

1 Evaluation of the potential Energy Recovery for ventilation air in dwellings in the South of Europe.

2

3 Silvia Guillén-Lambea^{1,2,*}, Beatriz Rodríguez-Soria¹, José M. Marín²

4

5 ¹ University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.

⁶ ⁷ ² Aragón Institute of Engineering Research (I3A), Thermal Engineering and Energy Systems Group,
University of Zaragoza, Torres Quevedo Building, C/Maria de Luna 3, 50018 Zaragoza, Spain.

8

9 Abstract.

10 Heat recovery in ventilation systems for dwellings in cold and mild climates is needed in order to meet the
11 requirements of nearly zero-energy buildings (nZEB) in terms of energy demand. These requirements can
12 be met without heat recovery systems in only a few European areas with warm climates.

13 The energy recovery potential for warm Mediterranean cities located in the south of Europe has not been
14 investigated in sufficient depth.

15 This paper proposes a new methodology to analyze the climate data using the psychrometric chart to
16 determine in which cases it is of interest to recover heat only or to recover the latent energy.

17 The study covers several cities in southern Europe and the results are compared with northern European
18 cities in terms of recovery strategies.
19 The result demonstrates the necessity to establish different energy recovery strategies in cities located in
20 similar latitudes. The appropriate strategy can be established with the climate data analysis methodology
21 proposed. In some cities, the convenience of recovering latent energy to meet nZEB energy requirements
22 has been demonstrated.

22

23 **Kosmala**

25 Ventilation: South of Europe climatic area: Residential dwellings. Energy recovery strategies

26

26

* Corresponding author. *Silvia Guillén-Lambea. University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain.*
Email address: sguillen@unizar.es, tel. +34 976 739838

28 **1. Introduction.**

29 The current worldwide concern for reducing energy consumption is reflected by the new standards, laws,
30 norms, policies and regulations published around the world.

31 As Pérez-Lombard [1] pointed out, the energy consumption of buildings represents 37% of the total final
32 energy consumption of the European Union and the residential sector is responsible for 70% of this
33 building energy consumption.

34 To regulate energy consumption in the building sector, the EU published the 2010/31/EU European
35 Directive [2] requiring that all new buildings constructed in the EU from 2020 onwards (and all new public
36 buildings starting in 2018) should be nearly zero-energy buildings (nZEB).

37 The heating and cooling demands for residential buildings are regulated all over the world. The strategies
38 aimed at reducing the air conditioning demand are to increase thermal insulation and improve the air
39 tightness of the building envelope. Both parameters have been shown to have the greatest impact on the
40 improvement of heating and cooling demands. In buildings with high thermal insulation and air tightness,
41 a third parameter has been identified as the most critical for energy demand: the energy losses due to
42 ventilation. Roulet et al. [3] state that a minimum of 50% of energy losses are due to ventilation.

43 Heat recovery is widely implemented in northern and central European countries and is a requirement for
44 the Passivhaus standard. The constructive methodology Passivhaus, developed in Germany by the
45 Passivhaus-Institut Darmstadt [4], has spread throughout Europe as a reference for the drafting of
46 regulatory changes aimed at adapting buildings to nZEB [5].

47 Several works have demonstrated that heat recovery is a necessity for severe climatic conditions (in north
48 and central Europe). Fehrm et al. [6] conclude that heat recovery can reduce the primary energy
49 consumption by a minimum of 20% for Germany and Sweden.

50 The current heat exchangers mounted on ventilation systems have a sensible efficiency in the range 65-
51 95% (depending on the airflow rate and pressure drop of the system). Passivhaus requires a minimum of
52 75% for heat exchanger efficiency [7] for nominal working conditions.

53 With the aim of reducing the air-conditioning demand even further, energy recovery systems which
54 recover not only the sensible energy also the latent energy have been studied in depth during recent
55 decades. This is mainly because, depending on the climate conditions, the latent load constitutes a large
56 fraction of the total thermal load in the HVAC system [8]. In one research paper [9], an energy analysis
57 shows that enthalpy heat exchangers (latent and sensible) reduced the total energy consumption by 8%
58 compared to conventional air conditioning systems in tropical climates and by 4% in a moderate climate.
59 In a study of a building in four American cities, Rasouli et al. [10] demonstrate that by using energy
60 recovery the reduction in the annual heating energy consumption could reach 40%, which is 5% higher
61 than the heat recovery, and estimate a 20% reduction in the cooling energy consumption if the ERV is
62 well controlled.

63 Current heat exchangers for ventilation systems have a latent effectiveness in the range 55-60% [11]
64 which is lower than the effectiveness of sensible heat exchangers.

65 The selection of the optimal recovery system is further complicated because the use of membrane-based
66 materials to transfer both moisture and heat simultaneously could have the disadvantage of lower thermal
67 conductivity compared to the well-known plate heat exchangers.

68 The present study focuses on the south of Europe, where warm and high humidity climate conditions
69 could justify the use of energy recovery systems rather than heat-only recovery systems.

70 For this purpose, an in-depth analysis of the climatic data for cities located in humid areas (all around the
71 Mediterranean coast) has been carried out. From this analysis, different psychrometric chart regions have
72 been defined in order to evaluate the maximum energy recovery from ventilation systems and, finally, an
73 optimized strategy in terms of sensible heat recovery or latent energy recovery is proposed.

74 The objective of this paper is to indicate the advisability of choosing a heat or an energy recovery device
75 depending on the potential energy to be recovered, as well as to identify some critical areas where the
76 latent and sensible energy should be recovered to comply with the Spanish, European and nZEB
77 regulations concerning the energy demand in buildings.

78

79

80 **2. Background: Sensible and latent loads due to ventilation air flow.**

81 The air flow supply to a dwelling at the outside temperature and humidity is equal to the air flow leaving
 82 the dwelling under indoor conditions, in cases where the ventilation system is balanced. This thermal load
 83 due to the ventilation air flow is an important energy demand (heating or cooling demand depending on
 84 the ambient conditions). The total energy which has to be added to the ventilation air flow for the air
 85 conditioning system can be calculated using eq.1.

86
$$87 E = \dot{m}_{vent} \cdot (h_{out} - h_{in})t \quad (1)$$

88 Where

89 E is the total energy demand due to the ventilation air (kJ)

90 \dot{m}_{ven} is the mass flow of ventilation dry air (kg dry-air /h)

91 h_{out} is the enthalpy of the outside air (kJ/kg dry-air)

92 h_{in} is the enthalpy of the internal air (kJ/ kg dry-air)

93 t is the system working time (h)

94 From the enthalpy definition eq. 2.

95
$$96 h = C_{pair} \cdot T + w(C_f + C_{pv}T) \quad (2)$$

97 Where

98 C_{pair} is the dry air specific heat capacity at constant pressure (1.006 kJ/kg·K)

99 C_f is the water heat vaporization at 0°C (2501 kJ/kg)

100 C_{pv} is the water vapor heat capacity (1.86 kJ/kg·K)

101 Substituting eq. 2 in eq.1 gives eq.3

102
$$103 E = \dot{m}_{vent} \cdot [(C_{pair} + C_{pv} \cdot w_{in})(T_{out} - T_{in}) + (C_f + C_{pv}T_{out})(w_{out} - w_{in})] \cdot t \quad (3)$$

104 Where

105 T_{out} is the outside air temperature (°C)

106 T_{in} is the inside air temperature (°C)

107 w_{out} is the outside air specific humidity (kg/kg_{dry-air})

108 w_{in} is the inside air specific humidity (kg/kg_{dry-air})

109 There is a sensible thermal load due to the temperature change and a latent thermal load due to the
 110 change of humidity. These values correspond to the two terms in equation 3, resulting in eq. 4 and eq.5,
 111 respectively.

112
$$113 Q_s = \dot{m}_{vent} \cdot (C_{pair} + C_{pv} \cdot w_{in})(T_{out} - T_{in}) \cdot t \cong \dot{m}_{vent} \cdot C_{pair}(T_{out} - T_{in}) \cdot t \quad (4)$$

114
$$115 Q_l = \dot{m}_{sup} \cdot (C_f + C_{pv}T_{out})(w_{out} - w_{in}) \cdot t \cong \dot{m}_{vent} \cdot C_f(w_{out} - w_{in}) \cdot t \quad (5)$$

116 Where

117 Q_s is the sensible energy demand due to the ventilation air (kJ)

118 Q_l is the latent energy demand due to the ventilation air (kJ)

119 **2.1. Heat Recovery Ventilators (HRV)**

120 The HRV includes in the system a heat exchanger used to heat the outside air before supplying it to the
 121 dwelling, transferring the heat from the inside air before expelling it outside. During summer the outside
 122 air is cooled by the same process. These heat exchangers only transfer the sensible energy between the
 123 two air streams. The energy transferred is the energy recovered by the ventilation air before being
 124 supplied to the dwelling.

125 Heat recovery depends on the heat exchanger sensible efficiency and can be calculated using eq.6.

126

135 $Q_{s,rec} = \varepsilon_{sens} \cdot C_{min} \cdot (T_{sup,in} - T_{exh,in}) \cdot t$ (6)

136 Where

137 $Q_{s,rec}$ is the sensible energy recovered (kJ)

138 C_{min} is the minimum capacitance of the air stream, which is the lesser product of the mass flow rate and
139 specific heat for each of the two streams (supply and exhaust)

140 $T_{exh,in}$ is the exhaust air temperature at the inlet of the heat exchanger, which is the dwelling temperature
141 ($^{\circ}\text{C}$)

142 $T_{sup,in}$ is the supply air temperature at the inlet of the heat exchanger, which is the outside temperature
143 ($^{\circ}\text{C}$)

144 ε_{sens} is the sensible effectiveness of the heat exchanger (-) defined by eq.7, supposing that $C_{min} = C_{sup} =$
145 C_{exh}

146
$$\varepsilon_{sens} = \frac{(T_{exh,in} - T_{exh,out})}{(T_{sup,in} - T_{exh,in})} \quad (7)$$

147 Where

148 $T_{exh,out}$ is the temperature of the exhaust air after passing through the heat exchanger ($^{\circ}\text{C}$)

149 An extensive review of heat exchanger technologies for building applications can be found in the paper
150 [11].

151 2.2. Energy Recovery Ventilators (ERV)

152 The ERV includes in the system a heat exchanger where an amount of air from the outside crossing the
153 heat exchanger is separated by a permeable membrane from the exhaust air that allows not only heat to
154 transfer from one stream to the other but moisture to transfer as well. Heat recovery depends on the heat
155 exchanger sensible effectiveness and can be calculated using eq.6. The moisture recovery depends on
156 the latent effectiveness which can be calculated using eq.8.

157 $Q_{l,rec} = \varepsilon_{lat} \cdot G \cdot (w_{sup,in} - w_{exh,in}) \cdot t$ (8)

158 Where

159 $Q_{l,rec}$ is the latent energy recovered (kJ)

160 $w_{exh,int}$ is the outside air specific humidity (kg/kg_{dry-air})

161 $w_{sup,in}$ is the inside air specific humidity (kg/kg_{dry-air})

162
$$G \equiv \dot{m}_{vent} C_f$$

163 ε_{lat} is the latent effectiveness of the heat exchanger (-) defined by eq.9.

164
$$\varepsilon_{lat} = \frac{(w_{exh,in} - w_{exh,out})}{(w_{sup,in} - w_{exh,in})} \quad (9)$$

165 Energy recovery ventilators recover the total energy (sensible+latent) following eq.10.

166 $Q_{TOT,rec} = Q_{s,rec} + Q_{l,rec} = \varepsilon_{sens} \cdot Q_s + \varepsilon_{lat} \cdot Q_l$ (10)

167 The total recovered energy depends on two parameters: the potential energy which can be recovered and
168 the heat exchanger sensible and latent effectiveness. This paper focuses on calculating the potential
169 energy to be recovered depending on the climate parameters and proposing an optimized strategy to
170 recover sensible or latent energy, or both, or to by-pass the heat exchanger depending on the climatic
171 data.

172 The second parameter depends on the heat exchanger technology. An extensive review of membrane
173 heat exchanger technologies for air conditioning systems can be found in [12]. Values for the sensible
174 efficiency of current heat exchangers for ventilation systems vary from 65% to 95% depending on the air
175 temperatures and air flow rates. The heat exchanger effectiveness for latent energy is lower, current
176 values being around 55-60% [11].

189 Other factors which affect the heat exchanger latent and sensible effectiveness depending on the heat
190 exchanger itself have not been considered, such as the air flow leakage between the two circuits.
191

192 **3. Methodology**

193 In this section, firstly the comfort parameters are analyzed and selected due to their high impact on the
194 energy demand. Secondly, a psychrometric chart is divided into regions depending on the ambient air
195 temperature and humidity in order to establish a recovery strategy. Finally, the climate data treatment is
196 presented.
197

198 **3.1. Comfort parameters**

199 The air conditioning system in a dwelling should maintain the inside air conditions within the comfort
200 interval. The temperature and humidity set values differ depending on the country's regulations [5]. For
201 Spain, the norms indicate a room temperature set at 21°C for heating and 25°C for cooling and a relative
202 humidity of 60% in summer and 40% in winter. However, the trend for energy demand optimization is to
203 increase this comfort interval. The Passivhaus standard recommends for nZEB a set of 20°C-26°C,
204 although for winter nights the temperature could be reduced to 19°C. For humidity, the comfort values are
205 between 30% and 60%.

206 The values selected for this study are 20-26°C and 30-60%. The selected intervals are very conservative.
207 If the interval is reduced, the potential energy to be recovered will increase.
208

209 **3.2. Analysis of the psychrometric chart**

210 For ventilation systems without energy recovery, the outside air is introduced into the dwelling at the outside
211 conditions. The air temperature and humidity hourly data are available from climate data files. Depending
212 on these values, the outside air is located in different chart regions on the psychrometric chart (Figure 1).
213 The climatic data analyzed are taken from the Meteonorm meteorological database on an hourly basis [13].
214 Depending on the location, the ventilation air energy demand of the air conditioning system will be sensible,
215 latent or both. Under some conditions the air will not need to be conditioned before entering the dwelling.
216 First, the amount of energy required for the ventilation air must be determined. In addition, it is highly
217 advisable to assess the amount of heat, the humidification and the dehumidification energy required in
218 order to decide whether heat recovery will be needed or whether latent energy recovery is also required.
219 For this purpose, the psychrometric chart has been divided into several regions for the analysis of the
220 energy demand for the ventilation air depending on the humidity and temperature (Figure 1).
221

222 **Figure 1.** Psychrometric chart regions.
223

224 Depending on the region where the hourly values for the outside air temperature and humidity are on the
225 psychrometric chart, their hourly energy demand should be treated as follows:
226

227 **REGION A**

228 The outdoor conditions for region A are mostly registered during cool and dry winter days. The outdoor air
229 entering the dwelling through the ventilation system should be heated to at least 20°C (sensible energy
230 demand from the heating system) and humidified to 30% RH. This air flow (point a, Figure 1) should be
231 treated at least to reach point 1.

232 It is very important to identify whether there is any registered value during the summer in this region,
233 because during the summer season the heating is not working and the ventilation air should be used to
234 cool the dwelling. However, the humidification always needs to be carried out.
235

236 **REGION B**

237 When the outside air is located in this region during the winter season (point b, Figure 1), only sensible
238 heat has to be added to the air in order to reach the low set point temperature. The treated air will reach
239 the comfort area at the comfort humidity, so latent energy is not needed.

240 For the summer season, no sensible heat has to be added to the air, but if the RH is higher than 60% the
241 air should be dehumidified. The final absolute humidity (w) has to be calculated to obtain the latent
242 energy demand applying eq. 5, using eq.11:

243

$$244 w(T) = 0.623 \cdot \frac{RH \cdot P_v(T)}{P_{atm} - RH \cdot P_v(T)} \quad (11)$$

245 where P_{atm} is the atmospheric pressure and $P_v(T)$ is the vapor pressure saturation which can be
246 calculated using the Antoine equation (Eq. 12). This is a simple 3-parameter fit to experimental vapor
247 pressures measured over a restricted temperature range:

248

$$250 \log P = A - \frac{B}{T+C} \quad (P \text{ in bar}) \quad (12)$$

251 where A, B, and C are "Antoine coefficients" that vary from substance to substance [14]. For water and a
252 temperature range of 0°C to 100°C these values are A=5.11564; B=1687.537 and C=230.17.
253 T is the air temperature (°C).

254

REGIONS C AND D

255 The air should be heated and dehumidified before reaching the dwelling in the winter season and only
256 dehumidified in the summer season. The air humidity has to reach point 2 on Figure 1 for the winter
257 season but has to reach the 60% RH curve for the summer season. In this case the final absolute
258 humidity (w) has to be calculated depending on the temperature using eq.11.

259

REGION E

260 The outside air temperature is located within the comfort interval, therefore only latent energy has to be
261 added to dehumidify the air. The air should reach 60% relative humidity (RH) (point e, Figure 1). The final
262 absolute humidity (w) has to be calculated using eq.11 and eq. 12.

263

REGION F

264 The air should be cooled to 26°C and dehumidified to 60% RH before reaching the dwelling in the
265 summer season (point f, Figure 1). Accordingly, sensible and latent energy has to be added to the
266 ventilation air to reach the comfort area. For winter season, if the humidity is higher than 60% RH, the air
267 should be dehumidified.

268

REGION G

269 When the outside air conditions are located in this region, for the summer season, the cooling system has
270 to reduce the air temperature in order to reach the high set point temperature. The cooled air will reach
271 the dwelling at a relative humidity within the comfort area, hence there is no latent energy demand.

272

REGION H

273 The registered values for outdoor conditions in the H region are registered during summer days. For warm
274 and humid climates, no points located in this region are expected because such outside air conditions are
275 rare for Mediterranean climates.

276 The outdoor air entering the dwelling through the ventilation system should be cooled to at least 26°C and
277 humidified to 30% RH. This air flow should be treated to reach point 4 on Figure 1. Latent and sensible
278 energy is required.

279

REGION I

280 The outside air has a dry temperature within the comfort interval, so only latent energy has been added to
281 humidify the air. The air should reach 30% relative humidity and the absolute humidity should be
282 calculated using equations 11 and 12, in the same way as the points in region E.

283

REGION J

292 The points in region J are within the comfort interval, therefore the ventilation air does not need to be
293 treated. If there is an ERV on the ventilation system, the air should by-pass the heat exchanger.

294

295 **3.3. Climate data treatment.**

296 Representative cities from humid and hot zones in the south of Europe and from cold areas in central
297 Europe have been selected for the purposes of comparison. Figure 2 shows the cities under study.

298

299 **Figure 2.** Representative cities selected.

300

301 The climate data for each city has been classified first depending on the air dry temperature. The
302 temperature range has been divided into intervals of 1°C. The number of hours registered for each interval
303 has been counted.

304 For the interval $T < -7^\circ\text{C}$ all the registered data with dry temperatures below -7°C are counted, and for the
305 interval $T > 41^\circ\text{C}$ the registered hours with a temperature above 41°C are grouped.

306 The frequency of each interval temperature (n) is the total number of hours for which the air dry temperature
307 is within a range. The frequency has been divided into summer frequency (n_{summer}) and winter frequency
308 (n_{winter}) because the control strategy applied may be different. For example, for the interval 17°C to 18°C ,
309 there are some registered data during the winter season where the ventilation air should be heated but
310 there are also some data registered during the summer season (cool summer nights or mornings). During
311 these hours the ventilation air does not need treatment but must enter the dwelling at ambient conditions
312 (used to cool down the house during the hot Mediterranean summers: free cooling).

313 The dry temperature for each interval is the arithmetic average of the dry temperatures registered in the
314 corresponding interval (T_{med}). The relative humidity (RH_{med}) and the absolute humidity (w_{abs}) are the
315 arithmetic average of the humidity values registered for each interval.

316 Figure 3 shows the frequencies for the temperature intervals for Alicante (Spain) as an example. The values
317 are represented separately for summer and for winter as the strategy differs. The sections are colored dark
318 grey for winter and light grey for summer.

319

320 **Figure 3.** Frequencies for temperature intervals on the psychrometric chart sections for Alicante.

321

322 The time value t for equations 4 and 5 depending on the air conditions of the region on the psychrometric
323 chart are as follows:

- 324 - For A region $t=n=n_{\text{winter}}$ as $n_{\text{summer}}=0$, because the outside air is not at these conditions during any
325 summer hours.
- 326 - For B region, $t=n_{\text{winter}}$ for sensible heat (equation 4). No latent energy is demanded during winter.
327 However, during the summer season the air has to be dehumidified in case $\text{RH}>60\%$, then $t=n_{\text{summer}}$ if
328 $\text{RH}>60\%$.
- 329 - For C and D regions, $t=n_{\text{winter}}$ for sensible heat (equation 4). However, $t=n$ for latent energy
330 (equation 5). The latent energy is calculated separately for summer and winter, as the final absolute
331 humidity is not the same.
- 332 - For E region $t=n$ for equation 5. No sensible heat is required by the ventilation air.
- 333 - For F region $t=n_{\text{summer}}$ for sensible heat and latent heat (eq. 4 and eq.5). If there is any winter hour
334 in this region and the HR is higher than 60%, the air will be dehumidified and $t=n_{\text{summer}}+n_{\text{winter}}$ (only
335 hours with $\text{RH}>60\%$).

336 In the Passivhaus standard, the ventilation rate must be the minimum necessary to ensure the hygiene of
337 the interior rooms, considering this value to be between $30 \text{ m}^3/\text{h}$ and $32 \text{ m}^3/\text{h}$ per person (for residential
338 use) [7]. It also recommends regulating the exchange rate depending on the activity. Ventilation must be
339 mechanically controlled via a heat exchanger to avoid introducing the outside air temperature. The use of
340 heat recovery systems in the ventilation circuit is required by the Passivhaus standard. Houses built
341 under this standard have an average heating demand lower than 15 kWh/m^2 a year and a cooling
342 demand lower than 15 kWh/m^2 a year.

343 The energy demand has been calculated for a continuous ventilation air flow of $120 \text{ m}^3/\text{h}$. This is the
344 recommended air flow in the Passivhaus standard for a typical European family of 4 people.

345

346 **4. Results and discussion.**

347 For Alicante the sensible demand is 68% and the latent demand is 32% of the total energy demand
 348 occasioned by the dwelling ventilation. Assuming a dwelling of 80 m² (the typical size for an apartment of
 349 4 people) and a ventilation air flow of 120 m³/h, the energy demand due to ventilation is 20.8 kWh/m² for
 350 sensible energy (20.3 kWh/m² for heating and 0.5 kWh/m² for cooling) and 9.8 kWh/m² for the latent energy
 351 (99.7% is dehumidification). The dehumidification demand is 8.3 kWh/m² during summer and 1.5 kWh/m²
 352 during winter.

353 The heating demand due to the dwelling ventilation flow (21.8 kWh/m²) does not meet the maximum heating
 354 demand indicated by the Passivhaus standard (15 kWh/m²) as a reference for the nZEB definition, therefore
 355 sensible heat should be recovered. The cooling demand due to the dwelling ventilation flow (8.8 kWh/m²),
 356 however, still leaves room for other demands. Therefore it seems that the cooling demand requirement
 357 indicated by the Passivhaus standard could be met (15 kWh/m²).

358 Table 1 shows the heating and cooling demands allowed by Spanish regulations depending on the climatic
 359 zone for a dwelling of 80 m². Alicante is located in the B4 Spanish climatic zone. Taking into account that
 360 the minimum ventilation flow rate imposed by Spanish regulations [15] is 172.8 m³/h, the energy demand
 361 due to ventilation is 30.0 kWh/m² for sensible energy (29.3 kWh/m² for heating and 0.7 kWh/m² for cooling)
 362 and 14.1 kWh/m² for the latent energy. The dehumidification demand is 12.0 kWh/m² during summer and
 363 2.1 kWh/m² during winter. The heating demand due to ventilation air (31.4 kWh/m²) does not meet the
 364 maximum heating demand established in the current Spanish regulations. The cooling demand due to the
 365 dwelling ventilation flow (12.7 kWh/m²) meets the requirements indicated by the current Spanish
 366 regulations. However, it leaves little scope for other demands, and therefore it seems that the cooling
 367 demand requirement will barely be fulfilled without an energy recovery system.

368

Spanish regulation DB-HE1 [16]

Winter Climate Zone	Heating demand (kWh/m ² year)
a/A/B	15.0
C	32.3
D	51.7
E	77.0
Summer Climate Zone	Cooling demand (kWh/m ² year)
1/2/3	15.0
4	20.0

369 **Table 1.** Heating and cooling demands allowed by current Spanish regulations depending on the climatic zone.

370

371 Calculations have been done for the cities selected. Figure 4 shows the percentage of sensible and latent
 372 demand due to the ventilation air.

373

374 **Figure 4.** Sensible and latent energy demand due to ventilation air for each city.

375

376 Las Palmas de Gran Canaria and Santa Cruz de Tenerife, both located in the Canary Islands, have a
 377 latent demand higher than the sensible demand. Almeria and Murcia are the Mediterranean cities which
 378 have more than 40% of latent energy demand. For Valencia, Palma, Barcelona and Alicante, all of them
 379 located on the Spanish Mediterranean coast, the latent energy demand due to ventilation air is between
 380 20% and 40% of the total energy demand. For Gerona and Nice, cities located at the north of the
 381 Mediterranean sea, the latent energy represents less than 20% of the total energy. The latent energy for
 382 those cities is at the same level as for continental cities such as Madrid or Berlin.

383 Figure 5 represents the percentage of hours of the year for the different outside air conditions in the
 384 psychrometric regions. Region A is important for cold cities such as Berlin and Ávila, one of the coldest
 385 Spanish cities (winter climatic zone E). No frequencies for warm Mediterranean cities appear in this

386 region. Region B has the highest frequency of almost all the studied cities except those in the Canary
387 Islands. The next step should be to determine if the frequency is during winter (only sensible energy can
388 be recovered) or during summer, as the strategy differs. The cities located in the Canary Islands have the
389 highest frequencies in region E where only latent energy can be recovered. It is interesting to see that
390 region J, which is the comfort area, has the highest frequencies for cold cities (Berlin and Avila) and for
391 Málaga as a warm city. However, the frequencies occur during summer for the former and mostly during
392 winter for the latter.

393
394 **Figure 5.** Percentage of the hours of the year for ambient conditions in the psychrometric regions.
395

396 For a quick interpretation of the results, Fig. 6 shows the frequencies for each region distinguished by
397 season, as the recovery strategies are different. The sections are colored dark grey for winter and light
398 grey for summer. In Figure 6, the localization of the climate data for 4 cities with very different climatic
399 data reflects the results obtained regarding the percentage of the sensible versus latent energy in the
400 ventilation air.

401 Santa Cruz de Tenerife, which has 46% sensible energy demand versus 54% latent energy demand, has
402 the highest frequency of ambient conditions located in region E (45% of the time over the year) where only
403 latent energy demand occurs. Murcia, with 59% sensible energy demand, has the highest frequency in
404 region B (45% of the time over the year) while Barcelona with 53% of the time in region B, consequently
405 their percentage of sensible energy is increased till 73%. Berlin, where the latent energy demand is very
406 low (14%), has no frequency of ambient conditions located in region E. Its highest frequencies are located
407 in regions B and A. The result for region A indicates that the latent energy in Berlin is due to humidification,
408 in contrast to the other cities where the latent energy is due to dehumidification.
409

410 **Figure 6.** Frequencies for temperature intervals on the psychrometric chart sections for 4 cities.
411

412 Figure 7 represents the number of hours during a year when ventilation air requires energy from the air
413 conditioning system as follows:

414 Time Sens (h) is the number of hours that the air conditioning system will transfer only heat to the ventilation
415 air.

416 Time Lat (h) is the number of hours that the air conditioning system will need to dehumidify or humidify the
417 air to reach the comfort area.

418 Time Both (h) is the number of hours that the air conditioning system will transfer heat and humidity.

419 Time By-pass is the number of hours that no treatment is needed, and the ventilation air should by-pass
420 the energy recovery unit.

421 In cases where a heat exchanger is placed on the ventilation system, Fig.7 shows the time that the heat
422 exchanger will work recovering the energy. This result will help to select the appropriate kind of heat
423 exchanger. It is worth noting that for all the cities the period of time for transferring both heat and humidity
424 simultaneously is not the longest. Most of the time, either heat recovery or humidity recovery is needed, but
425 not at the same time. This result indicates that the best configuration seems to be having both heat
426 exchangers working in parallel.

427 If the level of latent energy is significant, as for example in Murcia, the optimised configuration proposed
428 will be a heat exchanger with a sensible core and a latent core which can work in dual mode for the period
429 of time when sensible and latent energy can be recovered simultaneously.

430
431 **Figure 7.** Frequency of the energy demand of the ventilation air.
432

433 To be able to make a choice of the most appropriate energy recovery system for each city, frequencies of
434 the energy demand should be analysed together with the potential energy to be recovered. Table 2
435 shows the ventilation air energy demand for an apartment of 80m². The energy has been calculated with
436 a ventilation air flow of 30m³/h per person for 4 people living in the dwelling. This is the minimum air flow
437 recommended per person by Passivhaus. The results can be compared to the Passivhaus standard

438 where the heating demand should be lower than 15 kWh/m² a year and the cooling demand lower than 15
 439 kWh/m² a year.

440

CLIMATIC ZONE/CITY	ENERGY DEMAND DUE TO VENTILATION AIR (kWh/m ² year)					
	Winter			Summer		
	QHEATING (Sensible)	QHUM+QDEHUM (Latent)	QTOTAL	QCOOLING (Sensible)	QHUM (Latent)	QTOTAL
ALICANTE	20.37	1.50	21.88	0.47	8.31	8.78
A4_ALMERIA	14.00	1.90	15.90	1.22	9.38	10.60
AVILA	35.99	1.39	37.38	0.75	0.18	0.93
C2_BARCELONA	20.29	2.15	22.45	0.43	5.34	5.77
BILBAO	25.23	1.11	26.34	0.17	2.91	3.08
GERONA	27.38	1.16	28.54	0.69	2.08	2.76
LAS PALMAS DE GRAN CANARIA	4.79	12.35	17.14	0.16	7.61	7.77
D3_MADRID	21.86	2.17	24.04	0.95	4.13	5.08
A3_MALAGA	15.61	0.35	15.97	1.16	0.81	1.97
MURCIA	18.59	4.29	22.88	0.55	9.15	9.70
PALMA DE MALLORCA	21.86	2.43	24.29	0.95	5.49	6.44
SANTA CRUZ DE TENERIFE	4.01	3.80	7.82	0.60	1.57	2.17
B4_SEVILLA	17.28	0.54	17.82	3.25	1.95	5.19
B3_VALENCIA	19.37	1.64	21.01	0.92	4.94	5.86
BERLIN	43.50	4.32	47.82	0.11	2.85	2.97
NICE	22.97	1.35	24.32	0.16	3.67	3.82

441 **Table 2.** Ventilation air Energy demand (kWh/m²y) for a dwelling of 80m².

442

443 As previously mentioned, Roulet et al. [3] state that at least 50% of energy losses are due to ventilation,
 444 which means the values obtained should not exceed 7.5 kWh/m² a year to avoid energy recovery from the
 445 ventilation system. The grey cells in Table 2 indicate when the energy recovery will be mandatory for
 446 meeting the energy consumption for nZEB dwellings, and if the energy recovered should be latent or
 447 sensible.

448

449 **5. Conclusions**

450

451 Energy demand due to ventilation air in dwellings has become a very significant issue. It has already
 452 been demonstrated that heat recovery from ventilation air is a necessity in severe climatic conditions in
 453 order to meet the energy demand levels required for nZEB dwellings. Based on an in-depth analysis of
 454 the climatic data for several cities located in mild and warm climates in the south of Europe, this paper
 455 proposes a methodology for evaluating the advisability of recovering the sensible, the latent or both
 456 energies from the ventilation air. The methodology calculates only real demands, identifying the season of
 457 the year for outside air conditions in order to make the appropriate decision as regards conditioning the
 458 ventilation air.

459 The south of Spain has a high energy demand due to the latent energy needed to condition the ventilation
 460 air in dwellings. More than 40% of the energy demand is due to the latent loads which represent a high
 461 potential for energy recovery systems instead of heat recovery systems. Cities located mid way down the
 462 Spanish Mediterranean coast have a latent energy demand due to ventilation air of between 20% and
 463 40% of the total energy demand. However, the latent energy for cities located at the north of the
 464 Mediterranean sea represents less than 20% of the total energy. The latent energy for those cities is at
 465 the same level as that of continental cities such as Madrid or Berlin.

466 For the winter season, only the cities located in the Canary Islands have significant potential for latent
467 energy recovery. Only in Santa Cruz de Tenerife is the use of a latent energy exchanger mandatory to
468 reach nZEB energy demand levels. However, in this case a sensible heat exchanger does not seem to be
469 necessary.

470 For the rest of the cities under study, the recovery of latent energy is very low compared to sensible heat.
471 Nevertheless, in the summer dwellings in cities located at the south of the Mediterranean coast such as
472 Alicante, Murcia or Almeria, should preferably use a latent recovery system rather than a sensible heat
473 exchanger. The sensible recovery system should be mandatory for those cities to reach nZEB heating
474 demand values during winter, while the latent heat exchanger is highly recommended but not a necessity
475 during summer. It is concluded that a membrane-based recovery system seems not to be the best choice
476 as both transfers occur at the same time. Besides, the thermal efficiency could be penalized compared with
477 traditional heat exchangers.

478 Given the disparity of strategies needed depending on the climate data for Europe, energy maps need to
479 be drawn showing the potential latent energy that could be recovered.

480 Moreover, the demands for latent and sensible energy do not arise at the same time, and this has an
481 influence on the kind of recovery system appropriate for each climate condition. The choice of the
482 recovery system is decisive. Most current research is focused on developing new materials with the
483 capability of transferring both moisture and heat simultaneously. However, this solution may not be the
484 most suitable for mild and warm climates where the need to recover heat or transfer moisture does not
485 occur at the same time for most of the year.

486

487 **6. References**

488 [1] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information,
489 Energy Build. 40 (2008) 394–398.

490 [2] European Commission, Directive 2010/31/EU of the European Parliament and of the Council of 19
491 May 2010 on the energy performance of buildings. Official Journal L153, (2010) 13–35.

492 [3] C. a. Roulet, F.D. Heidt, F. Foradini, M.C. Pibiri, Real heat recovery with air handling units, Energy
493 Build. 33 (2001) 495–502.

494 [4] Buildings Performance Institute Europe (BPIE)., Principles for Nearly Zero-energy Buildings.
495 Paving the way for effective implementation of policy requirements., Brussels, 2011.

496 [5] B. Rodríguez-Soria, J. Domínguez-Hernández, J.M. Pérez-Bella, J.J. del Coz-Díaz, Review of
497 international regulations governing the thermal insulation requirements of residential buildings and
498 the harmonization of envelope energy loss, Renew. Sustain. Energy Rev. 34 (2014) 78–90.

499 [6] M. Fehrm, W. Reiners, M. Ungemach, Exhaust air heat recovery in buildings, Int. J. Refrig. 25
500 (2002) 439–449.

501 [7] M. Wassouf, De la casa pasiva al estándar Passivhaus. La arquitectura pasiva en climas cálidos.,
502 Editorial Gustavo Gili, 2014.

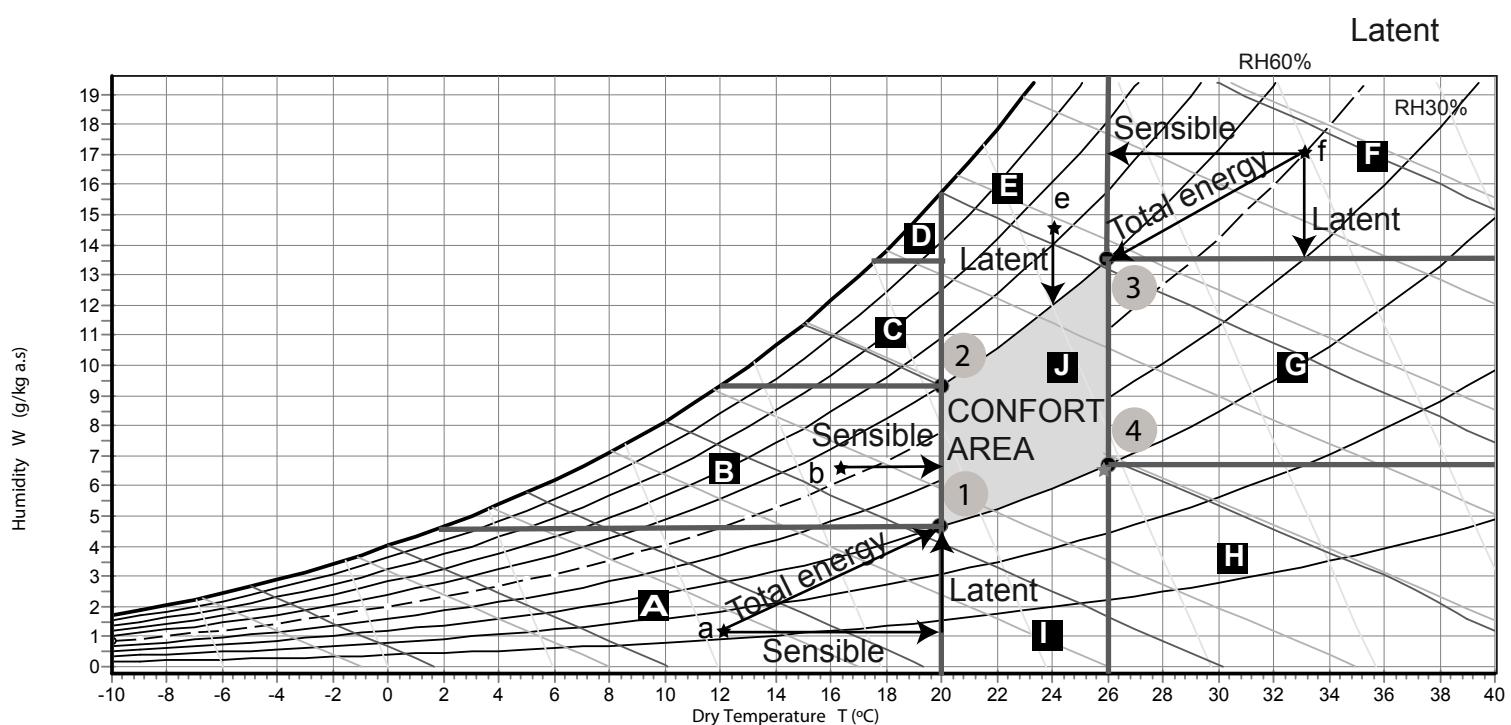
503 [8] Y. Zhang, Y. Jiang, L.Z. Zhang, Y. Deng, Z. Jin, Analysis of thermal performance and energy
504 savings of membrane based heat recovery ventilator, Energy. 25 (2000) 515–527.

505 [9] M. Nasif, R. AL-Waked, G. Morrison, M. Behnia, Membrane heat exchanger in HVAC energy
506 recovery systems, systems energy analysis, Energy Build. 42 (2010) 1833–1840.

507 [10] M. Rasouli, C.J. Simonson, R.W. Besant, Applicability and optimum control strategy of energy
508 recovery ventilators in different climatic conditions, Energy Build. 42 (2010) 1376–1385.

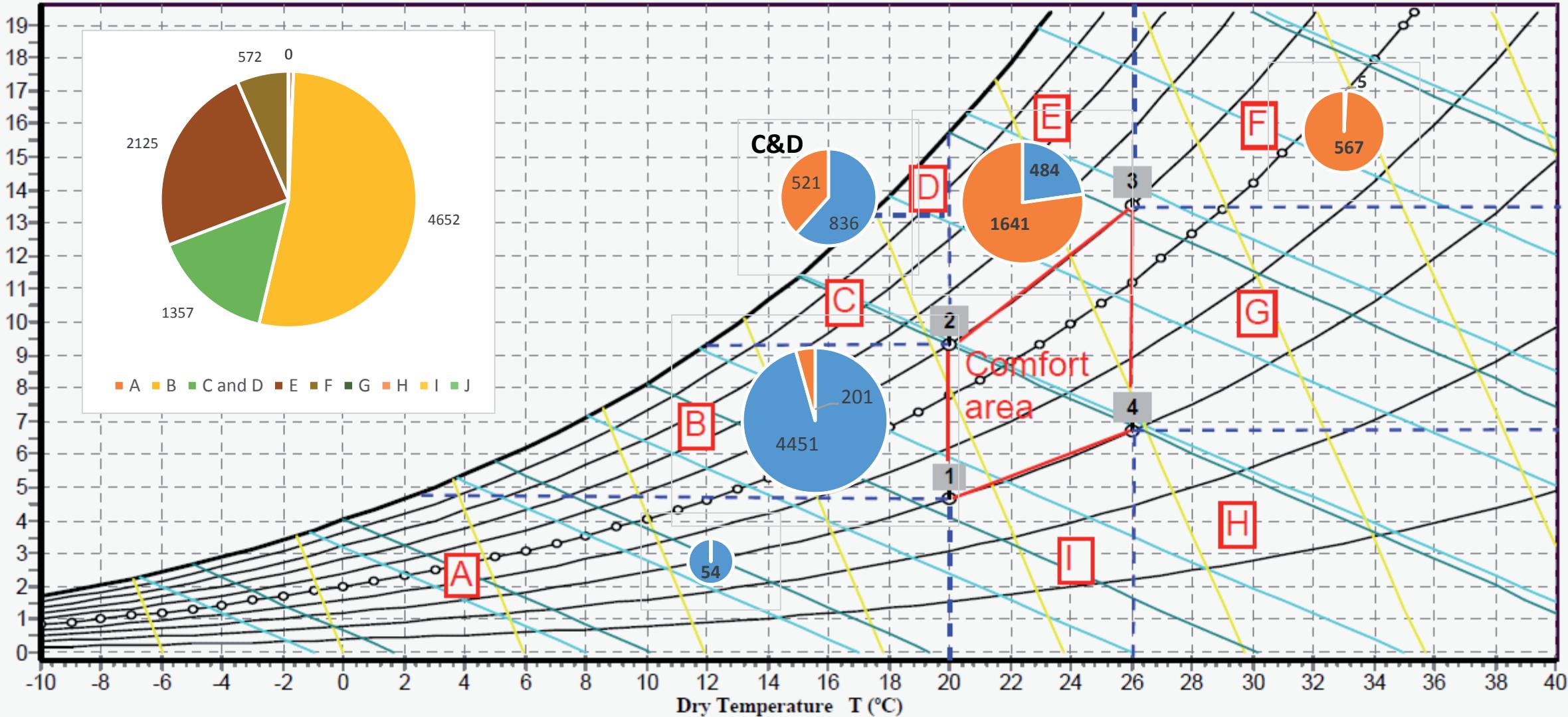
509 [11] A. Mardiana-Idayu, S.B. Riffat, Review on heat recovery technologies for building applications,
510 Renew. Sustain. Energy Rev. 16 (2012) 1241–1255.

511 [12] J. Woods, Membrane processes for heating, ventilation, and air conditioning, Renew. Sustain.
512 Energy Rev. 33 (2014) 290–304.

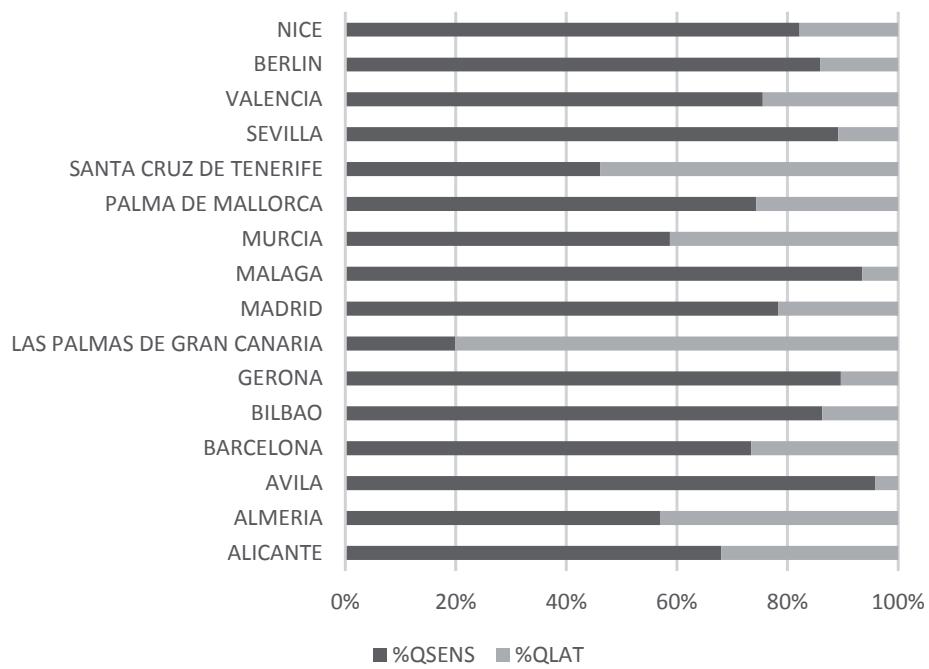

513 [13] Meteonorm, (n.d.). <http://meteonorm.com/>.

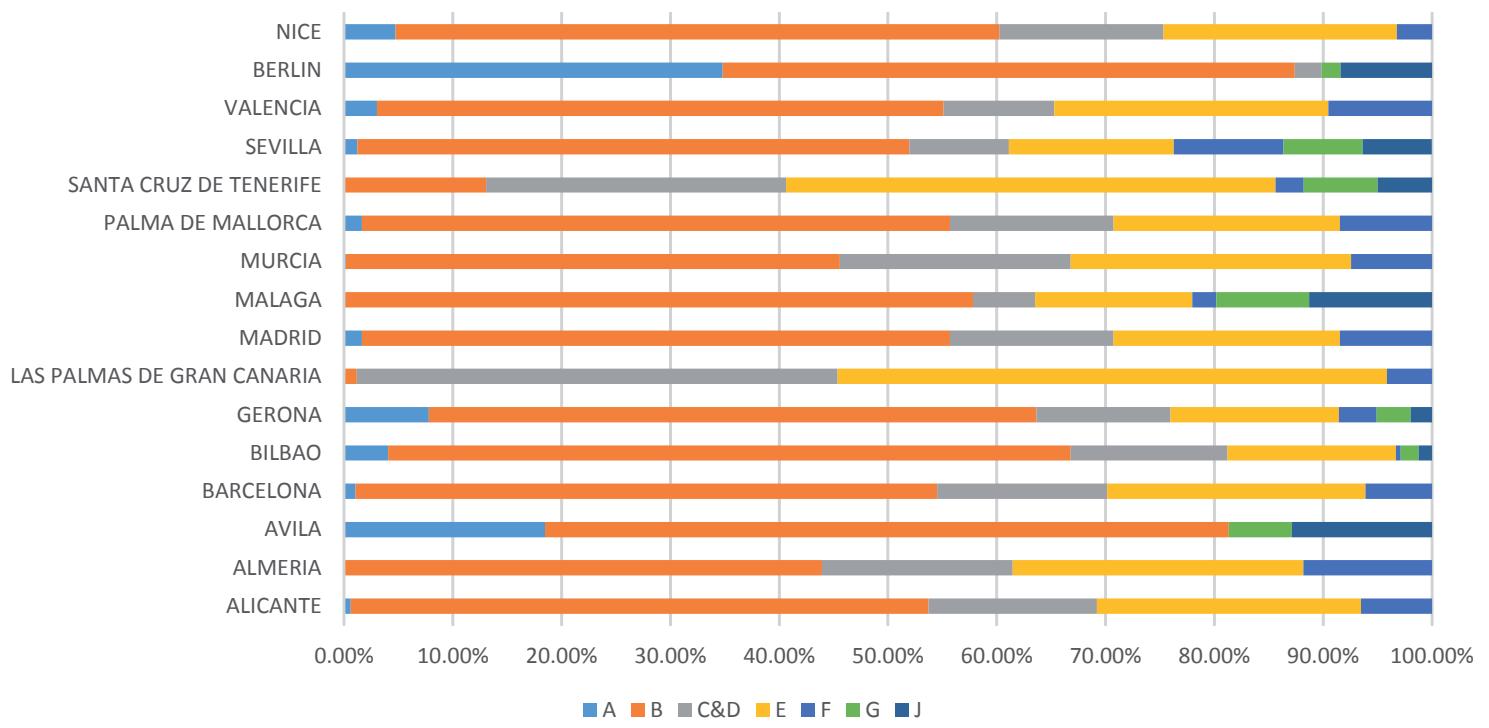
514 [14] V.P. Carey, The properties of gases & liquids, 1988.

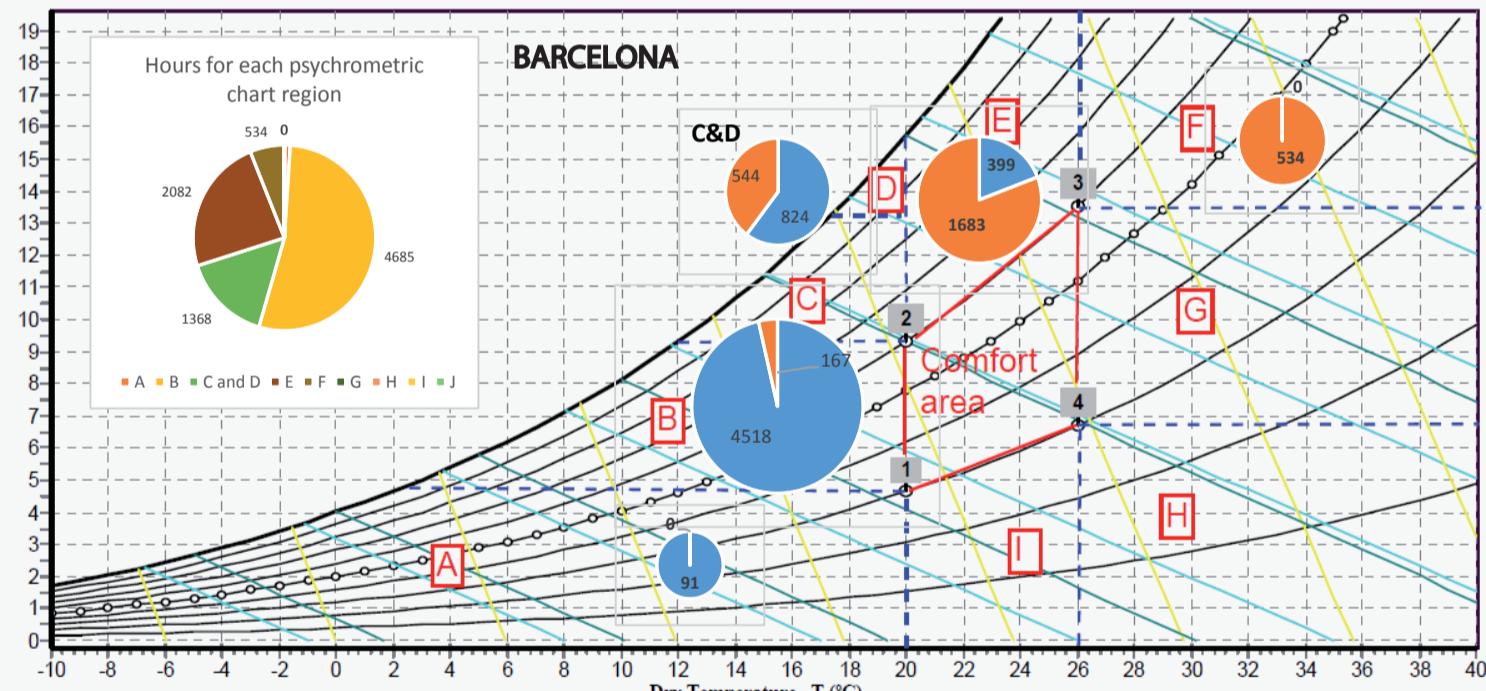
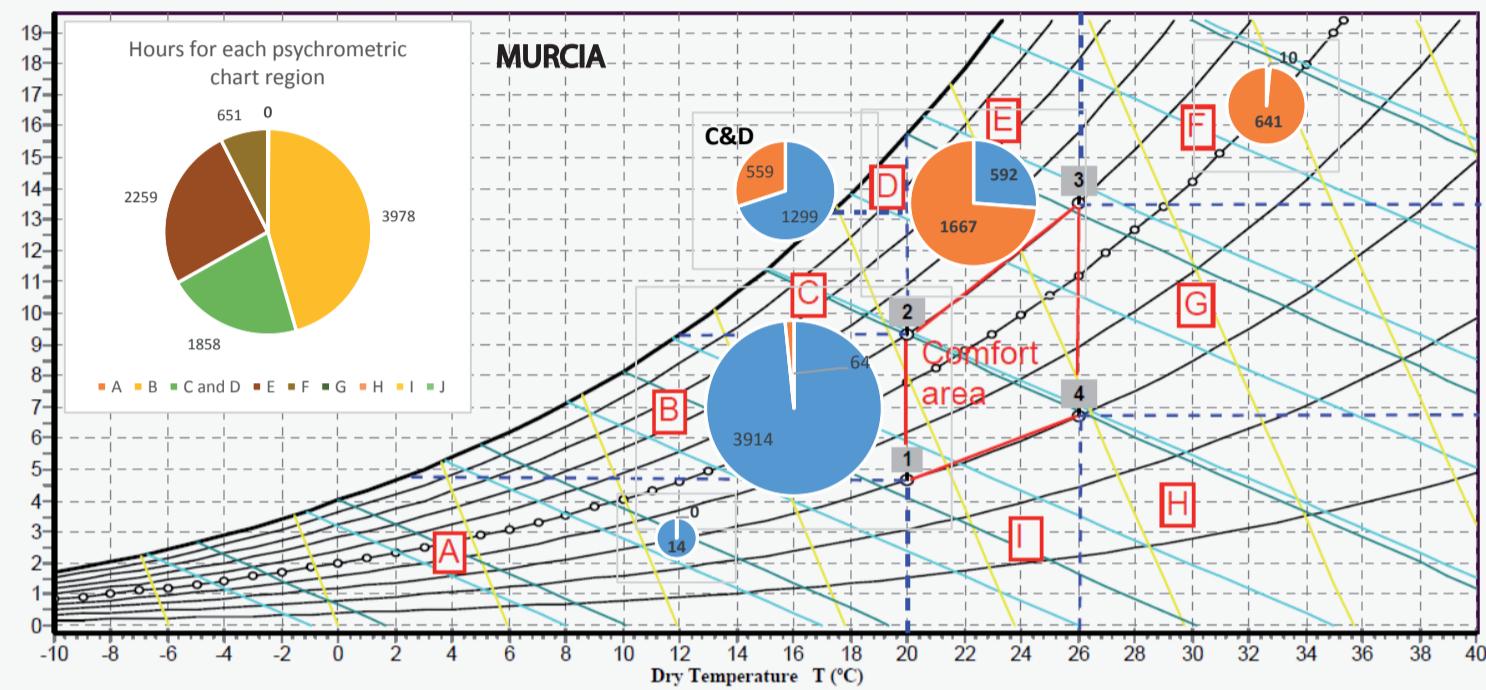
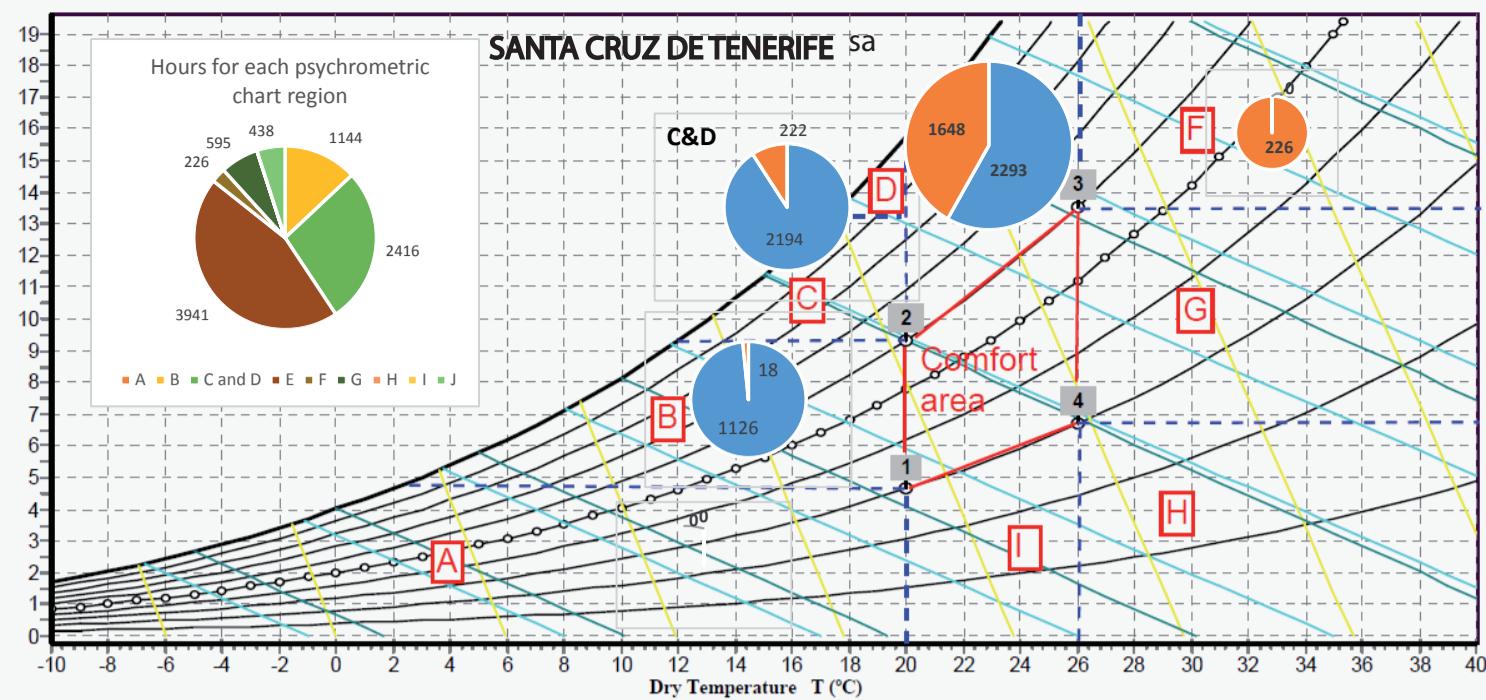
515 [15] Gobierno de España, Documento Básico HS Salubridad, (2009). www.codigotecnico.org
516 (accessed May 13, 2015).


517 [16] Gobierno de España, Documento Básico HE Ahorro de Energía, (2013).
518 http://www.codigotecnico.org/cte/export/sites/default/web/galerias/archivos/documentosCTE/DB_
519 HE/DBHE-2013-11-08.pdf (accessed May 13, 2015).

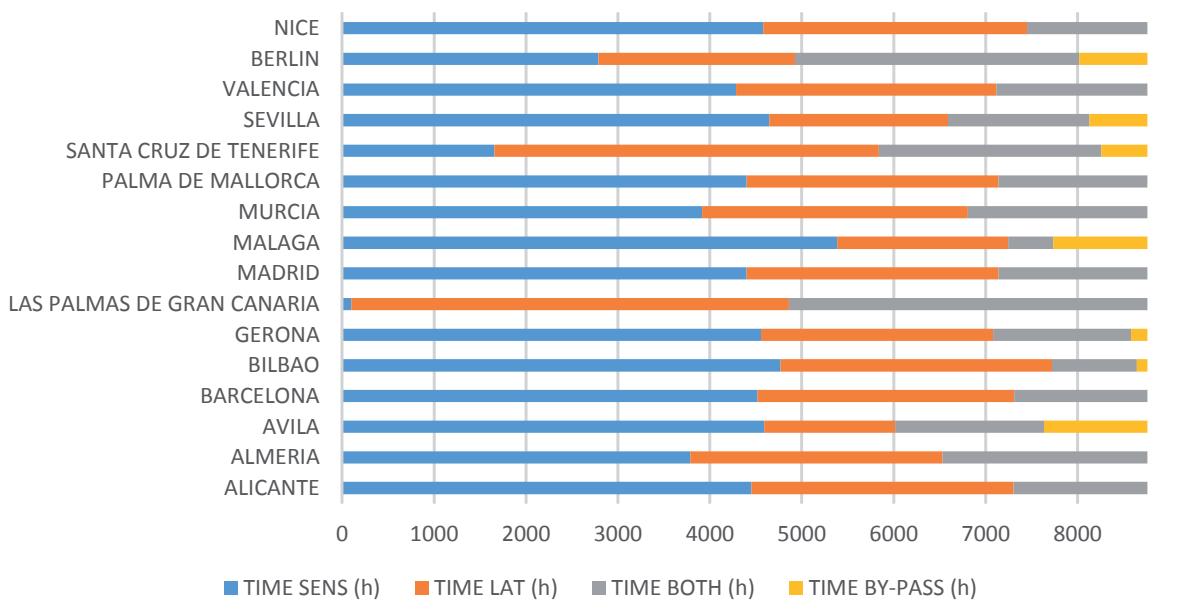
520




Humidity W (g/kg a.s)

Sensible and latent energy demand due to air ventilation



Frequency for psychrometric regions

Time for energy demand

