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 A B S T R A C T

Accurate and efficient solution of the Elliptic Kepler Equation (EKE) is fundamental in orbital mechanics and 
spacecraft trajectory analysis. In this work, we present a family of piecewise rational approximations for solving 
the EKE,
𝐹 (𝐸; 𝑒) ≡ 𝐸 − 𝑒 sin𝐸 = 𝑀,

based on Padé and Hermite-type formulations. The proposed approaches replaces the transcendental term 
sin𝐸 with Hermite and Piecewise Padé-Type (PPT) approximants, the later originally introduced by Brezinski, 
providing higher accuracy than the traditional Piecewise Padé (PP) method of Wu et al. without increasing 
computational cost. With these approximants, the resulting rational form reduces the EKE to a cubic equation 
that can be solved analytically, making it suitable for onboard implementations or large-scale orbit propagation 
tasks. Numerical experiments demonstrate that the PPT-based solution significantly improves accuracy for 
moderate and high eccentricities, including near-parabolic cases. Additionally, optimized parameter selection 
in general [3/2] rational representations yields further accuracy gains. These results show that the proposed 
piecewise rational method offers a reliable and computationally efficient alternative for precise orbital position 
determination across a wide range of eccentricities.
1. Introduction

The approximate solution of the elliptic Kepler’s Equation (KE) 

𝐹 (𝐸; 𝑒) ≡ 𝐸 − 𝑒 sin𝐸 = 𝑀 (1)

that defines uniquely the eccentric anomaly 𝐸 of an elliptic orbit with 
eccentricity 𝑒 ∈ (0, 1) as a function of the mean anomaly 𝑀 has been 
the subject of research along several centuries [1,2].

A usual way for solving KE is based on non-linear iterative solvers 
such as Newton–Raphson or higher order methods [2–5] together with 
an optimal starter to guarantee the accuracy and the convergence of the 
solution of (1) with the minimum computational cost; see e.g. [6–10] 
and references therein.

An alternative approach to solve KE has been recently proposed 
by Philcox et al. [11]. By using a classical theorem in complex anal-
ysis [12] it is possible to express the solution of Eq. (1) for a given 
𝑀 as a quotient of two contour integrals along a Jordan curve of the 
complex plane that contains the unique real root corresponding to this 
𝑀 and no other zeroes of Eq. (1). A further improvement of this method 
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is given in [13] by using ellipses as Jordan curves and by computing 
the quadratures by the composite trapezoidal rule.

A different approach to solve the KE consists in replacing the tran-
scendental function 𝐹 (𝐸; 𝑒) in Eq. (1) by a rational function 𝑅(𝐸;𝑀, 𝑒)
in 𝐸 of type 

𝑅(𝐸;𝑀, 𝑒) =
𝛼0 + 𝛼1𝐸 + 𝛼2𝐸2 + 𝛼3𝐸3

1 + 𝛽1𝐸 + 𝛽2𝐸2 + 𝛽3𝐸3
, (2)

with 𝛼𝑗 = 𝛼𝑗 (𝑀, 𝑒) and 𝛽𝑗 = 𝛽𝑗 (𝑀, 𝑒) so that the Eq. (1) is approximated 
by 

𝑅(𝐸;𝑀, 𝑒) = 𝑀, with 𝑀 ∈ [0, 𝜋], 𝑒 ∈ (0, 1) (3)

that is equivalent to a cubic equation in the eccentric anomaly 𝐸 and 
can be solved exactly by quadratures. Thus, Markley [3] by using a 
[3∕2]-Padé approximation 𝛺(𝐸) to sin𝐸 considers function 𝑅(𝐸; 𝑒) =
𝐸 − 𝑒𝛺(𝐸)  that is of the type (2) and the solution of (3) refined by an 
additional iteration gives a highly accurate solution of (1).
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Lynden-Bell [14] proposes as approximation of 𝐹 (𝐸; 𝑒) a rational 
function in 𝐸 of the type 

𝑅 = 𝑅(𝐸;𝑀, 𝑒) = 𝐸 − 𝑒 𝐸
[

1 − 𝐸2 𝜙1

1 + 𝐸2 𝜙2

]

𝜙3, (4)

with suitable functions 𝜙1 = 𝜙1(𝑀), 𝜙2 = 𝜙2(𝑀, 𝑒) and 𝜙3 = 𝜙3(𝑀, 𝑒)
obtained by imposing some requirements so that the solution of Eq. (3) 
with 𝑅 given by (4) provides an accurate approximation to the exact 
solution of (1).

Mikkola [15] formulates KE in terms of the auxiliary variable 𝑠 =
sin(𝐸∕3) and then approximates by a cubic equation in 𝑠 whose solution 
is a good approach to the solution of (1).

It is interesting to mention that the elliptic Kepler Eq. (1) for the 
limit eccentricity 𝑒 = 1

𝐹 (𝐸; 1) = 𝐸 − sin𝐸 = 𝑀, 𝑀 ∈ [0, 𝜋], (5)

is equivalent to the transcendental equation that appears in the ho-
mologous collapse radial evolution in time (see e.g. [16–19]) given by 

𝑥 + sin 𝑥 = 𝑦, 𝑦 ∈ [0, 𝜋], (6)

upon the changes 𝐸 → 𝜋 − 𝑥, 𝑀 → 𝜋 − 𝑦. Therefore, some results for 
the approximate solution of Eq. (6) can be applied also to the solution 
of KE (1).

In a recent paper [20], Wu and collaborators propose to take as 
rational function (2)
𝑅(𝐸; 𝑒) = 𝐸 − 𝑒 𝑆(𝐸), (7)

where 𝑆(𝐸) is a piecewise [3∕2]-Padé approximation of sin𝐸 in [0, 𝜋]. 
Then, the exact solution of (1), 𝐸 = 𝐸(𝑀 ; 𝑒) = 𝐹−1(𝑀 ; 𝑒) is approxi-
mated by the exact solution of 𝑅(𝐸; 𝑒) = 𝑀 , that is, by 𝐸𝑎 = 𝐸𝑎(𝑀 ; 𝑒)
that can be obtained by solving a cubic equation. Additionally, the 
accuracy of 𝐸𝑎 can be improved by one (or more) iterations of the 
Schröder method of suitable order.

The aim of this paper is two-fold. First of all we propose new 
Piecewise [3∕2]-Padé-Type (PPT) approximants to sin𝐸 that are more 
convenient than the Piecewise Padé (PP) approximants considered by 
Wu et al. [20]. Recall that the so-called Padé-Type approximants [21,
22] have some flexibilities that do not have the pure Padé approximants 
that can be used to get 1 continuity and better accuracy in our prob-
lem. Moreover, we observe that in solving KE with (7), our main target 
is not the accuracy of the approximation of sin𝐸, but the difference 
𝐹−1(𝑀 ; 𝑒)−𝑅−1(𝑀 ; 𝑒) between the exact and the approximate solutions 
of KE. All these points will be considered in detail in Section 2.

Secondly, in Section 3 we study more general piecewise rational 
approximants that are defined by Hermite interpolants. This allows us 
a further improvement of the accuracy that will be confirmed with the 
results of numerical experiments.

Finally, in Appendix we show that the use of [3/3]-Padé or rational 
[3/3]-Hermite interpolations for the function 𝑥 − 𝑒 sin 𝑥 is not recom-
mended because there are singularities in the process of finding the 
coefficients.

2. Approximating the function 𝐬𝐢𝐧𝑬 in KE by means of Padé ap-
proximant.

In this section we will use 𝑥 instead of the eccentric anomaly 
𝐸 to connect with standard notations in approximation theory, 𝑥 =
𝐹−1(𝑀 ; 𝑒). To refine the meaning of Piecewise Padé (PP) approximant 
to the function 𝑔(𝑥) = sin 𝑥, with 𝑥 ∈ [0, 𝜋], we will say that 𝑆(𝑥) is a 
[3∕2]-PP approximant of 𝑔(𝑥) if there exists a grid {𝑠𝑗

}𝑘
𝑗=0 in [0, 𝜋]

0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑘 = 𝜋,

with 𝑆(0) = 𝑔(0), 𝑆(𝜋) = 𝑔(𝜋), and the restriction of 𝑆(𝑥) at each 
interval (𝑠 , 𝑠 ] is the [3∕2]-Padé approximant 𝑆 (𝑥) of 𝑔(𝑥) at some 
𝑗 𝑗+1 𝜈𝑗
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base point 𝜈𝑗 ∈ [𝑠𝑗 , 𝑠𝑗+1]. Hence, 𝑆(𝑥) is given by 𝑆(0) = 𝑆(𝜋) = 0, and 
𝑆(𝑥) = 𝑆𝜈𝑗 (𝑥) if 𝑥 ∈ (𝑠𝑗 , 𝑠𝑗+1] for 0 ≤ 𝑗 ≤ 𝑘 − 1.

Clearly the [3∕2]-PP approximant depends on both the grid points 
𝑠𝑗 , (1 ≤ 𝑗 ≤ 𝑘 − 1), and base points 𝜈𝑗 , (0 ≤ 𝑗 ≤ 𝑘 − 1). According 
to Brezinsky [21], if the approximant 𝑆𝜈𝑗 (𝑥) at base point 𝑥 = 𝜈𝑗 , is 
defined by 

𝑆𝜈𝑗 (𝑥) =

3
∑

𝓁=0
𝛼𝑗𝓁(𝑥 − 𝜈𝑗 )𝓁

1 +
2
∑

𝓁=1
𝛽𝑗𝓁(𝑥 − 𝜈𝑗 )𝓁

, 𝑥 ∈ (𝑠𝑗 , 𝑠𝑗+1], (8)

the six coefficients 𝛼𝑗𝓁 (𝓁 = 0, 1, 2, 3) and 𝛽𝑗𝑘 (𝑘 = 1, 2) of 𝑆𝜈𝑗 (𝑥) are 
uniquely determined by the condition 
𝑆𝜈𝑗 (𝑥) − sin 𝑥 = 

(

𝑥 − 𝜈𝑗
)𝑝, 𝑝 ≥ 6. (9)

Because of the symmetry of sin 𝑥 in 𝑥 ∈ [0, 𝜋] with respect to the 
midpoint 𝑥 = 𝜋∕2, Wu and collaborators [20] take 𝑘 = 5 and select 
the base and grid points with the symmetry conditions
𝑠0 = 0, 𝑠𝑗 + 𝑠5−𝑗 = 𝜋, (𝑗 = 0, 1, 2), 𝜈0 = 0, 𝜈𝑗 + 𝜈4−𝑗 = 𝜋, (𝑗 = 0, 1, 2).

Hence, there are only three parameters 0 < 𝑠1 < 𝑠2 < 𝜋∕2 and 
𝜈1 ∈ [𝑠1, 𝑠2] to be chosen so that minimize the max error ‖ sin 𝑥−𝑆(𝑥)‖∞
obtaining the values 
𝑠1 = 0.536, 𝑠2 = 1.241, 𝜈1 = 0.890, (10)

and then, the max norm ‖ sin 𝑥 − 𝑆(𝑥)‖∞ ≃ 2.171 × 10−6.
As remarked in [19] a drawback of the PP-approximant 𝑆(𝑥) with 

the parameters (10) is that it may have discontinuities at the grid points 
𝑠𝑗 , (𝑗 = 1,… , 4) because 

𝑆𝜈𝑗−1 (𝑠𝑗 ) = lim
𝑥→𝑠𝑗 ,𝑥<𝑠𝑗

𝑆(𝑥) ≠ 𝑆𝜈𝑗 (𝑠𝑗 ) = 𝑆(𝑠𝑗 ) (11)

and these discontinuities are translated to the function 𝑅(𝑥; 𝑒) = 𝑥 −
𝑒𝑆(𝑥), and therefore the equation 𝑅(𝑥; 𝑒) = 𝑀 has no unique solution 
or even has no solution around the grid points 𝑠𝑗 , (𝑗 = 1,… , 4). This 
inconvenience is solved in [19] by using an alternative set of grid points 
𝑠𝑗

0 < 𝑠̃1 < 𝑠̃2 < 𝑠̃3 = 𝜋 − 𝑠̃2 < 𝑠̃4 = 𝜋 − 𝑠̃1 < 𝜋,

so that 𝑆𝜈𝑗−1 (𝑠̃𝑗 ) = 𝑆𝜈𝑗 (𝑠̃𝑗 ) and then, the corresponding [3∕2]-PP approx-
imant 𝑆(𝑥) associated to the new grid {𝑠̃𝑗

}𝑘
𝑗=0 has no discontinuities 

at the grid points and furthermore, 𝑅(𝑥; 𝑒) = 𝑥 − 𝑒 𝑆(𝑥) is monotonic 
increasing in 𝑥 ∈ [0, 𝜋] which guarantees that 𝑅(𝑥; 𝑒) = 𝑀 has a unique 
solution in 𝑥 for all 𝑒 ∈ (0, 1) and 𝑀 ∈ [0, 𝜋].

In this section we propose another alternative to overcome the 
discontinuity problem, it is the so-called Padé-Type approximants (PT) 
𝑆𝜈𝑗 (𝑥) introduced by Brezinsky [21] and defined by 

𝑆𝜈𝑗 (𝑥) =

3
∑

𝓁=0
𝛼𝑗𝓁(𝑥 − 𝜈𝑗 )𝓁

1 +
2
∑

𝓁=1
𝛽𝑗𝓁(𝑥 − 𝜈𝑗 )𝓁

, 𝑥 ∈ (𝑠𝑗 , 𝑠𝑗+1], (12)

where the denominator can be arbitrarily chosen, although usually its 
coefficients 𝛽𝑗𝓁 are determined by imposing some conditions on the 
zeros or poles of 𝑆𝜈𝑗 (𝑥), and the coefficients 𝛼𝑗𝓁 of the numerator are 
chosen so that 𝑆𝜈𝑗 (𝑥) attains the highest order of accuracy at 𝑥 = 𝜈𝑗 , 
that is, 
𝑆𝜈𝑗 (𝑥) − sin 𝑥 = 

(

𝑥 − 𝜈𝑗
)𝑝, 𝑝 ≥ 4. (13)

With this condition, coefficients 𝛼𝑗𝓁 are given by 
𝛼𝑗0 = 𝑐𝑗0𝛽𝑗0,
𝛼𝑗1 = 𝑐𝑗0𝛽𝑗1 + 𝑐𝑗1𝛽𝑗0,
𝛼𝑗2 = 𝑐𝑗0𝛽𝑗2 + 𝑐𝑗1𝛽𝑗1 + 𝑐𝑗2𝛽𝑗0,

(14)
𝛼̄𝑗3 = 𝑐𝑗1𝛽𝑗2 + 𝑐𝑗2𝛽𝑗1 + 𝑐𝑗3𝛽𝑗0.
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Table 1
Coefficients (12) of the [3/2]-PPT based at the same points 𝑠𝑖, 𝜈𝑖 as the PP one.
 𝑗 𝛼𝑗0 𝛼𝑗1 𝛼𝑗2 𝛼𝑗3 𝛽𝑗1 𝛽𝑗2 𝜈𝑗  
 0 0.00000000 −1.00000000 −0.00000000 −0.11628858 −0.00000000 0.05037808 0  
 1 0.77707174 −0.67457259 −0.29904036 −0.08462111 −0.05811634 0.06809716 0.89  
 2 1.00000000 −0.00000000 −0.41621151 −0.00000000 −0.00000000 0.08378848 𝜋

2
 

 3 0.77707174 −0.67457259 −0.29904036 −0.08462111 −0.05811634 0.06809716 𝜋
2
−0.89 

 4 0.00000000 −1.00000000 −0.00000000 −0.11628858 −0.00000000 0.05037808 𝜋  
Fig. 1. Errors of the PP and PPT approximations to sin 𝑥, based at the same 
points 𝑠𝑖, 𝜈𝑖 as the PP one.

where 𝑐𝑗𝓁 , (𝓁 = 0…) are the coefficients of the Taylor expansion of 
sin 𝑥 at 𝑥 = 𝜈𝑗 ,

sin 𝑥 =
∑

𝓁≥0
𝑐𝑗𝓁(𝑥 − 𝜈𝑗 )𝓁 .

In our case, we choose 𝛽𝑗1 and 𝛽𝑗2 so that 

𝑆𝜈𝑗 (𝑠𝑗 ) = sin 𝑠𝑗 , 𝑆𝜈𝑗 (𝑠𝑗+1) = sin 𝑠𝑗+1, (15)

i.e., the error of the PT approximant 𝑆𝜈𝑗  of sin 𝑥 be zero at both 
ends of the interval [𝑠𝑗 , 𝑠𝑗+1]. Hence the Piecewise Padé Type (PPT) 
approximant 𝑆̄(𝑥) to sin 𝑥 is defined by 
𝑆(0) = 𝑆(𝜋) = 0, 𝑆(𝑥) = 𝑆𝜈𝑗 (𝑥), 𝑥 ∈ [𝑠𝜈𝑗 , 𝑠𝜈𝑗+1 ], (𝑗 = 0,… , 4) (16)

that is continuous on the whole interval 𝑥 ∈ [0, 𝜋] and with null error 
at the grid points 𝑠𝑗 .

There are still two free parameters to be chosen, one at the first 
subinterval [𝑠0, 𝑠1] and another one at the last subinterval [𝑠4, 𝑠5]. In the 
first subinterval, in addition to fix the denominator of 𝑆𝜈0  to 𝑆𝜈0 (𝑠1) =
sin 𝑠1 we impose one additional order of accuracy at 𝑥 = 0 due to 
the singularity of 𝑅(𝑥; 𝑒) at 𝑥 = 0 in the limit case 𝑒 = 1. In the 
last subinterval [𝑠4, 𝑠5 = 𝜋], to fix the denominator of 𝑆𝑠5 = 𝑆𝜋 , in 
addition to 𝑆𝜋 (𝜋) = sin(𝜋) we take the condition that the first derivtive 
be 𝑆′

𝑠4
= cos 𝑠4, i,e., a second order of accuracy at 𝑥 = 𝑠4. Note that the 

linear system (14) has a unique solution if 𝑠𝑗 < 𝜈𝑗 < 𝑠𝑗+1 (see Table  1).
With these conditions the PPT approximant 𝑆(𝑥) to sin 𝑥 is continu-

ous, monotonic increasing and has no poles in 𝑥 ∈ [0, 𝜋].
In Fig.  1 we display the errors of the PP and PPT approximants to 

sin 𝑥, 𝑆(𝑥) and 𝑆(𝑥) given by
𝐄𝑓 (𝑥) = sin 𝑥 − 𝑆(𝑥), 𝐄𝑓 (𝑥) = sin 𝑥 − 𝑆(𝑥)

As we can see, the max error of the PPT approximation is signifi-
cantly smaller than the corresponding to the PP approximation. This is 
caused by the fact that in the PP approximation all coefficients of the 
𝑆𝜈𝑗  are used to get the maximum accuracy at 𝑥 = 𝜈𝑗 whereas, in the 
PPT approximation, the errors at the ends of each interval [𝑠𝑗 , 𝑠𝑗+1] are 
null.
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Fig. 2. Estimates (20) and (21) for 𝑒 = 0.9 for all 𝑥𝑎 and 𝑥𝑎 in [0, 𝜋] (i.e. 𝑀 ∈
[0, 𝜋]).

Another important point to be taken into account when comparing 
the quality of both approximants 𝑆(𝑥) and 𝑆(𝑥) is the accuracy of the 
two algebraic equations 

𝑅(𝑥; 𝑒) = 𝑥 − 𝑒 𝑆(𝑥) = 𝑀, and 𝑅(𝑥; 𝑒) = 𝑥 − 𝑒 𝑆(𝑥) = 𝑀 (17)

in solving KE. Denoting by 𝑥exact = 𝐹−1(𝑀 ; 𝑒) the exact solution 
of KE corresponding to the mean anomaly 𝑀 and eccentricity 𝑒 by 
𝑥𝑎 = 𝑅−1(𝑀 ; 𝑒) (respectively 𝑥𝑎 = 𝑅

−1
(𝑀 ; 𝑒)), the solutions of the 

approximate Eqs. (17), these errors are 

𝛥(𝑥; 𝑒) = 𝑥exact − 𝑥𝑎, 𝛥(𝑥; 𝑒) = 𝑥exact − 𝑥𝑎. (18)

Clearly the quality of the approximants 𝑆(𝑥) and 𝑆(𝑥) of the function 
sin 𝑥 should be evaluated by these errors.

To estimate the error 𝛥 = 𝛥(𝑥; 𝑒) observe that 
0 = 𝐹 (𝑥exact ; 𝑒) − 𝑅(𝑥𝑎; 𝑒) = 𝐹 (𝑥𝑎 + 𝛥; 𝑒) − 𝑅(𝑥𝑎; 𝑒)
= 𝐹 (𝑥𝑎; 𝑒) − 𝑅(𝑥𝑎; 𝑒) +

𝜕𝐹
𝜕𝑥

(𝑥𝑎; 𝑒) 𝛥 + (𝛥2),
(19)

hence, an asymptotic estimate of 𝛥 with order (𝛥2) is 

𝐸𝑆𝑇 (𝑥𝑎; 𝑒) =
−𝐹 (𝑥𝑎; 𝑒) + 𝑅(𝑥𝑎; 𝑒)

𝜕𝐹∕𝜕𝑥(𝑥𝑎; 𝑒)
=

𝑒
[

−𝑆(𝑥𝑎) + sin 𝑥𝑎
]

1 − 𝑒 cos 𝑥𝑎
. (20)

Similarly for 𝑥𝑎

𝐸𝑆𝑇 (𝑥𝑎; 𝑒) =
−𝐹 (𝑥𝑎; 𝑒) + 𝑅(𝑥𝑎; 𝑒)

𝜕𝐹∕𝜕𝑥(𝑥𝑎; 𝑒)
=

𝑒
[

−𝑆(𝑥𝑎) + sin 𝑥𝑎
]

1 − 𝑒 cos 𝑥𝑎
. (21)

Since errors and estimates both depend on the eccentricity, a com-
parison of the two approximants should be considered for the same 
eccentricity. In Fig.  2 we display the estimates (20) and (21) for 𝑒 = 0.9
for all 𝑥𝑎 and 𝑥𝑎 in [0, 𝜋] (i.e. 𝑀 ∈ [0, 𝜋]). This figure shows that 
the PPT approximant gives smaller errors in the max norm than the 
PP approximant. A similar behavior is observed for other values of 
eccentricity.
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Fig. 3. Best upper bound of estimates given in Eqs. (22) and (23) for the 
[3/2]-PP and [3/2]-PPT aproximants.

To obtain an estimate of the error in the solution of KE that holds 
true for all values of eccentricity 𝑒 ∈ (0, 1), observe that the function
sin 𝑥 − 𝑆(𝑥)
1 − 𝑒 cos 𝑥

≥ 0, 𝑥 ∈ [0, 𝜋], 𝑒 ∈ (0, 1)

is a monotonic increasing function of 𝑥 for all 𝑒 ∈ (0, 1) hence, from 
(20) there follows that the best upper bound of 𝐸𝑆𝑇 (𝑥; 𝑒) is 

sup {𝐸𝑆𝑇 (𝑥; 𝑒) ∣ 𝑒 ∈ (0, 1)} =
sin 𝑥 − 𝑆(𝑥)
1 − cos 𝑥

≡ 𝐸𝑆𝑇 (𝑥) , (22)

and similarly for 𝐸𝑆𝑇 (𝑥; 𝑒)

sup
{

𝐸𝑆𝑇 (𝑥; 𝑒) ∣ 𝑒 ∈ (0, 1)
}

=
sin 𝑥 − 𝑆(𝑥)
1 − cos 𝑥

≡ 𝐸𝑆𝑇 (𝑥) . (23)

In Fig.  3 we display the upper bounds 𝐸𝑆𝑇 (𝑥) and 𝐸𝑆𝑇 (𝑥) of the 
estimates for the PP and PPT approximants. Again, the error in the 
solution for all values of eccentricity in the case of the PPT approximant 
is better than the one corresponding to the PP approximant.

3. Piecewise rational Hermite interpolation

Another alternative to the piecewise [3∕2]-Padé approximant 𝑆 =
𝑆(𝑥) of the function sin 𝑥, with 𝑥 ∈ [0, 𝜋], is to consider piecewise [3∕2]
rational Hermite interpolants 𝐻 = 𝐻(𝑥). For a given grid {𝑠𝑗

}𝑝
𝑗=0 in 

[0, 𝜋], the piecewise Hermite interpolant 𝐻 = 𝐻(𝑥) is defined in such a 
way that the restriction of 𝐻(𝑥) to the interval [𝑠𝑗 , 𝑠𝑗+1], (𝑗 = 0,… , 𝑝−1), 
denoted by 𝐻𝑗 (𝑥), is a [3∕2] rational function, where the coefficients 
are defined by a suitable Hermite interpolation of sin 𝑥 in this interval 
[𝑠𝑗 , 𝑠𝑗+1].

Since all 𝐻𝑗 (𝑥) are [3∕2] rational functions, they can be written in 
the form 

𝐻𝑗 (𝑥) =
𝑁𝑗 (𝑥)
𝐷𝑗 (𝑥)

≡
∑3

𝑘=0 𝑎𝑗𝑘(𝑥 − 𝑠𝑗 )𝑘

1 +
∑2

𝑘=1 𝑏𝑗𝑘(𝑥 − 𝑠𝑗 )𝑘
, (𝑗 = 0,… , 𝑝 − 1) (24)

where the six coefficients (𝑎𝑗0, 𝑎𝑗1, 𝑎𝑗2, 𝑎𝑗3, 𝑏𝑗1, 𝑏𝑗2) are determined 
by imposing suitable Hermite interpolating conditions of function sin 𝑥
in the interval [𝑠𝑗 , 𝑠𝑗+1]. These conditions will be defined with the 
auxiliary function 

𝛷𝑗 (𝑥; 𝑎𝑗𝑙 , 𝑏𝑗𝑚) ≡ 𝑁𝑗 (𝑥) −𝐷𝑗 (𝑥) sin 𝑥. (25)

There are some requirements to be taken into account in this interpola-
tion. First of all we want that 𝐻 = 𝐻(𝑥) be continuous in [0, 𝜋]. Then, 
there must be 
𝐻 (𝑠 ) = sin 𝑠 ,  and 𝐻 (𝑠 ) = sin 𝑠 , (𝑗 = 0,… , 𝑝 − 1). (26)
𝑗 𝑗 𝑗 𝑗 𝑗+1 𝑗+1

202 
By Eq. (24), this implies that 𝐻𝑗 (𝑠𝑗 ) = 𝑎𝑗0 = sin 𝑠𝑗 , for 𝑗 = 0,… , 𝑝 − 1, 
and 𝐻𝑝−1(𝑠𝑝) = sin 𝑠𝑝; therefore 𝐻0(𝑠0 = 0) = 0 and 𝐻𝑝−1(𝑠𝑝 = 𝜋) = 0.

We also require that 𝐻𝑗 (𝑥) has no poles in the intervals (𝑠𝑗 , 𝑠𝑗+1), 
i.e. 
𝐷𝑗 (𝑥) ≠ 0, 𝑥 ∈ (𝑠𝑗 , 𝑠𝑗+1). (27)

Moreover, because the function 𝐹 (𝐸; 𝑒) = 𝐸 − 𝑒 sin𝐸 is monotonic 
increasing in the variable 𝐸 ∈ [0, 𝜋] for all 𝑒 ∈ [0, 1), it will be 
approximated by the algebraic function 𝑅𝐻 (𝐸; 𝑒) = 𝐸 − 𝑒 𝐻(𝐸), with 
𝑅𝐻 (0; 𝑒) = 0 and 𝑅𝐻 (𝜋; 𝑒) = 𝜋.

Besides, we need that 𝑅𝐻 (𝐸; 𝑒) be monotonic in 𝐸 ∈ [0, 𝜋], so that 
the approximate equation 
𝑅𝐻 (𝐸; 𝑒) = 𝐸 − 𝑒 𝐻(𝐸) = 𝑀 ∈ [0, 𝜋] (28)

has a unique solution, and this requirement holds iff 
1 − 𝑒 𝐻 ′

𝑗 (𝑥) > 0, 𝑥 ∈ [𝑠𝑗 , 𝑠𝑗+1], ∀ 𝑗 = 0,… , 𝑝 − 1. (29)

Taking into account the above requirements, (26), (27) and (29), we 
construct a piecewise Hermite interpolant for the symmetric grid used 
in [20], in order to make a comparison between both methods. For 
the first subinterval [𝑠0 = 0, 𝑠1 = 536∕1000], due to the singularity of 
Kepler’s equation for 𝐸 = 0 and 𝑒 = 1, we impose for the corresponding 
𝐻0 = 𝐻0(𝑥) the six interpolating conditions at the endpoints of this 
interval 
𝑑𝑘𝐻0(𝑠0)

𝑑𝑥𝑘
=

𝑑𝑘(sin 𝑥)
𝑑𝑥𝑘

|

|

|

|

|𝑥=𝑠0

, (𝑘 = 0, 1, 2, 3),

𝑑𝑘𝐻0(𝑠1)
𝑑𝑥𝑘

=
𝑑𝑘(sin 𝑥)
𝑑𝑥𝑘

|

|

|

|

|𝑥=𝑠1

, (𝑘 = 0, 1).
(30)

In terms of the auxiliary function 𝛷 of Eq. (25), the above conditions 
are equivalent to
𝛷(𝑘)

0 (𝑠0) = 0, (𝑘 = 0, 1, 2, 3), and 𝛷(𝑘)
0 (𝑠1) = 0, (𝑘 = 0, 1),

a linear system of equations in the unknowns 𝑎0𝑘, (𝑘 = 0, 1, 2, 3), and 
𝑏0𝑚, (𝑚 = 1, 2), which has a unique solution. Indeed, in the first interval 
[0, 𝑠1], the matrix of the coefficients of the linear system (30) is
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 𝑒 − 1 0
0 0 0 1 0 𝑒 − 1
1 0 −𝑠21 −2𝑠31 𝑠21(1 − 𝑒 cos 𝑠1) −𝑠21(𝑒 cos 𝑠1𝑠1 − 2𝑠1 + 𝑒 sin 𝑠1)
0 1 2𝑠1 3𝑠21 𝑒 cos 𝑠1𝑠1 − 2𝑠1 + 𝑒 sin 𝑠1 𝑠1(𝑒 cos 𝑠1𝑠1 − 3𝑠1 + 2𝑒 sin 𝑠1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and its determinant is
det(𝑠1) = 𝑒2𝑠21

(

𝑠1 − sin 𝑠1
)2 ≠ 0  if 𝑠1 > 0.

For the remaining subintervals [𝑠𝑗 , 𝑠𝑗+1], (𝑗 = 1,… , 4), we take 
for 𝐻𝑗 = 𝐻𝑗 (𝑥) the conditions at three values of 𝑥, namely 𝑠𝑗 , 𝑠∗𝑗 =
(𝑠𝑗 + 𝑠𝑗+1)∕2, and 𝑠𝑗+1: 
𝑑𝑘𝐻𝑗 (𝑠𝑗 )

𝑑𝑥𝑘
=

𝑑𝑘(sin 𝑥)
𝑑𝑥𝑘

|

|

|

|

|𝑥=𝑠𝑗

, (𝑘 = 0, 1),

𝑑𝑘𝐻𝑗 (𝑠∗𝑗 )

𝑑𝑥𝑘
=

𝑑𝑘(sin 𝑥)
𝑑𝑥𝑘

|

|

|

|

|𝑥=𝑠∗𝑗

, (𝑘 = 0, 1),

𝑑𝑘𝐻𝑗 (𝑠𝑗+1)
𝑑𝑥𝑘

=
𝑑𝑘(sin 𝑥)
𝑑𝑥𝑘

|

|

|

|

|𝑥=𝑠𝑗+1

, (𝑘 = 0, 1).

(31)

They are equivalent to 
𝛷(𝑘)

𝑗 (𝑠𝑗 ) = 0, 𝛷(𝑘)
0 (𝑠∗𝑗 ) = 0, 𝛷(𝑘)

𝑗 (𝑠𝑗+1) = 0, (𝑘 = 0, 1), (32)

again, these equations are linear in the unknowns 𝑎𝑗𝑘, (𝑘 = 0, 1, 2, 3), 
and 𝑏𝑗𝑚, (𝑚 = 1, 2), and for all 𝑗 = 1,… , 𝑝 − 1, they have a unique 
solution because in the general case of an intermediate interval, e.g., 



M. Calvo et al. Acta Astronautica 241 (2026) 199–206 
Fig. 4. The function 1∕det(𝑠1, 𝑠2) for 0 < 𝑠1 < 𝑠2 < 𝜋, is positive.

[𝑠1, 𝑠2], after denoting 𝑠∗12 = (𝑠1 + 𝑠2)∕2, we get that the determinant of 
the matrix of the linear system (32) is not null. Indeed, the matrix is
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 − sin 𝑠1 0
1 0 − 1

4
− 1

4
− 1

4
(𝑠1 − 𝑠2) cos 𝑠∗12

1
8

(

(𝑠2 − 𝑠1) cos 𝑠∗12 + 2 sin 𝑠∗12
)

0 1 1 3
4

1
2
(𝑠1 − 𝑠2) cos 𝑠∗12 − sin 𝑠∗12

1
4
(𝑠1 − 𝑠2) cos 𝑠∗12 − sin 𝑠∗12

1 0 −1 −2 (𝑠2 − 𝑠1) cos 𝑠2 (𝑠2 − 𝑠1) cos 𝑠2 + sin 𝑠2
0 1 2 3 (𝑠1 − 𝑠2) cos 𝑠2 − sin 𝑠2 (𝑠1 − 𝑠2) cos 𝑠2 − 2 sin 𝑠2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and its determinant 

det(𝑠1, 𝑠2) = − 𝑒2

32

(

2(sin 𝑠2 − sin 𝑠∗12)(3 sin 𝑠1 − 4 sin 𝑠∗12 + sin 𝑠2)

− (𝑠1 − 𝑠2) cos 𝑠2
(

(𝑠1 − 𝑠2) cos 𝑠∗12 − 2 sin 𝑠1 + 2 sin 𝑠∗12
)

+ (𝑠1 − 𝑠2) cos 𝑠∗12(sin 𝑠1 − sin 𝑠2)
)

.

(33)

It is not difficult to show graphically (Fig.  4) that if 𝑠1 < 𝑠2 (which is 
our case), then det(𝑠1, 𝑠2) > 0.

The above choice of Hermite’s interpolant satisfies requirements 
(26), (27) and (29), i.e., the function 𝐻 = 𝐻(𝑥) is continuous in [0, 𝜋]; 
𝐷𝑗 (𝑥) ≠ 0 for all 𝑥 ∈ [𝑠𝑗 , 𝑠𝑗+1], (𝑗 = 0,… , 4), and 1 − 𝑒𝐻 ′(𝑥) > 0 for all 
𝑥 ∈ [0, 𝜋] and 𝑒 ∈ [0, 1), as it can be easily checked.

Similarly, as the above case, in order to find an error estimate of the 
approximate solution with the piecewise Hermite interpolation (28), we 
proceed as in the previous Section 2, where we obtained the estimate 
of the error for the PPT approximant (21) just replacing 𝑆(𝑥) by 𝐻(𝑥); 
then we have 

EST-Her(𝐸𝑎; 𝑒) =
𝑒
(

sin𝐸𝑎 −𝐻(𝐸𝑎)
)

1 − 𝑒 cos𝐸𝑎
, (34)

where 𝐸𝑎 is the solution of (28). Moreover, an upper bound of (36) for 
all values of 𝑒 ∈ [0, 1) is reached for 𝑒 = 1, that is, 

EST-Her(𝐸𝑎) =
sin𝐸𝑎 −𝐻(𝐸𝑎)

1 − cos𝐸𝑎
. (35)

To derive optimal coefficients for the Hermite approximation, we 
consider in the same way that before, five intervals, and the function 
to minimize is defined by
𝐹 (𝑠1, 𝑠2, 𝑠3, 𝑠4) = max

𝑖=1,…,𝑁,
𝑘=1,…,5

EST-Her
(

𝐸𝑎,𝑘
)

,

where 𝐸𝑎,𝑘 is computed at 𝑁 equidistant points in [𝑠𝑘−1, 𝑠𝑘]. that 
depends on the parameters 𝑠1, 𝑠2, 𝑠3, 𝑠4 with 𝑠0 = 0, and 𝑠5 = 𝜋.

The results of the computations for 𝑁 = 100, are the following:
𝑠 = 0, 𝑠 = 54∕100, 𝑠 = 120∕100, 𝑠 = 182∕100, 𝑠 = 246∕100, and 𝑠 = 𝜋.
0 1 2 3 4 5
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Fig. 5. Errors (ErrFun = sin 𝑥 − 𝐻𝑗 (𝑥)) of the PP, PPT and Hermite [3/2] 
approximations to sin 𝑥.

For the above set of grid points 𝑠𝑗 , the coefficients of the Hermite 
interpolant (24) are given in Table  2.

To compare the behavior of the new Hermite optimized interpolant 
with Padé and Padé Type approximants we display in Fig.  5 the 
errors ErrFun = sin 𝑥 − 𝐻𝑗 (𝑥). We can see that the optimized Hermite 
approximnant appears to be the best approximant in the max norm.

We see that in the max norm, the accuracy of Hermite approxima-
tion is about one order higher than the corresponding Padé approxi-
mation, and twice the Padé type one. Clearly the Padé approximation 
is very accurate in a narrow neighborhood of the base point, but this 
accuracy rapidly decreases for points distant to the node; however, in 
Padé type and Hermite’s approximations we may control the accuracy 
at several points of the interval.

In order to find an error estimate of the approximate solution with 
the piecewise Hermite interpolation (28), we proceed as in the previous 
Section 2 where we obtained the estimate of the error for the PPT 
approximant (21) just replacing 𝑆(𝑥) by 𝐻(𝑥); then we have 

EST-Her(𝐸𝑎; 𝑒) =
𝑒
(

sin𝐸𝑎 −𝐻(𝐸𝑎)
)

1 − 𝑒 cos𝐸𝑎
, (36)

where 𝐸𝑎 is the solution of (28). Moreover, an upper bound of (36) for 
all values of 𝑒 ∈ [0, 1) is reached for 𝑒 = 1, that is, 

EST-Her(𝐸𝑎) =
sin𝐸𝑎 −𝐻(𝐸𝑎)

1 − cos𝐸𝑎
. (37)

We plot the errors in the KE solution when using three considered 
approximants (PP, PPT, Hermite) for eccentricities 𝑒 = 0.9 and 𝑒 = 0.99
in Figures Figs.  6 and 7 respectively.

The maximum of the estimate for the three approximants is pre-
sented in Fig.  8. There follows from the previous figure that the PPT 
and Hermite interpolants give similar error, and both are smaller than 
the Padé’s approximant.

In Fig.  9 we plot the surfaces of the error of approximate KE 
solution with two different methods: (Top) The one of Wu et al. [20] 
that is a [3/2]-Padé with five intervals where the maximum of the 
error is 1.92 × 10−5; (Bottom) The optimized [3/2]-Hermite with five 
intervals and max of error 3.17 × 10−6. Hermite’s approximant gives a 
one significative digit more than Padé’s one, and besides, as we can 
observe in the figures, overall the behavior of Hermite’s interpolant 
is better than Padé’s one. Although we do not present here a plot for 
Padé type solution, its behavior is very similar to the Hermite one; for 
instance, the max error for PPT is 3.60 × 10−6.



M. Calvo et al. Acta Astronautica 241 (2026) 199–206 
Table 2
Coefficients of the optimized [3/2]-Hermite interpolant.
 𝑗 𝑎𝑗0 𝑎𝑗1 𝑎𝑗2 𝑎𝑗3 𝑏𝑗1 𝑏𝑗2
 0 0.00000000 1.00000000 −0.00041655 0.11551149 −0.00041655 0.05115517
 1 0.51413599 0.86489922 −0.20991827 −0.08722295 0.01398569 0.06849942
 2 0.93203908 0.32168494 −0.40407142 −0.00905898 −0.04363851 0.08351283
 3 0.96910912 −0.34314753 −0.39182523 0.07263178 −0.09959169 0.07040895
 4 0.63003062 −0.81935882 −0.22934429 0.11048430 −0.06791501 0.05231815
Fig. 6. Errors in the solution with the Padé (blue), Padé type (red) and 
Hermite (black) approximations in the interval [0, 𝜋] for the eccentricity 𝑒 =
0.9. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 7. Errors in the solution with the Padé (blue), Padé type (red) and 
Hermite (black) approximations in the interval [0, 𝜋] for the eccentricity 𝑒 =
0.99. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

4. Conclusions

In this work, we have introduced new Piecewise Padé-Type (PPT) 
approximations [21] for sin𝐸, which, when substituted into the tran-
scendental Elliptic Kepler Equation (EKE),

𝐹 (𝐸; 𝑒) ≡ 𝐸 − 𝑒 sin𝐸 = 𝑀,

reduce it to a cubic polynomial equation solvable in closed form. By 
appropriately selecting the free parameters in the PPT denominators, 
the maximum-norm error of the approximate solution is significantly 
reduced compared with the traditional Piecewise Padé (PP) approx-
imants of Wu et al. [20]. Numerical experiments confirm that PPT 
approximations yield substantially lower errors across the full range 
204 
Fig. 8.  Best upper bound of estimates given in Eqs. (22), (23), and (37) for 
the [3/2]-PP, [3/2]-PPT, and [3/2]-Hermite aproximants respectively.

of eccentricities 𝑒 ∈ (0, 1), with the greatest improvements observed for 
eccentricities approaching unity.

Furthermore, the use of more general piecewise [3/2] rational 
Hermite approximants to approximate 𝐹 (𝐸; 𝑒) produces cubic equations 
whose solutions offer additional accuracy gains. Overall, this method-
ology provides a practical and computationally efficient approach for 
improving the accuracy of EKE solvers, particularly in applications 
requiring high-fidelity orbital position determination. The combina-
tion of PPT and rational Hermite approximants constitutes a versatile 
framework for precise and efficient orbital computations.
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Fig. 9. Error in the domain (𝑒, 𝑀) = (0, 0.999) × [0, 𝜋] for two approximations. 
(Top) The [3/2]-Padé proposed by Wu et al. [20] with five intervals. (Bottom) 
The optimized [3/2] Hermite with five intervals. We can observe that the later 
method is better than the former. To facilitate the comparison, we limit the 
error range to 2 × 10−6.

Appendix. On the [3/3]-Padé or rational [3/3]-Hermite interpo-
lations

For the problem studied, one may think to consider piecewise [3/3]-
Padé or rational [3/3]-Hermite interpolations of the function 𝑥−𝑒 sin 𝑥. 
However, this turned out to be not a good idea. Indeed, in the case of 
the [3/3]-Hermite, the interpolant 𝐻̂(𝑥) is given by

𝐻̂(𝑥) =
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3

1 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3
;

the linear system in the coefficients 𝑎𝑖, 𝑏𝑖 arising from the conditions 
of interpolation to the function (𝑥 − 𝑒 sin 𝑥) corresponds to a matrix 
𝑀(𝑠𝑗 , 𝑠𝑗+1, 𝑒) ∈ M7×7 which determinant has the expression

det
(

𝑀(𝑠𝑗 , 𝑠𝑗+1, 𝑒)
)

= 𝑒2
(

𝐶0(𝑠𝑗 , 𝑠𝑗+1) + 𝑒 𝐶1(𝑠𝑗 , 𝑠𝑗+1)
)

.

Therefore, if there exists a pair of values 𝑠𝑗 and 𝑠𝑗+1 such that 
the eccentricity 𝑒∗(𝑠𝑗 , 𝑠𝑗+1) = −𝐶0(𝑠𝑗 , 𝑠𝑗+1)∕𝐶1(𝑠𝑗 , 𝑠𝑗+1) ∈ (0, 1), then 
det(𝑀) = 0 and the coefficients 𝑎𝑖, 𝑏𝑖 of the [3/3]-Hermite interpolant 
are not defined.

In particular, if 𝑠𝑗+1 = 𝜋 (i.e., in the last interval), it can be seen that 
for all 𝑠𝑗 < 𝜋, there always exists a value of the eccentricity 𝑒∗ ∈ (0, 1)
such that det(𝑀(𝑠 , 𝜋, 𝑒∗)

)

= 0. In fact, taking 𝑠 = 𝜋 − 𝑎, with 𝑎 > 0, 
𝑗 𝑗
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Fig. A.10.  Plot of the 𝑒∗(𝜋 − 𝑎, 𝜋) for 𝑎 ∈ [0, 1]. 

the matrix 𝑀(𝜋 − 𝑎, 𝜋, 𝑒) is given by (where 𝑀𝑖 indicates the 𝑖th-row of 
𝑀)

𝑀1 = {1, 0, 0, 0, 0, 0, 0}

𝑀2 = {0, 1, 0, 0, 𝑒 sin(𝑎) + 𝑎 − 𝜋, 0, 0}

𝑀3 =
{

1, 0, 0, 18 ,
−𝑎2
16 𝑒 sin( 𝑎2 ),

−𝑎
32

(

𝑎𝑒 sin( 𝑎2 ) + 4𝑒 cos( 𝑎2 ) + 4
)

,
1
64

(

(8 − 𝑎2)𝑒 sin( 𝑎2 ) − 4(2𝑎𝑒 cos( 𝑎2 ) + 𝑎 + 2𝜋)
) }

𝑀4 =
{

0, 1, 0,− 3
4 ,

𝑒
4

(

(𝑎2 + 4) sin( 𝑎2 ) + 2𝑎 cos( 𝑎2 )
)

+ 𝑎

− 𝜋𝑎
8

(

𝑎𝑒 sin( 𝑎2 ) + 6𝑒 cos( 𝑎2 ) + 6
)

,
1
16

(

(𝑎2 − 12)𝑒 sin( 𝑎2 ) + 10 𝑎𝑒 cos( 𝑎2 ) + 4(𝑎 + 3𝜋)
) }

𝑀5 =
{

0, 0, 1, 32 ,
−𝑎
4

(

𝑎𝑒 sin( 𝑎2 ) + 4 𝑒 cos( 𝑎2 ) + 4
)

, 18 (8 − 𝑎2)𝑒 sin( 𝑎2 )

−𝑎 𝑒 cos( 𝑎2 ) −
𝑎
2 − 𝜋,

1
16

(

24 − 𝑎2)𝑒 sin( 𝑎2 ) −
3
4 (𝑎𝑒 cos(

𝑎
2 ) + 2𝜋

) }

𝑀6 = {1, 0,−1,−2, 𝑎(𝑒 + 1), 𝑎𝑒 + 𝑎 + 𝜋, 𝑎𝑒 + 𝑎 + 2𝜋}

𝑀7 = {0, 1, 2, 3,−𝑎(𝑒 + 1) − 𝜋,−𝑎(𝑒 + 1) − 2𝜋,−𝑎(𝑒 + 1) − 3𝜋}.
In Fig.  A.10 we plot the function 𝑒∗(𝜋−𝑎, 𝜋) for 𝑎 ∈ [0, 1], and we can 

see that the values of the eccentricity 𝑒∗(𝜋 − 𝑎, 𝜋) ∈ (0, 1), and therefore 
the matrix 𝑀 is singular.

Something similar happens for [3/3]-PP and [3/3]-PPT interpola-
tions.
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