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The mechanical performance of tissue-engineered scaffolds plays a critical role in their effectiveness for
regenerative medicine. While auxetic metamaterials offer tunable mechanical behavior ideal for soft tissues,
their design typically relies on inefficient, iterative trial-and-error processes. To address this limitation, this
study presents an integrated computational framework for the inverse design of auxetic scaffolds. By combining
Finite Element Method (FEM) simulations with regression-based models, we developed accurate predictive
models capable of mapping microstructural parameters directly to macroscopic mechanical responses. This
data-driven approach allowed for the rigorous optimization of four distinct auxetic architectures to replicate the
complex, non-linear anisotropic properties of human skin, achieving strong agreement with literature targets.
A primary contribution of this work is the development of a user-friendly software tool that integrates this
pipeline. The tool allows users to input target mechanical properties and automatically generates optimized,
fabrication-ready designs (including custom MEW G-code), effectively bridging the gap between theoretical
metamaterial optimization and practical clinical application. This methodology supports robust, patient-specific
scaffold development, significantly advancing the capabilities of soft tissue engineering.
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1. Introduction cardiac patches [13-16]. Recent studies have highlighted the ability
of fibrous scaffolds architected with auxetic meta-structures to mimic
the native strain-stiffening behavior of soft tissues [17,18], which have
promoted their use in multiple soft tissue engineering applications [19-
23]. Mirani et al. [17] proposed a combined approach of computational
modeling and 3D printing to fabricate tissue engineering scaffolds
with auxetic designs mimicking the mechanical behavior of porcine

pericardium and cardiac valves, while Chansoria et al. [23] investigated

Tissue engineering and advanced manufacturing techniques have
revolutionized wound healing by developing advanced constructs that
mimic the properties of the native tissue extracellular matrix, en-
abling improved cell proliferation and the regeneration of more com-
plex tissue structures [1]. While traditional tissue engineering scaf-
folds face challenges in mechanical adaptability, auxetic metamaterials
emerge as a promising solution due to their enhanced conformabil-

ity to dynamic mechanical environments and tunable, design-induced
mechanical properties [2,3].

Auxetic metamaterials are characterized by a negative Poisson’s
ratio, meaning they expand laterally when stretched. This unique prop-
erty allows them to accommodate significant biaxial deformation while
maintaining stable internal stress and adapting their morphology effec-
tively to irregular surfaces [4]. These metamaterials have demonstrated
significant potential in a wide range of biomedical applications [5-7]
including bone tissue engineering [8,9], vascular grafts [10-12], and

the production of hydrogel patches with auxetic geometries adapted to
the behavior of dynamic organs, such as lungs, heart, or skin.

In the context of soft tissue engineering, understanding the mechan-
ical behavior of the native tissue is essential for designing effective
biomimetic scaffolds [24-26]. For example, human skin exhibits a non-
linear and anisotropic behavior [27-29] which several computational
and experimental studies have attempted to replicate using synthetic
substitutes [30-34]. However, such substitutes fall short to replicate
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Fig. 1. Anatomical mapping and anisotropic mechanical characterization of human skin. The schematic illustrates the extraction sites of skin samples from the
human back relative to the orientation of Langer lines (collagen fiber alignment). The plot displays representative stress—strain curves for samples tested at 0°
(parallel), 45°, and 90° (perpendicular) to the Langer lines. Note the characteristic non-linear “J-shaped” behavior and the significant anisotropy, where samples
aligned with Langer lines (0°) exhibit higher stiffness compared to perpendicular ones (90°). These mechanical profiles serve as the target properties for the

scaffold optimization in this study.
Source: Figure adapted from [41].

the high variability of the skin behavior, influenced by multiple fac-
tors including gender, age, body region, thickness, or collagen fiber
orientation [35-40]. For instance, Fig. 1, adapted from the research of
Annaidh et al. [41], illustrates these variations. In their study, samples
of human back skin were extracted from different regions of the back
and aligned distinctly relative to their local Langer lines, which are
the principal directions of tension in the skin [42-44]. The mechanical
characterization of these samples revealed variations in the mechanical
behavior depending on both location and orientation.

Importantly, the mechanical performance of auxetic metamateri-
als depends on their design. By controlling the parameters of their
microstructural geometry, it is possible to tailor the mechanical prop-
erties of the scaffolds to specific functional requirements [2]. Melt
electro-writing (MEW) has established itself as a high-resolution ad-
ditive manufacturing technique capable of depositing fibers with mi-
crometer precision [45,46]. This technology has been extensively uti-
lized to fabricate complex scaffold microarchitectures with controlled
anisotropy [47,48], enabling the precise realization of theoretically
designed metamaterials [49-52].

Computational analysis using the finite element method (FEM) is a
widely adopted tool for structural analysis and design optimization as
it enables testing multiple configurations involving geometry, material
properties, assemblies, and boundary conditions [53-55]. This allows
evaluation of structural performance prior to fabrication, saving time,
material, and economic resources. However, FEM analysis of intri-
cate and complex models can incur substantial computational costs,
particularly when exploring extensive design spaces with numerous
configurations [23,55,56]. This increased computational demand may
slow the design process and complicate achieving precise mechanical
targets. The combination of computational modeling and statistical
regression is a validated approach to address these challenges [17],
where experimentally validated data can be utilized to train regression
models, explore multiple output predictions, and efficiently optimize
the design to achieve accurate, prescribed mechanics.

In recent years, data-driven approaches and machine learning frame-
works have emerged as powerful tools to accelerate the discovery
and optimization of mechanical metamaterials [57-62]. Specifically,

inverse design strategies leveraging deep learning and regression algo-
rithms have been successfully applied to tailor the non-linear properties
of architected metamaterials [63—-65], overcoming the limitations of
traditional trial-and-error methodologies [66,67].

Our work proposes an integrated predictive framework combin-
ing FEM simulations, data-driven statistical regression modeling, and
computational optimization for the design of auxetic-architected micro-
fibrous scaffolds for soft tissue engineering applications. By employing
a design of experiments (DOE) strategy, a reduced number of scaffold
configurations can be utilized to generate a representative dataset of
FEM computed results. These type of simulations have been devel-
oped and experimentally validated in our previous work [68]. Regres-
sion models trained on this dataset can predict mechanical properties
directly from the microstructural design parameters, decreasing the
computational effort needed to explore extensive design spaces. Using
experimentally obtained human skin mechanical properties (specifi-
cally, measurements from back skin samples characterized by Annaidh
et al. [41]) as representative targets, this methodology enables the effi-
cient identification of optimal auxetic microfibrous scaffold geometries
tailored to patient-specific mechanical conditions. The innovation of
this work is the development of an integrated and application specific-
framework connecting: (i) a biologically validated auxetic scaffold
family [68], (ii) mechanical characterization and reduction of its key
operational parameters, and (iii) a surrogate-model-driven inverse de-
sign pipeline that enables patient-specific customization. This approach
accelerates scaffold development while maintaining accuracy, making
it applicable to various soft tissue engineering applications. To support
practical implementation, we provide a computational tool [69] that
enables users to select optimal design parameters to achieve specific
mechanical behaviors.

The remainder of this paper is organized as follows: Section 2 details
the computational framework, describing the FEM setup, the design
of experiments, and the regression methodologies employed. Section 3
presents the results of the sensitivity analysis, the predictive accuracy
of the models, and the validation against literature data. Section 4
discusses the implications of these findings for scaffold design and
introduces the developed software tool. Finally, Section 5 summarizes
the main conclusions and outlines future research directions.
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2. Materials and methods

The work presented here follows an integrated computational work-
flow designed to predict and optimize the mechanical behavior of
auxetic fiber-based scaffolds for soft tissue engineering. The process
begins by defining four auxetic geometries, each parameterized to allow
systematic variation in scaffold design. A structured DOE approach was
employed to generate a representative set of scaffold configurations
by varying key geometric parameters. FEM simulations were then
performed on these configurations to assess their mechanical behavior
under biaxial loading conditions. The resulting data were used to
train statistical models capable of predicting scaffold effective stiffness
and strain as a function of design parameters. Finally, optimization
techniques were evaluated and applied to identify scaffold geometries
that best match specific mechanical targets. This framework enables
the rapid and reliable selection of scaffold designs tailored to desired
mechanical performance.

2.1. Selected auxetic geometries

This study builds upon the framework established in our previ-
ous work [68], where auxetic micro-fibrous scaffolds were fabricated
via MEW using polycaprolactone (PCL), a synthetic, FDA-approved
biopolymer widely utilized in tissue engineering. In that prior study,
we characterized the mechanical behavior of the PCL scaffolds both
experimentally and numerically, and validated their cytocompatibility
for biological applications. MEW was selected as the manufacturing
technique because it provides precise control over microfiber deposi-
tion during the printing process, allowing for the implementation of
specific printing paths to create intricate fibrous microstructures [45,
46]. Consequently, all scaffold geometries presented in this work are
specifically designed for fabrication by MEW [70-72].

We selected four re-entrant auxetic designs to define the microstruc-
ture of the scaffolds based on their suitability for MEW fabrication,
designated as H-cell (HCELL), S-regular (SREG), S-inverted (SINV), and
S-triangular (STRI). These designs were characterized by basic unit cells
and parameterized as illustrated in Fig. 2 to investigate the influence
of geometric variations in auxetic architectures on the mechanical
response of the scaffolds. The parameters “a” and “b” were defined
to capture geometric variations in fiber layout, while the parameter
“d” controlled the fiber diameter. The parameters “xr”, “yr”, and “zr”
defined the scaffold’s physical dimensions (i.e., the number of unit cell
repetitions in the x and y directions, and the number of stacked layers
in the z direction).

2.2. Design of experiments

The design space was explored using a structured DOE strategy that
systematically covered the lower, medium, and upper regions of the
design space for the selected geometry parameters, which were “a”,
“b”, “d”, and “yr”. Given that this structured grid is designed to define
the boundaries and center of the parameter space, the entire dataset
was utilized for model training to preserve interpolation accuracy,
while predictive performance was evaluated on unseen data during the
subsequent optimization phase. Among them, parameter “a” played a
central role, as it determined the overall scale of the auxetic geometry
and, consequently, the size of the scaffold. To ensure a reduced scaf-
fold scale suitable for tissue engineering applications, its values were
constrained between 100 and 300 pm. Smaller “a” values may lead
to fabrication challenges and compromised structural fidelity, while
larger values could result in oversized features unsuitable for scaffold
considerations.

It is important to note that parameter “b»” was defined relative to
parameter “a” to address design scalability and to comply with the
geometric constraints of each auxetic design. Specifically, for the SREG

and STRI designs, parameter “b” was established as 0.5, 1, and 1.5
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Fig. 2. Parametric definition of auxetic unit cells and scaffold architecture.
The study evaluates four distinct re-entrant auxetic topologies: H-cell (HCELL),
S-regular (SREG), S-inverted (SINV), and S-triangular (STRI). The schematic
illustrates the key geometric parameters utilized to define the design space.
Parameters “a” and “b” determine the characteristic dimensions and aspect
ratio of the individual unit cells. Parameter “d” corresponds to the fiber
diameter. Parameters “xr”, “yr”, and “zr” specify the number of unit cell
repetitions in the x, y, and z directions, respectively, thereby defining the
macroscopic volume and aspect ratio of the scaffold. These parameters serve

as the input variables for the DOE strategy.

»

times the value of “a”, since higher ratios would lead to fiber overlaps
and distortions that compromise the auxetic effect, and smaller values
would result in almost straight fibers, not demonstrating any auxetic
performance. Therefore, 1.5 was considered the upper limit for the “5”
to “a” ratio (“rba”, Eq. (1)) across the designs. For the SINV design,
the same geometric constraints applied, but in this case it restricted
the parameter “b” to not exceed “a”. As a result, the “rba” ratios
investigated for this design were limited to 0.25, 0.5, and 0.75. In
contrast, the HCELL design imposed no such restrictions on this ratio,
allowing the use of the same range applied in the SREG and STRI
designs.

rba=b/a (€8}

Parameters “d” and “yr” did not present design-specific limitations
and were varied uniformly across all four designs. Specifically, “d” was
evaluated between 10 and 20 pm, which are common fiber diameters
obtained with MEW [68], and parameter “yr” ranged from 3 to 9 unit
cell repetitions. Parameters “xr” and “zr” were fixed at values of 6 and
10, respectively, so their combination with the varying values of “yr”
allowed exploration of the influence of scaffold shape aspect ratio on
the mechanical behavior, while also reducing the number of required
configurations.

This parameter combination (“a”, “rba”, “d”, “yr”) yielded a DOE
dataset comprising 324 unique scaffold configurations, with 81 config-
urations per auxetic design. Table 1 summarizes the parameter values
explored for the four auxetic designs.

2.3. Numerical simulations

The mechanical performance of the scaffolds was evaluated by con-
ducting FEM-based simulations with ABAQUS software (3DS Dassault
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Table 1

Summary of the auxetic designs and the values of their geometry parameters
considered in the design of experiments. To maintain design consistency,
parameter “rba” had to take different values for SINV design, while remaining
unaltered for the other auxetic designs. The values were attributed to the
parameters aiming to explore the design space, comprising both reduced
scales feasible by MEW-fabrication and wider scales but without excessively
increasing the features, which could lead to lose scaffold-like scales in the
structures. The combination of all the possible configurations of the four
designs followed this formula: ValuesPeame®ers s Designs = 3* % 4 = 324,
constituting a database of 324 distinct scaffold geometry configurations, with
each design represented by 81 unique configurations.

Geometry Auxetic Lower value  Medium value  Higher value
parameter design
a [pm] ALL 100 200 300
ba [-] HCELL 0.5 1 1.5
o SREG
STRI
SINV 0.25 0.5 0.75
d [pm] ALL 10 15 20
yr [-] ALL 3 6 9

Systems). The FEM model of the scaffolds was developed and experi-
mentally validated on our previous work [68], where FEM simulations
reproduced the biaxial tensile behavior of the MEW-fabricated auxetic
scaffolds. The FEM model replicated the fibrous structure of the scaf-
folds with 3D beam linear elements (B31) with circular cross-sections,
implemented a elastic-plastic constitutive law for PCL following the
behavior observed in the performed experimental characterization of
PCL bulk material, with an elastic modulus of 100 MPa up to a yield
stress of 12 MPa followed by a progressively increased stiffness in
the plastic region. Mesh controls were applied over the length-to-
diameter ratio of the elements (>10) to ensure appropriate element size
while maintaining fidelity to fiber architecture, and node coupling was
utilized to interconnect the superposed element layers of the scaffold
model. Geometric nonlinearity (large deformation theory) was enabled
to capture the reorientation and unfolding of the elements during the
tensile process. FEM simulations reproduced the mechanical conditions
of the scaffolds during biaxial tensile tests based on control over applied
displacement and utilizing a quarter-symmetry model of the scaffolds to
reduce computational costs. The Python-based ABAQUS scripts utilized
to generate the FEM models are publicly available [69,73].

Although Poisson’s ratio is a defining characteristic of auxetic meta-
materials, it was not extracted from these specific FEM simulations
due to the boundary conditions of the equibiaxial tensile tests. Since
symmetric displacements were prescribed in both principal directions,
the transverse strain was constrained, preventing the derivation of a
free Poisson’s ratio. Consequently, data analysis focused on identifying
the state at which scaffold fibers become fully stretched, which defines
the operational limit of the auxetic geometry mechanism. At that
point, we measured the strain (e,,,) and calculated the elastic modulus
(E,ux)- The calculation of these key variables starts by extracting nodal
displacements from the stretched edges and reaction forces from the
constrained edges, which allowed to obtain the effective stress (¢ [kPa])
and strain (¢ [pm / pm]) of the scaffolds following the procedure
explained in Supp. Info (Figure S1). To consistently define the transition
from the initial compliant behavior to the stiffer mechanical response,
considering the variability of curve shapes, ¢,,, was defined as the
strain at which the instantaneous effective elastic modulus (i.e., the first
derivative of the o-¢ curve, E [kPa]) reaches approximately half of its
maximum value during the ascending phase, as represented in Fig. 3-A
and Eq. (2). This relative criterion enabled robust identification of the
transition point across the scaffold designs in both x- and y-directions,
and the most restricting direction in each case (i.e., the one with the
higher E,_,,) was selected to characterize the scaffold behavior.

€aux = € such that E(e) = %Emax = Eaux @
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E,.x and &,,, have been defined in alignment with what has been
previously described as the transition between “Zone 2” and “Zone 3”
in studies of native soft tissues, such as porcine skin [74], where the
fibrous components become fully aligned and contribute to a increase
in stiffness. This analogy supports the relevance of E,,, and e,, as
representative parameters of the mechanical behavior of the scaffolds in
its load-bearing regime. These properties, initially extracted as output
responses from FEM simulations, will later serve as key input variables
in the operative phase of the study, guiding predictive modeling and
scaffold design optimization.

2.4. Statistical modeling and optimization procedure

This stage of the methodology addresses the challenge of charac-
terizing the relationship between the scaffold design parameters and
their mechanical responses, specifically predicting E,,, and ¢,,, from
geometric variables such as fiber geometric disposition (“a” and “rba”),
fiber diameter (“d”), or scaffold aspect ratio (“yr”). Despite the ex-
tensive DOE performed, the resulting dataset only samples a limited
portion of the full parameter space, making it difficult to directly define
an explicit function such as Eq. (3):

Equx = f(a,rba,d, yr) 3)

To overcome this limitation, statistical modeling was employed
to extract signal from the data and to capture the inherent variabil-
ity observed in the mechanical response curves. Regression models
served two main purposes at this stage. First, they identify which
design parameters influence the mechanical behavior of the scaffold,
thus enabling dimensionality reduction by eliminating non-influential
variables. Second, they provide prediction intervals for the responses,
which define a set of possible scaffold configurations compatible with
a desired target behavior.

Following the statistical modeling phase, an optimization step be-
comes necessary to address the inverse design problem: determin-
ing which values of the design parameters yield a target mechanical
response, represented in Eq. (4):

Equx(a;, rba;, dj, yry) = Equx-target 4

The inverse problem is analytically intractable due to the non-
linear and potentially multi-modal nature of the relationships between
design parameters and mechanical responses. Therefore, optimization
algorithms are required to explore the solution space defined by the
statistical model. It is worth noting that while the inverse design
strictly targets E,,, surrogate models for ¢,, were also developed
to monitor strain levels, providing a comprehensive characterization
of the operational limits of the auxetic mechanism of the optimized
designs.

The statistical analysis began by fitting regression models relating
the FEM simulation outputs (E,,, and ¢,,,) to the geometric parameters
of the auxetic designs. For each design, separate regression equations
were constructed for each response variable, resulting in a total of eight
models. The initial formulation used in all cases included main effects,
two-way interaction terms, and quadratic terms, allowing the models to
capture a wide range of potential relationships and to represent linear
and nonlinear trends, as well as interaction effects. This is represented
in Eq. (5):

Y:ﬂ0+2ﬂixi+zﬁin[Xj+ZﬁiiXi2 ®)
i i,j i

where Y represents either E,,, or ¢,,, depending on the model, and
X; corresponds to the scaffold design parameters (“a”, “rba”, “d”,
and “yr”). Each auxetic design is modeled independently, allowing the
regression equation to reflect design-specific mechanical responses and
sensitivities.

Stepwise regression was then conducted in both forward and back-
ward directions to iteratively include or exclude predictor terms based
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on statistical significance (p-value < 0.05), with the Bayesian Informa-
tion Criterion (BIC) used to guide model selection. This procedure was
independently applied to each response variable (E,, £,,) for all four
auxetic designs, yielding eight distinct regression models.

Once trained, these models functioned as surrogate predictors of
the scaffold’s mechanical response based on its geometric parameters.
However, prediction alone does not resolve the inverse design prob-
lem: determining the input parameters that will yield a specific target
mechanical behavior. To address this, an optimization framework was
implemented to explore the defined design space for configurations that
achieve target values (e.8., Egyx.targer) While ensuring robustness against
geometric variability.

Several optimization strategies were tested within the DOE-defined
space, including random grid search, brute-force exploration, and ge-
netic algorithms. Given the negligible computational cost of querying
the surrogate models, adaptive grid refinement strategies were not
deemed necessary; instead, high-density sampling was preferred to
ensure thorough design space exploration and minimize the risk of
missing optimal regions due to initial coarse sampling. Consequently,
the chosen approaches focused on maximizing coverage within the
constrained parameter space [75]. All optimization strategies aimed to
minimize a custom loss function (Eq. (6)) that balances two critical
aspects of inverse design: predictive accuracy and robustness. The first
term in the equation represents the bias, that is, the mean squared error
(MSE) between the average prediction and the target value, ensuring
the design meets the desired mechanical response. The second term
penalizes high variance among predictions, promoting reliability by
favoring designs that are less sensitive to small perturbations in geo-
metric parameters. This dual-objective formulation encourages scaffold
configurations that are both precise and robust against variability in
fabrication or parameter estimation.

n
1 .
L= ; Z(Eaux,i -
i=1

Here, £ denotes the loss function to be minimized, £, ; are the
predictions for each design, E,yy.target 1S the desired target value, and

n
2, 1 b o2
Eaux-target) + ; Z(Eaux,i - Eaux) (6)

i=1

E,x = i Y0, Eau is the mean of the perturbed design predictions.
In this formulation, i indexes each design, and n represents the total
number of perturbed designs evaluated.

Details on the comparative performance of these optimization meth-
ods, and the rationale for selecting the final approach, are discussed in
the Results section and Supp. Info (Table S1).

R software functions were designed to apply the random grid search
method [76], which began with a seed-based sampling of geometric
configurations randomly drawn from the DOE space. This seed set was
expanded to a pool of up to 5000 unique configurations, each evaluated
using the objective function (Eq. (6)). Sensitivity analysis indicated that
the choice of random seed and sample size had minimal impact on the
overall outcomes. In contrast, brute-force analysis exhaustively eval-
uated approximately 770,000 configurations, generated by combining
100 evenly spaces values of “a” and “rba” with all feasible integer
values of “d” and “yr”. Lastly, a genetic algorithm was implemented
using the GA [77] package in R, applying evolutionary operations such
as selection, crossover, and mutation to iteratively converge toward
optimal solutions within the parameter space.

3. Results

The following section presents the outcomes of the computational
optimization process. We first analyze the influence of geometric pa-
rameters on the mechanical properties through FEM simulations. Next,
we evaluate the accuracy of the regression models in predicting the
auxetic behavior and stiffness of the scaffolds. Finally, the optimized
designs are validated against target mechanical properties of human
soft tissues, demonstrating the efficacy of the proposed inverse design
framework and the software tool developed to integrate the entire
design process and facilitate the translation of the methodology to
specific applications.
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3.1. FEM simulations demonstrate the design-dependent, non-linear me-
chanical behavior of auxetic scaffolds

The 324 FEM models of auxetic microfibrous scaffolds were simu-
lated replicating the conditions of biaxial tensile testing described in
our previous work [68]. Panels (a-d) of Fig. 3 present the simulated
stress-strain relationships of the four auxetic geometry designs, with
the curves grouped according to distinguishable patterns to enhance
clarity.

The FEM simulation results reveal that auxetic scaffolds exhibit a
non-linear mechanical response, commonly referred to as “J-shaped”
behavior, characteristic of soft tissues. This begins with an initial low
stiffness (toe region), which progressively increases with stretching
(heel region) until reaching a linear region, corresponding to the full ex-
pansion and alignment of the scaffold fibers along the loading direction.
This non-linearity does not arise from fiber material behavior but from
geometric non-linearity, which is the primary source of mechanical
non-linearity in auxetic structures. The non-linear response is driven by
the architectural unfolding, reorientation, and large rotational deforma-
tions inherent to these auxetic geometries under tension. The HCELL
and SINV designs display two groups of curves (Fig. 3-(a,c)), both
exhibiting low strain values, indicating a limited deformation capacity.
However, the higher stress values observed in the SINV curves clearly
demonstrate a stiffer mechanical response. In contrast, the SREG and
STRI designs show three groups of curves reaching higher strain values
(Fig. 3-(b,d)), suggesting greater deformation capacity. Notably, the
low stress values associated with the SREG design reflect the softest
mechanical behavior among the four auxetic geometries. These findings
underscore the mechanical versatility of the auxetic scaffolds, where
variations in design and geometry can yield a broad spectrum of flexible
or resilient mechanical responses.

Both inter-design and intra-design variability of E, ,, and ¢,,, were
analyzed to better understand the mechanical properties that auxetic
microfibrous scaffolds can exhibit depending on their design and ge-
ometric configuration. Fig. 3-(e) shows the kernel density estimations
(KDE) of E, . and £,,, across the four auxetic scaffold designs, high-
lighting both the overall trends and the variability associated with each
design.

The HCELL design exhibits a narrow, well-defined distribution in
both variables, with ¢,,, values ranging between 0.4 and 0.6, and
E,.x remaining below 1500 kPa. This indicates a consistent mechanical
response, suggesting robust and reproducible behavior. In contrast, the
STRI design displays a broad distribution, reflecting high variability in
mechanical performance: E,, reaches up to 4000 kPa, while ¢,,, spans
from near zero to values exceeding 1. The SREG design shows similarly
high variability in €,,, reaching up to 1.5 (the widest range among all
designs) while maintaining a narrower, more concentrated distribution
of E, . that barely exceeds 1000 kPa. This suggests relatively stable
stiffness with greater variability in extensibility. Conversely, the SINV
design demonstrates the opposite trend, with E,,, varying widely up
to 5000 kPa, and ¢,,, constrained below 0.5, indicating predictable
deformation behavior with less predictable stiffness. These observations
highlight how the spread and concentration of each design’s mechanical
outputs reflect their predictability: narrower distributions imply con-
sistent performance, whereas broader ones indicate greater variability
and tunability. The optimal design choice thus depends on the desired
trade-off between mechanical stability and adaptability.

Another approach to analyzing the FEM simulation results involved
a descriptive exploration of the dataset, focusing on the relationships
between geometric parameters (“a”, “rba”, “d”, “yr”) and the me-
chanical outputs (E,., €.ux) for each scaffold design. This analysis,
illustrated in Supp. Info (Figures S2-S5), provides deeper insight into
how design-specific geometries influence mechanical performance.

In summary, across all four designs, E,,, consistently exhibits a
strong dependency on the predictor variables, though the nature of
this dependency varies by design. In the HCELL configuration, both
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Fig. 3. FEM-based mechanical characterization and design space exploration. (a-d): Simulated stress-strain response for the four auxetic topologies under
equibiaxial tensile loading. The curves display a biomimetic non-linear “J-shaped” behavior (initial compliance followed by stiffening). Shaded regions represent
the envelopes containing the families of curves obtained from the 81 distinct geometric configurations simulated for each design, demonstrating the wide range of

mechanical tunability. (e): Bivariate distribution of the effective stiffness (E,,,) versus the auxetic strain limit (¢,
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) for each design. The scatter plots highlight the
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distinct mechanical niches: SINV exhibits high stiffness with limited extensibility, whereas SREG provides high compliance and large extensibility. The marginal
plots display the kernel density estimation, visualizing the probability distribution of properties achievable within the design space.

E,.x and e, display relatively narrow distributions, with moderate
sensitivity to all input parameters, suggesting a balanced influence and
a robust, predictable mechanical behavior. Notably, increases in “a”
and “d” are associated with reduced/increased stiffness respectively,
while “rba” exerts a clear inverse influence on strain. The SREG design
shows a pronounced sensitivity of e,,, to the “rba” ratio, with strain
increasing significantly at higher values, while E, is most affected
by “a”, “rba” and “d”, indicating that structural extensibility is more
tunable than stiffness. This is consistent with the broader spread ob-
served in strain outputs for this design, reaching values up to 1.5. In the
SINV design, e,,, remains confined below 0.5 regardless of geometric
variations, pointing to limited deformability, with “rba” being the only
parameter with a clear effect on the achieved strain. On the other
hand, E,, is highly responsive to both “a” and “d”, and to a less
extent to “rba”, ranging up to 5000 kPa and making this design suitable
for applications requiring tunable stiffness with constrained strain. The
STRI design exhibits the highest overall variability. €,,, again shows
a dominant dependence on “rba”, with strain values spanning a wide
range, while E,,, responds to a combination of “a”, “d”, and “yr”.
This high sensitivity across parameters results in a flexible but less
predictable mechanical profile.

An important finding across all designs is the dominant influence
of the “rba” ratio on the scaffold’s mechanical response, particularly
on &,,. This parameter, representing the aspect ratio between the
primary geometric features of the unit cell, governs the deformation
mechanisms underlying auxetic behavior, affecting how the structure
expands or contracts laterally under tensile load. By altering the bal-
ance between “a” and “b”, the “rba” ratio modulates the kinematic
degrees of freedom within the cell, directly impacting both the extent
and nature of strain accommodation. Overall, these results highlight
how the coupling between design parameters and mechanical responses
varies across scaffold architectures. While HCELL offers a stable and
balanced mechanical response, the other designs, especially STRI and
SREG, enable greater tunability in extensibility, albeit with increased
variability.

3.2. Statistical modeling and optimization for target mechanical perfor-
mance

Statistical regression models were built for each of the four auxetic
designs to predict the key mechanical outputs (E,,, and &,,,) based
on geometric input parameters from the DOE database. To evaluate
the quality of these models, predictions were compared to FEM sim-
ulation results for the corresponding geometric configurations. Fig. 4
shows the parity plot for E,,, while the corresponding metrics for
€aux can be found in Supp. Info (Figure S6). As shown in Fig. 4, the
alignment of the scatter points with the diagonal line reflects a strong
agreement between predicted and observed values. Among the models,
SINV demonstrated the highest accuracy, while STRI exhibited greater
prediction variability, especially at lower E,, values. In particular,
the E,,, models exhibited high predictive accuracy across all designs,
with Adjusted R? values exceeding 0.96. The &,,, models showed more
variable performance, with higher accuracy for the HCELL and SINV
designs (Adj. R? > 0.99), and lower accuracy for SREG and STRI (Adj.
R? > 0.82).

Fig. 4 includes a reference target of 1000 kPa (highlighted by red
lines), selected as a representative benchmark across all four scaffold
designs. This target lies within the range of output values obtained
by the FEM simulations and was used here to neutrally compare the
performance of the optimization strategies. By decoupling this initial
test from the skin-specific targets addressed later, we ensured a con-
sistent and design-independent basis for evaluating the reliability and
efficiency of each method.

To assess the predictive robustness of the regression models near
this reference target, a sensitivity analysis was carried out using the
STRI model, which exhibited the lowest Adj. R? value (0.96) and
the widest spread between predicted and observed values (see Fig. 4-
(d)). This made it a suitable candidate for testing the stability of the
optimization pipeline. The analysis involved generating predictions and
95% confidence intervals for all configurations in the STRI training
dataset (Supp. Info - Figure S7). Comparison with the original FEM
outputs revealed several parameter combinations with tight predic-
tion agreement, validating the performance of the model even under
moderate variability.
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Fig. 4. (a-d): Predictive performance of the regression models. Parity plots comparing the statistically predicted effective stiffness (E,
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FEM simulation results for the four auxetic designs. The tight alignment of data points along the diagonal (y = x) line indicates high accuracy, quantified by
Adjusted R? values exceeding 0.96 in all cases. The intersecting red lines mark a representative target value of 1000 kPa, utilized here as a neutral benchmark
to evaluate the efficiency of the inverse design optimization strategies. The distribution of points relative to this benchmark visualizes the mechanical range of
each geometry; for instance, the SREG design (b) clusters predominantly below the target, indicating inherently lower stiffness, whereas SINV (c) design exhibits
a broad distribution exceeding the target, highlighting its suitability for stiffer applications.

Using this 1000 kPa target, we then compared the three previously
described optimization strategies: (i) random grid search; (ii) brute-
force search and (iii) genetic algorithm. Random grid search emerged
as the most efficient method, identifying robust solutions in under 10 s
with relatively few evaluations. Brute-force search, while exhaustive
and accurate, required substantial computational resources. The genetic
algorithm delivered comparable performance to random grid search
but offered no advantages in terms of solution quality or runtime
and was therefore not selected for further use. A detailed comparison
of the three strategies in terms of computational cost and predictive
robustness is provided in Supp. Info (Table S1).

This preliminary assessment enabled the selection of an efficient
optimization method, which was subsequently applied to achieve target
values discussed in the next section.

3.3. Auxetic scaffolds provide reliable solutions to reproduce the behavior
of soft tissues

To demonstrate the applicability of the proposed predictive frame-
work, the regression and optimization approach was used to identify
auxetic scaffold configurations capable of replicating the mechanical
behavior of soft tissues, particularly human skin. Reference values for
skin elasticity were obtained from the literature [41], selecting three
representative elastic modulus values corresponding to orientations
of 90°, 45°, and 0° relative to the local Langer lines. These values
(E(90°) = 725 kPa, E(45°) = 1210 kPa, and E(0°) = 1580 kPa) served
as target mechanical properties to be matched by the scaffold designs.

For each representative skin modulus, the regression models were
employed to predict scaffold geometric configurations that would not
only match the target stiffness values but also exhibit stable mechanical

behavior. These optimized configurations were subsequently validated
through FEM simulations to assess prediction accuracy. Since the FEM
framework was experimentally validated [68], it serves as the ground
truth for assessing the accuracy of the regression models, eliminating
the need for additional physical fabrication in this optimization process.
Fig. 5 summarizes the results obtained for the three skin stiffness
targets across the four auxetic scaffold designs, including the optimized
geometric parameters, predicted and simulated values of E,, their
relative deviations regarding the target, the error between the predic-
tion and the FEM ground truth, and the corresponding predicted and
simulated values of €.

The HCELL design showed variable performance across the target
range. It delivered reasonable accuracy (5%) for the E(90°) target,
but the FEM validation reported larger deviations regarding the target
(19%) and the prediction (20%). For the E(45°) target, both predicted
and simulated values underestimated the target modulus (deviations
between 12% and 15%) but showed good consistency between them
(error below 1%). This design struggled to reproduce the higher stift-
ness value (E(0°) = 1580 kPa), with predicted and simulated values
falling short (1428 kPa and 1067 kPa, respectively). Nonetheless, pre-
dicted and simulated ¢,,, values showed strong agreement across all
cases, indicating robust strain estimations.

The SREG design achieved excellent accuracy for the lower and
intermediate targets (E(90°) and E(45°)), with deviations and errors
below 10% in both cases. However, it failed to capture the high stiffness
target (E(0°)), though the consistent correlation between predicted
and simulated values across both E,, and ¢,,, supports the model’s
reliability even when absolute accuracy decreased.

The SINV design performed reliably for the intermediate and high
targets, providing low-error (below 7%) predictions and simulations for
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E(90°) = 725 kPa E(45°) = 1210 kPa E(0°) = 1580 kPa
a103 a103 a 103
rba 1.4 rba 1.4 rba 0.56
d 14 d 19 d 19
yr 8 yr 7 yr 5
HCELL| Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux
685 kPa 864 kPa 1060 kPa 1030 kPa 1428 kPa 1067 kPa
dev. ~ 5% ¢ dev.~ 9% | dev. ~32%
ro 20% error ~ 1% error ~ 33%
Pred. €aux | FEM Eaux | Pred. €aux | FEM Eaux | Pred. Eaux | FEM Eaux
0.41 0.41 0.42 0.42 0.59 0.63
a 103 a 103 a103
rba 0.67 rba0.56 rba0.56
d 10 d 19 d 19
yr 9 yr 7 yr 9
SREG | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux
721 kPa 674 kPa 1211 kPa 1230 kPa 1232 kPa 1296 kPa
dev.~1% | dev.~7% | dev.~1% | dev.~2% | dev.~22% ¢
error ~ 7% error ~1% error ~ 5%
Pred. Eaux | FEM €aux | Pred. Eaux | FEM €aux | Pred. €aux | FEM Eaux
0.38 0.29 0.17 0.23 0.16 0.22
a 296 a 223 a 176
rba0.59 rba 0.28 rba 0.28
d 12 d 10 d 10
yr 3 yr 8 yr 6
SINV | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux
721 kPa 825 kPa 1199 kPa 1289 kPa 1563 kPa 1465 kPa
dev. ~1% dev.~1% | dev.~6% | dev.~1% | dev.~7%
. 129 error~7% error ~ 6%
Pred. €aux | FEM €aux | Pred. €aux | FEM aux | Pred. Eaux | FEM Eaux
0.25 0.25 0.07 0.07 0.08 0.07
a 254 a 145 a 103
rba 1.31 rba 1.4 rba 1.4
d 19 d 19 d 19
yr 8 yr 9 yr 9
STRI | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux
710 kPa 678 kPa 1233 kPa 1140 kPa 1620 kPa 1477 kPa
dev.~2% | dev.~6% | dev.~2% | dev.~6% | dev.~2% | dev.~6%
error ~ 4% error ~ 8% error ~ 9%
Pred. €aux | FEM Eaux | Pred. Eaux | FEM Eaux | Pred. Eaux | FEM Eaux
0.73 0.68 0.77 0.72 0.77 0.72

Fig. 5. Validation of the inverse design framework against human skin anisotropy. Comparison between the target elastic modulus and the optimal geometry
configurations reported for each auxetic design and target. Each auxetic configuration shows the geometry shape and its parameters, the regression-based E,,
prediction, the FEM verification and the error between them, their deviations regarding the specified target, and the predicted and simulated ¢,,, values. Three
targets were selected from literature [41] representing the stiffness of human back skin at distinct orientations relative to Langer lines: 90° (725 kPa), 45°
(1210 kPa), and 0° (1580 kPa). The close agreement between predicted and simulated values validates the accuracy of the methodology in generating patient-

specific scaffold designs.

E(45°) and E(0°). For the E(90°) target, despite an accurate prediction,
FEM simulations revealed greater deviation. This design consistently
produced lower strain values (around 0.07) than the other scaffolds
(between 0.2 and 0.7), though predicted and simulated ¢,,, values
remained well-aligned.

The STRI design demonstrated the most consistent and accurate
performance across all three targets. Prediction deviations for E,;,
remained around 2%, with ground truth errors under 9%, regardless

of the target stiffness. e,,, estimations were similarly robust, with
close agreement between predicted and simulated values across all
configurations.

Overall, these results validate the effectiveness of the predictive
framework in identifying scaffold configurations that replicate the me-
chanical behavior of human skin or other tissues. The distinct perfor-
mance patterns observed across the different scaffold designs indicate
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that certain architectures are inherently better suited to achieving spe-
cific mechanical targets. This ability to guide targeted scaffold selection
represents a meaningful advance in the development of biomimetic
auxetic scaffolds for skin tissue engineering applications. To support
real-world implementation, we developed a computational tool (de-
scribed in the following section) that automates the selection and
generation of printable scaffold geometries based on target mechanical
properties.

3.4. Development of a computational tool for scaffold design optimization
and 3D printing

We developed a computational tool [69], including a minimal user
interface, that integrates the trained predictive models and optimiza-
tion algorithms to select optimal parameters and directly generate the
corresponding 3D printing or FEM files, streamlining the transition
from design to fabrication/simulation and enabling rapid, application-
specific scaffold production. This tool allows users to either input
specific geometric parameters (Manual Mode) or specify target mechan-
ical properties (Predictive Mode) and automatically obtain the most
suitable scaffold geometry.

In the current version, users can input specific values for the ge-
ometrical parameters defining the four auxetic designs shown in this
work (HCELL, SREG, STRI, and SINV) in the “Manual Mode”. Based on
these configurations, the platform automatically generates FEM models
as ABAQUS input files, G-code files for MEW fabrication, or both.
This functionality enables precise control over scaffold design, useful
for custom applications or exploratory testing of specific parameter
combinations.

In contrast, the “Predictive Mode” encapsulates the core contribu-
tion of this study by enabling geometry prediction based on desired
mechanical performance. Users are prompted to input a target value
for the effective elastic modulus in the toe region, E,,. The pre-
trained regression models are then employed to identify the optimal
geometric configurations across each of the four auxetic designs. These
configurations are subsequently presented in a comparative format,
allowing users to assess and select the most appropriate option. As in
the “Manual Mode”, the selected configurations can be immediately
exported as FEM input files, G-code files, or both, facilitating direct
integration into simulation workflows and 3D printing processes.

A block diagram illustrating the functional steps of the computa-
tional tool is shown in Fig. 6, outlining the workflow for both modes,
by accessing directly to prototype design or starting from mechanical
target definition to the generation of design prototypes and exportable
files. Supp. Info (Figures S8-S10) includes screenshots of the user
interface and example outputs from both design modes, providing a
visual reference of the platform in operation.

4. Discussion

This study establishes an integrated computational framework de-
signed to tailor the mechanical properties of auxetic microfibrous scaf-
folds, specifically replicating the non-linear behavior of soft tissues like
human skin. By integrating finite element simulations with regression-
based predictive modeling, we have developed a reliable inverse design
methodology capable of identifying scaffold geometries that satisfy
precise mechanical targets. This approach reduces the high computa-
tional costs associated with traditional iterative design optimization,
providing a streamlined and accessible solution for the development of
patient-specific tissue engineering scaffolds.

The mechanical characterization of the four auxetic designs (HCELL,
SREG, SINV, and STRI) revealed distinct behavior patterns that align
with the fundamental requirements for skin tissue engineering. All
designs exhibited the non-linear “J-curve” stress—strain behavior char-
acteristic of soft tissues, characterized by an initial compliant toe
region that transitions into a stiffer linear region under load. This
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Fig. 6. Operational workflow of the developed computational design software.
The diagram illustrates the tool’s architecture, which bridges the gap between
theoretical design and fabrication. Two operation modes are available: (1)
Manual Mode, where users directly define geometric parameters (a, b, d, xr,
yr, zr) to explore specific configurations; and (2) Predictive Mode, which
solves the inverse design problem. In this mode, the user inputs a mechanical
target, and the optimization module, powered by the pre-trained regression
algorithms, automatically identifies the optimal geometric combination to
match that stiffness. Both pathways converge at the generation module, which
automatically exports ABAQUS input files for FEM simulation and custom
G-code for MEW fabrication, enabling rapid prototyping of patient-specific
scaffolds.

biomimetic response is critical for physiological function, allowing
tissues to accommodate small deformations while providing resistance
against excessive strain. The remarkable diversity in mechanical perfor-
mance across the different auxetic designs offers considerable flexibility
in addressing the heterogeneous properties of human skin [41]. SINV
scaffolds demonstrated higher stiffness with limited deformation capac-
ity, making them suitable for applications requiring greater mechanical
resilience such as back, chest, or forearms, where skin has stiffer
mechanical properties to serve protective functions [37,38,41,78]. In
contrast, SREG designs exhibited the softest mechanical response with
extended deformation capacity, potentially beneficial for more compli-
ant skin regions such as joints or abdomen, which need looser behavior
to accommodate frequent movement [78-80]. The HCELL and STRI
designs presented intermediate mechanical behaviors with different
degrees of reproducibility and predictability [70].

Analyzing the statistical distribution of E,, and ¢,,, across the
design space reveals a critical trade-off between reproducibility and
tunability. Narrow distributions, as seen in HCELL, imply consistent
manufacturing outcomes with reduced sensitivity to geometric devia-
tions. Conversely, designs with broader distributions, such as SINV and
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STRI, offer a wider dynamic range of achievable mechanical properties,
albeit at the cost of potentially lower predictability. This balance
between consistency and range must be carefully considered when
selecting appropriate designs for specific applications.

The high predictive accuracy of our regression models (Adj. R? >
0.96 for E,, and Adj. R* > 0.82 for ¢,,,) confirms the effectiveness
of the proposed approach in reducing reliance on time-intensive FEM
simulations during the scaffold design process. Comparison between
model predictions and FEM outputs further validates the framework’s
ability to reliably identify optimal scaffold configurations across diverse
mechanical targets. Regarding the optimization strategies, random grid
sampling proved to be the most efficient method, delivering robust so-
lutions with minimal computational overhead compared to brute-force
or genetic algorithms. Consequently, this algorithm was implemented
as the core engine of the computational tool.

When applying our framework to mimic the properties of human
skin, we observed varying degrees of success across the different auxetic
designs. The STRI design demonstrated the most consistent perfor-
mance across all three skin representative targets (E(90°), E(45°), and
E(0°)), with prediction errors around 2% and FEM validation errors
around 6%. This consistency indicates the robust adaptability of this
particular design across a wide range of stiffness values. The SINV
design showed excellent performance for intermediate and higher stiff-
ness targets, while SREG excelled at lower and intermediate stiffness
values. These findings highlight the complementary nature of the dif-
ferent auxetic architectures, effectively expanding the design toolkit
available for addressing the diverse mechanical requirements of skin
tissue engineering.

The inability of certain designs to accurately reproduce specific
target values, particularly the higher stiffness E(0°) target for HCELL
and SREG designs, highlights the inherent limitations of each geom-
etry. This suggests that no single auxetic design can address the full
spectrum of skin mechanical properties, emphasizing the importance
of a design selection strategy based on specific application require-
ments. The integration of multiple designs within a single scaffold
could potentially provide a more comprehensive mimicry of the com-
plex mechanical behavior of human skin, though this would introduce
additional manufacturing challenges.

Our findings align with previous studies that have demonstrated
the potential of auxetic materials in tissue engineering applications [2,
3,17,19-23]. However, our work extends beyond existing literature
by implementing the pipeline in a dedicated software tool that auto-
matically generates scaffold geometries matching a target mechanical
response. By providing a full workflow from design space definition to
patient-specific scaffold generation, our study establishes a systematic
and accessible methodology for predicting and optimizing scaffold
properties, and contributes a practical pathway toward translation to
tissue engineering applications.

Nevertheless, several limitations should be acknowledged in the
current study. First, our framework focuses primarily on the toe and
heel regions of the stress-strain curve, characterized by E,, and &,,.
While this region is particularly relevant for capturing the physiological
response of skin under normal loading conditions [74], future studies
should extend the analysis to include the full non-linear behavior at
higher strain levels, especially in applications where tissues are subject
to larger deformations.

Second, the current model considers only static mechanical behav-
ior. However, native skin is subjected to dynamic and time-dependent
mechanical loading in vivo. Incorporating viscoelasticity, time-depen-
dent effects, and fatigue or degradation analysis into the predictive
framework would provide a more comprehensive and biologically rel-
evant understanding of scaffold performance under real-world physio-
logical conditions.

Third, our analysis is limited to only four auxetic scaffold archi-
tectures. While these architectures were selected to span a range of
geometrical features, the design space for auxetic microarchitectures
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is vast. Expanding the library of tested geometries and integrating
more complex or hierarchical structures could unlock novel mechanical
behaviors and improve the framework’s adaptability across different
target tissues. Notably, the developed user interface can serve as a
flexible platform for future integration of additional geometries, de-
sign rules, or optimization algorithms, enhancing its utility as the
methodology evolves.

From a manufacturing perspective, while MEW offers precise con-
trol over microfiber deposition, practical fabrication constraints may
introduce geometric variations that could influence the scaffold’s me-
chanical performance. Incorporating geometric tolerances into the op-
timization process would improve the robustness of predicted configu-
rations. In our previous work [68], we explored strategies to minimize
these deviations and enhance print fidelity, which could be integrated
into future iterations of this computational workflow and reflected in
the interface output.

Finally, while mechanical compatibility is a prerequisite for func-
tional tissue engineering, the ultimate success of these constructs de-
pends on their biological integration. Factors such as cell attachment,
proliferation, and extracellular matrix deposition are critical. Prelimi-
nary studies in our group have demonstrated favorable cell behavior
on these scaffolds under in vitro conditions; however, comprehensive
long-term biological validation is required to assess their viability in a
physiological environment [68].

5. Conclusions

In conclusion, this study presents a computational framework that
significantly advances the design of auxetic, biomimetic microfibrous
scaffolds for skin tissue engineering. By integrating FEM simulations
with regression-based predictive modeling and optimization strategies,
we established a methodology capable of efficiently identifying scaffold
geometries tailored to specific mechanical targets. The distinct perfor-
mance of each auxetic design across the stiffness spectrum highlights
the versatility of the framework in addressing the heterogeneous and
anisotropic properties of human skin.

The results demonstrate that the proposed inverse design method-
ology can accurately identify optimal scaffold geometries that match
patient-specific mechanical targets without the need for iterative trial-
and-error fabrication. Furthermore, the validation of the regression
models against the high-fidelity FEM “digital twin” confirmed the
reliability of this approach for exploring complex design landscapes.

A key contribution of this work is the translation of these findings
into a user-friendly software tool. This application bridges the gap be-
tween theoretical metamaterial design and clinical utility, empowering
bioengineers and clinicians to generate custom scaffold architectures
based simply on target mechanical inputs. Collectively, this integrated
workflow significantly advances the field of personalized regenera-
tive medicine, offering a scalable and efficient path for designing
mechanically compatible tissue substitutes.

Ultimately, this approach not only reduces computational demands
but also provides a systematic and accessible path for scaffold design
based on desired mechanical outcomes. Future work should focus on
the experimental validation of the optimized configurations, in-depth
investigation of cell-scaffold interactions, and the incorporation of
additional factors such as dynamic loading, viscoelastic behavior, and
biological cues relevant to skin tissue regeneration.
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