000168538 001__ 168538
000168538 005__ 20260209162330.0
000168538 0247_ $$2doi$$a10.1016/j.xcrp.2025.103029
000168538 0248_ $$2sideral$$a147977
000168538 037__ $$aART-2025-147977
000168538 041__ $$aeng
000168538 100__ $$0(orcid)0000-0001-6189-1642$$aEscorihuela, Enrique$$uUniversidad de Zaragoza
000168538 245__ $$aEnhancement of molecular conductance through a supramolecular five-molecule assembly
000168538 260__ $$c2025
000168538 5060_ $$aAccess copy available to the general public$$fUnrestricted
000168538 5203_ $$aAchieving a comprehensive understanding and precise control of non-covalent interactions is crucial in molecular design and the development of functional molecular electronic devices, where supramolecular interactions enable the control of the local environment in molecular assemblies. Here, intermolecular interactions are used to create a complex supramolecular assembly by π stacking of 1,1′-bis(4-(methylthio)-phenyl)-[4,4′-bipyridine]-1,1′-diium chloride (1[Cl]2) and tetracyanoquinodimethane radical anion (TCNQ·−), whose crystal structure is determined by an electron diffraction technique, showing the presence of stacked 12+-2(TCNQ·−) units. This solid dissolves in aqueous solutions of cucurbit[8]uril (CB[8]), which acts as the host, to form a supramolecular five-molecule {12+-2(TCNQ·−)@2CB[8]} assembly. Its transport properties result in a significant enhancement of conductance. Theoretical studies confirm the stability of the supramolecular assembly and corroborate the enhancement in conductance. These results present a simple and effective method for stabilizing and enhancing charge transport efficiency through a combination of non-covalent and supramolecular interactions, with significant implications for the development of future (opto)electronic devices.
000168538 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2021-001202-M$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126132NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2024-155562NB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-129593B-I00
000168538 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000168538 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000168538 700__ $$aRegalado Aguilar, Mauricio
000168538 700__ $$aMondal, Biswajit
000168538 700__ $$aCuscó, Sara
000168538 700__ $$0(orcid)0000-0003-1378-0571$$aRomero, Pilar
000168538 700__ $$aDavidson, Ross J.
000168538 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000168538 700__ $$aBenet-Buchholz, Jordi
000168538 700__ $$aRuiz, Eliseo
000168538 700__ $$aAragonès, Albert C.
000168538 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000168538 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000168538 773__ $$g7, 1 (2025), 103029 [10 pp.]$$tCell Reports Physical Science$$x2666-3864
000168538 8564_ $$s7294016$$uhttps://zaguan.unizar.es/record/168538/files/texto_completo.pdf$$yVersión publicada
000168538 8564_ $$s1689425$$uhttps://zaguan.unizar.es/record/168538/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000168538 909CO $$ooai:zaguan.unizar.es:168538$$particulos$$pdriver
000168538 951__ $$a2026-02-09-14:43:00
000168538 980__ $$aARTICLE