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Abstract

There is currently a lack of international harmonization on the insulation requirements for the buildings. Given that
this parameter defines the maximum energy losses allowed through a thermal envelope, building energy
consumptions consumption can vary considerably between countries. Both the United States of America (US) and
the European Union (EU) should address this problem by unifying the energy design criteria of their buildings. The
EU requires that all new buildings constructed starting in 2020 must be nearly zero-energy buildings (nZEB), as
defined in the Directive on Energy Efficiency in Buildings of 2010.

To evaluate the extent of this lack of harmonisation, in this paper are calculated the maximum energy losses
through the thermal envelope of a typical dwelling when applying various international regulations (such as the US
regulations and those established by Germany, France, England and Wales, and Spain). The results are compared
with those obtained when applying the requirements of the Passivhaus standard (taken as a reference for nZEB in
the EU). It will be verified that there are major differences in the energy losses allowed through building envelopes
among these countries and among the different climate zones defined in each country.

Moreover, the challenges set by these countries related to energy consumption and CO2 emissions are also
reviewed. The disparity between the objectives proposed by these countries suggested a distinct tendency towards

increasing current differences in their standards.
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1. Introduction

With the approval of the Kyoto protocol in 1997, common objectives were established at an international level to
reduce CO2 emissions and energy consumption to avoid their adverse effects on the environment [1-6]. Given that
the limits established in the Kyoto protocol have been insufficient to halt climate change, these limits were revised in
2007 and new plans for action were proposed.

As a result, the EU approved a packet of measures known as “20-20-20”. Among others, these measures have the
goal of reducing energy consumption and CO2 emissions by 20% before the year 2020 [10, 11]. The construction
sector is among the principal sectors responsible for energy consumption and CO2 emissions, accounting for
approximately 40% of each [7, 9]. One of the European directives approved to reach the “20-20-20” objectives is the
2010 Directive on Energy Efficiency in Buildings (DEEB), which requires the construction of nearly zero-energy
buildings (nZEB) starting in 2020 [12]. In the US, the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE) and the International Code Council (ICC) have also published several
recommendations that aim to drastically reduce building energy consumption.

The DEEB directive and its subsequent Development regulations indicate a lack of harmonisation among the
different countries in the EU concerning energy efficiency requirements in buildings [13-16]. Insufficient information
provided by the European Directive about how nZEBs should be built has resulted in each country establishing
different energy parameters to define these types of buildings. To mitigate this problem, the European Commission
has proposed the city of Darmstadt’s passive houses, built according to the Passivhaus standards, as an example of
an nZEB [17]. This article shows that there is also a lack of harmonisation in the United States regarding the
parameters that define building energy losses in different climate zones. However, to the authors” knowledge, there
are no documents that address this problem.

The majority of international rules on energy efficiency establish several maximum thermal envelope transmittances
for each climate zone to limit energy losses through the building thermal envelope. In contrast, the Passivhaus
standard establishes a different criterion limiting maximum energy consumption for both heating and cooling to 15
kWh/m2 year instead of fixing the transmittances [18]. The standard proposes a set of transmittance values as a
guide to achieving this objective. Limiting energy consumption due to energy losses through the building envelope
is a key task needed to achieve this objective given that these losses are responsible for the majority of the total
energy consumption of dwellings [19-27].

This lack of harmonisation among maximum energy losses allowable through the envelope has already been
analysed from a regulatory standpoint in a previous work, which compared the parameters that regulate those
losses in different countries. The research shows that the root of the problem lies in limiting the thermal envelope
transmittance in each country for different climate zones defined on the basis of different ranges of degree-day
variation, rather than limiting maximum energy losses. A new procedure has recently been developed that allows
harmonize these energy losses in different climate zones (the International Procedure for the Optimal Design of
Thermal Envelopes, or IPODTE) [28].

This article broadens that analysis and quantifies the existing differences between the maximum thermal envelope
energy losses allowed by different countries. Given that two-thirds of the emissions produced and energy consumed

by the building sector come from the residential sector [29-32], will be calculated and compared the energy losses
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through the envelope of a residential dwelling type. The calculation uses the transmittance values imposed in the
climate zones defined by various countries in the EU and by the US. The EU countries included in the analysis are
Germany, France, England and Wales, and Spain, which are representative of different climates. The obtained
values were compared with the requirements of the Passivhaus standard, which served as a reference for nZEB.

Finally, the long-term measures and objectives proposed by different countries to reduce CO2 emissions and energy
consumption will be also analyzed, especially in the construction sector. The existing disparity in these countries’

future challenges suggested that the differences in their established requirements could widen in the future.

2. Background
The energy losses that occur through each enclosure of a thermal envelope can be calculated using Equation 1:

Energy losses through the enclosure in ayear = Y U - A - (degree-days per year) in W (1)

where U is the thermal transmittance of the enclosure (W/(m2+k)) and A is the enclosure area (m2).
The term annual degree-days indicates the differences throughout the year between the average outside
temperature Ti and a reference base temperature, Thase, at which it is considered necessary to air condition a

room. The sums account only for positive values, as indicated by the + superscript in Equations 2 and 3:

Heating Degree Days = HDD = Y (Tyase — T)T in K (2)
Cooling Degree Days = CDD = YY(T; — Tyase)T in K (3)

where N is the number of days in the winter (Equation 2) or in the summer (Equation 3) [33].

The thermal envelope is considered to include the basement walls, exterior walls, floor, roof, and any other building
element that encloses a conditioned space. This boundary also includes the boundary between the conditioned
space and any exempt or unconditioned space. The thermal transmittance is the time rate of heat flow through a
body from one of its bounding surfaces to the other surface for a unit temperature difference between the two
surfaces, under steady state conditions, per unit area Btu/(h « ft2 « °F) or W/(m2 « K). Both definitions were taken
from the International Energy Conservation Code (IECC) [34].

The thermal transmittance is calculated using Equation 4:

U= 1/Ri+ Y Nlei + 1/Re (4)

where Ai is the thermal conductivity of each material in W/(mK), ei is the thickness of each layer of material in meters,

and Ri and Re are the surface thermal resistances of the interior and exterior air, respectively, in m2 « K/W.

3. Analysis of annual envelope energy losses in a typical dwelling in the countries under study
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This section analyses the extent of the dysfunction created by setting transmittances according to the different
degree-day-variation climate zones defined by the different countries. The energy loss caused for the envelope will
be calculated for a typical dwelling in each of the climate zones in all of the countries under study to quantitatively

demonstrate that the energy losses are not harmonised.

3.1. Baseline data

To guarantee the best possible representation of actual conditions in the calculation of envelope energy losses, a
dwelling was selected that contained the most habitual percentage of enclosure typologies in the envelope (floor,
roof, exterior walls and hollows). These percentages corresponded to an exterior wall surface similar to the sum of
the floor and roof surfaces, and a window/door percentage of approximately 30% of the exterior wall surface [35].
This study considers a dwelling that matched these percentages and had a distribution and size coinciding with the
typical housing standards defined by the Spanish Institute for Diversification and Energy Savings (IDAE) and the
National Statistics Institute of Spain (INE) (Figure 1) [35, 36]. The 85 m2 dwelling is composed of a living room,
three double bedrooms, a kitchen, a bathroom, a half-bath, and a hallway. This typical dwelling was located in a real
residential housing block project with 20 dwellings (4 apartments per floor). Figure 2 shows the layout of the

dwelling and its location within the residential block. The studied dwelling is a real project [37].

Figure 1. Typical house and standard housing block that was used to calculate the envelope energy losses

Figure 2. Sections of the thermal envelope

The envelope surfaces and the environmental conditions considered for the calculation are summarised in Table 1.

Table 1. Parameters for the calculation of the energy losses

3.2. Calculation of the current envelope energy losses in a typical dwelling

Section 2 details the formulas used to calculate the energy losses through the building envelope (Equation 1) and
the number of heating and cooling degree-days in a year (Equations 2 and 3, respectively). If a base temperature of
20°C is used, which is the minimum base temperature recommended in EN 15251:2008 [33], the annual envelope

energy losses in a typical dwelling can be calculated according to Equation 5:

Energy loss through the enclosure in a year (in W) =2XU-"A- (degree —days per year in base of 20° C) :
(5)

The annual degree-days for each zone studied were selected from the ASHRAE database [39] and the free Free-Ze
software program [40].
Using the formula shown in Equation 5, the maximum annual envelope energy losses of a typical dwelling, as

defined in Section 3.1, will be calculated in all climate zones of Germany, France, England and Wales, Spain and
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the US, and it will be compared with the implementation of the Passivhaus Standard in Germany. Within each
climate zone, the city with the most adverse weather conditions was selected. Extreme cases, in which the data are
not within the limits of degree-days in the interval used to define the climate zone, were excluded.

The following conditions were adopted to select transmittance values for the calculation.

The rules impose limiting values of thermal transmittance in the building envelopes in all of the countries under
study, except for England and Wales. Thereafter, the facilities necessary for the planned building to achieve CO2
emissions and energy consumption levels below the established limits and obtain different energy qualifications
must be selected.

However, For England and Wales, it is necessary to choose initially the desired facilities and then calculated the
thermal transmittance of the enclosures required to comply with limiting CO2 emission and energy consumption
values. The Foundation for Housing Research proposes different thermal transmittance values that enable a
building to comply with maximum CO2 emissions for the different facility combinations. In this study, the limiting
transmittances provided by this Foundation were selected for the case when the most common combination of
facilities was sought, which corresponds to a block of homes with a gas heating system with radiators, supporting
solar panels to provide hot sanitary water [41-43]. The region with the most adverse weather and the most
restrictive transmittance data provided in the reference documents was selected.

In Germany, where no climate zones are defined and there is great variation in degree-days, two calculations were
performed: one for a city with one of the harshest climates and the other for a city with one of the mildest climates.
The comparison of these calculations will confirm that the requirement of the same transmittance nationwide exhibits
allowable energy losses that are notably different for different locations [44].

Spain has five established climate zones (A-E) in which different thermal transmittances are required for each part
of an envelope. The subzones that depend on the severity of the weather in the summer were not considered in the
calculation because the only parameter that changes is a modified solar factor for windows, which is not under
consideration in this analysis [45].

France defines three climate zones (H1-H3), which require the same transmittance in zones H1 and H2 and in
locations of H3 at altitudes greater than 800 m. Different transmittance values are imposed in the locations in zone
H3 at an altitude below 800 m [46, 47].

The US has 8 different climate zones (1-8), and the subzones that are created depending on humidity were also not
considered because the required transmittance limit does not vary between these subzones [34, 48, 49].

The limiting transmittance values for each enclosure required for each climate zone in the countries being studied

are shown in tables 2 and 3.

Table 2. Transmittances of each climate zones selected in EU

Table 3. Transmittances of each climate zones selected in USA

Moreover, the thermal bridges created by pillars were taken into account in the calculations. In Germany, DIN 4108
[50] provides different coefficients of thermal transmittance reduction for each type of thermal bridge, whereas

France sets no limits for thermal bridges but does give limits for the joints between enclosures. In England and
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Wales, the Government’s Standard Assessment Procedure for Energy Rating of Dwellings (SAP) also provides the
minimum allowable insulation values for thermal bridges, differentiating between a total of twenty-tree different types
[41]. In Spain, the Basic Document: Limitation of Energy Demand (DB HE 1) does not require any transmittance
limit for thermal bridges. This regulation only indicates that thermal bridges should be included in the calculation of
the average transmittance of enclosures when the surface of each is greater than 0.5 m2. The Passivhaus standard
requires that insulation always be located on the outside of the structure without any breakage to prevent thermal
bridges. The US does not provide any indications for thermal bridges.

The annual envelope energy losses in every climate zone were obtained using a spreadsheet program. Table 4
shows a calculation example of envelope energy losses using climate zone E in Spain as a reference. Table 5
shows the final results for each climate zone defined in each country studied in the EU and the US.

The deviations in the energy losses were calculated for each climate zone with respect to the results that would be
obtained for an nZEB that take as a reference requirements of the Passivhaus standard), these results being

considered the desired energy target in the EU.

Table 4. Enclosures energy losses for a typical house in climate zone E in Spain

Table 5. Degree-days of the cities for which the envelope energy losses were calculated and envelope energy losses in a typical house over the

course of one year

4. Discussion

The results obtained in paragraph 3 can be observed graphically in Figure 3.
Figure 3. Envelope energy losses for each country under study

It can be observed that any of the analysed regulations reaches the results obtained when applying the Passivhaus
standard requirements.

The analysis reveals that the envelope energy losses that were observed in France, Germany, and England and
Wales are notably similar. These countries are close to meeting the standard of nZEB. In fact, the regulations of
these countries indicate that future revisions are intended to achieve the Passivhaus standard values. Although
these countries are the closest to reaching the energy consumption targets, they exhibited a mean deviation of 34%
(see table 5 for typical deviation and mean deviation data).

The greatest energy losses were obtained in the US and the second greatest in Spain. The rules of both countries
allow for exceeding the obtained energy losses by more than 150% when applying the energy consumption target.
In addition, the German and US laws are the regulations with the greatest variance in energy loss values within the
respective territories. In the case of the US, the typical deviation between the energy losses of the different climate
zones was 15.9%. In Germany, where no climate zones are defined, the typical deviation was determined by
calculating the energy losses in the most severe climate and in an intermediate climate, so the result was a more

extreme calculation compared to the others. The obtained typical deviation in Germany was 13.71%. It was

6



226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

paradoxical to discover that the country closest to complying with energy consumption targets among all the
countries being studied was that with the least harmonisation in allowable envelope energy losses.

This analysis shows that the transmittance values required for different climate zones are not properly harmonised
because the energy efficiency factor controlled by the transmittance (the envelope energy loss) exhibits significantly
different values across climate zones.

At a transnational level, it could be observed that the minimum insulation requirements that the EU aims to achieve
by 2020 will most likely exceed the insulation needs required to achieve the energy consumption target, even though

its thermal insulation values are much greater than those required in the US.

5. Future challenges relative to energy consumption and CO2 emissions

After proving that the current energy efficiency requirements of buildings are not harmonized, this article examines
whether the long-term objectives set by the different countries (Table 6) will alleviate this problem. Each country has
regulations, guidelines, and energy plans that establish marked reductions in energy consumption and greenhouse
gas emissions. Furthermore, these reductions need to be achieved in the long term to meet the main requirements
set by the 2010 Directive on Energy Performance of Buildings. These objectives can be achieved by addressing the
areas of industry, transportation, and construction, the latter of which is responsible for 40% of the total energy
consumption and greenhouse gas emissions. Table 6 provides targets for greenhouse gas reductions, which are the
only values that are set by most of the studied plans and programs, assuming that a reduction in the energy

consumption is directly related to a reduction in the greenhouse gas emissions.

Table 6. Future challenges in the energy efficiency sector in the countries under study

Both the energy efficiency values and the future challenges are not currently harmonized, so it could make that the
differences in the required values increase in the future.

Although the goals for reducing energy consumption and greenhouse gas emissions set by Germany, France, and
the United Kingdom in 2020 (approximately 40%) are much more demanding than the minimum set by the EU
(nearly doubling the minimum), the values set by Spain are below the required minimum.

In addition, several countries, such as Germany and the UK, have recently approved Climate Change Adaptation
Plans, which include commitments to expanding the quantitative requirements mandated at the European level due
to changes in the climate-environmental setting that have occurred in recent years [54, 59]. Therefore, these
countries are attempting to reduce the greenhouse gas emissions by 80% by 2050 compared to the emissions
measured in 1990.

In the USA, the Policy Guide on Planning and Climate Change, which was adopted in 2012, suggests that a
reduction of at least 80% in greenhouse gas emissions compared with the 1990 levels should be achieved by 2050
[64]. Moreover, ASHRAE aims to achieve a 50% improvement in the requirements for energy efficiency in buildings.
Nevertheless, these reductions are only recommended and do not require a commitment to compliance, as is the
case in many European countries. The only commitment stipulated is a reduction of approximately 3% in the

emissions of greenhouse gases by 2030 compared to the 2006 levels. A review of the current emission levels set by
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the Clean Air Act [65] is being performed by various studies, such as the National Global Change Research Plan
2012-2021: A Strategic Plan for the U.S. Global Change Research Program [63], the Regulatory Plan and the
Semiannual Regulatory Agenda [66]. Other guidelines include improvements of existing laws to reduce CO2
emissions [67].

Based on all of the analyses conducted in this article, the need to create a comprehensive methodology regulated by
international organizations is inferred. This methodology should allow the unification of criteria and energy efficiency

objectives in buildings across different countries.

6. Conclusions

This work has demonstrated that the energy losses allowed through building envelopes for an example of a typical
dwelling vary substantially among the rules of the different countries under analysis, and even among the climate
zones of a single country. The results obtained in the countries under analysis located in northern Europe more
closely approached the requirements for the nZEB buildings that will go into effect in the EU starting in 2020.
Moreover, the Spanish and US requirements were shown to be very far from these targets (by more than 150%),
with greater differences in the most extreme climate zones. Because of the major disparity in the targets established
for these countries, the differences will be difficult to minimise in the immediate future. In addition, these objectives
were established using different improvement percentages over the current situation of each country, which are
already divergent.

The results indicate the need to establish a methodology that replaces the current requirements for maximum
transmittance values given by each country, which refer to climate zones defined using different degree-day
amplitude ranges. Strategies such as the IPODTE could contribute to closing this gap by defining the maximum
limits to envelope energy losses at an international level and adopting a world map of degree-days using a single
base temperature. Only in this way will all countries impose overall heat transfer coefficient buildings that use
identical consumption criteria.
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Interior of the house

Thermal envelope surface (m?)

Room Ter Partition

(°C) | Window | Enclosure Roof
walls

Bathroom 20 0 0 0 3.120
Half-Bath 20 1.575 3.725 0 3.370
Living Room 20 5.040 9.785 8.900 22.540
Kitchen 20 3.225 4.750 11.650 9.270
Bedroom 1 20 3.990 4.760 0 12.130
Bedroom 2 20 2.080 10.095 0 12.090
Bedroom 3 20 3.360 10.040 0 11.400

Exterior of the house

Toperativa Of Unheated adjoining enclosures = 12°C [38]

T External = sum of annual degree-days

(using a base temperature of 20°C)

Table 1. Parameters for the calculation of the energy losses




Transmitancias en W/m2K en cada pais estudiado de la EU [18, 34, 41-49]

Tipos de Cerramientos Espafia France U.K. Germany ﬁaézi'mgﬁ;
A B C D E H1-H3 | H3 <800

Walls in contact with the | 5, | g5 | 073 | 066 | 057 | 036 | 040 | 020 | 0.20 0.15
outside and the ground

Suelos (Forjado) 0.53 0.52 0.50 0.49 0.48 0.20 0.25 0.20 0.28 0.15

Cubiertas 0.50 0.45 0.41 0.38 0.35 0.20 0.25 0.14 0.20 0.15

Ventanas de PVC 5.10 4.55 3.35 2.9 2.77 1.30 2.10 1.50 1.30 0.8

Tabiqueria 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.15

Table 2. Transmitancias de cada zona climatica en estudio en la EU




Tipos de cerramientos

Transmitancias en W/m2K en cada zona climatica de USA [18, 34, 41-49]

1 2 3 4 5 6 7 8
ng:’ssl (’1'; contact ‘gz)huf,h; 0.86 0.70 0.59 0.51 0.45 0.40 0.40 0.29
Suelos (Forjado) 1.83 0.49 0.49 0.42 0.36 0.32 0.29 0.29
Cubiertas 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Ventanas de PVC 6.81 4.26 3.69 227 1.99 1.99 1.99 1.99
Tabiqueria 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

Table 3. Transmitancias de cada zona climatica en estudio en USA




Losses through enclosures =% U - A - (degree-days per year, calculated with a

baseline temperature of 20°C) (W)

Pillar losses (W)

No. of | Pilar | pjyjar
Enclosure Enclosure |Partition wall] Window Roof Total L area
pillars (m?) losses
Half-Bath 4223.86 4223.86 0.00
Bathroom 8212.73 0 16905.58 4562.31 29680.61 0.00
Living Room 21573.58 38.45 54097.85 30514.65 106224.52 1.50 1.13 | 2480.36
Kitchen 10472.61 50.33 34616.18 12549.73 57688.85 1.00 0.75 | 1653.57
Bedroom 1 10494.66 42827.46 16421.59 69743.71 1.00 0.75 | 1653.57
Bedroom 2 22257.05 0 22326.10 16367.44 60950.59 2.00 1.50 | 3307.14
Bedroom 3 15617.52 36065.23 15433.32 67116.07 1.00 0.75 | 1653.57
395628.22 10748.21
Total lo

Total envelope losses = 406376.42 W

Table 4. Enclosures energy losses for a typical house in climate zone E in Spain




Annual degree-day (K; calculated with a baseline temperature % excess
of 20°C) Annual |5 the
Climate]| . . envelope
City (region) nZEB
Country | zone . . energy
Heating Cooling Total losses (W) (154,323.44
w)
Passivhaus| Bavaria (Hof) 4595 70 4665 154323.44 0
Bavaria (Hof) 4595 70 4665 226893.42 47.02
Karlsruhe 3299 227 3516 172165.48 11,56
Cranaly Mean annual consumption 199529.45 29.29
Typical deviation between energy losses in the different climate zones 13.71%
. (4
H1, H2
and H3
(> 800 Strasbourg 3439 201 3640 205621.12 33.24
m)
H3 (< .
France Avignon 2456 481 2937 229631.13 48.80
800 m)
Mean annual consumption 216963.89 40.59
Typical deviation between energy losses in the different climate zones 5.54%
. (d
England Perth
and Wales (Auchterarder) 4204 7 4211 202889.27 31.47
A Malaga 1179 743 1922 346611.58 124.60
B Cordoba 1684 1045 2729 437443.88 183.46
C Oviedo 2711 87 2798 362931.74 135.18
Spain D Vitoria 3311 176 3487 398238.07| 158.05
E Burgos 3598 270 3868 406376.42 163.21
Mean annual consumption 387617.05 151.17
Typical deviation between energy losses in the different climate zones 8.34%
1 ACIE 0 2583 2583 |498605.61| 223.09
(Honolulu)
2 (P 378 2590 2968 401136.14|  159.93
(Yuma)
Oklahoma
3 (Vance AFB) 2220 1057 3277 388728.25 151.89
Oregon
4 (Redmond 3633 127 3760 328737.80 113.02
Roberts Field)
Michigan
5 (Saginaw Tri 3871 314 4185 329169.66 113.30
USA City Airport)
Montana
6 | (ButieBer 5116 42 5158 [391437.86| 153.65
ooney
Airport)
Alaska (Fort
7 Richardson 5958 2 5960 450610.05 191.99
BMYA)
Alaska
g | LeieEis 7515 40 7555  |534205.70|  246.22
International
Airport)
Mean annual consumption 404113.70 161.86
Typical deviation between energy losses in the different climate zones 15.9%
. (4

Table 5. Degree-days of the cities for which the envelope energy losses were calculated and envelope energy losses in

a typical house over the course of one year




LONG TERM GOALS

REPORT,
COUNTRY GUIDELINES, OR ENERGY GREENHOUSE
ACTION PLAN GENERAL OBJECTIVES CONSUMPTION GAS
REDUCTION REDUCTION
Action Plan for Energy Maintain the global temperature | 540, o 5000 | 209 in 2020
e . . increase below 2°C by reducing the
Efficiency: Realizing the energy consumption and using compared to that| compared to that
EUROPEAN Potential, 2008 [51] renewable energy. in 1990 in 1990
UNION
L Meet 20% of the energy consumption
European Directive: . .
needs in the EU with renewable _ _
2009/26/EC [52] sources by 2020.
Action Plan for Energy Promote the construction of houses | 45% by 2020 40% by 2020
Efficiency in Germany with a lower energy consumption of |compared to that| compared to that
[53] 60 to 40 kW-h/m? in 1990 in 1990
Meet 35% and 60% of the energy
GERMANY Report on energy requirements with renewable sources 80% by 2050
consumption [54] by 2020 and 2050, respectively. An _ compared to that
action plan is developed to achieve in 1990
this.
Energy efficiency report Achieve the Passivhaus standard
[65] values in the regulations. - -
- . T 40% by 2020
Climate Plan 2004 [56] | “-iMit the air conditioning resources | ooyt that _
and minimize the electricity demand. in 1990
Promote the use of renewable energy
FRANCE sources and energy recovery and
2011 Climate Change improve the energy efficiency of
Adaptation Plan [57] existing buildings in the energy and - -
construction sectors to achieve the
plan of 2004.
0,
2008 Climate Change Set total greenhouse gas reduction £l [y 2020
: . . _ compared to that
Act [58] values and intermediate deadlines. :
in 1990
Action Plan: A forward - 44% by 2013
eoom  [ookatwnatsangars | Sl greenouse gre eheton | compared o tha
may be in 2010-13 [59] ’ in 2006.
Standard Assessment . . .
Procedure: SAP 2009 Require the Pa_sswhaus tra_m_sm|ttance ~ ~
standard in future revisions.
[42]
Energy Savings and Provide valued measures to achieve | 15.9% in 2020 20% by 2020
SPAIN Efficiency Action Plan the objectives stated in Article 14 of |compared to that| compared to the
2011-2020 [60] Directive 2006/32/EC. in 1990 current value
Reduce the energy consumption by
Adve_-znced Energy 50% in non-residential buildings by 50% in non-
Design Guides of . . .
2015 compared to the consumption residential
ASHRAE [61] : . g _
stipulated by standard 90.1-2004. This| buildings by
recommended by U.S. is the first step t d tructi 2015
Department of Energy is the first step toward constructing
buildings with a net energy of zero.
. i Provide values to decrease the energy
U.S. CLere D Bl . consumption and greenhouse gas 3.5 quadrillion | Approximately 3%
Energy Codes Program: . der th | Bt by |in 2030 d
Building Energy Codes emissions under the new rules u per year by |in compare
obtained by the building energy 2030 to that in 2006

101: An Introduction [62]

standards.

National Global Change
Research Plan 2012-
2021[63]

Provide information on possible
measures to reduce climate change.
There is no commitment to achieve
any values.

(-): This information is not available

Table 6. Future challenges in the energy efficiency sector in the countries under study
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