000168438 001__ 168438
000168438 005__ 20260205155159.0
000168438 0247_ $$2doi$$a10.3390/sym18010143
000168438 0248_ $$2sideral$$a147884
000168438 037__ $$aART-2026-147884
000168438 041__ $$aeng
000168438 100__ $$aCrespo-Quintanilla, Jesús Alberto
000168438 245__ $$aApplication of the Time-Averaged Entropy Generation Rate (TAEGR) to Transient Hemodynamic Analysis of the Human Aorta Using CFD–FSI
000168438 260__ $$c2026
000168438 5060_ $$aAccess copy available to the general public$$fUnrestricted
000168438 5203_ $$aThis work focuses on the development of a patient-specific transient CFD–FSI numerical model combined with the Time-Averaged Entropy Generation Rate (TAEGR) to predict hemodynamic parameters in the thoracic aorta, including the Oscillatory Shear Index (OSI) and the Time-Averaged Wall Shear Stress (TAWSS). While arterial blood flow can be modeled assuming either rigid or elastic arterial walls, the effect of wall compliance on these parameters, particularly on TAEGR, remains insufficiently characterized. Moreover, the interpretation of established indicators is not unique, as regions of vascular relevance may correspond to either high or low values of OSI and TAWSS. The proposed approach aims to identify symmetry and asymmetry in shear stress and entropy generation within the arterial wall, which are closely associated with the development of atherosclerotic plaque. Four aortas from clinical patients were analyzed using the proposed numerical framework to investigate blood flow behavior. The results revealed regions with high values of the hemodynamic parameters (OSI > 0.15, TAWSS ≥ 2 Pa, and TAEGR ≥ 20 W/m3K) predominantly located in the vicinity of the upper arterial branches. These regions, referred to as critical zones, are considered prone to the development of cardiovascular diseases, particularly atherosclerosis. The proposed numerical model provides a reliable qualitative framework for assessing symmetry and asymmetry in aortic blood flow patterns under different surgical conditions.
000168438 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000168438 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000168438 700__ $$aAlfaro-Ayala, Jorge Arturo
000168438 700__ $$aRamírez-Minguela, José de Jesús
000168438 700__ $$aVidal-Lesso, Agustín
000168438 700__ $$aRodríguez-Alejandro, David Aarón
000168438 700__ $$aLópez-Núñez, Oscar Alejandro
000168438 700__ $$aMalvé, Mauro
000168438 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez Barca, Miguel Ángel$$uUniversidad de Zaragoza
000168438 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000168438 773__ $$g18, 143 (2026), 20$$pSymmetry (Basel)$$tSymmetry$$x2073-8994
000168438 8564_ $$s7456402$$uhttps://zaguan.unizar.es/record/168438/files/texto_completo.pdf$$yVersión publicada
000168438 8564_ $$s2377479$$uhttps://zaguan.unizar.es/record/168438/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000168438 909CO $$ooai:zaguan.unizar.es:168438$$particulos$$pdriver
000168438 951__ $$a2026-02-05-14:36:35
000168438 980__ $$aARTICLE