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 A B S T R A C T

The mechanical performance of tissue-engineered scaffolds plays a critical role in their effectiveness for 
regenerative medicine. While auxetic metamaterials offer tunable mechanical behavior ideal for soft tissues, 
their design typically relies on inefficient, iterative trial-and-error processes. To address this limitation, this 
study presents an integrated computational framework for the inverse design of auxetic scaffolds. By combining 
Finite Element Method (FEM) simulations with regression-based models, we developed accurate predictive 
models capable of mapping microstructural parameters directly to macroscopic mechanical responses. This 
data-driven approach allowed for the rigorous optimization of four distinct auxetic architectures to replicate the 
complex, non-linear anisotropic properties of human skin, achieving strong agreement with literature targets. 
A primary contribution of this work is the development of a user-friendly software tool that integrates this 
pipeline. The tool allows users to input target mechanical properties and automatically generates optimized, 
fabrication-ready designs (including custom MEW G-code), effectively bridging the gap between theoretical 
metamaterial optimization and practical clinical application. This methodology supports robust, patient-specific 
scaffold development, significantly advancing the capabilities of soft tissue engineering.
1. Introduction

Tissue engineering and advanced manufacturing techniques have 
revolutionized wound healing by developing advanced constructs that 
mimic the properties of the native tissue extracellular matrix, en-
abling improved cell proliferation and the regeneration of more com-
plex tissue structures [1]. While traditional tissue engineering scaf-
folds face challenges in mechanical adaptability, auxetic metamaterials 
emerge as a promising solution due to their enhanced conformabil-
ity to dynamic mechanical environments and tunable, design-induced 
mechanical properties [2,3].

Auxetic metamaterials are characterized by a negative Poisson’s 
ratio, meaning they expand laterally when stretched. This unique prop-
erty allows them to accommodate significant biaxial deformation while 
maintaining stable internal stress and adapting their morphology effec-
tively to irregular surfaces [4]. These metamaterials have demonstrated 
significant potential in a wide range of biomedical applications [5–7] 
including bone tissue engineering [8,9], vascular grafts [10–12], and 

∗ Corresponding author at: Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), School of Engineering and 
Architecture, University of Zaragoza, Zaragoza, 50018, Aragon, Spain.

E-mail address: cborau@unizar.es (C. Borau).

cardiac patches [13–16]. Recent studies have highlighted the ability 
of fibrous scaffolds architected with auxetic meta-structures to mimic 
the native strain-stiffening behavior of soft tissues [17,18], which have 
promoted their use in multiple soft tissue engineering applications [19–
23]. Mirani et al. [17] proposed a combined approach of computational 
modeling and 3D printing to fabricate tissue engineering scaffolds 
with auxetic designs mimicking the mechanical behavior of porcine 
pericardium and cardiac valves, while Chansoria et al. [23] investigated 
the production of hydrogel patches with auxetic geometries adapted to 
the behavior of dynamic organs, such as lungs, heart, or skin.

In the context of soft tissue engineering, understanding the mechan-
ical behavior of the native tissue is essential for designing effective 
biomimetic scaffolds [24–26]. For example, human skin exhibits a non-
linear and anisotropic behavior [27–29] which several computational 
and experimental studies have attempted to replicate using synthetic 
substitutes [30–34]. However, such substitutes fall short to replicate 
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Fig. 1. Anatomical mapping and anisotropic mechanical characterization of human skin. The schematic illustrates the extraction sites of skin samples from the 
human back relative to the orientation of Langer lines (collagen fiber alignment). The plot displays representative stress–strain curves for samples tested at 0◦
(parallel), 45◦, and 90◦ (perpendicular) to the Langer lines. Note the characteristic non-linear ‘‘J-shaped’’ behavior and the significant anisotropy, where samples 
aligned with Langer lines (0◦) exhibit higher stiffness compared to perpendicular ones (90◦). These mechanical profiles serve as the target properties for the 
scaffold optimization in this study.
Source: Figure adapted from [41].
the high variability of the skin behavior, influenced by multiple fac-
tors including gender, age, body region, thickness, or collagen fiber 
orientation [35–40]. For instance, Fig.  1, adapted from the research of 
Annaidh et al. [41], illustrates these variations. In their study, samples 
of human back skin were extracted from different regions of the back 
and aligned distinctly relative to their local Langer lines, which are 
the principal directions of tension in the skin [42–44]. The mechanical 
characterization of these samples revealed variations in the mechanical 
behavior depending on both location and orientation.

Importantly, the mechanical performance of auxetic metamateri-
als depends on their design. By controlling the parameters of their 
microstructural geometry, it is possible to tailor the mechanical prop-
erties of the scaffolds to specific functional requirements [2]. Melt 
electro-writing (MEW) has established itself as a high-resolution ad-
ditive manufacturing technique capable of depositing fibers with mi-
crometer precision [45,46]. This technology has been extensively uti-
lized to fabricate complex scaffold microarchitectures with controlled 
anisotropy [47,48], enabling the precise realization of theoretically 
designed metamaterials [49–52].

Computational analysis using the finite element method (FEM) is a 
widely adopted tool for structural analysis and design optimization as 
it enables testing multiple configurations involving geometry, material 
properties, assemblies, and boundary conditions [53–55]. This allows 
evaluation of structural performance prior to fabrication, saving time, 
material, and economic resources. However, FEM analysis of intri-
cate and complex models can incur substantial computational costs, 
particularly when exploring extensive design spaces with numerous 
configurations [23,55,56]. This increased computational demand may 
slow the design process and complicate achieving precise mechanical 
targets. The combination of computational modeling and statistical 
regression is a validated approach to address these challenges [17], 
where experimentally validated data can be utilized to train regression 
models, explore multiple output predictions, and efficiently optimize 
the design to achieve accurate, prescribed mechanics.

In recent years, data-driven approaches and machine learning frame-
works have emerged as powerful tools to accelerate the discovery 
and optimization of mechanical metamaterials [57–62]. Specifically, 
2 
inverse design strategies leveraging deep learning and regression algo-
rithms have been successfully applied to tailor the non-linear properties 
of architected metamaterials [63–65], overcoming the limitations of 
traditional trial-and-error methodologies [66,67].

Our work proposes an integrated predictive framework combin-
ing FEM simulations, data-driven statistical regression modeling, and 
computational optimization for the design of auxetic-architected micro-
fibrous scaffolds for soft tissue engineering applications. By employing 
a design of experiments (DOE) strategy, a reduced number of scaffold 
configurations can be utilized to generate a representative dataset of 
FEM computed results. These type of simulations have been devel-
oped and experimentally validated in our previous work [68]. Regres-
sion models trained on this dataset can predict mechanical properties 
directly from the microstructural design parameters, decreasing the 
computational effort needed to explore extensive design spaces. Using 
experimentally obtained human skin mechanical properties (specifi-
cally, measurements from back skin samples characterized by Annaidh 
et al. [41]) as representative targets, this methodology enables the effi-
cient identification of optimal auxetic microfibrous scaffold geometries 
tailored to patient-specific mechanical conditions. The innovation of 
this work is the development of an integrated and application specific-
framework connecting: (i) a biologically validated auxetic scaffold 
family [68], (ii) mechanical characterization and reduction of its key 
operational parameters, and (iii) a surrogate-model-driven inverse de-
sign pipeline that enables patient-specific customization. This approach 
accelerates scaffold development while maintaining accuracy, making 
it applicable to various soft tissue engineering applications. To support 
practical implementation, we provide a computational tool [69] that 
enables users to select optimal design parameters to achieve specific 
mechanical behaviors.

The remainder of this paper is organized as follows: Section 2 details 
the computational framework, describing the FEM setup, the design 
of experiments, and the regression methodologies employed. Section 3 
presents the results of the sensitivity analysis, the predictive accuracy 
of the models, and the validation against literature data. Section 4 
discusses the implications of these findings for scaffold design and 
introduces the developed software tool. Finally, Section 5 summarizes 
the main conclusions and outlines future research directions.
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2. Materials and methods

The work presented here follows an integrated computational work-
flow designed to predict and optimize the mechanical behavior of 
auxetic fiber-based scaffolds for soft tissue engineering. The process 
begins by defining four auxetic geometries, each parameterized to allow 
systematic variation in scaffold design. A structured DOE approach was 
employed to generate a representative set of scaffold configurations 
by varying key geometric parameters. FEM simulations were then 
performed on these configurations to assess their mechanical behavior 
under biaxial loading conditions. The resulting data were used to 
train statistical models capable of predicting scaffold effective stiffness 
and strain as a function of design parameters. Finally, optimization 
techniques were evaluated and applied to identify scaffold geometries 
that best match specific mechanical targets. This framework enables 
the rapid and reliable selection of scaffold designs tailored to desired 
mechanical performance.

2.1. Selected auxetic geometries

This study builds upon the framework established in our previ-
ous work [68], where auxetic micro-fibrous scaffolds were fabricated 
via MEW using polycaprolactone (PCL), a synthetic, FDA-approved 
biopolymer widely utilized in tissue engineering. In that prior study, 
we characterized the mechanical behavior of the PCL scaffolds both 
experimentally and numerically, and validated their cytocompatibility 
for biological applications. MEW was selected as the manufacturing 
technique because it provides precise control over microfiber deposi-
tion during the printing process, allowing for the implementation of 
specific printing paths to create intricate fibrous microstructures [45,
46]. Consequently, all scaffold geometries presented in this work are 
specifically designed for fabrication by MEW [70–72].

We selected four re-entrant auxetic designs to define the microstruc-
ture of the scaffolds based on their suitability for MEW fabrication, 
designated as H-cell (HCELL), S-regular (SREG), S-inverted (SINV ), and
S-triangular (STRI). These designs were characterized by basic unit cells 
and parameterized as illustrated in Fig.  2 to investigate the influence 
of geometric variations in auxetic architectures on the mechanical 
response of the scaffolds. The parameters ‘‘𝑎’’ and ‘‘𝑏’’ were defined 
to capture geometric variations in fiber layout, while the parameter 
‘‘𝑑’’ controlled the fiber diameter. The parameters ‘‘𝑥𝑟’’, ‘‘𝑦𝑟’’, and ‘‘𝑧𝑟’’ 
defined the scaffold’s physical dimensions (i.e., the number of unit cell 
repetitions in the 𝑥 and 𝑦 directions, and the number of stacked layers 
in the 𝑧 direction).

2.2. Design of experiments

The design space was explored using a structured DOE strategy that 
systematically covered the lower, medium, and upper regions of the 
design space for the selected geometry parameters, which were ‘‘𝑎’’, 
‘‘𝑏’’, ‘‘𝑑’’, and ‘‘𝑦𝑟’’. Given that this structured grid is designed to define 
the boundaries and center of the parameter space, the entire dataset 
was utilized for model training to preserve interpolation accuracy, 
while predictive performance was evaluated on unseen data during the 
subsequent optimization phase. Among them, parameter ‘‘𝑎’’ played a 
central role, as it determined the overall scale of the auxetic geometry 
and, consequently, the size of the scaffold. To ensure a reduced scaf-
fold scale suitable for tissue engineering applications, its values were 
constrained between 100 and 300 μm. Smaller ‘‘𝑎’’ values may lead 
to fabrication challenges and compromised structural fidelity, while 
larger values could result in oversized features unsuitable for scaffold 
considerations.

It is important to note that parameter ‘‘𝑏’’ was defined relative to 
parameter ‘‘𝑎’’ to address design scalability and to comply with the 
geometric constraints of each auxetic design. Specifically, for the SREG
and STRI designs, parameter ‘‘𝑏’’ was established as 0.5, 1, and 1.5 
3 
Fig. 2. Parametric definition of auxetic unit cells and scaffold architecture. 
The study evaluates four distinct re-entrant auxetic topologies: H-cell (HCELL),
S-regular (SREG), S-inverted (SINV ), and S-triangular (STRI). The schematic 
illustrates the key geometric parameters utilized to define the design space. 
Parameters ‘‘𝑎’’ and ‘‘𝑏’’ determine the characteristic dimensions and aspect 
ratio of the individual unit cells. Parameter ‘‘𝑑’’ corresponds to the fiber 
diameter. Parameters ‘‘𝑥𝑟’’, ‘‘𝑦𝑟’’, and ‘‘𝑧𝑟’’ specify the number of unit cell 
repetitions in the 𝑥, 𝑦, and 𝑧 directions, respectively, thereby defining the 
macroscopic volume and aspect ratio of the scaffold. These parameters serve 
as the input variables for the DOE strategy.

times the value of ‘‘𝑎’’, since higher ratios would lead to fiber overlaps 
and distortions that compromise the auxetic effect, and smaller values 
would result in almost straight fibers, not demonstrating any auxetic 
performance. Therefore, 1.5 was considered the upper limit for the ‘‘𝑏’’ 
to ‘‘𝑎’’ ratio (‘‘𝑟𝑏𝑎’’, Eq. (1)) across the designs. For the SINV  design, 
the same geometric constraints applied, but in this case it restricted 
the parameter ‘‘𝑏’’ to not exceed ‘‘𝑎’’. As a result, the ‘‘𝑟𝑏𝑎’’ ratios 
investigated for this design were limited to 0.25, 0.5, and 0.75. In 
contrast, the HCELL design imposed no such restrictions on this ratio, 
allowing the use of the same range applied in the SREG and STRI
designs. 
𝑟𝑏𝑎 = 𝑏∕𝑎 (1)

Parameters ‘‘𝑑’’ and ‘‘𝑦𝑟’’ did not present design-specific limitations 
and were varied uniformly across all four designs. Specifically, ‘‘𝑑’’ was 
evaluated between 10 and 20 μm, which are common fiber diameters 
obtained with MEW [68], and parameter ‘‘𝑦𝑟’’ ranged from 3 to 9 unit 
cell repetitions. Parameters ‘‘𝑥𝑟’’ and ‘‘𝑧𝑟’’ were fixed at values of 6 and 
10, respectively, so their combination with the varying values of ‘‘𝑦𝑟’’ 
allowed exploration of the influence of scaffold shape aspect ratio on 
the mechanical behavior, while also reducing the number of required 
configurations.

This parameter combination (‘‘𝑎’’, ‘‘𝑟𝑏𝑎’’, ‘‘𝑑’’, ‘‘𝑦𝑟’’) yielded a DOE 
dataset comprising 324 unique scaffold configurations, with 81 config-
urations per auxetic design. Table  1 summarizes the parameter values 
explored for the four auxetic designs.

2.3. Numerical simulations

The mechanical performance of the scaffolds was evaluated by con-
ducting FEM-based simulations with ABAQUS software (3DS Dassault 
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Table 1
Summary of the auxetic designs and the values of their geometry parameters 
considered in the design of experiments. To maintain design consistency, 
parameter ‘‘𝑟𝑏𝑎’’ had to take different values for SINV design, while remaining 
unaltered for the other auxetic designs. The values were attributed to the 
parameters aiming to explore the design space, comprising both reduced 
scales feasible by MEW-fabrication and wider scales but without excessively 
increasing the features, which could lead to lose scaffold-like scales in the 
structures. The combination of all the possible configurations of the four 
designs followed this formula: 𝑉 𝑎𝑙𝑢𝑒𝑠𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∗ 𝐷𝑒𝑠𝑖𝑔𝑛𝑠 = 34 ∗ 4 = 324, 
constituting a database of 324 distinct scaffold geometry configurations, with 
each design represented by 81 unique configurations.
 Geometry 
parameter

Auxetic 
design

Lower value Medium value Higher value 

 𝑎 [μm] ALL 100 200 300  
 
𝑟𝑏𝑎 [−] HCELL 

SREG 
STRI

0.5 1 1.5  

 SINV 0.25 0.5 0.75  
 𝑑 [μm] ALL 10 15 20  
 𝑦𝑟 [−] ALL 3 6 9  

Systems). The FEM model of the scaffolds was developed and experi-
mentally validated on our previous work [68], where FEM simulations 
reproduced the biaxial tensile behavior of the MEW-fabricated auxetic 
scaffolds. The FEM model replicated the fibrous structure of the scaf-
folds with 3D beam linear elements (B31) with circular cross-sections, 
implemented a elastic–plastic constitutive law for PCL following the 
behavior observed in the performed experimental characterization of 
PCL bulk material, with an elastic modulus of 100 MPa up to a yield 
stress of 12 MPa followed by a progressively increased stiffness in 
the plastic region. Mesh controls were applied over the length-to-
diameter ratio of the elements (>10) to ensure appropriate element size 
while maintaining fidelity to fiber architecture, and node coupling was 
utilized to interconnect the superposed element layers of the scaffold 
model. Geometric nonlinearity (large deformation theory) was enabled 
to capture the reorientation and unfolding of the elements during the 
tensile process. FEM simulations reproduced the mechanical conditions 
of the scaffolds during biaxial tensile tests based on control over applied 
displacement and utilizing a quarter-symmetry model of the scaffolds to 
reduce computational costs. The Python-based ABAQUS scripts utilized 
to generate the FEM models are publicly available [69,73].

Although Poisson’s ratio is a defining characteristic of auxetic meta-
materials, it was not extracted from these specific FEM simulations 
due to the boundary conditions of the equibiaxial tensile tests. Since 
symmetric displacements were prescribed in both principal directions, 
the transverse strain was constrained, preventing the derivation of a 
free Poisson’s ratio. Consequently, data analysis focused on identifying 
the state at which scaffold fibers become fully stretched, which defines 
the operational limit of the auxetic geometry mechanism. At that 
point, we measured the strain (𝜀aux) and calculated the elastic modulus 
(𝐸aux). The calculation of these key variables starts by extracting nodal 
displacements from the stretched edges and reaction forces from the 
constrained edges, which allowed to obtain the effective stress (𝜎 [kPa]) 
and strain (𝜀 [μm / μm]) of the scaffolds following the procedure 
explained in Supp. Info (Figure S1). To consistently define the transition 
from the initial compliant behavior to the stiffer mechanical response, 
considering the variability of curve shapes, 𝜀aux was defined as the 
strain at which the instantaneous effective elastic modulus (i.e., the first 
derivative of the 𝜎-𝜀 curve, 𝐸 [kPa]) reaches approximately half of its 
maximum value during the ascending phase, as represented in Fig.  3-A 
and Eq. (2). This relative criterion enabled robust identification of the 
transition point across the scaffold designs in both 𝑥- and 𝑦-directions, 
and the most restricting direction in each case (i.e., the one with the 
higher 𝐸aux) was selected to characterize the scaffold behavior. 

𝜀 = 𝜀 such that 𝐸(𝜀) = 1𝐸 = 𝐸 (2)
aux 2 max aux

4 
𝐸aux and 𝜀aux have been defined in alignment with what has been 
previously described as the transition between ‘‘Zone 2’’ and ‘‘Zone 3’’ 
in studies of native soft tissues, such as porcine skin [74], where the 
fibrous components become fully aligned and contribute to a increase 
in stiffness. This analogy supports the relevance of 𝐸aux and 𝜀aux as 
representative parameters of the mechanical behavior of the scaffolds in 
its load-bearing regime. These properties, initially extracted as output 
responses from FEM simulations, will later serve as key input variables 
in the operative phase of the study, guiding predictive modeling and 
scaffold design optimization.

2.4. Statistical modeling and optimization procedure

This stage of the methodology addresses the challenge of charac-
terizing the relationship between the scaffold design parameters and 
their mechanical responses, specifically predicting 𝐸aux and 𝜀aux from 
geometric variables such as fiber geometric disposition (‘‘𝑎’’ and ‘‘𝑟𝑏𝑎’’), 
fiber diameter (‘‘𝑑’’), or scaffold aspect ratio (‘‘𝑦𝑟’’). Despite the ex-
tensive DOE performed, the resulting dataset only samples a limited 
portion of the full parameter space, making it difficult to directly define 
an explicit function such as Eq. (3): 
𝐸aux = 𝑓 (𝑎, 𝑟𝑏𝑎, 𝑑, 𝑦𝑟) (3)

To overcome this limitation, statistical modeling was employed 
to extract signal from the data and to capture the inherent variabil-
ity observed in the mechanical response curves. Regression models 
served two main purposes at this stage. First, they identify which 
design parameters influence the mechanical behavior of the scaffold, 
thus enabling dimensionality reduction by eliminating non-influential 
variables. Second, they provide prediction intervals for the responses, 
which define a set of possible scaffold configurations compatible with 
a desired target behavior.

Following the statistical modeling phase, an optimization step be-
comes necessary to address the inverse design problem: determin-
ing which values of the design parameters yield a target mechanical 
response, represented in Eq. (4): 
𝐸aux(𝑎𝑖, 𝑟𝑏𝑎𝑖, 𝑑𝑖, 𝑦𝑟𝑖) = 𝐸aux-target (4)

The inverse problem is analytically intractable due to the non-
linear and potentially multi-modal nature of the relationships between 
design parameters and mechanical responses. Therefore, optimization 
algorithms are required to explore the solution space defined by the 
statistical model. It is worth noting that while the inverse design 
strictly targets 𝐸aux, surrogate models for 𝜀aux were also developed 
to monitor strain levels, providing a comprehensive characterization 
of the operational limits of the auxetic mechanism of the optimized 
designs.

The statistical analysis began by fitting regression models relating 
the FEM simulation outputs (𝐸aux and 𝜀aux) to the geometric parameters 
of the auxetic designs. For each design, separate regression equations 
were constructed for each response variable, resulting in a total of eight 
models. The initial formulation used in all cases included main effects, 
two-way interaction terms, and quadratic terms, allowing the models to 
capture a wide range of potential relationships and to represent linear 
and nonlinear trends, as well as interaction effects. This is represented 
in Eq. (5): 
𝑌 = 𝛽0 +

∑

𝑖
𝛽𝑖𝑋𝑖 +

∑

𝑖,𝑗
𝛽𝑖𝑗𝑋𝑖𝑋𝑗 +

∑

𝑖
𝛽𝑖𝑖𝑋

2
𝑖 (5)

where 𝑌  represents either 𝐸aux or 𝜀aux, depending on the model, and 
𝑋𝑖 corresponds to the scaffold design parameters (‘‘𝑎’’, ‘‘𝑟𝑏𝑎’’, ‘‘𝑑’’, 
and ‘‘𝑦𝑟’’). Each auxetic design is modeled independently, allowing the 
regression equation to reflect design-specific mechanical responses and 
sensitivities.

Stepwise regression was then conducted in both forward and back-
ward directions to iteratively include or exclude predictor terms based 
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on statistical significance (𝑝-value < 0.05), with the Bayesian Informa-
tion Criterion (BIC) used to guide model selection. This procedure was 
independently applied to each response variable (𝐸aux, 𝜀aux) for all four 
auxetic designs, yielding eight distinct regression models.

Once trained, these models functioned as surrogate predictors of 
the scaffold’s mechanical response based on its geometric parameters. 
However, prediction alone does not resolve the inverse design prob-
lem: determining the input parameters that will yield a specific target 
mechanical behavior. To address this, an optimization framework was 
implemented to explore the defined design space for configurations that 
achieve target values (e.g., 𝐸aux-target) while ensuring robustness against 
geometric variability.

Several optimization strategies were tested within the DOE-defined 
space, including random grid search, brute-force exploration, and ge-
netic algorithms. Given the negligible computational cost of querying 
the surrogate models, adaptive grid refinement strategies were not 
deemed necessary; instead, high-density sampling was preferred to 
ensure thorough design space exploration and minimize the risk of 
missing optimal regions due to initial coarse sampling. Consequently, 
the chosen approaches focused on maximizing coverage within the 
constrained parameter space [75]. All optimization strategies aimed to 
minimize a custom loss function (Eq. (6)) that balances two critical 
aspects of inverse design: predictive accuracy and robustness. The first 
term in the equation represents the bias, that is, the mean squared error 
(MSE) between the average prediction and the target value, ensuring 
the design meets the desired mechanical response. The second term 
penalizes high variance among predictions, promoting reliability by 
favoring designs that are less sensitive to small perturbations in geo-
metric parameters. This dual-objective formulation encourages scaffold 
configurations that are both precise and robust against variability in 
fabrication or parameter estimation. 

 = 1
𝑛

𝑛
∑

𝑖=1
(𝐸̂aux,𝑖 − 𝐸aux-target)2 +

1
𝑛

𝑛
∑

𝑖=1
(𝐸̂aux,𝑖 −

̄̂𝐸aux)2 (6)

Here,  denotes the loss function to be minimized, 𝐸̂aux,𝑖 are the 
predictions for each design, 𝐸aux-target is the desired target value, and 
̄̂𝐸aux = 1

𝑛
∑𝑛

𝑖=1 𝐸̂aux,𝑖 is the mean of the perturbed design predictions. 
In this formulation, 𝑖 indexes each design, and 𝑛 represents the total 
number of perturbed designs evaluated.

Details on the comparative performance of these optimization meth-
ods, and the rationale for selecting the final approach, are discussed in 
the Results section and Supp. Info (Table S1).

R software functions were designed to apply the random grid search 
method [76], which began with a seed-based sampling of geometric 
configurations randomly drawn from the DOE space. This seed set was 
expanded to a pool of up to 5000 unique configurations, each evaluated 
using the objective function (Eq. (6)). Sensitivity analysis indicated that 
the choice of random seed and sample size had minimal impact on the 
overall outcomes. In contrast, brute-force analysis exhaustively eval-
uated approximately 770,000 configurations, generated by combining 
100 evenly spaces values of ‘‘𝑎’’ and ‘‘𝑟𝑏𝑎’’ with all feasible integer 
values of ‘‘𝑑’’ and ‘‘𝑦𝑟’’. Lastly, a genetic algorithm was implemented 
using the GA [77] package in R, applying evolutionary operations such 
as selection, crossover, and mutation to iteratively converge toward 
optimal solutions within the parameter space.

3. Results

The following section presents the outcomes of the computational 
optimization process. We first analyze the influence of geometric pa-
rameters on the mechanical properties through FEM simulations. Next, 
we evaluate the accuracy of the regression models in predicting the 
auxetic behavior and stiffness of the scaffolds. Finally, the optimized 
designs are validated against target mechanical properties of human 
soft tissues, demonstrating the efficacy of the proposed inverse design 
framework and the software tool developed to integrate the entire 
design process and facilitate the translation of the methodology to 
specific applications.
5 
3.1. FEM simulations demonstrate the design-dependent, non-linear me-
chanical behavior of auxetic scaffolds

The 324 FEM models of auxetic microfibrous scaffolds were simu-
lated replicating the conditions of biaxial tensile testing described in 
our previous work [68]. Panels (a-d) of Fig.  3 present the simulated 
stress–strain relationships of the four auxetic geometry designs, with 
the curves grouped according to distinguishable patterns to enhance 
clarity.

The FEM simulation results reveal that auxetic scaffolds exhibit a 
non-linear mechanical response, commonly referred to as ‘‘J-shaped’’ 
behavior, characteristic of soft tissues. This begins with an initial low 
stiffness (toe region), which progressively increases with stretching 
(heel region) until reaching a linear region, corresponding to the full ex-
pansion and alignment of the scaffold fibers along the loading direction. 
This non-linearity does not arise from fiber material behavior but from 
geometric non-linearity, which is the primary source of mechanical 
non-linearity in auxetic structures. The non-linear response is driven by 
the architectural unfolding, reorientation, and large rotational deforma-
tions inherent to these auxetic geometries under tension. The HCELL
and SINV  designs display two groups of curves (Fig.  3-(a,c)), both 
exhibiting low strain values, indicating a limited deformation capacity. 
However, the higher stress values observed in the SINV  curves clearly 
demonstrate a stiffer mechanical response. In contrast, the SREG and
STRI designs show three groups of curves reaching higher strain values 
(Fig.  3-(b,d)), suggesting greater deformation capacity. Notably, the 
low stress values associated with the SREG design reflect the softest 
mechanical behavior among the four auxetic geometries. These findings 
underscore the mechanical versatility of the auxetic scaffolds, where 
variations in design and geometry can yield a broad spectrum of flexible 
or resilient mechanical responses.

Both inter-design and intra-design variability of 𝐸aux and 𝜀aux were 
analyzed to better understand the mechanical properties that auxetic 
microfibrous scaffolds can exhibit depending on their design and ge-
ometric configuration. Fig.  3-(e) shows the kernel density estimations 
(KDE) of 𝐸aux and 𝜀aux across the four auxetic scaffold designs, high-
lighting both the overall trends and the variability associated with each 
design.

The HCELL design exhibits a narrow, well-defined distribution in 
both variables, with 𝜀aux values ranging between 0.4 and 0.6, and 
𝐸aux remaining below 1500 kPa. This indicates a consistent mechanical 
response, suggesting robust and reproducible behavior. In contrast, the
STRI design displays a broad distribution, reflecting high variability in 
mechanical performance: 𝐸aux reaches up to 4000 kPa, while 𝜀aux spans 
from near zero to values exceeding 1. The SREG design shows similarly 
high variability in 𝜀aux, reaching up to 1.5 (the widest range among all 
designs) while maintaining a narrower, more concentrated distribution 
of 𝐸aux that barely exceeds 1000 kPa. This suggests relatively stable 
stiffness with greater variability in extensibility. Conversely, the SINV
design demonstrates the opposite trend, with 𝐸aux varying widely up 
to 5000 kPa, and 𝜀aux constrained below 0.5, indicating predictable 
deformation behavior with less predictable stiffness. These observations 
highlight how the spread and concentration of each design’s mechanical 
outputs reflect their predictability: narrower distributions imply con-
sistent performance, whereas broader ones indicate greater variability 
and tunability. The optimal design choice thus depends on the desired 
trade-off between mechanical stability and adaptability.

Another approach to analyzing the FEM simulation results involved 
a descriptive exploration of the dataset, focusing on the relationships 
between geometric parameters (‘‘𝑎’’, ‘‘𝑟𝑏𝑎’’, ‘‘𝑑’’, ‘‘𝑦𝑟’’) and the me-
chanical outputs (𝐸aux, 𝜀aux) for each scaffold design. This analysis, 
illustrated in Supp. Info (Figures S2–S5), provides deeper insight into 
how design-specific geometries influence mechanical performance.

In summary, across all four designs, 𝐸aux consistently exhibits a 
strong dependency on the predictor variables, though the nature of 
this dependency varies by design. In the HCELL configuration, both 
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Fig. 3. FEM-based mechanical characterization and design space exploration. (a-d): Simulated stress–strain response for the four auxetic topologies under 
equibiaxial tensile loading. The curves display a biomimetic non-linear ‘‘J-shaped’’ behavior (initial compliance followed by stiffening). Shaded regions represent 
the envelopes containing the families of curves obtained from the 81 distinct geometric configurations simulated for each design, demonstrating the wide range of 
mechanical tunability. (e): Bivariate distribution of the effective stiffness (𝐸𝑎𝑢𝑥) versus the auxetic strain limit (𝜀𝑎𝑢𝑥) for each design. The scatter plots highlight the 
distinct mechanical niches: SINV exhibits high stiffness with limited extensibility, whereas SREG provides high compliance and large extensibility. The marginal 
plots display the kernel density estimation, visualizing the probability distribution of properties achievable within the design space.
𝐸aux and 𝜀aux display relatively narrow distributions, with moderate 
sensitivity to all input parameters, suggesting a balanced influence and 
a robust, predictable mechanical behavior. Notably, increases in ‘‘𝑎’’ 
and ‘‘𝑑’’ are associated with reduced/increased stiffness respectively, 
while ‘‘𝑟𝑏𝑎’’ exerts a clear inverse influence on strain. The SREG design 
shows a pronounced sensitivity of 𝜀aux to the ‘‘𝑟𝑏𝑎’’ ratio, with strain 
increasing significantly at higher values, while 𝐸aux is most affected 
by ‘‘𝑎’’, ‘‘𝑟𝑏𝑎’’ and ‘‘𝑑’’, indicating that structural extensibility is more 
tunable than stiffness. This is consistent with the broader spread ob-
served in strain outputs for this design, reaching values up to 1.5. In the
SINV  design, 𝜀aux remains confined below 0.5 regardless of geometric 
variations, pointing to limited deformability, with ‘‘𝑟𝑏𝑎’’ being the only 
parameter with a clear effect on the achieved strain. On the other 
hand, 𝐸aux is highly responsive to both ‘‘𝑎’’ and ‘‘𝑑’’, and to a less 
extent to ‘‘𝑟𝑏𝑎’’, ranging up to 5000 kPa and making this design suitable 
for applications requiring tunable stiffness with constrained strain. The
STRI design exhibits the highest overall variability. 𝜀aux again shows 
a dominant dependence on ‘‘𝑟𝑏𝑎’’, with strain values spanning a wide 
range, while 𝐸aux responds to a combination of ‘‘𝑎’’, ‘‘𝑑’’, and ‘‘𝑦𝑟’’. 
This high sensitivity across parameters results in a flexible but less 
predictable mechanical profile.

An important finding across all designs is the dominant influence 
of the ‘‘𝑟𝑏𝑎’’ ratio on the scaffold’s mechanical response, particularly 
on 𝜀aux. This parameter, representing the aspect ratio between the 
primary geometric features of the unit cell, governs the deformation 
mechanisms underlying auxetic behavior, affecting how the structure 
expands or contracts laterally under tensile load. By altering the bal-
ance between ‘‘𝑎’’ and ‘‘𝑏’’, the ‘‘𝑟𝑏𝑎’’ ratio modulates the kinematic 
degrees of freedom within the cell, directly impacting both the extent 
and nature of strain accommodation. Overall, these results highlight 
how the coupling between design parameters and mechanical responses 
varies across scaffold architectures. While HCELL offers a stable and 
balanced mechanical response, the other designs, especially STRI and
SREG, enable greater tunability in extensibility, albeit with increased 
variability.
6 
3.2. Statistical modeling and optimization for target mechanical perfor-
mance

Statistical regression models were built for each of the four auxetic 
designs to predict the key mechanical outputs (𝐸aux and 𝜀aux) based 
on geometric input parameters from the DOE database. To evaluate 
the quality of these models, predictions were compared to FEM sim-
ulation results for the corresponding geometric configurations. Fig.  4 
shows the parity plot for 𝐸aux, while the corresponding metrics for 
𝜀aux can be found in Supp. Info (Figure S6). As shown in Fig.  4, the 
alignment of the scatter points with the diagonal line reflects a strong 
agreement between predicted and observed values. Among the models,
SINV  demonstrated the highest accuracy, while STRI exhibited greater 
prediction variability, especially at lower 𝐸aux values. In particular, 
the 𝐸aux models exhibited high predictive accuracy across all designs, 
with Adjusted R2 values exceeding 0.96. The 𝜀aux models showed more 
variable performance, with higher accuracy for the HCELL and SINV
designs (Adj. R2 > 0.99), and lower accuracy for SREG and STRI (Adj. 
R2 > 0.82).

Fig.  4 includes a reference target of 1000 kPa (highlighted by red 
lines), selected as a representative benchmark across all four scaffold 
designs. This target lies within the range of output values obtained 
by the FEM simulations and was used here to neutrally compare the 
performance of the optimization strategies. By decoupling this initial 
test from the skin-specific targets addressed later, we ensured a con-
sistent and design-independent basis for evaluating the reliability and 
efficiency of each method.

To assess the predictive robustness of the regression models near 
this reference target, a sensitivity analysis was carried out using the
STRI model, which exhibited the lowest Adj. R2 value (0.96) and 
the widest spread between predicted and observed values (see Fig.  4-
(d)). This made it a suitable candidate for testing the stability of the 
optimization pipeline. The analysis involved generating predictions and 
95% confidence intervals for all configurations in the STRI training 
dataset (Supp. Info - Figure S7). Comparison with the original FEM 
outputs revealed several parameter combinations with tight predic-
tion agreement, validating the performance of the model even under 
moderate variability.
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Fig. 4. (a–d): Predictive performance of the regression models. Parity plots comparing the statistically predicted effective stiffness (𝐸𝑎𝑢𝑥) against the ground-truth 
FEM simulation results for the four auxetic designs. The tight alignment of data points along the diagonal (𝑦 = 𝑥) line indicates high accuracy, quantified by 
Adjusted R2 values exceeding 0.96 in all cases. The intersecting red lines mark a representative target value of 1000 kPa, utilized here as a neutral benchmark 
to evaluate the efficiency of the inverse design optimization strategies. The distribution of points relative to this benchmark visualizes the mechanical range of 
each geometry; for instance, the SREG design (b) clusters predominantly below the target, indicating inherently lower stiffness, whereas SINV (c) design exhibits 
a broad distribution exceeding the target, highlighting its suitability for stiffer applications.
Using this 1000 kPa target, we then compared the three previously 
described optimization strategies: (i) random grid search; (ii) brute-
force search and (iii) genetic algorithm. Random grid search emerged 
as the most efficient method, identifying robust solutions in under 10 s 
with relatively few evaluations. Brute-force search, while exhaustive 
and accurate, required substantial computational resources. The genetic 
algorithm delivered comparable performance to random grid search 
but offered no advantages in terms of solution quality or runtime 
and was therefore not selected for further use. A detailed comparison 
of the three strategies in terms of computational cost and predictive 
robustness is provided in Supp. Info (Table S1).

This preliminary assessment enabled the selection of an efficient 
optimization method, which was subsequently applied to achieve target 
values discussed in the next section.

3.3. Auxetic scaffolds provide reliable solutions to reproduce the behavior 
of soft tissues

To demonstrate the applicability of the proposed predictive frame-
work, the regression and optimization approach was used to identify 
auxetic scaffold configurations capable of replicating the mechanical 
behavior of soft tissues, particularly human skin. Reference values for 
skin elasticity were obtained from the literature [41], selecting three 
representative elastic modulus values corresponding to orientations 
of 90◦, 45◦, and 0◦ relative to the local Langer lines. These values 
(𝐸(90◦) = 725 kPa, 𝐸(45◦) = 1210 kPa, and 𝐸(0◦) = 1580 kPa) served 
as target mechanical properties to be matched by the scaffold designs.

For each representative skin modulus, the regression models were 
employed to predict scaffold geometric configurations that would not 
only match the target stiffness values but also exhibit stable mechanical 
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behavior. These optimized configurations were subsequently validated 
through FEM simulations to assess prediction accuracy. Since the FEM 
framework was experimentally validated [68], it serves as the ground 
truth for assessing the accuracy of the regression models, eliminating 
the need for additional physical fabrication in this optimization process. 
Fig.  5 summarizes the results obtained for the three skin stiffness 
targets across the four auxetic scaffold designs, including the optimized 
geometric parameters, predicted and simulated values of 𝐸aux, their 
relative deviations regarding the target, the error between the predic-
tion and the FEM ground truth, and the corresponding predicted and 
simulated values of 𝜀aux.

The HCELL design showed variable performance across the target 
range. It delivered reasonable accuracy (5%) for the 𝐸(90◦) target, 
but the FEM validation reported larger deviations regarding the target 
(19%) and the prediction (20%). For the 𝐸(45◦) target, both predicted 
and simulated values underestimated the target modulus (deviations 
between 12% and 15%) but showed good consistency between them 
(error below 1%). This design struggled to reproduce the higher stiff-
ness value (𝐸(0◦) = 1580 kPa), with predicted and simulated values 
falling short (1428 kPa and 1067 kPa, respectively). Nonetheless, pre-
dicted and simulated 𝜀aux values showed strong agreement across all 
cases, indicating robust strain estimations.

The SREG design achieved excellent accuracy for the lower and 
intermediate targets (𝐸(90◦) and 𝐸(45◦)), with deviations and errors 
below 10% in both cases. However, it failed to capture the high stiffness 
target (𝐸(0◦)), though the consistent correlation between predicted 
and simulated values across both 𝐸aux and 𝜀aux supports the model’s 
reliability even when absolute accuracy decreased.

The SINV  design performed reliably for the intermediate and high 
targets, providing low-error (below 7%) predictions and simulations for 
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Fig. 5. Validation of the inverse design framework against human skin anisotropy. Comparison between the target elastic modulus and the optimal geometry 
configurations reported for each auxetic design and target. Each auxetic configuration shows the geometry shape and its parameters, the regression-based 𝐸aux
prediction, the FEM verification and the error between them, their deviations regarding the specified target, and the predicted and simulated 𝜀aux values. Three 
targets were selected from literature [41] representing the stiffness of human back skin at distinct orientations relative to Langer lines: 90◦ (725 kPa), 45◦
(1210 kPa), and 0◦ (1580 kPa). The close agreement between predicted and simulated values validates the accuracy of the methodology in generating patient-
specific scaffold designs.
𝐸(45◦) and 𝐸(0◦). For the 𝐸(90◦) target, despite an accurate prediction, 
FEM simulations revealed greater deviation. This design consistently 
produced lower strain values (around 0.07) than the other scaffolds 
(between 0.2 and 0.7), though predicted and simulated 𝜀aux values 
remained well-aligned.

The STRI design demonstrated the most consistent and accurate 
performance across all three targets. Prediction deviations for 𝐸aux
remained around 2%, with ground truth errors under 9%, regardless 
8 
of the target stiffness. 𝜀aux estimations were similarly robust, with 
close agreement between predicted and simulated values across all 
configurations.

Overall, these results validate the effectiveness of the predictive 
framework in identifying scaffold configurations that replicate the me-
chanical behavior of human skin or other tissues. The distinct perfor-
mance patterns observed across the different scaffold designs indicate 
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that certain architectures are inherently better suited to achieving spe-
cific mechanical targets. This ability to guide targeted scaffold selection 
represents a meaningful advance in the development of biomimetic 
auxetic scaffolds for skin tissue engineering applications. To support 
real-world implementation, we developed a computational tool (de-
scribed in the following section) that automates the selection and 
generation of printable scaffold geometries based on target mechanical 
properties.

3.4. Development of a computational tool for scaffold design optimization 
and 3D printing

We developed a computational tool [69], including a minimal user 
interface, that integrates the trained predictive models and optimiza-
tion algorithms to select optimal parameters and directly generate the 
corresponding 3D printing or FEM files, streamlining the transition 
from design to fabrication/simulation and enabling rapid, application-
specific scaffold production. This tool allows users to either input 
specific geometric parameters (Manual Mode) or specify target mechan-
ical properties (Predictive Mode) and automatically obtain the most 
suitable scaffold geometry.

In the current version, users can input specific values for the ge-
ometrical parameters defining the four auxetic designs shown in this 
work (HCELL, SREG, STRI, and SINV ) in the ‘‘Manual Mode’’. Based on 
these configurations, the platform automatically generates FEM models 
as ABAQUS input files, G-code files for MEW fabrication, or both. 
This functionality enables precise control over scaffold design, useful 
for custom applications or exploratory testing of specific parameter 
combinations.

In contrast, the ‘‘Predictive Mode’’ encapsulates the core contribu-
tion of this study by enabling geometry prediction based on desired 
mechanical performance. Users are prompted to input a target value 
for the effective elastic modulus in the toe region, 𝐸aux. The pre-
trained regression models are then employed to identify the optimal 
geometric configurations across each of the four auxetic designs. These 
configurations are subsequently presented in a comparative format, 
allowing users to assess and select the most appropriate option. As in 
the ‘‘Manual Mode’’, the selected configurations can be immediately 
exported as FEM input files, G-code files, or both, facilitating direct 
integration into simulation workflows and 3D printing processes.

A block diagram illustrating the functional steps of the computa-
tional tool is shown in Fig.  6, outlining the workflow for both modes, 
by accessing directly to prototype design or starting from mechanical 
target definition to the generation of design prototypes and exportable 
files. Supp. Info (Figures S8–S10) includes screenshots of the user 
interface and example outputs from both design modes, providing a 
visual reference of the platform in operation.

4. Discussion

This study establishes an integrated computational framework de-
signed to tailor the mechanical properties of auxetic microfibrous scaf-
folds, specifically replicating the non-linear behavior of soft tissues like 
human skin. By integrating finite element simulations with regression-
based predictive modeling, we have developed a reliable inverse design 
methodology capable of identifying scaffold geometries that satisfy 
precise mechanical targets. This approach reduces the high computa-
tional costs associated with traditional iterative design optimization, 
providing a streamlined and accessible solution for the development of 
patient-specific tissue engineering scaffolds.

The mechanical characterization of the four auxetic designs (HCELL,
SREG, SINV, and STRI) revealed distinct behavior patterns that align 
with the fundamental requirements for skin tissue engineering. All 
designs exhibited the non-linear ‘‘J-curve’’ stress–strain behavior char-
acteristic of soft tissues, characterized by an initial compliant toe 
region that transitions into a stiffer linear region under load. This 
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Fig. 6. Operational workflow of the developed computational design software. 
The diagram illustrates the tool’s architecture, which bridges the gap between 
theoretical design and fabrication. Two operation modes are available: (1) 
Manual Mode, where users directly define geometric parameters (𝑎, 𝑏, 𝑑, 𝑥𝑟, 
𝑦𝑟, 𝑧𝑟) to explore specific configurations; and (2) Predictive Mode, which 
solves the inverse design problem. In this mode, the user inputs a mechanical 
target, and the optimization module, powered by the pre-trained regression 
algorithms, automatically identifies the optimal geometric combination to 
match that stiffness. Both pathways converge at the generation module, which 
automatically exports ABAQUS input files for FEM simulation and custom 
G-code for MEW fabrication, enabling rapid prototyping of patient-specific 
scaffolds.

biomimetic response is critical for physiological function, allowing 
tissues to accommodate small deformations while providing resistance 
against excessive strain. The remarkable diversity in mechanical perfor-
mance across the different auxetic designs offers considerable flexibility 
in addressing the heterogeneous properties of human skin [41]. SINV
scaffolds demonstrated higher stiffness with limited deformation capac-
ity, making them suitable for applications requiring greater mechanical 
resilience such as back, chest, or forearms, where skin has stiffer 
mechanical properties to serve protective functions [37,38,41,78]. In 
contrast, SREG designs exhibited the softest mechanical response with 
extended deformation capacity, potentially beneficial for more compli-
ant skin regions such as joints or abdomen, which need looser behavior 
to accommodate frequent movement [78–80]. The HCELL and STRI
designs presented intermediate mechanical behaviors with different 
degrees of reproducibility and predictability [70].

Analyzing the statistical distribution of 𝐸𝑎𝑢𝑥 and 𝜀aux across the 
design space reveals a critical trade-off between reproducibility and 
tunability. Narrow distributions, as seen in HCELL, imply consistent 
manufacturing outcomes with reduced sensitivity to geometric devia-
tions. Conversely, designs with broader distributions, such as SINV  and
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STRI, offer a wider dynamic range of achievable mechanical properties, 
albeit at the cost of potentially lower predictability. This balance 
between consistency and range must be carefully considered when 
selecting appropriate designs for specific applications.

The high predictive accuracy of our regression models (Adj. R2 >
0.96 for 𝐸aux and Adj. R2 > 0.82 for 𝜀aux) confirms the effectiveness 
of the proposed approach in reducing reliance on time-intensive FEM 
simulations during the scaffold design process. Comparison between 
model predictions and FEM outputs further validates the framework’s 
ability to reliably identify optimal scaffold configurations across diverse 
mechanical targets. Regarding the optimization strategies, random grid 
sampling proved to be the most efficient method, delivering robust so-
lutions with minimal computational overhead compared to brute-force 
or genetic algorithms. Consequently, this algorithm was implemented 
as the core engine of the computational tool.

When applying our framework to mimic the properties of human 
skin, we observed varying degrees of success across the different auxetic 
designs. The STRI design demonstrated the most consistent perfor-
mance across all three skin representative targets (E(90◦), E(45◦), and 
E(0◦)), with prediction errors around 2% and FEM validation errors 
around 6%. This consistency indicates the robust adaptability of this 
particular design across a wide range of stiffness values. The SINV
design showed excellent performance for intermediate and higher stiff-
ness targets, while SREG excelled at lower and intermediate stiffness 
values. These findings highlight the complementary nature of the dif-
ferent auxetic architectures, effectively expanding the design toolkit 
available for addressing the diverse mechanical requirements of skin 
tissue engineering.

The inability of certain designs to accurately reproduce specific 
target values, particularly the higher stiffness E(0◦) target for HCELL
and SREG designs, highlights the inherent limitations of each geom-
etry. This suggests that no single auxetic design can address the full 
spectrum of skin mechanical properties, emphasizing the importance 
of a design selection strategy based on specific application require-
ments. The integration of multiple designs within a single scaffold 
could potentially provide a more comprehensive mimicry of the com-
plex mechanical behavior of human skin, though this would introduce 
additional manufacturing challenges.

Our findings align with previous studies that have demonstrated 
the potential of auxetic materials in tissue engineering applications [2,
3,17,19–23]. However, our work extends beyond existing literature 
by implementing the pipeline in a dedicated software tool that auto-
matically generates scaffold geometries matching a target mechanical 
response. By providing a full workflow from design space definition to 
patient-specific scaffold generation, our study establishes a systematic 
and accessible methodology for predicting and optimizing scaffold 
properties, and contributes a practical pathway toward translation to 
tissue engineering applications.

Nevertheless, several limitations should be acknowledged in the 
current study. First, our framework focuses primarily on the toe and 
heel regions of the stress–strain curve, characterized by 𝐸aux and 𝜀aux. 
While this region is particularly relevant for capturing the physiological 
response of skin under normal loading conditions [74], future studies 
should extend the analysis to include the full non-linear behavior at 
higher strain levels, especially in applications where tissues are subject 
to larger deformations.

Second, the current model considers only static mechanical behav-
ior. However, native skin is subjected to dynamic and time-dependent 
mechanical loading in vivo. Incorporating viscoelasticity, time-depen-
dent effects, and fatigue or degradation analysis into the predictive 
framework would provide a more comprehensive and biologically rel-
evant understanding of scaffold performance under real-world physio-
logical conditions.

Third, our analysis is limited to only four auxetic scaffold archi-
tectures. While these architectures were selected to span a range of 
geometrical features, the design space for auxetic microarchitectures 
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is vast. Expanding the library of tested geometries and integrating 
more complex or hierarchical structures could unlock novel mechanical 
behaviors and improve the framework’s adaptability across different 
target tissues. Notably, the developed user interface can serve as a 
flexible platform for future integration of additional geometries, de-
sign rules, or optimization algorithms, enhancing its utility as the 
methodology evolves.

From a manufacturing perspective, while MEW offers precise con-
trol over microfiber deposition, practical fabrication constraints may 
introduce geometric variations that could influence the scaffold’s me-
chanical performance. Incorporating geometric tolerances into the op-
timization process would improve the robustness of predicted configu-
rations. In our previous work [68], we explored strategies to minimize 
these deviations and enhance print fidelity, which could be integrated 
into future iterations of this computational workflow and reflected in 
the interface output.

Finally, while mechanical compatibility is a prerequisite for func-
tional tissue engineering, the ultimate success of these constructs de-
pends on their biological integration. Factors such as cell attachment, 
proliferation, and extracellular matrix deposition are critical. Prelimi-
nary studies in our group have demonstrated favorable cell behavior 
on these scaffolds under in vitro conditions; however, comprehensive 
long-term biological validation is required to assess their viability in a 
physiological environment [68].

5. Conclusions

In conclusion, this study presents a computational framework that 
significantly advances the design of auxetic, biomimetic microfibrous 
scaffolds for skin tissue engineering. By integrating FEM simulations 
with regression-based predictive modeling and optimization strategies, 
we established a methodology capable of efficiently identifying scaffold 
geometries tailored to specific mechanical targets. The distinct perfor-
mance of each auxetic design across the stiffness spectrum highlights 
the versatility of the framework in addressing the heterogeneous and 
anisotropic properties of human skin.

The results demonstrate that the proposed inverse design method-
ology can accurately identify optimal scaffold geometries that match 
patient-specific mechanical targets without the need for iterative trial-
and-error fabrication. Furthermore, the validation of the regression 
models against the high-fidelity FEM ‘‘digital twin’’ confirmed the 
reliability of this approach for exploring complex design landscapes.

A key contribution of this work is the translation of these findings 
into a user-friendly software tool. This application bridges the gap be-
tween theoretical metamaterial design and clinical utility, empowering 
bioengineers and clinicians to generate custom scaffold architectures 
based simply on target mechanical inputs. Collectively, this integrated 
workflow significantly advances the field of personalized regenera-
tive medicine, offering a scalable and efficient path for designing 
mechanically compatible tissue substitutes.

Ultimately, this approach not only reduces computational demands 
but also provides a systematic and accessible path for scaffold design 
based on desired mechanical outcomes. Future work should focus on 
the experimental validation of the optimized configurations, in-depth 
investigation of cell-scaffold interactions, and the incorporation of 
additional factors such as dynamic loading, viscoelastic behavior, and 
biological cues relevant to skin tissue regeneration.
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