

1                   **Quantitative analysis of the divergence in energy losses allowed through building envelopes**

2                   Beatriz Rodríguez-Soria<sup>a</sup>, Javier Domínguez-Hernández<sup>b</sup>\*, José M. Pérez-Bella<sup>b</sup>, Juan J. del Coz-Díaz<sup>c</sup>

3                   <sup>a</sup> *Department of Construction Engineering, University Center of Defense, Ctra. Huesca, s/n, 50090, Zaragoza, Spain*

4                   <sup>b</sup> *Department of Construction Engineering, Engineering and Architecture School, University of Zaragoza (UZ), María*  
5                   *de Luna, s/n, 50018, Zaragoza, Spain*

6                   <sup>c</sup> *Department of Construction Engineering, University of Oviedo, Edificio Departamental Viesques nº 7, 33204, Gijón,*  
7                   *Spain*

8

9                   **Abstract**

10                  There is currently a lack of international harmonization on the insulation requirements for the buildings. Given that  
11                  this parameter defines the maximum energy losses allowed through a thermal envelope, building energy  
12                  consumptions consumption can vary considerably between countries. Both the United States of America (US) and  
13                  the European Union (EU) should address this problem by unifying the energy design criteria of their buildings. The  
14                  EU requires that all new buildings constructed starting in 2020 must be nearly zero-energy buildings (nZEB), as  
15                  defined in the Directive on Energy Efficiency in Buildings of 2010.

16                  To evaluate the extent of this lack of harmonisation, in this paper are calculated the maximum energy losses  
17                  through the thermal envelope of a typical dwelling when applying various international regulations (such as the US  
18                  regulations and those established by Germany, France, England and Wales, and Spain). The results are compared  
19                  with those obtained when applying the requirements of the Passivhaus standard (taken as a reference for nZEB in  
20                  the EU). It will be verified that there are major differences in the energy losses allowed through building envelopes  
21                  among these countries and among the different climate zones defined in each country.

22                  Moreover, the challenges set by these countries related to energy consumption and CO<sub>2</sub> emissions are also  
23                  reviewed. The disparity between the objectives proposed by these countries suggested a distinct tendency towards  
24                  increasing current differences in their standards.

25

26                   **Keywords**

27                  International regulations; envelope energy losses; nZEB; Passivhaus; greenhouse gas emissions; energy  
28                  consumption

29

30

31

32

33

34

---

\* Corresponding author. Department of Construction Engineering, University of Zaragoza (UZ), María de Luna, s/n, 50018, Zaragoza, Spain. Tel. Fax: +34 976 76 21 00.  
E-mail address: [javdom@unizar.es](mailto:javdom@unizar.es) (Javier Domínguez-Hernández)

35 **1. Introduction**

36 With the approval of the Kyoto protocol in 1997, common objectives were established at an international level to  
37 reduce CO<sub>2</sub> emissions and energy consumption to avoid their adverse effects on the environment [1-6]. Given that  
38 the limits established in the Kyoto protocol have been insufficient to halt climate change, these limits were revised in  
39 2007 and new plans for action were proposed.

40 As a result, the EU approved a packet of measures known as “20-20-20”. Among others, these measures have the  
41 goal of reducing energy consumption and CO<sub>2</sub> emissions by 20% before the year 2020 [10, 11]. The construction  
42 sector is among the principal sectors responsible for energy consumption and CO<sub>2</sub> emissions, accounting for  
43 approximately 40% of each [7, 9]. One of the European directives approved to reach the “20-20-20” objectives is the  
44 2010 Directive on Energy Efficiency in Buildings (DEEB), which requires the construction of nearly zero-energy  
45 buildings (nZEB) starting in 2020 [12]. In the US, the American Society of Heating, Refrigerating, and Air-  
46 Conditioning Engineers (ASHRAE) and the International Code Council (ICC) have also published several  
47 recommendations that aim to drastically reduce building energy consumption.

48 The DEEB directive and its subsequent Development regulations indicate a lack of harmonisation among the  
49 different countries in the EU concerning energy efficiency requirements in buildings [13-16]. Insufficient information  
50 provided by the European Directive about how nZEBs should be built has resulted in each country establishing  
51 different energy parameters to define these types of buildings. To mitigate this problem, the European Commission  
52 has proposed the city of Darmstadt’s passive houses, built according to the Passivhaus standards, as an example of  
53 an nZEB [17]. This article shows that there is also a lack of harmonisation in the United States regarding the  
54 parameters that define building energy losses in different climate zones. However, to the authors’ knowledge, there  
55 are no documents that address this problem.

56 The majority of international rules on energy efficiency establish several maximum thermal envelope transmittances  
57 for each climate zone to limit energy losses through the building thermal envelope. In contrast, the Passivhaus  
58 standard establishes a different criterion limiting maximum energy consumption for both heating and cooling to 15  
59 kWh/m<sup>2</sup> year instead of fixing the transmittances [18]. The standard proposes a set of transmittance values as a  
60 guide to achieving this objective. Limiting energy consumption due to energy losses through the building envelope  
61 is a key task needed to achieve this objective given that these losses are responsible for the majority of the total  
62 energy consumption of dwellings [19-27].

63 This lack of harmonisation among maximum energy losses allowable through the envelope has already been  
64 analysed from a regulatory standpoint in a previous work, which compared the parameters that regulate those  
65 losses in different countries. The research shows that the root of the problem lies in limiting the thermal envelope  
66 transmittance in each country for different climate zones defined on the basis of different ranges of degree-day  
67 variation, rather than limiting maximum energy losses. A new procedure has recently been developed that allows  
68 harmonize these energy losses in different climate zones (the International Procedure for the Optimal Design of  
69 Thermal Envelopes, or IPODTE) [28].

70 This article broadens that analysis and quantifies the existing differences between the maximum thermal envelope  
71 energy losses allowed by different countries. Given that two-thirds of the emissions produced and energy consumed  
72 by the building sector come from the residential sector [29-32], will be calculated and compared the energy losses

73 through the envelope of a residential dwelling type. The calculation uses the transmittance values imposed in the  
74 climate zones defined by various countries in the EU and by the US. The EU countries included in the analysis are  
75 Germany, France, England and Wales, and Spain, which are representative of different climates. The obtained  
76 values were compared with the requirements of the Passivhaus standard, which served as a reference for nZEB.  
77 Finally, the long-term measures and objectives proposed by different countries to reduce CO2 emissions and energy  
78 consumption will be also analyzed, especially in the construction sector. The existing disparity in these countries'  
79 future challenges suggested that the differences in their established requirements could widen in the future.  
80

## 81 2. Background

82 The energy losses that occur through each enclosure of a thermal envelope can be calculated using Equation 1:

$$84 \quad \text{Energy losses through the enclosure in a year} = \sum U \cdot A \cdot (\text{degree-days per year}) \text{ in W (1)}$$

86 where  $U$  is the thermal transmittance of the enclosure ( $\text{W}/(\text{m}^2 \cdot \text{K})$ ) and  $A$  is the enclosure area ( $\text{m}^2$ ).  
87 The term annual degree-days indicates the differences throughout the year between the average outside  
88 temperature  $\bar{T}_i$  and a reference base temperature,  $T_{base}$ , at which it is considered necessary to air condition a  
89 room. The sums account only for positive values, as indicated by the  $+$  superscript in Equations 2 and 3:

$$91 \quad \text{Heating Degree Days} = \text{HDD} = \sum_1^N (T_{base} - \bar{T}_i)^+ \text{ in K (2)}$$

$$92 \quad \text{Cooling Degree Days} = \text{CDD} = \sum_1^N (\bar{T}_i - T_{base})^+ \text{ in K (3)}$$

94 where  $N$  is the number of days in the winter (Equation 2) or in the summer (Equation 3) [33].

95 The thermal envelope is considered to include the basement walls, exterior walls, floor, roof, and any other building  
96 element that encloses a conditioned space. This boundary also includes the boundary between the conditioned  
97 space and any exempt or unconditioned space. The thermal transmittance is the time rate of heat flow through a  
98 body from one of its bounding surfaces to the other surface for a unit temperature difference between the two  
99 surfaces, under steady state conditions, per unit area  $\text{Btu}/(\text{h} \cdot \text{ft}^2 \cdot ^\circ\text{F})$  or  $\text{W}/(\text{m}^2 \cdot \text{K})$ . Both definitions were taken  
100 from the International Energy Conservation Code (IECC) [34].

101 The thermal transmittance is calculated using Equation 4:

$$103 \quad U = 1/R_i + \sum \lambda_i/e_i + 1/R_e \text{ (4)}$$

105 where  $\lambda_i$  is the thermal conductivity of each material in  $\text{W}/(\text{mK})$ ,  $e_i$  is the thickness of each layer of material in meters,  
106 and  $R_i$  and  $R_e$  are the surface thermal resistances of the interior and exterior air, respectively, in  $\text{m}^2 \cdot \text{K}/\text{W}$ .

## 108 3. Analysis of annual envelope energy losses in a typical dwelling in the countries under study

109 This section analyses the extent of the dysfunction created by setting transmittances according to the different  
110 degree-day-variation climate zones defined by the different countries. The energy loss caused for the envelope will  
111 be calculated for a typical dwelling in each of the climate zones in all of the countries under study to quantitatively  
112 demonstrate that the energy losses are not harmonised.

113

114 *3.1. Baseline data*

115

116 To guarantee the best possible representation of actual conditions in the calculation of envelope energy losses, a  
117 dwelling was selected that contained the most habitual percentage of enclosure typologies in the envelope (floor,  
118 roof, exterior walls and hollows). These percentages corresponded to an exterior wall surface similar to the sum of  
119 the floor and roof surfaces, and a window/door percentage of approximately 30% of the exterior wall surface [35].  
120 This study considers a dwelling that matched these percentages and had a distribution and size coinciding with the  
121 typical housing standards defined by the Spanish Institute for Diversification and Energy Savings (IDAE) and the  
122 National Statistics Institute of Spain (INE) (Figure 1) [35, 36]. The 85 m<sup>2</sup> dwelling is composed of a living room,  
123 three double bedrooms, a kitchen, a bathroom, a half-bath, and a hallway. This typical dwelling was located in a real  
124 residential housing block project with 20 dwellings (4 apartments per floor). Figure 2 shows the layout of the  
125 dwelling and its location within the residential block. The studied dwelling is a real project [37].

126

127 Figure 1. Typical house and standard housing block that was used to calculate the envelope energy losses

128

129 Figure 2. Sections of the thermal envelope

130

131 The envelope surfaces and the environmental conditions considered for the calculation are summarised in Table 1.

132

133 Table 1. Parameters for the calculation of the energy losses

134

135 *3.2. Calculation of the current envelope energy losses in a typical dwelling*

136

137 Section 2 details the formulas used to calculate the energy losses through the building envelope (Equation 1) and  
138 the number of heating and cooling degree-days in a year (Equations 2 and 3, respectively). If a base temperature of  
139 20°C is used, which is the minimum base temperature recommended in EN 15251:2008 [33], the annual envelope  
140 energy losses in a typical dwelling can be calculated according to Equation 5:

141 Energy loss through the enclosure in a year (in W) =  $\Sigma U \cdot A \cdot (\text{degree-days per year in base of } 20^\circ\text{C})$ ,  
142 (5)

143

144 The annual degree-days for each zone studied were selected from the ASHRAE database [39] and the free Free-Ze  
145 software program [40].

146 Using the formula shown in Equation 5, the maximum annual envelope energy losses of a typical dwelling, as  
147 defined in Section 3.1, will be calculated in all climate zones of Germany, France, England and Wales, Spain and

148 the US, and it will be compared with the implementation of the Passivhaus Standard in Germany. Within each  
149 climate zone, the city with the most adverse weather conditions was selected. Extreme cases, in which the data are  
150 not within the limits of degree-days in the interval used to define the climate zone, were excluded.

151 The following conditions were adopted to select transmittance values for the calculation.

152 The rules impose limiting values of thermal transmittance in the building envelopes in all of the countries under  
153 study, except for England and Wales. Thereafter, the facilities necessary for the planned building to achieve CO<sub>2</sub>  
154 emissions and energy consumption levels below the established limits and obtain different energy qualifications  
155 must be selected.

156 However, For England and Wales, it is necessary to choose initially the desired facilities and then calculated the  
157 thermal transmittance of the enclosures required to comply with limiting CO<sub>2</sub> emission and energy consumption  
158 values. The Foundation for Housing Research proposes different thermal transmittance values that enable a  
159 building to comply with maximum CO<sub>2</sub> emissions for the different facility combinations. In this study, the limiting  
160 transmittances provided by this Foundation were selected for the case when the most common combination of  
161 facilities was sought, which corresponds to a block of homes with a gas heating system with radiators, supporting  
162 solar panels to provide hot sanitary water [41-43]. The region with the most adverse weather and the most  
163 restrictive transmittance data provided in the reference documents was selected.

164 In Germany, where no climate zones are defined and there is great variation in degree-days, two calculations were  
165 performed: one for a city with one of the harshest climates and the other for a city with one of the mildest climates.  
166 The comparison of these calculations will confirm that the requirement of the same transmittance nationwide exhibits  
167 allowable energy losses that are notably different for different locations [44].

168 Spain has five established climate zones (A-E) in which different thermal transmittances are required for each part  
169 of an envelope. The subzones that depend on the severity of the weather in the summer were not considered in the  
170 calculation because the only parameter that changes is a modified solar factor for windows, which is not under  
171 consideration in this analysis [45].

172 France defines three climate zones (H1-H3), which require the same transmittance in zones H1 and H2 and in  
173 locations of H3 at altitudes greater than 800 m. Different transmittance values are imposed in the locations in zone  
174 H3 at an altitude below 800 m [46, 47].

175 The US has 8 different climate zones (1-8), and the subzones that are created depending on humidity were also not  
176 considered because the required transmittance limit does not vary between these subzones [34, 48, 49].  
177 The limiting transmittance values for each enclosure required for each climate zone in the countries being studied  
178 are shown in tables 2 and 3.

179  
180 Table 2. Transmittances of each climate zones selected in EU  
181

182 Table 3. Transmittances of each climate zones selected in USA  
183

184 Moreover, the thermal bridges created by pillars were taken into account in the calculations. In Germany, DIN 4108  
185 [50] provides different coefficients of thermal transmittance reduction for each type of thermal bridge, whereas  
186 France sets no limits for thermal bridges but does give limits for the joints between enclosures. In England and

187 Wales, the Government's Standard Assessment Procedure for Energy Rating of Dwellings (SAP) also provides the  
188 minimum allowable insulation values for thermal bridges, differentiating between a total of twenty-tree different types  
189 [41]. In Spain, the Basic Document: Limitation of Energy Demand (DB HE 1) does not require any transmittance  
190 limit for thermal bridges. This regulation only indicates that thermal bridges should be included in the calculation of  
191 the average transmittance of enclosures when the surface of each is greater than 0.5 m<sup>2</sup>. The Passivhaus standard  
192 requires that insulation always be located on the outside of the structure without any breakage to prevent thermal  
193 bridges. The US does not provide any indications for thermal bridges.

194 The annual envelope energy losses in every climate zone were obtained using a spreadsheet program. Table 4  
195 shows a calculation example of envelope energy losses using climate zone E in Spain as a reference. Table 5  
196 shows the final results for each climate zone defined in each country studied in the EU and the US.  
197 The deviations in the energy losses were calculated for each climate zone with respect to the results that would be  
198 obtained for an nZEB that take as a reference requirements of the Passivhaus standard), these results being  
199 considered the desired energy target in the EU.

200  
201 Table 4. Enclosures energy losses for a typical house in climate zone E in Spain

202  
203 Table 5. Degree-days of the cities for which the envelope energy losses were calculated and envelope energy losses in a typical house over the  
204 course of one year

205  
206  
207 **4. Discussion**

208 The results obtained in paragraph 3 can be observed graphically in Figure 3.

210 Figure 3. Envelope energy losses for each country under study

211  
212 It can be observed that any of the analysed regulations reaches the results obtained when applying the Passivhaus  
213 standard requirements.

214 The analysis reveals that the envelope energy losses that were observed in France, Germany, and England and  
215 Wales are notably similar. These countries are close to meeting the standard of nZEB. In fact, the regulations of  
216 these countries indicate that future revisions are intended to achieve the Passivhaus standard values. Although  
217 these countries are the closest to reaching the energy consumption targets, they exhibited a mean deviation of 34%  
218 (see table 5 for typical deviation and mean deviation data).

219 The greatest energy losses were obtained in the US and the second greatest in Spain. The rules of both countries  
220 allow for exceeding the obtained energy losses by more than 150% when applying the energy consumption target.  
221 In addition, the German and US laws are the regulations with the greatest variance in energy loss values within the  
222 respective territories. In the case of the US, the typical deviation between the energy losses of the different climate  
223 zones was 15.9%. In Germany, where no climate zones are defined, the typical deviation was determined by  
224 calculating the energy losses in the most severe climate and in an intermediate climate, so the result was a more  
225 extreme calculation compared to the others. The obtained typical deviation in Germany was 13.71%. It was

226 paradoxical to discover that the country closest to complying with energy consumption targets among all the  
227 countries being studied was that with the least harmonisation in allowable envelope energy losses.  
228 This analysis shows that the transmittance values required for different climate zones are not properly harmonised  
229 because the energy efficiency factor controlled by the transmittance (the envelope energy loss) exhibits significantly  
230 different values across climate zones.  
231 At a transnational level, it could be observed that the minimum insulation requirements that the EU aims to achieve  
232 by 2020 will most likely exceed the insulation needs required to achieve the energy consumption target, even though  
233 its thermal insulation values are much greater than those required in the US.

234

## 235 **5. Future challenges relative to energy consumption and CO2 emissions**

236 After proving that the current energy efficiency requirements of buildings are not harmonized, this article examines  
237 whether the long-term objectives set by the different countries (Table 6) will alleviate this problem. Each country has  
238 regulations, guidelines, and energy plans that establish marked reductions in energy consumption and greenhouse  
239 gas emissions. Furthermore, these reductions need to be achieved in the long term to meet the main requirements  
240 set by the 2010 Directive on Energy Performance of Buildings. These objectives can be achieved by addressing the  
241 areas of industry, transportation, and construction, the latter of which is responsible for 40% of the total energy  
242 consumption and greenhouse gas emissions. Table 6 provides targets for greenhouse gas reductions, which are the  
243 only values that are set by most of the studied plans and programs, assuming that a reduction in the energy  
244 consumption is directly related to a reduction in the greenhouse gas emissions.

245

246 Table 6. Future challenges in the energy efficiency sector in the countries under study

247

248 Both the energy efficiency values and the future challenges are not currently harmonized, so it could make that the  
249 differences in the required values increase in the future.

250 Although the goals for reducing energy consumption and greenhouse gas emissions set by Germany, France, and  
251 the United Kingdom in 2020 (approximately 40%) are much more demanding than the minimum set by the EU  
252 (nearly doubling the minimum), the values set by Spain are below the required minimum.

253 In addition, several countries, such as Germany and the UK, have recently approved Climate Change Adaptation  
254 Plans, which include commitments to expanding the quantitative requirements mandated at the European level due  
255 to changes in the climate-environmental setting that have occurred in recent years [54, 59]. Therefore, these  
256 countries are attempting to reduce the greenhouse gas emissions by 80% by 2050 compared to the emissions  
257 measured in 1990.

258 In the USA, the Policy Guide on Planning and Climate Change, which was adopted in 2012, suggests that a  
259 reduction of at least 80% in greenhouse gas emissions compared with the 1990 levels should be achieved by 2050  
260 [64]. Moreover, ASHRAE aims to achieve a 50% improvement in the requirements for energy efficiency in buildings.  
261 Nevertheless, these reductions are only recommended and do not require a commitment to compliance, as is the  
262 case in many European countries. The only commitment stipulated is a reduction of approximately 3% in the  
263 emissions of greenhouse gases by 2030 compared to the 2006 levels. A review of the current emission levels set by

264 the Clean Air Act [65] is being performed by various studies, such as the National Global Change Research Plan  
265 2012-2021: A Strategic Plan for the U.S. Global Change Research Program [63], the Regulatory Plan and the  
266 Semiannual Regulatory Agenda [66]. Other guidelines include improvements of existing laws to reduce CO<sub>2</sub>  
267 emissions [67].  
268 Based on all of the analyses conducted in this article, the need to create a comprehensive methodology regulated by  
269 international organizations is inferred. This methodology should allow the unification of criteria and energy efficiency  
270 objectives in buildings across different countries.

271

## 272 **6. Conclusions**

273 This work has demonstrated that the energy losses allowed through building envelopes for an example of a typical  
274 dwelling vary substantially among the rules of the different countries under analysis, and even among the climate  
275 zones of a single country. The results obtained in the countries under analysis located in northern Europe more  
276 closely approached the requirements for the nZEB buildings that will go into effect in the EU starting in 2020.  
277 Moreover, the Spanish and US requirements were shown to be very far from these targets (by more than 150%),  
278 with greater differences in the most extreme climate zones. Because of the major disparity in the targets established  
279 for these countries, the differences will be difficult to minimise in the immediate future. In addition, these objectives  
280 were established using different improvement percentages over the current situation of each country, which are  
281 already divergent.

282 The results indicate the need to establish a methodology that replaces the current requirements for maximum  
283 transmittance values given by each country, which refer to climate zones defined using different degree-day  
284 amplitude ranges. Strategies such as the IPODTE could contribute to closing this gap by defining the maximum  
285 limits to envelope energy losses at an international level and adopting a world map of degree-days using a single  
286 base temperature. Only in this way will all countries impose overall heat transfer coefficient buildings that use  
287 identical consumption criteria.

## 288 **7. Acknowledgments**

289 This work was partially financed by the Spanish Ministry of Science and innovation co-financed with FEDER funds  
290 under the Research Project BIA2012-31609. Finally, the authors greatly appreciate the collaboration of the  
291 GICONSIME Research Group at the University of Oviedo.

292

## 293 **References**

- 294 [1] Protocolo de Kyoto de la convención marco de las Naciones Unidas sobre el cambio climático. Naciones Unidas, 1998.  
295 FCCC/INFORMAL/83\*. GE.05-61702 (S) 130605. <http://unfccc.int/resource/docs/convkp/kpspan.pdf>.
- 296 [2] 2002/358/CE: Decisión del Consejo, de 25 de abril de 2002, relativa a la aprobación, en nombre de la Comunidad Europea,  
297 del Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático y al cumplimiento  
298 conjunto de los compromisos contraídos con arreglo al mismo. DO L 130de 15.5.2002, p. 1/3.
- 299 [3] 2006/944/CE: Decisión de la Comisión, de 14 de diciembre de 2006, por la que se determinan los respectivos niveles de  
300 emisión asignados a la Comunidad y a cada uno de sus Estados miembros con arreglo al Protocolo de Kioto de

301       conformidad con la Decisión 2002/358/CE del Consejo [notificada con el número C(2006) 6468]. DO L 358de 16.12.2006,  
302       p. 87/89.

303       [4] 2010/778/UE: Decisión de la Comisión, de 15 de diciembre de 2010, que modifica la Decisión 2006/944/CE por la que se  
304       determinan los respectivos niveles de emisión asignados a la Comunidad y a cada uno de sus Estados miembros con  
305       arreglo al Protocolo de Kioto de conformidad con la Decisión 2002/358/CE del Consejo [notificada con el número C(2010)  
306       9009]. DO L 332 de 16.12.2010, p. 41/42.

307       [5] S.VijayaVenkataRaman, S.Iniyan, Ranko Goic. A review of climate change, mitigation and adaptation. Renewable and  
308       Sustainable Energy Reviews 16 (2012) 878-897.

309       [6] European Commission. Green paper “Doing more with less”. European Communities, Luxemburg, 2005

310       [7] European Parliament. Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on energy end-  
311       use efficiency and energy services and repealing Council Directive 93/76/EEC (Text with EEA relevance). Official Journal L  
312       114 de 27/04/2006 p. 0064 – 0085. Strasbourg, 2006.

313       [8] European Commission. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy  
314       efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC Text  
315       with EEA relevance. Official Journal of the European Union. L 315-1 / L 315-56. 14/11/1012. Done at Strasbourg, 25  
316       October 2012. THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION

317       [9] IPPC: Intergovernmental Panel on Climate Change. IPCC Fourth Assessment Report: Climate Change 2007 (AR4). IPPC  
318       (ISBN 92-9169-322-7), Geneva, 2008

319

320       [10] European Commission. Europe 2020: A strategy for smart, sustainable and inclusive growth. COM(2010). Brussels, 2010.

321       [11] European Commission, Energy 2020. A strategy for competitive, sustainable and secure energy. COM(2010) 639-final.  
322       Brussels; 2010

323       [12] European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy  
324       performance of buildings. Official Journal L153, 18/6/2010, p. 13-35. Strasbourg, 2010.

325       [13] European Commission. National Energy Efficiency Action Plans (NEEAPs): update on implementation Accompanying  
326       document to the Energy Efficiency. Plan 2011 COM (2011) 109. Brussels, 2011.

327       [14] European Commission. Energy Efficiency Plan 2011. COM(2011) 109. Brussels, 2011

328       [15] European Comision: Directorate-General for Energy and Transport. Implementation of the Energy Performance of Buildings  
329       Directive Country reports 2008. European Comision: EPBD Buildings Platform, Brussels, 2008

330       [16] European Commission. Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive  
331       2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a  
332       comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for  
333       buildings and building elements Text with EEA relevance. Official Journal L 81, 21/3/2012, p. 18–36. Brussels, 2012.

334       [17] Buildings Performance Institute Europe (BPIE). Principles for Nearly Zero-energy Buildings. Paving the way for effective  
335       implementation of policy requirements. Published by Buildings Performance Institute Europe (BPIE) Brussel, 2011.

336       [18] Das kostengünstige mehrgeschossige Passivhaus in verdichteter Bauweise. Teil 1 des Abschlußberichtes:  
337       Konstruktionshandbuch für Passivhäuser. Der Forschungsbericht wurde mit Mitteln des Bundesamtes für  
338       Bauwesen und Raumordnung gefördert. (Aktenzeichen: B 15-80 01 98-15). Die Verantwortung für den Inhalt des Berichtes  
339       liegt beim Autor. Autoren: Karl-Heinz Fingerling, Wolfgang Feist, Joachim Otte, Rainer Pfluger. Projektleitung: Passivhaus  
340       Institut, Dr. Wolfgang Feist, Rheinstraße 44-46, 64283 Darmstadt.

341       [19] Aksoy UT, Inalli M. Impacts of some building passive design parameters on heating demand for a cold region. Building and  
342       Environment 41 (2006) 1742–1754

343 [20] Marks W. Multicriteria optimisation of shape of energy-saving buildings. *Building and Environment* 32-4 (1997) 331–339.

344 [21] Depecker P, Menezo C, Virgone J, Lepers S. Design of buildings shape and energetic consumption. *Building and*  
345 *Environment* 36 (2001) 627–635.

346 [22] R. Pacheco, J. Ordóñez, G. Martínez. Energy efficient design of building: A review. *Renewable and Sustainable Energy*  
347 *Reviews* 16 (2012) 3559-3573.

348 [23] E. Kossecka, J. Kosny, Influence of insulation configuration on heating and cooling loads in a continuously used building,  
349 *Energy and Buildings* 34(4)(2002)321–331.

350 [24] Gülsen Manioglu, Zerrin Yılmaz. Profitability evaluation of the building envelope and operation period of heating system in  
351 terms of thermal comfort, *Energy and Buildings* 38 (2006) 266–272.

352 [25] J. Morrissey ,R.E. Horne. Life cycle cost implications of energy efficiency measures in new residential buildings. *Energy and*  
353 *Buildings* 43 (2011) 915–924

354 [26] R. Horne, C. Hayles, Towards global benchmarking for sustainable homes: an international comparison of the energy  
355 performance of housing, *Journal of Housing and the Built Environment* 23(2)(2008)119–130.

356 [27] Sharma A, Saxena A, Sethi M, Shree V, Varun. Life cycle assessment of buildings: a review. *Renewable and Sustainable*  
357 *Energy Reviews* 15 (2011) 871–875.

358 [28] Autoreferencia al anterior artículo

359 [29] Aashish Sharma, Abhishek Saxena, Muneesh Sethi, Venu Shree,Varun. Life cycle assessment of buildings: A review.  
360 *Renewable and Sustainable Energy Reviews* 15 (2011) 871-875.

361 [30] Koukkari H, Kuhnenne M, Braganc,a L. Energy in the sustainable European construction sector. *Repositório*  
362 Universidade do Minho: CEC-GTC - Comunicações a Conferências Internacionais: Sustainability of constructions. Braga,  
363 2010.

364 [31] Gaterell MR, Mc Evoy ME. The impact of climate change uncertainties on the performance of energy efficiency measures  
365 applied to dwellings. *Energy and Buildings* 37 (2005) 982–995.

366 [32] Taylor PG, d'Ortigue OL, Francoeur M, Trudeau N. Final energy use in IEA countries: the role of energy efficiency. *Energy*  
367 *Policy* 38 (2010) 386463–386474.

368 [33] AEN/CTN 100 - CLIMATIZACIÓN. EN 15251. Indoor environmental input parameters for design and assessment of energy  
369 performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. ). European Committee  
370 for Standardization CEN. Geneve, 2008.

371 [34] International Code Consortium. The International Energy Conservation Code (IECC) 2012. U.S Department of Energy.  
372 International Code Council. (ISBN: 9781609830588). Country Club Hills, 2011.

373 [35] Instituto para la Diversificación y Ahorro de la Energía. Serie: Calificación de eficiencia energética de edificios. Guía nº 12:  
374 Opción simplificada. Viviendas. Memoria de cálculo. IDAE, Madrid, 2009.

375 [36] www.ine.es. Last accessed: September 2012. INE. Ministerio de Fomento. Series estadísticas. Estadística 6.- Visados de  
376 dirección de obra. Obra nueva, ampliación y/o reforma de edificios. Nª de viviendas y superficie media según tipo de obra y  
377 destino principal. 2011

378 [37] <http://www.eizasa.com/promociones.asp>. EIZASA. Last accessed: September 2012.

379 [38] Varios autores et al. Fundamentos de Climatización. Edita: ATECYR: Asociación Técnica Española de Climatización y  
380 Refrigeración. ISBN: 978-84-95010-34-6. Depósito legal: M-12874-2010. Madrid, 2010.

381 [39] 2009 ASHRAE Handbook—Fundamentals. CHAPTER 14: CLIMATIC DESIGN INFORMATION. I-P Edition. Copyright ©  
382 2009 by ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.1791 Tullie Circle NE  
383 Atlanta, GA 30329-2305. Electronic license.

384 [40] <http://www.degreedays.net/>. Last accessed: october 2012. Programa BizEE Degree Days. Weather Data for Energy  
385 Professionals.

386 [41] SAP assessors. The Government's Standard Assessment Procedure for Energy Rating of Dwellings. Published on behalf of  
387 DECC by: BRE Garston, Watford WD25 9XX. Rrev October 2010, RdSAP 2009 added March 2011.

388 [42] HM Government. The Building Regulations 2000 - Approved document L1A: Conservation of fuel and power- New  
389 dwellings, 2010 edition. Published by NBS, part of RIBA Enterprises Ltd, (RIBA bookshops), 2010.

390 [43] Richards Partington Architects. Part L 2010 – where to start: An introduction for house builders and designers. Written and  
391 published for NHBC Foundation: Housing Research in partnership with BRE Trust, by. ISBN 978-0-9568415-1-3.  
392 Buckinghamshire 2011.

393

394 [44] [http://www.heiz-tipp.de/ratgeber-1116-text\\_enev\\_2009.html](http://www.heiz-tipp.de/ratgeber-1116-text_enev_2009.html). Last accessed: October, 2012. Online Ratgeber heiz tipp.  
395 Konsolidierte Fassung der Verordnung vom Energieeinsparung EnEV 2009 und seinen Anhängen. Version 29 von April  
396 2009. f.nowotka, 2009 .

397 [45] [www.codigotecnico.org](http://www.codigotecnico.org). Last accessed: november 2012. Gobierno de España: Ministerio de vivienda. Código Técnico de la  
398 Edificación, parte II. Documento Básico HE: Ahorro de energía, Madrid, 2009.

399 [46] Ministère de l'emploi, de la cohésion sociale et du logement. Arrêté du 24 mai 2006 relatif aux caractéristiques thermiques  
400 des bâtiments nouveaux et des parties nouvelles de bâtiments. NOR:SOUCU0610625A. Journal officiel de la république  
401 française, 25 mai 2006, Texte 14 sur 155.

402 [47] Ministère de l'emploi, de la cohésion sociale et du logement. Décret no2006-592 du 24 mai 2006 relatif aux caractéristiques  
403 thermiques et à la performance énergétique des constructions. NOR:SOUCU0610624D. Journal officiel de la république  
404 française, 25 mai 2006, Texte 12 sur 155.

405 [48] ASHRAE. Standard 90.1-2010 (I-P Edition) - Energy Standard for Buildings Except Low-Rise Residential Buildings (ANSI  
406 Approved; IESNA Co-sponsored). ASHRAE. Atlanta, 2010.

407 [49] Pacific Northwest National Laboratory for the U.S. Department of energy. Building Technology Program: Measuring State  
408 Energy Code Compliance. U.S. Department of energy, Office of Scientific and Technical Information. United States of  
409 America, 2010.

410 [50] DIN Joint Committee NA 005-56-20 GA. Estandarización DIN 18599-2010. Energy efficiency of buildings — Calculation of  
411 the energy needs, delivered energy and primary energy for heating, cooling, ventilation, domestic hot water and lighting —  
412 Part 10: Boundary conditions of use, climatic data. prepared by DIN Joint Committee NA 005-56-20 GA Energetische  
413 Bewertung von Gebäuden of the Normenausschuss Bauwesen (Building and Civil Engineering Standards Committee),  
414 which also lead-managed the work, and Normenausschuss Heiz- und Raumlufttechnik (Heating and Ventilation Standards  
415 Committee) with the co-operation of the Normenausschuss Lichttechnik (Lighting Technology Standards Committee). Berlin,  
416 2010.

417 [51] CEC. Communication from the commission. Action plan for energy efficiency: realising the potential. Commission of the  
418 European Communities, Brussels, 2006.

419 [52] European Commission. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the  
420 promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC  
421 and 2003/30/EC (Text with EEA relevance). Official Journal L140, 5/6/2009, p. 16-62. Estrasburgo, 2009.

422 [53] Federal Ministry of Profitability Affairs and Technology. National Energy Efficiency Action Plan (EEAP) of the Federal  
423 Republic of Germany in accordance with the EU Directive on “energy end-use efficiency and energy services” (2006/32/EC).  
424 Submitted by the Federal Ministry of Profitability Affairs and Technology. Berlin, 2007.

425 [54] German Advisory Council on the Environment Pathways towards a 100 % renewable electricity system. Chapter 10:  
426 Executive summary and Recommendations. German Advisory Council on the Environment. Berlin, 2011.

427 [55] Federal Ministry of Profitabilitys and Technology. Energy Efficiency-Made in Germany. Energy Efficiency in Industry and  
428 Building Services Technology. Federal Ministry of Profitabilitys and Technology, 2008.

429 [56] <http://www.logement.gouv.fr> . Last accessed: september, 2012. Direction générale de l'Urbanisme et de la  
430 Construction. Directions Départementales et Régionales de l'Équipement (DDE et DRE). Direction Générale de  
431 l'Urbanisme, de l'Habitat et de la Construction Bureau de la qualité technique et de la prévention. "Réglementation  
432 thermique 2005 des bâtiments confortables et performants".

433 [57] <http://www.developpement-durable.gouv.fr/IMG/pdf/ONERC-PNACC-complet.pdf>. Last accessed: December 2012. Plan  
434 national d'adaptation de la France aux effets du changement climatique. 2011 – 2015. Ministère de l'Écologie, du  
435 Développement durable, des Transports et du logement.

436 [58] Controller of Her Majesty's Stationery OYce and Queen's Printer of Acts of Parliament. Climate Change Act 2008. Printed  
437 by The Stationery OYce Limited under the authority and superintendence of Carol Tullo, 12/2008 415435 19585. London,  
438 2008.

439 [59] Department for Communities and Local Government: London Department for Communities and Local Government. Building  
440 Regulations: Energy efficiency requirements for new dwellings. A forward look at what standards may be in 2010 and 2013.  
441 Eland House, Bressenden Place. London, 2007.

442 [60] Acuerdo de Consejo de Ministros de 29 de julio de 2011. 2º Plan de Acción de Ahorro y Eficiencia Energética en España  
443 2011-2020. Resumen Ejecutivo. Publicado por el Ministerio de Industria, Turismo y Comercio Editado por IDAE. Madrid,  
444 2011

445 [61] The American Institute of Architects, the Illuminating Engineering Society of North America, the U.S. Green Building  
446 Council, and the U.S. Department of Energy. Advanced Energy Design Guides of ASHRAE. ASHRAE. Atlante, 1012.

447 [62] [www.energycodes.gov](http://www.energycodes.gov). Last accessed: November, 2012. Building Energy Codes Program (BECP). Building Energy Codes  
448 101: An Introduction. Published by U.S. Department of Energy's (DOE's). 2010

449 [63] Strategic Planning Integration and Writing Teams, which report to the Subcommittee on Global Change Research of the  
450 NSTC's Committee on the Environment, Natural Resources and Sustainability. Plan 2012-2021: A strategic Plan for the  
451 U.S. Global Change Research Program. U.S. Global Change Research Program. National Coordination Office (NCO) for  
452 the USGCRP Washington, 2012.

453 [64] American Planning Association. Policy guide on planning & Climate change. American Planning Association. Adopted April  
454 27, 2008 Updated April 11, 2011.

455 [65] Senate and House of Representatives of the United States of America in Congress assembled. U.S. Code . Title 42—The  
456 public health and welfare. Chapter 85—Air pollution prevention and control. Page 5673-5965. Section 7401-7670 of the  
457 Energy Policy and Conservation Act (42 U.S.C). Washington, 1998.

458 [66] Environmental Protection Agency. Regulatory Plan and Semiannual Regulatory Agenda. United States. EPA-230-Z-10-002.  
459 2010. Washington Dc, 2010

460 [67] PCAP 2012 National Advisory Committee. Presidential Climate Action Project. Building an Advanced Energy Economy.  
461 Security opportunity Stewardship. Longmont, October 2012.

462

463

| <b>Interior of the house</b>                                                 |                         |                                                 |                  |                        |             |
|------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|------------------|------------------------|-------------|
| <b>Room</b>                                                                  | $T_{operative}$<br>(°C) | <b>Thermal envelope surface (m<sup>2</sup>)</b> |                  |                        |             |
|                                                                              |                         | <b>Window</b>                                   | <b>Enclosure</b> | <b>Partition walls</b> | <b>Roof</b> |
| <b>Bathroom</b>                                                              | 20                      | 0                                               | 0                | 0                      | 3.120       |
| <b>Half-Bath</b>                                                             | 20                      | 1.575                                           | 3.725            | 0                      | 3.370       |
| <b>Living Room</b>                                                           | 20                      | 5.040                                           | 9.785            | 8.900                  | 22.540      |
| <b>Kitchen</b>                                                               | 20                      | 3.225                                           | 4.750            | 11.650                 | 9.270       |
| <b>Bedroom 1</b>                                                             | 20                      | 3.990                                           | 4.760            | 0                      | 12.130      |
| <b>Bedroom 2</b>                                                             | 20                      | 2.080                                           | 10.095           | 0                      | 12.090      |
| <b>Bedroom 3</b>                                                             | 20                      | 3.360                                           | 10.040           | 0                      | 11.400      |
| <b>Exterior of the house</b>                                                 |                         |                                                 |                  |                        |             |
| $T_{operative}$ of unheated adjoining enclosures = 12°C [38]                 |                         |                                                 |                  |                        |             |
| T External = sum of annual degree-days<br>(using a base temperature of 20°C) |                         |                                                 |                  |                        |             |

Table 1. Parameters for the calculation of the energy losses

| Tipos de Cerramientos                                   | Transmitancias en W/m <sup>2</sup> K en cada país estudiado de la EU [18, 34, 41-49] |      |      |      |      |        |         |      |         |                       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------|------|------|------|------|--------|---------|------|---------|-----------------------|
|                                                         | España                                                                               |      |      |      |      | France |         | U.K. | Germany | Passivhaus in Germany |
|                                                         | A                                                                                    | B    | C    | D    | E    | H1-H3  | H3 <800 |      |         |                       |
| <b>Walls in contact with the outside and the ground</b> | 0.94                                                                                 | 0.82 | 0.73 | 0.66 | 0.57 | 0.36   | 0.40    | 0.20 | 0.20    | 0.15                  |
| <b>Suelos (Forjado)</b>                                 | 0.53                                                                                 | 0.52 | 0.50 | 0.49 | 0.48 | 0.20   | 0.25    | 0.20 | 0.28    | 0.15                  |
| <b>Cubiertas</b>                                        | 0.50                                                                                 | 0.45 | 0.41 | 0.38 | 0.35 | 0.20   | 0.25    | 0.14 | 0.20    | 0.15                  |
| <b>Ventanas de PVC</b>                                  | 5.10                                                                                 | 4.55 | 3.35 | 2.9  | 2.77 | 1.30   | 2.10    | 1.50 | 1.30    | 0.8                   |
| <b>Tabiquería</b>                                       | 1.20                                                                                 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20   | 1.20    | 1.20 | 1.20    | 0.15                  |

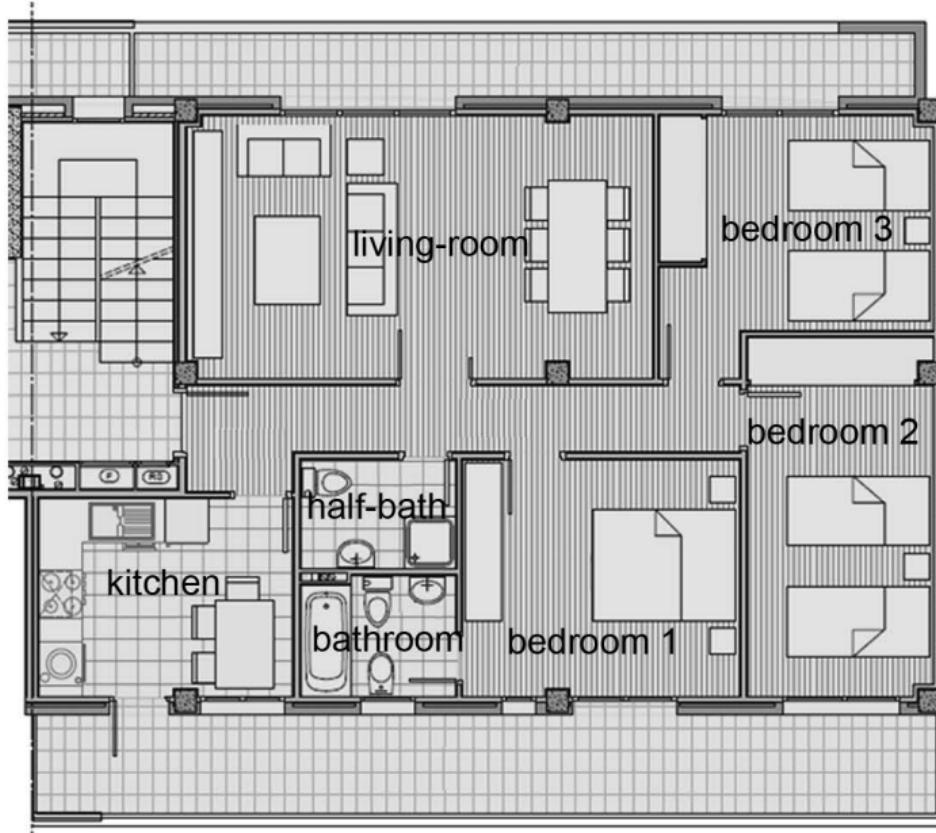
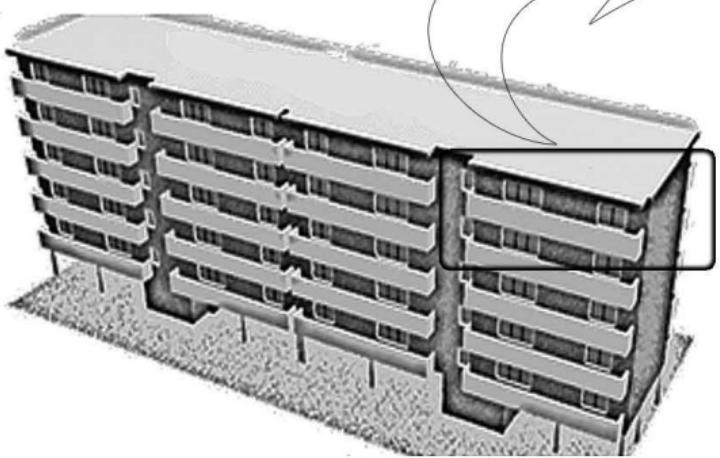
Table 2. Transmitancias de cada zona climática en estudio en la EU

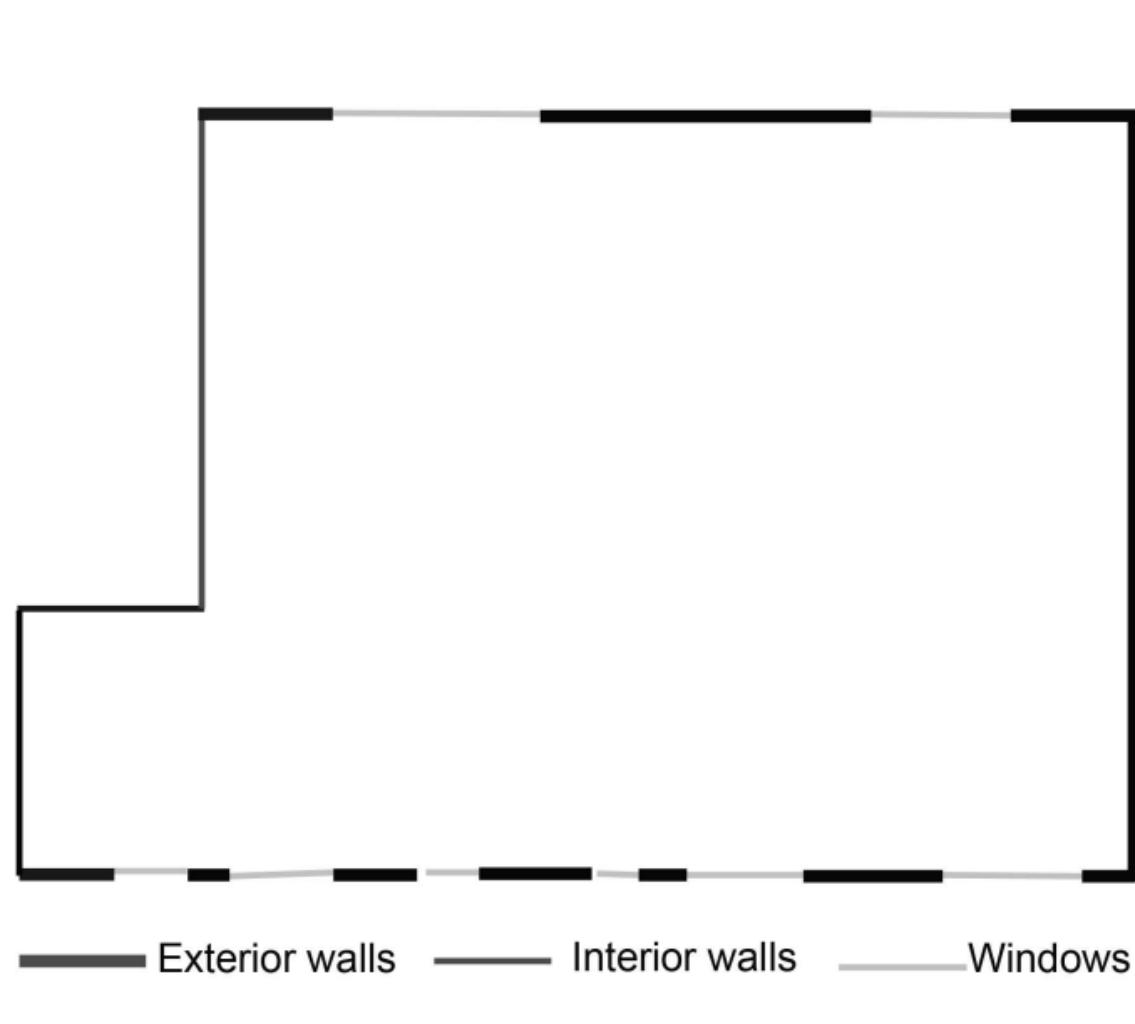
| <b>Tipos de cerramientos</b>                            | <b>Transmitancias en W/m<sup>2</sup>K en cada zona climática de USA [18, 34, 41-49]</b> |      |      |      |      |      |      |      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
|                                                         | 1                                                                                       | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
| <b>Walls in contact with the outside and the ground</b> | 0.86                                                                                    | 0.70 | 0.59 | 0.51 | 0.45 | 0.40 | 0.40 | 0.29 |
| <b>Suelos (Forjado)</b>                                 | 1.83                                                                                    | 0.49 | 0.49 | 0.42 | 0.36 | 0.32 | 0.29 | 0.29 |
| <b>Cubiertas</b>                                        | 0.27                                                                                    | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
| <b>Ventanas de PVC</b>                                  | 6.81                                                                                    | 4.26 | 3.69 | 2.27 | 1.99 | 1.99 | 1.99 | 1.99 |
| <b>Tabiquería</b>                                       | 1.20                                                                                    | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |

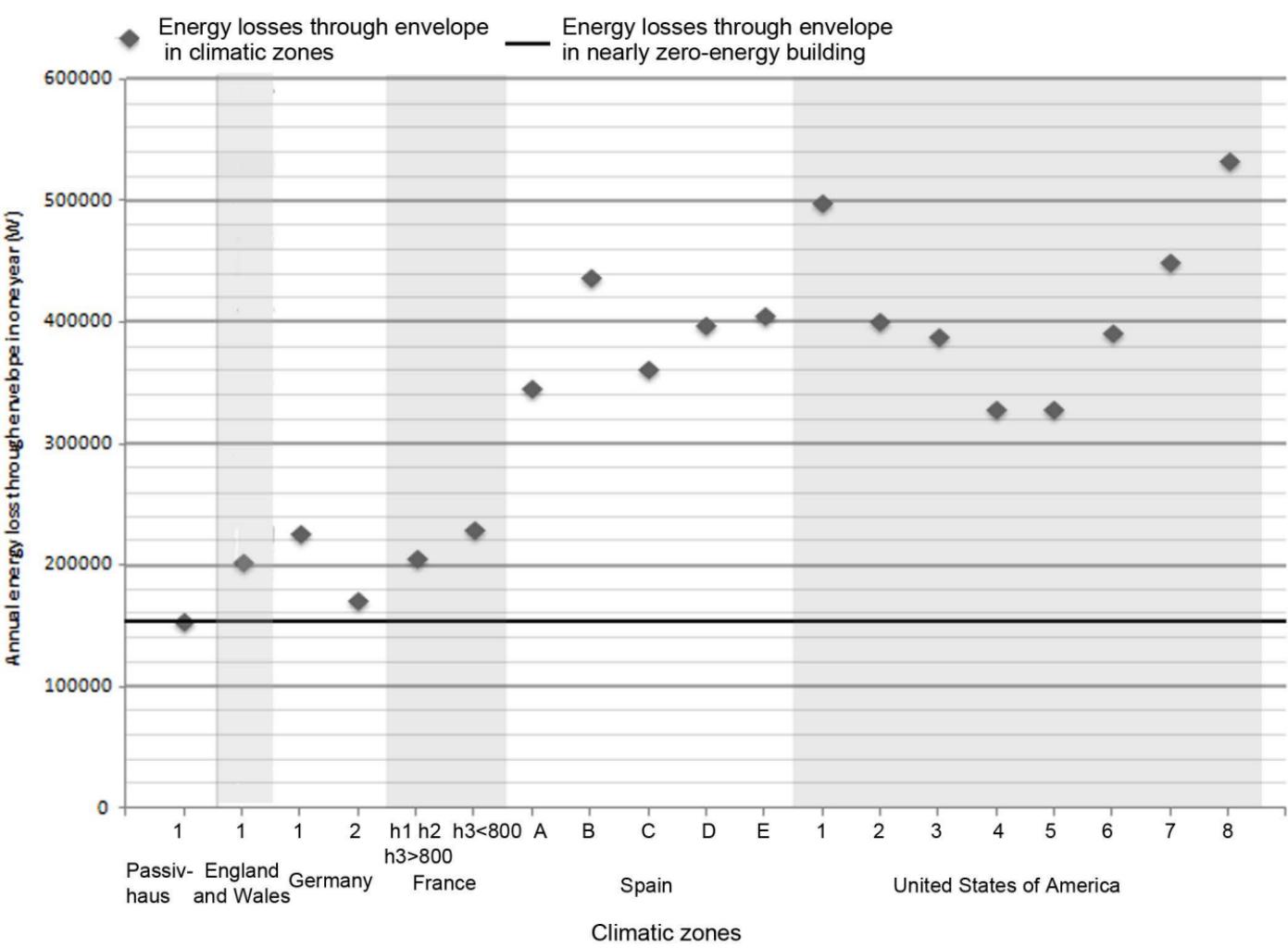
Table 3. Transmitancias de cada zona climática en estudio en USA

| Losses through enclosures = $\Sigma U \cdot A \cdot (\text{degree-days per year, calculated with a baseline temperature of } 20^\circ\text{C}) (W)$ |                                     |                |          |          |           | Pillar losses (W) |                               |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------|----------|-----------|-------------------|-------------------------------|---------------|
| Enclosure                                                                                                                                           | Enclosure                           | Partition wall | Window   | Roof     | Total     | No. of pillars    | Pillar area (m <sup>2</sup> ) | Pillar losses |
| Half-Bath                                                                                                                                           |                                     |                |          | 4223.86  | 4223.86   |                   |                               | 0.00          |
| Bathroom                                                                                                                                            | 8212.73                             | 0              | 16905.58 | 4562.31  | 29680.61  |                   |                               | 0.00          |
| Living Room                                                                                                                                         | 21573.58                            | 38.45          | 54097.85 | 30514.65 | 106224.52 | 1.50              | 1.13                          | 2480.36       |
| Kitchen                                                                                                                                             | 10472.61                            | 50.33          | 34616.18 | 12549.73 | 57688.85  | 1.00              | 0.75                          | 1653.57       |
| Bedroom 1                                                                                                                                           | 10494.66                            | 0              | 42827.46 | 16421.59 | 69743.71  | 1.00              | 0.75                          | 1653.57       |
| Bedroom 2                                                                                                                                           | 22257.05                            | 0              | 22326.10 | 16367.44 | 60950.59  | 2.00              | 1.50                          | 3307.14       |
| Bedroom 3                                                                                                                                           | 15617.52                            | 0              | 36065.23 | 15433.32 | 67116.07  | 1.00              | 0.75                          | 1653.57       |
| Total losses                                                                                                                                        | 395628.22                           |                |          |          |           |                   | 10748.21                      |               |
|                                                                                                                                                     | Total envelope losses = 406376.42 W |                |          |          |           |                   |                               |               |

Table 4. Enclosures energy losses for a typical house in climate zone E in Spain



| Country                                                                       | Climate zone                                                                  | City (region)                            | Annual degree-day (K; calculated with a baseline temperature of 20°C) |         |              | Annual envelope energy losses (W) | % excess from the nZEB (154,323.44 W) |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|---------|--------------|-----------------------------------|---------------------------------------|
|                                                                               |                                                                               |                                          | Heating                                                               | Cooling | Total        |                                   |                                       |
| <b>Passivhaus</b>                                                             |                                                                               | <i>Bavaria (Hof)</i>                     | 4595                                                                  | 70      | 4665         | <b>154323.44</b>                  | <b>0</b>                              |
| Germany                                                                       |                                                                               | <i>Bavaria (Hof)</i>                     | 4595                                                                  | 70      | 4665         | 226893.42                         | 47.02                                 |
|                                                                               |                                                                               | <i>Karlsruhe</i>                         | 3299                                                                  | 227     | 3516         | 172165.48                         | 11.56                                 |
|                                                                               | <b>Mean annual consumption</b>                                                |                                          |                                                                       |         |              | <b>199529.45</b>                  | <b>29.29</b>                          |
|                                                                               | <b>Typical deviation between energy losses in the different climate zones</b> |                                          |                                                                       |         |              | <b>13.71%</b>                     |                                       |
| France                                                                        | H1, H2 and H3 (> 800 m)                                                       | Strasbourg                               | 3439                                                                  | 201     | 3640         | 205621.12                         | 33.24                                 |
|                                                                               | H3 (< 800 m)                                                                  | Avignon                                  | 2456                                                                  | 481     | 2937         | 229631.13                         | 48.80                                 |
|                                                                               | <b>Mean annual consumption</b>                                                |                                          |                                                                       |         |              | <b>216963.89</b>                  | <b>40.59</b>                          |
|                                                                               | <b>Typical deviation between energy losses in the different climate zones</b> |                                          |                                                                       |         |              | <b>5.54%</b>                      |                                       |
| England and Wales                                                             |                                                                               | <i>Perth (Auchterarder)</i>              | 4204                                                                  | 7       | 4211         | <b>202889.27</b>                  | <b>31.47</b>                          |
| Spain                                                                         | A                                                                             | Málaga                                   | 1179                                                                  | 743     | 1922         | 346611.58                         | 124.60                                |
|                                                                               | B                                                                             | Córdoba                                  | 1684                                                                  | 1045    | 2729         | 437443.88                         | 183.46                                |
|                                                                               | C                                                                             | Oviedo                                   | 2711                                                                  | 87      | 2798         | 362931.74                         | 135.18                                |
|                                                                               | D                                                                             | Vitoria                                  | 3311                                                                  | 176     | 3487         | 398238.07                         | 158.05                                |
|                                                                               | E                                                                             | Burgos                                   | 3598                                                                  | 270     | 3868         | 406376.42                         | 163.21                                |
|                                                                               | <b>Mean annual consumption</b>                                                |                                          |                                                                       |         |              | <b>387617.05</b>                  | <b>151.17</b>                         |
| <b>Typical deviation between energy losses in the different climate zones</b> |                                                                               |                                          |                                                                       |         | <b>8.34%</b> |                                   |                                       |
| USA                                                                           | 1                                                                             | Hawaii (Honolulu)                        | 0                                                                     | 2583    | 2583         | 498605.61                         | 223.09                                |
|                                                                               | 2                                                                             | Arizona (Yuma)                           | 378                                                                   | 2590    | 2968         | 401136.14                         | 159.93                                |
|                                                                               | 3                                                                             | Oklahoma (Vance AFB)                     | 2220                                                                  | 1057    | 3277         | 388728.25                         | 151.89                                |
|                                                                               | 4                                                                             | Oregon (Redmond Roberts Field)           | 3633                                                                  | 127     | 3760         | 328737.80                         | 113.02                                |
|                                                                               | 5                                                                             | Michigan (Saginaw Tri City Airport)      | 3871                                                                  | 314     | 4185         | 329169.66                         | 113.30                                |
|                                                                               | 6                                                                             | Montana (Butte Bert Mooney Airport)      | 5116                                                                  | 42      | 5158         | 391437.86                         | 153.65                                |
|                                                                               | 7                                                                             | Alaska (Fort Richardson BMYA)            | 5958                                                                  | 2       | 5960         | 450610.05                         | 191.99                                |
|                                                                               | 8                                                                             | Alaska (Fairbanks International Airport) | 7515                                                                  | 40      | 7555         | 534295.70                         | 246.22                                |
|                                                                               | <b>Mean annual consumption</b>                                                |                                          |                                                                       |         |              | <b>404113.70</b>                  | <b>161.86</b>                         |
|                                                                               | <b>Typical deviation between energy losses in the different climate zones</b> |                                          |                                                                       |         |              | <b>15.9%</b>                      |                                       |


Table 5. Degree-days of the cities for which the envelope energy losses were calculated and envelope energy losses in a typical house over the course of one year


| COUNTRY        | REPORT,<br>GUIDELINES, OR<br>ACTION PLAN                                                       | LONG TERM GOALS                                                                                                                                                                                                         |                                          |                                                   |
|----------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
|                |                                                                                                | GENERAL OBJECTIVES                                                                                                                                                                                                      | ENERGY<br>CONSUMPTION<br>REDUCTION       | GREENHOUSE<br>GAS<br>REDUCTION                    |
| EUROPEAN UNION | <i>Action Plan for Energy Efficiency: Realizing the Potential, 2008 [51]</i>                   | Maintain the global temperature increase below 2°C by reducing the energy consumption and using renewable energy.                                                                                                       | 20% by 2020 compared to that in 1990     | 20% in 2020 compared to that in 1990              |
|                | <i>European Directive: 2009/28/EC [52]</i>                                                     | Meet 20% of the energy consumption needs in the EU with renewable sources by 2020.                                                                                                                                      | —                                        | —                                                 |
| GERMANY        | <i>Action Plan for Energy Efficiency in Germany [53]</i>                                       | Promote the construction of houses with a lower energy consumption of 60 to 40 kW·h/m <sup>2</sup> .                                                                                                                    | 45% by 2020 compared to that in 1990     | 40% by 2020 compared to that in 1990              |
|                | <i>Report on energy consumption [54]</i>                                                       | Meet 35% and 60% of the energy requirements with renewable sources by 2020 and 2050, respectively. An action plan is developed to achieve this.                                                                         | —                                        | 80% by 2050 compared to that in 1990              |
|                | <i>Energy efficiency report [55]</i>                                                           | Achieve the Passivhaus standard values in the regulations.                                                                                                                                                              | —                                        | —                                                 |
| FRANCE         | <i>Climate Plan 2004 [56]</i>                                                                  | Limit the air conditioning resources and minimize the electricity demand.                                                                                                                                               | 40% by 2020 compared to that in 1990     | —                                                 |
|                | <i>2011 Climate Change Adaptation Plan [57]</i>                                                | Promote the use of renewable energy sources and energy recovery and improve the energy efficiency of existing buildings in the energy and construction sectors to achieve the plan of 2004.                             | —                                        | —                                                 |
| UNITED KINGDOM | <i>2008 Climate Change Act [58]</i>                                                            | Set total greenhouse gas reduction values and intermediate deadlines.                                                                                                                                                   | —                                        | 80% by 2050 compared to that in 1990              |
|                | <i>Action Plan: A forward look at what standards may be in 2010-13 [59]</i>                    | Set total greenhouse gas reduction values and intermediate deadlines.                                                                                                                                                   | —                                        | 44% by 2013 compared to that in 2006.             |
|                | <i>Standard Assessment Procedure: SAP 2009 [42]</i>                                            | Require the Passivhaus transmittance standard in future revisions.                                                                                                                                                      | —                                        | —                                                 |
| SPAIN          | <i>Energy Savings and Efficiency Action Plan 2011-2020 [60]</i>                                | Provide valued measures to achieve the objectives stated in Article 14 of Directive 2006/32/EC.                                                                                                                         | 15.9% in 2020 compared to that in 1990   | 20% by 2020 compared to the current value         |
| U.S.           | <i>Advanced Energy Design Guides of ASHRAE [61] recommended by U.S. Department of Energy</i>   | Reduce the energy consumption by 50% in non-residential buildings by 2015 compared to the consumption stipulated by standard 90.1-2004. This is the first step toward constructing buildings with a net energy of zero. | 50% in non-residential buildings by 2015 | —                                                 |
|                | <i>Guide to Building Energy Codes Program: Building Energy Codes 101: An Introduction [62]</i> | Provide values to decrease the energy consumption and greenhouse gas emissions under the new rules obtained by the building energy standards.                                                                           | 3.5 quadrillion Btu per year by 2030     | Approximately 3% in 2030 compared to that in 2006 |
|                | <i>National Global Change Research Plan 2012-2021 [63]</i>                                     | Provide information on possible measures to reduce climate change. There is no commitment to achieve any values.                                                                                                        | —                                        | —                                                 |

(-): This information is not available

Table 6. Future challenges in the energy efficiency sector in the countries under study





