standardization, EN 15242:2007 Ventilation for buildings. Calculation
15 methods for the determination of air flow rates in buildings including infiltration, (2008).
16

17 [38] Sherman MH ; Grimsrud DT, Infiltration-pressurization correlation: Simplified physical
18 modeling., ASHRAE Trans. (1980) 86(2):778.
19

20 [39] M.M. M. Sherman, Comparison of measured and predicted infiltration using de LBL infiltration
21 model. In Measured air leakage of buildings, ASTMS STP 904. (1986) 325.
22

23 [40] American Society of Heating Ventilating and Air-Conditioning Engineers, ASHRAE Standard
24 119. "Air Leakage Performance for Detached Single-Family Residential Buildings," (1988).
25

26 [41] International Organization for Standardization;, EN ISO 13790, "Thermal performance of
27 Buildings – Calculation of energy use for heating," (2008).
28

29 [42] European committee for Standardization, EN 832:2000. Thermal performance of buildings.
30 Calculation of energy use for heating. Residential buildings, UK, 1999.
31

32 [43] Solar Energy Laboratory, TRNSYS 17. A Transient System Simulation tool., (2012).
33

34 [44] S. Guillén-Lambea, B. Rodríguez-Soria, J.M. Marín, Review of European ventilation strategies
35 to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus.
36 Comparison with the USA, Renew. Sustain. Energy Rev. 62 (2016) 561–574.
37 doi:10.1016/j.rser.2016.05.021.
38

39 [45] S. Guillén-Lambea, B. Rodríguez-Soria, J.M. Marín, Control strategies for Energy Recovery
40 Ventilators in the South of Europe for residential nZEB—Quantitative analysis of the air
41 conditioning demand, Energy Build. 146 (2017) 271–282. doi:10.1016/j.enbuild.2017.04.058.
42

43 [46] S. Guillén-Lambea, B. Rodríguez-Soria, J.M. Marín, Comfort settings and energy demand for
44 residential nZEB in warm climates, Appl. Energy. 202 (2017) 471–486.
45 doi:10.1016/j.apenergy.2017.05.163.
46

47 [47] IDAE, Opción simplificada. Viviendas. Memoria de cálculo, (2009) 110.
48 doi:10.1017/CBO9781107415324.004.
49

50 [48] A. Mardiana-Idayu, S.B. Riffat, Review on heat recovery technologies for building applications,
51 Renew. Sustain. Energy Rev. 16 (2012) 1241–1255.
52

53 [49] A. Mardiana, S.B. Riffat, Review on physical and performance parameters of heat recovery
54 systems for building applications, Renew. Sustain. Energy Rev. 28 (2013) 174–190.
55

56

57

58

59

60

61

62

63

64

65

1 [50] European committee for Standardization, EN 15251:2007 Indoor environmental input
2 parametres for design and assessment of energy performance of buildings addressing indoor
3 air quality, thermal environment, lighting and acoustics, 2008.

4 [51] Gobierno de España, Documento Básico HE Ahorro de Energía, (2013).
5 <http://www.codigotecnico.org/cte/export/sites/default/web/galerias/archivos/documentosC>
6 TE/DB_HE/DBHE-2013-11-08.pdf (accessed January 15, 2019).

7 [52] International Organization for Standardization, ISO 7730:2005. Ergonomics of the thermal
8 environment — Analytical determination and interpretation of thermal comfort using
9 calculation of the PMV and PPD indices and local thermal comfort criteria, 2005.

10 [53] M.J. Metzger, R.G.H. Bunce, R.H.G. Jongman, C. a. Mücher, J.W. Watkins, A climatic
11 stratification of the environment of Europe, *Glob. Ecol. Biogeogr.* 14 (2005) 549–563.

12 [54] Meteonorm, (n.d.). <http://meteonorm.com/> (accessed January 15, 2019).

13 [55] Thermal Energy System Specialists TESS, TESSLibs 17. HVAC Library Mathematical Reference.,
14 06 (2014) 161–165. www.tess-inc.com.

15 [56] S.C.D. and F.G.J. Gulay B.W., Field Investigation Survey of Airtightness, Air Movement and
16 Indoor Air Quality in High Rise Apartment Buildings Summary Report, Canada Mortg. Hous.
17 Corp. (1993).

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Air infiltrations and energy demand for residential low energy buildings in warm climates

Silvia Guillén-Lambea^{1,2,*}, Beatriz Rodríguez-Soria¹, José M. Marín²

¹ University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.

² Aragón Institute of Engineering Research (I3A), Thermal Engineering and Energy Systems Group, University of Zaragoza, Edificio Torres Quevedo, C/Maria de Luna 3, 50018 Zaragoza, Spain.

Highlights

- Proposal of the maximum infiltration rate in warm climates for residential nZEB.
- The infiltration impact on the air conditioning demand depending on the climate has been obtained.
- Values for n_{50} are proposed for residential nZEB in warm climates.
- Recommended value for correlation factor to convert n_{50} to n_{average} for nZEB has been obtained.

* Corresponding author. Silvia Guillén-Lambea. University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.

Email address: sguillen@unizar.es, tel. +34 976 739838