000168585 001__ 168585
000168585 005__ 20260211123813.0
000168585 0247_ $$2doi$$a10.1016/j.ijrefrig.2013.04.020
000168585 0248_ $$2sideral$$a82595
000168585 037__ $$aART-2013-82595
000168585 041__ $$aeng
000168585 100__ $$0(orcid)0000-0002-8015-4469$$aDelgado, M.$$uUniversidad de Zaragoza
000168585 245__ $$aAnalysis of the physical stability of PCM slurries
000168585 260__ $$c2013
000168585 5060_ $$aAccess copy available to the general public$$fUnrestricted
000168585 5203_ $$aMicroencapsulated phase change material slurry (mPCM slurry) is a latent heat storage fluid in which the PCM microparticles have been dispersed in water. One of the main issues to be tackled is its lack of physical stability, since stratification problems tend to occur. Generally, an unstabilization process in PCM slurries can take weeks or even months. To predict the physical stability of PCM slurries without having to wait so long, a methodology well known in the food and pharmaceutical fields has been applied. This methodology basically consists of measuring samples with a rheometer in oscillatory mode. These measurements can be related to visually obtained measurements of the unstabilization process of creaming, specifically with the creaming percentage over time. From the frequency sweeps accomplished, an exponential relationship between the creaming percentage and the elastic module of the PCM slurries have been obtained. From the strain sweeps, the cohesive energies of the PCM slurries have been calculated and related to the creaming percentage, observing a linear relationship. In this way, the dominant parameters in the unstabilization process have been obtained which manufacturers can modify in order to improve the physical stability of PCM slurries.
000168585 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ENE2008-06687-C02-02$$9info:eu-repo/grantAgreement/ES/MICINN/ENE2011-28269-C03-01
000168585 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000168585 590__ $$a1.702$$b2013
000168585 591__ $$aENGINEERING, MECHANICAL$$b30 / 128 = 0.234$$c2013$$dQ1$$eT1
000168585 591__ $$aTHERMODYNAMICS$$b16 / 55 = 0.291$$c2013$$dQ2$$eT1
000168585 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000168585 700__ $$0(orcid)0000-0001-7360-4188$$aLázaro, A.$$uUniversidad de Zaragoza
000168585 700__ $$0(orcid)0000-0002-9500-974X$$aPeñalosa, C.
000168585 700__ $$0(orcid)0000-0001-7631-8507$$aMazo, J.
000168585 700__ $$0(orcid)0000-0002-6101-580X$$aZalba, B.$$uUniversidad de Zaragoza
000168585 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000168585 773__ $$g36, 6 (2013), 1648-1656$$pInt. j. refrig.$$tINTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID$$x0140-7007
000168585 8564_ $$s1182257$$uhttps://zaguan.unizar.es/record/168585/files/texto_completo.pdf$$yPostprint
000168585 8564_ $$s417870$$uhttps://zaguan.unizar.es/record/168585/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000168585 909CO $$ooai:zaguan.unizar.es:168585$$particulos$$pdriver
000168585 951__ $$a2026-02-11-10:27:43
000168585 980__ $$aARTICLE