000168559 001__ 168559 000168559 005__ 20260211123807.0 000168559 0247_ $$2doi$$a10.1016/j.tca.2018.08.017 000168559 0248_ $$2sideral$$a108096 000168559 037__ $$aART-2018-108096 000168559 041__ $$aeng 000168559 100__ $$0(orcid)0000-0002-8015-4469$$aDelgado, M.$$uUniversidad de Zaragoza 000168559 245__ $$aIntercomparative tests on viscosity measurements of phase change materials 000168559 260__ $$c2018 000168559 5060_ $$aAccess copy available to the general public$$fUnrestricted 000168559 5203_ $$aPhase change materials (PCM) are capable of storing thermal energy within a small temperature range due to their high latent heat. When designing a thermal energy storage (TES) system with PCMs, besides the phase change enthalpy, thermal conductivity and density, viscosity based on temperature must be characterized to take into account natural convection. Taking advantage of the facilities of the different research groups working within an international network, a set of intercomparative tests were executed to determine the viscosity based on the temperature of two PCMs: octadecane and the commercial paraffin RT70 HC. Three laboratories have participated, which have used three different rheology equipments: two controlled stress rheometers, AR-G2 from TA Instruments and MCR 502 from Anton Paar and a translational rheometer, IMETER. The intercomparative tests were executed based on a starting methodology approach defined previously by some of the authors. The highest deviations were observed when temperature-controlled geometries or temperature hoods were not used at elevated test temperatures due to the temperature gradients within the sample, as consequence of the heat losses due to the room temperature. Consequently, special attention must be focused on the temperature control, since a uniform temperature throughout the sample should be guaranteed. 000168559 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ENE2014-57262-R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-87711-R 000168559 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es 000168559 590__ $$a2.251$$b2018 000168559 591__ $$aCHEMISTRY, ANALYTICAL$$b40 / 84 = 0.476$$c2018$$dQ2$$eT2 000168559 591__ $$aTHERMODYNAMICS$$b21 / 60 = 0.35$$c2018$$dQ2$$eT2 000168559 591__ $$aCHEMISTRY, PHYSICAL$$b86 / 147 = 0.585$$c2018$$dQ3$$eT2 000168559 592__ $$a0.722$$b2018 000168559 593__ $$aCondensed Matter Physics$$c2018$$dQ1 000168559 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1 000168559 593__ $$aInstrumentation$$c2018$$dQ1 000168559 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000168559 700__ $$0(orcid)0000-0001-7360-4188$$aLázaro, A.$$uUniversidad de Zaragoza 000168559 700__ $$aBiedenbach, M. 000168559 700__ $$aGamisch, S. 000168559 700__ $$aGschwander, S. 000168559 700__ $$aHöhlein, S. 000168559 700__ $$aKönig-Haagen, A. 000168559 700__ $$aBrüggemann, D. 000168559 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi. 000168559 773__ $$g668 (2018), 159-168$$pThermochim. acta$$tTHERMOCHIMICA ACTA$$x0040-6031 000168559 8564_ $$s648017$$uhttps://zaguan.unizar.es/record/168559/files/texto_completo.pdf$$yPostprint 000168559 8564_ $$s1681428$$uhttps://zaguan.unizar.es/record/168559/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000168559 909CO $$ooai:zaguan.unizar.es:168559$$particulos$$pdriver 000168559 951__ $$a2026-02-11-10:27:09 000168559 980__ $$aARTICLE