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Abstract
The class of Time Accurate and highly Stable Explicit Runge–Kutta (RK–TASE) methods
has been introduced by Bassenne, Fu and Mani (J. Comput. Phys. 2021) and then extended
by Calvo, Montijano and Rández (J. Comput. Phys. 2021), and Aceto, Conte and Pagano
(Appl. Numer. Math. 2024), for the efficient solution of stiff initial value problems. With
the aim of making RK–TASE methods suitable for the efficient solution of semi–discretized
reaction–diffusion Partial Differential Equations (PDEs), in this work we exploit a general
formulation of the schemes that allows to reduce both their computational cost and error
constants, obtaining also good stability properties for such problems. In particular, a thorough
study of the accuracy and stability properties leads to newRK–TASEmethods up to order five
that are more efficient than existing ones. Several experiments show that the new proposed
RK–TASEmethods are able to efficiently solvemodels of PDEs fromapplications that require
integration over long time intervals. Furthermore, they show the better performance of the
new RK–TASE compared to other numerical schemes from the scientific literature.
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1 Introduction

Advection–reaction–diffusion Partial Differential Equations (PDEs) originate from several
mathematical models related to real–world applications, among which we mention: vege-
tation evolution [13, 24]; corrosion of metallic materials [16]; electrodeposition process in
batteries [18]; multiphase flows in porous media [25]. The semi–discretization of PDEs gives
rise to large and stiff Initial Value Problems (IVPs), for which an efficient numerical solution
is necessary. In this manuscript, we focus on the efficient numerical solution of stiff systems
of first order IVPs

{
y′(t) = f (t, y(t)), t ∈ (t0, tend], y, f ∈ R

d ,

y(t0) = y0, y0 ∈ R
d ,

(1)

arising mainly from the space discretization of reaction–diffusion PDEs. Diffusion and/or
reaction terms can therefore introduce the stiff behaviour of the solution of (1). Let us assume
f to be sufficiently smooth so that (1) has a unique solution y = y(t).
For the numerical solution of (1), well known methods are the s–stage one–step Runge-

Kutta (RK) ones [4]. Depending on the choice of the coefficients, they can be explicit or
implicit. Explicit methods are simple to implement and their main computational effort is
only given by the evaluation of the vector field at the various stages and integration steps.
Many examples of explicit RK methods with different orders have been proposed in the
literature but, nevertheless, it is well known that they are not suitable for the solution of (1)
if it is stiff. Stiff problems can be addressed with implicit methods (e.g. diagonally implicit
methods which are less expensive than fully implicit methods), since they can have good
stability properties being thus able to handle stiffness. Among implicit RK methods, there
are several families (see e.g Hairer andWanner [21], Hundsdorfer and Verwer [23]) that have
good stability properties, but require to solve at each step a nonlinear system of equations
with dimension proportional to d , being d the size of (1). This point severely restricts the
application of implicit methods.

To overcome this difficulty, linearly implicit methods have been introduced, which require
to solve a fixed and generally small number of linear systems at each step. This is the case
of Rosenbrock methods [21, 28], that exploit the Jacobian of the vector field J = Dy f (t, y)

at each step. In particular, the linear systems to solve have coefficient matrices of the type
(I −hα J ), being I the identity, h the time step–size and α a positive coefficient. Rosenbrock
methods are similar to diagonally implicit RK methods. However, when for the latter the
implicit equations are solved e.g. via the Newton method, the related number of iterations
and the convergence are not known a priori. Instead, for Rosenbrock methods the number
of linear systems to solve is fixed. To avoid the computation of the Jacobian at each step in
Rosenbrockmethods, theW–methods [21] have been proposed. They exploit an approximate
Jacobian W but usually attain a lower order of convergence than Rosenbrock methods with
the same number of stages.

An alternative approach to efficiently deal with stiff problemswas introduced by Bassenne
et al. in [3]. These authors propose to stabilize (1) by considering a linear operator Tp =
Tp(hW ) ∈ L(Rd ,Rd), referred to as a Time–Accurate and highly Stable Explicit (TASE)
operator, where W is an approximation of the Jacobian Dy f (t, y). The operator Tp has to
be constructed in such a way that the modified problem

{
u′(t) = Tp(hW ) f (t, u(t)), t ∈ (t0, tend],
u(t0) = y0,

(2)
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can be solved efficiently by an explicit RK method, i.e. in such a way that (2) does not
inherit the stability difficulties of (1). Furthermore, Tp has to be constructed in such a way
that the exact solution of (2) is an order p approximation of the one of (1), where p is the
order of the explicit RK method. In this way, the numerical solution of the problem (2) is an
order–p approximation of the exact one of the original IVP (1). Therefore, the main goal is
to construct the TASE operator Tp in such a way that (2) overcomes the stability restrictions
arisingwhen solving the original stiff system (1), whilemaintaining the order p of the explicit
RKmethod.Moreover, if possible one can require that the RK–TASEmethod, i.e. themethod
resulting from the use of the explicit RK scheme on the modified problem (2), has small error
coefficients.

The original TASE operators proposed by Bassenne et al. [3] depend on a single positive
parameter α, for which optimal choices allow to obtain A–stable or A(θ )–stable RK–TASE
methods. In a subsequent paper, Calvo et al. [9] proposed a generalization of these TASE
operators involving p positive parameters α j , j = 1, . . . , p, for which optimal choices allow
to obtain stronglyA–stable orA(θ )–stable, or evenL(θ )–stableRK–TASEmethods.A further
step has been given by Aceto et al. in [1] by considering TASE operators where the available
parameters α j can also be complex with Re α j > 0, and in this case the conjugate must
also be present. This allows, through an appropriate reformulation of the TASE operators,
to continue working in real arithmetic in implementation despite the presence of complex
coefficients, and to improve the stability and lower the error coefficients of the RK–TASE
methods derived by Bassenne et al. [3] and Calvo et al. [9]. Since RK–TASE methods
are promising and competitive with classical RK methods, Rosenbrock methods, and W–
methods, research on them has greatly intensified in recent years: additional operators called
singly TASE operators have been proposed [7, 10]; new efficient W–methods have been
derived from RK–TASE methods [2, 11, 20]; the stability of RK–TASE methods has been
studied in detail assuming W completely arbitrary [12]; TASE operators have been used to
stabilize parallelizable explicit two–step peer methods [14, 26].

Novelty and structure of the paper. For the derivation of existing RK–TASE schemes,
emphasis has been given on A(θ )–stable methods, with θ equal to or close to 90 degrees,
and this typically leads to high error constants. However, as we will see, to efficiently solve
problems arising from the discretization in space of reaction–diffusion PDEs, due to the
spectrum of the related Jacobian the matrix W can be selected in order to have eigenvalues
close to the negative real axis without incurring stability issues, and therefore it is possible
to require a smaller θ , with the aim of obtaining significantly lower error constants. Starting
from the theory developed by Aceto et al. in [1], in this paper we perform a comprehensive
study of the accuracy and stability of RK–TASE methods using an alternative formulation
of the operator Tp , that leads to a reduction in the computational cost of the schemes. Such a
study will allow the derivation of new s–stage RK–TASE methods of order p = s = 2, 3, 4
with drastically lower error constants than those of existing RK–TASE methods, and with
stability propertieswhichmake themvery suitable and efficient for semi–discretized reaction–
diffusion PDEs. A further novelty of this paper is given by the derivation of a new 5–stage
RK–TASE method that can reach order p = 5 for some classes of problems. We emphasize
that, so far in the scientific literature, RK–TASEmethods have been proposed only up to order
four. Several experiments conducted on PDEs from applications, such as vegetation evolution
in some environments and the electrodeposition process in batteries, that are carachterized by
large space domain and require integration over long time intervals in order to show Turing
patterns–like solutions, testify the efficiency of the new proposed RK–TASE schemes, and
their advantages over other numericalmethods in the literature, confirming also the theoretical
analyses developed in the paper.
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This paper is organized as follows: in Section 2 we recall some existing TASE operators
and show the TASE operator we are interested in; in Section 3we study the stability properties
of RK–TASE methods; Section 4 is devoted to the derivation of new RK–TASE methods
with good stability and low error coefficient, up to order p = 5; in Section 5 we perform
several tests that confirm the good efficiency of the new RK–TASE methods; in Section 6 we
provide concluding remarks and discuss future research. Furthermore: in the Appendix A we
report the implementation of the new RK–TASE methods and discuss their computational
cost; in the Appendix B we show the derivation of explicit RK schemes of order p = 4, 5
used in the experiments.

2 TASE Operators and General RK–TASEMethods

First of all note that s–stage RK–TASE methods can be directly formulated for (1) as

y1 = y0 +
s∑

j=1

b j K j ,

(3)

Ki = h Tp(hW ) f

⎛
⎝t0 + ci h, y0 +

i−1∑
j=1

ai j K j

⎞
⎠ , i = 1, 2, . . . , s,

to compute the solution at t = t0 + h, where ai j , bi , ci are the coefficients that define the
underlying explicit RK method. In this way, the analysis of the properties of the methods
is facilitated, by avoiding going through the modified problem (2). As mentioned in the
introduction, if the explicit RK method has order p, and Tp(hW ) satisfies

Tp(hW ) = I + C p (hW )p + O(h p+1) = I + O(h p), (4)

then the RK–TASE method (3) also has order p [20], i.e. the numerical solution y1 satisfies

y1 − y(t0 + h) = O(h p+1).

Thus, the consistency of the RK–TASE methods follows from that of the underlying explicit
RKmethod. The coefficientC p in (4) is proportional to themain error terms of the RK–TASE
methods, as proved e.g. in [20]. Therefore, the main objective of the TASE operator Tp is to
overcome the stability restrictions on h of the explicit RKmethod when solving stiff systems,
possibly also with a small error constant |C p|.

In the original paper of Bassenne et al. [3] such TASE operators were constructed from
the following observation: when the problem to solve is linear, i.e. when f (t, y) = W y
in (1), the use of the explicit Euler method combined with the TASE operator T1(hW ) =
(I − h W )−1 = I + O(h) leads to

y1 = y0 + h (I − hW )−1 W y0,

and this is equivalent to solve (1) by means of the implicit Euler method, that is a first order
implicit scheme suitable for stiff systems. Introducing a positive parameter α, the Bassenne
et al. operators are thus obtained computing recursively Tp = Tp(hW ;α) by

Tp(hW ;α) =
⎧⎨
⎩

(I − hαW )−1 if p = 1,
2p−1

2p−1 − 1
Tp−1(hW ;α/2) − 1

2p−1 − 1
Tp−1(hW ;α) if p ≥ 2,

(5)
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being W an approximation of the Jacobian J = Dy f (t, y). This positive parameter α is
selected to get a good balance between the stability properties of RK–TASE methods and
minimum |C p|. In particular, the authors in [3] got A–stable RK–TASE methods of order
p = s = 2, and A(θ )–stable RK–TASE methods of order p = s = 3, 4, with |C p| of the
order of magnitude of 100 or 101. The definitions of stability are recalled in detail in the next
section. Also, Table 1 in Section 4 summarizes the properties of the RK–TASE methods by
Bassenne and co–workers.

In a subsequent paper, Calvo et al. [9] generalized (5) by considering a family of TASE
operators depending on a vector of p positive parameters α = (α1, . . . , αp)

T ∈ R
p , given

by

Tp(hW ;α) =
p∑

j=1

γ j (I − hα j W )−1 with γ j =
(

1

α j

)p−1 ( ∏
k �= j

(
1

α j
− 1

αk

))−1

. (6)

With γ j as in (6), these TASE operators satisfy (4) with error constant C p = ∏p
j=1 α j .

Exploting the freedom given by the new parameters, the authors of [9] derived RK–TASE
methods with better stability properties than those in [3]. That is, they got strongly A–
stable RK–TASE methods of order p = s = 2, L(θ )–stable RK–TASE methods of order
p = s = 3, and strongly A(θ )–stable RK–TASE methods of order p = s = 4. Table 1 in
Section 4 summarizes the properties of these methods.

Subsequently, Aceto et al. in [1] considered TASE operators of type (6), admitting also the
case of complex parameters α j , with Re α j > 0. Indeed, if α j is complex but its conjugate
also appears, then the TASE operator can be written as

Tp(hW ) = πp(hW )−1(πp(hW ) − (hW )p), (7)

where

πp(z) =
p∏

j=1

(
z − 1

α j

)
= z p − σ1z p−1 + σ2z p−2 + . . . + (−1)pσp (8)

is a polynomial of degree p having all real coefficients σ j . Thus, despite the presence of
complex coefficients, it is possible to always work in real arithmetic during implementation.
As shown in Table 1 in Section 4, in this way the authors managed to improve the A(θ )–
stability angle of existing RK–TASE methods and to slightly lower their error constants,
which with Tp as in (7)–(8) has size

|C p| = 1

|σp| . (9)

Remark 1 Note that RK–TASE methods (3) with TASE operator Tp as in (5), (6), or (7)–
(8), are linearly implicit numerical schemes. In particular, using (5) or (6), they require the
solution of s · p linear systems at each time–step (p linear systems for each stage due to form
of Tp). Instead, when using (7)–(8), the RK–TASE stages Ki in (3) read

(
πp(hW )

)
Ki = h

(
πp(hW ) − (hW )p

)
f
(

t0 + ci h, y0 +
i−1∑
j=1

ai j K j

)
, (10)

and, therefore, it is necessary the solution of only s linear systems at each time–step; indeed,
after computing p − 1 matrix products which are required to define πp(hW ) in (8), each
stage involves just one linear system. In this paper, we are interested in RK–TASE methods
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with Tp as in (7)–(8), which from now on we denote by general RK–TASE methods. More
details on their implementation and computational cost are given in the Appendix.

As we will see from the analyses conducted in the next sections, by assuming that the W
matrix corresponds to the Jacobian J = Dy f (t, y) at each step, we can obtain RK–TASE
methods with good stability properties. However, we emphasize that for many problems
arising from the spatial semi–discretization of PDEs it is possible to choose W constant
throughout the numerical integration without incurring stability issues, as shown in [12]
for some particular choices of the free parameters in Tp . Therefore, even though we will
perform the stability analysis assuming W = J , in the implementation we suitably choose a
constant W : for example, for reaction–diffusion PDEs, due to the spectrum of the Jacobian
of the corresponding semi–discretized version, it is possible to choose a constant W with
eigenvalues close to the negative real axis without incurring stability issues, so that even
A(θ )–stable methods can be employed with θ not excessively large. Furthermore, in this way
the computational cost of general RK–TASE methods is drastically reduced since, before
proceeding with the time integration, we can calculate both the p −1 matrix products needed
to define πp(hW ) and a factorization of LU type for it. Thus, the main computational effort
of general RK–TASE lies in the solution of just 2s triangular linear systems at each time–step
due to (10). For more details about this aspect, consult the Appendix.

3 Stability of General RK–TASEMethods

The aim of this section is to study the linear stability properties of RK–TASE methods as a
function of the coefficients of the polynomial πp(z) in (8). Since RK–TASE methods are
in fact linearly implicit schemes, we have not considered the analysis of non–linear stability
properties, such as B–stability, as no meaningful results are expected in this regard. Never-
theless, as shown in [8], A–stability guarantees stable behaviour of the numerical solutions
for semi–linear (non–autonomous) problems where the Jacobian matrix of the vector–field
does not vary exponentially with time. Many problems arising from semi–discretization of
PDEs fit this requirement. Otherwise, fully implicit methods should be considered.

It is worth noting that, unlike previous studies that consider as free parameters α j or 1/α j

in (6), here we take as free parameters the coefficients σ j of the polynomial πp(z). In this
way, as explained above, with σ j ∈ R we can simultaneously cover the case where α j are
real or complex and, furthermore, as we will see, we can study stability by considering the
Routh–Hurwitz condition on πp(−z), which allows to simplify the analysis.

The study of the linear stability of a general RK method

y1 = y0 +
s∑

j=1

b j K j ,

(11)

Ki = h f

⎛
⎝t0 + ci h, y0 +

s∑
j=1

ai j K j

⎞
⎠ , i = 1, 2, . . . , s,

is performed by considering the scalar test equation y′(t) = λ y(t), where λ is a complex
constant. Applying the RK method (11) to compute the solution at t = t0 + h, one gets

y1 = R(z) y0,

123
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where z = hλ and R = R(z) is the RK stability function, that can be written as

R(z) = 1 + z bT (I − z A)−1 e, (12)

see e.g. [4], being

A = (ai j )
s
i, j=1 ∈ R

s×s, b = (b1, . . . , bs)
T ∈ R

s, e = (1, . . . , 1)T ∈ R
s . (13)

Let us define

μ := |R(∞)| =
∣∣∣∣ limz→∞ R(z)

∣∣∣∣ . (14)

We mention that if the method (11) has order p = s ≤ 4 and is explicit, i.e. ai j = 0 for
j ≥ i , then the function R(z) in (12) can be equivalently written as

Rp(z) = 1 + z + 1

2! z2 + · · · + 1

p! z p, (15)

see [4]. The stability region of the RK method (11) is defined as the set

S = {z ∈ C : |R(z)| ≤ 1} . (16)

The RK scheme is said to be A–stable if S ⊃ {z ∈ C : Re z ≤ 0}. Also, the method is
called:

� A(θ )–stable if S ⊃ S(θ) := {z ∈ C : Re z ≤ 0 and |arg(−z)| ≤ θ};
� strongly A(θ )–stable if it is A(θ )–stable and μ < 1, with μ defined in (14);
� L(θ )–stable if it is A(θ )–stable and μ = 0.

In the above definitions θ can be zero: in this case we have stability only on the negative
real axis. Instead, if θ = 90 degrees, the above definitions are called A–stability (as already
mentioned), strong A–stability, L–stability, respectively. Clearly, A(0)–stability is necessary
for A(θ )–stability for any θ > 0. Moreover, we emphasize that strong A(θ )–stability or even
L(θ )–stability are very useful requests for attenuating oscillating phenomena of the numerical
solution due to the presence of very stiff components, see e.g. [9].

It is easy to check that, for RK–TASE methods (3), the stability function RTp = RTp(z)
is just

RTp(z) = R(z Tp(z)),

with R as in (12). Also, since the underlying RK method is explicit, if p = s ≤ 4, due to
(15) for RK–TASE methods RTp can be equivalently expressed as

RTp(z) = 1 + (z Tp(z)) + 1

2! (z Tp(z))
2 + · · · + 1

p! (z Tp(z))
p, (17)

see e.g. [9]. From now on, we assume p = s ≤ 4. This assumption will be removed only
when we propose a method with s = 5.

Proposition 1 Consider general RK–TASE methods (3) of order p = s ≤ 4, with Tp as in (7)–
(8). Necessary conditions for their A(θ )–stability and strong A(θ )–stability are, respectively,
|Rp(−σ1)| ≤ 1, i.e. −σ1 ∈ S, and |Rp(−σ1)| ≤ μ < 1, being Rp(z) the stability function
(15) of the underlying explicit RK, S as in (16) and μ as in (14).

Proof As observed in [9], if a general RK–TASEmethod is A(θ )–stable, then |RTp(∞)| ≤ 1.
Since by hypothesis the general RK–TASE methods have order p = s ≤ 4, RTp is as in
(17). Note that, due to (7)–(8),

lim
z→∞ z Tp(z) = −σ1. (18)
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By (17) and (18), we then have |RTp(∞)| ≤ 1 ⇐⇒ |Rp(−σ1)| ≤ 1. Doing similar steps,
the proof of the necessary condition for RK–TASE strong A(θ )–stability also follows.

Let us recall below the Routh–Hurwitz criterion, which will be useful to determine a
necessary condition for the A–stability of general RK–TASE methods.

Proposition 2 Routh–Hurwitz criterion [19, p. 194]. The roots of the polynomial

q(z) = g̃0zs + g0zs−1 + g̃1zs−2 + g1zs−3 + . . . , g̃0 �= 0, g̃i , gi ∈ R,

have negative real part if and only if

g̃0�i > 0 ∀ odd i, �i > 0 ∀ even i, i = 1, . . . , s,

being �i be the determinant of the submatrix obtained by selecting the first i rows and
columns of

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g0 g1 g2 . . . gs−1

g̃0 g̃1 g̃2 . . . g̃s−1

0 g0 g1 . . . gs−2

0 g̃0 g̃1 . . . g̃s−2

0 0 g0 . . . gs−3
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, g̃i = 0 if i >
s

2
, gi = 0 if i >

s − 1

2
.

Theorem 1 Necessary conditions for the A–stability of general RK–TASE methods (3) of
order p = s ≤ 4, with Tp as in (7)–(8), are the following.

Case p = 2 : σ j > 0, j = 1, 2.

Case p = 3 : σ j > 0, j = 1, 2, 3, and σ1σ2 − σ3 > 0. (19)

Case p = 4 : σ j > 0, j = 1, 2, 3, 4, and σ1σ2σ3 − σ 2
3 − σ 2

1 σ4 > 0.

Proof From (7)–(8), note that the stability function (17) of general RK–TASE methods with
order p = s ≤ 4 reads

RTp(z) = 1 + z
(πp(z) − z p)

πp(z)
+ 1

2! z2
(πp(z) − z p)2

πp(z)2
+ · · · + 1

p! z p (πp(z) − z p)p

πp(z)p
.

Therefore, the poles of RTp(z) are the roots ofπp(z). By [4, Th. 351B], a necessary condition
for RKA–stability is that thementioned poles belong to the right half plane. Note that, having
πp(z) real coefficients, this necessary condition is equivalent to applying the Routh–Hurwitz
criterion in Proposition 2 on πp(−z), p = 2, 3, 4. By doing this, the thesis follows.

Remark 2 By [1, Th. 2.2], a necessary condition for A(θ )–stability is:

poles of RTp(z) located outside S(θ) := {z ∈ C : Re z ≤ 0 and |arg(−z)| ≤ θ}.
This is clearly satisfied for arbitrary θ if the poles of RTp(z) reside in the right half plane. Since
the conditions expressed in Theorem 1 have been derived by requiring that these poles are in
the right half plane, wewill therefore exploit them also in the search for A(θ )–stablemethods.
Indeed, this procedure also allows to identify necessary conditions for A(θ )–stability that do
not imply restrictions on the angle θ .

The conditions in Proposition 1 and Theorem 1 significantly simplify the derivation of the
coefficients σ j of general RK–TASE methods.
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4 NewGeneral RK–TASEMethods up to Order Five

In this section we construct general RK–TASE methods up to order five with good stability
properties and low error coefficients. Unlike previous works, our study will focus not only on
A–stable or A(θ )–stable numerical methods with θ as large as possible, but also on methods
with extremely low error constant |C p| (9). Furthermore, we also derive very efficient RK–
TASE methods that can reach order p = 5, which are not yet present in the literature.

Specifically, each of the following Subsections 4.1–4.4 focuses on constructing a method
of different order, through the procedure described below:

� we express the TASE operator of order p by highlighting the free coefficients and the
necessary conditions they must satisfy for A–stability;

� we then prove necessary and sufficient conditions on the coefficients to get strong A(θ )–
stability and, when possible, L(θ )–stability, which are essential requirements for treating
highly stiff problems;

� next, we analyze how the stability angle θ and the error constant |C p| vary for the possible
configurations of the remaining free coefficients;

� finally, we derive the coefficients of a specific method that achieves a good balance
between small error constant and sufficiently large stability angle.

As we will see from numerical tests, the new general RK–TASEmethods derived here are
able to solve without stability issues several PDEs of interest in applications, and with much
lower errors than the RK–TASE methods introduced so far in the scientific literature.

4.1 RK–TASE with Order Two

Here we consider a general RK–TASE method with two stages and order two, denoted with
RKTASE2, which through (7)–(8) is obtained using the TASE operator T2(hW ) defined by

T2(z) = π2(z) − z2

π2(z)
, with π2(z) = z2 − σ1z + σ2. (20)

Using Theorem 1, thus imposing for stability thatπ2(−z) is a Routh–Hurwitz polynomial,
by (19) the real coefficients σ1 and σ2 must satisfy

σ1 > 0, σ2 > 0. (21)

From (17), the stability function of the RKTASE2 method is

RT2(z) = 1 + (z T2(z)) + 1

2
(z T2(z))

2 , (22)

and the stability function R2(z) of the undelying explicit RK method is given by RT2 in (22)
with T2(z) = 1, see (15).

Through Proposition 1, a necessary condition for A(θ )–stability is −σ1 ∈ S2, with
S2 = {z ∈ C : |R2(z)| ≤ 1}, (23)

see (16). The regionS2 is represented in the left Figure 1. Sinceσ1 ∈ R, we can limit ourselves
to considering only the real part of S2, which is given by the interval [−2, 0]. Taking into
account (21), we thus consider

σ1 ∈ (0, 2]. (24)

When choosing the free coefficients for a method, it is important to consider also strong
stability. Let us therefore prove the following result.
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Proposition 3 The function |RT2(∞)| attains its minimum value corresponding to 1/2 at
σ1 = 1, for every σ2.

Proof From (18) and (22), note that

RT2(∞) = 1 − σ1 + 1

2
σ 2
1 .

Since RT2(∞) is positive, we have |RT2(∞)| = RT2(∞). From the derivative of RT2(∞)

with respect to σ1, corresponding to the function −1 + σ1, the result follows.

So far, we have worked on the stability in view of the choice of the σ1 parameter. The
following theorem reports the stability conditions also on σ2 for the RKTASE2 method.

Theorem 2 The following conditions are necessary and/or sufficient for the A–stability and
A(θ )–stability of the RKTASE2 method, respectively.

1. The RKTASE2 is A–stable if and only if

(σ1, σ2) ∈ 	 := {
(σ1, σ2) ∈ R

2; σ1 ∈ (0, 2], σ2 ∈ (0, σ ∗
2 ]} ,

where σ ∗
2 = σ ∗

2 (σ1) is the greatest root of the polynomial

ρ(σ2) = −4σ 5
1 + 16 σ 3

1 σ2 + (−16σ 2
1 + 4σ 3

1 )σ 2
2 + (8σ1 − 4σ 2

1 )σ 3
2 + (−2 + σ1)σ

4
2 .

2. The RKTASE2 is A(θ )–stable for some θ ≥ 0 if and only if

σ1 ∈ (0, 2], and σ2 ≤ φ(σ1) = (8 − 2σ1) + 4
√
4 − 2σ1. (25)

Proof The first statement follows from [9] and [1]. Indeed, in [9, Th. 2.2] it has been proved
that, by considering only real α j coefficients in (6), RKTASE2 is A–stable for σ1 ∈ (0, 2]
and σ2 ∈ (0, σ 2

1 /4), where σ1 and σ2 are the coefficients of the polynomial π2(z) in (20), and
are linked to α j in (6) by the relationships σ1 = 1/α1 + 1/α2 and σ2 = 1/(α1α2). Then, in
[1, Th. 3.1] it has been proved that, for each pair of positive coefficients (σ1, σ2), assuming
σ2 ≥ σ 2

1 /4, A–stability is obtained when σ1 ∈ (0, 2] and σ2 ∈ [σ 2
1 /4, σ ∗

2 ]. Combining these
two results, the proof of the first statement follows.

The second statement occurs by imposing |RT2(z)| ≤ 1 for all real negative z, with
σ1 ∈ (0, 2] from (24).

According to Theorem 2, recalling that the error constant of the general RKTASE2method
is |C2| = 1/σ2 from (9), a good choice could reside in the maximum σ2 that allows to obtain
A–stability, i.e. σ2 = σ ∗

2 (σ1) for any σ1 ∈ (0, 2]. For σ2 > σ ∗
2 (σ1), the RKTASE2 is not

A–stable, but can be A(θ )–stable for some θ if (25) is satisfied. Since φ(σ1) is a monotonic
decreasing function of σ1, its maximum corresponds to φ(0) = 16. Therefore, A(θ )–stable
methods for some θ can be obtained only for σ2 < 16.

By fixing σ1 = 1 for strong stability using Proposition 3, therefore, the choice that
guarantees A–stability and minimum error is σ2 = σ ∗

2 (1) � 1.68125, for which |C2| =
1/σ2 ≈ 0.6. Or, to lower the error constant while still obtaining good stability properties, we
can exploit the second statement of Theorem 2, from which we can get A(θ )–stability for
some θ by taking σ2 < φ(1) = 6 + 4

√
2 � 11.6569. In order to get low error constant and

still relatively large θ , in the numerical experiments we consider the method with σ2 = 5.
In this way, |C2| = 0.2, and we have strong A(θ )–stability with θ = 60.3955 degrees. The
stability region of the method is displayed in the right Figure 1. Finally, for completeness and
reader convenience, we report in Figure 2 the value of the A(θ )–stability angle for several
choices of the coefficients σ1 and σ2. Note that, in accordance with the second statement of
Theorem 2, we can get A(θ )–stability only when σ1 ∈ (0, 2] and σ2 ≤ φ(σ1).
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Fig. 1 On the left, region S2 (23); on the right, stability region of the RKTASE2 method with σ1 = 1 and
σ2 = 5, that is strongly A(θ )–stable with θ = 60.3955 degrees.

Fig. 2 Angle θ of A(θ )–stability
for RKTASE2, by varying σ1 and
σ2; the symbol ’o’ denotes the
choice (σ1, σ2)=(1, 5) that we
made to conduct the numerical
tests.

4.2 RK–TASE with Order Three

Here we consider a general RK–TASE method with three stages and order three, denoted
with RKTASE3, that in view of (7)–(8) is obtained using the TASE operator T3(hW ) defined
by

T3(z) = π3(z) − z3

π3(z)
, with π3(z) = z3 − σ1 z2 + σ2 z − σ3.

Using (19) from Theorem 1, we consider for stability the following conditions on the real
coefficients σ j :

σ1 > 0, σ2 > 0, σ3 > 0, and σ1σ2 − σ3 > 0. (26)

Recall that by (17) the stability function of the RKTASE3 method is

RT3(z) = 1 + (z T3(z)) + 1

2
(z T3(z))

2 + 1

6
(z T3(z))

3 . (27)
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The stability function of the underlying explicit RK method is R3(z), corresponding to RT3
in (27) with T3(z) = 1, see (15).

Similarly to the previous subsection, we note that, by Proposition 1, a necessary condition
for A(θ )–stability is −σ1 ∈ S3, with

S3 = {z ∈ C : |R3(z)| ≤ 1}, (28)

see (16). This leads to
σ1 ∈ (0, z3], z3 � 2.51275, (29)

see the left Figure 3. To fix σ1, let us consider the following result.

Proposition 4 The function |RT3(∞)| attains its minimum value corresponding to 0 at σ1 �
1.59607, for every σ2, σ3.

Proof From (18) and (27),

RT3(∞) = 1 − σ1 + 1

2
σ 2
1 − 1

6
σ 3
1 .

Note that the equation |RT3(∞)| = 0 admits the real solution σ1 � 1.59607, from which
the result follows.

From Proposition 4 and (29), we conclude that the choice σ1 � 1.59607 is very convenient
as it can allow to obtain L(θ )–stability.

Let us then consider the choices of σ2 and σ3, for which we have to take into account
the conditions in (26). In [9], and also in [1], the authors focus on L(θ )–stable RK–TASE
methods with θ as large as possible. In particular, the authors of [1] propose a method with
θ � 89 degrees, but characterized by error constant |C3| � 6.88379, and this penalizes its
performance. For this reason, here we focus on methods with possibly significantly lower
error constants.

After fixing σ1 = 1.59607 for L(θ )–stability, we take σ2 = σ3/σ1 + ε in view of (26),
being ε a small positive constant; in particular, in the following we consider ε = 10−5. In
this way, the stability function of RKTASE3 depends only on the parameter σ3. Let us denote
it by RT3 = RT3(z; σ3). Through a numerical exploration, we have seen that the condition

|RT3(z; σ3)| ≤ 1, z ∈ R, z ≤ 0,

holds when σ3 ≤ σ ∗
3 � 20.4, which is therefore necessary for L(θ )–stability. The right Figure

3 shows the RKTASE3 stability regions for several values of σ3. In numerical tests, to obtain
small error and L(θ )–stability with large enough θ , we choose σ3 = 10. By doing so, from
(9) the error constant is |C3| = 1/σ3 = 0.1, and the method is L(θ )–stable with θ = 50.4281
degrees.

Also, we report in Figure 4 the value of the L(θ )–stability angle for other choices of the
coefficients σ2 > 0 and σ3 > 0 satisfying (26). In this way, the reader can make different
choices from ours, based on the desidered properties for the RKTASE3 method.

4.3 RK–TASE with Order Four

Here we consider a general RK–TASE method with four stages and order four, denoted with
RKTASE4, that in view of (7)–(8) is obtained using the TASE operator T4(hW ) defined by

T4(z) = π4(z) − z4

π4(z)
, with π4(z) = z4 − σ1 z3 + σ2 z2 − σ3 z + σ4.
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Fig. 3 On the left, region S3 (28); on the right, stability region of the RKTASE3 method with σ1 = 1.59607,
σ2 = σ3/σ1 + ε, ε = 10−5, and several values of σ3.

Fig. 4 Angle θ of L(θ )–stability (σ1 = 1.59607) for RKTASE3, by varying σ2 and σ3 (zoom near the origin on
the right); the symbol ’o’ denotes the choice (σ2, σ3)=(6.26539, 10) that we made to conduct the numerical
tests.

Using (19) from Theorem 1, we consider for stability the following conditions on the real
coefficients σ j :

σ1 > 0, σ2 > 0, σ3 > 0, σ4 > 0, and σ1σ2σ3 − σ 2
3 − σ 2

1 σ4 > 0. (30)

From (17), the stability function of the RKTASE4 method is

RT4(z) = 1 + (z T4(z)) + 1

2
(z T4(z))

2 + 1

6
(z T4(z))

3 + 1

24
(z T4(z))

4 ; (31)

also, the stability function of the underlying explicit RK is R4(z), corresponding to RT4 with
T4(z) = 1, see (15).

Similarly to previous subsections, by Proposition 1 we take −σ1 ∈ S4, which is shown in
the left Figure 5. Recall from (16) that

S4 = {z ∈ C : |R4(z)| ≤ 1}. (32)

The condition −σ1 ∈ S4 leads to
σ1 ∈ (0, z4], z4 � 2.78529.
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Let us consider the following result.

Proposition 5 The function |RT4(∞)| attains its minimum value of 0.270395 at σ1 �
1.59607, for every σ2, σ3, σ4.

Proof From (18) and (31),

RT4(∞) = 1 − σ1 + 1

2
σ 2
1 − 1

6
σ 3
1 + 1

24
σ 4
1 .

By the positivity of RT4(∞), it holds |RT4(∞)| = RT4(∞). Its derivative with respect to
σ1 vanishes at σ1 � 1.59607, which is the minimum point for RT4(∞).

Therefore, we consider the choice σ1 = 1.59607. Moreover, to satisfy (30) we take

σ2 = σ 2
3 + σ 2

1 σ4

σ1σ3
+ ε, ε > 0. (33)

From now on, we consider ε = 10−5, which yields values of σ2 close to the smallest admis-
sible ones satisfying the stability condition. This choice allows to reduce the propagation of
round–off errors in the computation of π4(hW ), since from (7)–(8), when p = 4, note that σ2
scales the powers of hW , where W approximates the Jacobian of the problem. Then, we fix
the two remaining free parameters σ3 and σ4 to obtain a good balance between the minimum
error constant |C4| = 1/σ4 and a sufficiently large angle θ of strong A(θ )–stability. In [1]
the authors derive RK–TASE methods with θ � 88 degrees but with error constant C4 � 11,
see also the next Table 1. Here, we derive general RK–TASE methods with much smaller
error constant. In particular, in numerical experiments, we consider the RKTASE4 method
with σ3 = 2.8 and σ4 = 16, which is strongly A(θ )–stable with θ = 52.0013 degrees and
error constant |C4| = 1/σ4 = 0.0625. The right Figure 5 reports the stability region of this
method.

Several numerical explorations that we performed by varying σ2, σ3 and σ4 show that it is
possible to obtain even lower error constants. However, this would imply a smaller stability
region. To confirm this, we report in Figure 6 the strong A(θ )–stability angle for several
values of σ4 > 0, by varying σ2 > 0 and σ3 > 0.

4.4 RK–TASE with Order Greater than or Equal to Four

In this subsection we consider a general RK–TASE method with five stages, denoted with
RKTASE5, that by (7)–(8) is obtained using the TASE operator T5(hW ) below:

T5(z) = π5(z) − z5

π5(z)
, with π5(z) = z5 − σ1z4 + σ2z3 − σ3z2 + σ4z − σ5. (34)

We emphasize that so far in the scientific literature, RK–TASE methods with more than four
stages and order p ≥ 4 have not yet been proposed.

It is known that it is not possible to determine the coefficients of the underlying explicit
RK method in such a way as to obtain order p = 5 (to do this, we need at least six stages),
see e.g. [4]. Furthermore, the stability function of the underlying explicit RK method is not
of type (15), and hence the stability function of the general RK–TASE method is not of type
(17).

To study stability using similar strategies to those adopted so far, we then prove the
following result. From now on, we take c = Ae, with A, e as in (13), ensuring the same
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Fig. 5 On the left, region S4 (32); on the right, stability region of the RKTASE4 method with σ1 = 1.59607,
σ2 as in (33) with ε = 10−5, σ3 = 2.8 and σ4 = 16, that is strongly A(θ )–stable with θ = 52.0013 degrees.

Fig. 6 Angle θ of strong A(θ )–stability (σ1 = 1.59607) for RKTASE4, by varying σ2 and σ3, setting σ4 =
1, 16, 25, respectively; the symbol ’o’ in the plot corresponding to σ4 = 16 denotes the choice of (σ2, σ3)
that we made to conduct the numerical tests.

123



   57 Page 16 of 32 Journal of Scientific Computing           (2026) 106:57 

order for RK methods on autonomous and non–autonomous problems. We can then assume
that f in (1) is in autonomous form.

Theorem 3 Consider the RKTASE5 method where the underlying explicit RK method has
order p = 5 on linear problems. Necessary conditions for the A–stability of RKTASE5 are
the following:

σ j > 0, j = 1, . . . , 5, (35)

σ1σ2 − σ3 > 0, (36)

σ1σ2σ3 + σ1σ5 − σ 2
3 − σ 2

1 σ4 > 0, (37)

σ4(σ1σ2σ3 − σ 2
3 − σ 2

1 σ4) + σ5(2σ1σ4 + σ2σ3 − σ1σ
2
2 − σ5) > 0. (38)

Moreover,

σ1 ∈ (0, z5], z5 � 3.21705, (39)

is necessary for A(θ )–stability for any θ .

Proof For a 5–stage explicit RK method, using formula (12), one can easily verify that the
stability function R is of the form

R(z) = 1 + (bT e) z + (bT c) z2 + (bT A c) z3 + (bT A2 c) z4 + (bT A3 c) z5, (40)

being b, A, e as in (13) and c = Ae. By hypothesis, the RK method has order p = 5 on
linear problems. Note that, if f in (1) is linear, i.e. y′ = W y+g being W ∈ R

d×d and g ∈ R
d

constants, then all its derivatives with respect to y of order strictly greater than one are zero,
and therefore in the Taylor expansion of the exact and numerical solution many elementary
differentials do not appear. Actually, in the linear case the only elementary differentials which
survive for order p = 5 are f , f ′ f , f ′ f ′ f , f ′ f ′ f ′ f , f ′ f ′ f ′ f ′ f , see [4, Table 310(II)].
The order conditions associated with these elementary differentials are

bT e = 1, bT c = 1

2
, bT A c = 1

6
, bT A2 c = 1

24
, bT A3 c = 1

120
, (41)

see [4, Tables 300(I), 310(II), 312(II) and Th. 315A]. Therefore, the stability function (40)
corresponds exactly to R5 = R5(z) in (15). It follows that the stability function of the
RKTASE5 method is RT5 in (17).

We can thus exploit a similar approach to the one used to prove Theorem 1: necessary
conditions for A–stability are obtained by imposing the Routh–Hurwitz criterion on the
polynomial π5(−z) in (34). This leads to (35), (36), (37), (38).

The last condition (39) follows from the fact that, since from the hypotheses of this
theorem R is of the form (15) with p = 5, see (40)–(41), we can exploit Proposition 1.
Hence, a necessary condition for A(θ )–stability is −σ1 ∈ S5, where from (16)

S5 = {z ∈ C : |R5(z)| ≤ 1} . (42)

S5 is represented in Figure 7. Recalling that σ1 ∈ R, −σ1 ∈ S5 if and only if (39) holds.
Thus, (39) is necessary for A(θ )–stability.

From now on in this subsection, let us consider the assumptions of Theorem 3 for the
RKTASE5 method. In view of Remark 2, we will consider all the conditions of Theorem 3
in the search for A(θ )–stable methods.
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Fig. 7 Region S5 (42).

Remark 3 Withfive stages (s = 5), it is possible to construct an explicit RKmethodwith order
p = 4 for any problem and order p = 5 for linear problems. Consequently, it is possible to
do the same for RKTASE5 thanks to (4). Actually, we emphasize that it is possible to reach
order p = 5 even for some classes of nonlinear problems. For example, with s = 5 it is
possible to impose order p = 5 for quadratic differential equations, where f in (1) is of the
form

k f (y) =
d∑

i=1

i∑
j=1

kwi j
i y j y +

d∑
i=1

kvi + kω, k = 1, . . . , d,

denoting the left upper index the individual components of the associated vector, and being
kwi j , kvi , kω some constants. In the numerical tests we use two different underlying explicit
5–stage RK methods, depending on the problem to be solved: for quadratic problems, we
will consider a method of order p = 5; for general problems, we will consider a method of
order p = 4, but still with p = 5 in the linear case in view of Theorem 3. In the Appendix,
we report the related Butcher tableau and explain their derivation, which has been done by
minimizing the respective error coefficients.

To fix the coefficients σ j of the TASE operator, in addition to Theorem 3 we consider the
following result.

Proposition 6 The function |RT5(∞)| attains its minimum value of 0 at σ1 � 2.18061, for
every σ2, σ3, σ4, σ5.

Proof From Theorem 3, the stability function of RKTASE5 is

RT5(z) = 1+ (z T5(z))+ 1

2
(z T5(z))

2+ 1

6
(z T5(z))

3+ 1

24
(z T5(z))

4+ 1

120
(z T5(z))

5 .

Also, from (18),

RT5(∞) = 1 − σ1 + 1

2
σ 2
1 − 1

6
σ 3
1 + 1

24
σ 4
1 − 1

120
σ 5
1 .

123



   57 Page 18 of 32 Journal of Scientific Computing           (2026) 106:57 

Fig. 8 On the left, stability region of RKTASE5 with σ1 = 2.18061, σ2 = 8, σ3 = 8, σ4 = 6, σ5 = 5, that is
L(θ )–stable with θ = 66.1317; on the right, stability region of RKTASE5 with σ1 = 2.18061, σ2 = 14.9843,
σ3 = 32.4926, σ4 = 55.6196, σ5 = 120, that is L(θ )–stable with θ = 30.1137 degrees.

Note that the equation |RT5(∞)| = 0 admits the real solution σ1 � 2.18061, from which
the result follows.

In view of L(θ )–stability, we then fix σ1 = 2.18061. Also, recall that the error constant
of the TASE operator is |C5| = 1/σ5. Therefore, the goal is to make σ5 as large as possible,
obtaining simultaneously L(θ )–stability for some relatively high θ > 0. To this aim, we
performed two numerical explorations on the parameters σ j , j = 2, 3, 4, 5: one to obtain
a method with θ > 60 degrees; one also allowing lower values of θ , but requiring |C5| <

10−2. In particular, the mentioned numerical explorations have been done by considering the
conditions in Theorem 3 and the requirement

|RT5(z)| ≤ 1, z ∈ R, z ≤ 0,

which has been analyzed via aMoebius transformation from the interval (−∞, 0] to (−1, 0].
We thus got two RKTASE5 methods with the following coefficients:

σ1 = 2.18061, σ2 = 8, σ3 = 8, σ4 = 6, σ5 = 5;
σ1 = 2.18061, σ2 = 14.9843, σ3 = 32.4926, σ4 = 55.6196, σ5 = 120.

These methods are L(θ)–stable with θ = 66.1317 and θ = 30.1137 degrees, and have error
coefficients |C5| = 0.2 and |C5| = 0.0083, respectively. Their stability regions are presented
in Figure 8. In numerical experiments, we will use the latter.

4.5 Summary of the Obtained Results

In Table 1, we summarize the properties of the general RK–TASE methods derived in this
paper, comparing them with those of the existing RK–TASE methods from the literature
recalled in Section 2. In particular, in the table we have considered the following methods.

� RKTs: the extension of the original RK–TASE (RKT) methods [3] proposed in [9] of
order p = s = 2, 3, 4.

� RKTCs: the RK–TASE methods with Complex (RKTC) coefficients proposed in [1] of
order p = s = 2, 3, 4.
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Table 1 Properties of RK–TASE methods, where p denotes the order of consistency, |RTp(∞)| denotes
| limz→∞ RTp(z)| being RTp(z) the stability function, θ denotes the A(θ )–stability angle, |C p | denotes the
size of the error constant of the TASE operator.

Method p Stability |RTp(∞)| θ |C p |
RKT2 90 4.5

RKTC2 2 Strong A-stabiliy 0.5 90 0.5948

GRKT2 60.3955 0.2

RKT3 89.02 6.8838

RKTC3 3 L(θ )-stability 0 89.86 6.6406

GRKT3 50.4281 0.1

RKT4 87.34 44.3176

RKTC4 4 Strong A(θ )-stability 0.27 88.26 10.7996

GRKT4 52.0013 0.0625

GRKT5 4 or 5* L(θ )-stability 0 66.1317 0.2

30.1137 0.0083

*GRKT5 has order p = 4 in general, but reaches order p = 5 on quadratic problems.

� GRKTs: the new General RK–TASE (GRKT) methods proposed in this paper, of order
p = s = 2, 3, 4, and with s = 5 and p ≥ 4.

Note that the new GRKT5 is the only method that can reach order p = 5. All existing
RK–TASE methods in the literature can instead reach at most order p = 4.

Remark 4 Table 1 shows that the newGRKTsmethods are characterized bymuch lower error
constants than those of existing RK–TASE methods, and still have quite large A(θ )–stability
angles. Actually, for reaction–diffusion PDEs even smaller values of θ can be sufficient to
perform the numerical integration without stability issues. Indeed, once space discretized
with e.g. classical finite differences, these problems usually have a Jacobian with stiff part
characterized by spectrum around the negative real axis.

In any case, as we will see from numerical experiments, the choice of methods with quite
large θ can allow to efficiently treat even problems where the advection term is present.
Furthermore, we emphasize that in this paper we have provided the stability properties of
GRKTsmethods also for coefficient values different from those considered by us (see Figures
2, 4 and 6). This can allow the user to choose the GRKTs method with the desired stability
properties, based on the problem to be solved.

5 Numerical Experiments

This section is devoted to numerical experiments. As explained in the paper and summarized
in Remark 4, the new general RK–TASE methods have been designed to be able to solve
very efficiently reaction–diffusion problems, but also to handle possible advection terms.
Therefore, we will consider experiments on reaction–diffusion PDEs, and also on a problem
where an advection term is present. As we will see, the new GRKTs methods are a marked
improvement over the existing RK–TASE methods, and are also very competitive with some
exponential and splitting schemes.

In particular, we compare the new GRKTs schemes with the methods listed in Subsection
4.5, see also Table 1, and with the following ones.
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� SRKTs: the SinglyRK–TASE (SRKT)methods proposed in [7] of order p = s = 2, 3, 4.
� STRANG2: a Strang splitting method of order p = 2, see [23, p. 329].
� ETDp: the Exponential Time Differencing (ETD) methods of order p = 2, 3, 4, see e.g.
[27].

The properties of RKTs and RKTCs, and the reasons behind their derivation, have been
recalled in Section 2 and Subsection 4.5. SRKTs methods have similar errors and stability
properties as RKTs, but they were designed to require the solution of linear systems (they
foresee the solution of s2 systems at each step to reach order p = s) always involving the
same coefficient matrix, at each time–step. Finally, the Strang splitting and ETDp methods
were designed to solve semi–linear problems y′(t) = Dy(t) + g(t, y(t)) accurately and
stably, exploiting the so–called exponential ϕ–functions. In particular: STRANG2 integrates

the linear part by two applications of ϕ0(
h
2D) = e

h
2D , and the nonlinear part by the two–stage

order–two explicit midpoint RK; the ETDp schemes involve in their formulation exponential
functions ϕi (

h
2D) and/or ϕi (hD), i ≥ 0, that can be defined iteratively as

ϕi (z) = ϕi−1(z) − ϕi−1(0)

z
, ϕ0(z) = ez,

see [22, Eq. (2.11)].
For all the used TASEmethods of order p = s ≤ 4, the underlying explicitRKschemes are

those reported in [3, Appendix A]. Regarding GRKT5, the employed methods are reported
in the Appendix below. The RKTs, RKTCs and GRKTs methods are implemented using
formulation (7)–(8) of the TASE operator (see also the Appendix), which improves their
efficiency as observed in Remark 1. As for the SRKTs methods, we exploited the algorithm
described in [7, p. 15].All the RK–TASEmethods are linearly implicit, and for them the linear
systems to be solved have coefficient matrices involving W ≈ Dy(t, y) in their expression.
Regarding the STRANG2 and ETDp methods, details on their implementation are reported
in the remark below.

Remark 5 The performance of the STRANG2 and ETDp methods depends heavily on the
strategy used to compute the ϕ–functions. Therefore, we examined several alternatives:

� calculating a–priori (before the numerical integration) the Taylor series of ϕi (
h
2D) and/or

ϕi (hD), i ≥ 0, as reported in [27, Eqs. (A.5)–(A.6)]; in this case, the series was truncated
after M∗ terms, being

M∗ = c∗ eN h max(eig(D)),

according to [27, Eq. (A.7)], where c∗ (> 1) represents a “safety factor” to be fixed for
stability reasons, and eN , h, D denote respectively the Napier number, the step–size, the
linear part of the problem;

� calculating a–priori (before the numerical integration) the functions ϕi (
h
2D) and/or

ϕi (hD), i ≥ 0, through the solution of some underlying integral equations by means
of quadrature formulas; for this purpose, we used the MATLAB code phiquad1 from
[5, 6];

� evaluating the action of ϕi (
h
2D) and/or ϕi (hD), i ≥ 0, on vectors; for this purpose, we

used the MATLAB code phisplit2 from [5, 6].

In the implementation, we employed the second approach, since it turned out to be the most
efficient for the semi–linear problems considered in the numerical tests below.

1 https://github.com/caliarim/phisplit/blob/main/phiquad.m.
2 https://github.com/caliarim/phisplit/blob/main/phisplit.m.
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At this stage, it is worth emphasizing the ease of implementation of the GRKTs methods
(see the Appendix); in fact, the RK–TASE methods were introduced to allow users without
expertise in advanced numerical techniques to efficiently solve stiff differential problems.

Numerical tests have been performed using a computer with processor Intel(R) Core(TM)
i7–10700 CPU 2.90 GHz, RAM of 16 Gb, Windows 11 Pro 64–bit 24H2, and the version
R2024b of MATLAB. We have exploited built–in tools such as the lu function (see also the
Appendix below) and, when appropriate, the sparse format for matrix storage. For each of
the PDEs problems considered in the experiments, we have computed a reference solution of
the related semi–discretized version with the MATLAB built–in function ode15s, setting
AbsTol = RelTol = 10−14. This reference solution has then been used to determine the
errors of the methods, calculated at the end point of the time grid, and the estimated order
of convergence, as

log(error(2h)) − log(error(h))

log(2)
.

Here and below, error(h) denotes the absolute error in infinity norm provided by the method,
at the last grid point of the time interval of the semi–discretized problem solved using step–
size h.

5.1 Burgers Equation

Let us consider the Burgers equation in the form

∂u

∂t
= ε

∂2u

∂x2
− 1

2

∂u2

∂x
, (x, t) ∈ [0, 2π] × (0, 1], ε = 1

100
,

equipped with periodic boundary conditions and initial condition

u(x, t0) =
{
1, x ∈ [0, π],
0, x ∈ (π, 2π),

similarly to [9, Subsec. 3.2]. We perform a spatial discretization with finite differences of
order four for both the diffusion and advection terms. The resulting system of the form (1)
y′(t) = f (t, y(t)) with initial condition y(t0) = y0 reads

y′(t) = εDy(t) − 1

2
P y(t)2, y ∈ R

d , P, D ∈ R
d×d ,

being P and D the discretization matrices associated with the first and second order deriva-
tives, respectively.We consider d = 27, and W = Dy f (t0, y0) for all the methods used in the
experiments. That is, in accordance with Remark 1 we select constant W corresponding to
the Jacobian at the initial point. Since the semi–discretized problem is quadratic, for GRKT5
we use as underlying scheme the method reported in Subsection 8.1, in the Appendix below,
so as to achieve order p = 5.

The results are reported in Figure 9 and Table 2. Figure 9 reports the CPU time in seconds
and the corresponding absolute error in infinity norm computed at the last grid point for all
the considered methods of order p = 2, 3 and p ≥ 4, respectively, for h = (tend − t0)/2N ,
N = 5, . . . , 13. Table 2 reports, for several values of h, error(h) and the estimated order of
convergence by the general RK–TASE methods.

The results show that the GRKTs methods are more efficient than the RKTs, RKTCs and
SRKTs methods, for s = 2, 3, 4. That is: GRKT2 method reaches 10 times smaller errors
than RKT2 and SRKT2, and slightly smaller errors than RKTC2, at the same computational
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Fig. 9 Efficiency plots of the methods used with step–size h = (tend− t0)/2N , N = 5, . . . , 13, on the Burgers
equation; the last one compares the GRKTs schemes all together.

cost; GRKT3 achieves 10 times smaller errors than all other considered TASE methods of
order p = s = 3; finally, the GRKT4 method reaches 100 times smaller errors than all other
considered TASE methods of order p = s = 4. Furthermore, note from Table 2 that the
GRKT5 method exhibits order p = 5, in accordance with the fact that the semi–discretized
problem is quadratic. Therefore, as clearly visible from Figure 9, in this case the use of
GRKT5 is very convenient, as it achieves errors even 1000 times smaller than the other RK–
TASE methods with similar computational cost. Regarding the comparison with the ETDp
methods, p = 2, 3, 4, note that the GRKTs schemes of the same order exhibit very similar
errors, but take less computing times, thus being more efficient. STRANG2, on the other
hand, is extremely competitive with GRKT2. To conclude, note that the RKTs and RKTCs
methods, for s = 3, 4, show a jump in the efficiency plots in Figure 9 at some large values
of the step–size h. This behavior seems typical of these methods, as also visible in [1, Figs.
7–8], but in any case it occurs only for relatively large step–sizes, where small fluctuations
of the CPU times are to be expected. Even in the numerical tests of the next subsections, the
RKTs and RKTCs methods show such behavior.

5.2 AVegetationModel

Let us consider a reaction–diffusion model for vegetation growth in arid environments, intro-
duced in [15] and consisting of a system of three PDEs describing the growth of two different
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Table 2 Error and experimental order of convergence p of GRKTs methods used with step–size h = (tend −
t0)/2N , N = 7, . . . , 11, on the Burgers equation.

GRKT2 GRKT3 GRKT4 GRKT5

N Error p Error p Error p Error p

7 2.23e-03 - 2.41e-04 - 2.85e-05 - 8.59e-07 -

8 5.53e-04 2.01 2.78e-05 3.12 1.72e-06 4.05 2.70e-08 4.99

9 1.37e-04 2.01 3.37e-06 3.04 1.06e-07 4.01 8.57e-10 4.98

10 3.41e-05 2.01 4.28e-07 2.97 6.63e-09 4.00 2.70e-11 4.99

11 8.48e-06 2.01 5.40e-08 2.99 4.14e-10 4.00 8.51e-13 4.99

tree species u1 and u2 as the available water w varies:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= ∂2u1

∂x2
+ wu1(u1 + Hu2) − B1u1 − Su1u2,

∂u2

∂t
= D

∂2u2

∂x2
+ Fwu2(u1 + Hu2) − B2u2,

∂w

∂t
= d

∂2w

∂x2
+ A − w − w(u1 + u2)(u1 + Hu2),

x ∈ [x0, xend], t > t0 = 0.

(43)
This model has the coexistence of the two plants as a metastable solution, as proved in [15].
That is, for relatively short time intervals, the coexistence of u1 and u2 can be observed.
However, over long time intervals, one of the two species disappears. Therefore, to observe
this property it is necessary to employmethods that are stable for long time integrations. Also
in [14] the authors considered (43) to test the efficiency of a class of two–step peer methods
preconditioned with TASE operators.

Let us take the following values of the parameters: A = 1.5, B1 = 0.45, B2 = 0.3611,
F = 0.802, H = 0.802, S = 0.0002, d = 500, D = 0.802. We take the initial conditions
u1(x, t0) = u2(x, t0) = w(x, t0) = 1+cos(x), and periodic boundary conditions. The spatial
discretization is performed with finite differences of order two. The resulting system of the
form (1) is of type y′(t) = Dy(t) + g(t, y(t)), being D ∈ R

d , d = 3m, a tridiagonal block
matrix with the coefficients of the discretization of the diffusion terms. We consider W = D
for all the methods used in the experiments. That is, in accordance with Remark 1 we select
constant W corresponding to the Jacobian of the diffusion part, which is the one responsible
for the stiffness of the problem. Since the semi–discretized problem is not quadratic, in this
case for GRKT5 we use the method reported in Subsection 8.2, in the Appendix below, as
the underlying scheme, so as to have a very small error constant.

First of all, we apply the methods taking t ∈ (t0, tend], tend = 1, x0 = −50, xend = 50,
and m = 26, with step–size h = (tend − t0)/2N , N = 6, . . . , 14. The related results, reported
in Figure 10 and in Table 3, are similar to those obtained in the previous subsection and once
again testify the better efficiency of the new GRKTs over all the other considered schemes.
Note that, although GRKT5 now has order four, due to its extremely low error constant it
still provides significantly smaller errors than all other TASEmethods with p = 4, as visible
in Table 3 and Figure 10. Thus, since its computational cost is comparable to that of the other
RK–TASE methods of the same order, the use of GRKT5 can be advantageous in this case
too. Furthermore, note that, unlike the previous case, ETDp methods now provide in general
smaller errors than GRKTs schemes of the same order. However, the lower computing times
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Fig. 10 Efficiency plots of the methods used with step–size h = (tend − t0)/2N , N = 6, . . . , 14, on the
vegetation model; the last one compares the GRKTs schemes all together.

Table 3 Error and experimental order of convergence p of GRKTs methods used with step–size h = (tend −
t0)/2N , N = 10, . . . , 14, on the vegetation model.

GRKT2 GRKT3 GRKT4 GRKT5

N Error p Error p Error p Error p

10 3.49e-04 - 8.15e-05 - 3.20e-05 - 2.60e-06 -

11 9.18e-05 1.92 1.22e-05 2.74 2.50e-06 3.68 1.00e-07 4.69

12 2.36e-05 1.96 1.67e-06 2.87 1.68e-07 3.89 3.43e-09 4.87

13 5.99e-06 1.98 2.19e-07 2.93 1.08e-08 3.96 1.12e-10 4.94

14 1.51e-06 1.99 2.81e-08 2.97 6.83e-10 3.98 3.76e-12 4.90

of the latter still make GRKTs more efficient. Observe also that GRKT2 performs better than
STRANG2.

Finally, Figure 11 reports the numerical solutionu1 providedby theGRKTsmethods on the
vegetation model (43), selecting m = 27, tend = 1500 and h = (tend− t0)/217 ≈ 1.14 ·10−2.
In agreement with [15], with the considered values of the parameters and by selecting this
spatial interval, for u1 the formation of non–homogeneous vegetation patterns initially occurs.
Then, over long times the quantity of biomass u1 tends to progressively decrease. Note, from
Figure 11, that all the GRKTs methods are able to reproduce this trend. Therefore, they are
stable and reliable even for long time integrations.
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Fig. 11 Component u1 of the solution of the vegetation model (43) provided by GRKTs methods.

5.3 DIBModel

Finally, we consider the DIB model [17, 18], that has been introduced to describe the elec-
trodeposition process in batteries. For certain parameter choices, the model shows Turing
pattern–like solutions in agreement with experimental observations conducted on batteries.
Therefore, for this model the availability of efficient solvers is very important, as it requires
integration over long time intervals. In particular, the DIB is a 2D reaction–diffusion model
of the form⎧⎪⎨
⎪⎩

∂η

∂t
= �η + ρ f1, f1 = A1(1 − θ)η − A2η

3 − B(θ − α),

∂θ

∂t
= d�θ + ρ f2, f2 = C(1 + k2η)(1 − θ)(1 − γ (1 − θ)) − Dθ(1 + γ θ)(1 + k3η),

see [17, Sec. 5], where η : � × (0, tend] → R and θ : � × (0, tend] → [0, 1]. We take
� = [0, 15]2, zero Neumann boundary conditions, and initial condition

η(x1, x2, t0) = 10−5 rand(x1, x2), θ(x1, x2, t0) = α + 10−5 rand(x1, x2),

being rand the MATLAB function that generates uniformly distributed random numbers.
The considered parameters areα = 0.5, γ = 0.2, ρ = 1, A1 = 10, A2 = 30, B = 66,C = 3,
d = 20, D = 2.4545, k2 = 2.5, k3 = 1.5. We perform the spatial discretization through the
same number of points in both directions x1 and x2, with finite differences of order two using
the ghost points strategy, see e.g. [23], to impose the zero Neumann boundary conditions.
The semi–discretized problem reads y′(t) = Dy(t)+ g(t, y(t)),D ∈ R

d , d = 2m2, beingD
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Table 4 Error and experimental order of convergence p of GRKTs methods used with step–size h = (tend −
t0)/2N , N = 5, . . . , 9, on the DIB model.

GRKT2 GRKT3 GRKT4 GRKT5

N Error p Error p Error p Error p

5 1.68e-06 - 5.40e-07 - 3.28e-07 - 5.72e-08 -

6 4.33e-07 1.95 8.89e-08 2.60 3.55e-08 3.21 2.78e-09 4.36

7 1.10e-07 1.97 1.33e-08 2.74 2.72e-09 3.71 1.04e-10 4.75

8 2.78e-08 1.99 1.82e-09 2.87 1.82e-10 3.90 3.44e-12 4.91

9 7.00e-09 1.99 2.39e-10 2.93 1.16e-11 3.97 1.54e-13 4.48

a block tridiagonal matrix; its blocks are of the type I ⊗A+A⊗ I , being I the identity and
A ∈ R

m the matrix with the discretization coefficients of the second order derivatives. We
consider m = 16, and W = D similarly to the vegetation model of the previous subsection.
Since the semi–discretized problem is not quadratic, forGRKT5we use as underlying scheme
the method reported in Subsection 8.2, in the Appendix.

Figure 12 and Table 4 allow to evaluate, in analogy to the previous subsections, the
performance of all the considered methods and the experimental order of convergence of the
GRKTs schemes, respectively. Theywere obtained by applying themethods for t ∈ (t0, tend],
t0 = 0, tend = 1, and h = (tend − t0)/2N , N = 4, . . . , 11. Also in this case, we observe the
better efficiency of GRKTs methods compared to the other considered RK–TASE schemes,
and the advantage of GRKT5 compared to the other methods of the same order. Indeed,
GRKT5 shows order p = 4, but its low error constant allows to obtain better results than the
other methods. Finally, GRKTs methods have important efficiency advantages over ETDp
schemes. Furthermore, note that GRKT2 is more efficient than STRANG2 for large step–
sizes, while as h decreases the latter shows reduced computation times (thus, for a stable
solution in short times, the first is preferable). This behaviour arises because, here, reducing
the step–size does not substantially increase the cost of computing the involved ϕ–functions.

Finally, to evaluate the reliability of the methods for high values of h over large time
intervals, even as the size of the semi–discretized problem increases, we solved the DIB
taking m = 31 (thus the size of the semi–discretized problem is almost 2 · 103), in the
interval (t0, tend] = (0, 50], with h = (tend − t0)/29 ≈ 0.1 for the schemes of order two,
and h = (tend − t0)/28 ≈ 0.2 for the other schemes. The results are summarized in Figure
13, where we plot the η solution at the final time obtained with all the RK–TASE methods
considered in the experiments, and the reference solution. As can be observed, the GRKTs
methods are the only ones that accurately reproduce the trend of the reference solution. This
is very important, as an unreliable solution may not allow accurate predictions about the type
of patterns to expect. Thus, even in this case the new GRKTs methods are advantageous.

6 Conclusions

In this paper we have derived new methods belonging to the family of RK–TASE methods
by exploiting a formulation of the TASE operator that allows to improve their efficiency. We
analyzed the accuracy and stability properties of the newgeneral RK–TASEmethods, and this
allowed to select the related coefficients to get particularly performing numerical schemes
of order p = 2, 3, 4 for the efficient solution of reaction–diffusion PDEs. Furthermore, we
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Fig. 12 Efficiency plots of the methods used with step–size h = (tend − t0)/2N , N = 4, . . . , 11, on the DIB
model; the last one compares the GRKTs schemes all together.

have proposed 5–stage RK–TASE methods that can reach order p = 5 for several problems.
We emphasize that this is the first paper where RK–TASE methods of order greater than four
are proposed.

Several numerical experiments performed on reaction–diffusion systems of PDEs from
applications, in both 1 and 2 spatial dimensions, and also on an advection–diffusion PDE,
have confirmed the theoretical analysis and shown the efficiency of the new RK–TASE
methods, which are stable and much more accurate than existing RK–TASE methods at
the same computational cost. Moreover, they showed that the new RK–TASE methods are
competitive/advantageous with respect to ETD schemes and a Strang splitting scheme.

An interesting research activity that can be carried out from this paper lies in the theoretical
study of the stability of general RK–TASE methods with inexact Jacobian, analogously to
what was done in [12] for the RK–TASE methods introduced in [9]. Furthermore, future
developments could concern a revisitation of GRKTs methods for the efficient solution
of semi–discretized PDEs defined in a large number of spatial dimensions, following the
approach used e.g. in [11] for a class of W–methods.

7 Appendix A: Implementation and Computational Cost of General
RK–TASEMethods

Here, we report the pseudocode for the implementation of the general RK–TASE methods,
see Algorithm 1, and analyze their computational cost. For simplicity of presentation, and
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Fig. 13 Component η of the solution of the DIB model at time t = 50 provided by the RKTs (first row),
RKTCs (second row), SRKTs (third row), GRKTs (fourth and fifth row), and ode15s (fifth row at the end).

since this is also the case considered in the numerical experiments, we assume that the matrix
W of size d × d involved in the formulation of the TASE operator is constant throughout
the numerical integration. In the following: we denote by N the number of subintervals
into which the domain [t0, tend] is partitioned for the time integration; we denote fi =
f (t0 + ci h, y0 + ∑i−1

j=1 ai j K j ); we mention the MATLAB functions lu for computing the
LU factorization of a matrix and backslash for solving linear systems.
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Algorithm 1 Pseudocode for implementing the general RK–TASE methods

1: compute πp−1(hW ) = −σ1(hW )p−1 + σ2(hW )p−2 + . . . + (−1)pσp

2: compute πp(hW ) as in (8); it is πp−1(hW ) + (hW )p

3: compute [L, U ] = lu (πp(hW ))
4: for n = 2, . . . , N + 1 do
5: for i = 1, . . . , s do
6: compute f̂i = h πp−1(hW ) fi

7: compute Ki = U\(L\ f̂i )

8: end for
9: compute yn = yn−1 + ∑s

j=1 b j K j

10: end for

From Algorithm 1, note that the main computational cost of the general RK–TASE meth-
ods is given by the following operations:

� calculation of p − 1 matrix products needed to determine πp−1(hW ) and πp(hW ) in
rows 1, 2;

� calculation of the LU factorization of πp(hW ) in row 3;
� calculation of s matrix–vector products at each step, see line 6;
� solution of 2s triangular linear systems at each step, see line 7.

Taking advantage of the analysis performed in [1, Sec. 4], the computational cost is therefore
given by

O
(
3 s N d2 + 3p − 2

3
d3

)
.

To conclude, it is worthmentioning that, for reasons of numerical stability, in some cases in
the implementation it may be preferable to use the Horner algorithm both for the computation
of πp−1 and πp , and for performing the matrix–vector products in line 6.

8 Appendix B: Underlying Explicit RKMethods of Order p = 4, 5

The RK order conditions and their connections to the elementary differentials and Butcher
trees can be found e.g. in [4, Tables 300(I), 310(II), 312(II) and Th. 315A]. Exploiting them,
here we describe the derivation of the two underlying explicit RK methods that we used for
RKTASE5. First of all, to fix the coefficients of both methods, we considered the conditions

c = Ae, bT A = bT − (b ∗ c)T ,

denoting ’∗’ the component–wise product, and those in (41). Indeed, they allow to, respec-
tively: get the same order on both autonomous and non–autonomous problems; significantly
reduce the total number of order conditions; reach order p = 5 on linear problems, so that
we can exploit the stability theory derived in Subsection 4.4.

8.1 Explicit RK of Order Five on Quadratic problems

First, together with the above conditions, we required the remaining ones to get order p = 4
on general problems. Then, to obtain a RK method of order p = 5 on quadratic problems,
we considered only the related order conditions involving elementary differentials f (m) with
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m < 3. Indeed, the others are zero on quadratic problems. In this way, we got a family of
five stages, fifth order explicit RK methods depending on the three parameters c2, c3 and c4,
forced to satisfy the algebraic relation

g(c2, c3, c4) = 3(−2 + 5c2)
( − 3(−1 + c4)(−4 + 5c4) + c2(9 + 5(−2 + c4)c4)

)+
5
( − 42 + 3c2(31 + 3c2) + 96c4 − c2(180 + 91c2)c4 + (6 + c2)·

(−9 + 20c2)c
2
4

)
c3 − 50

(
3 − 7c4 + 4c24 + 2c22(−3 + 7c4)+

c2(−3 − 6(−1 + c4)c4)
)
c23 = 0.

Subsequently, we considered the vector LTE5 containing the local truncation error constants,
i.e.

LTE5 = 1

σ(τ)

(
�(τ) − 1

γ (τ)

)
,

for any Butcher tree τ of order ρ(τ) = 6 where no node has more than two children (since
f (m) is zero for m ≥ 3), with eleven non-zero components. The Butcher trees and the
functions �(τ), σ(τ), γ (τ), ρ(τ) are defined in [4, Ch. 3]. The parameters c2, c3, and c4
were therefore finally set by computing

min
c2, c3, c4

||LTE5||2
subject to g(c2, c3, c4) = 0, and c2, c3, c4 ∈ [0, 1].

That is, we minimized the 2-norm of the vector LTE5, requiring order p = 5 on quadratic
problems. This led to the method having the Butcher tableau reported below, for which
||LTE5||2 = 2.19 · 10−3. It belongs to the family of RK schemes proposed in [29].

0
1
4

1
4

1
2 − 1

6
2
3

3
5

3
250

42
125

63
250

1 3
10

6
35 − 9

10
10
7

1
9

16
63 0 125

252
5
36

8.2 Explicit RK of Order Four with Small Error Constant

We followed the procedure described in the first part above, before fixing c2, c3 and c4.
Indeed, as mentioned this allows to have order p = 4 on general problems, and also to
annihilate some of the error terms associated with the elementary differentials that survive
for quadratic problems. In this case, the local truncation error coefficients are the elements
of the vector

LTE4 = 1

σ(τ)

(
�(τ) − 1

γ (τ)

)
, ∀ τ s.t. ρ(τ) = 5.

123



Journal of Scientific Computing           (2026) 106:57 Page 31 of 32    57 

LTE4 has nine components, of which six are zero in this case. The minimization of the
related 2-norm led to c2 = 1/6, c3 = (55 − √

19)/120 and c4 = 5/6. With this choice,
||LTE4||2 = 1.99 · 10−4. Below is the Butcher tableau of the obtained explicit RK method.

0

1
6

1
6

55−√
19

120 − 991
4200 +

√
19
42

9(108−5
√
19)

1400
5
6

526621−15302
√
19

321642
−475019+2933

√
19

193563
280(190501+3743

√
19)

32325021

1 − 8(196103+10871
√
19)

268035
2740783+197771

√
19

258084 − 280(181363604+19599553
√
19)

10807332021
3(6233+441

√
19)

20060
1192+49

√
19

15030
697−49

√
19

4020
196000(153751+1420

√
19)

70803175203
3(1807+49

√
19)

20060
1082−49

√
19

21030
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