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ABSTRACT

Accurate and efficient solution of the Elliptic Kepler Equation (EKE) is fundamental in orbital mechanics and
spacecraft trajectory analysis. In this work, we present a family of piecewise rational approximations for solving
the EKE,

F(E;e)=E—esinE=M,

based on Padé and Hermite-type formulations. The proposed approaches replaces the transcendental term
sin E with Hermite and Piecewise Padé-Type (PPT) approximants, the later originally introduced by Brezinski,
providing higher accuracy than the traditional Piecewise Padé (PP) method of Wu et al. without increasing
computational cost. With these approximants, the resulting rational form reduces the EKE to a cubic equation
that can be solved analytically, making it suitable for onboard implementations or large-scale orbit propagation
tasks. Numerical experiments demonstrate that the PPT-based solution significantly improves accuracy for
moderate and high eccentricities, including near-parabolic cases. Additionally, optimized parameter selection
in general [3/2] rational representations yields further accuracy gains. These results show that the proposed
piecewise rational method offers a reliable and computationally efficient alternative for precise orbital position

determination across a wide range of eccentricities.

1. Introduction

The approximate solution of the elliptic Kepler’s Equation (KE)
F(E;e)=E—esinE=M (€9)

that defines uniquely the eccentric anomaly E of an elliptic orbit with
eccentricity e € (0,1) as a function of the mean anomaly M has been
the subject of research along several centuries [1,2].

A usual way for solving KE is based on non-linear iterative solvers
such as Newton-Raphson or higher order methods [2-5] together with
an optimal starter to guarantee the accuracy and the convergence of the
solution of (1) with the minimum computational cost; see e.g. [6-10]
and references therein.

An alternative approach to solve KE has been recently proposed
by Philcox et al. [11]. By using a classical theorem in complex anal-
ysis [12] it is possible to express the solution of Eq. (1) for a given
M as a quotient of two contour integrals along a Jordan curve of the
complex plane that contains the unique real root corresponding to this
M and no other zeroes of Eq. (1). A further improvement of this method

is given in [13] by using ellipses as Jordan curves and by computing
the quadratures by the composite trapezoidal rule.

A different approach to solve the KE consists in replacing the tran-
scendental function F(E;e) in Eq. (1) by a rational function R(E; M, e)
in E of type

ay+a E+ayE* + oy E3

R = A Ev BB+ @

with a; =a;(M,e) and B; = B;(M,e) so that the Eq. (1) is approximated
by

R(E;M,e)=M, with M e€[0,z], e€(0,1) 3)

that is equivalent to a cubic equation in the eccentric anomaly E and
can be solved exactly by quadratures. Thus, Markley [3] by using a
[3/2]-Padé approximation Q(E) to sin E considers function R(E;e) =
E — e Q(E) that is of the type (2) and the solution of (3) refined by an
additional iteration gives a highly accurate solution of (1).
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Lynden-Bell [14] proposes as approximation of F(E;e) a rational
function in E of the type

- E2 ¢,
1+E2¢2] 23

with suitable functions ¢, = ¢ (M), ¢, = ¢p,(M,e) and ¢3 = ¢$3(M,e)
obtained by imposing some requirements so that the solution of Eq. (3)
with R given by (4) provides an accurate approximation to the exact
solution of (1).

Mikkola [15] formulates KE in terms of the auxiliary variable s =
sin(E/3) and then approximates by a cubic equation in s whose solution
is a good approach to the solution of (1).

It is interesting to mention that the elliptic Kepler Eq. (1) for the
limit eccentricity e =1

R=R(E;M,e)=E—eE[ 4)

F(E;1)=E—-sinE=M, M €[0,nr], 5)

is equivalent to the transcendental equation that appears in the ho-
mologous collapse radial evolution in time (see e.g. [16-19]) given by

x+ sinx=y, yel0,nr], Q)]

upon the changes E — 7= — x, M — r — y. Therefore, some results for
the approximate solution of Eq. (6) can be applied also to the solution
of KE (1).

In a recent paper [20], Wu and collaborators propose to take as
rational function (2)

R(E;e) = E —e S(E), @

where S(E) is a piecewise [3/2]-Padé approximation of sin E in [0, z].
Then, the exact solution of (1), E = E(M;e) = F~!(M;e) is approxi-
mated by the exact solution of R(E;e) = M, that is, by E, = E,(M;e)
that can be obtained by solving a cubic equation. Additionally, the
accuracy of E, can be improved by one (or more) iterations of the
Schroder method of suitable order.

The aim of this paper is two-fold. First of all we propose new
Piecewise [3/2]-Padé-Type (PPT) approximants to sin E that are more
convenient than the Piecewise Padé (PP) approximants considered by
Wu et al. [20]. Recall that the so-called Padé-Type approximants [21,
22] have some flexibilities that do not have the pure Padé approximants
that can be used to get C! continuity and better accuracy in our prob-
lem. Moreover, we observe that in solving KE with (7), our main target
is not the accuracy of the approximation of sin E, but the difference
F~1(M;e)— R~'(M;e) between the exact and the approximate solutions
of KE. All these points will be considered in detail in Section 2.

Secondly, in Section 3 we study more general piecewise rational
approximants that are defined by Hermite interpolants. This allows us
a further improvement of the accuracy that will be confirmed with the
results of numerical experiments.

Finally, in Appendix we show that the use of [3/3]-Padé or rational
[3/3]-Hermite interpolations for the function x — esinx is not recom-
mended because there are singularities in the process of finding the
coefficients.

2. Approximating the function sin E in KE by means of Padé ap-
proximant.

In this section we will use x instead of the eccentric anomaly
E to connect with standard notations in approximation theory, x =
F~(M;e). To refine the meaning of Piecewise Padé (PP) approximant
to the function g(x) = sinx, with x € [0, z], we will sazf that S(x) is a
[3/2]-PP approximant of g(x) if there exists a grid {s; j=o in [0, 7]

O=s5y<s5) < <5, =,

with S(0) g(0), S(x) = g(x), and the restriction of S(x) at each
interval (s > 8j41] 18 the [3/2]-Padé approximant Svj (x) of g(x) at some
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base point v; € [s;,5;41]. Hence, S(x) is given by S(0) = S(x) =0, and
S(x)= SV/(x) ifxe(s;,s;ylfor0<j<k-1

Clearly the [3/2]-PP approximant depends on both the grid points
sp, L <j<k=1, and base points vi, 0 <j < k=1 According

to Brezinsky [21], if the approximant SV/ (x) at base point x = v;, is
defined by
3
ajp(x — vj)f
£=0
Svj(x) = 2 B X € (Sjw Sj+1]7 8)

L+ Y B —v)f
=1

the six coefficients a;, (£ = 0,1,2,3) and ;; (k = 1,2) of SV/ (x) are
uniquely determined by the condition

. P
S, (0 =sinx=0(x-v;)", p>6. 9

Because of the symmetry of sinx in x € [0,z] with respect to the
midpoint x = z/2, Wu and collaborators [20] take k = 5 and select
the base and grid points with the symmetry conditions

5o =0, sj+55,j=7r,(j=0,1,2), vo =0, vj+v4,j=7z',(j=0,1,2).

Hence, there are only three parameters 0 < s; < s, < x/2 and
V| € [s,5,] to be chosen so that minimize the max error || sin x—S(x)||
obtaining the values

5, =0.536, s,=1241, v, =0.890, (10)

and then, the max norm || sinx — S(x)||, = 2.171 x 107°.

As remarked in [19] a drawback of the PP-approximant S(x) with
the parameters (10) is that it may have discontinuities at the grid points
s;, =1,....4) because

S, (s;)

Vi-17J

= _lim Sx)#S,.(s;)=38(;) an
X5 SX<s§ j J

and these discontinuities are translated to the function R(x;e) = x —

eS(x), and therefore the equation R(x;e) = M has no unique solution

or even has no solution around the grid points s U= 1,4, This

inconvenience is solved in [19] by using an alternative set of grid points

Sj

0<5 <5 <S3=n0-5,<5,=n-5,<m,
so that SVH G = Svj (Fj) and then, the corresponding [3/2]-PP approx-
imant S(x) associated to the new grid {Fj }f=0 has no discontinuities
at the grid points and furthermore, E(x;e) =x-—e §(x) is monotonic
increasing in x € [0, ] which guarantees that R(x;e) = M has a unique
solution in x for all e € (0,1) and M € [0, x].

In this section we propose another alternative to overcome the

discontinuity problem, it is the so-called Padé-Type approximants (PT)
SV/ (x) introduced by Brezinsky [21] and defined by

3
D Ty
S, ()= S —

J 2 (12)
L+ ) Botx—v)”
=1

x € (s, Syl

where the denominator can be arbitrarily chosen, although usually its
coefficients f;, are determined by imposing some conditions on the
zeros or poles of EV/ (x), and the coefficients @;, of the numerator are
chosen so that Evj (x) attains the highest order of accuracy at x = v,
that is,

Evj(x)—sinx:(ﬂ(x—vj)p, p>4. 13)
With this condition, coefficients @, are given by

o =cpobjp,

a1 =cjobj +¢ibj0 a4

@ =Cjobjp+¢jibj +Cipbos
a3 =c;1Bjp+cppbji+ci3bo-
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Table 1
Coefficients (12) of the [3/2]-PPT based at the same points s;, v; as the PP one.
J aln Ejl a/2 513 ﬁ,] EJZ Vi
0  0.00000000  —1.00000000  —0.00000000  —-0.11628858  —0.00000000  0.05037808 O
1 077707174  —0.67457259  —0.29904036  —0.08462111 —0.05811634  0.06809716  0.89
2 1.00000000  —0.00000000  -0.41621151  —0.00000000  —0.00000000  0.08378848 £
3 077707174  -0.67457259  -0.29904036  —0.08462111  -0.05811634  0.06809716 % —0.89
4 0.00000000  —1.00000000  —0.00000000  —0.11628858  —0.00000000  0.05037808 =z
— PP3/2 — PPT3/2 eccentricity = 0.9
Error — PP3/2 — PPT3/2
EST
2.5%1076
0.00001
2.x107®
8.x107°
1.5%x1078
6.x107°
1.x1078
4.x107°
5.x 1077
2.x107°
- M
0.5 1.0 1.5 2.0 2.5 3.0
- M

Fig. 1. Errors of the PP and PPT approximations to sinx, based at the same
points s;, v; as the PP one.

where Ejg, (¢ = 0...) are the coefficients of the Taylor expansion of
sinx at x =v;,

- — = 2
sinx = Z Cip(x—vy).
£20

In our case, we choose f;; and f;, so that

EV/ (s;) =sins; )=sins (15)

7’ SV,/ (s

Jj+ j+1>

i.e., the error of the PT approximant EV/ of sinx be zero at both
ends of the irlterval [s;,5;41]- Hence the Piecewise Padé Type (PPT)
approximant S(x) to sinx is defined by

S(0) = S(r) =0, E(x)=§vj(x), x€lsys,,,) (=04

that is continuous on the whole interval x € [0, z] and with null error
at the grid points s;.

There are still two free parameters to be chosen, one at the first
subinterval [s, s;] and another one at the last subinterval [s,, s5]. In the
first subinterval, in addition to fix the denominator of EVO to EVD(S D=
sins; we impose one additional order of accuracy at x = 0 due to
the singularity of R(x;e) at x = 0 in the limit case e = I. In the
last subinterval [s4,s5 = x], to fix the denominator of §S5 =5, in
addition to E,,(zz) = sin(x) we take the condition that the first derivtive
be §:4 = cos s, i,e., a second order of accuracy at x = s,. Note that the
linear system (14) has a unique solution if s <V <s;y (see Table 1).

With these conditions the PPT approximant S(x) to sin x is continu-
ous, monotonic increasing and has no poles in x € [0, x].

In Fig. 1 we display the errors of the PP and PPT approximants to
sinx, S(x) and S(x) given by

(16)

Vi+l

Ef(x) =sinx — S(x), Ef(x) =sinx — E(x)

As we can see, the max error of the PPT approximation is signifi-
cantly smaller than the corresponding to the PP approximation. This is
caused by the fact that in the PP approximation all coefficients of the
S, are used to get the maximum accuracy at x = v; whereas, in the
PPT approximation, the errors at the ends of each interval [s j»Sj41] are

null.
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0.5 1.0 1.5 2.0 2.5 3.0
Fig. 2. Estimates (20) and (21) for e = 0.9 for all x, and X, in [0,z] (i.e. M €

[0, z]).

Another important point to be taken into account when comparing
the quality of both approximants S(x) and S(x) is the accuracy of the
two algebraic equations

R(x;e)=x—eS(x)=M, and R(x;e)=x—eSkx)=M a7z

in solving KE. Denoting by x.,. = F~!(M;e) the exact solution
of KE corresponding to the mean anomaly M and eccentricity e by
x, = RY(M;e) (respectively X, = ﬁ_l(M ;e)), the solutions of the
approximate Egs. (17), these errors are

A(X; €) = Xexaer — X Z(x§ €) = Xexact — Xa- s

Clearly the quality of the approximants S(x) and S(x) of the function
sin x should be evaluated by these errors.
To estimate the error 4 = A(x;e) observe that

0 = F(Xeyaers ©) — R(x45e) = F(x, + A;e) — R(x,;5e)

19
= F(x,e) — R(x,;e) + %(xa; e) A+ 0O(42), 19
hence, an asymptotic estimate of 4 with order O(4?) is
—F(x,;e)+ R(x,; e|-S(x,)+sinx,
EST(x )= 20w O+ RGO [ I (20)
0F /0x(x,; e) 1 —ecosx,
Similarly for x,
. —FG.e)+RE.: e|-S(x,) +sinX,
EST e = —F i) REwi0) _ [ | . @1

0F /0x(X,; e) 1 —ecosx,

Since errors and estimates both depend on the eccentricity, a com-
parison of the two approximants should be considered for the same
eccentricity. In Fig. 2 we display the estimates (20) and (21) for e = 0.9
for all x, and X, in [0,z] (i.e. M € [0,x]). This figure shows that
the PPT approximant gives smaller errors in the max norm than the
PP approximant. A similar behavior is observed for other values of
eccentricity.
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. — PP3/2 — PPT3/2
EST
0.000020
0.000015

0.000010

5.x10°¢

M

0.5 1.0 1.5 2.0 2.5 3.0

Fig. 3. Best upper bound of estimates given in Egs. (22) and (23) for the
[3/2]-PP and [3/2]-PPT aproximants.

To obtain an estimate of the error in the solution of KE that holds
true for all values of eccentricity e € (0, 1), observe that the function
sin x — S(x)

>

>0,
1 —ecosx

x €[0,x], e€ (0,1)

is a monotonic increasing function of x for all e € (0,1) hence, from
(20) there follows that the best upper bound of EST(x;e) is

sup (EST(x;¢) | e € (0,1)} = %Of(xx) = EST(x), 22)
and similarly for EST(x;e)
sup {EST(x;e) lee, 1)} - S“;%O“:(xx) =EST(x). 23)

In Fig. 3 we display the upper bounds EST(x) and EST(x) of the
estimates for the PP and PPT approximants. Again, the error in the
solution for all values of eccentricity in the case of the PPT approximant
is better than the one corresponding to the PP approximant.

3. Piecewise rational Hermite interpolation

Another alternative to the piecewise [3/2]-Padé approximant S =
S(x) of the function sin x, with x € [0, z], is to consider piecewise [3/2]
rational Hermite interpolants H = H(x). For a given grid {s ; }f=0 in
[0, ], the piecewise Hermite interpolant H = H(x) is defined in such a
way that the restriction of H(x) to the interval [s;, 5,41, G =0, ..., p=1),
denoted by H ;(x), is a [3/2] rational function, where the coefficients
are defined by a suitable Hermite interpolation of sinx in this interval
[s s Sjal 1.

Since all H,(x) are [3/2] rational functions, they can be written in
the form

N By =5t
D) 1432 by(x—s)k

Hj(x)= .,p=1) 24)

where the six coefficients (a;y, a1, aj,. a;3, b;;, bj,) are determined
by imposing suitable Hermite interpolating conditions of function sin x
in the interval [s;,s;;;]. These conditions will be defined with the
auxiliary function

@;(x;a;,bj,,) = N;j(x) — Dj(x) sinx. (25)

There are some requirements to be taken into account in this interpola-

tion. First of all we want that H = H(x) be continuous in [0, z]. Then,
there must be

H;(s;) =sins;, and  H;(s;4) =sins;y, (G =0,...,p—1). (26)
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By Eq. (24), this implies that H(s;) = ajy = sins;, forj=0,...,p—1,
and H,_(s,) = sins,; therefore Hy(s) =0)=0and H,_,(s, = 7) = 0.

We also require that H;(x) has no poles in the intervals (s;, s;4),
ie.

D;(x)#0, x€&(s;,541) 27)

Moreover, because the function F(E;e) = E — e sin E is monotonic
increasing in the variable E € [0,x] for all e € [0,1), it will be
approximated by the algebraic function Ry (E;e) = E — e H(E), with
Ry (0;e) =0 and Ry (w;e) = x.

Besides, we need that Ry (E;e) be monotonic in E € [0, z], so that
the approximate equation

Ry(E;e)=E—-e HE)=M €[0,7] (28)
has a unique solution, and this requirement holds iff
l—eH;(x)>O, x €ls;s;4] Vji=0,...p—1 (29)

Taking into account the above requirements, (26), (27) and (29), we
construct a piecewise Hermite interpolant for the symmetric grid used
in [20], in order to make a comparison between both methods. For
the first subinterval [s, = 0,s; = 536/1000], due to the singularity of
Kepler’s equation for E =0 and e = 1, we impose for the corresponding
H, = Hy(x) the six interpolating conditions at the endpoints of this
interval

d*Hy(sp)  d*(sinx)
= , (k=0,1,2,3),
o B | | (30)
d*Hy(sy) _ d*(sinx) k=01
dxk dxk =) ’ e

In terms of the auxiliary function @ of Eq. (25), the above conditions
are equivalent to

2P(s59) =0, (k=0.1,2.3), and @\(s,) =0, (k=0,1),

a linear system of equations in the unknowns g, (k = 0,1,2,3), and
bom» (m = 1,2), which has a unique solution. Indeed, in the first interval
[0, 5,], the matrix of the coefficients of the linear system (30) is

10 0 0 0 0

01 0 0 0 0

00 1 0 e—1 0

00 0 1 0 e—1 ’
10 —s2 25 s2(1 —ecoss,) —s3(ecos s s, —2s, +esins))

0 1 2s; 3s* ecoss;s;—2s, +esins; s;(ecoss;s; —3s; +2esins)

and its determinant is

det(s)) = ezs% (sy —sins, )2 #0 if s; >0.

For the remaining subintervals [sjs8;41), G = L....4), we take
for H; = H;(x) the conditions at three values of x, namely s, s;f =
(s +5541/2, and i1

d¥H (s;) gk
L N (2 )
dxk dxk _
X=5
dYH(s%)  gksi
j\S; (sin x)
= , k=0,1),
Tk | ( ) (31)
X—Sj
d*H (s}41) _ d*sin) (=0,
dxk dxk 7 e
X=Sj+1
They are equivalent to
k k 3 k
o1 s)=0, @PH=0, & s;)=0, k=01, (32)

again, these equations are linear in the unknowns a ks (k=0,1,2,3),
and by (m = 1,2), and for all j = 1,...,p — 1, they have a unique
solution because in the general case of an intermediate interval, e.g.,
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1/det(s1,52) 5

Fig. 4. The function 1/det(s,,s,) for 0 < s, < s, < 7, is positive.

[y, s,], after denoting 51, = (s +5,)/2, we get that the determinant of
the matrix of the linear system (32) is not null. Indeed, the matrix is

10 0 O 0 0

01 0 0 —sins, 0

10 —J—l —i —i(sl — s5y)cos 5T, %((sz—sl)cossf2+2sinsf2)
01 1 % %(s1 —sp)cos s}, —sin sy, }‘(s1 — sp)cos s}, —sin sy,
10 -1 -2 (s, — §,) oS 5, (s, — 51)cos s, +sin s,

01 2 3 (s;—sy)coss,—sins, (s; — $5)cos 5, —2sin s,

and its determinant

2
det(s,, s,) = -£

= ( 2sins, — sins%,)(3sins, —4sins’, +sins,)

—(s; = 5y)c08 5, ((5) — 55) COs 57, — 28in 5, +2sins},)
+(sy — s5)cos s7,(sins; —sins,) ).

(33)

It is not difficult to show graphically (Fig. 4) that if s; < s, (which is
our case), then det(s;, s,) > 0.

The above choice of Hermite’s interpolant satisfies requirements
(26), (27) and (29), i.e., the function H = H(x) is continuous in [0, z];
D;(x)# 0 forall x € [s;,5;44],  =0,....4), and 1 - eH'(x) > 0 for all
x €[0,x] and e € [0, 1), as it can be easily checked.

Similarly, as the above case, in order to find an error estimate of the
approximate solution with the piecewise Hermite interpolation (28), we
proceed as in the previous Section 2, where we obtained the estimate
of the error for the PPT approximant (21) just replacing S(x) by H(x);
then we have

e (sin E, - H(Ea))

EST-Her(E ;e) =
er(Eq: ) 1 —ecosE,

(34

where E,, is the solution of (28). Moreover, an upper bound of (36) for
all values of e € [0, 1) is reached for e = 1, that is,
sinE, — H(E,)

EST-Her(E)) =
er(Ey) 1 —cosE,

(35)

To derive optimal coefficients for the Hermite approximation, we
consider in the same way that before, five intervals, and the function
to minimize is defined by

F(s1, 50,5389 = _max_ EST-Her (E,; ),

where E,, is computed at N equidistant points in [s,_;,s,]. that
depends on the parameters s, s,, 53, 5, with s, =0, and s5 = 7.
The results of the computations for N = 100, are the following:

5, =0, s, = 54/100, s, = 120/100, s, = 182/100, s, = 246/100, and s5 = 7.

203

Acta Astronautica 241 (2026) 199-206

— PP3/2 — PPT3/2 — Her3/2
Error

2.5%107¢
2.x10°%
1.5x 1078
1.x10°°

5.x1077

1.0

1.5 2.0 2.5 3.0

Fig. 5. Errors (ErrFun
approximations to sin x.

sinx — H;(x)) of the PP, PPT and Hermite [3/2]

For the above set of grid points s;, the coefficients of the Hermite

interpolant (24) are given in Table 2.

To compare the behavior of the new Hermite optimized interpolant
with Padé and Padé Type approximants we display in Fig. 5 the
errors ErrFun = sinx — H;(x). We can see that the optimized Hermite
approximnant appears to be the best approximant in the max norm.

We see that in the max norm, the accuracy of Hermite approxima-
tion is about one order higher than the corresponding Padé approxi-
mation, and twice the Padé type one. Clearly the Padé approximation
is very accurate in a narrow neighborhood of the base point, but this
accuracy rapidly decreases for points distant to the node; however, in
Padé type and Hermite’s approximations we may control the accuracy
at several points of the interval.

In order to find an error estimate of the approximate solution with
the piecewise Hermite interpolation (28), we proceed as in the previous
Section 2 where we obtained the estimate of the error for the PPT
approximant (21) just replacing S(x) by H(x); then we have

e (sinE, — H(E,))

EST-Her(E;e) = " ocosE
a

s (36)
where E,, is the solution of (28). Moreover, an upper bound of (36) for
all values of e € [0, 1) is reached for e = 1, that is,

sinE, — H(E,)

EST-Her(E,) = ——"——
a

37)

We plot the errors in the KE solution when using three considered
approximants (PP, PPT, Hermite) for eccentricities e = 0.9 and e = 0.99
in Figures Figs. 6 and 7 respectively.

The maximum of the estimate for the three approximants is pre-
sented in Fig. 8. There follows from the previous figure that the PPT
and Hermite interpolants give similar error, and both are smaller than
the Padé’s approximant.

In Fig. 9 we plot the surfaces of the error of approximate KE
solution with two different methods: (Top) The one of Wu et al. [20]
that is a [3/2]-Padé with five intervals where the maximum of the
error is 1.92 x 1073; (Bottom) The optimized [3/2]-Hermite with five
intervals and max of error 3.17 x 107, Hermite’s approximant gives a
one significative digit more than Padé’s one, and besides, as we can
observe in the figures, overall the behavior of Hermite’s interpolant
is better than Padé’s one. Although we do not present here a plot for
Padé type solution, its behavior is very similar to the Hermite one; for
instance, the max error for PPT is 3.60 x 107.
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Table 2
Coefficients of the optimized [3/2]-Hermite interpolant.
J 4jo aj1 9 a3 b bj
0 0.00000000 1.00000000 —0.00041655 0.11551149 —0.00041655 0.05115517
1 0.51413599 0.86489922 —0.20991827 —0.08722295 0.01398569 0.06849942
2 0.93203908 0.32168494 —0.40407142 —0.00905898 —0.04363851 0.08351283
3 0.96910912 —0.34314753 —0.39182523 0.07263178 —0.09959169 0.07040895
4 0.63003062 —0.81935882 —0.22934429 0.11048430 —0.06791501 0.05231815
— PP3/2 — PPT3/2 — Her3/2 __ — PP3/2 — PPT3/2 — Her3/2
Error EST
0.000020
0.00001
8.x10°® 0.000015
6.x10°6
0.000010
4.x10°¢
o 5.x 1076
2.x10™ ﬁ
M L Y M
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 6. Errors in the solution with the Padé (blue), Padé type (red) and
Hermite (black) approximations in the interval [0, z] for the eccentricity e =
0.9. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

— PP3/2 — PPT3/2 — Her3/2
Error

0.000015
0.000010

5.%x10°¢

Mlaig__A_M

0.5 1.0 1.5 2.0 2.5 3.0

Fig. 7. Errors in the solution with the Padé (blue), Padé type (red) and
Hermite (black) approximations in the interval [0, z] for the eccentricity e =
0.99. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4. Conclusions

In this work, we have introduced new Piecewise Padé-Type (PPT)
approximations [21] for sin E, which, when substituted into the tran-
scendental Elliptic Kepler Equation (EKE),

F(E;e)=E—esinE=M,

reduce it to a cubic polynomial equation solvable in closed form. By
appropriately selecting the free parameters in the PPT denominators,
the maximum-norm error of the approximate solution is significantly
reduced compared with the traditional Piecewise Padé (PP) approx-
imants of Wu et al. [20]. Numerical experiments confirm that PPT
approximations yield substantially lower errors across the full range
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Fig. 8. Best upper bound of estimates given in Egs. (22), (23), and (37) for
the [3/2]-PP, [3/2]-PPT, and [3/2]-Hermite aproximants respectively.

of eccentricities e € (0, 1), with the greatest improvements observed for
eccentricities approaching unity.

Furthermore, the use of more general piecewise [3/2] rational
Hermite approximants to approximate F(E;e) produces cubic equations
whose solutions offer additional accuracy gains. Overall, this method-
ology provides a practical and computationally efficient approach for
improving the accuracy of EKE solvers, particularly in applications
requiring high-fidelity orbital position determination. The combina-
tion of PPT and rational Hermite approximants constitutes a versatile
framework for precise and efficient orbital computations.
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Fig. 9. Error in the domain (e, M) = (0,0.999) X [0, ] for two approximations.
(Top) The [3/2]-Padé proposed by Wu et al. [20] with five intervals. (Bottom)
The optimized [3/2] Hermite with five intervals. We can observe that the later
method is better than the former. To facilitate the comparison, we limit the
error range to 2 x 107°.

Appendix. On the [3/3]-Padé or rational [3/3]-Hermite interpo-
lations

For the problem studied, one may think to consider piecewise [3/3]-
Padé or rational [3/3]-Hermite interpolations of the function x —e sin x.
However, this turned out to be not a good idea. Indeed, in the case of
the [3/3]-Hermite, the interpolant H(x) is given by

ay + arx + ayx? + azx3

Hx) = ;
& 1+ byx + byx? + byx3

the linear system in the coefficients a;, b; arising from the conditions
of interpolation to the function (x — esinx) corresponds to a matrix
M(s;,s;41,€) € My, ; which determinant has the expression

det([T/I\(sj,st,e)) =é (Co(sj,sj+1) +e Cl(sj,sj+1)) .

Therefore, if there exists a pair of values s; and s;,, such that
the eccentricity e*(s;,s;.1) = —Cy(s;,5,41)/Ci(s;,5541) € (0, 1), then
det(ﬁl\ ) = 0 and the coefficients a;, b; of the [3/3]-Hermite interpolant
are not defined.

In particular, if s 41 =7 (e, in the last interval), it can be seen that
for all s; < z, there always exists a value of the eccentricity e* € (0, 1)

such that det(f\/l\(sj,n, ")) = 0. In fact, taking s; = = — a, with a > 0,
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e*(r—a,n)
0.50

0.49+
0.48
0.47
0.46
0.45
0.44¢

0.43

Fig. A.10. Plot of the e*(x — a, ) for a € [0, 1].

the matrix M (r —a, r,e) is given by (where 1\/4\, indicates the ith-row of

M, = {1,0,0,0,0,0,0}

M, = {0,1,0,0,esin(a) + a — x,0,0}

_ P

My = {1,0,0, 1. 2 esin(2), 32 (aesin(2) +decos(2) +4).
61—4((8—a2)esin(§)—4(2aecos(‘—2’)+a+2”)) )

M\4 = { 0, 1,0,—%, f((a2 +4)sin(§) + 2a005(§)) +a
—%(aesin(g)+6ecos(§)+6),
L((@ — 12)esin(2) + 10 aecos(2) +4(a + 31)) }

M = {0.0.1,3, 5 (aesin($) + decos() +4). (8 = aesin()
—aecos(g) - % -7,
(24— aPesin($) - 2(aecos($) + 27) }

Mg = {1,0,.-1,-2,a(c + 1),ae + a+ . ae + a + 27}

M; = {0,1,2,3,—a(e + 1) — x,—a(e + 1) = 27, —a(e + 1) = 3x}.

In Fig. A.10 we plot the function e*(x—a, =) for a € [0, 1], and we can
see that the values of the eccentricity e*(x — a, z) € (0, 1), and therefore
the matrix M is singular.

Something similar happens for [3/3]-PP and [3/3]-PPT interpola-
tions.
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