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Assigning agents to teams under strict task and effort constraints is crucial in business, science, and
engineering, where disruptions can cause significant losses. Current methods do not explore
hypergraph-based solutions that explicitly optimize algebraic connectivity under constraints, leaving
unresolved how to systematically form robust, recoverable teams. We present a hypergraph-based
team assignment algorithm where nodes represent agents and hyperedges represent tasks. The
search is guided by input constraints and aims to optimize resilience and diffusion by maximizing the
algebraic connectivity of an edge-dependent, vertex-weighted hypergraph. We employ constrained
simulated annealing to find a satisfactory hypergraph by enforcing both the minimum effort required
for task completion and the maximum effort agents can exert. We evaluate robustness by assessing
solution recovery after node removal attacks.Our results demonstrate that the hypergraph formulation
yields more robust solutions than the bipartite formulation and the greedy approach.

The Team Formation Problem (TFP) involves assigning individuals to one
ormore tasks. The optimal solution oftendepends on a subjective definition
of the fitness function1. This problem was originally proposed in ref. 2 and
has been studied from various perspectives1–15. The most studied formula-
tions include the formation of robust and recoverable teams1,3–6, budget and
profit optimization1,3,7–9, and single- or multi-skilled candidate
optimization1,10–15, among others. Regardless of the fitness function, the
optimal solution often requires computing all possible assignments, which,
due to the combinatorial nature of the problem, makes it NP-hard1.
Therefore, heuristics are often used to obtain locally optimal solutions that
balance computational cost and solution quality.

Solving the TFP is important beyond its theoretical and computational
interest. Ref. 1 discusses modern applications of TFP, such as using TFP to
explore what-if scenarios. For example, an organization could use TFP to
consider possible reorganizations of its employees. Another application is
Labor Strategy Optimization1, where TFPs can help inform decisions about
anorganization’s capability, location, andflexibility given adesireddemand.

Moreover, the authors of a recent review article1 propose a relationship
between TFP and the N-body problem in physics. Their argument is based
on the observation that aggregating a set of pairwise interactions does not
capture the dynamics between groups of people.This is the samemotivation
for studying hypergraphs in complex systems16–24. In this context, the
motivation to use hypergraphs − or other forms of higher-order

interactions − is to analyze dynamical phenomena, such as social con-
tagion, where one-to-many and/or many-to-many interactions
occur16–18,20,22,24. Beyond this class of models, hypergraphs have been studied
in a wide variety of problems, including cooperation in groups25,26,
percolation27,28, random walks29–31, and synchronization32–34. These works
show that hypergraphs can differ significantly from graphs, both in how
individuals interact and in the fragility of these structures. In particular,
assuming that the failure of some nodes implies the failure of the hyperedge,
the results in ref. 28 suggest that hypergraphs can be very fragile.

We focus on a TFP in which teams are robust and recoverable. We
propose a hypergraph-based approach for task assignments. In our
context, robustness is defined as the ability of a team to complete its tasks
after the removal of an agent or a set of agents. We also aim to incor-
porate heterogeneity in (i) the importance of agents in the assigned tasks
and (ii) the energy and budgets of tasks and agents. The rationale is that
an agent may play a fundamental role in one task but a less important
role in another project. For example, consider scientific collaborations
where a researcher might simultaneously lead one project and play a
lesser role by contributing to other projects. This is also reflected in the
time the researcher spends on each project, which may have different
requirements. Therefore, we propose using edge-dependent vertex
weight (EDVW) hypergraphs35, where agents (nodes) can have different
weights in different tasks (groups or hyperedges), capturing the
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heterogeneities of agents and tasks. Moreover, inspired by the study of
resilience in graphs36,37, we propose using the algebraic connectivity of
the Laplacian matrix35, which is an ideal candidate for summarizing
robustness, as it includes all the information of an EDVW hypergraph.
The advantage of this approach is that, as a by-product of optimizing
robustness via algebraic connectivity, we simultaneously reduce the
diffusion timescale, which may facilitate communication between
agents. In addition, we explicitly propose including the energies and
budgets as constraints in our optimization algorithm, which also cap-
tures this type of heterogeneity.

Our main contributions are mapping the TFP to a hypergraph dis-
covery problem and demonstrating that the algebraic connectivity of the
EDVW Laplacian quantifies the resilience of formed teams against
attacks, specifically node removals. We frame TFP as a hypergraph dis-
covery problem and systematically analyze several small hypergraph
cases.We also conduct a finite-size analysis for certain hypergraph classes,
showing that algebraic connectivity is constrained by the hypergraph and
is nontrivially related to its connectivity. Next, we propose a constrained
simulated annealing approach that searches thehypergraph space tofind a
hypergraph satisfying the team-formation constraints while maximizing
algebraic connectivity. We measure the resilience of the optimized
hypergraphs under node-removal attacks and show that, in most cases,
they incur lower patching costs. Furthermore, the number of unsuccessful
patches is virtually zero, whereas it can be as high as 60% in the original
(observed) hypergraph.

Results
This section contains two parts: (i) results from experimental analysis and
(ii) results from experiments on real-world data. Table S3 in Supplementary
Note 9 lists the notations used in this paper.

Results from experimental analysis
Algebraic connectivity. The edge-dependent vertex-weighted hyper-
graph (EDVW)35 is defined as H ¼ fV; E;ω; γg, where V ¼
fv1; v2; . . . ; vNg is the set of nodes, E ¼ fe1; . . . ; eKg is the set of hyper-
edges, which are subsets of nodes of arbitrary size, ω(ek) is a function
weighting the hyperedges, and γ(vi, ek) is a function weighting the
importance of node vi in hyperedge ek. Note that a node can have different
weights depending on the hyperedge. This type of hypergraph is parti-
cularly interesting for modeling rich data with context-dependent
weights. Examples include collaboration networks35, machine learning
applications such as hypergraph neural networks38–44, and chemical
reactions45,46.

We define the weighted degree of each agent as dðviÞ ¼
P

e2EðviÞωðeÞ,
and the weighted degree of each task as δ(e) =∑v∈eγ(v, e). A random walk
that captures all the relationships andweights in an EDVWhypergraph can
be defined as a sequence of nodes where: (i) the walker in node vi chooses a
hyperedge e according to its weighted degree, i.e., ωðeÞdðviÞ, then (ii) the walker
chooses a node vj within hyperedge e with probability proportional to its
hyperedge degree, i.e.,

γðvj;eÞ
δðeÞ .

The probability transition matrix for our random walk is expressed as

P ¼ D�1
V WD�1

E RT ; ð1Þ

where
• P 2 RN ×N is usually an asymmetric matrix.
• DV 2 RN ×N

þ is the diagonal node degree matrix, whose components
are the weighted degree of each agent, i.e., ½DV �ii ¼ dðviÞ.

• W 2 RN ×K
þ is the hyperedge weight matrix, whose components

Wik = ω(ek) if node vi is in the hyperedge ek andWik = 0 otherwise.
• DE 2 RK ×K

þ is the diagonal hyperedge degree matrix, whose compo-
nents are the weighted degree of each hyperedge, ½DE�kk ¼ δðekÞ.

• R 2 RN ×K
þ is the vertex-weights matrix, whose compo-

nents Rik ¼ γek ðviÞ.

We can now define the combinatorial Laplacian matrix as35

LH ¼ Π� ΠP þ PTΠ

2
; ð2Þ

whereΠii = πi is a diagonal matrix and πi is the stationary distribution (the
left eigenvector of P, i.e., πP = π). This Laplacian matrix was originally
defined in ref. 35 and is basedon the Laplaciandefinition for directedgraphs
in ref. 47. Chitra andRaphael35 argue that although the Laplacianmatrix is a
N×N symmetric object, it captures the essence of higher-order interactions.
They demonstrate the existence of an EDVW hypergraph such that a
random walk on that hypergraph is not equivalent to a random walk on its
clique graph. Therefore, the argument is that such a random walk captures
higher-order effects, as the lower-order effects are different. Note that the
above definition of the Laplacianmatrix is a symmetrization defined for any
directed graph and is not particular to hypergraphs. Since the randomwalk
on the EDVW hypergraph captures higher-order effects, this Laplacian
definition also captures those effects while remaining symmetric and semi-
positive definite.

Complementarily, since a diffusion process on this hypergraph
depends on the algebraic connectivity of the Laplacian, we expect these
weighting functions to capture the relationships between agents and tasks,
reflecting the resilience of the team assignment. Formally, a diffusion pro-
cess is defined as:

dxðtÞ
dt

¼ �LHxðtÞ; ð3Þ

which solves as

xðtÞ ¼ exp �LHt
� �

xð0Þ

¼
XN
i¼1

expð�μitÞvivTi xð0Þ

¼v0v
T
0 xð0Þ þ expð�μ2tÞvivTi xð0Þ

þ
XN
i¼3

expð�μitÞvivTi xð0Þ;

ð4Þ

where μi’s are the eigenvalues of L
H and vi are their associated eigenvectors,

and 0 = μ1 < μ2 < ⋯ ≤μN. Note that algebraic connectivity defines the
timescale of our process. In other words, one can approximate the diffusion
process by considering only the term dependent on μ2 as the other terms
decay faster and are (subsequently) negligible. So, the larger the algebraic
connectivity, μ2, the faster the diffusion. One might argue that the diffusion
process described in Eq. (3) may not be the most appropriate model for the
diffusion of information since it assumes conservation.However, it has been
shown that the Laplacian matrix also captures important properties of the
susceptible-infected-susceptible (SIS) epidemic spreading in a graph48,
which is not conservative. VanMieghem48 proposes an analogous approach
to describe the spread of disease, where the eigenvalues and eigenvectors of
the Laplacian matrix account for the pattern of links between individuals.

Problem definition. We consider the task assignment problem with N
agents in the set N ¼ f1; . . . ;Ng. Each agent will be assigned to one or
more tasks in the setK ¼ f1; . . . ;Kg. A task requires Ek units of “energy”
to complete, which can be time, money, or other resources. Each agent
has a total ofBi units of energy, which is allocated to a set of tasks. Task k is
assigned to agent i with weight Bik, i.e., agent i will spend Bik units of
energy to complete task k. We assume that Bik are integers. The matrix
B ¼ ðBikÞi2N ;k2K 2 B ¼ NN ×K represents the assignments. We also
define the binary matrix X 2 X ¼ f0; 1gN ×K , whose elements xik = 1 if
agent i is assigned to task kwith positive weight and xik= 0 otherwise. The
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total energy units of the agents are denoted by B ¼ P
i2NBi. We must

haveB≥
P

k2KEk to have a feasible solution.We assume that agents pay a
cost f ðBÞ for the task assignmentB. Our goal is to choose an assignmentB
that minimizes the cost f ðBÞ. Thus, the optimization problem can be
formalized as

min
B2B

f ðBÞ ð4aÞ

s:t:
X
i2N

Bik ≥ Ek 8k 2 K ð4bÞ

X
k2K

Bik ≤Bi 8i 2 N ð4cÞ

Thus, we want to optimize the resilience of the final team assignment
given the set of constraints in Eqs. (4b) and (4c). That is, wewant to choose a
cost function f ðBÞ in Eq. (4a) to capture the resilience of the final config-
uration. We will show later that the negative value of the algebraic con-
nectivity of the hypergraph associated with the assignment B can be an
appropriate cost function to provide the resilience we are looking for in the
final assignment.

Problem formulation. The problem formulated in previous section can
be mapped into an edge-dependent vertex-weighted hypergraph, where
we weigh both the hyperedges and the nodes within each hyperedge35.
Our optimization problem can be mapped to the EDVW hypergraph
H ¼ fN ; E;ω; γg, whereN is the set of agents, E is the set of tasks (note
that jEj ¼ jKj and the only difference between the sets E and K is the
nature of the element in them). The weighting functions can be defined
arbitrarily. Here, we propose to weigh the importance of a task as the
energy required to complete it, i.e., ω(ek) = Ek. Also, the importance of an
agent within a task is assumed to be the energy the agent spends in that
task, γðvi; ekÞ ¼ Bik. Figure 1 (a) and (b) show this mapping graphically.
Finally, we propose to maximize the algebraic connectivity of the
Laplacian matrix in Eq. (2), i.e., μ2, the second smallest eigenvalue of LH.

The main advantage of formulating our problem as a hypergraph is
that we can use the concepts of robustness and diffusion. By maximizing
algebraic connectivity, we expect to make the hypergraph more resistant to
attack and allow for faster diffusion processes. In practice, from the outset,
wehope that the failureof anodeor taskwill haveminimal impact. From the
second, we expect the flow of information between agents to be as fast as
possible. Note that from a TFP perspective, these are some of the desirable
features for a solution. In49, the authors suggest that desirable features for
TFPs include (i) reducing communication costs, (ii) being resilient with
respect to the removal of an agent, (iii) reducing personnel costs, (iv) bal-
ancing workloads, and (v) incorporating unique experts, skills, and leaders.
We note that our proposed mapping focuses on a robust team assignment.
We refer the reader to Supplementary Note 1 for additional discussion on
the team formation problem. However, algebraic connectivity

maximization also reduces the timescale of the diffusion process, suggesting
that communication costs are reduced as well. Moreover, with respect to
personnel costs and workload balancing, these features are incorporated
into our method through the constraints. Thus, one can simply restrict the
space of solutions to those that satisfy a given set of personnel costs and
workload balance. We also note that we did not include different expertise
and leaders in our formulation. In other words, all agents in the system can
perform the tasks equally well. It should be noted that this assumptionmay
be reasonable in some scenarios. Examples include the assignment of tasks
to artificial agents, especially teams of robots1,5,50,51.

Here, we focus on connected hypergraphs. The reason for this choice is
twofold. First, Laplacian matrices are semi-positive definite, so the multi-
plicity of zero eigenvalues is equal to the number of connected components
in the hypergraph. Thus, if we optimize the algebraic connectivity in a
hypergraphwithmultiple connected components,we canoptimizeonly one
component and neglect the others. Second, from an application point of
view, we want to increase communication between agents. In this case, we
need to ensure that there is a path between any two agents.

As an alternative representation,we candescribe anyhypergraphusing
a bipartite graph where both agents and tasks are represented as nodes in
this graph. The adjacency matrix of this graph is given as

AB ¼ 0 ðW � χÞ
ðB � χÞT 0

� �
;

where ∘ is theHadamard product, and χ is the incidencematrix (i.e., χij=1 if
node vi belongs to the hyperedge ej and χij = 0 otherwise). The firstN nodes
represent thenodes (agents) in thehypergraph,while the remainingKnodes
represent the hyperedges (tasks). Thus, we can define the probability
transition matrix as PB ¼ DB

� ��1
AB, whereDB is a diagonal matrix whose

diagonal elements areDB
ii ¼

P
jA

B
ij , and the Laplacian can be defined using

the same formulation as in Eq. (2). Although the bipartite graph fully
describes the hypergraph, the random walk in this structure alternates
between tasks and agents. For a detailed description of the Laplacian
bipartite matrix, we refer the reader to Supplementary Note 3.

Analysis on small hypergraphs. To gain more insight into the behavior
of optimizing algebraic connectivity, we focus on small hypergraphs
where we can study the whole set of possible hypergraphs. We focus on
hypergraphs withN = 5 and K = 3. We generate all possible hypergraphs
with a single connected component, and the minimum cardinality is
equal to or greater than two. We set Bik ¼ 1 for all assignments in the
generated hypergraph and Bik ¼ 0 otherwise. The budgets and energies
are defined as Bi ¼

P
kBik and Ek ¼

P
iBik to make the process as

unconstrained as possible. We compute the algebraic connectivity for all
these cases. In Fig. 2, we show the highest and the lowest algebraic con-
nectivity and two intermediate cases. In Fig. 2a–d, we show the graphi-
cally transposed incidence matrix, where the rows represent the
hyperedges (tasks) and the columns represent the nodes (agents). In

Fig. 1 | Graphical representation of the task-
assignment problem. In (a), the task assignment is
represented by B as well as an exemplary case of
budgets, Bi's, and energies, Ek's, in (b) and (c), the
hypergraph and bipartite representations of the
same task assignment. Notice that the hypergraph
and bipartite representations are equivalent. See
Section “Mapping The Problem as a Hypergraph,”
for the complete definition of the objects in
the figure.
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Fig. 2e–h, we show the behavior of a diffusion process, obtained by
solving Eq. (3) using LH for the studied hypergraphs. All hypergraphs
have the same initial condition.

Figure 2 shows that the higher the algebraic connectivity, the faster the
diffusion. We note that the visual difference between Fig. 2e, f is minimal,
particularly between the middle curves (blue, red, and purple). However,
note that the light blue and light red curves reach the steady state slightly later
than in Fig. 2f. We emphasize that this analysis is based on the assumption
that the process can be approximated by an exponential term depending on
algebraic connectivity. Implicitly, we assume that the gap between μ2 and μ3
is large enough to allow us to neglect the remaining terms. The comparison
between Fig. 2e and the others, especially (g) and (h), is clear because the
timescale in (a) is significantly smaller. Notice also that there might be a
dependence on the initial condition, which should be less important as we
increase the system size. Finally, in Fig. 2i, j, k, we show the variance of x as a
function of time. From these figures, we can see that the higher the algebraic
connectivity, the faster the diffusion (i.e., it converges faster to the steady
state). The analysis of this figure also suggests that unconstrained optimi-
zation of the algebraic connectivity favors denser hypergraphs. Nevertheless,
we find that density does not fully explain intermediate cases. For example,
Fig. 2c is less dense than Fig. 2d but has higher algebraic connectivity. We
note that the constrained problem will limit the space of possible solutions,
providing an opposing force to the expansion favored by maximizing alge-
braic connectivity. In other words, we expect to be closer to the intermediate
cases than to the bounded cases (Fig. 2a, d).

Figure 3 shows how algebraic connectivity behaves as a function of
constraints. The figure depicts the box plot of the algebraic connectivity
versus the average value of Ek. Notice that each box is computed using a
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Fig. 2 | Examples of small hypergraphs. From left to right, in decreasing order of
algebraic connectivity. From (a) to (d), the graphical representation of the trans-
posed incidence matrix is used for visualization, where the rows represent the
hyperedges (tasks) and the columns represent the nodes (agents). From (e) to (h), we
show an example of the diffusion process obtained by solving Eq. (3) using LH. Here,
for visualization purposes, the initial condition is x(0) = [1.0, 0.75, 0.5, 0.0]T. All
processes start with the same initial condition, Bik ¼ 1 for all assignments (see

incidence matrices), Bi ¼
P

kBik , and Ek ¼
P

iBik . From (i) to (l), we show the
variance of the state x as a function of time. The visual difference between (e) and (f)
is small, especially between the middle curves (blue, red, and purple). However, the
curves at the extremes (light blue and light red) suggest that reaching the steady state
takes slightly longer than in Fig. 2f. Panels (i)–(l) show the variance of the states x.
The horizontal, solid, dashed, dash-dot, and dotted lines represent the final diffusion
variances for each hypergraph.

Fig. 3 | Algebraic connectivity distribution as a function of the constraints for all
connected hypergraphs with N = 5 and K = 3. The figure shows a box plot of the
algebraic connectivity for all connected small hypergraphs with N = 5 and K = 3
versus the average Ek. The box shows the quartiles, and the whiskers show the rest of
the distribution. Outliers are defined as points above or below 1.5 times the inter-
quartile range. The fewer constraints imposed, the higher the algebraic connectivity.
Colors for visualization purposes. We refer the reader to Fig. S1 in the Supple-
mentary Note 2 for more on the influence of constraints on a hypergraph’s algebraic
connectivity.
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different number of hypergraphs due to the combinatorial nature of
this experiment. In this experiment, Bi and Ek are perfectly correlated as
we assume that allBik are equal to one. Therefore, analyzing μ2 as a function
of one of the constraints is sufficient. As the figure shows, the fewer con-
straints imposed, the higher the algebraic connectivity. This behavior is not
linear, but it is increasing. Furthermore, we observe that, for intermediate
values of E½Ek�, the distribution of algebraic connectivity exhibits greater
variance.

Team assignment swapping. We want to understand the role of some
representative small structures. So, we design a hypergraph rewiring
process and a set of experiments to investigate how different structures
change the algebraic connectivity under an assignment-swapping setting.
We start with a set of NC isolated communities, within which mci
hyperedges are shared by the corresponding nci community members,
and there is no communication between them.

We design algorithms that create connections between communities
with different emphasis through assignment swapping while preserving
edge and node weights. We assume that the initial collaboration setup
satisfies the set of constraints. Since the assignment-swapping operations
preserve the weight of each node and hyperedge throughout the rewiring
process, each simulatedhypergraphobtained throughassignment swapping
will satisfy the same set of constraints. Specifically, in the assignment-
swapping algorithms, we fix the number of inter-community assignment
swaps at nswap = Nc − 1 for all rewiring methods. Our four rewiring
methods are:
• Connected by one node: A randomly selected centroid node connects

all communities through assignment swapping. In each swap opera-
tion, the centroid node exchanges one of its hyperedge participations
with a randomly chosen node from a different community, ensuring
that the centroid node participates in exactly one hyperedge per
community. In terms of collaboration, this means that the centroid
agent exchanges task assignments to work on one task in each research
group, creating a hub-like structure.

• Connected by one hyperedge: A randomly selected centroid hyperedge
connects all communities through assignment swapping. The algo-
rithm moves one node from each non-centroid community into the
centroid hyperedge, while simultaneously redistributing the nodes
originally in the centroid hyperedge to replace the removed nodes in
each community-specific hyperedge. This process ensures that the
centroid hyperedge contains exactly one node from each community.
In collaboration terms, the centroid task becomes a cross-community
project with one agent from each research group, while the original
agents from the centroid task are exchanged to work on tasks in the
other communities.

• Head-to-tail connection: Communities are connected sequentially by
swapping nodes between adjacent communities. For each pair of
adjacent communities i and i+ 1, the algorithm selects one hyperedge
from each community and swaps one node between them, creating a
linear connection pattern.

• Connected by random swaps: Communities are connected through
random assignment swapping between pairs of communities. In each
swap operation, the algorithm randomly selects two communities,
randomly chooses onehyperedge fromeach of these communities, and
then randomly selects one node from eachhyperedge to exchangewith
the other. This process is repeated for nswap operations to create ran-
dom inter-community connections.

Notice that all four rewiring methods preserve the weights of the
hyperedges and nodes by design, as each swap operation exchanges node
positions between hyperedges while maintaining each agent’s total
budget allocation and each task’s total energy assignment. Although this
experiment uses binary participation, the same swapping principle would
preserve agent budget constraints and task energy requirements in scenarios
with weighted resource allocations.

To provide an illustrative analogy for this process in terms of research
collaboration, consider each community as a research lab or a collaboration
project. Initially, information was contained and could only flow freely
within each community. Collaboration occurs onlywithin the communities
and rarely between the labs. Information diffusion between communities
could occur after the introduction of system-wide information flows while
satisfying the same set of constraints on agents’ budget and task energy
requirements by preserving node and edge weights. Analogously, inter-
group collaborations or visiting research opportunities connect different
communities and contribute to the flow of information, knowledge, and
skills.Note that in thehypergraph setting, additional informationflowcould
be achieved without adding additional nodes or hyperedges.

Figure 4 shows a graphical example of the different types of hyper-
graphs analyzed. Given the initial setting, additional information flow could
be facilitated by inter-community assignment swaps, which introduce col-
laboration between members of different communities. The more inter-
community assignment swaps, the better the information diffusion between
communities. Therefore, to fairly compare the swapping processes with
different connection patterns and to evaluate their impact on algebraic
connectivity, the number of inter-community assignment swaps is constant
for each rewiring type.

For simplicity, we letNc be the number of communities inH, where ni
is the number of nodes in the community i, and mi is the number of
hyperedges in the community i. In a hub-like hypergraph connected by a
single node, a centroid node is chosen to exchange with a random node in
eachof theother communities, and the end resultwouldbe a graphwhere all
communities are connected through the centroid node as it participates in
an edge in each community. Similarly, we can define a hub-like hypergraph
connected by a single hyperedge. In this case, a centroid edge is chosen, and
each community sends a node to join the centroid edge. Alternatively, a
head-to-tail hypergraph can be formedby connections between each pair of
consecutive communities. Finally, we also considered the case of random
swaps, where connections between communities are formed by randomly
swapping assignments between communities.

Figure 5 shows the behavior of the algebraic connectivity as a function
of the numberof nodes. The hub-like hypergraph, i.e., connection through a
node or an edge, consistently outperforms the other connection schemes.
Note that in this setting, the connection through an edge and the connection
through a node are identical due to the graph isomorphism to the hyper-
graph transpose. The linear head-to-tail hypergraph has the smallest alge-
braic connectivity. The randomized connection outperforms the linear
head-to-tail hypergraph on average. We note that we observe a positive
correlation between the algebraic connectivity and the average shortest
distance. When the average degree increases, we expect (1) the algebraic
connectivity to increase and (2) the shortest paths to decrease. We also
observe a power-law relationship between the algebraic connectivity and the
size of the hypergraphs, where

μ2 � N�a
c ; a > 0 and ahead2tail > arandom > aoneedge ¼ aonenode:

The number of introduced connections between communities is the same
for graphs of the same size but differently connected for a fair algebraic
connectivity comparison.

We should note that the results in Fig. 5 also show an unusually high
value for the exponents. This suggests that finite size effects play a role.
However, due to the computational cost, we are unable to increase the
system size to analyze large system sizes ( > 103). Therefore, we decided to
focus on small systems for this experiment. We should also note that the
order observed between the algebraic connectivity for different systems is
the main result of this analysis.

For most of the collaboration networks, we expect both the average and
the maximum author budget and task energy requirements to be much
smaller than the number of tasks or authors, i.e., E½Ω�;
maxðΩÞ; E½Γ�; maxðΓÞ≪jKj and E½Ω�; maxðΩÞ; E½Γ�; maxðΓÞ≪jN j,
which means that under the constraints of the author’s budget and task
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requirements, the collaborative network that optimizes algebraic connectivity
is not expected to be centralized by a node or an edge, and is most likely to
have a decentralized structure.

The analysis in this section suggests that head-to-tail structures per-
form worse than centralized structures (i.e., those centralized by nodes or
hyperedges). This demonstrates that, even when weights are homogeneous,
heterogeneity in structure can play a significant role in algebraic con-
nectivity. This also indicates that understanding the properties that lead to
higher or lower algebraic connectivity is non-trivial because the

configuration space increases exponentially with the number of nodes,
hyperedges, and weights.

Results from experiments on real-world data
Optimizing the algebraic connectivity. In this section, we show our
results on how we managed to optimize the algebraic connectivity of the
hypergraphs extracted from real datasets (see subection “Datasets” in the
“Methods” Section). In Fig. 6, we present the algebraic connectivity gain,

Gain ¼ μOptimized
2

μReal2
, for the three optimization methods considered, the

constrained simulated annealing (CSA) for the hypergraph and bipartite
formulations, and the greedy approach (see the “Methods” section for the
optimization methods details). Here, we consider the APS dataset with
different extracted hypergraphs associatedwith 2-year periods from1993
to 2021. Note that all approaches optimize the algebraic connectivity of
the real collaboration hypergraph, as shown by the dashed line in Fig. 6.
Notably, the CSA algorithm also provides a significantly better solution
when compared to the greedy approach, where the algebraic connectivity
in the optimized hypergraphs is between ten and five hundred times
higher than the original hypergraph. In addition, in Fig. 6, we also show
the comparison between the CSA approach using the hypergraph and the
bipartite representation. Although they show approximately similar
gains, we note that the comparison between the two methods is not
straightforward because they represent different objects. The purpose of
reporting such a comparison is to show that both systems are optimized
versions of the original data. Thus, the comparisons are fair in terms of
our quality measures.

We note that when applied to the 2002–2003 hypergraph, the greedy
algorithm did not finish within the 500-h time limit. To improve com-
putational efficiency, we have developed an adaptation of the greedy
algorithm. The adapted approach uses random assignment of tasks to
agents when the number of available agents exceeds 50 during the
assignment process. The rationale behind this adaptation is that early-
stage assignments have a relatively small impact on the final optimized

Fig. 5 | Hypergraph assignment swapping on isolated communities. Here, we
tested four different systems: (i) random, (ii) connected by one node, (iii)
connected by one hyperedge, and (iv) head to tail (see Fig. 4). We notice that
the algebraic connectivity scales with the system size as μ2 � N�a

c , where, in
this example, Nc ¼ nci ¼ mci

; 8ci 2 the set of communities, N ¼ nc ×Nc ¼
Nc

2;K ¼ mc ×Nc ¼ Nc
2. This figure is the result of 30 independent repetitions.

b) Connected by one node c) Connected by one hyperedge

d) Head-to-tail connection e) Connected by random swaps

Initial hypergraph with isolated 
communities

a)

Fig. 4 | Example of hypergraph structures obtained from assignment swapping.
Hypergraph assignment swapping with different structures, focusing on preserving
constraints on agent budgets and task requirements. In (a), the initial hypergraph
with the isolated communities, while in (b)–(e), we show the connection by one
node, connection by one hyperedge, a head-to-tail connection scheme, and con-
nection by random swaps, respectively. In this Example, we start with a set of isolated

communities, each formed by 6 nodes sharing 6 hyperedges, i.e., 6 agents sharing 6
tasks. We introduce different connections to these isolated communities with dif-
ferent structures to explore properties favorable to the algebraic connectivity
function. For simplicity, we letNcbe the number of communities inH, whereni is the
number of nodes in community i, and mi is the number of hyperedges in commu-
nity i.
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algebraic connectivity. This small adjustment sufficiently reduces the
computational cost.

As mentioned in the subsection “The Optimization Problem” in the
“Mehtods” section,weare also interested inotherquantities of our solutions,
such as the average number of tasks assigned to an agent �T and the average
number of co-authors bA. Specifically, bA is defined by first computing, for
each author, the average number of co-authors across all of their papers.
Then, this value is averaged over all authors. We use this metric instead of
the average number of authors per paper, as it offers a proxy for the com-
municationoverhead each authorhas todealwith.Moreover, notice that the
average number of authors per paper is directly related to the average
number of papers per author due to the bipartite structure. This is,
N × Average Number of Papers per Author = K × Average Number of
Authors per Paper. Figures 7, 8, respectively, show these two quantities.We
notice that the optimized versions are systematically denser, both in termsof
the average number of co-authors and the average number of papers per

author (tasks). Interestingly, the CSA method for the hypergraph also
provides solutions with a lower average number of co-authors and a lower
average number of papers per author compared to the greedy approach.
This is a desirable feature, as we expect it to reduce communication costs.

Resilience against attacks. Figure 9 shows the patching cost (see
subsection “Evaluation Measures,” in the Methods section for its defi-
nition) of the optimized solution compared with the initial hypergraph
under the four-node removal attack. The plots represent the patching
costs of the hypergraphs corresponding to the APS dataset from 1993 to
2021. As the figure shows, the optimized solutions are more resilient to
such attacks since the patching cost is almost always lower for the opti-
mized solution. Similarly, we almost never have an unsuccessful patch for
the optimized hypergraphs, while this is not the case for the original
hypergraphs (results not shown). An “unsuccessful patch” refers to any
case where at least one constraint remains unsatisfied after patching.

Fig. 6 | Algebraic connectivity gain for real hypergraphs. Algebraic connectivity
gain for the hypergraphs extracted from the APS dataset between the years
1993–2021 and the MAG dataset, considering the original dataset (represented by
the dashed pink line), the outputs of CSA for the hypergraph and bipartite for-
mulations, and the output of the greedy approach. CSA consistently outperforms the
greedy approach, except on the MAG dataset which has a significantly higher
average number of papers per author and average number of authors per paper.

While the bipartite representation has a slightly larger gain over the hypergraph
representation, it is computationally more expensive because it has a larger Lapla-
cian matrix. Table S2 in Supplementary Note 7 summarizes the properties of the
hypergraphs extracted from the APS and MAG collaboration datasets. Fig. S5 in
Supplementary Note 8 shows the evolution of these hypergraphs as they are opti-
mized by CSA.

Fig. 7 | Average number of co-authors for real hypergraphs. Average number of
co-authors for the extracted hypergraphs from the APS dataset between the years
1993–2021 and the MAG dataset, considering the original dataset, the CSA for the
hypergraph and bipartite formulations, and the greedy approach. Error bars show
95% confidence intervals calculated from the distribution of co-author counts across
all authors within each optimized solution. Specifically, for each incidence matrix
(initial or optimized), we calculate the number of co-authors for every individual
author, yielding a distribution across all authors in each collaboration dataset from

whichwe compute themean and its confidence interval. As our numerical analysis of
the algebraic connectivity suggested, the optimized hypergraphs tend to increase
connectivity and consequently increase the average number of co-authors compared
to the initial hypergraphs. However, the CSA-Hypergraph method achieves this
optimization while maintaining lower average number of co-authors than both the
Greedy and CSA-Bipartite approaches. This suggests that CSA-Hypergraph can
optimize algebraic connectivity with reduced communication cost.
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“Unsatisfied constraints,” reported in Fig. 9, are the total amount by
which budget constraints are exceeded and task energy requirements are
unmet. Moreover, note that any comparison between hypergraphs in
which the constraints are met and those in which they are not is unfair
(see also Fig. 10 and the discussion below). Finally, for comparison, we
note that the greedy approach generally has a higher patching cost than
the CSA approach. Both hypergraph and bipartite approaches using the
CSA method produce similar results.

In Fig. 10, we show our main result, the sum of the unsatisfied con-
straints under the removal of four nodes and after patching the solution.We
can see that in the CSA approach for the hypergraph, the removal of four
nodes does not imply any violation of the constraints after patching. For the
bipartite CSA case, the results are similar. The only exception is the hyper-
graph extracted from2016 to 2017.However, this is not statistically sufficient
to conclude that one approach is better than the other. Furthermore, we
notice that the hypergraphs from 1993–1994 to 1994–1995 have zero unsa-
tisfied constraints in the original data. This also explains why the original

hypergraph has a lower patching cost than the optimized version. A similar
analysis canbedone for the 2005–2006hypergraph.Moreover,wenotice that
thegreedyapproachperformswell, as it doesnot leaveunsatisfiedconstraints.
We observe similar results when two nodes are removed.We refer the reader
to Figs. S2 and S3 in Supplementary Note 5 for those results.

Finally, we report a similar analysis for theMAGdataset. Although it is
difficult to directly compare these two datasets, they are similar in nature,
and their main difference lies in how the data are collected, curated, and
selected. For the latter, in the APS experiments, we fixed a 2-year time
window and observed only the changes that occurred due to social factors,
the number of researchers working in statistical mechanics, and their pro-
ductivity. On the other hand, for the MAG dataset, the data were filtered
using the keyword “hypergraph”, and time is not a constraint. This factor
may impose different constraints, as time is closely related to our notion of
how many papers a researcher can produce. Note that this is translated in
our models as our constraints, i.e., the energy agents can spend and the
energy tasks that must be completed. Despite these differences, there are no

Fig. 8 | Average number of papers per author for real hypergraphs. Average
number of papers per author of the extracted hypergraphs from the APS dataset
between the years 1993–2021 and theMAGdataset, considering the original dataset,
the CSA for the hypergraph and bipartite formulations, and the greedy approach.
Error bars show 95% confidence intervals calculated from the distribution of paper
counts across all authors within each solution. Specifically, for each incidencematrix
(initial or optimized), we calculate the number of papers for every individual author,

yielding a distribution across all authors in each collaboration dataset fromwhichwe
compute the mean and its confidence interval. Similar to the co-authorship patterns
in Fig. 7, optimizing for algebraic connectivity increases the average number of
papers per author compared to the initial dataset. The CSA-Hypergraph method
again achieves this optimization while maintaining a lower average number of
papers per author than both the Greedy and CSA-Bipartite approaches. Thus, CSA-
Hypergraph can optimize algebraic connectivity with reduced individual workload.

Fig. 9 | Patching costs after removing four nodes for the initial and optimized
versions of the real hypergraphs. Patching costs after removing four nodes for the
extracted hypergraphs from the APS dataset between the years 1993–2021 and the
MAG dataset, considering the original dataset, the CSA for the hypergraph and
bipartite formulations, and the greedy approach. The bars represent the average of

nexp = 10 runs, while the error bars represent the
σexpffiffiffiffiffiffi
nexp

p . The patching costs are zero in
the APS dataset for the hypergraphs of 1993–1994 and 1994–1995. Note that despite
similar patching costs, the initial hypergraphs often have unsatisfied constraints (see
Fig. 10). Thus, comparing only the patching costs without considering the unsatisfied
constraints can be misleading.
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methodological issues, and the comparisons are still reasonable due to their
similar nature.

Regarding theMAGdataset (see the last set of bars in Figs. 6, 7, 8, 9, 10),
the results are similar to those obtained for the APS, where patching costs
and unsuccessful patches are significantly reduced. In the case of the MAG

collaboration dataset, the algebraic connectivity gain is Gain ¼ μOptimized2

μReal2
� 39,

which is similar to the Gain observed in the APS hypergraphs, as shown in
Fig. 6. The same can be said for the average number of co-authors and the
average number of papers per author (see Figs. 7 and 8). We observe a
significant reduction in the patching cost of the optimized case, about 60%
lower on average. However, we see a notable reduction in the number of
unsuccessful patches and unsatisfied constraints since the numbers of
unsuccessful patches and unsatisfied constraints were close to zero most of
the time for the optimized solutions, as can be seen in Fig. 10. For additional
results, we refer the reader to Figs. S2 and S3 in Supplementary Note 5.

Discussion
Our motivation to propose the use of algebraic connectivity in the team
assignment problem arises from its applications in graph theory36,37. Thus,
our main results concern the robustness of our assignment with respect to
the patching costs and unsatisfied constraints, shown in Figs. 9, 10,
respectively. From this analysis, we can see that the algebraic connectivity is
indeed capturing the resilience features of the assignment. This is specifi-
cally evident when analyzing the unsatisfied constraints, Fig. 10, where the
CSA approaches have no unsatisfied constraints after the four-node attack
and patching the solution. Moreover, by optimizing the algebraic con-
nectivity, we expect also to reduce the timescale of diffusion processes, as
argued in Section “Results from experimental analysis.” Although diffusion
is just a mathematical model, in practice, we hope that such quantity can
also be reflected in practical terms of information diffusion. Our main
concern in this case was the average number of agents per task and the
average number of co-authors. As shown in Figs. 7, 8, these two measures
tend to increase as a consequence of optimizing the algebraic connectivity.
This can be observed by noticing that in all the tested optimization
methods, these quantities increased. However, our CSA hypergraph
approach presented an increase that is lower than that of the greedy
method. Thus, our methods are improving the robustness and diffusion at
the same time but without unboundedly increasing the communication
costs. Lastly, the algebraic connectivity alone might not be enough. Here,
the constraints play a major role in our results. They reduce the space of
feasible solutions and act as an opposing force, driving the solutions

towards more practical solutions. We also remark that setting appropriate
solutions must be key in real applications.

To our knowledge, the Laplacian matrix used in our problem definition
is the only one in the literature that accounts for heterogeneity in an EDVW
hypergraph. In35, the authors argue that although this matrix is symmetric, it
still captures higher-order interactions. The reasoning behind this argument
is that the probability transition matrix P is generally asymmetric, whose
asymmetries are induced by the context-dependent weights (i.e., different
weights for the same node in different hyperedges), and thus represent a
higher-order effect. Furthermore, a symmetric Laplacian is obtained using the
definition in ref. 47. This technique takes into account the notion of circu-
lation in a directed graph and can be applied to any directed graph. Thus,
although it is still a symmetric projection, i.e., it can be interpreted as a graph,
the higher-order structure should still be encoded in the weights of the
Laplacian matrix. Note that a weighted bipartite representation of the
hypergraph would also capture all the weights. However, in this case, we have
two types of nodes in the bipartite representation: the nodes in the hyper-
graph (agents) and the nodes representing the hyperedges (tasks). By ana-
lyzing robustness using this representation, we assume that perturbations in
both the nodes and the hyperedges are the same, which is against the nature
of our application since we want to guarantee that we have enough resources
to complete the tasks (see below a comparison with the bipartite
representation).

Comparing the greedy with the original data, we notice an improve-
ment in algebraic connectivity, Fig. 6. However, this comes at the cost of
higher values for the average number of agents per task and the average
number of co-authors; see Figs. 7, 8.When analyzing the patching costs, we
observe inconsistent results of both an improvement and degradation of the
solutions in terms of patching costs after the four-node attack experiment.
However, similar to CSA, the greedy approach presents satisfying results in
terms of unsatisfied constraints after node removal attacks andpatching, see
Fig. 10. From a computational point of view, the greedy approach is O(N4),
while the computation of the algebraic connectivity alone is O(N3). Due to
the stochastic nature of the CSA approaches, the comparisons may be
perceived as unfair since one could run the CSA for an arbitrary number of
iterations. However, the overall quality of the greedy solutions was not
satisfactory. Finally, one could use mixed approaches where the greedy
solution is used as the initial state for the CSA.

TheCSAapproaches for thehypergraphand thebipartite formulations
seem to be statistically equivalent in our experiments, both in terms of
algebraic connectivity gain, Fig. 6, and robustness, Figs. 9, 10. Thus, we have
no evidence to advocate one approach over the other in terms of

Fig. 10 | The sum of unsatisfied constraints after removing four nodes for the
initial and optimized versions of the real hypergraphs. The sum of unsatisfied
constraints after removing four nodes and patching the solution for the extracted
hypergraphs from the APS dataset between the years 1993–2021 and the MAG
dataset, considering the original dataset, the CSA for the hypergraph and bipartite
formulations, and the greedy approach. The bars represent the average of nexp = 10

runs, while the error bars represent the
σexpffiffiffiffiffiffi
nexp

p . The unsatisfied constraints are zero for

CSA hypergraph and bipartite (except for 2016–2017) and greedy for all of the cases
(no bars are shown). Note that most initial hypergraphs will have unsatisfied con-
straints. However, only the CSA-bipartite-optimized hypergraph for 2016–2017 will
have unsatisfied constraints.
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assignments. However, the computational cost of computing the algebraic
connectivity for the bipartite approach is significantly higher, O((N+K)3),
versus O(N3) in the hypergraph case. Thus, we have evidence that the
hypergraph approach should be preferred in practice.

Themain contributionof ourwork is tomap the teambuilding problem
as a hypergraph discovery problem and propose the use of algebraic con-
nectivity as an optimization function to improve the resilience of formed
teams. In Section “Results,” we validate this claim by showing that hyper-
graphswith higher algebraic connectivity aremore resilient to agent removal.

In this work, we assume that the agents are identical. Although this is
beyond the scope of this work, we note that the incorporation of non-
identical agents is possible by considering a matrix Cik 2 ½0; 1� that will
encode the efficiency with which agent i can perform the task k. In practice,
these new constraints can be incorporated by rewriting the optimization
problem in Eq. (4) as follows:

max
B2B

μ2ðLHÞ ð5aÞ

s:t:
X
i2N

BikCik ≥ Ek 8k 2 K ð5bÞ

X
k2K

Bik ≤Bi 8i 2 N ð5cÞ

Here, B, Ek, and Bi are defined as in Eq. (7). The original problem is
recovered when Cik ¼ 1 for all agents and tasks. We can also set Cik ¼ 0 to
model the scenario in which agent i lacks the skill to perform task k.

A more sophisticated approach is to extend the matrix formulation to
model agent specialization and heterogeneous task requirements by con-
sidering a set of ℓp distinct skills. In this model, we define a set of weighted
incidence matrices, B‘ with ‘ 2 L ¼ f1; 2; � � � ; ‘pg, where each matrix
corresponds to a different skill. The assignment of task k to agent i, Bik, is
now further specified for each required skill, denoted by B‘

ik. This variable
represents the amount of skill effort ℓ that the agent idistributes to the task k.

These assignments are governed by skill-specific constraints. An
agent’s budget is no longer a constant value, but is instead specified for their
capacity in each skill, denotedbyB‘

i . Similarly, a task’s energy requirement is
specified for each skill needed for its completion, denoted by E‘

k. Finally, to
ensure that each agent’s total effort across all skills does not exceed their
overall budget (Bi), we add a set of additional budget constraints.

Formally, this new optimization process can be defined as

max
B2B

μ2ðLHÞ ð6aÞ

s:t:
X
i2N

B‘
ik ≥ E

‘
k 8k 2 K and ‘ 2 L ð6bÞ

X
k2K

B‘
ik ≤B

‘
i 8i 2 N and ‘ 2 L ð6cÞ

X‘p
‘¼1

B‘
i ≤Bi: ð6dÞ

This formulation induces a multilayered hypergraph, where each skill
corresponds to a separate layer. To optimize overall team resilience, this
multilayeredhypergraphcanbeprojectedontoa singlehypergraphbyadding
the assignment matrices across all skill layers, B ¼ P

‘B‘. The objective is
then to maximize the algebraic connectivity of this projected hypergraph.

Finally, we note that these are not the only approaches for including
non-identical agents. These approaches highlight that the mapping can
easily be generalized to other problems and sets of constraints by changing
or adding new constraints. However, note that identical agents are the least
restrictive case, thus providing the largest feasible solution set. In other
words, more restrictive approaches imply a feasible set of solutions that is a

subset of the feasible set for identical agents. Our results mainly concern the
algebraic connectivity, Eq. (5a), whose properties should not change due to
more restrictive constraints. In the latter case, we would expect the com-
putational time to increase because of the reduction in the size of the
feasible set.

The potential impact of our proposed approach on complex systems and
higher-order network goes beyond team formation. Our approach is parti-
cularly helpful when studying classes of processes described by the EDVW
Laplacian matrix. For example, He et al.52 use a reweighted version of the
EDVW Laplacian matrix to better cluster single-cell RNA sequencing data.

Our approach cangenerate optimizedhypergraphs (that are resilient to
node removal attacks), which can then be used for comparison with real
systems. A straightforward application is to study the robustness of real and
artificial systems, where our approach can provide ameasure of how closely
real and optimized systems align. A similar argument can be made for the
study of randomwalks35 and diffusion processes, as they are closely related.
Another example is the possible generalization of coupled oscillators with
edge and node weights. This application is not limited to specific problems
and can be used to analyze different classes of problems, such as social,
biological, or artificial systems.Moreover, the assumptionof identical agents
in such a general system is probably the most reasonable assumption.

While our work contributes to the fields of complex systems, we also
foresee its impact on the study anddesign of hypergraphneural networks, as
discussed in35. In this context, our results on the relationship between
algebraic connectivity and robustness may help select neural networks less
susceptible to adversarial node-level attacks. Furthermore, a better under-
standing of the mathematical properties of the EDVW Laplacian will be
useful in studying and designing new hypergraph neural networks that
accurately and efficiently encode higher-order interactions.

Conclusion
We propose a team assignment algorithm based on discoverey a hypergraph
whose structure is optimized for resilience and diffusion. Specifically, we
represent each agent’s effort on a task as an edge-dependent, vertex-weighted
hypergraph. Our method optimizes the algebraic connectivity of this
hypergraph. In our formulation, we consider two constraints: the energy an
agent can expend and the energy required to complete a task. These con-
straints reduce the feasible region and counterbalance the algebraic con-
nectivity objective. We use constrained simulated annealing to find the
optimal solution. We systematically evaluate all connected small hypergraphs
with N = 5 agents and K = 3 tasks to validate algebraic connectivity. This
experiment shows that algebraic connectivity favors densely connected
hypergraphs. Additionally, we conduct a finite-size analysis considering four
classes of hypergraphs: (i) connected by a node, (ii) connected by a hyperedge,
(iii) head-to-tail (a.k.a. a chain of hyperedges), and (iv) randomly swapped
hyperedges. This analysis confirms that head-to-tail structures scale worse
(with a larger exponent) than centralized structures (i.e., those centralized by
nodes or hyperedges). We use two scientific collaboration datasets to evaluate
the robustness of our assignments using an attack-based evaluation, where
nodes are removed. We estimate the cost of moving the assignment into the
feasible region. We verify that our optimized hypergraphs are significantly
more resilient to task completion than the original data.We also compare our
constrained simulated annealing optimization approach with a greedy
approach, finding that constrained simulated annealing yields a significant
improvement in algebraic connectivity. Furthermore, we compare our
hypergraph representation of the problem with a bipartite representation that
captures similar properties. Specifically, the random walk defined on the
hypergraph is equivalent to a two-step random walk on the bipartite graph.
We find that both representations yield similar results in terms of attacks and
unsuccessful patching costs. However, the computational cost of the bipartite
representation is significantly higher than that of the hypergraph. We hope
our results motivate further exploration of algebraic connectivity in the team
assignment problem. Additionally, the proposed hypergraph representation
and optimization of algebraic connectivity under constraints can be used to
analyze other systems, such as financial systems in refs. 53,54.
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Methods
The optimization problem
Motivated by applications in projects where tasks are interconnected and
information diffusion between agents is an important factor, we propose to
maximize the algebraic connectivity of LH as a quality metric. The rationale
behind this measure is that higher-order interactions are well captured by
the Laplacian. More specifically, they are captured by the algebraic con-
nectivity of LH. At the same time, by maximizing the algebraic connectivity,
we simultaneously optimize robustness and informationflow.However, the
algebraic connectivity alone could drive the optimization algorithm to
solutions where the agents are overworked. This problem is avoided by
constraining the solution space. Thus, we rewrite the problem in Eq. (4) as

maxB2B μ2ðLHÞ ð7aÞ

s:t:
X
i2N

Bik ≥ Ek 8k 2 K ð7bÞ

X
k2K

Bik ≤Bi 8i 2 N : ð7cÞ

Note that LH is a function of B and that only the first equation differs from
the formal definition in Eq. (4).

Constrained simulated annealing
One of our solutions to the optimization problem (7) is constrained
simulated annealing based on the penalty method. Specifically, we add a
penalty function to our objective to penalize infeasible solutions generated
by the simulated annealing optimization. The penalty function corre-
sponding to the constraints in (7b) is�λkðEk �

P
i2NBikÞþ for all k 2 K,

and the penalty function corresponding to the constraints in (7c) is
�ηið

P
k2KBik � BiÞþ for all i 2 N , where (α)+ = α if α≥0 and (α)+ = 0 if

α< 0.Wekeep theweightsλk and γifixed throughout the optimization. This
method is implemented in Alg. 1.

We numerically observe that tomaximize the algebraic connectivity of
the hypergraph, it is best to use all of the agents’ budgets. Therefore, we
initialize X so that

P
k2Kxik ¼ Bi. Then, to use simulated annealing to

maximize algebraic connectivity, one only needs to swap the energy units in
X (subtract and add energy units to and from xik’s) to generate new
perturbations.

We also find that, because the search space is large compared to the
feasible region (see Supplementary Note 6 for an analysis of the size and
entropy of the solution space), adding the penalty function is insufficient to
guide the simulated annealing algorithm to the feasible region. Therefore,
we use a guided perturbation approach to push the samples toward the
feasible region. The guided perturbation method is conducted by swapping
the energy units in the incidencematrix so that we have a smaller number of
constraint violations after each round. The swapping of energy units is
performed according to two subroutines, which are chosen randomly (with
adjustable probabilities). In the first subroutine, we randomly choose a task
with extra energy, where tasks with more extra energy are more likely to be
chosen, and one energy unit from its assigned agents is transferred to a task
that needs more energy. The second task is also randomly selected, where
the tasks with a greater energy shortage are more likely to be chosen. In the
second subroutine, we randomly swap the energy units of the agents
between two random tasks.

Notice that we cannot use the existing perturbation results for the
undirected graph Laplacian (e.g.,55). The algebraic connectivity of an
undirected graph behaves monotonically as new edges are added55. How-
ever, although the EDVWLaplacian matrix is symmetric, a perturbation in
the hypergraph changes the random walk stationary distribution. This
change is reflected in the Laplacian matrix and prevents us from using
existing results such as the one in ref. 55. This illustrates the nontrivial
behavior of the algebraic connectivity of the EDVW Laplacian matrix.

Constrained Simulated Annealing (CSA)

Input: Energy Requirements E, Budget Constraints B, The Initial
Assignment B0. Optimization Parameters: T0, ac, Tth, tmax.

Set the temperature T = T0.
Set t = 0.
whileT > Tth or t < tmaxdo
Evaluate Bt and get penalty Pt, and eEt

from Alg. 2.
Perturb Bt according to Alg. 3 and get Btþ1.
t = t + 1
CSA: Assignment Evaluation
Input: B, E, B, η, λ.
Output: P, eE.
Calculate the algebraic connectivity, e, for the assignment B.
Calculate penalty function:
P ¼ e� ηið

P
k2KBt

ik � BiÞþ � λkðEk �
P

i2NBt
ikÞ

þ

Calculate constraint violations:
SeteEk=extra requiredenergy for taskk (eEk is negative if taskkhasmore

than enough energy assigned to it) returnP and eE.
CSA: Assignment Perturbation
Input: B, eE, Ns.
fors = 1: Nsdo
Find tasks that require more energy, Hp ¼ fk : eEk > 0g.
Find tasks that have more than enough energy assigned to

them, Hn ¼ fk : eEk < 0g.
ifHp! ¼ + and Hn! ¼ +then
Choose a task hp from Hp with probabilities proportional to eE.
Choose a task hn from Hn with probabilities proportional to jeEj.
Assign one energy unit of an agent assigned to task hn to task hp.
Update B and eE.
else
Choose two tasks randomly.
Choose one agent from each task randomly. Swap one of their energy

units assigned to the chosen tasks with each other.
Update B and eE.
end if
end for
The computational complexity of Algorithm 1 is determined by the

computation of the algebraic connectivity, which is the second smallest
eigenvalue of the Laplacian matrix (N × N). The complexity of such a
computation is O(N3). In each round of the CSA algorithm, the algebraic
connectivity is computed once. Since the total number of rounds is bounded
from above by a constant number tmax, (see Algorithm 1), the total com-
putational complexity of CSA is O(tmaxN

3). Producing a solution with a
lower computational complexity is beyond the scopeof this paperand is part
of our future work.

Other factors. Although we optimize the algebraic connectivity of the
hypergraphs to get robust solutions, there are some other important
factors to consider when evaluating a particular solution. The factors we
considered are the average number of tasks an agent is assigned to, �T , and
the average number of teammates an agent has, bA. It is not desirable to
have solutionswith large �T and bA because coordination and collaboration
become more difficult as these factors increase. Therefore, we evaluate
our solutions from this perspective and try to generate solutions with
controlled levels of �T and bA. We try two approaches to optimize the
algebraic connectivity while having a controlled level of these quantities.
The first approach is to penalize the objective function as these quantities
increase. The second approach is to assign energy units to tasks in packs.
That is, we can only assign nP energy units of each agent to a task, whereP
is the size of the energy pack and n is an integer.

Hyperparameter selection. There are several hyperparameters in Alg. 1
(Constrainted Simulted Annealing). In this section, we will explain the
sensitivity of our algorithm to them and how one should choose their
values. Some of the hyperparameters, such as the initial temperature (T0)
and the cooling schedule factor (ac), are related to simulated annealing.
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These two hyperparameters can be chosen similarly to any other simu-
lated annealing algorithm. One must be careful not to choose very small
values for them to allow exploration. On the other hand, very large values
for these two parameters will cause the algorithm to produce subpar
solutions. We have two other hyperparameters, Tth and tmax, which
determine when the algorithm should stop. Tth is a lowerbound on
temperature. That is, when the temperature is less than Tth, the algorithm
stops. tmax is the upperbound on the number of iterations. DecreasingTth

and increasing tmax allows the algorithm to explore a larger portion of the
solution space, increasing the chances of finding a good solution. Note
that while more iterations can lead to better solutions, they also come
with higher computational cost. We set Tth to 1 × e−5 and
tmax ∈ [2000, 5000] in our experiments. In addition, we have some
hyperparameters that act as penalty coefficients for the penalty functions
that we add. We add two types of penalty functions to our objective
function. The first penalty function is to penalize the infeasible solutions.
The second penalty function is to control the two important factors of �T
(average number of tasks per agent), and bA (the average number
of teammates per agent) during the optimization. The first penalty
function does not play a major role in the optimization process
because of the guided perturbation approach used. Regarding the
second penalty function, with a higher coefficient, we get a smaller final
algebraic connectivity, but also smaller �T and bA. One can adjust this
coefficient depending on howmuch one can tolerate large values of these
factors.

The exact values of all of the hyperparameters used to produce the
results of this paper can be found in the configuration files in the paper’s
Github repository.

Alternative optimization methods. Although we use Constrained
Simulated Annealing (Alg. 1) as the main optimization method in this
study, we refer the reader to Supplementary Note 4 for a discussion of
alternative optimization methods.

Baseline: the greedy approach
A greedy optimization approach was implemented as a baseline solution.
Inspired by the results presented in Section “Results from experimental
analysis,” which show that more centralized systems are favored when opti-
mizing algebraic connectivity, the greedy algorithm starts with an initial
hypergraph assignment that connects all tasks with theminimumnumber of
hubs,where thehubs correspond to thehighest-budget agents. Thesehubs are
then connected by adding shared tasks among these highest-budget agents.

The greedy optimization can be divided into 2 phases. In phase 1 (see
Algorithm 4), we start from the centralized initial assignment and then
assign agents to tasks byfilling the taskswith the agents that could lead to the
maximum increase in the objective function per unit input energy until each
task is full. In phase 2 (seeAlgorithm5), we further optimize the objective by
using up all the energy left in the authors after the assignment given in phase
1. Todo this, we startwith the assignment computed by phase 1 that satisfies
the task completion requirement. Then, analogous to phase 1, each agent is
assigned to the tasks that result in the most increase in goal per unit input
until the agent’s budget is exhausted. If the total task energy requirements
are equal to the total agent budgets, there would be no excess agent budget
available if all task requirements were met. As a result, there would be no
need for phase 2 operation.

Regarding the suitability of applying simulated annealing to the greedy
approach, since a viable solution has already been obtained in phase 1, it
could be specified in phase 2 of the optimization whether the greedy opti-
mization should be performed by rejecting assignments that lead to a
negative change in the objective function or accepting such assignments
with a probability.

The computational complexity of the greedy approach is higher than
that of the CSA algorithm we use. The reason is that in each round of
assignment in the greedy approach, the algebraic connectivity ordermust be
computed N times (the number of agents with available budget). The total

number of rounds is of the order of the total number of tasks. Assuming that
the number of tasks does not growwithN, the computational complexity of
the greedy approach is O(N4).

Greedy Knapsack Phase 1: Task Fulfillment
InputE, B, h.
OutputB.
h 2 R : The energy packet size that each energy assignment must be

multiples of.
Start with an empty initial assignment B0

while Tasks are not all fulfilled do
for each unfulfilled task ido
Potential energy spent by agent j on task i: eij = min(Bj, Ei, h).
Compute change in the objective function per unit energy input by

agent j when assigning eij to task i.
Assign task i to the agent that results in the maximum increase in

objective function per unit input of energy.
Update assignment B.
end for
Update the list of unfulfilled tasks.
end while
Greedy Knapsack Phase 2: Improve algebraic connectivity by using up

agent energy
InputE, B, Bphase1, h.
Continue with the assignment Bphase1 optimized in phase 1
while Agent budget is not all used up
for each available agent j
Potential energy spent by agent j on task i: eij = min(Bj, h).
Compute change in the objective function per unit energy input by

agent j when assigning eij to task i.
Assign task i to the agent that results in the maximum increase in

objective function per unit input of energy.
end for
Update the list of available agents.
end while

Datasets. We used two collaboration datasets in our experiments: the
Microsoft Academic Graph (MAG)56 and the American Physical Society
(APS)57. The Microsoft Academic Graph (MAG) contains scientific
publication records, citations, and other information. More information
is described on MAG’s website58. The Collaborative Archive & Data
Research Environment (CADRE) project at Indiana University59 pro-
vided MAG’s raw data. From the MAG dataset, we filtered the papers
with the word “hypergraph" in their title and extracted the giant con-
nected component of the authorship hypergraph (authors as nodes and
papers as hyperedges).

The American Physical Society (APS) dataset contains the basic
metadata of all APS journal articles from 1993 to 2021. From the APS dataset,
we considered one journal (Physical Review E (PRE)), divided the dataset
into 2-year intervals, and extracted the giant connected component of the
authorship hypergraphs. We then optimized each of the extracted hyper-
graphs using the CSA and the greedy approach (described in the following).

Wedefineone unit of energy as a single page in a paper.We then create
the matrix B for the hypergraphs as follows: Each row corresponds to a
paper. The numbers in a given row are calculated by dividing the number of
pages in a paper by the number of its authors. Here, we assume uniform
contributions. The energy requirement of each paper is its page count, and
each author’s budget is the number of pages towhich theyhave contributed.
Thus, E½Ek� and E½Bi� refer to these energy and budget constraints,
respectively. Note that these quantities differ from the average number of
papers per author and authors per paper, which count the number of papers
and authors without considering page number contributions.

Evaluation measures
We evaluate the resilience of our optimized hypergraphs against agent (i.e.,
node) removal attacks. An agent removal attack involves removing a set of
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agents from the system, which results in their assigned tasks becoming
incomplete. Our evaluation focuses on the ease (or feasibility) of patching
the attacked hypergraph to restore it as a viable solution. Here, patching
refers to adjusting the hyperedges to reestablish feasibility. This adjustment
mimics a real-world scenario in which agents must collaborate to complete
tasks: If an agent fails, the remaining agents step in to cover its assignments.
The patching process assumes the following: agents assigned to incomplete
tasks first attempt to cover for the removed agent. If they lack additional
budget, they will reach out to other agents. However, they can only com-
municate with their teammates. If those teammates lack budget, they will
continue asking their teammates, and so forth.

To evaluate this process, we use the following metric: the more hops it
takes to replace a removed agent, the less resilient the original solution is to
node removal attacks.Wedefine patching cost based on the number of hops
required to find replacements andwhether a feasible solution is achieved. In
addition, we measure unsuccessful constraints, which are the number of
constraints still unsatisfied after patching. Thus, we use patching cost and
unsuccessful constraints as our evaluationmetrics, applying thesemeasures
to both the original hypergraphs derived from real datasets and the opti-
mized ones produced by our algorithms.

Data availability
We refer the reader to56 and57 for more information on the data sets (e.g.,
how they were collected, any preprocessing performed at the source, and
links to download the data).

Code availability
The code associated with this work is available at https://github.com/
nasheydari/Task-Assignment-Hypergraph-Discovery.
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