

1 **Title:** Intercomparative tests on viscosity measurements of phase change materials

2 **Authors:** Mónica Delgado^{a,*}, Ana Lázaro^a, Michael Biedenbach^b, Sebastian Gamisch^b, Stefan
3 Gschwander^b, Stephan Höhlein^c, Andreas König-Haagen^c, Dieter Brüggemann^c

4 ^a Aragón Institute for Engineering Research (I3A), Thermal Engineering and Energy Systems
5 Group, University of Zaragoza. Agustín Betancourt Building, C/María de Luna 3, 50018 Zaragoza,
6 Spain. Phone: (+34) 876 555 584.

7 ^b Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany

8 ^c Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy
9 Technology (ZET), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

10 *Corresponding author: monica@unizar.es

11 **Keywords:** Viscosity, Rheology, Natural convection, Phase Change Materials, Round Robin Test

12 **Highlights**

13

- Advances in intercomparative tests of viscosity of PCMs.
- Three different rheometers/institutions have been involved.
- Viscosity based on temperature of octadecane and RT70 has been determined.
- Results mainly influenced by the true sample temperature.

17 **Abstract**

18 Phase change materials (PCM) are capable of storing thermal energy within a small temperature
19 range due to their high latent heat. When designing a thermal energy storage (TES) system with
20 PCMs, besides the phase change enthalpy, thermal conductivity and density, viscosity based on
21 temperature must be characterized to take into account natural convection. Taking advantage of the
22 facilities of the different research groups working within an international network, a set of
23 intercomparative tests were executed to determine the viscosity based on the temperature of two
24 PCMs: octadecane and the commercial paraffin RT70 HC. Three laboratories have participated,
25 which have used three different rheology equipments: two controlled stress rheometers, AR-G2 from
26 TA Instruments and MCR 502 from Anton Paar and a translational rheometer, IMETER. The
27 intercomparative tests were executed based on a starting methodology approach defined previously
28 by some of the authors. The highest deviations were observed when temperature-controlled
29 geometries or temperature hoods were not used at elevated test temperatures due to the temperature
30 gradients within the sample, as consequence of the heat losses due to the room temperature.
31 Consequently, special attention must be focused on the temperature control, since a uniform
32 temperature throughout the sample should be guaranteed.

1 **Nomenclature**

2 H Gap (μm)

3 P Pressure (kPa)

4 T Temperature ($^{\circ}\text{C}$)

5 *Greek symbols*

6 $\dot{\gamma}$ Shear rate (s^{-1})

7 η Steady shear viscosity ($\text{Pa}\cdot\text{s}$)

8 η^* Complex viscosity ($\text{Pa}\cdot\text{s}$)

9 ω Angular frequency ($\text{rad}\cdot\text{s}^{-1}$)

10 *Subscripts*

11 m Melting

12 *Abbreviation*

13 CR Cooling rate

14 CSP Concentrated Solar Power

15 ECES Energy Conservation through Energy Storage

16 PCM Phase Change Material

17 SHC Solar Heating and Cooling

18 TES Thermal Energy Storage

19

20

21

22

23

1 **1. Introduction**

2 TES systems with PCM can provide high energy storage densities due to the latent heat associated
3 to the solid-liquid phase change. Natural convection is caused by temperature gradients in the liquid
4 phase, and it strongly influences the heat transfer. Apart from the buoyancy forces, natural convection
5 is mainly influenced by viscous forces. When designing a TES system with PCM for a particular
6 application, analytical or numerical models for an optimized system performance are required.
7 Therefore, the determination of the viscosity property is relevant. Current models that consider natural
8 convection take a constant viscosity value, which could lead to inappropriate TES designs, as shown
9 in the article by Costa et al. [1]. They analysed a TES system where octadecane was confined in a
10 horizontal cylinder. Initially they took a constant viscosity value, but they subsequently observed that
11 changes in the viscosity value caused differences in the melting front.

12 To date, there are few reported studies about the rheological properties of PCMs. The most recent
13 works are those by Ferrer et al. [2-3], which propose empirical correlations to predict viscosity based
14 on the temperature of paraffins and fatty acids.

15 More studies can be found related to the viscosity determination of molten salts for their use as heat
16 transfer and thermal storage media in solar power fields, and whose thermophysical and rheological
17 properties directly affect CSP system performance. Its determination is essential to assess the heat
18 transfer process and the pumping energy consumption in these solar power systems. The main
19 obstacles in the determination of the viscosity of molten salts are: the high measurement
20 temperatures, their low viscosity values (close to the detection limit of the equipment) and the
21 corrosive nature of the molten salts [4]. This gives rise to an important scattering of data between
22 different authors for the same salt/mixture [5-6]. Recently, Muñoz-Sánchez et al. [7] have measured
23 solar salt-based nanofluids and two commercial solar salts with different purity grade at different shear
24 rates and temperatures, where two different rheometers with different geometries have been used to
25 analyse among others the influence of the rheometer measuring configuration.

26 Taking advantage of the various facilities of different research groups working within the framework
27 of the “Joint Task 42 (SHC Programme)-Annex 29 (ECES Programme) of the International Energy
28 Agency: Compact Thermal Energy Storage”, a set of intercomparative tests were proposed to
29 determine the viscosity of PCMs: octadecane and the commercial paraffin RT70 HC, taking as a
30 starting point the procedure previously proposed by Delgado et al. [8] to check its reproducibility. The
31 final objective would be to develop standardized methodologies to measure the rheological properties
32 of PCMs reliably and reproducibly.

33 **2. Materials and methods**

34 **2.1 Materials**

1 Two organic materials have been characterized: 1) octadecane, specifically the product Parafol 18-
 2 97 supplied by the Sasol company having a minimum purity by weight of 97% [9] and 2) the paraffin
 3 RT70 HC supplied by Rubitherm [10]. Previous to the measurement of these substances, a general
 4 purpose viscosity standard, S3, from Paragon Scientific [11] was measured. This standard oil was
 5 chosen because its viscosity is similar to that of both octadecane and RT70 HC in the melted phase.
 6 Table 1 describes the main technical specifications of these materials.

Product	Substance	Supplier	T _m (°C)	Purity	Production process
Parafol 18-97 [9]	Octadecane	Sasol Company	27.85 [11]	>97%*	Fischer-Tropsch process
RT70 HC [10]	Paraffin	Rubitherm	70.00 [9]	-	-
S3 [11]	Viscosity standard oil	Paragon Scientific	-	-	-

7 **Table 1.** Materials description

8 **2.2 Apparatus and instrumentation**

9 Three institutions have participated. Two of them used a controlled stress rheometer and the other a
 10 translational rheometer. Table 2 shows the technical specifications of these instruments, as well as
 11 their features (in particular, geometries and temperature controller used). The measurement
 12 methodology is different for the IMETER translational rheometer. A double-walled glass cylinder was
 13 filled with the sample. A temperature sensor was submerged inside. This was connected to a
 14 thermostatic bath, which controls the sample and the measuring body temperature. The linear
 15 displacement is produced by a translational movement of the geometry, different from the angular
 16 displacement produced by the rotational movement of the geometries of the controlled stress
 17 rheometers.

Institution	Instrument	Methodology	Geometries	Temperature control	Temperature controlled-hood/heated geometry	Minimum torque (rotational) [$\mu\text{N}\cdot\text{m}$]	Minimum torque (oscillatory) [$\mu\text{N}\cdot\text{m}$]
Fraunhofer ISE	MCR 502, Anton Paar	Controlled stress rheometer	Plate 60 mm	Peltier plate	Yes	0.001	0.0005
			Concentric cylinder	Peltier concentric cylinder	Yes		
University of Zaragoza-I3A	AR-G2, TA Instruments	Controlled stress rheometer	Plate 40 mm made of stainless steel	Peltier plate	No	0.01	0.003
University of Bayreuth	Imeter, Method 5 DIVA	Translational viscometer and rheometer	Concentric cylinder	Temperature chamber	Yes		

18 **Table 2.** Technical specifications of the equipment used in the intercomparative tests.

19 **2.3 Method**

1 As mentioned in the introduction, the procedure adopted has taken as a starting point the procedure
2 proposed in a previously published work [8]. This procedure can be followed when working with a
3 controlled stress rheometer.

4 A Peltier plate as temperature controller and a plate as geometry were selected. The plate geometry,
5 in contrast to the cone geometry, allows modification of the gap during the course of the test in order
6 to absorb the volume change, when viscosity based on temperature is being measured in a dynamic
7 mode. This would not be necessary when working with concentric cylinders.

8 In practice, due to the availability of geometries and temperature controllers of each institution, the
9 procedure could not be adopted completely. For this reason the measurements were also executed
10 with other geometries in addition to the plate, such as with the concentric cylinder. Plates with different
11 diameters were also used.

12 Before executing the tests, the following steps were carried out where possible:

- 13 1) Calibrating the inertia of the geometry attached to the drive shaft.
- 14 2) Performing a standard rotational mapping as a baseline
- 15 3) Establishing the zero gap

16

17 **2.3.1 Procedure adopted to obtain viscosity at a specific temperature**

18 The samples to be measured were placed on the Peltier plate. The amount of sample was controlled
19 in order to have a gap between 500 and 1000 μm . Both rotational and oscillatory mode were used for
20 their characterization. The procedure adopted, to the greatest possible extent bearing in mind that
21 different devices were used, was the following:

22 **Rotational and translational mode**

- 23 1) Conditioning step
24 To keep the sample at the set temperature during 5 minutes. No shearing.
- 25 2) Steady state flow
26 From 0.001 to 1000 s^{-1} if possible at the set temperature, measuring 10 points per decade,
27 distributed in logarithm mode.
28 Steady flow conditions must be defined or assured in a possible way, for example:
29 Tolerance lower than 5% during three consecutive measurements. Maximum time of 1 minute
30 if tolerance is not fulfilled.

31 **Oscillatory mode**

- 32 1) Conditioning step
33 To keep the sample at the set temperature during 5 minutes. No shearing.
- 34 2) Frequency sweep step

1 From 0.01 to 100 Hz measuring 10 points per decade, distributed in logarithm mode, at a
2 stress within the linear viscoelastic region at the set temperature.

3
4 Due to the fact that the measurement methodology is different for the IMETER translational
5 rheometer, a procedure as similar as possible was adopted. Prior to the measurements, the minimum
6 and maximum applicable shear rate by the IMETER rheometer was determined, which is restricted
7 through the weighing cell, linear actuator, experimental setup and viscosity of the specimen. Once
8 determined, measurements within this range were executed with at least three successive
9 measurements under the same conditions.

10 For the sake of clarity, all the procedure details have been compiled in table 3 for the shear sweep
11 tests and in table 4 for the oscillatory tests.

Shear sweep			
	AR-G2	MCR 502	IMETER
Geometry	Plate 40 mm	Plate 60 mm, Titanium	Concentric cylinder Outer cylinder 16.005 mm Inner cylinder 14.29 mm
Gap [µm]	500-1000	500-1000	857.5 (at 25 °C, function of the temperature)
Time for thermal stabilization [min]	5	5	5
Shear rate range [s⁻¹]	0.001-1000	0.001-1000	5-300 (octadecane, S3 at 25 °C and 50 °C) 1-800 (RT70 HC, S3 at 60 °C and 80 °C)
Mode	log	log	Equally spaced number of points within shear rate range
Points per decade	10	10	-
Sample period [s]	10	10	Defined by the available stationary movement distance of the cylinder (approx. 25 mm) and the applied shear rate
Definition of steady state	Tolerance<5% during 3 consecutive measurements. Maximum time=1 min	Option not available in MCR502	Constant force acting on the measuring cylinder; no tolerance specified;

12 **Table 3.** Details of the procedures adopted by each rheometer for the shear sweep tests.
13
14
15
16
17
18
19
20

Frequency sweep			
	AR-G2	MCR 502	IMETER
Geometry	Plate	Plate 60 mm, Titanium	-
Gap [µm]	500-1000	500-1000	-
Time for thermal stabilization [min]	5	5	-
Frequency range [Hz]	0.01-100	0.01-100	-
Mode	log	log	-
Points per decade	10	10	-
Oscillation stress [Pa]	1	1	-

1 **Table 4.** Details of the procedures adopted by each rheometer for the frequency sweep tests.

2 **2.3.2 Procedure adopted to measure viscosity based on temperature**

3 A second round of tests considered viscosity measurements based on temperature in a dynamic
4 mode. Due to the changes in temperature, changes in the sample volume affect the sample loading
5 when testing with the plate geometry (not with concentric cylinders). The gap could have been
6 modified during the measurement. However, this was not done in this second round, since it was
7 assumed that volume changes were not going to be significant for the result within the temperature
8 range of the tests. The procedure adopted was the following:

10 **Rotational and translational mode:**

11 1) Conditioning step
12 To keep the sample at the higher temperature of the temperature range to be measured
13 during 20 minutes. No shearing.
14 2) Temperature ramp
15 At 100 s-1 from the higher temperature of the temperature range to the lower at a cooling
16 rate of 0.5 K/min.

17 **Oscillatory mode:**

18 1) Conditioning step
19 To keep the sample at the higher temperature of the temperature range to be measured
20 during 20 minutes. No shearing.
21 2) Temperature ramp
22 At 1 Hz and with a stress of 1 Pa from the higher temperature of the temperature range to
23 the lower at a cooling rate of 0.5 K/min.

1 For the IMETER translational rheometer, as was mentioned in section 2.3.1, the measurement
 2 methodology is different so a procedure as similar as possible was adopted. Namely, the viscosity
 3 based on temperature was measured by isothermal steps and at three cooling rates: 0.86, 0.45 and
 4 0.44 K/min.
 5 Again, for the sake of clarity, the procedure is well detailed in table 5 and 6 for the rotational (and
 6 translational) and oscillatory mode respectively.

	AR-G2	MCR 502	IMETER
Geometry	Plate 40 mm	Plate 60 mm, Titanium	Concentric cylinder Outer cylinder 16.005 mm Inner cylinder 14.29 mm
Gap [μm]	500-1000	500-1000	857.5 (at 25 °C, function of the temperature)
Time for thermal stabilization [min]	20	20	20
Shear rate [s ⁻¹]	100	100	100
Ramp rate [K/min]	0.5	0.5	0.86/0.44/0.45
Sampling time [s]	10	30	Approx. 8 s

7 **Table 5.** Details of the procedures adopted by each rheometer for the temperature ramp tests in the
 8 rotational and translational mode.

	AR-G2	MCR 502	IMETER
Geometry	Plate 40 mm	Plate 60 mm, Titanium	-
Gap [μm]	500-1000	500-1000	-
Time for thermal stabilization [min]	20	10 (Parafol 18-97) 20 (RT70 HC)	-
Frequency [Hz]	0.048	1	-
Ramp rate [K/min]	0.5	0.5	-
Oscillation stress [Pa]	1	1	-

9 **Table 6.** Details of the procedures adopted by each rheometer for the temperature ramp tests in the
 10 oscillatory mode.

11 3. Results and discussion

12 For a better understanding of the following subsections where the results are discussed, the tests
 13 performed by each institution have been compiled in table 7.

14

15

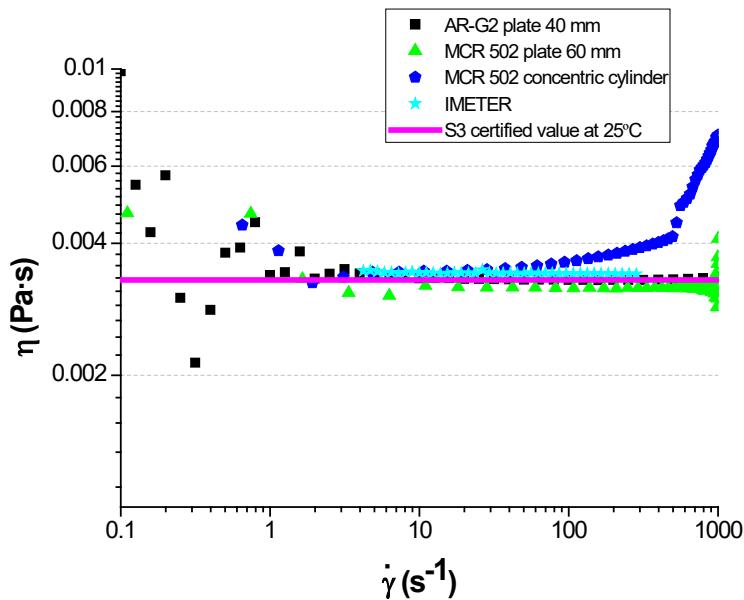
16

Sample	Equipments	Rotational / translational tests						Oscillatory tests					
		Shear sweep	Gap [μm]	P [kPa]	Temperature ramp	Gap [μm]	Pressure [kPa]	Freq. sweep	Gap [μm]	P [kPa]	Temperature ramp	Gap [μm]	P [kPa]
S3	AR-G2	At 25°C	555	98.56	-	-	-	At 25°C	570	99.03	-	-	-
		At 50°C	620	98.96	-	-	-	At 50°C	580	99.03	-	-	-
		At 60°C	645	98.85	-	-	-	At 60°C	645	98.85	-	-	-
		At 80°C	645	98.85	-	-	-	At 80°C	645	98.85	-	-	-
	MCR 502	At 25°C	600	99.56	-	-	-	At 25°C	600	99.25	-	-	-
		At 50°C	700	98.89	-	-	-	At 50°C	600	99.68	-	-	-
		At 60°C	732	101.11	-	-	-	At 60°C	738	101.11	-	-	-
		At 80°C	702	101.03	-	-	-	At 80°C	720	101.04	-	-	-
	IMETER	At 25°C	857.5	97.62	-	-	-	-	-	-	-	-	-
		At 50°C	855.3	97.18	-	-	-	-	-	-	-	-	-
		At 60°C	854.4	97.93	-	-	-	-	-	-	-	-	-
		At 80°C	852.6	97.90	-	-	-	-	-	-	-	-	-
Parafol 18-97	AR-G2	At 35°C	960	97.87	45-30°C (0.5 K/min) Isothermal at 30, 35, 40 and 45°C.	990	98.86	At 35°C	925	97.30	45-30°C (0.5 K/min)	765	98.25
	MCR 502	At 35°C	800	99.03	45-30°C (0.5 K/min)	820	99.03	At 35°C	690	99.53	45-30°C (0.5 K/min)	885	99.91
	IMETER	At 35°C	856.6	98.63	45-30°C (0.86 K/min and 0.44 K/min) Isothermal at 30, 35, 40 and 45°C.	856.6	98.02 (0.86 K/min) 97.99 (0.44 K/min) 98.10 (Isothermal)	-	-	-	-	-	-
RT70 HC	AR-G2	At 80°C	720	98.63	95-70°C (0.5 K/min) Isothermal at 80°C.	720	98.63	At 80°C	720	98.63	95-70°C (0.5 K/min) Isothermal at 80°C.	500	98.63
	MCR 502	At 80°C	811	101.12	95-70°C (0.5 K/min)	684	98.84	At 80°C	811	98.84	95-70°C (0.5 K/min)	680	98.84
	IMETER	At 80°C	852.6	98.09	95-70°C (0.45 K/min) Isothermal at 80 and 95°C.	852.6	98.05 (0.45 K/min) 98.09 (Isothermal)	-	-	-	-	-	-

Table 7. Details of the tests performed by each institution.

1 Standard uncertainties: AR-G2: $u_r(P)=1\%$; $u_r(\gamma)=0.86\%$; $u_r(H)=0.7\%$; $u_r(T)=0.1\text{ K}$; MCR 502: $u_r(P)=1\%$; $u_r(\gamma)=0.42\%$ $u_r(H)=0.65\text{ }\mu\text{m}$; $u_r(T)=0.03\text{ K}$;

2 IMETER: $u_r(P)=0.005\text{ kPa}$; $u_r(\gamma)=0.13\%$; $u_r(H)=15\text{ }\mu\text{m}$ at 25°C ; $u_r(T)=0.03\text{ K}$

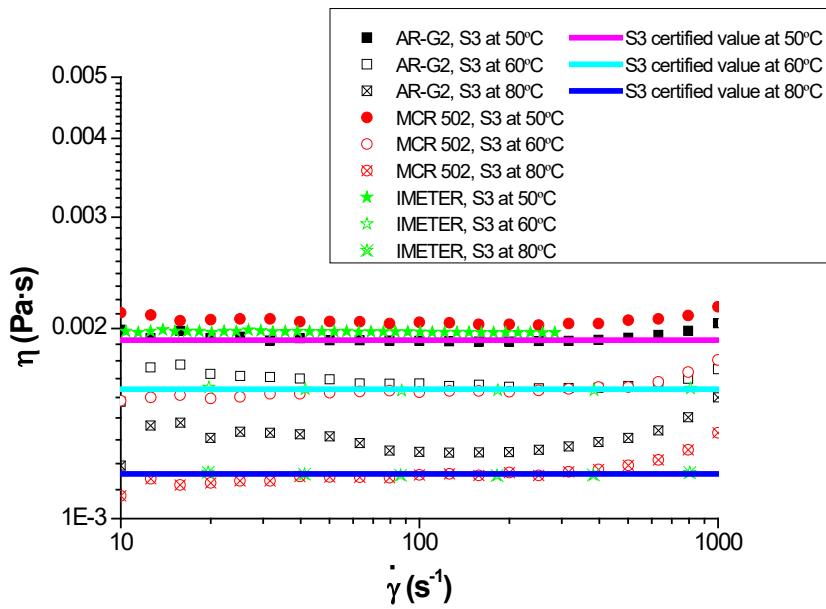

1 **3.1 Standard oil S3**

2 On the one hand, the standard oil S3 was measured at 25°C and 50°C, to verify the accuracy of the
3 instruments when measuring octadecane in the melted phase, and at 60 and 80°C when measuring
4 the RT70 HC.

5 **3.1.1 Results according to procedure 2.3.1**

6 **Results in rotational mode**

7 Values with a deviation from the certified value below 10% were obtained at 25°C with the different
8 instruments and geometries used for the viscosity characterization from a shear rate value of
9 approximately 10 s⁻¹, with the exception of the MCR 502 rheometer when using the concentric
10 cylinder. Figure 1 shows a high deviation at high shear rates, probably due to secondary flows found
11 with high-speed testing of low viscosity liquids with this type of geometry.


13 **Figure 1.** Comparison of the viscosity values of the standard oil S3 at 25°C obtained in rotational
14 and translational mode.

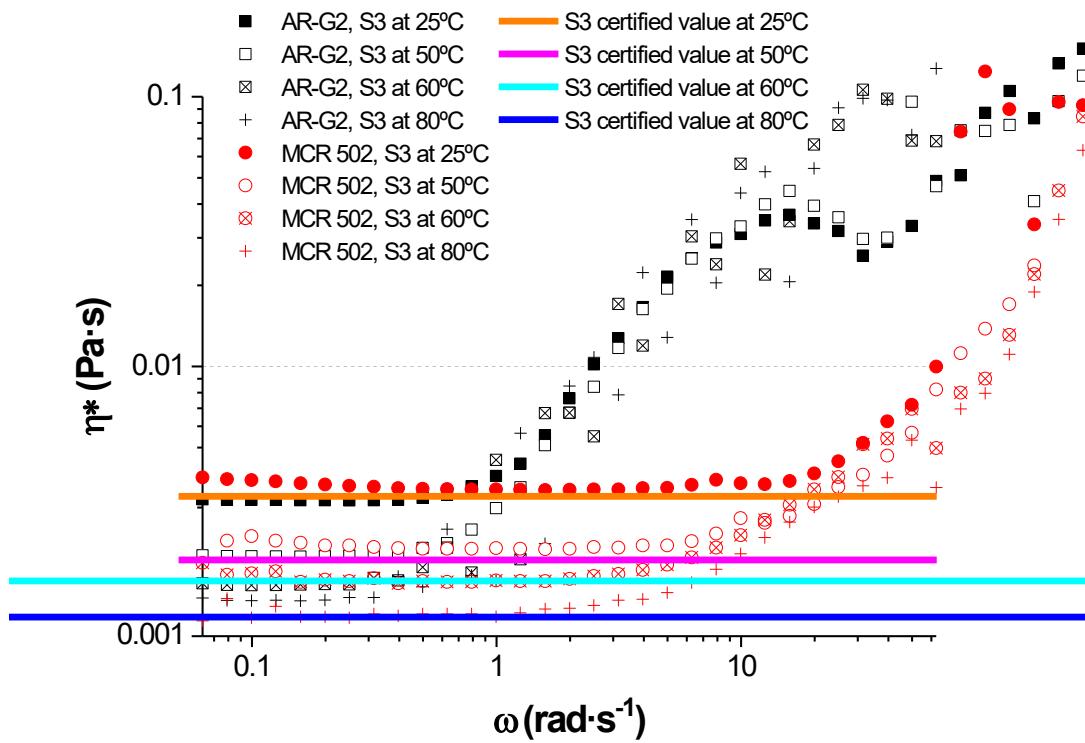
15 Dispersion of the results was also observed when testing at low shear rates. Due to the low viscosity
16 of the standard oil, when low shear rates are used, the torque to be applied by the rheometer should
17 be very low, below the minimum torque of the rheometer, leading to erroneous results. Viscosity
18 values with the IMETER translational rheometer at low shear rates were not measured, since the
19 shear rate range where accurate measurements could be obtained was determined previously. For
20 this reason, viscosity was measured from 5 s⁻¹ instead of from 0.001 s⁻¹.

21 This pattern was also observed when the standard oil S3 was measured at 50, 60 and 80°C. Figure
22 2 shows the results obtained focusing on the shear rate range of 10-1000 s⁻¹. At first sight, it is

1 observed that a larger deviation was obtained when the standard oil was characterized with the AR-
2 G2 at 80°C, probably due to temperature gradients inside the sample, since the geometry used was
3 not an upper heated plate for Peltier plate (see table 1). As mentioned in Laun et al. [12], a quantitative
4 mismatch of viscosities measured by different rheometers or laboratories for identical samples is
5 often due to errors in determining the true sample temperature. Possible reasons for errors are: 1) an
6 offset between set and actual sample temperature, 2) radial or axial temperature gradients within the
7 sample or 3) a lag of sample temperature behind the set heating and cooling rate. In this case, as
8 deviations are not observed at low temperature, being an isothermal measurement, it could be
9 thought that temperature gradients within the sample at 80°C are taking place, since a non-heated
10 geometry is being used. Barker and Ian Wilson [13], aware of this problem, analysed both
11 experimentally and numerically the temperature profile within a sample contained between the upper
12 and the lower disks of a rotational rheometer fitted with a temperature-controlled lower plate, and the
13 effect of temperature gradients within the system.

14 Table 8 compiles the shear rate range where the deviation from the certified viscosity values is lower
15 than 10%, together with the average deviation and the relative standard uncertainty. For the AR-G2
16 rheometer, a higher test temperature means a higher deviation, due to the problem already
17 mentioned, which could be solved by means of upper heated geometries. It can be stated that all the
18 instruments obtain precise and accurate results within those shear rate ranges with the exception of
19 the AR-G2 at 80°C. Even so, an average deviation of 8.05% is achieved. It should be pointed out that
20 the deviation observed for the MCR 502 rheometer is higher at 25°C and 50°C than at 60°C and 80°C
21 because the experiments at 25°C and 50°C were carried out without the temperature hood. The
22 technicians underestimated the influence of the heat loss on the measurement results due to the
23 room temperature of the laboratory (30°C) during the tests performed. It is clearly observed for the
24 AR-G2 rheometer, that the experimental window (or shear rate range) becomes narrower as a
25 consequence of the viscosity decrease, when increasing the temperature.

1


2 **Figure 2.** Comparison of the viscosity values of the standard oil S3 at 50, 60 and 80°C obtained in
 3 rotational and translational mode.

	Shear rate range (s^{-1})	Average deviation (%)	Relative standard uncertainty (%)
25°C			
AR-G2	2-1000	1.00	0.26
MCR 502	1.65-982	-3.77	0.34
IMETER	4.22-283.10	2.03	0.08
50°C			
AR-G2	6.31-1000	1.20	0.39
MCR 502	12.60-794	7.18	0.24
IMETER	7.13-284.18	1.33	0.06
60°C			
AR-G2	10-1000	3.12	0.66
MCR 502	5.01-794	-0.92	0.50
IMETER	2.10-808.70	0.85	0.54
80°C			
AR-G2	79.43-251.20	8.05	0.17
MCR 502	5.01-794	-1.10	0.75
IMETER	2.10-803.6	1.43	0.87

1 **Table 8.** S3 measurements in rotational and translational mode at 25, 50, 60 and 80°C. Shear rate
 2 range where deviation observed is lower than 10% together with the average deviation and relative
 3 standard uncertainty.

4 **Results in oscillatory mode**

5 Both the AR-G2 and MCR 502 rheometers (both controlled stress rheometers) allow measurements
 6 in oscillatory mode. Figure 3 shows the results obtained by these two rheometers working in
 7 oscillatory mode together with the viscosity certified values. It is observed that in contrast to the
 8 rotational mode, reliable results at low and medium angular frequency values were obtained. At the
 9 same angular frequency range (0.06-0.10 rad/s), the MCR 502 rheometer obtained higher deviations.
 10 From 1 rad/s the deviation observed in the measurements executed by the AR-G2 rheometer
 11 increased abruptly, while the MCR 502 rheometer even decreased this deviation (see table 3). This
 12 could be due to a higher inertia of the motor and geometry, since a stainless steel geometry was
 13 attached to the AR-G2 shaft, which is quite massive. It is also clearly observed that for the MCR 502,
 14 the deviation begins to rise at lower angular frequencies for higher temperatures, an indicator of the
 15 sample inertia. Secondary flows increase the measured torque and therefore incorrectly increase the
 16 apparent viscosity. It must also be pointed out that in contrast to the results in rotational mode for the
 17 MCR 502, which showed a negative deviation (except at 50°C because the measurement was
 18 executed without the temperature-controlled hood), this deviation was positive when measured in
 19 oscillatory mode.

1 **Figure 3.** Comparison of the viscosity values of the standard oil S3 at 25, 50, 60 and 80°C obtained
 2 in oscillatory mode.

3 Table 9 compiles, as with the rotational tests, the angular frequency range where the deviation from
 4 the certified viscosity values is lower than 10%, as well as the average deviation in that range and
 5 the relative standard uncertainty. As in the rotational mode, the AR-G2 at 80°C provides elevated
 6 deviations due to possible temperature gradients inside the sample, and maybe as a result of
 7 secondary flows due to the lower viscosity at higher temperatures. In this case, the deviation is even
 8 higher than 10%, in particular a deviation between 14-17% for the angular frequency range of 0.06-
 9 0.31 rad/s has been estimated. As in the case of the rotational experiments, tests at 25 and 50°C
 10 executed by the MCR 502 rheometer show higher deviations than at higher temperatures (60 and
 11 80°C), since the Peltier hood was only used for the latter RT70 measurements, as well as for the
 12 standard oil measurements in relation to this substance, that is to say at 60 and 80°C (second round
 13 of tests), due to the experience gained in the first round of tests. Therefore, the higher deviation
 14 observed at 25 and 50°C can be attributed to temperature gradients inside the sample. The AR-G2
 15 obtained accurate results at lower angular frequency values than the MCR 502 rheometer, which
 16 would mean longer characterization tests. This could be improved by using less massive geometries
 17 to diminish inertia problems when the frequency increases. It can be stated that accurate and precise
 18 results can also be obtained in oscillatory mode.

	Angular velocity range (rad·s ⁻¹)	Average deviation (%)	Relative standard uncertainty (%)
25°C			
AR-G2	0.06-0.79	-1.59	1.04
MCR 502	0.25-4.99	6.73	0.28
50°C			
AR-G2	0.06-0.40	3.86	0.42
MCR 502	1.58*	9.54	-
60°C			
AR-G2	0.06-0.40	-1.80	0.76
MCR 502	0.08-3.15	2.02	0.75
80°C			
AR-G2	Deviation higher than 10%		
MCR 502	0.10-1.99	2.60	0.84

19 **Table 9.** S3 measurements in oscillatory mode at 25, 50, 60 and 80°C. Angular velocity range
 20 where deviation observed is lower than 10%, together with the average deviation and relative
 21 standard uncertainty.*Only one angular velocity value meets the deviation criterion

3.2 Octadecane

Octadecane was measured at 35°C and the results were compared to other measurements found in the literature [14-17]. Where known, the methodology adopted in each one of these works is shown in table 10.

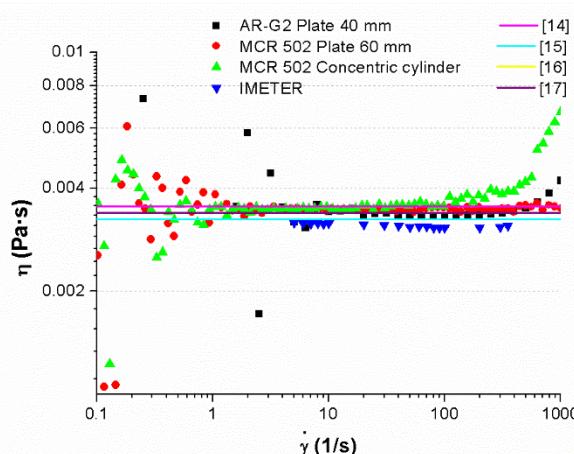
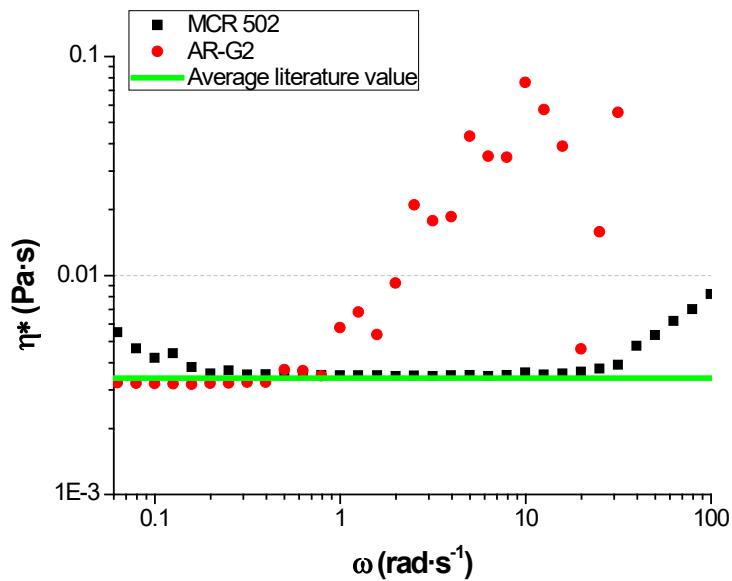

Ref	Equipment	Data provided by authors about methodology
[14]	Brookfield DV-II + Pro viscometer with UL Adapter (rotational viscometer)	Rotating cylindrical spindle. Temperature controller: thermostatic bath. Measurements under steady state conditions. Measuring time: 10 min for each measurement. Estimated accuracy with a viscosity standard fluid of $\pm 1\%$.
[15]	Brookfield DV-II + Pro (rotational viscometer)	Standard deviation of less than $\pm 1\%$.
[16]	-	-
[17]	Calibrated glass capillary viscometer	Measurement of the time for a volume of liquid to flow under gravity.

Table 10. Data about the viscosity measurements of octadecane found in the literature.

3.2.1 Results according to procedure 2.3.1

Results in rotational mode


Figure 4 shows the measurements obtained and their comparison to the literature values. It can be observed that they are within the range of values taken from the literature. It must be pointed out that the IMETER rheometer obtained lower values in contrast to its results with the standard oil, and that the MCR 502 rheometer, just as with the standard oil S3, showed a higher deviation when measuring at high shear rates with the concentric cylinder geometry.

1 **Figure 4.** Comparison of the viscosity values of octadecane at 35°C (melted phase) in rotational
2 and translational mode. *Data from [16] hidden by data from [17] as they are identical values.

3 **Results in oscillatory mode**

4 Figure 5 shows the results in oscillatory mode. The MCR 502 rheometer was able to obtain accurate
5 results in oscillatory mode in a wider angular frequency range compared to the AR-G2. The AR-G2
6 rheometer was able to obtain lower deviations when measuring at low frequencies, while the MCR
7 502 rheometer did so when measuring at high frequencies, probably due to the massive geometry
8 used by the AR-G2. In the medium range, both instruments achieved accurate and precise results.
9 Table 11 compiles the average viscosity value, the deviation from the average literature value (3.4
10 mPa·s) and the relative standard uncertainty within the shear rate and angular frequency range
11 defined by the previous measurements of the standard oil S3 at temperatures of 25 and 50°C,
12 considering the most restrictive range. The data tabulated of these measurements are compiled in
13 table 12 and 13.

14 **Figure 5.** Comparison of the viscosity values of octadecane at 35°C in oscillatory mode.

	Rotational			Oscillatory		
	Average viscosity value (mPa·s)	Average deviation (%)	Relative standard uncertainty (%)	Average complex viscosity value (mPa·s)	Average deviation (%)	Relative standard uncertainty (%)
AR-G2	3.444	1.29	1.36	3.222	-5.23	0.24
MCR 502	3.486	2.53	0.22	3.500	2.94	-
IMETER	3.112	-8.47	0.32	-	-	-

Table 11. Average viscosity value for octadecane measured at 35°C. Average literature value: 3.400 mPa·s.

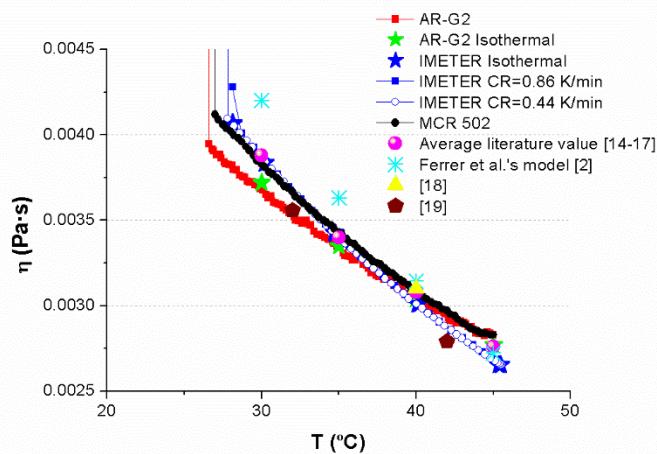
AR-G2		MCR 502		IMETER	
Shear rate (s-1)	Viscosity (mPa·s)	Shear rate (s-1)	Viscosity (mPa·s)	Shear rate (s-1)	Viscosity (mPa·s)
2.51	1.718	1.67	3.517	5.00	3.174
3.16	4.424	1.87	3.484	6.00	3.165
3.98	3.525	2.10	3.406	7.00	3.158
5.01	3.191	2.36	3.536	8.00	3.165
6.31	3.068	2.66	3.472	9.00	3.153
7.94	3.576	2.98	3.467	10.00	3.164
10.00	3.414	3.35	3.503	20.00	3.135
12.59	3.43	3.76	3.451	30.00	3.120
15.85	3492	4.23	3.502	40.00	3.106
19.95	3.344	4.75	3.480	50.00	3.089
25.12	3.369	5.34	3.489	60.00	3.100
31.62	3.391	5.99	3.518	70.00	3.094
39.81	3.345	6.73	3.482	80.00	3.074
50.12	3.343	7.56	3.502	90.00	3.069
63.10	3.333	8.5.	3.542	100.00	3.066
79.43	3.332	9.55	3.531	200.00	3.069
100.00	3.327	10.7	3.494	300.00	3.085
125.90	3.336	12.00	3.466	350.00	3.108
158.50	3.337	13.50	3.471		
199.50	3.344	15.20	3.475		
251.20	3.361	17.10	3.502		
316.20	3.389	19.20	3.570		
398.10	3.432	21.50	3.561		
501.20	3.510	24.20	3.479		
631.00	3.645	27.20	3.592		
794.30	3.872	30.50	3.500		
1000.00	4.217	34.30	3.551		
		38.50	3.582		
		43.30	3.577		
		48.60	3.567		
		54.60	3.602		
		61.40	3.654		
		68.90	3.598		
		77.40	3.534		
		87.00	3.571		
		97.70	3.547		
		110.00	3.789		
		123.00	3.647		
		138.00	3.737		
		156.00	3.833		
		175.00	3.656		
		196.00	3.824		
		221.00	3.732		
		248.00	3.967		
		278.00	3.927		
		313.00	3.850		
		351.00	3.916		
		394.00	3.917		

443.00	4.087
498.00	4.177
559.00	4.321
628.00	5.204
706.00	5.422
792.00	5.854
890.00	6.257

1 **Table 12.** Octadecane viscosity at 35°C obtained in rotational and translational mode.

Angular velocity (rad·s ⁻¹)	AR-G2 Complex viscosity (mPa·s)	MCR 502 Angular velocity (rad·s ⁻¹)	MCR 502 Complex viscosity (mPa·s)
0.06	3.238	0.25	3.680
0.08	3.220	0.31	3.530
0.1	3.208	0.40	3.540
0.13	3.201	0.50	3.490
0.16	3.184	0.63	3.490
0.20	3.220	0.79	3.510
0.25	3.225	1.00	3.500
0.31	3.253	1.25	3.500
0.40	3.252	1.58	3.500
0.50	3.715	1.99	3.470
0.63	3.672	2.50	3.490
0.79	3.480	3.15	3.470
		3.96	3.500
		4.99	3.510

2 **Table 13.** Octadecane viscosity at 35°C obtained in oscillatory mode.


3 **3.2.2 Results according to procedure 2.3.2**

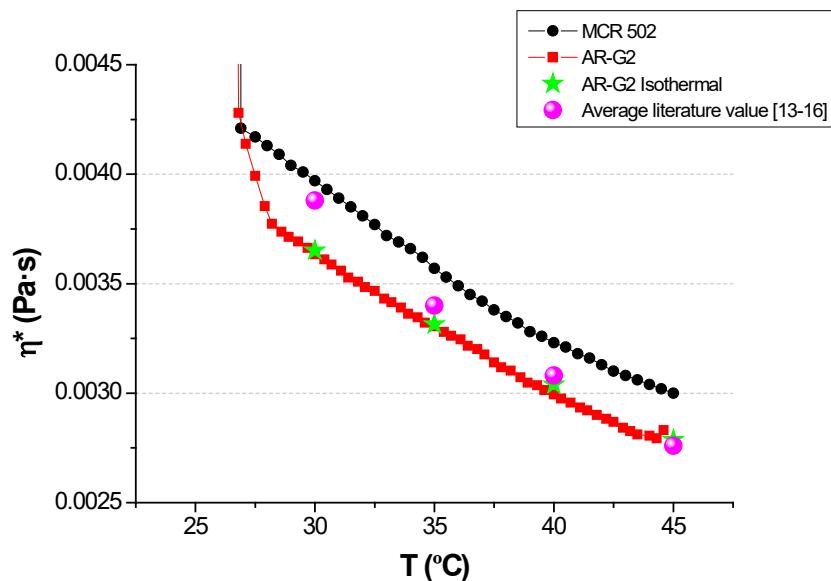
4 **Results in rotational mode**

5 Figure 6 shows the results obtained in rotational mode for a temperature ramp from 45 to 20°C. It
6 was observed that the IMETER rheometer started the measurement at 45°C with a lower viscosity
7 value, maybe because the sample had not reached thermal equilibrium. The values obtained by the
8 IMETER rheometer with the continuous ramp and by isothermal steps fitted each other. The MCR
9 502 measurements fitted with the literature values, while the AR-G2 showed a slightly higher
10 deviation. Both the IMETER and the MCR 502 rheometers obtained similar values to the literature
11 values.

12 The lower slope of the measurements from the AR-G2 rheometer could be due to a lack of
13 temperature equilibrium in the sample. To check this possible problem, isothermal measurements
14 were executed from 45 to 30°C. The temperature step was 5 K, and was decreased in a period of
15 time of 20 minutes. Isothermal measurements were also executed from 30 to 45°C to analyze possible
16 differences, since the heating/cooling is not symmetrical. Then the viscosity was measured every 10
17 seconds during 5 minutes, obtaining the average values for each temperature, represented also in
18 figure 6. During the 5 minutes of measurement, deviations in the results were not observed, so it

1 could be confirmed that the sample was in thermal equilibrium. The values obtained in isothermal
 2 mode were similar to the values obtained by the temperature ramp. The higher deviation from the
 3 average literature value [14-17] was at 30°C, with a deviation of 7%. Additionally, the viscosity-
 4 temperature values were compared to the values obtained after applying the model proposed by
 5 Ferrer et al. [2] for predicting viscosity values for the paraffin family, showing a higher deviation. This
 6 model, a third degree polynomial, was obtained from the viscosity of three paraffins, RT21, RT27 and
 7 RT55. A correction parameter must be applied, which takes into account the material melting point.
 8 In this case, the melting temperature used was that provided by NIST [20]. Deviations could come
 9 from the model itself or from the uncertainty in the estimation of the melting temperature.

10


11 **Figure 6.** Comparison of the viscosity-temperature curves of octadecane measured in rotational
 12 and translational mode at 100 s⁻¹.

13 The gap in these experiments was between 500 and 1000 μm following the procedure described in
 14 section 2.3.1. In the previous work [8], the influence of the gap chosen was studied, as well as the
 15 heating and cooling rate. These factors must be taken into account in relation to the temperature
 16 gradients inside the sample, especially when working with PCMs due to their low thermal conductivity.
 17 This effect could be more significant in cooling experiments, since in non-heated geometries, natural
 18 convection is not promoted. An equivalent approach to that proposed by Lázaro et al. [21] should be
 19 carried out to find the appropriate rate to ensure thermal equilibrium.

20 **Results in oscillatory mode**

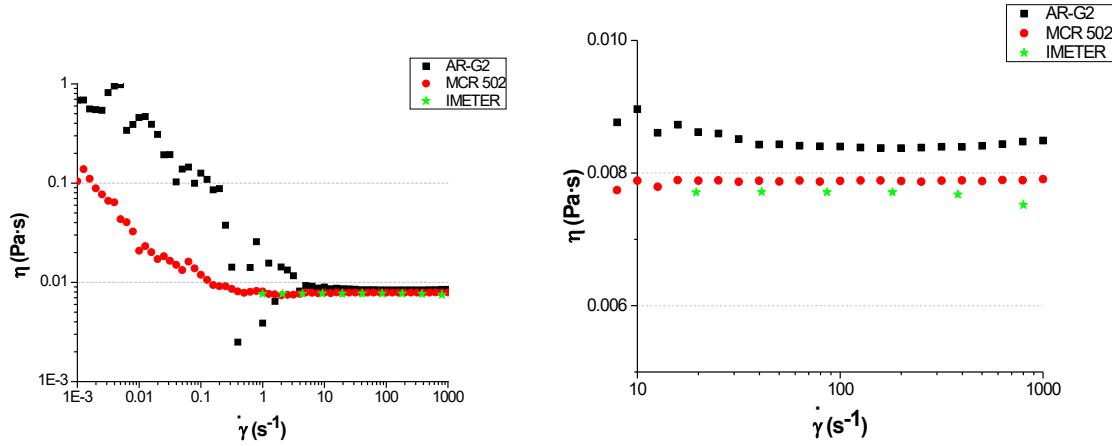
21 Both controlled stress rheometers measured the viscosity based on temperature curves in oscillatory
 22 mode, obtaining the results plotted in figure 7. The same behaviour as in rotational mode was
 23 observed in the AR-G2 measurements, both in isothermal steps and by the temperature ramp. In
 24 these tests, the University of Zaragoza chose a lower frequency than that recommended in the
 25 procedure, since the inertia phenomenon was observed when testing with a frequency of 1 Hz, as

1 can be seen in figure 5. A frequency of 0.048 Hz was chosen. Since the equipment needs at least
 2 one period of time to measure (the inverse of frequency), it is of interest to have as high a frequency
 3 as possible, to avoid a very significant temperature variation during the dynamic measurement
 4 (temperature ramp of 0.5 K/min). In this case the viscosity values from the MCR 502 rheometer were
 5 higher than the literature values. This deviation is more significant at higher temperatures, that is to
 6 say at the beginning of the test. In these experiments, as mentioned previously, the Peltier hood was
 7 not used, so the measurements could be affected by the temperature gradients in the sample due to
 8 the heat loss. These results are in accordance with the oscillatory results for the standard oil, which
 9 also showed a positive deviation (see table 3). What is curious is that these deviations were not
 10 observed in the temperature ramps in rotational mode. Additional isothermal measurements should
 11 be carried out.

12

13 **Figure 7.** Comparison of the viscosity-temperature curves of octadecane measured in oscillatory
 14 mode.

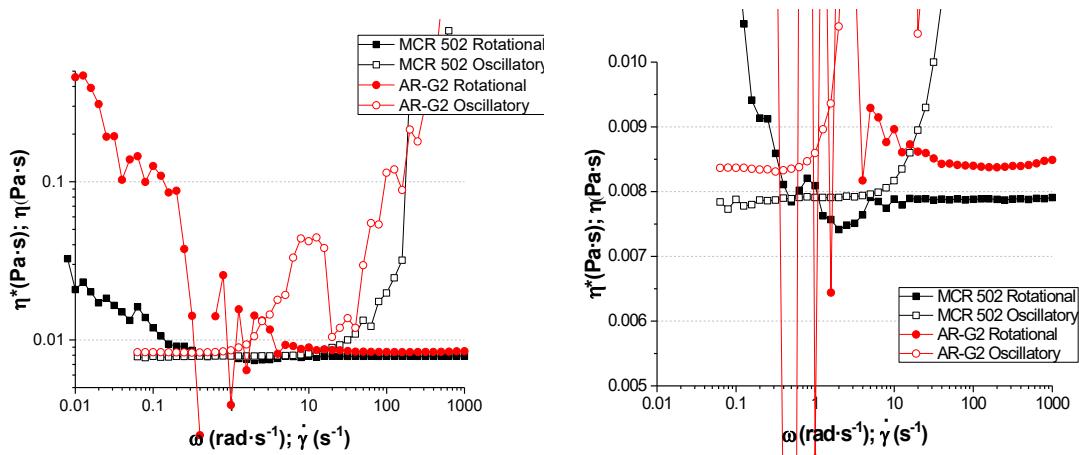
15 **3.3 RT70 HC**


16 **3.3.1 Results according to procedure 2.3.1**

17 The viscosity of RT70 HC was measured at 80°C, in its melted phase. Viscosity data for this product
 18 have not been found in the literature.

19 **Results in rotational mode**

20 It can be observed in figure 8 that the three rheometers obtained very similar values if the attention
 21 is focused on the shear rate range from 10 to 1000 s⁻¹. As predicted with the characterization of the
 22 standard oil S3 at 80°C by the AR-G2, higher viscosity values were obtained due to the temperature


1 gradients, since a non-heated geometry is used. These viscosity values were not compared to the
 2 values calculated by Ferrer et al.'s model [2], because their proposed model has been built from
 3 paraffins with lower phase change temperatures.

4
 5 **Figure 8.** Comparison of the viscosity values of RT70 HC at 80°C (melted phase) in rotational and
 6 translational mode.

7 **Results in oscillatory mode**

8 In oscillatory mode, similar values to those obtained in rotational mode have been measured, as can
 9 be observed in figure 9. Once again, the influence of non-uniform temperature in the sample in the
 10 AR-G2 rheometer gives rise to higher viscosity values in comparison to the values measured by the
 11 MCR 502 rheometer. In the same manner, the MCR 502 can measure over a wider range of angular
 12 frequency values. Table 14 compiles the average viscosity value and the relative standard uncertainty
 13 within the shear rate and angular frequency range defined by the previous measurements of the
 14 standard oil S3 at temperatures of 60 and 80°C, having considered the most restrictive range. Table
 15 and 16 shows the data tabulated.

16

1 **Figure 9.** Comparison of the viscosity values of RT70 HC at 80°C (melted phase) in oscillatory
 2 mode. Comparison with the results of rotational mode.

3

4

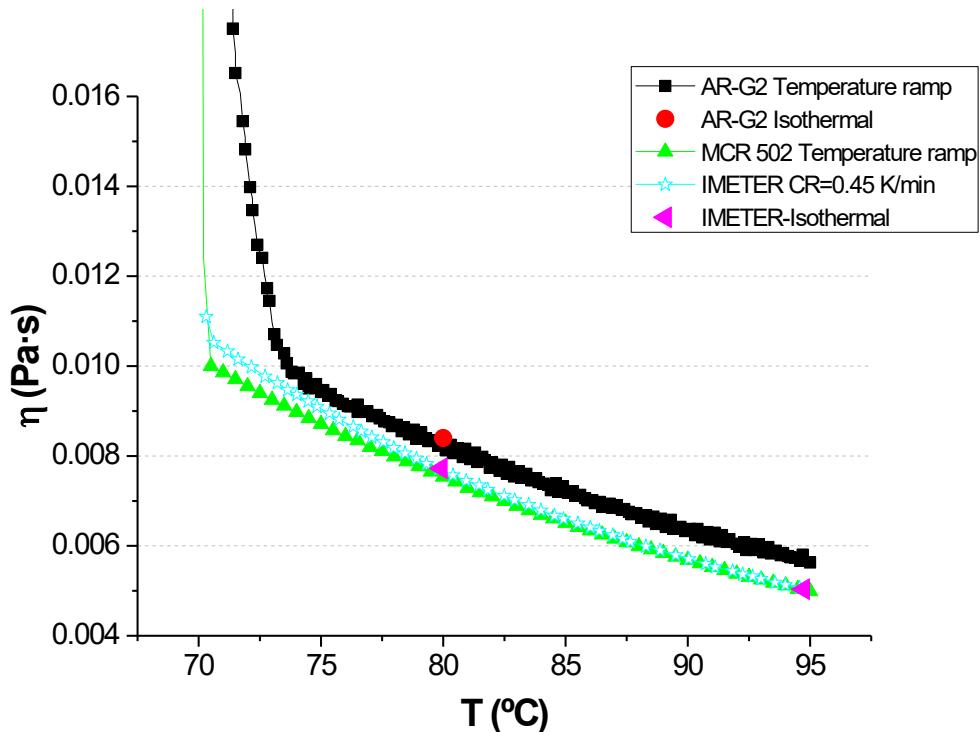
	Rotational		Oscillatory	
	Average viscosity value (mPa·s)	Relative standard uncertainty (%)	Average complex viscosity value (mPa·s)	Relative standard uncertainty (%)
AR-G2	8.388	0.05	8.350	0.09
MCR 502	7.873	0.10	7.880	0.14
IMETER	7.682	0.28	-	-

5 **Table 14.** Average viscosity value for RT70 HC measured at 80°C.

MCR 502		IMETER	
Viscosity (mPa·s)	Shear rate (s-1)	Viscosity (mPa·s)	Shear rate (s-1)
8.403	5.01	7.710	2.10
8.399	6.31	7.865	4.41
8.385	7.94	7.909	9.28
8.377	10.00	7.808	19.51
8.375	12.60	7.926	41.02
8.384	15.80	7.875	86.16
	20.00	7.862	181.07
	25.10	7.88	380.62
	31.60	7.917	800.19
	39.80	7.900	
	50.10	7.912	
	63.10	7.910	
	79.40	7.922	
	100.00	7.909	
	126.00	7.915	
	158.00	7.911	
	200.00	7.908	
	251.00	7.923	
	316.00	7.906	
	398.00	7.918	
	501.00	7.915	
	631.00	7.908	
	794.00	7.932	

6 **Table 15.** RT70 HC viscosity at 80°C obtained in rotational and translational mode.

AR-G2		MCR 502	
Angular velocity (rad·s-1)	Viscosity (mPa·s)	Angular velocity (rad·s-1)	Viscosity (mPa·s)
0.06	8.370	0.10	7.880
0.08	8.370	0.12	7.780
0.10	8.370	0.16	7.800
0.12	8.370	0.20	7.870

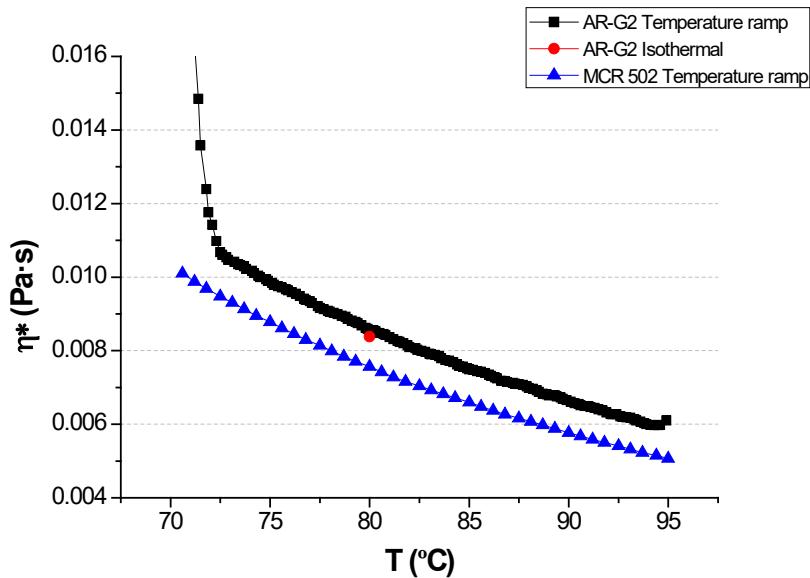

0.16	8.350	0.25	7.860
0.20	8.340	0.31	7.870
0.25	8.340	0.40	7.900
0.31	8.310	0.50	7.890
0.40	8.330	0.63	7.910
		0.79	7.920
		1.00	7.910
		1.25	7.910
		1.58	7.910
		1.99	7.910

1 **Table 16.** RT70 HC viscosity at 80°C obtained in oscillatory mode.

2 **3.3.2 Results according to procedure 2.3.2**

3 The influence of a non-uniform temperature was also observed in the results of the dynamic cooling
4 and by isothermal steps, as shown in figures 10 and 11.

5 **Results in rotational mode**



7 **Figure 10.** Comparison of the viscosity-temperature curves of RT70 HC measured in rotational and
8 translational mode at 100 s⁻¹.

9 As a result of the ambient temperature influence, the abrupt increase in viscosity due to the
10 solidification is seen for the AR-G2 at a higher temperature, as the true sample temperature is not
11 that provided by the Peltier plate.

12 **Results in oscillatory mode**

1 Similar results were obtained in both oscillatory and rotational mode.

2
3 **Figure 11.** Comparison of the complex viscosity-temperature curves of RT70 measured in
4 oscillatory mode at frequencies of 0.048 and 1 Hz for AR-G2 and MCR 502, respectively.

5 **4. Conclusions**

6 According to the results of the intercomparative tests, there is a good agreement between the
7 viscosities measured with the different rheometer types and between the certified values for standard
8 oil S3 and the values reported in the literature for octadecane.

9 The characterization of RT70 HC has shown a positive deviation of the AR-G2 measurements in
10 comparison with the IMETER and MCR 502 characterization, due to the non-heated geometry used.
11 This deviation was also observed when measuring the standard oil S3 at 80°C. This demonstrates
12 the importance of the requirement of temperature-controlled geometry or a temperature-controlled
13 hood when samples are tested at elevated temperatures.

14 The procedures in both rotational and in oscillatory mode turn out to be appropriate to accurately
15 measure viscosity. Although the choice of the measurement type, rotational or oscillatory, makes little
16 difference, it is important to establish an experimental window with limitations at high shear rates or
17 frequencies due to instrument and sample inertia, as well as a limitation at low shear rates due to the
18 torque limit.

19 The average deviations observed when measuring the standard oil S3 were the following:

1 • Below 7.18 % in rotational mode for the two controlled stress rheometers (Temperature
2 range: 25-80°C) if AR-G2 values at 80°C are omitted as a non-heated geometry was not
3 used. Even if these are considered, the average deviation is lower than 8.05%.

4 • Below 3.86% in oscillatory mode for the AR-G2 rheometer (Temperature range: 25-60°C)

5 • Below 6.73% in oscillatory mode for the MCR 502 rheometer (Temperature range: 25-80°C)
6 if values at 50°C are omitted as the Peltier hood was not used.

7 • Below 2.03% for the translational rheometer IMETER (Temperature range: 25-80°C)

8

9 Next steps:

10 • In future tests, before executing viscosity based on temperature measurements in a dynamic
11 mode, the cooling rate at which the thermal equilibrium can be guaranteed should be
12 determined.

13 • The exact reason for the deviations observed at elevated temperatures for the AR-G2
14 rheometer should be evaluated.

15 • Measurement of PCMs at higher temperatures.

16 **Acknowledgements**

17 I3A-University of Zaragoza would like to thank the Spanish Government for funding this work within
18 the framework of the research projects (MICINN-FEDER): ENE2014-57262-R and ENE2017-87711-
19 R. Fraunhofer ISE is grateful to the German Federal Ministry for Economic Affairs and Energy for
20 funding the work of this project (03ESP357B) and the Project Management Jülich for the
21 administrative support. The University of Bayreuth sincerely thanks the German Federal Ministry for
22 Economic Affairs and Energy (BMWi) for research funding and support within the project with contract
23 number 03ESP227B.

24 **References**

25 [1] M. Costa, A. Oliva, C.D. Pérez-Segarra, Numerical study of melting inside an isothermal
26 horizontal cylinder, *Numer. Heat Tr. A-Appl.*, 32 (1997) 531-553

27 [2] G. Ferrer, S. Gschwander, A. Solé, C. Barreneche, A.I. Fernández, P. Schossig, L.F. Cabeza,
28 Empirical equation to estimate viscosity of paraffin, *J. Energ. Stor.* 11 (2017) 154-161.

29 [3] G. Ferrer, C. Barreneche, A. Palacios, A. Solé, A.I. Fernández, L.F. Cabeza, Empirical equations
30 for viscosity and specific heat capacity determination of fatty acids, *J. Energ. Stor.* 10 (2017) 20-27.

31 [4] Y. Jin, J. Cheng, X. An, T. Su, P. Zhang, Z. Li, Accurate viscosity measurement of nitrates/nitrites
32 salts for concentrated solar power, *Sol. Energy* 137 (2016) 385-392.

33 [5] R. Serrano-López, J. Fradera, S. Cuesta-López, Molten salts database for energy applications,
34 *Chem. Eng. Proc.* 73 (2013) 87-102.

1 [6] V.M.B. Nunes, C.S. Queirós, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Molten salts
2 as engineering fluids-A review Part I. Molten alkali nitrates, *Appl. Energ.* 183 (2016) 603-611.

3 [7] B. Muñoz-Sánchez, J. Nieto-Maestre, E. Veca, R. Liberatore, S. Sau, H. Navarro, Y. Ding, N.
4 Navarrete, E. Julia, A.G. Fernández, A. García-Romero. Rheology of Solar-Salt based nanofluids
5 for concentrated solar power. Influence of the salt purity, nanoparticle concentration, temperature
6 and rheometer geometry. *Sol. Energy Mater. Sol. Cells* 176 (2018) 357-373.

7 [8] M. Delgado, S. Gschwander, A. Lázaro, C. Peñalosa, B. Zalba, Determining the rheological
8 behavior of octadecane as phase change material: First approach, *Thermochim. Acta* 548 (2012) 81-
9 87.

10 [9] www.sasoltechdata.com/MarketingBrochures/PARAFOL.pdf (last access: January 2018)

11 [10] www.rubitherm.eu/media/products/datasheets/Techdata_RT70HC_EN_30032017.PDF (last
12 access: January 2018)

13 [11] www.paragon-sci.com/s3-general-purpose-viscosity-standard.html (last access: January 2018)

14 [12] M. Laun, D. Auhl, R. Brummer, D.J. Dijkstra, C. Gabriel, M.A. Mangnus, M. Rüllmann, W.
15 Zoetelief, U.A. Handge, Guidelines for checking performance and verifying accuracy of rotational
16 rheometers: viscosity measurements in steady and oscillatory shear (IUPAC Technical Report), *Pure*
17 *Appl. Chem.* 86 (12) (2014) 1945-1968.

18 [13] D.A. Barker, D. Ian Wilson, Temperature profiles in a controlled-stress parallel plate rheometer,
19 *Rheol. Acta* 46 (2006) 23-31.

20 [14] S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed,
21 Experimental investigation on thermal and rheological properties of n-octadecane with dispersed
22 TiO₂ nanoparticles, *International Communications in Heat and Mass Transfer* 59 (2014) 68-74.

23 [15] C.J. Ho, J.Y. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin
24 emulsion as phase change material, *Int. Commun. Heat Mass* 36 (5) (2009) 467-470.

25 [16] W.R. Humphries, E.I. Griggs, A design handbook for phase change thermal control and energy
26 storage devices, NASA Technical paper 1074.

27 [17] http://www.pcm-ral.de/uploads/media/Sasol_PARAFOL.pdf (last access: January 2017)

28 [18] D. Ducoulombier, H. Zhou, C. Boned, J. Peyrelasse, H. Saint-Guirons, P. Xans, Pressure (1-
29 1000 bars) and Temperature (20-100 C) Dependence of the Viscosity of Liquid Hydrocarbons, *J.*
30 *Phys. Chem.* 90 (8) (1986) 1692-1700.

31 [19] M.V. Dover, W.A. Hensley, Properties of 1-Octadecen, Octadecane and Di-m-tolylethane, *Ind.*
32 *Eng. Chem.* 27 (1935) 337-339.

33 [20] <http://webbook.nist.gov/cgi/cbook.cgi?ID=C593453&Units=SI&Mask=2FF#Thermo-Phase> (last
34 access: January 2018)

1 [21] A. Lázaro, C. Peñalosa, A. Solé, G. Diarce, T. Haussmann, M. Fois, B. Zalba, S. Gschwander,
2 L.F. Cabeza, Intercomparative tests on phase change materials characterisation with differential
3 scanning calorimeter, *Appl. Energ.* 109 (2013) 415-420.