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SUMMARY

Achieving a comprehensive understanding and precise control of non-covalent interactions is crucial in mo-

lecular design and the development of functional molecular electronic devices, where supramolecular inter-

actions enable the control of the local environment in molecular assemblies. Here, intermolecular interactions

are used to create a complex supramolecular assembly by π stacking of 1,1′-bis(4-(methylthio)-phenyl)-

[4,4′-bipyridine]-1,1′-diium chloride (1[Cl]2) and tetracyanoquinodimethane radical anion (TCNQ⋅− ), whose

crystal structure is determined by an electron diffraction technique, showing the presence of stacked 12+-

2(TCNQ⋅− ) units. This solid dissolves in aqueous solutions of cucurbit[8]uril (CB[8]), which acts as the host,

to form a supramolecular five-molecule {12+-2(TCNQ⋅− )@2CB[8]} assembly. Its transport properties result

in a significant enhancement of conductance. Theoretical studies confirm the stability of the supramolecular

assembly and corroborate the enhancement in conductance. These results present a simple and effective

method for stabilizing and enhancing charge transport efficiency through a combination of non-covalent

and supramolecular interactions, with significant implications for the development of future (opto)electronic

devices.

INTRODUCTION

The application of molecules with appropriately designed chem-

ical structures to perform one or more of the fundamental func-

tions of the elements of an electronic circuit has given a major

boost to the field of molecular electronics in recent decades.1–4

In this context, electrode-molecule-electrode junctions have

proven to be remarkably versatile research tools, providing the

opportunity to directly measure the electrical properties of single

molecules connected to two macroscopic electrodes under an

applied bias voltage. Several strategies are available to fine-

tune the electrical properties in single-molecule systems, exert-

ing control over the molecular and electronic structure through

external stimuli,5–14 such as luminescent excitation,6 solvent

effects,7 or electrochemical8,15 or electrostatic9 environmental

gating; through supramolecular interactions10,11,16; or through

intermolecular complexation.10,12–14

Supramolecular interactions, which encompass hydrogen

bonds, van der Waals forces, ionic interactions, or π-π interac-

tions, among others, play a crucial role in molecular recogni-

tion,17,18 catalyst design,19,20 or the assembly of larger molecu-

lar architectures,21,22 as they largely govern the structure and

properties of matter. In this sense, achieving a thorough under-

standing and precise control of these interactions is crucial for

molecular design and the development of functional de-

vices.16,23 Some of these intermolecular contacts can involve

orbital interactions, inducing partial or complete charge transfer

between different species, leading to the emergence of new

transport pathways through supramolecular structures that

are based mainly on the existence of weak interactions along

these transport pathways. These pathways can differ signifi-

cantly from the original properties of the precursors.10,13,24–27

On the other hand, intermolecular complexation methodolo-

gies based on the formation of host-guest complexes have also

been widely used in various applications, playing a crucial role

in applications such as molecular recognition,28,29 catalysis,30

and drug encapsulation and delivery31 or for designing supramo-

lecular electronic devices.12,16,32–34 In these supramolecular
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structures, the host can modify the local environment of the

guest, inducing changes in its properties, such as its solubility.12

In addition, the host can restrict the conformation geometry and

intramolecular mobility of the guest molecules, as well as avoid

harmful intermolecular interactions with other species, thereby

favoring the formation of a stable assembly in the single-molecule

junction and reducing the spread of conductance values.5,12,35

Encouraged by the potential of the abovementioned supra-

molecular strategies, we present here the formation of a non-

covalent assembly (Scheme 1) that significantly boosts its

electronic properties up to 10− 2.7 G0 (2 × 10− 3 G0) by the com-

bination of (1) the formation of a π-stacked three-molecule 12+-

2(TCNQ⋅− ) complex and (2) its insertion into a host cucurbituril

molecule to form a supramolecular host-guest complex, which

provides stability to the system in solution, enhancing its solubi-

lity and simultaneously shielding the complex against potential

unwanted interactions with other species. To the best of our

knowledge, only one similar case has been reported: a PtII met-

allocycle that, due to structural deformation caused by the in-

clusion of a fullerene within the cycle, exhibits an increase of

one order of magnitude in conductance through the metallo-

cycle.36 Importantly, our system features an entirely different

chemical composition and shows a greater increase in the

conductance of two orders of magnitude driven by supramolec-

ular interactions.

RESULTS AND DISCUSSIONS

π-stacked supramolecular formation

The π-stacked supramolecular system is formed by adding a 10− 4

M aqueous solution of 1,1′-bis(4-(methylthio)-phenyl)-[4,4′-bipyr-

idine]-1,1′-diium chloride (1[Cl2]) directly over lithium tetracyano-

quinodimethanate (LiTCNQ) powder in a 1:2 molar ratio, respec-

tively. Figure 1 shows the UV-visible (UV-vis) spectra before and

after this addition. Solutions of 1[Cl2] are yellow with two absorp-

tion bands centered at 260 and 400 nm. After the addition, the so-

lution changes to a magenta color, where the spectrum displays

bands attributed to both 12+ and TCNQ⋅− radical anions, albeit

with variations in intensity and position. Nevertheless, the most

outstanding feature is the appearance of a new intense and broad

band at 546 nm associated with a charge transfer band (Figures 1

and S1),37 which evidences a notable interaction between 12+ and

TCNQ⋅− . In addition, after 24 h, the formation of a dark precipitate

is observed, caused by the low solubility of the formed neutral

12+-2(TCNQ⋅− ) assemblies in water (Figure 1), as is also the

case for similar complexes in polar and non-polar sol-

vents.24,38–41 The appearance of the precipitate, together with

the practically colorlessness of the solution, indicates the com-

plete reaction of almost all components, with no precursors re-

maining in the liquid phase, confirming the formation of the supra-

molecular π-stacked 12+-2(TCNQ⋅− ) system.

Scheme 1. Supramolecular five-molecule assembly design

(A) Structures of the viologen derivative, 12+, tetracyanoquinodimethane radical anion (TCNQ⋅− ), and the host molecule cucurbit[8]uril, CB[8].

(B) A scheme showing the strategy used to form the supramolecular five-molecule assembly, {12+-2(TCNQ⋅− )@2CB[8]}, in aqueous solution and to determine its

electrical properties.
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The absence of peaks in the 1H-NMR spectrum for an

aqueous solution of 12+-2(TCNQ⋅− ) (Figure S7) suggests a para-

magnetic behavior, that is, the presence of unpaired electrons in

this system,42 which is corroborated by electron paramagnetic

resonance (EPR). The observation of only a broad signal in the

EPR spectra for 12+-2(TCNQ⋅− ), both in powder and in an

aqueous solution, with a g factor between 2.0081 and 2.0072

(Figure S8) confirms the presence of a radical moiety, in which

other types of nuclear coupling are not distinguished, as has

been observed for similar TCNQ complexes.43 Additionally,

the band at 2,188 cm− 1 characteristic of the nitrile group

(νC≡N) in the infrared (IR) spectrum (Figure S9) corroborates

the presence of the TCNQ⋅− moiety,25,43,44 with a small shift

with respect to the band for the LiTCNQ (2,203 cm− 1). All these

characterization techniques confirm that TCNQ⋅− molecules

keep their radical character in 12+-2(TCNQ⋅− ), while π interac-

tions with the viologen should induce a small change in its elec-

tronic structure.45

It is noteworthy that a mixture in a 1:1 ratio also gives rise to

the formation of the same complex, as a dark violet precipitate

is observed. Nevertheless, after the precipitation, the solution

is yellow, as an 12+(Cl− )2 aqueous solution, indicating that

some 12+(Cl− )2 remains in the solution without forming the com-

plex. This is corroborated by UV-vis spectroscopy (Figure S2),

as well as by 1H-NMR, as the NMR spectrum for a 1:1 ratio

(12+-TCNQ⋅− ) solution shows the same peaks as those observed

for a 12+(Cl− )2 aqueous solution (Figure S7). These results could

indicate a supramolecular assembly in a 1:2 ratio (12+-

2(TCNQ⋅− )) as the predominant form, which is confirmed by sin-

gle-crystal structure determination via 3D electron diffraction

(see Figure 2 and the supplemental information for further de-

tails). Additionally, it is noted that a LiTCNQ aqueous solution un-

dergoes a progressive dimerization process (Figure S3), culmi-

nating in complete dimerization after 48 h. The mixture of the

dimeric species (TCNQ2)2− in aqueous solution with 12+(Cl− )2
does not produce any significant difference in the UV-vis spec-

trum of the original 12+(Cl− )2 solution, revealing the non-forma-

tion of a supramolecular system between these two species un-

der these conditions (Figure S4).

Supramolecular five-molecule assembly

Once the formation of the 12+-2(TCNQ⋅− ) complex is proved, cu-

curbit[8]uril (CB[8]), which has been reported to form host-guest

complexes with a variety of alkyl viologen derivatives with inclu-

sion constants up to ∼106,12,46 is added in excess (20% more

due to the presence of water in the CB[8]) to the 12+-2(TCNQ⋅− )

once precipitation has occurred. The addition of CB[8] in the

aqueous solution dissolves the precipitated 12+-2(TCNQ⋅− )

system, resulting in a homogeneous magenta solution that re-

mains stable over time. The UV-vis spectrum is similar to the

one obtained for the 12+-2(TCNQ⋅− ) solution before precipitation

(Figure 1). It reveals that the supramolecular interaction of the 12+-

2(TCNQ⋅− ) complex is retained after the addition of CB[8], and

more importantly, it is consistent with inclusion within the CB[8]

cavity. High-resolution electrospray mass spectrometry was em-

ployed to elucidate the supramolecular species formed by adding

the CB[8] molecule. In Figure S10, two direct infusion mass

spectra have been collected using two concentrations of CB[8],

1:1 and 1:2, with the 12+-2(TCNQ⋅− ) system. In both cases, the

species detected are the same, and the systems with viologen

are those that are also found in the conductance measurements:

the free 12+, 12+@CB[8], and, finally, the more complex species,

including the five-molecule assembly, {12+-2(TCNQ⋅− )@2CB[8]}.

Also, there is a very small amount related to 12+@2CB[8] and an

intense peak of free CB[8], especially in the case of 1:2 stoichiom-

etry. It is expected to form an assembly with two CB[8] mole-

cules, as the cavity size of this host system is adequate to accom-

modate two stacked molecules (one TCNQ⋅− and half a 12+

viologen). This result is confirmed by density functional theory

(DFT) calculations, which will be presented later. Numerous at-

tempts to resolve the {12+-2(TCNQ⋅− )@2CB[8]} complex by elec-

tron diffraction have shown that two types of crystals precipitate

separately: 12+-2(TCNQ⋅− ) and CB[8] crystals.

The 1H-NMR spectrum for the {12+-2(TCNQ⋅− )@2CB[8]}

aqueous solution shows peaks attributed to the excess amount

of CB[8] in solution and very low intense peaks attributed to the

formation of the 12+@CB[8] host-guest complex (Figure S7),12

suggesting the presence of a small amount of free 12+ in the

Figure 1. UV-vis spectroscopy characterization

UV-vis spectra for 10− 4 M aqueous solutions of 12+ and 12+-2(TCNQ⋅− ) in a 1:2

ratio and after 24 h and for {12+-2(TCNQ⋅− )@2CB[8]}. See the supplemental

information for a time-dependent density functional theory (TDDFT) analysis.

Figure 2. Crystallographic structure

Ortep drawing (thermal ellipsoids drawn at a 50% level) showing the structure

of 12+-2(TCNQ⋅− ) with the labeling of the atoms.
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solution, while the absence of the peaks attributed to (TCNQ2)2−

(Figure S7) demonstrated that all TCNQ present in the solution

forms the 12+-2(TCNQ⋅− ) complex, as confirmed by EPR and

IR spectroscopy. The IR spectrum for {12+-2(TCNQ⋅− )@2CB[8]}

displays a band at 2,194 cm− 1 attributed to the TCNQ⋅− moiety

(Figure S9)25,43,44; meanwhile, the EPR spectrum shows a similar

band to that observed for 12+-2(TCNQ⋅− ), albeit with a slight shift

of the g factor attributed to the presence of the CB[8] molecules

(Figure S8).

Electronic properties

The electronic properties of the five-molecule {12+-2(TCNQ⋅− )

@2CB[8]} host-guest complex are determined by employing

the tapping47,48 (dynamic) STM-BJ approach (Figure S15A).

Briefly, in the tapping approach, the STM tip electrode is repeat-

edly driven into and out of contact with the substrate electrode

under STM piezo servo’s current-feedback-loop-off condi-

tions.47 During the tip electrode retraction, the current signal is

monitored in real time and shows an exponential decay. When

the metallic contact between the two electrodes is broken, indi-

vidual molecules can make electrical contact between both elec-

trodes and be detected as current steps or plateaus in the current

decay, attesting to single-molecule junctions. Thousands of cur-

rent decays are collected (as shown in Figure S16) and then clus-

tered by using our own designed unsupervised machine learning

statistical algorithm (see the supplemental information for details)

to distinguish those decays with plateaus from those without

plateaus. 1D semi-log conductance and 2D semi-log conduc-

tance-displacement histograms are constructed from these

clustered datasets with (Figure 3) and without (Figure S23) sin-

gle-molecule junctions.

Figures 3A and 3B show the 1D conductance and 2D conduc-

tance-displacement semi-log histograms of the single-molecule

tapping measurements for an aqueous solution of {12+-

2(TCNQ⋅− )@2CB[8]}. Three molecular conductance signatures

are obtained with mean values of 10− 2.7, 10− 4.3, and 10− 4.6 G0

in well-differentiated regimes, which are labeled as high conduc-

tance (HC), medium conductance (MC), and low conductance

(LC) and are attributed to the {12+-2(TCNQ⋅− )@2CB[8]} host-

guest complex and the 12+@CB[8] and 12+ systems, respec-

tively (Table S9), as will be demonstrated later. All three regimes

have yields (junction probability formation) of 22.3%, 14.2%, and

8.9%, respectively, over the total of the current decays (16,386

current decays without and with junctions) (see Table S10).

These values are within the typical range for single-molecule cur-

rent measurements, as reported in previous studies.49–51

According to previous studies, the observed MC and LC

values are assigned to the presence of residual 12+@CB[8] and

free 12+,12 respectively. Nevertheless, to attest to the nature of

both MC and LC molecular conductance signatures in our sys-

tem, control tapping measurements of 12+@CB[8] and 12+ are

carried out. The conductance signatures obtained for both

systems (Figures 3C–3F, respectively) confirm the assignment

of these conductance signatures to these species, MC to

12+@CB[8] and LC to 12+. While 2D conductance-displacement

maps provide a qualitative visualization of the trace population

distribution, quantitative plateau lengths are extracted from the

statistical analysis of 1D histograms (see Figures S20–S22).

Figure 3. Electrical properties

1D conductance and 2D conductance-displacement semi-log histograms of

clustered tapping datasets for the (A and B) {12+-2(TCNQ⋅− )@2CB[8]} host-

guest complex and (C and D) 12+@CB[8] and (E and F) 12+ systems, with

single-molecule junctions. The green, yellow, and red dashed traces represent

Gaussian fits for the high-conductance (HC), medium-conductance (MC), and

low-conductance (LC) regimes, respectively. Black traces correspond to the

Gaussian fitting of the background offset current.

(A and B) Histograms were built after analyzing a total of 16,386 current decays.

Fitting parameters: LC (mean: − 4.63, SD: 0.912, FWHM: 1.93), MC (mean:

− 4.28, SD: 1.113, FWHM: 2.12), and HC (mean: − 2.69, SD: 1.55, FWHM: 3.03).

(C and D) Histograms built after analyzing a total of 4,581 current decays.

Fitting parameters: − 4.19, SD: 0.885, FWHM: 1.97. Note the consistency

between these fitting parameters and those obtained for the same MC current

signature present in (A).

(E and F) Histograms built after analyzing a total of 5,121 current decays. Fitting

parameters: mean = − 4.73, SD = 0.945, FWHM = 2.23. The scale bar repre-

sents the counts normalized, from 0 to 100, to the total number of processed

captures to have equivalent ranges between sets of experiments. The applied

bias voltage is set to +30 mV. For a detailed quantitative evaluation of plateau

lengths, the reader is referred to the 1D histogram analysis in Figures S20–S22.
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The mean plateau lengths for MC and LC junctions were found to

be 0.82 and 0.86 nm, respectively, once a ∼0.5 nm gold snap-

back was added52 (see Figures S20 and S21). These observa-

tions are consistent with those reported in earlier studies on

12+@CB[8] and 12+, respectively.10,12 Therefore, the HC signa-

ture is assigned to the {12+-2(TCNQ⋅− )@2CB[8]} supramolecular

host-guest complex based on the mass spectra of Figure S10.

Assigning these values to the other {1@2CB[8]} system detected

in the mass spectrometer can be discarded, as these HC values

are not observed in experiments performed without TCNQ. We

speculate that the increase in conductance value by almost

two orders of magnitude, compared to 12+@CB[8], may be trig-

gered by the intermolecular interaction between 12+ and TCNQ⋅−

and its stabilization by CB[8].13,53 An increase in the molecular

conductance in the same order of magnitude as that obtained

here was also observed for a supramolecular complex between

tetracyanoethylene (TCNE) and α-quaterthiophene in single-

molecule junctions,13 while only an enhancement in molecular

conductance up to 10-fold is observed for the redox pair

(V2+/+) to the radical cationic state in the electrolytic solution of

a similar viologen derivative.15,51 Additionally, as 12+-2(TCNQ⋅− )

is insoluble (see Figure 1), molecular conductance histograms

for this system, in a 1:1 ratio, using tapping measurements,

only showed that the signature attributed to free 12+ remained

in the aqueous solution once the 12+-2(TCNQ⋅− ) complex was

precipitated (Figure S17).

The three molecular junctions’ mean plateau lengths followed

a negative correlation with the conductance, as HC < MC < LC.

HC signatures show the shortest mean plateau length of

0.71 nm, where a ∼0.5 nm gold snapback has been added

(Figure S22), decreasing meaningfully from MC and LC charac-

teristic values due to the intrinsically significantly lower resis-

tance of the HC molecular junctions.54,55 In them, the junction

stability is reduced as a consequence of the inherent local heat-

ing resulting from more robust electron-phonon interactions56

and due to electromigration-induced metal atom mobility.

This is more pronounced in such HC levels,56,57 as the conduc-

tance of the HC level is more than two orders of magnitude

higher than that of the MC and LC levels. Previous STM

break-junction studies54 have highlighted similar effects, which

can account for the differences in plateau lengths observed in

our experiments.

Tapping control experiments of CB[8] molecules in solution

with the presence of TCNQ⋅− were also performed to discard

any effect of one or both combined species over the detected

HC signature. In these control experiments, no conductance sig-

nals are detected (Figure S18). To ensure that CB[8] detection

does not go unnoticed despite having molecular junctions,

more robust and stable junctions over time are promoted by em-

ploying the blinking approach.58 The blinking static approach

avoids the mechanical stress commonly induced by the tapping

dynamic approach, since the latter entails instabilities to the mo-

lecular junction.54,59 Hence, CB[8] measurements with and

without TCNQ⋅− in solution are repeated using the same blinking

approach (Figure S19). Molecular junctions of 10− 4.0 G0, in

agreement with previous results,60 and an average lifetime of

ca. 0.09 s (inset, Figure S19) are detected for both sets of blink-

ing experiments. Therefore, this result excludes, on the one

hand, any effect of the TCNQ⋅− over the CB[8] conductance in

our current region of interest and, on the other hand, that the ob-

tained conductance is due to the CB[8], as attested by previous

studies.60 We attribute the short lifetimes of CB[8] junctions, in

comparison with common anchoring groups,54,61 to the low af-

finity of the O-based terminal groups for Au electrodes,48 which

reinforces the absence of the CB[8] current signal in the tapping

measurements (Figure S18). Therefore, tapping and blinking

measurements also rule out any possible relationship between

CB[8] and TCNQ⋅− , as free molecules or combined, as the origin

of the HC signatures.

Theoretical calculations

To corroborate the experimental results, a theoretical analysis

divided into two parts is carried out. In the first part, the aim is

to analyze the stability of the different supramolecular species

that can be formed. In the second part, the transport properties

through the {12+-2(TCNQ⋅− )@2CB[8]} host-guest complex are

studied, and the increase in conductance for the HC case with

respect to free 12+ is corroborated.

For the study of the stability of the supramolecular species, the

fhi-aims computer code62,63 is used, and all systems are opti-

mized using the Perdew-Burke-Ernzerhof (PBE) functional,64

adding dispersion terms using the many-body methodology,65

and a tight numerical basis is used. The optimized geometries

and calculated energy values are included as supplemental

information. For the study, the sequence of experimental steps

is followed as a reference. Firstly, in the reaction of 12+ with

TCNQ⋅− , it is found that the formation of the neutral π-stacked

12+-2(TCNQ⋅− ) system is favorable in comparison with a 1:1 stoi-

chiometry by more than 70 kcal/mol. These data confirm the

experimental tendency to form such systems. Likewise, the ten-

dency of TCNQ⋅− to form dimeric species (TCNQ2)2− is well

known and has been mentioned previously. If we compare the

formation energy of the alternating TCNQ⋅− -12+-TCNQ⋅− com-

plex with a 12+-(TCNQ2)2− complex with TCNQ⋅− maintaining

the dimer structure, the alternating structure is about 11 kcal/

mol more stable, in agreement with a previously described con-

trol experiment. Once this alternating complex is formed, the size

TCNQ⋅− -12+-TCNQ⋅− is well matched to the CB[8] to form su-

pramolecular assemblies. At the level of the theoretical study,

we have considered both the formation of {12+-

2(TCNQ⋅− )@CB[8]} with the three molecules inside CB[8]

(Figure 4A) and the system concordant with the mass spectrom-

etry results, {12+-2(TCNQ⋅− )@2CB[8]}, where a supramolecular

complex with five molecules is formed with each CB[8] in each

side of the 12+ including a TCNQ⋅− . The formation of the {12+-

2(TCNQ⋅− )@CB[8]} system from 12+-2(TCNQ⋅− ) and CB[8] is

energetically favored, − 62 kcal/mol. Nevertheless, the incorpo-

ration of a second CB[8] (Figure 4B) is 41.7 kcal/mol more stable

than {12+-2(TCNQ⋅− )@CB[8]} and a free CB[8]. Thus, these data

corroborate the results of mass spectrometry. Additionally, an

analysis of host-guest structures with CB[8] in the Cambridge

Structural Database reveals a clear preference for having two

relatively flat molecules inside rather than including three.66

Analysis of the TCNQ⋅− -12+-TCNQ⋅− unit’s electronic struc-

ture indicates that there is not complete charge transfer from

TCNQ⋅− to 12+ to give a complex with three neutral molecules.
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The electrostatic interaction is larger and causes the charged

species to be retained (in agreement with the EPR and IR

spectra; Figures S8 and S9, which show that the TCNQ⋅− radical

character is maintained). In addition, there is also an interaction

of the π systems of the three molecules, which leads to a delocal-

ization of the spin density on the π orbitals of 12+ (Figure 4C).

The spin density in Figure 4C corresponds to the antiparallel

spin alignment of the two TCNQ⋅− radicals, which, in the calcu-

lation, appears at 285 cm− 1 and is more stable than the ferro-

magnetic coupling between them. This spin delocalization mod-

ifies the electronic structure of 12+ and would justify the

significant change in the transport through the molecule. To

this electronic effect, an important structural effect also has

to be added, since the dihedral angle between the two

pyridine rings of the viologen molecule goes from 46.2◦ to

47.8◦ for the optimized 12+ and {12+@CB[8]} structures to 14.7◦

in {12+-2(TCNQ⋅− )@2CB[8]}.

The calculation of the transport properties is performed with

the same fhi-aims program using the AITRANSS module.67–69

In this case, a meta-GGA r2SCAN functional70 is used, as it pro-

vides a better description of the energies of the frontier orbitals

near the Fermi level than the generalized gradient approxima-

tion (GGA) functional, such as the PBE used in the calculation

of the formation of supramolecular species. Additionally, cor-

rections for relativistic scalar effects are included in this calcu-

lation using the zero-order regular approximation (ZORA)

method, especially due to the presence of gold atoms, as im-

plemented in the fhi-aims code.71 Here, we will focus on the

transport of the HC peak in the conductance histograms, in

comparison with MC and LC values that were already assigned

to the presence of residual 12+@CB[8] and free 12+, respec-

tively.12 In Figure 5, the transmission curves in the Fermi-level

region for 12+ and the supramolecular complexes {12@CB[8]}

and {12+-2(TCNQ⋅− )@2CB[8]} are shown.

These transmission values at the Fermi level confirm the exper-

imental data, indicating an increase in the conductance of the su-

pramolecular {12+-2(TCNQ⋅− )@2CB[8]}complex compared to

12+ and {12+@CB[8]}, with the former system exhibiting an

almost perfectly resonant transport. To analyze in more detail

the nature of the change in the experimental conductance values

between the 12+ and {12+-2(TCNQ⋅− )@2CB[8]} systems, two

additional calculations have been performed on the {12+-

2(TCNQ⋅− )@2CB[8]} supramolecular structure. The first one re-

moves the CB[8] molecules, and the second one also eliminates

the TCNQ⋅− anions. The result of the calculation with only the

free 12+ but with the flatter structure, as it is in the {12+-

2(TCNQ⋅− )@2CB[8]} system, only implies an increase by a factor

of two in the conductance in comparison with free 12+. However,

the conductance through the 12+-2(TCNQ⋅− ) system is around 15

times larger than that of free 12+. Thus, such results confirm that

the supramolecular interaction between 12+ and TCNQ⋅− is the

key factor responsible for the significant enhancement in the

conductance.

In conclusion, a high-conductance molecular electronic de-

vice has been developed using a supramolecular assembly

strategy. An initial π-stacked system is formed by directly add-

ing an aqueous solution of a viologen derivative (1[Cl2]) over

LiTCNQ powder in a 1:2 ratio, respectively. The formation of

the three-molecule system is evidenced by a qualitative color

change and by UV-vis spectroscopy, in agreement with similar,

previously reported systems. The neutral 12+-2(TCNQ⋅− ) sys-

tem precipitates in water, which can be dissolved by encapsu-

lating it into two host molecules (CB[8]), forming a supramolec-

ular five-molecule assembly that provides stability in solution to

the system. The electronic properties of this supramolecular

complex, {12+-2(TCNQ⋅− )@2CB[8]}, lead to an increase in the

molecular junction conductance value close to two orders of

magnitude in comparison with 12+. DFT calculations confirm

Figure 4. DFT calculations

(A and B) DFT-optimized structures (PBE functional + many-body dispersion) of (A) {12+-2(TCNQ⋅− )@CB[8]} and (B) {12+-2(TCNQ⋅− )@2CB[8]}.

(C) Calculated spin density of the TCNQ⋅− -12+-TCNQ⋅− unit with the structure in {12+-2(TCNQ⋅− )@2CB[8]}.
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the stability of the supramolecular assembly formed and also

corroborate the increase in transport through 12+ due to the

interaction with TCNQ⋅− in the formed supramolecular assem-

bly {12+-2(TCNQ⋅− )@2CB[8]}.

The fact that such enhancement of conductance is based on

supramolecular interactions makes this strategy suitable for

the potential fabrication of molecular electronic components

with reversible states, such as molecular switches, transistors,

or memory storage devices.

METHODS

Materials

1[Cl2]12 and LiTCNQ72 were synthesized according to previously

published procedures. Cucurbit8 uril hydrate (CB8) was pur-

chased from Sigma-Aldrich (Merck) and used as received. To

prevent the dimerization process of the LiTCNQ ((TCNQ2)2− ), a

10− 4 M aqueous solution of 1[Cl2] was added directly to the

LiTCNQ powder. CB8 powder was added directly to the 12+-

2(TCNQ⋅− ) suspension and under sonication for 10 min. Water

was purified on a Milli-Q system (resistivity: 18.2 MΩ⋅cm).

Characterization

UV-vis spectra of solutions were obtained with a Varian Cary 50

Bio UV-vis spectrophotometer in quartz cuvettes with an inci-

dent angle of 90◦. NMR experiments were performed at 298 K

on a Bruker Neo 500 spectrometer in H2O using excitation

sculpting with gradients to suppress the water signal (pulse

sequence zgesgp from the Bruker library). TMSP-d4 (3-(trime-

thylsilyl)propionic-2,2,3,3-d4 acid sodium salt) was used as an

internal reference. EPR studies were carried out in a Bruker

ELEXSYS 580 spectrometer, capable of performing experi-

ments in continuous mode in X and Q bands (around 9.5 and

34 GHz, respectively) and in pulsed mode in the X band. Atten-

uated total reflection IR (ATR-IR) spectra were recorded on a

PerkinElmer Spectrum 100 Fourier transform infrared spectros-

copy (FTIR spectroscopy) spectrometer. Electrospray mass

spectra were registered in an LTQ Orbitrap Velos equipment.

Single-crystal structures were obtained by using sample grains

in a XtalLAB Synergy-ED from Rigaku-JEOL, provided with a

HyPix-ED detector and a LiB6 200 kV electron source (200 kV,

101.20 μA) in shutterless operation mode. The wavelength

was 0.0251 Å. The total dose for the five merged crystal grains

was 37.125 e− /Å2, with a condenser strength of 1. Magnification

diffraction: 50 cm, IL1 projection focus: hex 5301 (21245), CL

10 μm, SA 100 μm, distance (camera length): 643 mm, scan

width: 0.25◦, and exposure time 1.00 s/degree. Meanwhile,

data processing was carried out using CrysAlisPro 44.89a (Ri-

gaku) and structure processing using Olex2 v.1.5-ac7-014

OlexSys 2004–2024. See the supplemental methods for more

details.

Electrical measurements

The electrical properties were determined by employing the tap-

ping (dynamic) and/or blinking (static) STM-BJ approaches. See

the supplemental methods for further details.
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3. Marqués-González, S., and Low, P.J. (2016). Aust. J. Chem. 69, 244–253.

4. Su, T.A., Neupane, M., Steigerwald, M.L., Venkataraman, L., and Nuck-

olls, C. (2016). Chemical principles of single-molecule electronics. Nat.

Rev. Mater. 1, 16002.

5. Tang, C., Ayinla, R.T., and Wang, K. (2022). Beyond electrical conduc-

tance: progress and prospects in single-molecule junctions. J. Mater.

Chem. C 10, 13717–13733.

6. Bei, Z., Huang, Y., Chen, Y., Cao, Y., and Li, J. (2020). Photo-induced car-

bocation-enhanced charge transport in single-molecule junctions. Chem.

Sci. 11, 6026–6030.

7. Fatemi, V., Kamenetska, M., Neaton, J.B., and Venkataraman, L. (2011).

Environmental Control of Single-Molecule Junction Transport. Nano Lett.

11, 1988–1992.

8. Wu, C., Qiao, X., Robertson, C.M., Higgins, S.J., Cai, C., Nichols, R.J., and

Vezzoli, A. (2020). A Chemically Soldered Polyoxometalate Single-Mole-

cule Transistor. Angew. Chem. Int. Ed. 59, 12029–12034.

9. Song, H., Kim, Y., Jang, Y.H., Jeong, H., Reed, M.A., and Lee, T. (2009).

Observation of molecular orbital gating. Nature 462, 1039–1043.

10. Yu, H., Li, J., Li, S., Liu, Y., Jackson, N.E., Moore, J.S., and Schroeder,

C.M. (2022). Efficient Intermolecular Charge Transport in π-Stacked Pyri-

dinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. J. Am.

Chem. Soc. 144, 3162–3173.

11. Nishino, T., Hayashi, N., and Bui, P.T. (2013). Direct Measurement of Elec-

tron Transfer through a Hydrogen Bond between Single Molecules. J. Am.

Chem. Soc. 135, 4592–4595.

12. Zhang, W., Gan, S., Vezzoli, A., Davidson, R.J., Milan, D.C., Luzyanin, K.V.,

Higgins, S.J., Nichols, R.J., Beeby, A., Low, P.J., et al. (2016). Single-

Molecule Conductance of Viologen–Cucurbit[8]uril Host–Guest Com-

plexes. ACS Nano 10, 5212–5220.

13. Wang, K., Vezzoli, A., Grace, I.M., McLaughlin, M., Nichols, R.J., Xu, B.,

Lambert, C.J., and Higgins, S.J. (2019). Charge transfer complexation

boosts molecular conductance through Fermi level pinning. Chem. Sci.

10, 2396–2403.

14. Almughathawi, R., Hou, S., Wu, Q., Liu, Z., Hong, W., and Lambert, C.

(2021). Conformation and Quantum-Interference-Enhanced Thermoelec-

tric Properties of Diphenyl Diketopyrrolopyrrole Derivatives. ACS Sens.

6, 470–476.

15. Li, J., Pudar, S., Yu, H., Li, S., Moore, J.S., Rodrı́guez-López, J., Jackson,
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48. Aragonès, A.C., Aravena, D., Cerdá, J.I., Acı́s-Castillo, Z., Li, H.P., Real,

J.A., Sanz, F., Hihath, J., Ruiz, E., and Dı́ez-Pérez, I. (2016). Nano Lett.
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