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A B S T R A C T

In Mediterranean ecosystems, high-frequency hydroclimatic variability, along with shifts in the fire regime, are 
key drivers of forest degradation. In this context, understanding post-fire vegetation recovery is crucial for both 
ecological research and forest management standpoint. Satellite-based remote sensing, particularly through 
orbital platforms, provides a robust framework for tracking post-fire vegetation dynamics. We assessed recovery 
patterns across 30 fire-affected areas in Aragón (northeastern Spain) by analyzing temporal trends in the Leaf 
Area Index (LAI), a widely used proxy for canopy structure, primary productivity, and vegetation health. Using 
Generalized Linear Mixed Models (GLMMs), we modeled LAI trajectories as a function of fire severity, dominant 
plant regenerative traits, and post-fire climatic conditions (drought or wet periods), including fire location as a 
random effect to account for spatial heterogeneity among burn sites. The models showed strong predictive ca
pacity (R² ≈ 0.80), and the inclusion of random effects substantially improved model fit, underscoring the 
importance of site-specific factors in shaping recovery dynamics. Fire severity and post-fire moisture availabi
lity—particularly during the first years—were the most influential drivers of LAI regeneration. The regeneration 
mechanism of dominant vegetation also contributed to early post-fire recovery, although its influence diminished 
over time. From a forest management perspective, these findings can inform the design of post-fire recovery 
strategies based on different post-fire moisture and severity conditions.

1. Introduction

Fire is one of the main natural factors shaping forest landscapes 
(Karavani et al., 2018; Keeley et al., 2011; Pausas and Keeley, 2009; 
Pyne, 2007; Rundel et al., 2016). Fire regimes influence the structure, 
species composition, adaptive traits of plant species, and biogeochem
ical cycles of affected forest ecosystems (Pausas and Bond, 2020; Bond 
et al., 2005; Bond and Keeley, 2005). However, wildfires have become a 
major issue in regions such as southern Europe due to disruptions in 
their natural regimes in the 21st century (Kapsomenakis et al., 2023; 
Pausas and Fernández-Muñoz, 2012; Lloret, 2004). Fuel accumulation 
resulting from the abandonment of traditional land-use practices, 
together with the increased frequency of extreme drought events asso
ciated with persistent dry atmospheric conditions, are the main drivers 
behind the rising occurrence, extent and intensity of wildfires (McClure 
et al., 2024; Fernández-García et al., 2019; Doblas-Miranda et al., 2017).

Fire affects all ecosystem components, but vegetation combustion 
and/or dehydration is its most immediate and ecologically significant 
consequence. At the ecophysiological level, foliage loss reduces photo
synthetic potential and carbon sequestration capacity, while also 

altering the hydrological cycle by reducing transpiration and rainfall 
interception. These changes lead to multiple modifications in ecosystem- 
level interactions (Zhu et al., 2020). However, due to the effectiveness of 
vegetative regeneration mechanisms—such as resprouting from pro
tected buds or lignotubers—vegetation recovery can begin shortly after 
the fire event in resprouting species, whereas seed-based regeneration 
usually occurs later, depending on post-fire rainfall and seed viability 
(Pausas and Keeley, 2014; Clarke et al., 2013).

Several previous studies analyzed post-fire response and monitored 
regeneration processes at different spatial scales. At the experimental 
plot scale, vegetation regeneration was typically assessed using param
eters related to cover level, structure, and floristic composition (Moya 
et al., 2018; Baeza and Vallejo, 2008; Alvarez et al., 2005; Tárrega et al., 
2001; Caturla et al., 2000; Garcia-Villanueva et al., 1998; Kazanis and 
Arianoutsou, 1996). However, when regional-scale assessments were 
required, field plot data had limited representativeness relative to the 
total affected area (Meng et al., 2015). In this context, orbital remote 
sensing data provided a widely recognized and valuable complement, 
given the sensitivity of spectral information in detecting fire-affected 
phenomena and the versatility of remote sensing products. These data 
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enabled the monitoring of areas of varying extents over time (Desrochers 
et al., 2025; Woodgate et al., 2025; Marcos et al., 2023; Meneses, 2021; 
Gitas et al., 2012; Lentile et al., 2006).

From an operational perspective, Landsat satellite imagery combined 
with spectral indices based on differences between red and near-infrared 
reflectance, is one of the most commonly used approaches (Borini Alves 
et al., 2015; Vicente-Serrano et al., 2011). In contrast, the use of more 
complex biophysical parameters, also derived from spectral informa
tion, is less frequent. These include the Leaf Area Index (LAI) and the 
fraction of Absorbed Photosynthetically Active Radiation (fPAR). LAI is 
a structural canopy property defined as the photosynthetically active 
leaf surface area per unit of ground area (Chen and Black, 1992). It 
serves as a bioindicator of plant health and gross primary productivity 
(Fang et al., 2019), and it is widely used in models to simulate pro
ductivity and CO₂ storage (Pu et al., 2020; Rajib et al., 2020; Ling et al., 
2019). Therefore, it could also be a key parameter for assessing foliar 
regeneration and, consequently, the recovery of the eco-physiological 
functioning of fire-affected areas (Zang et al., 2025).

The MODIS (Moderate Resolution Imaging Spectroradiometer) 
sensor is one of the most widely used orbital systems for monitoring land 
surface changes due to its spatial and spectral characteristics (Ganguly 
et al., 2012; Justice et al., 2002). In addition to capturing images across 
19 discrete optical bands (ranging from 0.4 to 2.5 µm), MODIS provides 
various products specifically designed to study biophysical variables 
such as LAI, fPAR, and GPP, which can be used to better understand 
vegetation regeneration processes in burned areas (Jiménez Ruano 
et al., 2016). The primary algorithm for deriving LAI is based on a 3D 
radiative transfer model (Knyazikhin et al., 1998), which is inverted 
using a Look-Up Table (LUT) specifically designed for different biome 
types on a global scale. It also incorporates other products, such as 
adjusted reflectances, leaf optical properties, and ancillary information 
sources (e.g., ecosystem type maps). This higher level of processing 
complexity—taking into account how light interacts with leaves, soil, 
and other elements—provides more detailed information than the direct 
observation of reflectance in different spectral bands.

The availability of LAI data series at different temporal scales in large 
fire-affected areas allows the analysis of how natural and anthropogenic 
factors, both structural and contingent, influence the observed trends. 
Structural factors refer to inherent environmental characteristics (e.g., 
topography, lithology, climate, vegetation), where the regeneration 
mechanism of the affected species stands out, characterized by a strong 
prevalence of resprouting and germination mechanisms in fire-adapted 
ecosystems (Pausas and Vallejo, 1999). Contingent factors are those 
whose influence is limited to specific post-fire periods or events (e.g., 
implementation of hydrological-forestry restoration measures, 
thermal-precipitation anomalies in the year of the fire and subsequent 
years, or burn severity).

Although the role of burn severity [i.e., the level of damage caused 
by fire, expressed in terms of the magnitude of ecological change (Key 
and Benson, 2006)] is of paramount importance, there are still some 
uncertainties regarding how post-fire responses vary with burn severity. 
High severity is generally associated with greater burning of vegetation 
cover and increased soil alteration (Alcañiz et al., 2018; Moody et al., 
2013; Neary et al., 2005; Shakesby and Doerr, 2006).

Previous studies have highlighted the importance of post-fire cli
matic conditions and identified them as one of the key factors explaining 
vegetation recovery (Celebrezze et al., 2024; Viana-Soto et al., 2020; 
Bright et al., 2019; Meng et al., 2015; Smith-Tripp et al., 2026).

While the influence of water availability and drought on vegetation 
recovery and LAI dynamics after fire has been examined in several 
studies (Shi et al., 2025), fewer works have explicitly assessed this 
relationship across multiple vegetation types and fire severity conditions 
using a spatially explicit, long-term remote sensing approach.

Sufficient moisture availability after a fire is crucial for seed germi
nation (Tappeiner et al., 1992), but drought can limit seedling estab
lishment and growth (Crockett and Hurteau, 2024; Lalor et al., 2023; 

Daskalakou and Thanos, 2004; Donato et al., 2009). The timing of these 
anomalies in water resources following a fire is also critical in deter
mining their impact on ecosystem regeneration, as their influence may 
be particularly significant in the early post-fire stages and diminish over 
longer periods, or they may persist as a consistently relevant factor over 
time (Stevens-Rumann and Morgan, 2019; Harvey et al., (2016). For this 
reason, the Standardized Precipitation and Evapotranspiration Index 
(SPEI) (Vicente-Serrano et al., 2010) is a useful indicator of climatic 
conditions for vegetation recovery since it reliably estimates the avail
able moisture at different aggregated time scales, when the impacts on 
vegetative activity may vary.

Based on these assumptions, research questions arise: How do burn 
severity and post-fire moisture conditions (i.e., rainfall and drought 
patterns) influence the regenerative dynamics of vegetation in Medi
terranean environments? What role do species regeneration mechanisms 
play in the recovery of the LAI after fire, and how does their impact 
change over time? How do local environmental conditions influence 
post-fire vegetation recovery, and to what extent do they contribute to 
variations in LAI trends?

This study aims to evaluate the recovery of foliage status, repre
sented by the LAI trends at different post-fire time scales (from 1 to 5 
years), by analyzing the explanatory capacity of: 1) post-fire climatic 
conditions, assessed using SPEI over time windows matching the LAI 
trends; 2) burn severity, and 3) dominant regeneration mechanism of 
the affected vegetation types. Variables (2) and (3) are derived from 
Landsat products, while LAI trends are obtained from MODIS data at a 
moderate spatial resolution (500 m). To reconcile the difference in 
spatial resolution between the datasets, Landsat-derived variables were 
spatially aggregated by computing central tendency measures within the 
MODIS pixel extent, allowing for consistent integration of fine-scale 
explanatory variables with moderate-resolution LAI dynamics.

We focus on 30 areas affected by wildfires (2003–2015) in the region 
of Aragón (northeastern Spain), using Generalized Linear Mixed Models 
(GLMM) to incorporate fixed and random factors to identify their 
distinct roles in post-fire vegetation recovery. Between 2001 and 2022, a 
series of fire events in Aragón resulted in the loss of more than 
70,000 ha, leading to the alteration of large areas, particularly affecting 
sclerophyllous and sub-sclerophyllous shrub and tree plant 
communities.

This study addresses the need for diagnostic methods and monitoring 
protocols in burned areas to assess post-fire vegetation response. From a 
forest management perspective, it offers insights for planning 
hydrological-forestry interventions under varying climatic scenarios to 
improve ecosystem management and conservation.

2. Methods

The methodology applied in this study is structured into six main 
stages, which are summarized in Fig. 1. First, (1) fire-affected areas are 
selected and mapped. Next, (2) the regenerative trend (T-LAI) is gener
ated using the MCD15A2Hv061 product. This is followed by (3) a post- 
fire climate characterization through the SPEI, (4) a spatial analysis of 
burn severity, and (5) an analysis of pre-fire vegetation with aggregation 
based on regeneration mechanism. Finally, (6) a post-fire recovery 
modeling is conducted.

2.1. Selection of fire-affected areas

The first phase involved the identification and mapping of fires in 
Aragón that occurred between 2003 and 2015. This time frame was 
selected based on the availability of the MODIS LAI product 
(MCD15A2Hv061) and the objective of monitoring post-fire dynamics 
over five years following each fire. Due to the different spatial scales of 
the variables integrated into this study, the analysis was limited to 
burned areas larger than 100 ha to ensure the largest number of ob
servations free from potential contamination by unburned areas. To this 
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end, we used the fire database from the Government of Aragón.
A total of 30 fire perimeters (mean size 1285 ha; ranging from 103 to 

6382 ha), distributed throughout the forested areas of Aragón, were 
selected (Table S1 and Fig. 2). These fires were grouped into three 
environmental domains: 

1. Mid-elevation (500–775 m) (8 fires). Areas with a continental Med
iterranean climate, characterized by an average annual temperature 
between 12 ◦C and 14 ◦C and precipitation ranging from 500 to 
600 mm. These fires are located mainly in the mid-mountain areas of 
the Sistema Ibérico (Iberian System), within the mesomediterranean 
belt, with a dry to sub-humid climate. The dominant vegetation 

Fig. 1. Workflow followed to assess post-fire vegetation recovery. SiCLIMA: High-resolution hydroclimate and temperature dataset for Aragón (northeast Spain) 
(Serrano-Notivoli et al., 2024); SPEI: Standardized Precipitation and Evapotranspiration Index; T-LAI: Trend of the Leaf Area Index (LAI) from MODIS (MCD15A2Hv061); 
GLMM: Generalized Linear Mixed Models. RF: Random Forest.

Fig. 2. Areas affected by fire depending on the type of aggregation domain. Not all individual fire perimeters may be visible (either because they are small or because 
they overlap).
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belongs to the holm oak series (Quercetea ilicis), which is typical of 
inland Mediterranean areas with moderate continentality.

2. High-elevation (> 1000 m) (7 fires). These areas have a sub- 
Mediterranean climate with an average annual temperature be
tween 10 ◦C and 12 ◦C and annual precipitation exceeding 700 mm. 
This area encompasses the highest elevations of the Pyrenean and 
Iberian mountain ranges. The dominant climax vegetation consists of 
deciduous oak forests (Quercus faginea L., Quercus pubescens Willd., 
and Quercus cerrioides Willk. & Costa), while Buxus sempervirens L., 
Genista scorpius (l.) DC. and Echinospartum horridum (Vahl) Rothm. 
shrublands appear as secondary vegetation. At the highest elevation, 
mountain pine forests of Pinus sylvestris L. predominate. According to 
the phytoclimatic classification, this domain falls within the 
montane-supramediterranean belt, with a sub-humid climate, and 
belongs to the Quercetea pubescentis vegetation series, typical of 
mountainous areas with higher relative moisture.

3. Low-elevation (< 500 m) (15 fires). Mainly distributed across low
lands of the Ebro Basin and the Iberian and Pyrenean foothills, on 
Tertiary and Quaternary substrates. This region is characterized by a 
semi-arid Mediterranean climate, with average annual temperatures 
ranging from 14 ◦C to 16 ◦C and low annual precipitation 
(~450 mm). According to Rivas-Martínez's phytoclimatic classifica
tion, this area belongs to the mesomediterranean belt with a dry to 
semi-arid climate (Rivas-Martínez et al., 2002). The dominant 
vegetation includes kermes oak (Quercus coccifera L.) and holm oak 
(Quercus. ilex L.) shrublands, although Pinus halepensis L. woodlands 
are also abundant, accompanied by Q. coccifera L. and other char
acteristic Mediterranean shrub species.

2.2. Generation of the regenerative trends (T-LAI and T-LAIC)

MODIS data were obtained from the Land Processes Distributed Active 
Archive Center (LPDAAC). The MCD15A2Hv061 LAI product has a 
spatial resolution of 500 m and an 8-day temporal resolution. Although 
field-based LAI validation data were not available for the study area, the 
MODIS LAI/FPAR (MCD15A2H) product has been extensively validated 
through comparisons with in-situ measurements and independent sat
ellite datasets (Morisette et al., 2006; Garrigues et al., 2008). While some 
studies have reported a slight overestimation of MODIS LAI values (Yan 
et al., 2016), these products have been shown to reliably capture 
vegetation phenological dynamics and temporal trajectories (Serbin 
et al., 2013). More recent evaluations report an acceptable agreement 
between MODIS LAI and reference data (R² ≈ 0.7; RMSE ≈ 0.96; Lin 
et al., 2023).

All pixels classified as burned (dNBR > 100, following the official 
threshold distinguishing burned from unburned areas; see 2.4) that 
intersected fire perimeters between 2003 and 2015 were selected, 
yielding a total of 1605 burned pixels. In addition, a control group was 
defined using 878 pixels located within or adjacent to fire perimeters but 
showing dNBR values < 100, ensuring that these pixels had not been 
affected by fire.

From both datasets (burned and unburned or control), we computed 
two LAI trends (T-LAI and T-LAIC) after fire occurrence for all pixels over 
five periods (1–5 years) —a common time-frame choice in similar 
studies to assess short-term regeneration (Meng et al., 2015; Carlson 
et al., 1990). Both trends were analyzed using approximately 228 ob
servations, allowing for the estimation of both the statistical significance 
using the Mann-Kendall statistical test (Kendall, 1975) and the magni
tude of the trend using Sen’s slope estimator (Sen, 1968). Since LAI data 
exhibited a pronounced seasonality due to the natural cycles of vege
tation growth and senescence, they were deseasonalized before calcu
lating the trends. The STL (Seasonal-Trend decomposition using Loess) 
approach (Cleveland et al., 1990) was used to isolate the underlying 
long-term trend, providing a clearer view of significant changes over 
time.

2.3. Post-fire climate characterization through the SPEI

The SPEI is obtained by normalizing the water balance to the log- 
logistic probability distribution (Vicente-Serrano et al., 2017). Its main 
advantage over other drought indices is that it takes into account the 
concurrence of precipitation and temperature, making it a useful tool to 
assess soil water availability. In addition, it allows the association of 
different drought temporal scales with specific events such as wildfires 
(Russo et al., 2017; Vicente-Serrano et al., 2010). The SPEI quantifies 
data anomalies based on the number of standard deviations by which the 
value deviates the long-term hydroclimatic mean for a specific location 
(i.e., when SPEI > 1, it indicates an anomalously wet period; when SPEI 
< − 1, it indicates an anomalously dry period).

Drought intensity values obtained through the SPEI were calculated 
using the SiCLIMA dataset (Serrano-Notivoli et al., 2024), a 0.25 km² 
(500 ×500 m) grid of daily precipitation and temperature data covering 
the Aragón region. This dataset was built from more than 3000 obser
vational data series of both variables, which underwent comprehensive 
quality control and reconstruction. The latter was performed by esti
mating values at unmeasured locations using generalized linear models 
(GLM and GLMM) and incorporating environmental and topographic 
variables as predictors independently for each day and location.

2.4. Spatial analysis of burn severity

The analysis of burn severity using multispectral remote sensing 
(Landsat imagery) was based on its ability to detect changes in surface 
reflectance caused by vegetation loss, increased soil exposure, variations 
in moisture content, or the appearance of combustion-derived sub
stances. One of the most effective spectral indices for this purpose is the 
Normalized Burn Ratio (NBR) (Epting et al., 2005), as it combines the 
spectral bands that show the strongest contrast in response to fire: 
near-infrared (NIR) and shortwave infrared (SWIR). NIR shows a 
decrease in reflectance due to the loss of active vegetation, while SWIR 
registers an increase in reflectance due to moisture loss and greater soil 
exposure (Van Wagtendonk et al., 2004).

The NBR index is generally applied in a bi-temporal approach using 
pre- and post-fire data, which results in the delta Normalized Burn Ratio 
(dNBR) (Key and Benson, 2006) and the Relative delta Normalized Burn 
Ratio (RdNBR) (Miller and Thode, 2007). Both bi-temporal indices can 
be calculated to obtain an initial assessment of burn severity, typically 
using a post-fire image acquired shortly after the fire event (Cocke et al., 
2005; French et al., 2008; Parks et al., 2019; Saberi et al., 2022). 
However, RdNBR eliminates the bias associated with pre-fire vegetation 
conditions by normalizing dNBR to the pre-fire NBR value.

2.5. Analysis of pre-fire vegetation and aggregation based on regeneration 
mechanism

To characterize pre-fire vegetation and its spatial distribution, 
mapping products were generated to identify the dominant plant com
munities affected by fire. This classification was not intended to repre
sent discrete ecological units at the species level, but rather to provide an 
ecologically meaningful framework for aggregating vegetation accord
ing to dominant post-fire regeneration strategies, which are a key 
determinant of recovery dynamics in fire-prone ecosystems.

Multispectral satellite images from the Landsat program, available in 
the Google Earth Engine (GEE) repository at Level 2 processing 
(Collection 2), were used for this purpose. A composite image was 
generated for each year, based on the median surface reflectance values 
from available images acquired between June and October, filtered by 
cloud mask cover and with cloudy pixels removed using a cloud mask 
(Schmitt et al., 2019). A supervised classification algorithm based on 
Random Forest (RF) was then applied. The training process was con
ducted using a field database containing 3100 labeled samples from 
2013, developed within the framework of previous research projects and 
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various cartographic sources of forest information, in particular the 
Third National Forest Inventory (NFI-3).

A total of eight vegetation categories were obtained, distributed 
across four tree vegetation types [Pinus sylvestris (Ps), Pinus nigra (Pn), 
Quercus ilex (Qi), and Quercus cerrioides (Qf)], three shrubland types 
[shrublands derived from P. sylvestris (mPs), shrublands derived from Q. 
cerrioides (mQf) –i.e., shrublands colonizing fire-affected P. sylvestris or 
Q. cerrioides stands–, and degraded low shrublands (mP)], and one 
category representing areas with sparse or no vegetation (I).

Regeneration mechanisms were not directly derived from Landsat 
imagery but were assigned a posteriori based on the dominant vegeta
tion types identified through the supervised classification. This assign
ment was grounded in well-established fire-response traits documented 
in the ecological literature (e.g., Pausas et al., 2004), reflecting 
species-level strategies related to fire resistance, resprouting capacity, 
and recruitment from seed.

Broadly, the ecosystems included in the study represent three 
dominant post-fire regeneration strategies: (a) obligate seeders, domi
nated by P. halepensis, a species with an extensive aerial seed bank 
(serotiny) that allows endogenous recolonization; (b) passive defense 
systems, characteristic of communities dominated by P. nigra and 
P. sylvestris, which adopt a fire-resistant strategy through passive defense 
mechanisms (e.g., relatively thick bark or high crown base height); and 
(c) obligate resprouters, represented by phanerophytes and macro- 
phanerophytes of the genus Quercus (Q. ilex, Q. cerrioides, Q. coccifera), 
which rely on resprouting from adventitious buds. Although shrub 
communities may exhibit heterogeneous post-fire regeneration strate
gies, limitations in the spectral discrimination of shrub species using 
Landsat imagery required their aggregation into a single category. This 
functional grouping is appropriate at regional scales and when using 
medium-resolution satellite-derived indicators such as LAI, where 
species-level variability cannot be resolved but dominant ecological 
strategies governing post-fire recovery can be robustly captured.

2.6. Statistical analysis and post-fire recovery modeling

We used Generalized Linear Mixed Models (GLMM) to assess the 
effect of climatic constraints on LAI trends, while controlling for burn 
severity and the characteristics of the affected vegetation.

Five different models were computed for the five cumulative time 
periods considered in the T-LAI from 1 to 5 years after fire occurrence 
(+12, +24, +36, +48, and +60 months). As GLMM allow for the 
adjustment of correlation structures that include fixed effects (explan
atory variables) and random effects (variables that account for unex
plained variability) (Bolker et al., 2009), we included the SPEI variables 
at different temporal scales, short-term burn severity and occupancy 
percentages based on regeneration mechanism as fixed effects, while the 
location of the fires (their individual identifier) was the random effect.

In addition, to identify whether the LAI trend in burned areas re
sponds exclusively to climatic variations (common across the entire 
landscape –burned and control) or reflects a specific postfire regenera
tion process modulated by fire impact and the functional traits of the 
vegetation, a second set of models was computed including the inter
action between SPEI and the burned-control categories.

In both cases, the model parameters were estimated using the 
restricted maximum likelihood (REML) method, and the variables were 
previously standardized to ensure comparability of coefficient magni
tudes, improve convergence (achieving a stable solution after a defined 
number of iterations), and enhance the model's numerical stability.

Before applying the models, we partitioned the input data into two 
groups, of which one (30 %) was reserved for testing purposes and the 
other (70 %) was used as training dataset. We performed 10,000 re
alizations to avoid bias in the selection of data and the results were 
averaged.

In addition, to evaluate differences in LAI among the different Do
mains, the non-parametric Kruskal–Wallis test was applied, followed by 

pairwise comparisons using the Steel–Dwass–Critchlow–Fligner post- 
hoc test. Likewise, differences in LAI between burned and control 
areas were assessed using the Wilcoxon signed-rank test for paired 
samples, applied at 100-day post-fire intervals to capture temporal re
covery patterns. Prior to the analyses, a stratified random sampling 
procedure was implemented to minimize pseudo-replication and ensure 
the spatial independence of observations. Specifically, 100 pixels per 
Domain were selected for the Kruskal–Wallis test. For the Wilcoxon test, 
a Monte Carlo approach was applied for each 100-day interval (18 in 
total), performing 100 iterations consisting of the random selection of 
300 observations from each sample (burned and unburned).

3. Results

3.1. LAI-based fire clustering

The three environmental domains derived from the clustering of the 
30 fire events were dominated by Mediterranean and sub-Mediterranean 
pine forests with deciduous and evergreen oaks, and they were repre
sentative of a climatic-altitudinal gradient, with changes in the leaf 
fraction and the regenerative strategy of the dominant tree species 
(Table 1).

Fires in the foothills of the Iberian System and the Ebro Basin (LAI: 
0.57, ALT: 750 m) (Domain 1st) featured plant communities with low 
foliar density, corresponding to open or degraded forests, dominated by 
shrubs and tree stands of Pinus halepensis (10.84 %). The fires in the mid- 
elevation Pyrenees and Iberian System (LAI: 0.86, ALT: 1200 m) 
(Domain 2nd) showed the highest values, representing denser vegeta
tion types with high foliar density. These areas were dominated by Pinus 
sylvestris/nigra (21.83 %), with a significant contribution from marces
cent and evergreen broadleaved species-Quercus faginea/Quercus ilex 
(10.04 %).

Finally, fires in the Ebro Basin and the Pyrenean Piedmont (LAI: 
0.70, ALT: 537 m) (Domain 3rd) presented an intermediate LAI, sug
gesting vegetation types with moderate foliar density, mainly composed 
of Pinus halepensis (2.19 %), with smaller contributions from P. nigra 
(4.24 %) and Quercus gr. cerrioides/Quercus ilex (1.97 %). Statistical 
analyses confirmed significant differences in LAI among domains, both 
before (K = 28.82, p < 0.0001) and after fire (K = 67.30, p < 0.0001). In 
both cases, Domain 1st had significantly lower LAI values than Domains 
2nd and 3rd (p < 0.05), while no significant differences were detected 
between Domains 2nd and 3rd (p > 0.05).

3.2. Post-fire vegetation recovery trends (T-LAI and T-LAIC)

The morphological characteristics of the probability density distri
butions across post-fire periods of different length (Fig. 3) allowed the 
identification of three T-LAI patterns. The first one, corresponding to the 
initial 12 months after the fire, exhibited high variability with a notable 
presence of cases showing a negative trend. During the first 24 months 
after the fire, there was a period of high post-fire regeneration, char
acterized by predominantly positive trends. From 36–60 months after 
the fire, a prevalence of weak positive trends was observed, indicating a 
stabilization process. This was reflected in the reduction of skewness and 
kurtosis (Table 2), as well as in the convergence of distributions toward 
values close to zero, particularly after 48 months. Both patterns sug
gested that trends become less pronounced and more stable as longer 
post-fire periods are considered.

Obviously, given the method used to calculate T-LAI (accumulating 
one year in each measurement), these values are highly correlated. In 
fact, all correlations were significant and positive, except for the T-LAI of 
the first year, which showed a negative correlation of lower intensity 
compared to the others (r < -0.55) (Table S2). On the other hand, the 
mean trends in the control areas (T-LAIC) show lower values and smaller 
percentages that are statistically significant (Table S3).

Fig. 4 shows the deseasonalized trajectory of LAI in burned areas (red 

F. Pérez-Cabello et al.                                                                                                                                                                                                                          Forest Ecology and Management 606 (2026) 123568 

5 



line) and control areas (green line) over a five-year period. In general, 
control areas exhibit consistently higher LAI values throughout the 
analyzed period. In contrast, burned areas show lower LAI values, not 
reaching the levels observed in non-affected areas until approximately 
three and a half years after the fire (p-value = 0.1005) (Table S4). Both 
groups show temporal fluctuations; however, the amplitude of variation 
is lower in burned areas, which may indicate a more limited vegetative 
response or a simplified vegetation structure in these sites.

3.3. Post-fire climatic conditions (SPEI)

The descriptive statistics for SPEI values at cumulative post-fire time 
steps (+12 to +60 months) are summarized in Table 3. This analysis 
follows a relative timeline, following a Superposed Epoch Analysis 
(Arizpe et al., 2020), where for each fire event (n = 30), SPEI values 
were extracted at specific intervals after the month of fire occurrence. As 
fire years differ (2003–2015), each time step refers to a distinct calendar 
period across fires. Therefore, the values presented do not correspond to 
a single climatic phase but instead reflect variability in post-fire drought 
exposure across events.

While no consistent pattern of extreme drought or wet conditions 
was observed across all time steps, certain periods (e.g., +36 months) 
showed broader ranges in SPEI values, including moderately to severely 

Table 1 
General characteristics of fire clusters (environmental domains). For each domain, the table reports total burned area (EXT, ha) and number of wildfires (in paren
theses), mean ± SD of pre- and post-fire LAI, elevation (ALT, m), burn severity (RdNBR), and mean surface area (MSA, %) corresponding to dominant post-fire 
regeneration mechanisms. MSA represents the percentage of the burned surface within each domain associated with each regeneration strategy: obligate seeders 
(OS), passive defense systems (PDS), and obligate resprouters (OR). Different letters (ª vs. b) indicate statistically significant differences according to post-hoc tests.

EXT 
(nº fires)

Pre-fire 
LAI

Post-fire 
LAI

ALT 
(m)

RdNBR MSA: 
OS

MSA: 
PDS

MSA: 
OR

1st 5147 (8) 0.5653 ± 0.19ª 0.4788 ± 0.14a 750 ± 100 561 ± 223 10.84 ± 17.2 0 ± 0.03 0.63 ± 1.58
2nd 16104 (7) 0.8557 ± 0.45b 0.7655 ± 0.35b 1200 ± 268 499 ± 236 0.01 ± 0.08 21.83 ± 22.8 10.04 ± 12.23
3rd 17294 (15) 0.6961 ± 0.23b 0.6647 ± 0.22b 537 ± 55 461 ± 221 2.19 ± 7.84 4.24 ± 9.89 1.97 ± 5.25

Fig. 3. Probability density distributions over post-fire time periods.

Table 2 
na.

Variable Min. Max. Mean Std. Dev. Skewness Kurtosis % SIG

T-LAI_1st+12 -0.9074 1.0126 -0.1404 0.2882 0.3846 0.6946 84.05
T-LAI_2nd+24 -0.4989 1.2024 0.1199 0.1511 1.0396 5.1836 91.71
T-LAI_3rd+36 -0.2663 0.6494 0.0753 0.1114 1.3829 3.0813 89.35
T-LAI_4th+48 -0.1864 0.5895 0.0790 0.0834 1.0494 2.7001 95.20
T-LAI_5th+60 -0.1201 0.3655 0.0753 0.0636 0.9293 1.3294 96.26

Fig. 4. Mean temporal evolution of LAI in burned and control areas over a five-year post-fire period. Shaded bands indicate the 5th–95th percentile range, illus
trating the variability within each group.
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dry or wet events. This variability highlights the heterogeneous climatic 
contexts experienced by different fires during their recovery periods. 
Notably, no fire events coincided with extremely dry or extremely wet 
conditions (SPEI ≤ − 2 or ≥ 2).

3.4. Explanatory factors of T-LAI

Pearson's coefficient of determination obtained by comparing the 
observed and predicted values of T-LAI (in the 10,000 realizations of each 
model) reflected a satisfactory level of agreement (R² ~ 0.80). The 
marginal and conditional R² values (Table 4) showed moderate average 
values for the marginal ones (meaning that only 20 % of the variability 
is explained by the fixed effects) and acceptable values for the condi
tional ones (R² = 0.66, mean value for the time periods). This indicated 
that a significant proportion of the variability was due to the random 
effect, as the models together explained approximately 65 % of the total 
variance. In other words, the differences between burned areas 
explained a considerable part of the variance, which was key to un
derstanding the magnitude of the T-LAI. This pattern was common when 
the data came from diverse geographic locations, as these often 

exhibited hierarchical or nested structures.
The most influential factor during the first period was SPEI (Fig. 5). 

Its influence then decreased sharply and became negligible in the 
models after + 12 months post-fire, highlighting the moment when 
moisture conditions were most needed for recovery. On the other hand, 
burn severity had a negative effect on T-LAI values that persisted for 
longer periods after the fire. Regarding the type of vegetation affected, 
regardless of its regeneration mechanism, it initially showed a negative 
relationship with T-LAI values. However, from + 12 months post-fire 
onwards, this relationship gradually shifted, approaching zero as the 
time intervals increased, being more important in resprouting tree 
species or those with a passive regeneration mechanism than in seeders.

In general terms, T-LAI indicated that the initial impact of fire 
(negative RdNBR and positive SPEI) decreased over time, while the 
positive influence of species began after the first year post-fire. These 
results emphasize the structural nature of the "previous vegetation" 
factor and the more circumstantial factors represented by burn severity 
or climatic anomalies.

3.5. Explanatory factors of T-LAI including interaction between SPEI and 
burn severity

The models fitted using pixel samples from both burned and control 
areas, incorporating vegetation functional traits, the SPEI, and the 
interaction between SPEI and burn condition, revealed temporal varia
tions in the relative importance of these predictors (Fig. 6). In particular, 
the interaction term was statistically significant in the first three post- 
fire intervals (+12, +24, and +36 months), although with differing 
magnitudes and implications depending on the SPEI time scale consid
ered (Table 6).

At 12 months post-fire, both the main effect of SPEI and its interac
tion with burn condition were positive and statistically significant on T- 
LAI (0.23 and 0.05, respectively). This suggests that moisture conditions 
near the time of the fire favored post-fire recovery. In the same interval, 
functional traits also played a notable role: resprouters were positively 
associated with T-LAI, whereas seeders and shrubs had negative effects. 
The marginal R² was 0.18, and the conditional R² reached 0.57, indi
cating a moderate contribution of fixed predictors and a substantial 
influence of random effects.

At 24 months post-fire, the main effect of SPEI was no longer sig
nificant, although the interaction remained significant. During this 
period, all functional traits contributed positively to T-LAI. However, the 
explanatory power of the fixed effects decreased (marginal R² = 0.13), 
while the variance explained by the random effects increased (condi
tional R² = 0.69).

At 36 months, the interaction persisted, with a mean coefficient of 
0.037, and the model’s explanatory capacity improved notably (mar
ginal R² = 0.25), primarily driven by the positive effect of all functional 
traits considered. From 48 months onwards, 100 % of the models indi
cated no significant effect of the climatic variables (neither the main 
effect of SPEI nor its interaction).

Overall, these results suggest that the influence of climate on T-LAI is 
strongest in the early years following fire. As the SPEI accumulation 
window expands, the direct effect of climate loses significance, while the 
interaction with burn condition and, especially, the contribution of the 
affected vegetation’s functional traits become increasingly relevant.

4. Discussion

4.1. T-LAI as post-fire vegetation recovery indicator

We opted for a complex data product such as the MODIS LAI product 
to quantify post-fire vegetation recovery (Putzenlechner et al., 2024) 
and interpret it from a biophysical perspective. LAI is a useful parameter 
in forestry and serves as an indicator of forest productivity, due to its 
close association with essential processes such as photosynthesis, 

Table 3 
Distribution of descriptive statistics for SPEI values over 1–5 years post-fire 
cumulative time periods (+12 to +60 months).

Statistic + 12 m + 24 m + 36 m + 48 m + 60 m

Minimum -1.2249 -1.3569 -1.3843 -1.7360 -1.5962
Maximum 1.5107 1.7418 1.8731 1.5699 1.5382
1st Quartile -0.1373 -0.4285 -1.1761 -0.0772 -0.3075
3rd Quartile 0.4140 0.4187 0.5004 0.9685 0.7104
Standard deviations 0.6120 0.7023 0.7657 0.7039 0.7740
Skewness 0.1623 0.4599 0.4891 -0.5504 0.1451
Kurtosis 0.4980 -0.0903 -0.6599 -0.4041 -0.3631

Table 4 
Summary of model fit for the 10,000 iterations in the five models (+12 to +60 
months), comparing predicted data with observed data not used in model con
struction (30 % data holdout; n = 482). R² marginal: variance explained by 
fixed effects; R² conditional: variance explained by the full model (fixed +
random effects).

Time interval Min. Mean Max. Std. Dev.

R2 Pearson + 12 m
0.735

0.795 0.847 0.015

+ 24 m
0.726

0.801 0.856 0.021

+ 36 m
0.758

0.822 0.876 0.017

+ 48 m
0.712

0.791 0.869 0.020

+ 60 m
0.676

0.761 0.834 0.021

R2 conditional + 12 m
0.561

0.612 0.666 0.014

+ 24 m
0.666

0.717 0.775 0.018

+ 36 m
0.639

0.686 0.735 0.014

+ 48 m
0.588

0.642 0.699 0.016

+ 60 m
0.610

0.653 0.702 0.012

R2 marginal + 12 m
0.144

0.172 0.200 0.008

+ 24 m
0.103

0.138 0.177 0.011

+ 36 m
0.173

0.214 0.261 0.012

+ 48 m
0.195

0.241 0.295 0.014

+ 60 m
0.228

0.279 0.326 0.012
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transpiration-respiration, evapotranspiration, interception and gross 
primary productivity of vegetation (Alton, 2018; Asner et al., 2003; 
Boussetta et al., 2013; Jarlan et al., 2008). Its use is widespread in 
carbon circulation models, climate models, and ecological models 
(Keenan et al., 2009; Sabateé et al., 2002; Wang et al., 2019).

In the case of burned areas, spectral recovery cannot always be 
directly associated with the ecological recovery of the affected vegeta
tion types (Celebrezze et al., 2024). However, T-LAI can be used as a proxy 
for the recovery of physiological functionality in terms of leaf area over 
time periods of varying lengths. Although resilience analysis requires 
numerous metrics for a comprehensive diagnosis (Hodgson et al., 2015; 
Falk et al., 2022), the use of T-LAI provides a more precise magnitude in 

relation to the recovery of vegetation structure and may bring us closer 
to the concept of recovery in eco-physiological terms (Folke et al., 
2010). Furthermore, the cumulative time perspective, from 1 to 5 
post-fire years, allows the interpretation of the trend relative to the 
estimation window and establishes a direct connection with the multi
scalar dimension of the SPEI.

In the first post-fire year, trend sign and magnitude showed high 
variability, often negative, reflecting the complexity of natural adjust
ments to new environmental conditions. Vegetation mortality (lightly 
scorched or partially affected) may coexist with rapid herbaceous 
growth and opportunistic species, alongside hydro-geomorphological 
processes that may inhibit regeneration. The regeneration lag 

Fig. 5. Mean coefficients (scale factor 13) of fixed factors in the explanatory function of T-LAI over the post-fire periods (+12 to +60 months). Each block represents a 
specific explanatory factor: seeders, passive, resprouter, shrubs, SPEI, and RdNBR.

Fig. 6. Mean coefficients (scale factor 13) of fixed factors in the explanatory function of T-LAI over the post-fire periods (+12 to +60 months). Each block represents a 
specific explanatory factor: seeders, passive, resprouter, shrubs, SPEI, and Interaction.
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observed in the first + 12 months may also be partly influenced by the 
spectral response of persistent combustion products (Montorio et al., 
2020) and partially burned vegetation, as well as by the potential impact 
of hydrological-forestry treatments, such as extraction and/or in situ 
management of burned wood(Vlassova and Pérez-Cabello, 2016), which 
could introduce additional uncertainty in surface reflectance patterns. 
For example, these post-fire treatments can alter the optical properties of 
the affected areas by decreasing reflectance in some spectral bands (e.g., 
shortwave infrared) while increasing it in others (e.g., near-infrared), 
thereby modifying the spectral signal associated with natural regener
ation of the vegetation.

In addition, potential misclassification of land cover may also 
contribute to uncertainties in MODIS-derived LAI estimates, as the 
biome-specific lookup tables applied by the LAI/FPAR algorithm 
(MCD15A2H) may not reflect the actual structural changes in vegetation 
caused by fire, particularly in areas undergoing strong transitions (Pu 
et al., 2020; Lv et al., 2024).

The variability in the first period (+12 m) contrasted with the 
widespread, more intensive growth observed in the first + 24 months, 
followed by stabilization after + 36 months. This highlights the 
importance of selecting appropriate time gaps to capture different di
mensions of ecosystem responses to both direct and indirect fire effects, 
particularly when using variables based on the spectral response of post- 
fire vegetation cover (Chu and Guo, 2013; Meng et al., 2018).

4.2. Modeling T-LAI values extracted from MODIS

Using multiscale T-LAI values to analyze factors driving its direction 
and magnitude, we evaluated the influence of burn severity, SPEI values, 
and pre-fire vegetation type on regenerative trends. In addition, for 
SPEI—the only exogenous factor affecting both burned and unburned 
areas—we assessed whether its influence on burned areas reflects a 
genuine post-fire recovery or merely replicates the general climatic 
response.

To capture variability and avoid underestimation, fire location was 
included as a random effect in the GLMM. This approach accounted for 
ecological complexity, where both constant factors and variable condi
tions, represented by random effects, influence vegetation recovery. The 
results were consistent with existing literature and emphasized the 
relevance of fixed factors depending on their proximity to the fire event, 
given the varying durations of the analysis periods.

4.2.1. Fixed factors
The SPEI provides a representative measure of water balance that is 

crucial for assessing its impact on vegetation recovery when analyzing 
the influence of post-fire moisture conditions on T-LAI values. Due to its 
multiscale analysis capabilities, the SPEI has been widely used in studies 
to quantify its effect on post-fire recovery (e.g., Viana-Soto et al., 2020).

In our case, considering that episodes of ecological drought 
(Crausbay et al., 2017), capable of exceeding biological tolerance 
thresholds and altering natural systems, occurred throughout the 
post-fire period, the results obtained indicated that wet conditions had a 
positive influence on the regenerative trend of T-LAI. This effect, based on 
the statistical significance and the magnitude and direction of the co
efficients derived from the multiscale modeling, was particularly rele
vant during the first months after the fire. Moreover, based on the 
modeling that incorporates the SPEI–FIRE interaction, the results indi
cate that the influence of SPEI on T-LAI is more pronounced in burned 
areas than in unburned ones, especially during the first years following 
the fire. This conclusion is supported by the statistical significance of the 
interaction, which reveals a modulation of the climatic effect depending 
on whether the area was burned or served as control. In particular, at 
shorter temporal scales (12–36 months), this interaction is significant, 
suggesting that drought/wetness conditions play a critical role in the 
initial stages of postfire regeneration. This pattern supports the hy
pothesis that climate acts as a key limiting factor in the recovery 

trajectory of fire-affected vegetation, whereas its influence is more 
diffuse in unaffected ecosystems.

Our results align with previous studies that also analyzed the impact 
of climatic conditions on post-fire recovery using spectral variables. For 
example, Blanco-Rodríguez et al., (2023) highlighted the influence of 
climate on vegetation regeneration during the first years after fire, and 
the significant role of drought in reducing Mediterranean forest recov
ery. Similarly, Storey et al. (2021), using a 35-year series of Landsat 
images and a predictor related to climatic water deficit, also reported 
significant associations.

Our results are also consistent with the current scientific interest in 
analyzing the effects of climate change on both fire regime trans
formations and post-fire recovery processes. Regarding the latter and 
considering the role of moisture conditions in ensuring mid-term (3–5 
years) post-fire foliar growth, predictions of increased drought fre
quency and intensity (Gomez-Gomez et al., 2022; Miller et al., 2009; 
Miller and Thode, 2007; Tramblay et al., 2020) could negatively impact 
future fire recovery processes. This is due to changes in the structure and 
composition of affected ecosystems (Bendall et al., 2022; Parks and 
Abatzoglou, 2020).

For the burn severity analysis using Landsat imagery, we used the 
RdNBR to mitigate the bias associated with pre-fire vegetation charac
teristics in the distribution of severity values. This adjustment helped to 
reduce the overestimation of severity in areas with higher pre-fire 
vegetation density while preventing the systematic association of low- 
cover areas with low severity. Such misclassification could have signif
icant consequences for regenerative trends (i.e., misclassified areas, as 
low severity could be linked to high intercepts and low slopes in re
covery models). Conversely, severely burned areas, which generally 
correspond to zones with higher pre-fire vegetation density, tended to 
exhibit steeper slopes in the models, which could be misinterpreted as 
faster LAI recovery.

The results obtained are consistent with Keeley (2009), who identi
fied the negative influence of this contextual factor on vegetation re
covery. This relationship between high severity levels and lower 
regeneration is still recognized in numerous recently published studies. 
For example, based on a systematic review, Grau-Andrés et al. (2024)
provided global evidence that high severity negatively affects vegetation 
abundance, diversity, and overall condition. This was attributed to the 
impact of extreme temperatures on the insulating capacity of the bark 
and the destruction of the regenerative structures of the affected species. 
Volkova et al. (2025a) indicated that, although burn severity did not 
have a significant impact on species richness, diversity, or composition, 
it led to notable changes in the specific composition of affected eco
systems. This suggests that high-severity fires create environmental 
conditions that differ from those in unburned areas or regions affected 
by low-severity fires.

However, in our case, the influence of burn severity was only mod
erate and decreased as the time scale expanded (~50 % of the models 
lost the significance of this factor when the period was extended from 
+24 to +36 months (Table 5)). The explanatory power of the burn 
severity was particularly evident when considering the quantified trends 

Table 5 
Percentage of models with variables showing statistical significance. Distribu
tion by accumulated post-fire time intervals.

T- 
LAI_1st+12

T- 
LAI_2nd+24

T- 
LAI_3rd+36

T- 
LAI_4th+48

T- 
LAI_5th+60

(Intercept) 100 100 100 100 100
Seeders 100 100 100 100 100
Passive 

strategy
85 100 100 100 100

Resprouters 8 100 100 100 100
Shrubs 100 100 100 100 100
SPEI 100 0 28 0 0
RdNBR 5 92 42 2 1
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for the first + 24 months. Similarly, Caccamo et al. (2015), using MODIS 
data, also concluded that the influence of severity was limited to the first 
+ 24 months.

Regeneration mechanism played a significant role in all models (p- 
value < 0.05 in 100 % of cases), and although its influence decreased 
slightly as the analysis period increased, it never lost statistical signifi
cance. This effect was particularly important in resprouting tree species 
or those with a passive recovery strategy. In this context, the succes
sional process following fire–considered as a disturbance in the sense of 
Sousa (1984)–can be described as a process of reestablishment of the 
affected systems (Herranz Sanz, 2000). However, in this study, only the 
autosuccession of foliar fraction levels can be addressed, as other as
pects, such as physiognomic recovery or the reestablishment of pre-fire 
species composition, remain opaque Table 6.

4.2.2. Changes in influence depending on post-fire cumulative time periods
According to previous studies, both burn severity and post-fire cli

matic conditions significantly influence the regenerative dynamics of 
affected ecosystems (Meng et al., 2015; Volkova et al., 2025b). How
ever, the magnitude of this contribution varied depending on the tem
poral scale analyzed. In general terms, the regenerative trend during the 
first + 12 months showed negative average values. This may be related 
to the temporal proximity of the fire event and the lack of time for the 
ecosystem to start recovering from the impact. In the early stages, 
affected ecosystems exhibited marked instability due to the adaptation 
process to new environmental conditions and the direct effects of fire. 
During this period, regenerative processes coexisted with potential 
hydro-geomorphological reactivation (e.g., soil loss and/or fertility 
decline), which can significantly inhibit natural regeneration.

Notably, there was a significant negative effect of regeneration 
mechanisms, attributed to the influence of vegetation on the intercepts 
of functions related to LAI trends. In fact, similar studies have excluded 
this period from recovery analyses (Meng et al., 2015), as vegetation in 
the first post-fire year may continue to lose vigor due to the radiometric 
impact of combustion residues or to reduced photosynthetic activity 
resulting from post-fire management actions, such as hydrological 
control measures and burned wood removal (Solans Vila and Barbosa, 
2010).

On the other hand, positive regeneration was primarily associated 
with wet climatic conditions (positive SPEI anomalies), while burn 
severity had a negative influence, although it was less relevant than 
post-fire climatic conditions.

During the first two years, a significant change was observed in the 
influence of fixed factors related to vegetation. Positive climatic 
anomalies continued to exert a positive effect on the regeneration pro
cess, although this effect was not statistically significant (p-value >
0.05) and had a much smaller impact compared to the trend observed in 
the first 12 months. On the other hand, burn severity maintained the 
same intensity in the models, but with greater statistical significance: 
over 90 % of the models showed a statistically significant effect. How
ever, the most notable changes were observed in the influence of the 
occupation percentages of species according to their dominant regen
eration mechanism. In contrast to the role they played in the + 12- 
month model, these factors were positive and significant in all cases. 

This effect was particularly notable in resprouting tree species and in 
systems dominated by passive regeneration mechanisms (e.g., Scots pine 
and black pine forests), which had greater weight in the model.

In periods longer than + 24 months, the ecosystems showed clear 
signs of stabilization and regeneration. This process was driven by the 
preexisting species in tree vegetation types dominated by seeding and 
resprouting species, as well as the regeneration of latent shrublands 
present in the understory of pine forests with a passive strategy. These 
results were consistent with those described in previous studies on the 
regenerative trajectories of these vegetation types in the regional anal
ysis of Aragón.

During the three-year post-fire period, the role of regeneration 
mechanisms remained significant, although with a slightly reduced in
fluence compared to the previous periods. Burn severity showed a slight 
decrease in its impact, as well as in the percentage of models where its 
effect was statistically significant (around 40 %). Similarly, the specific 
weight of climatic factors also decreased and was significant in only 
28 % of the models.

As longer periods were included in the analysis of LAI trends, 
changes in the slope tended to stabilize, approaching values near zero 
and reducing the variability observed in shorter periods. After 36 
months, the trends reached neutral or very mild levels, stabilizing 
around zero. In contrast, at the onset of regeneration, a more pro
nounced negative character and greater dispersion of trends were 
observed.

5. Conclusion

This study analyzes the influence of post-fire climatic conditions 
through the SPEI, burn severity, and characteristics of the affected 
vegetation using the LAI regenerative trend. The analysis considers post- 
fire periods of varying durations and takes into account forest fires that 
occurred between 2003 and 2015, distributed across contrasting 
biogeographical environments in Aragón (northeastern Spain).

Using the LAI trend as a regeneration indicator allowed assessment of 
vegetation recovery through changes in leaf fraction and its regulatory 
processes, including canopy interception, evapotranspiration, and net 
primary productivity. During the first months after the fire, LAI trends 
were highly variable, often showing negative trends. However, when 
considering a longer period of up to + 24 months, more pronounced and 
predominantly positive trends were observed. Beyond + 36 months, 
these trends decreased in intensity and tended to stabilize as the analysis 
period lengthened (more than +36 months post-fire). Likewise, the in
fluence of SPEI on the LAI trend is more evident in fire-affected areas 
than in control zones, although only during the first years following the 
fire.

Burn severity and particularly the moisture conditions in the year 
following the fire, directly influenced the regenerative dynamics of the 
leaf fraction in the affected ecosystems. In this context, reduced soil 
moisture due to climatic anomalies could inhibit or delay the effec
tiveness of regeneration mechanisms or lead to higher mortality sce
narios as a consequence of the fire.

Furthermore, the regeneration mechanism of the species emerged as 
a significant factor in the regenerative trend of the LAI, although its 
relevance progressively decreased as the analysis period lengthened. 
This effect was particularly pronounced in tree species with sprouting 
capacity or passive regeneration strategies.

Future climate aridification scenarios could further slow down 
regeneration rates, even in Mediterranean ecosystems with effective 
regeneration mechanisms. These findings may help to calibrate simu
lation models of post-fire dynamics, enhancing management strategies 
to safeguard ecosystem services.
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Sabaté, S., Gracia, C.A., Sánchez, A., 2002. Likely effects of climate change on growth of 
Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica 
forests in the Mediterranean region. For. Ecol. Manag. 162, 23–37. https://doi.org/ 
10.1016/S0378-1127(02)00048-8.

Saberi, S.J., Agne, M.C., Harvey, B.J., 2022. Do you CBI what I see? The relationship 
between the Composite Burn Index and quantitative field measures of burn severity 
varies across gradients of forest structure. Int. J. Wildl. Fire 31, 112–123. https:// 
doi.org/10.1071/WF21062.

Schmitt, M., Hughes, L.H., Qiu, C., Zhu, X.X., 2019. Aggregating cloud-free Sentinel-2 
images with Google Earth Engine. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. 
Sci. IV-2/W7, 145–152. https://doi.org/10.5194/isprs-annals-IV-2-W7-145-2019.

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. 
Stat. Assoc. 63, 1379–1389. https://doi.org/10.2307/2285891.

Serbin, S.P., Ahl, D.E., Gower, S.T., 2013. Spatial and temporal validation of the MODIS 
LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens. 
Environ. 133, 71–84. https://doi.org/10.1016/j.rse.2013.01.022.
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