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In Mediterranean ecosystems, high-frequency hydroclimatic variability, along with shifts in the fire regime, are
key drivers of forest degradation. In this context, understanding post-fire vegetation recovery is crucial for both
ecological research and forest management standpoint. Satellite-based remote sensing, particularly through
orbital platforms, provides a robust framework for tracking post-fire vegetation dynamics. We assessed recovery
patterns across 30 fire-affected areas in Aragén (northeastern Spain) by analyzing temporal trends in the Leaf
Area Index (LAI), a widely used proxy for canopy structure, primary productivity, and vegetation health. Using
Generalized Linear Mixed Models (GLMMs), we modeled LAI trajectories as a function of fire severity, dominant
plant regenerative traits, and post-fire climatic conditions (drought or wet periods), including fire location as a
random effect to account for spatial heterogeneity among burn sites. The models showed strong predictive ca-
pacity (R?* ~ 0.80), and the inclusion of random effects substantially improved model fit, underscoring the
importance of site-specific factors in shaping recovery dynamics. Fire severity and post-fire moisture availabi-
lity—particularly during the first years—were the most influential drivers of LAI regeneration. The regeneration
mechanism of dominant vegetation also contributed to early post-fire recovery, although its influence diminished
over time. From a forest management perspective, these findings can inform the design of post-fire recovery

strategies based on different post-fire moisture and severity conditions.

1. Introduction

Fire is one of the main natural factors shaping forest landscapes
(Karavani et al., 2018; Keeley et al., 2011; Pausas and Keeley, 2009;
Pyne, 2007; Rundel et al., 2016). Fire regimes influence the structure,
species composition, adaptive traits of plant species, and biogeochem-
ical cycles of affected forest ecosystems (Pausas and Bond, 2020; Bond
et al., 2005; Bond and Keeley, 2005). However, wildfires have become a
major issue in regions such as southern Europe due to disruptions in
their natural regimes in the 21st century (Kapsomenakis et al., 2023;
Pausas and Fernandez-Munoz, 2012; Lloret, 2004). Fuel accumulation
resulting from the abandonment of traditional land-use practices,
together with the increased frequency of extreme drought events asso-
ciated with persistent dry atmospheric conditions, are the main drivers
behind the rising occurrence, extent and intensity of wildfires (McClure
et al., 2024; Fernandez-Garcia et al., 2019; Doblas-Miranda et al., 2017).

Fire affects all ecosystem components, but vegetation combustion
and/or dehydration is its most immediate and ecologically significant
consequence. At the ecophysiological level, foliage loss reduces photo-
synthetic potential and carbon sequestration capacity, while also
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altering the hydrological cycle by reducing transpiration and rainfall
interception. These changes lead to multiple modifications in ecosystem-
level interactions (Zhu et al., 2020). However, due to the effectiveness of
vegetative regeneration mechanisms—such as resprouting from pro-
tected buds or lignotubers—vegetation recovery can begin shortly after
the fire event in resprouting species, whereas seed-based regeneration
usually occurs later, depending on post-fire rainfall and seed viability
(Pausas and Keeley, 2014; Clarke et al., 2013).

Several previous studies analyzed post-fire response and monitored
regeneration processes at different spatial scales. At the experimental
plot scale, vegetation regeneration was typically assessed using param-
eters related to cover level, structure, and floristic composition (Moya
et al., 2018; Baeza and Vallejo, 2008; Alvarez et al., 2005; Tarrega et al.,
2001; Caturla et al., 2000; Garcia-Villanueva et al., 1998; Kazanis and
Arianoutsou, 1996). However, when regional-scale assessments were
required, field plot data had limited representativeness relative to the
total affected area (Meng et al., 2015). In this context, orbital remote
sensing data provided a widely recognized and valuable complement,
given the sensitivity of spectral information in detecting fire-affected
phenomena and the versatility of remote sensing products. These data
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enabled the monitoring of areas of varying extents over time (Desrochers
et al., 2025; Woodgate et al., 2025; Marcos et al., 2023; Meneses, 2021;
Gitas et al., 2012; Lentile et al., 2006).

From an operational perspective, Landsat satellite imagery combined
with spectral indices based on differences between red and near-infrared
reflectance, is one of the most commonly used approaches (Borini Alves
et al., 2015; Vicente-Serrano et al., 2011). In contrast, the use of more
complex biophysical parameters, also derived from spectral informa-
tion, is less frequent. These include the Leaf Area Index (LAI) and the
fraction of Absorbed Photosynthetically Active Radiation (fPAR). LAI is
a structural canopy property defined as the photosynthetically active
leaf surface area per unit of ground area (Chen and Black, 1992). It
serves as a bioindicator of plant health and gross primary productivity
(Fang et al., 2019), and it is widely used in models to simulate pro-
ductivity and CO:z storage (Pu et al., 2020; Rajib et al., 2020; Ling et al.,
2019). Therefore, it could also be a key parameter for assessing foliar
regeneration and, consequently, the recovery of the eco-physiological
functioning of fire-affected areas (Zang et al., 2025).

The MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor is one of the most widely used orbital systems for monitoring land
surface changes due to its spatial and spectral characteristics (Ganguly
et al., 2012; Justice et al., 2002). In addition to capturing images across
19 discrete optical bands (ranging from 0.4 to 2.5 pm), MODIS provides
various products specifically designed to study biophysical variables
such as LAI, fPAR, and GPP, which can be used to better understand
vegetation regeneration processes in burned areas (Jiménez Ruano
et al., 2016). The primary algorithm for deriving LAI is based on a 3D
radiative transfer model (Knyazikhin et al., 1998), which is inverted
using a Look-Up Table (LUT) specifically designed for different biome
types on a global scale. It also incorporates other products, such as
adjusted reflectances, leaf optical properties, and ancillary information
sources (e.g., ecosystem type maps). This higher level of processing
complexity—taking into account how light interacts with leaves, soil,
and other elements—provides more detailed information than the direct
observation of reflectance in different spectral bands.

The availability of LAI data series at different temporal scales in large
fire-affected areas allows the analysis of how natural and anthropogenic
factors, both structural and contingent, influence the observed trends.
Structural factors refer to inherent environmental characteristics (e.g.,
topography, lithology, climate, vegetation), where the regeneration
mechanism of the affected species stands out, characterized by a strong
prevalence of resprouting and germination mechanisms in fire-adapted
ecosystems (Pausas and Vallejo, 1999). Contingent factors are those
whose influence is limited to specific post-fire periods or events (e.g.,
implementation of hydrological-forestry restoration measures,
thermal-precipitation anomalies in the year of the fire and subsequent
years, or burn severity).

Although the role of burn severity [i.e., the level of damage caused
by fire, expressed in terms of the magnitude of ecological change (Key
and Benson, 2006)] is of paramount importance, there are still some
uncertainties regarding how post-fire responses vary with burn severity.
High severity is generally associated with greater burning of vegetation
cover and increased soil alteration (Alcaniz et al., 2018; Moody et al.,
2013; Neary et al., 2005; Shakesby and Doerr, 2006).

Previous studies have highlighted the importance of post-fire cli-
matic conditions and identified them as one of the key factors explaining
vegetation recovery (Celebrezze et al., 2024; Viana-Soto et al., 2020;
Bright et al., 2019; Meng et al., 2015; Smith-Tripp et al., 2026).

While the influence of water availability and drought on vegetation
recovery and LAI dynamics after fire has been examined in several
studies (Shi et al., 2025), fewer works have explicitly assessed this
relationship across multiple vegetation types and fire severity conditions
using a spatially explicit, long-term remote sensing approach.

Sufficient moisture availability after a fire is crucial for seed germi-
nation (Tappeiner et al., 1992), but drought can limit seedling estab-
lishment and growth (Crockett and Hurteau, 2024; Lalor et al., 2023;
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Daskalakou and Thanos, 2004; Donato et al., 2009). The timing of these
anomalies in water resources following a fire is also critical in deter-
mining their impact on ecosystem regeneration, as their influence may
be particularly significant in the early post-fire stages and diminish over
longer periods, or they may persist as a consistently relevant factor over
time (Stevens-Rumann and Morgan, 2019; Harvey et al., (2016). For this
reason, the Standardized Precipitation and Evapotranspiration Index
(SPEI) (Vicente-Serrano et al., 2010) is a useful indicator of climatic
conditions for vegetation recovery since it reliably estimates the avail-
able moisture at different aggregated time scales, when the impacts on
vegetative activity may vary.

Based on these assumptions, research questions arise: How do burn
severity and post-fire moisture conditions (i.e., rainfall and drought
patterns) influence the regenerative dynamics of vegetation in Medi-
terranean environments? What role do species regeneration mechanisms
play in the recovery of the LAI after fire, and how does their impact
change over time? How do local environmental conditions influence
post-fire vegetation recovery, and to what extent do they contribute to
variations in LAI trends?

This study aims to evaluate the recovery of foliage status, repre-
sented by the LAI trends at different post-fire time scales (from 1 to 5
years), by analyzing the explanatory capacity of: 1) post-fire climatic
conditions, assessed using SPEI over time windows matching the LAI
trends; 2) burn severity, and 3) dominant regeneration mechanism of
the affected vegetation types. Variables (2) and (3) are derived from
Landsat products, while LAI trends are obtained from MODIS data at a
moderate spatial resolution (500 m). To reconcile the difference in
spatial resolution between the datasets, Landsat-derived variables were
spatially aggregated by computing central tendency measures within the
MODIS pixel extent, allowing for consistent integration of fine-scale
explanatory variables with moderate-resolution LAI dynamics.

We focus on 30 areas affected by wildfires (2003-2015) in the region
of Aragon (northeastern Spain), using Generalized Linear Mixed Models
(GLMM) to incorporate fixed and random factors to identify their
distinct roles in post-fire vegetation recovery. Between 2001 and 2022, a
series of fire events in Aragén resulted in the loss of more than
70,000 ha, leading to the alteration of large areas, particularly affecting
sclerophyllous and sub-sclerophyllous shrub and tree plant
communities.

This study addresses the need for diagnostic methods and monitoring
protocols in burned areas to assess post-fire vegetation response. From a
forest management perspective, it offers insights for planning
hydrological-forestry interventions under varying climatic scenarios to
improve ecosystem management and conservation.

2. Methods

The methodology applied in this study is structured into six main
stages, which are summarized in Fig. 1. First, (1) fire-affected areas are
selected and mapped. Next, (2) the regenerative trend (7-La1) is gener-
ated using the MCD15A2Hv061 product. This is followed by (3) a post-
fire climate characterization through the SPEI, (4) a spatial analysis of
burn severity, and (5) an analysis of pre-fire vegetation with aggregation
based on regeneration mechanism. Finally, (6) a post-fire recovery
modeling is conducted.

2.1. Selection of fire-affected areas

The first phase involved the identification and mapping of fires in
Aragoén that occurred between 2003 and 2015. This time frame was
selected based on the availability of the MODIS LAI product
(MCD15A2Hv061) and the objective of monitoring post-fire dynamics
over five years following each fire. Due to the different spatial scales of
the variables integrated into this study, the analysis was limited to
burned areas larger than 100 ha to ensure the largest number of ob-
servations free from potential contamination by unburned areas. To this
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Fig. 1. Workflow followed to assess post-fire vegetation recovery. SiCLIMA: High-resolution hydroclimate and temperature dataset for Aragon (northeast Spain)
(Serrano-Notivoli et al., 2024); SPEI: Standardized Precipitation and Evapotranspiration Index; T-LAIL: Trend of the Leaf Area Index (LAI) from MODIS (MCD15A2Hv061);

GLMM: Generalized Linear Mixed Models. RF: Random Forest.

end, we used the fire database from the Government of Aragén.

A total of 30 fire perimeters (mean size 1285 ha; ranging from 103 to
6382 ha), distributed throughout the forested areas of Aragén, were
selected (Table S1 and Fig. 2). These fires were grouped into three
environmental domains:

1. Mid-elevation (500-775 m) (8 fires). Areas with a continental Med-
iterranean climate, characterized by an average annual temperature
between 12 °C and 14 °C and precipitation ranging from 500 to
600 mm. These fires are located mainly in the mid-mountain areas of
the Sistema Ibérico (Iberian System), within the mesomediterranean
belt, with a dry to sub-humid climate. The dominant vegetation
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Fig. 2. Areas affected by fire depending on the type of aggregation domain. Not all individual fire perimeters may be visible (either because they are small or because

they overlap).
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belongs to the holm oak series (Quercetea ilicis), which is typical of
inland Mediterranean areas with moderate continentality.

2. High-elevation (> 1000 m) (7 fires). These areas have a sub-
Mediterranean climate with an average annual temperature be-
tween 10 °C and 12 °C and annual precipitation exceeding 700 mm.
This area encompasses the highest elevations of the Pyrenean and
Iberian mountain ranges. The dominant climax vegetation consists of
deciduous oak forests (Quercus faginea L., Quercus pubescens Willd.,
and Quercus cerrioides Willk. & Costa), while Buxus sempervirens L.,
Genista scorpius (1.) DC. and Echinospartum horridum (Vahl) Rothm.
shrublands appear as secondary vegetation. At the highest elevation,
mountain pine forests of Pinus sylvestris L. predominate. According to
the phytoclimatic classification, this domain falls within the
montane-supramediterranean belt, with a sub-humid climate, and
belongs to the Quercetea pubescentis vegetation series, typical of
mountainous areas with higher relative moisture.

3. Low-elevation (< 500 m) (15 fires). Mainly distributed across low-
lands of the Ebro Basin and the Iberian and Pyrenean foothills, on
Tertiary and Quaternary substrates. This region is characterized by a
semi-arid Mediterranean climate, with average annual temperatures
ranging from 14 °C to 16 °C and low annual precipitation
(~450 mm). According to Rivas-Martinez's phytoclimatic classifica-
tion, this area belongs to the mesomediterranean belt with a dry to
semi-arid climate (Rivas-Martinez et al., 2002). The dominant
vegetation includes kermes oak (Quercus coccifera L.) and holm oak
(Quercus. ilex L.) shrublands, although Pinus halepensis L. woodlands
are also abundant, accompanied by Q. coccifera L. and other char-
acteristic Mediterranean shrub species.

2.2. Generation of the regenerative trends (1-Lar and T-LAI.)

MODIS data were obtained from the Land Processes Distributed Active
Archive Center (LPDAAC). The MCD15A2Hv061 LAI product has a
spatial resolution of 500 m and an 8-day temporal resolution. Although
field-based LAI validation data were not available for the study area, the
MODIS LAI/FPAR (MCD15A2H) product has been extensively validated
through comparisons with in-situ measurements and independent sat-
ellite datasets (Morisette et al., 2006; Garrigues et al., 2008). While some
studies have reported a slight overestimation of MODIS LAI values (Yan
et al.,, 2016), these products have been shown to reliably capture
vegetation phenological dynamics and temporal trajectories (Serbin
et al., 2013). More recent evaluations report an acceptable agreement
between MODIS LAI and reference data (R? ~ 0.7; RMSE ~ 0.96; Lin
et al., 2023).

All pixels classified as burned (ANBR > 100, following the official
threshold distinguishing burned from unburned areas; see 2.4) that
intersected fire perimeters between 2003 and 2015 were selected,
yielding a total of 1605 burned pixels. In addition, a control group was
defined using 878 pixels located within or adjacent to fire perimeters but
showing dNBR values < 100, ensuring that these pixels had not been
affected by fire.

From both datasets (burned and unburned or control), we computed
two LAI trends (7-zar and 1-141;) after fire occurrence for all pixels over
five periods (1-5 years) —a common time-frame choice in similar
studies to assess short-term regeneration (Meng et al., 2015; Carlson
et al., 1990). Both trends were analyzed using approximately 228 ob-
servations, allowing for the estimation of both the statistical significance
using the Mann-Kendall statistical test (Kendall, 1975) and the magni-
tude of the trend using Sen’s slope estimator (Sen, 1968). Since LAI data
exhibited a pronounced seasonality due to the natural cycles of vege-
tation growth and senescence, they were deseasonalized before calcu-
lating the trends. The STL (Seasonal-Trend decomposition using Loess)
approach (Cleveland et al., 1990) was used to isolate the underlying
long-term trend, providing a clearer view of significant changes over
time.
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2.3. Post-fire climate characterization through the SPEI

The SPEI is obtained by normalizing the water balance to the log-
logistic probability distribution (Vicente-Serrano et al., 2017). Its main
advantage over other drought indices is that it takes into account the
concurrence of precipitation and temperature, making it a useful tool to
assess soil water availability. In addition, it allows the association of
different drought temporal scales with specific events such as wildfires
(Russo et al., 2017; Vicente-Serrano et al., 2010). The SPEI quantifies
data anomalies based on the number of standard deviations by which the
value deviates the long-term hydroclimatic mean for a specific location
(i.e., when SPEI > 1, it indicates an anomalously wet period; when SPEI
< —1, it indicates an anomalously dry period).

Drought intensity values obtained through the SPEI were calculated
using the SiCLIMA dataset (Serrano-Notivoli et al., 2024), a 0.25 km?
(500 x500 m) grid of daily precipitation and temperature data covering
the Aragon region. This dataset was built from more than 3000 obser-
vational data series of both variables, which underwent comprehensive
quality control and reconstruction. The latter was performed by esti-
mating values at unmeasured locations using generalized linear models
(GLM and GLMM) and incorporating environmental and topographic
variables as predictors independently for each day and location.

2.4. Spatial analysis of burn severity

The analysis of burn severity using multispectral remote sensing
(Landsat imagery) was based on its ability to detect changes in surface
reflectance caused by vegetation loss, increased soil exposure, variations
in moisture content, or the appearance of combustion-derived sub-
stances. One of the most effective spectral indices for this purpose is the
Normalized Burn Ratio (NBR) (Epting et al., 2005), as it combines the
spectral bands that show the strongest contrast in response to fire:
near-infrared (NIR) and shortwave infrared (SWIR). NIR shows a
decrease in reflectance due to the loss of active vegetation, while SWIR
registers an increase in reflectance due to moisture loss and greater soil
exposure (Van Wagtendonk et al., 2004).

The NBR index is generally applied in a bi-temporal approach using
pre- and post-fire data, which results in the delta Normalized Burn Ratio
(dNBR) (Key and Benson, 2006) and the Relative delta Normalized Burn
Ratio (RANBR) (Miller and Thode, 2007). Both bi-temporal indices can
be calculated to obtain an initial assessment of burn severity, typically
using a post-fire image acquired shortly after the fire event (Cocke et al.,
2005; French et al.,, 2008; Parks et al., 2019; Saberi et al., 2022).
However, RANBR eliminates the bias associated with pre-fire vegetation
conditions by normalizing dNBR to the pre-fire NBR value.

2.5. Analysis of pre-fire vegetation and aggregation based on regeneration
mechanism

To characterize pre-fire vegetation and its spatial distribution,
mapping products were generated to identify the dominant plant com-
munities affected by fire. This classification was not intended to repre-
sent discrete ecological units at the species level, but rather to provide an
ecologically meaningful framework for aggregating vegetation accord-
ing to dominant post-fire regeneration strategies, which are a key
determinant of recovery dynamics in fire-prone ecosystems.

Multispectral satellite images from the Landsat program, available in
the Google Earth Engine (GEE) repository at Level 2 processing
(Collection 2), were used for this purpose. A composite image was
generated for each year, based on the median surface reflectance values
from available images acquired between June and October, filtered by
cloud mask cover and with cloudy pixels removed using a cloud mask
(Schmitt et al., 2019). A supervised classification algorithm based on
Random Forest (RF) was then applied. The training process was con-
ducted using a field database containing 3100 labeled samples from
2013, developed within the framework of previous research projects and
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various cartographic sources of forest information, in particular the
Third National Forest Inventory (NFI-3).

A total of eight vegetation categories were obtained, distributed
across four tree vegetation types [Pinus sylvestris (Ps), Pinus nigra (Pn),
Quercus ilex (Qi), and Quercus cerrioides (Qf)], three shrubland types
[shrublands derived from P. sylvestris (mPs), shrublands derived from Q.
cerrioides (mQf) —i.e., shrublands colonizing fire-affected P. sylvestris or
Q. cerrioides stands—, and degraded low shrublands (mP)], and one
category representing areas with sparse or no vegetation (I).

Regeneration mechanisms were not directly derived from Landsat
imagery but were assigned a posteriori based on the dominant vegeta-
tion types identified through the supervised classification. This assign-
ment was grounded in well-established fire-response traits documented
in the ecological literature (e.g., Pausas et al., 2004), reflecting
species-level strategies related to fire resistance, resprouting capacity,
and recruitment from seed.

Broadly, the ecosystems included in the study represent three
dominant post-fire regeneration strategies: (a) obligate seeders, domi-
nated by P. halepensis, a species with an extensive aerial seed bank
(serotiny) that allows endogenous recolonization; (b) passive defense
systems, characteristic of communities dominated by P. nigra and
P. sylvestris, which adopt a fire-resistant strategy through passive defense
mechanisms (e.g., relatively thick bark or high crown base height); and
(c) obligate resprouters, represented by phanerophytes and macro-
phanerophytes of the genus Quercus (Q. ilex, Q. cerrioides, Q. coccifera),
which rely on resprouting from adventitious buds. Although shrub
communities may exhibit heterogeneous post-fire regeneration strate-
gies, limitations in the spectral discrimination of shrub species using
Landsat imagery required their aggregation into a single category. This
functional grouping is appropriate at regional scales and when using
medium-resolution satellite-derived indicators such as LAI, where
species-level variability cannot be resolved but dominant ecological
strategies governing post-fire recovery can be robustly captured.

2.6. Statistical analysis and post-fire recovery modeling

We used Generalized Linear Mixed Models (GLMM) to assess the
effect of climatic constraints on LAI trends, while controlling for burn
severity and the characteristics of the affected vegetation.

Five different models were computed for the five cumulative time
periods considered in the 1-zar from 1 to 5 years after fire occurrence
(+12, +24, +36, +48, and +60 months). As GLMM allow for the
adjustment of correlation structures that include fixed effects (explan-
atory variables) and random effects (variables that account for unex-
plained variability) (Bolker et al., 2009), we included the SPEI variables
at different temporal scales, short-term burn severity and occupancy
percentages based on regeneration mechanism as fixed effects, while the
location of the fires (their individual identifier) was the random effect.

In addition, to identify whether the LAI trend in burned areas re-
sponds exclusively to climatic variations (common across the entire
landscape -burned and control) or reflects a specific postfire regenera-
tion process modulated by fire impact and the functional traits of the
vegetation, a second set of models was computed including the inter-
action between SPEI and the burned-control categories.

In both cases, the model parameters were estimated using the
restricted maximum likelihood (REML) method, and the variables were
previously standardized to ensure comparability of coefficient magni-
tudes, improve convergence (achieving a stable solution after a defined
number of iterations), and enhance the model's numerical stability.

Before applying the models, we partitioned the input data into two
groups, of which one (30 %) was reserved for testing purposes and the
other (70 %) was used as training dataset. We performed 10,000 re-
alizations to avoid bias in the selection of data and the results were
averaged.

In addition, to evaluate differences in LAI among the different Do-
mains, the non-parametric Kruskal-Wallis test was applied, followed by
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pairwise comparisons using the Steel-Dwass—Critchlow-Fligner post-
hoc test. Likewise, differences in LAI between burned and control
areas were assessed using the Wilcoxon signed-rank test for paired
samples, applied at 100-day post-fire intervals to capture temporal re-
covery patterns. Prior to the analyses, a stratified random sampling
procedure was implemented to minimize pseudo-replication and ensure
the spatial independence of observations. Specifically, 100 pixels per
Domain were selected for the Kruskal-Wallis test. For the Wilcoxon test,
a Monte Carlo approach was applied for each 100-day interval (18 in
total), performing 100 iterations consisting of the random selection of
300 observations from each sample (burned and unburned).

3. Results
3.1. LAl-based fire clustering

The three environmental domains derived from the clustering of the
30 fire events were dominated by Mediterranean and sub-Mediterranean
pine forests with deciduous and evergreen oaks, and they were repre-
sentative of a climatic-altitudinal gradient, with changes in the leaf
fraction and the regenerative strategy of the dominant tree species
(Table 1).

Fires in the foothills of the Iberian System and the Ebro Basin (LAL
0.57, ALT: 750 m) (Domain 1st) featured plant communities with low
foliar density, corresponding to open or degraded forests, dominated by
shrubs and tree stands of Pinus halepensis (10.84 %). The fires in the mid-
elevation Pyrenees and Iberian System (LAI: 0.86, ALT: 1200 m)
(Domain 2nd) showed the highest values, representing denser vegeta-
tion types with high foliar density. These areas were dominated by Pinus
sylvestris/nigra (21.83 %), with a significant contribution from marces-
cent and evergreen broadleaved species-Quercus faginea/Quercus ilex
(10.04 %).

Finally, fires in the Ebro Basin and the Pyrenean Piedmont (LAL
0.70, ALT: 537 m) (Domain 3rd) presented an intermediate LAI, sug-
gesting vegetation types with moderate foliar density, mainly composed
of Pinus halepensis (2.19 %), with smaller contributions from P. nigra
(4.24 %) and Quercus gr. cerrioides/Quercus ilex (1.97 %). Statistical
analyses confirmed significant differences in LAI among domains, both
before (K =28.82, p < 0.0001) and after fire (K =67.30, p < 0.0001). In
both cases, Domain 1st had significantly lower LAI values than Domains
2nd and 3rd (p < 0.05), while no significant differences were detected
between Domains 2nd and 3rd (p > 0.05).

3.2. Post-fire vegetation recovery trends (t-LAI and T-LAI;)

The morphological characteristics of the probability density distri-
butions across post-fire periods of different length (Fig. 3) allowed the
identification of three r-1ar patterns. The first one, corresponding to the
initial 12 months after the fire, exhibited high variability with a notable
presence of cases showing a negative trend. During the first 24 months
after the fire, there was a period of high post-fire regeneration, char-
acterized by predominantly positive trends. From 36-60 months after
the fire, a prevalence of weak positive trends was observed, indicating a
stabilization process. This was reflected in the reduction of skewness and
kurtosis (Table 2), as well as in the convergence of distributions toward
values close to zero, particularly after 48 months. Both patterns sug-
gested that trends become less pronounced and more stable as longer
post-fire periods are considered.

Obviously, given the method used to calculate r-zar (accumulating
one year in each measurement), these values are highly correlated. In
fact, all correlations were significant and positive, except for the r-ar of
the first year, which showed a negative correlation of lower intensity
compared to the others (r < -0.55) (Table S2). On the other hand, the
mean trends in the control areas (7-LA1.) show lower values and smaller
percentages that are statistically significant (Table S3).

Fig. 4 shows the deseasonalized trajectory of LAI in burned areas (red



F. Pérez-Cabello et al.

Table 1
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General characteristics of fire clusters (environmental domains). For each domain, the table reports total burned area (EXT, ha) and number of wildfires (in paren-
theses), mean + SD of pre- and post-fire LAL elevation (ALT, m), burn severity (RANBR), and mean surface area (MSA, %) corresponding to dominant post-fire
regeneration mechanisms. MSA represents the percentage of the burned surface within each domain associated with each regeneration strategy: obligate seeders
(0S), passive defense systems (PDS), and obligate resprouters (OR). Different letters (* vs. b) indicate statistically significant differences according to post-hoc tests.

EXT Pre-fire Post-fire ALT RANBR MSA: MSA: MSA:
(n° fires) LAI LAI (m) 0s PDS OR
1% 5147 (8) 0.5653 £ 0.19" 0.4788 + 0.14* 750 + 100 561 + 223 10.84 +£17.2 0+ 0.03 0.63 +1.58
2nd 16104 (7) 0.8557 + 0.45" 0.7655 + 0.35" 1200 + 268 499 + 236 0.01 + 0.08 21.83 +22.8 10.04 + 12.23
3rd 17294 (15) 0.6961 + 0.23" 0.6647 + 0.22° 537 + 55 461 + 221 219+ 7.84 4.24 +9.89 1.97 £5.25
line) and control areas (green line) over a five-year period. In general,
80004 control areas exhibit consistently higher LAI values throughout the
n years analyzed period. In contrast, burned areas show lower LAI values, not
‘:l 1 reaching the levels observed in non-affected areas until approximately
l:l 2 three and a half years after the fire (p-value = 0.1005) (Table S4). Both
60001 s groups show temporal fluctuations; however, the amplitude of variation
is lower in burned areas, which may indicate a more limited vegetative
o response or a simplified vegetation structure in these sites.
[ ]s
=
€ 4000 3.3. Post-fire climatic conditions (SPEI)
o
The descriptive statistics for SPEI values at cumulative post-fire time
steps (+12 to +60 months) are summarized in Table 3. This analysis
2000 follows a relative timeline, following a Superposed Epoch Analysis
(Arizpe et al., 2020), where for each fire event (n = 30), SPEI values
were extracted at specific intervals after the month of fire occurrence. As
/ fire years differ (2003-2015), each time step refers to a distinct calendar
oA / period across fires. Therefore, the values presented do not correspond to
a single climatic phase but instead reflect variability in post-fire drought

0.000

0.002

T-LAI

0.004

Fig. 3. Probability density distributions over post-fire time periods.

exposure across events.

While no consistent pattern of extreme drought or wet conditions
was observed across all time steps, certain periods (e.g., +36 months)
showed broader ranges in SPEI values, including moderately to severely

Table 2
na.
Variable Min. Max Mean Std. Dev. Skewness Kurtosis % SIG
T-LAL1St 12 -0.9074 1.0126 -0.1404 0.2882 0.3846 0.6946 84.05
r-1A1.2nd | 24 -0.4989 1.2024 0.1199 0.1511 1.0396 5.1836 91.71
1-1A1_3rd, 36 -0.2663 0.6494 0.0753 0.1114 1.3829 3.0813 89.35
T-LAL4th | 48 -0.1864 0.5895 0.0790 0.0834 1.0494 2.7001 95.20
7-1A1 5th 60 -0.1201 0.3655 0.0753 0.0636 0.9293 1.3294 96.26
0.9
A |
| 1, ‘
\/ \, N 5“ M\
= \ JV . A \ "‘ )
< » g \/
. OG \’J
D.3

== Non-burned Burned

1000 1500
Day

Fig. 4. Mean temporal evolution of LAI in burned and control areas over a five-year post-fire period. Shaded bands indicate the 5th-95th percentile range, illus-
trating the variability within each group.
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Table 3
Distribution of descriptive statistics for SPEI values over 1-5 years post-fire
cumulative time periods (+12 to +60 months).

Statistic +12m +24m +36m + 48 m +60m
Minimum -1.2249 -1.3569 -1.3843 -1.7360 -1.5962
Maximum 1.5107 1.7418 1.8731 1.5699 1.5382
1st Quartile -0.1373 -0.4285 -1.1761 -0.0772 -0.3075
3rd Quartile 0.4140 0.4187 0.5004 0.9685 0.7104
Standard deviations 0.6120 0.7023 0.7657 0.7039 0.7740
Skewness 0.1623 0.4599 0.4891 -0.5504 0.1451
Kurtosis 0.4980 -0.0903 -0.6599 -0.4041 -0.3631

dry or wet events. This variability highlights the heterogeneous climatic
contexts experienced by different fires during their recovery periods.
Notably, no fire events coincided with extremely dry or extremely wet
conditions (SPEI < —2 or > 2).

3.4. Explanatory factors of 1-LAI

Pearson's coefficient of determination obtained by comparing the
observed and predicted values of r-1a1 (in the 10,000 realizations of each
model) reflected a satisfactory level of agreement (R> ~ 0.80). The
marginal and conditional R? values (Table 4) showed moderate average
values for the marginal ones (meaning that only 20 % of the variability
is explained by the fixed effects) and acceptable values for the condi-
tional ones (R*> = 0.66, mean value for the time periods). This indicated
that a significant proportion of the variability was due to the random
effect, as the models together explained approximately 65 % of the total
variance. In other words, the differences between burned areas
explained a considerable part of the variance, which was key to un-
derstanding the magnitude of the r-14r. This pattern was common when
the data came from diverse geographic locations, as these often

Table 4

Summary of model fit for the 10,000 iterations in the five models (+12 to +60
months), comparing predicted data with observed data not used in model con-
struction (30 % data holdout; n = 482). R? marginal: variance explained by
fixed effects; R? conditional: variance explained by the full model (fixed +
random effects).

Time interval Min. Mean Max. Std. Dev.
R? Pearson +12m 0.795 0.847 0.015
0.735
+24m 0.801 0.856 0.021
0.726
+36m 0.822 0.876 0.017
0.758
+48m 0.791 0.869 0.020
0.712
+60m 0.761 0.834 0.021
0.676
R? conditional +12m 0.612 0.666 0.014
0.561
+24m 0.717 0.775 0.018
0.666
+36m 0.686 0.735 0.014
0.639
+48m 0.642 0.699 0.016
0.588
+60m 0.653 0.702 0.012
0.610
R? marginal +12m 0.172 0.200 0.008
0.144
+24m 0.138 0.177 0.011
0.103
+36m 0.214 0.261 0.012
0.173
+48m 0.241 0.295 0.014
0.195
+60m 0.279 0.326 0.012
0.228
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exhibited hierarchical or nested structures.

The most influential factor during the first period was SPEI (Fig. 5).
Its influence then decreased sharply and became negligible in the
models after + 12 months post-fire, highlighting the moment when
moisture conditions were most needed for recovery. On the other hand,
burn severity had a negative effect on 1-rar values that persisted for
longer periods after the fire. Regarding the type of vegetation affected,
regardless of its regeneration mechanism, it initially showed a negative
relationship with 7-1a1 values. However, from + 12 months post-fire
onwards, this relationship gradually shifted, approaching zero as the
time intervals increased, being more important in resprouting tree
species or those with a passive regeneration mechanism than in seeders.

In general terms, r-zar indicated that the initial impact of fire
(negative RANBR and positive SPEI) decreased over time, while the
positive influence of species began after the first year post-fire. These
results emphasize the structural nature of the "previous vegetation"
factor and the more circumstantial factors represented by burn severity
or climatic anomalies.

3.5. Explanatory factors of 1-1al including interaction between SPEI and
burn severity

The models fitted using pixel samples from both burned and control
areas, incorporating vegetation functional traits, the SPEI, and the
interaction between SPEI and burn condition, revealed temporal varia-
tions in the relative importance of these predictors (Fig. 6). In particular,
the interaction term was statistically significant in the first three post-
fire intervals (+12, +24, and +36 months), although with differing
magnitudes and implications depending on the SPEI time scale consid-
ered (Table 6).

At 12 months post-fire, both the main effect of SPEI and its interac-
tion with burn condition were positive and statistically significant on 7-
a1 (0.23 and 0.05, respectively). This suggests that moisture conditions
near the time of the fire favored post-fire recovery. In the same interval,
functional traits also played a notable role: resprouters were positively
associated with 7-141, whereas seeders and shrubs had negative effects.
The marginal R? was 0.18, and the conditional R? reached 0.57, indi-
cating a moderate contribution of fixed predictors and a substantial
influence of random effects.

At 24 months post-fire, the main effect of SPEI was no longer sig-
nificant, although the interaction remained significant. During this
period, all functional traits contributed positively to 7-Lar. However, the
explanatory power of the fixed effects decreased (marginal R? = 0.13),
while the variance explained by the random effects increased (condi-
tional R? = 0.69).

At 36 months, the interaction persisted, with a mean coefficient of
0.037, and the model’s explanatory capacity improved notably (mar-
ginal R*> = 0.25), primarily driven by the positive effect of all functional
traits considered. From 48 months onwards, 100 % of the models indi-
cated no significant effect of the climatic variables (neither the main
effect of SPEI nor its interaction).

Overall, these results suggest that the influence of climate on 1-r4r is
strongest in the early years following fire. As the SPEI accumulation
window expands, the direct effect of climate loses significance, while the
interaction with burn condition and, especially, the contribution of the
affected vegetation’s functional traits become increasingly relevant.

4. Discussion
4.1. T-14I as post-fire vegetation recovery indicator

We opted for a complex data product such as the MODIS LAI product
to quantify post-fire vegetation recovery (Putzenlechner et al., 2024)
and interpret it from a biophysical perspective. LAl is a useful parameter
in forestry and serves as an indicator of forest productivity, due to its
close association with essential processes such as photosynthesis,
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+12 424 +36 +48 +60
Shrubs SPEI

+24 +36 +48 +60 +12 +24 +36 +48 +60

RANBR

Fig. 5. Mean coefficients (scale factor 1%) of fixed factors in the explanatory function of r-Lar over the post-fire periods (+12 to +60 months). Each block represents a

specific explanatory factor: seeders, passive, resprouter, shrubs, SPEI, and RANBR.

0,23
0,20
0,17
0,14
0,11

0,08

0,05
-0,01 .

-0,04

+12 424 +36 +48 +60  +12 +24 +36 +48 +60

-0,07
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+12 424 +36 +48 +60

Resprouters

+12 +24 +36 +48 +60

+12 +24 +36 +48 +60  +12 +24 +36 +48 +60

Shrubs SPEI Interaction

Fig. 6. Mean coefficients (scale factor 1) of fixed factors in the explanatory function of r-Lar over the post-fire periods (+12 to +60 months). Each block represents a
specific explanatory factor: seeders, passive, resprouter, shrubs, SPEI, and Interaction.

transpiration-respiration, evapotranspiration, interception and gross
primary productivity of vegetation (Alton, 2018; Asner et al., 2003;
Boussetta et al., 2013; Jarlan et al., 2008). Its use is widespread in
carbon circulation models, climate models, and ecological models
(Keenan et al., 2009; Sabateé et al., 2002; Wang et al., 2019).

In the case of burned areas, spectral recovery cannot always be
directly associated with the ecological recovery of the affected vegeta-
tion types (Celebrezze et al., 2024). However, 1-L41 can be used as a proxy
for the recovery of physiological functionality in terms of leaf area over
time periods of varying lengths. Although resilience analysis requires
numerous metrics for a comprehensive diagnosis (Hodgson et al., 2015;
Falk et al., 2022), the use of 1-La1 provides a more precise magnitude in

relation to the recovery of vegetation structure and may bring us closer
to the concept of recovery in eco-physiological terms (Folke et al.,
2010). Furthermore, the cumulative time perspective, from 1 to 5
post-fire years, allows the interpretation of the trend relative to the
estimation window and establishes a direct connection with the multi-
scalar dimension of the SPEL

In the first post-fire year, trend sign and magnitude showed high
variability, often negative, reflecting the complexity of natural adjust-
ments to new environmental conditions. Vegetation mortality (lightly
scorched or partially affected) may coexist with rapid herbaceous
growth and opportunistic species, alongside hydro-geomorphological
processes that may inhibit regeneration. The regeneration lag
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observed in the first + 12 months may also be partly influenced by the
spectral response of persistent combustion products (Montorio et al.,
2020) and partially burned vegetation, as well as by the potential impact
of hydrological-forestry treatments, such as extraction and/or in situ
management of burned wood(Vlassova and Pérez-Cabello, 2016), which
could introduce additional uncertainty in surface reflectance patterns.
For example, these post-fire treatments can alter the optical properties of
the affected areas by decreasing reflectance in some spectral bands (e.g.,
shortwave infrared) while increasing it in others (e.g., near-infrared),
thereby modifying the spectral signal associated with natural regener-
ation of the vegetation.

In addition, potential misclassification of land cover may also
contribute to uncertainties in MODIS-derived LAI estimates, as the
biome-specific lookup tables applied by the LAI/FPAR algorithm
(MCD15A2H) may not reflect the actual structural changes in vegetation
caused by fire, particularly in areas undergoing strong transitions (Pu
et al., 2020; Lv et al., 2024).

The variability in the first period (+12 m) contrasted with the
widespread, more intensive growth observed in the first + 24 months,
followed by stabilization after + 36 months. This highlights the
importance of selecting appropriate time gaps to capture different di-
mensions of ecosystem responses to both direct and indirect fire effects,
particularly when using variables based on the spectral response of post-
fire vegetation cover (Chu and Guo, 2013; Meng et al., 2018).

4.2. Modeling T-1A1 values extracted from MODIS

Using multiscale r-.ar values to analyze factors driving its direction
and magnitude, we evaluated the influence of burn severity, SPEI values,
and pre-fire vegetation type on regenerative trends. In addition, for
SPEI—the only exogenous factor affecting both burned and unburned
areas—we assessed whether its influence on burned areas reflects a
genuine post-fire recovery or merely replicates the general climatic
response.

To capture variability and avoid underestimation, fire location was
included as a random effect in the GLMM. This approach accounted for
ecological complexity, where both constant factors and variable condi-
tions, represented by random effects, influence vegetation recovery. The
results were consistent with existing literature and emphasized the
relevance of fixed factors depending on their proximity to the fire event,
given the varying durations of the analysis periods.

4.2.1. Fixed factors

The SPEI provides a representative measure of water balance that is
crucial for assessing its impact on vegetation recovery when analyzing
the influence of post-fire moisture conditions on r-z4r values. Due to its
multiscale analysis capabilities, the SPEI has been widely used in studies
to quantify its effect on post-fire recovery (e.g., Viana-Soto et al., 2020).

In our case, considering that episodes of ecological drought
(Crausbay et al., 2017), capable of exceeding biological tolerance
thresholds and altering natural systems, occurred throughout the
post-fire period, the results obtained indicated that wet conditions had a
positive influence on the regenerative trend of r-4r. This effect, based on
the statistical significance and the magnitude and direction of the co-
efficients derived from the multiscale modeling, was particularly rele-
vant during the first months after the fire. Moreover, based on the
modeling that incorporates the SPEI-FIRE interaction, the results indi-
cate that the influence of SPEI on 7-14r is more pronounced in burned
areas than in unburned ones, especially during the first years following
the fire. This conclusion is supported by the statistical significance of the
interaction, which reveals a modulation of the climatic effect depending
on whether the area was burned or served as control. In particular, at
shorter temporal scales (12-36 months), this interaction is significant,
suggesting that drought/wetness conditions play a critical role in the
initial stages of postfire regeneration. This pattern supports the hy-
pothesis that climate acts as a key limiting factor in the recovery
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trajectory of fire-affected vegetation, whereas its influence is more
diffuse in unaffected ecosystems.

Our results align with previous studies that also analyzed the impact
of climatic conditions on post-fire recovery using spectral variables. For
example, Blanco-Rodriguez et al., (2023) highlighted the influence of
climate on vegetation regeneration during the first years after fire, and
the significant role of drought in reducing Mediterranean forest recov-
ery. Similarly, Storey et al. (2021), using a 35-year series of Landsat
images and a predictor related to climatic water deficit, also reported
significant associations.

Our results are also consistent with the current scientific interest in
analyzing the effects of climate change on both fire regime trans-
formations and post-fire recovery processes. Regarding the latter and
considering the role of moisture conditions in ensuring mid-term (3-5
years) post-fire foliar growth, predictions of increased drought fre-
quency and intensity (Gomez-Gomez et al., 2022; Miller et al., 2009;
Miller and Thode, 2007; Tramblay et al., 2020) could negatively impact
future fire recovery processes. This is due to changes in the structure and
composition of affected ecosystems (Bendall et al., 2022; Parks and
Abatzoglou, 2020).

For the burn severity analysis using Landsat imagery, we used the
RANBR to mitigate the bias associated with pre-fire vegetation charac-
teristics in the distribution of severity values. This adjustment helped to
reduce the overestimation of severity in areas with higher pre-fire
vegetation density while preventing the systematic association of low-
cover areas with low severity. Such misclassification could have signif-
icant consequences for regenerative trends (i.e., misclassified areas, as
low severity could be linked to high intercepts and low slopes in re-
covery models). Conversely, severely burned areas, which generally
correspond to zones with higher pre-fire vegetation density, tended to
exhibit steeper slopes in the models, which could be misinterpreted as
faster LAI recovery.

The results obtained are consistent with Keeley (2009), who identi-
fied the negative influence of this contextual factor on vegetation re-
covery. This relationship between high severity levels and lower
regeneration is still recognized in numerous recently published studies.
For example, based on a systematic review, Grau-Andrés et al. (2024)
provided global evidence that high severity negatively affects vegetation
abundance, diversity, and overall condition. This was attributed to the
impact of extreme temperatures on the insulating capacity of the bark
and the destruction of the regenerative structures of the affected species.
Volkova et al. (2025a) indicated that, although burn severity did not
have a significant impact on species richness, diversity, or composition,
it led to notable changes in the specific composition of affected eco-
systems. This suggests that high-severity fires create environmental
conditions that differ from those in unburned areas or regions affected
by low-severity fires.

However, in our case, the influence of burn severity was only mod-
erate and decreased as the time scale expanded (~50 % of the models
lost the significance of this factor when the period was extended from
+24 to +36 months (Table 5)). The explanatory power of the burn
severity was particularly evident when considering the quantified trends

Table 5
Percentage of models with variables showing statistical significance. Distribu-
tion by accumulated post-fire time intervals.

- T- - - T-
LA 1st 12 ra1.2nd 24 A1 3rd, 36 LA 4th 48 LA1_5th 60
(Intercept) 100 100 100 100 100
Seeders 100 100 100 100 100
Passive 85 100 100 100 100
strategy
Resprouters 8 100 100 100 100
Shrubs 100 100 100 100 100
SPEI 100 0 28 0 0
RANBR 5 92 42 2 1
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for the first + 24 months. Similarly, Caccamo et al. (2015), using MODIS
data, also concluded that the influence of severity was limited to the first
+ 24 months.

Regeneration mechanism played a significant role in all models (p-
value < 0.05 in 100 % of cases), and although its influence decreased
slightly as the analysis period increased, it never lost statistical signifi-
cance. This effect was particularly important in resprouting tree species
or those with a passive recovery strategy. In this context, the succes-
sional process following fire-considered as a disturbance in the sense of
Sousa (1984)—can be described as a process of reestablishment of the
affected systems (Herranz Sanz, 2000). However, in this study, only the
autosuccession of foliar fraction levels can be addressed, as other as-
pects, such as physiognomic recovery or the reestablishment of pre-fire
species composition, remain opaque Table 6.

4.2.2. Changes in influence depending on post-fire cumulative time periods

According to previous studies, both burn severity and post-fire cli-
matic conditions significantly influence the regenerative dynamics of
affected ecosystems (Meng et al., 2015; Volkova et al., 2025b). How-
ever, the magnitude of this contribution varied depending on the tem-
poral scale analyzed. In general terms, the regenerative trend during the
first + 12 months showed negative average values. This may be related
to the temporal proximity of the fire event and the lack of time for the
ecosystem to start recovering from the impact. In the early stages,
affected ecosystems exhibited marked instability due to the adaptation
process to new environmental conditions and the direct effects of fire.
During this period, regenerative processes coexisted with potential
hydro-geomorphological reactivation (e.g., soil loss and/or fertility
decline), which can significantly inhibit natural regeneration.

Notably, there was a significant negative effect of regeneration
mechanisms, attributed to the influence of vegetation on the intercepts
of functions related to LAI trends. In fact, similar studies have excluded
this period from recovery analyses (Meng et al., 2015), as vegetation in
the first post-fire year may continue to lose vigor due to the radiometric
impact of combustion residues or to reduced photosynthetic activity
resulting from post-fire management actions, such as hydrological
control measures and burned wood removal (Solans Vila and Barbosa,
2010).

On the other hand, positive regeneration was primarily associated
with wet climatic conditions (positive SPEI anomalies), while burn
severity had a negative influence, although it was less relevant than
post-fire climatic conditions.

During the first two years, a significant change was observed in the
influence of fixed factors related to vegetation. Positive climatic
anomalies continued to exert a positive effect on the regeneration pro-
cess, although this effect was not statistically significant (p-value >
0.05) and had a much smaller impact compared to the trend observed in
the first 12 months. On the other hand, burn severity maintained the
same intensity in the models, but with greater statistical significance:
over 90 % of the models showed a statistically significant effect. How-
ever, the most notable changes were observed in the influence of the
occupation percentages of species according to their dominant regen-
eration mechanism. In contrast to the role they played in the + 12-
month model, these factors were positive and significant in all cases.

Table 6
Percentage of models with variables showing statistical significance. Distribu-
tion by accumulated post-fire time intervals.

tlai 1%,  tlai 2%, tlai3Cs  tlaidfys  tlai 5T

(Intercept) 100 100 100 100 100
Seeders 100 100 100 100 100
Passive strategy 51,8 100 100 100 100
Resprouters 95,1 100 100 100 100
Shrubs 100 100 100 100 100
SPEI 100 0 0 0 0

Interaction 82,4 96,6 100 0,2 0,7

10
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This effect was particularly notable in resprouting tree species and in
systems dominated by passive regeneration mechanisms (e.g., Scots pine
and black pine forests), which had greater weight in the model.

In periods longer than + 24 months, the ecosystems showed clear
signs of stabilization and regeneration. This process was driven by the
preexisting species in tree vegetation types dominated by seeding and
resprouting species, as well as the regeneration of latent shrublands
present in the understory of pine forests with a passive strategy. These
results were consistent with those described in previous studies on the
regenerative trajectories of these vegetation types in the regional anal-
ysis of Aragon.

During the three-year post-fire period, the role of regeneration
mechanisms remained significant, although with a slightly reduced in-
fluence compared to the previous periods. Burn severity showed a slight
decrease in its impact, as well as in the percentage of models where its
effect was statistically significant (around 40 %). Similarly, the specific
weight of climatic factors also decreased and was significant in only
28 % of the models.

As longer periods were included in the analysis of LAI trends,
changes in the slope tended to stabilize, approaching values near zero
and reducing the variability observed in shorter periods. After 36
months, the trends reached neutral or very mild levels, stabilizing
around zero. In contrast, at the onset of regeneration, a more pro-
nounced negative character and greater dispersion of trends were
observed.

5. Conclusion

This study analyzes the influence of post-fire climatic conditions
through the SPEI, burn severity, and characteristics of the affected
vegetation using the LAl regenerative trend. The analysis considers post-
fire periods of varying durations and takes into account forest fires that
occurred between 2003 and 2015, distributed across contrasting
biogeographical environments in Aragén (northeastern Spain).

Using the LAl trend as a regeneration indicator allowed assessment of
vegetation recovery through changes in leaf fraction and its regulatory
processes, including canopy interception, evapotranspiration, and net
primary productivity. During the first months after the fire, LAI trends
were highly variable, often showing negative trends. However, when
considering a longer period of up to + 24 months, more pronounced and
predominantly positive trends were observed. Beyond + 36 months,
these trends decreased in intensity and tended to stabilize as the analysis
period lengthened (more than +36 months post-fire). Likewise, the in-
fluence of SPEI on the LAI trend is more evident in fire-affected areas
than in control zones, although only during the first years following the
fire.

Burn severity and particularly the moisture conditions in the year
following the fire, directly influenced the regenerative dynamics of the
leaf fraction in the affected ecosystems. In this context, reduced soil
moisture due to climatic anomalies could inhibit or delay the effec-
tiveness of regeneration mechanisms or lead to higher mortality sce-
narios as a consequence of the fire.

Furthermore, the regeneration mechanism of the species emerged as
a significant factor in the regenerative trend of the LAI, although its
relevance progressively decreased as the analysis period lengthened.
This effect was particularly pronounced in tree species with sprouting
capacity or passive regeneration strategies.

Future climate aridification scenarios could further slow down
regeneration rates, even in Mediterranean ecosystems with effective
regeneration mechanisms. These findings may help to calibrate simu-
lation models of post-fire dynamics, enhancing management strategies
to safeguard ecosystem services.
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