
Análisis, prevención y evitación de bloqueos en
sistemas secuenciales de asignación de recursos

Fernando Tricas Garcı́a

TESIS DOCTORAL

Departamento de Informática e Ingenierı́a de Sistemas
Universidad de Zaragoza

Febrero 2003

A Alicia, gracias.
Para Carmen y Juan.

Agradecimientos

Mi agradecimiento al director de esta tesis, Joaquı́n Ezpeleta, que me dió la ayuda
necesaria para progresar en este trabajo. Este agradecimiento ha de ser forzosa-
mente extendido a José Manuel Colom y Fernando Garcı́a Vallés, cuya ayuda
ha sido decisiva. También le corresponde una parte del agradecimiento a Javier
Martı́nez, que me introdujo en mis primeros pasos en este trabajo.

También quiero agradecer a todos los miembros del Departamento de Informá-
tica e Ingenierı́a de Sistemas de la Universidad de Zaragoza, en particular a la gente
del grupo de métodos formales, por su pronta disposición a echar una mano cuando
ha hecho falta. Especial mención merece el personal de administración y servicios
encargado de los equipos informáticos del departamento, en particular José Anto-
nio Gutierrez Elipe, siempre dispuesto a buscarle las vueltas a cualquier problema
con los computadores y a solucionar los problemas que han ido apareciendo.

El trabajo desarrollado en esta tesis ha sido apoyado financieramente por una
beca de la D.G.A. y la participación en los proyectos TIC91-0354, TIC95-0614-
C03-01, TAP98-0679, TIC2001-1819, y la acción integrada Hispano-Germana,
HA2000-0047, financiados por la C.I.C.Y.T, PLAN NACIONAL DE I+D. También
se recibió financiación a través del proyecto CHRX - CT94 - 0452 de la CEE

Tengo que expresar agradecimiento infinito a mi familia: por la paciencia y por
su apoyo incondicional. No creo que me sea posible devolverles la deuda acumu-
lada durante estos años, pero prometo intentar compensarles a partir de ahora.

Finalmente tengo que expresar mi profundo agradecimiento y admiración a
los desarrolladores del sistema GNU/Linux y los múltiples programas de este en-
torno que han ayudado a que el trabajo con las máquinas haya sido menos duro.
A Enrique Teruel, Salvador Sans Rica, Alberto Tappe Martı́nez, y Germán Lozano
Fernández por la parte que les corresponde a cada uno de ellos en el desarrollo
de HARP y herramientas relacionadas. A Giovanni Chiola y otros investigadores
de la Universidad de Turı́n, autores del programa GreatSPN, utilizado para dibujar
muchas de las redes que aparecen en este trabajo. A los desarrolladores de la Op-

vi

timization Subroutine Library de IBM, que ha sido utilizada para la resolución de
los problemas de programación entera del capı́tulo 3. Finalmente, a los desarrol-
ladores de daVinci, cuya herramienta ha sido empleada para dibujar algunos de los
grafos del capı́tulo 4.

Resumen

El propósito de este trabajo es generalizar y extender los resultados existentes en el
análisis, prevención y evitación de bloqueos en sistemas de asignación de recursos,
con una atención especial hacia los sistemas de fabricación flexible.

En este sentido, se proponen nuevas clases de sistemas con restricciones simi-
lares a las que podemos encontrar dentro del ámbito de los sistemas de fabricación.
En un primer paso se estudiarán las propiedades estructurales de estas clases para
comprobar que son adecuadas para el modelado y análisis del tipo de problemas
considerado.

Las soluciones al problema de los bloqueos se presentarán desde dos puntos de
vista: prevención y evitación de los problemas de bloqueo, junto con algunos datos
comparativos con otras soluciones al problema. El objetivo es obtener polı́ticas de
control muy permisivas, que puedan implantarse según diferentes consideraciones,
proporcionando flexibilidad al diseñador del sistema.

Finalmente se propone una mejora de un método de cálculo de cerrojos. Estas
componentes estructurales están ligadas a la existencia de problemas de bloqueo
en algunas clases de sistemas, y en ese sentido es muy conveniente disponer de
métodos eficientes para su cálculo. El método propuesto mejora a los existentes
mediante la utilización de paralelismo, y la adaptación a las caracterı́sticas de los
sistemas considerados.

Abstract

This work concentrates on deadlock problems in concurrent systems due to the
common use of system resources organized in what is commonly known as Se-
quential Resource Allocation Systems and paying a special attention to subclasses
of manufacturing systems.

To do that, special classes of Petri net models are defined that allow to capture
resource allocation events used to synchronize processes that have to share a set of
reusable system resources. The classes of Petri nets introduced are studied from
the structure point of view, showing the clear mapping among system and model
structures. It is also shown how deadlock related situations can be explained in
terms of markings and model structures.

To solve deadlock problems, two different approaches are adopted. The first
one is known as a deadlock prevention perspective, and makes an intensive use
of different liveness characterizations developed in this work. The final result is a
deadlock prevention algorithm that iteratively constrains the language of the input
model so that the final controlled model is live in terms of Petri net definitions,
which implies that the controlled system is free of deadlocks and ensures that the
execution of any active process can terminate. The second approach falls into the
deadlock avoidance family of solutions. In this work it is shown how the specific
characteristics of the class of systems in consideration can be used to extend and
improve the well-known Banker’s solution for deadlock avoidance, allowing us
to give a solution to deadlock problems in the most general class of sequential
resource allocation systems.

In both cases, and taking into account that obtaining the most permissive so-
lution is NP-complete, the proposed solutions are experimentally compared with
other solutions in order to get insight of how permissive the proposed algorithms
are, showing they provide a good trade-off between computation cost and permis-
siveness.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The deadlock problem . 5

1.2.1 Strategies to deal with the deadlock problems 7
1.3 Flexible manufacturing systems 9

1.3.1 A classification of systems 11
1.3.2 Petri nets and other formalisms to model and control ��� 18
1.3.3 Characterizing deadlock problems 20

1.4 Work Outline . 22

2 The � ��� class: definition and properties 25
2.1 Introduction . 25

2.1.1 A Class of Nets for Production Systems 26
2.2 The Class of ���� Nets . 32

2.2.1 Modeling processes: process Petri nets 32
2.2.2 Modeling the whole system: ���� nets. 42

2.3 Some properties of ���� nets. 47
2.4 Liveness Analysis of ���� Models 53
2.5 Conclusions . 65

3 Deadlock Prevention Policies for ���� nets 67
3.1 Introduction . 67
3.2 What a maximally permissive control policy should do? 68
3.3 An iterative control policy . 74

3.3.1 An intuitive approach to the�–deadlocked markings com-
putation . 75

3.3.2 Computation of deadlocked markings 82

xii

3.4 Preventing deadlock problems in ���� 96
3.5 A comparison . 101
3.6 Conclusions . 108

4 Deadlock avoidance policies for ���� nets. 111
4.1 Introduction . 112
4.2 The class of ���� nets . 113
4.3 The Banker’s algorithm for deadlock avoidance 115

4.3.1 A general schema for Banker’s like algorithms 118
4.4 Several different “Banker’s–like” approaches 120

4.4.1 Some improvements presented in an intuitive way 122
4.4.2 A static approach . 125
4.4.3 A dynamic approach . 136

4.5 Some numerical results . 138
4.6 Conclusions . 140

5 Computing minimal siphons in � ��� nets: a parallel solution 143
5.1 Introduction . 143
5.2 Some methods for the computation of siphons 145
5.3 The implementation . 150
5.4 The experiments . 155
5.5 Numerical results . 158

5.5.1 Comparison of the proposals in [Lau87, BM94, JPH99] . . 158
5.5.2 Measuring the proposed parallel implementation 161

5.6 Conclusions . 169

6 Conclusions 175

A Appendix: Petri nets 191
A.1 Basic concepts on Petri nets . 191
A.2 Some structural objects . 194

List of Figures

1.1 The dining philosophers problem 2
1.2 The architecture of an FMS . 10
1.3 Skeletons sketching different on–line routings 13
1.4 Layout of two production systems 15
1.5 Skeleton of the different routings for the types of parts to be pro-

cessed in the cells depicted in Figure 1.4 16

2.1 Layout of a manufacturing cell 27
2.2 An automaton modeling the processing of a part following the pro-

cessing plan ��� in the cell in Figure 2.1 28
2.3 A Petri net model for the processing of WP1–parts in the cell of

Figure 2.1 . 30
2.4 The process Petri net model of the system whose layout is shown in

Figure 2.1 when the two types of parts to be produced are considered 35
2.5 The ���� Petri net modeling the processing of parts in the cell of

Figure 2.1 . 45
2.6 A ���� with deadlock problems. 54
2.7 An abstract representation of the path and the last transition se-

lected in the proof of Theorem 28 59
2.8 A ���� with deadlock problems. 60
2.9 A net that is not a ���� (notice the arc from �� to �� � .) . . . 61
2.10 A different ���� with deadlock problems. It has no minimal

siphon as in Theorem 28 . 62

3.1 Reachability graph of the net of Figure 2.6 (marking of the idle
places not shown for the sake of clarity) 69

3.2 ���� net that can reach a deadlocked marking 70

xiv

3.3 Reachability graph of net of Figure 3.2 (the markings of the idle
state places is not shown for the sake of brevity). 71

3.4 Controlled net . 72
3.5 A net with some deadlock problems 74
3.6 ��� � and ��� � are two possible control places for siphon �� 79
3.7 Control places proposed for the bad siphon �� of the net in Fig-

ure 2.6. 92
3.8 A (partial) ���� with a bad siphon that is no controllable using

the �–resource approach (idle places have been omitted for the
sake of clarity). 96

3.9 Reachability graph of the first net of Figure 3.10 97
3.10 A ���� net. 100
3.11 The ���� net obtained by controlling the system in Figure 3.10 . 102
3.12 Reachability set of the net in Figure 3.10 . The states under the

lines are prevented by the addition of the respective control places 103

4.1 A � ��� that will be used to show the policies 117
4.2 Reachability graph of the net in Fig. 4.1. 119
4.3 Petri net model of a philosopher with decisions 140
4.4 ���� used for the numerical experiments 141

5.1 Schematic representation of the computation with four processors
and nine resources . 151

5.2 Petri net model of the i–th philosopher 154
5.3 Petri net model of two sequential processes using resources 155
5.4 Petri net model of four sequential processes of length three 156
5.5 Petri net model of a flexible manufacturing system in [JPH99] . . 162
5.6 Speed–up for the Philosophers family 165
5.7 Speed–up for the FMSLD family 166
5.8 Speed–up for the FMSAD family 167
5.9 Speed–up comparison for the FMSAD of size 6 170
5.10 Speed–up comparison for the FMSAD of size 8 171

List of Tables

2.1 Incidence matrix of net in Figure 2.5 48
2.2 Minimal P–Semiflows of the ���� depicted in Figure 2.5 51
2.3 Minimal T–Semiflows of the ���� depicted in Figure 2.5 52

3.1 Minimal siphons related to resources of the net in Figure 3.5 . . . 75
3.2 Incidence matrix of net of Figure 2.6 91
3.3 Number of states and percentage of states left after application of

control policies for the selected nets. 104

4.1 Resource related minimal P–Semiflows of the net in Figure 3.5 . . 126
4.2 PNR values the example. 127
4.3 Some empirical results . 139

5.1 Sign incidence matrix of net of Figure 2.6 147
5.3 Comparing Lautenbach’s method with Boer and Murata’s one with

processor . 158
5.4 Sketch of the times obtained for the net in Figure 5.5 with different

methods and computers . 161
5.5 Execution of the parallel implementation for the considered fami-

lies of ���� nets . 164
5.6 Distribution of resources among six processors for the Phil–18

problem . 167
5.7 Distribution of resources among eigth processors for the Phil–18

problem . 167
5.8 Distribution of resources among four processors for the FMSAD–7

problem . 168
5.9 Distribution of resources among six processors for the FMSAD–7

problem . 168

xvi

5.10 A different distribution of resources among four processors for the
FMSAD–8 problem . 168

5.11 A different distribution of resources among six processors for the
FMSAD–8 problem . 168

5.12 A comparison with a different distribution of resources for the first
family . 172

Chapter 1

Introduction

1.1 Motivation

When several activities need to be done, and they can be in progress at the same
time, we can configure them as a concurrent system: users trying to run programs
in an operating system, processes trying to access to a database system, clients
trying to do some bank transactions, parts being processed in a production plant,
etc.

A concurrent system can be seen as the composition of a set of independent,
interacting components. The management of such a concurrent system is the man-
agement of these different simultaneous activities and the interactions among them.
In many cases, a concurrent organization can improve the system performance,
abilities, and usage.

As a classical example of concurrent system, let us recall the dining philoso-
phers problem, proposed in [Dij65]:

Five philosophers spend their lives thinking and eating. The philoso-
phers share a common circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table there is a bowl
of spaghetti, and the table is laid with five forks, as shown in Fig-
ure 1.1. When a philosopher does think he does not interact with other
philosophers. From time to time, a philosopher gets hungry. In order
to eat he must try to pick up the two forks that are closest (and are
shared with his left and right neighbors), but may only pick up one
fork at a time. He cannot pick up a fork already held by a neighbor.
When a hungry philosopher has both his forks at the same time he eats

2 1. Introduction

Figure 1.1: The dining philosophers problem

without releasing them and when he has finished eating, he puts down
both forks and starts thinking again.

These systems, being able to carry out several activities simultaneously, have
a new property: the sequence of operations involved in the different concurrent
activities show only a partial ordering, as opposed to sequential systems, where a
total ordering is imposed on the execution of the system activities.

In the previous example, each philosopher can be seen as a sequential system:
when he is hungry, he gets the forks, starts eating, finishes eating, and releases the
forks. When all the philosophers are considered this same ordering is acceptable
(for each one individually), but no total ordering relation can be established if the
whole set of operations is considered. This uncertainty over the precise order of
some events is a property that is referred to as nondeterminism.

Usually, a concurrent system is generated by a set of agents, executing each
one of them their own sequence of activities, but that need to interact with others in
order to terminate their tasks. This introduces a new concept in concurrent systems,
which does not exist in sequential systems: interaction. In general, this interaction
can occur in three different circumstances [SPG91]:

� Competition for shared resources: several processes may need the use of the
same set of resources, having in some occasions to compete for them. The
term resources is used here in a broad sense: it will represent the physical or

1.1. Motivation 3

logical entities needed to carry out the system activities (in the philosopher
example they are the forks).

For example, each philosopher needs to share a fork with one of his neigh-
bors. To eat, they need to compete: if one of the philosophers gets the fork,
the other will not be able to eat until the former release the fork.

� Cooperation. This can be done in two ways:

– Exchange of data between processes: the results of some processes
can be useful/necessary for other processes, as they may need them in
order to advance.

For example, a philosopher could inform his neighbors about when
he expects to finish eating, in order to let them know when to get the
forks. Of course, and if it has sense, they could share the result of their
thinking periods.

– Temporal considerations: that is, when the activities need to occur
and how their relative timings are: at the same time (in parallel), one
after another (in a sequential way), etc.

For example, a philosopher only can begin to eat before or after his two
neighbors use the corresponding forks.

In these three cases the processes need to synchronize their activities; either to
avoid conflicts, or to cooperate to achieve some task.

Concurrent systems may/must exhibit some specific properties which can be
non–defined (or trivially obtained) in non–concurrent ones. These are properties
related to the interactions among the processes. They can be classified as safety
properties and liveness properties.

� Safety properties: these properties represent that nothing bad will ever hap-
pen. That is, they are related to the avoidance/non–existence of bad states.
Let us remark the following desirable properties:

– Mutual exclusion is needed when some sections of the concurrent sys-
tem have to be atomic respect to other sections. That is, when one of
these sections is being executed, the others cannot be being executed.

In the philosophers example, two neighbor philosophers cannot be eat-
ing at the same time. The sections ‘eating’ of those two philosophers
are in mutual exclusion.

4 1. Introduction

– Absence of deadlock; a deadlock occurs when some processes are
waiting for the evolution of other processes, that are also waiting for
the former ones to evolve.

For example, if there are activities using resources and waiting for the
resources that others are holding, and if these activities are holding
some resources requested by the first ones all of them will be waiting
for each other’s resources and no evolution will be possible.

If the five philosophers get hungry at the same time, all of them get
the fork that is on their right, and they are actively observing the others
until the other fork is available, the reached situation is a deadlock:
none of the philosophers will releases his fork, and none of them will be
able to eat because the other fork is being held by another philosopher.

– Absence of race conditions; race conditions occur when several enti-
ties are about to perform some action. Depending on the exact timing,
they will perform the action following some ordering. There is a prob-
lem when the correct result depends on this ordering.

For example, if a philosopher checks for the availability of his right
fork and then requests it, his colleague on the right can be fast enough
to get the fork between these two steps.

� Liveness properties represent that some good things will eventually happen.
That is, they are related to the existence of good behavioral properties: it not
only works, but it works well. Let us remark the following ones:

– Absence of Livelock; a livelock occurs when an entity is busy waiting
for some event to occur, and it cannot be ensured this to happen.

Let us suppose that the philosophers have adopted the following policy:
a philosopher who becomes hungry will get first the fork on the left,
and then the fork on the right. If the fork on the right is not available,
he will desist and leave the left fork on the table. Now, the philosopher
number one becomes hungry: he gets his left fork, then the right one
and starts eating. While he is eating, the philosopher number three be-
comes hungry, gets his left fork and later the right one. The philosopher
number one finishes eating and releases his forks. However, before the
number three finishes eating, philosopher number one becomes hungry
again. Both philosophers continue eating and thinking following the
same pattern. The philosopher number two (who is located between

1.2. The deadlock problem 5

number one and three) will never eat: when philosopher number one is
eating, he will not be able to get his left fork; when philosopher number
three is eating, he will take the left fork but he will not be able to get
the right one and will return to thinking state.

– Fairness properties are related to every entity (user, process, etc.) be-
ing able to carry out its activity in similar conditions as the rest of
entities in the system.

If some philosopher gets hungry very often and is very fast acquiring
the forks, or he gets the forks and does not release them, the philoso-
phers next to him will not be able to eat, and the system is not fair.

– Absence of starvation; starvation occurs when an entity needs some
system event to occur and it is repeatedly overtaken in such a way that
it is not guaranteed that the activating event will occur in finite time.

Both deadlock and livelock situations presented above will make that
no philosopher can eat, so they are clear cases of (literal) starvation.
Another example can be when some philosophers never get to eat be-
cause their neighbors are faster.

1.2 The deadlock problem

Remember that a deadlock occurs when some processes are waiting for the evolu-
tion of other processes, that are also waiting for the former ones to evolve.

When a deadlock affects all the system activities, a total deadlock occurs.
When it only affects some activities, it is called a partial deadlock. Both of them
are undesirable situations since they make that some (or all) of the activities cannot
terminate. Furthermore, in some cases no new activities can start, or if they can
start, they will never terminate.

Let us remark that two kinds of deadlocks can appear in concurrent systems
(see for example [Sin89a]): resource deadlocks and communication deadlocks:

� In resource deadlocks, processes make access to resources (data objects in
database systems, machines, tools or buffer space in manufacturing systems,
etc.). When the state of a concurrent system is such that each process is
waiting for some resource that is being held by other process in the set, in
such a way that any further change of state depends on the allocation of one
of the involved resources, we say that it is a resource deadlock.

6 1. Introduction

In the previous example, the resources are the forks; the philosophers need
them in order to eat. If all of them decide to start eating at the same time and
get their left fork, a deadlock is reached.

� In communication deadlocks, processes communicate via message passing.
A communication deadlock corresponds to a system state such that a set of
processes exist so that each one of them is blocked, waiting to receive some
message from another process in the set, but none of them can deliver his
messages.

Let us now suppose that the philosophers used as example decide to modify
the synchronization protocol: before taking a fork, a philosopher will ask
the philosopher who is near to it whether the fork is free or not. If it is
free, he will get it; if not, he will request the other philosopher to inform
him about when he will release the fork so that he can get it. If all the
philosophers decide to eat at the same time, they’ll ask the left philosopher
about the fork, they will be able to get this fork and then, they will ask
to the right philosopher for the other one. None of them will be able to
release the corresponding fork, so none of them will be able to notify the
other philosopher that he has finished. We will have a situation where all the
philosophers are waiting for the message about the availability of its right
fork, but none of them will be able to send such message.

As stated before, this work concentrates on resource deadlock problems. In
resource related deadlocks, four necessary conditions must occur (see, for exam-
ple [CES71]):

� Mutual exclusion: At least one resource must be held exclusively; that is,
it can be used by only one process at a time. Other processes requesting this
resource will be delayed until the resource has been released by the process
that is using it.

� Hold and wait: There must be at least one process that is holding a resource
and waiting for other resources currently held by another processes.

� No preemption: Processes cannot be forced by any external entity to release
resources.

� Circular wait: There must exist a set of waiting processes that can be or-
dered in such a way that each one of them is waiting for a resource that is

1.2. The deadlock problem 7

held by the next one, and the last one is waiting for a resource held by the
first one.

In the philosophers example, at the described deadlock situation, we can see
that the four conditions hold:

� A fork can be used by just a philosopher at a time (mutual exclusion).

� Each philosopher is waiting for the philosopher at its left, in order to get the
fork (hold and wait).

� There is no way for a philosopher to release its fork without obtaining first
the other fork and eating (no preemption).

� Each philosopher is waiting for the philosopher at his left, who is waiting for
the philosopher at his left, and so on, in such a way that they are in a circular
wait.

1.2.1 Strategies to deal with the deadlock problems

Typically there are four strategies to deal with deadlock problems:

� To ignore the problem (The Ostrich algorithm [Tan87]). The idea is to leave
the system evolve, without worrying about deadlock problems. This strategy
is adequate when deadlock problems are not as frequent as other events that
force the system halting (breakdown, reconfiguration, etc.) and a deadlock
is not a risky situation.

� Deadlock Detection and Recovery. The system freely evolves. A monitor-
ing subsystem is running; when a deadlock situation is detected, a rollback
process should move the system to an adequate state. A recovery strategy
requires to “kill” some of the active deadlocked processes. In some cases (in
an operating system, for instance) this can be easily done. However, in other
systems this can be almost impossible or very expensive (imagine to have to
move a plane or a car in order to free some resources).

For example, in a deadlock situation, the philosophers can discuss. Then,
they can decide which ones have to release their forks in order the others can
eat.

8 1. Introduction

� Deadlock Prevention. The system is designed to be deadlock–free by en-
suring that no deadlock situation can occur. In some cases, this can mean that
some restrictions have to be imposed to the situations under which a process
can be activated (or it can evolve). Usually, some off–line computations are
needed before a prevention approach can be applied.

Let us consider, for instance, a system for which it is known that it can
deadlock if there are three or more active processes, but no deadlock can
occur with two or less active processes. Then, a prevention policy could
consist in ensuring that no more than two processes are active at the same
time. As a second example, let us consider another system where a set of
processes share a set of non–consumable resources. It is well known that if
an ordering can be established in the set of resources in such a way that each
process uses the resources according to this ordering, no deadlock can occur
(since no circular wait is possible). Then, a prevention policy would consist
in designing the system in such a way that only processes that request the
resources following this ordering are accepted. For example, if this approach
is adopted for the philosophers problem, it is necessary to convince the last
one to get the forks in reverse order than the other philosophers (first the
right fork, then the left one).

� Deadlock Avoidance. These strategies constrain the system evolution so
that only safe states are reached. A reachable state is said to be safe if,
once it has been reached, it can be ensured that all the active processes can
terminate.

An avoidance policy must be able to know whether a state is safe or not
(or, at least, to be able to select a subset of safe states). Usually a deadlock
avoidance strategy runs as follows: when a state change is possible, the con-
troller checks for the safeness of that state. If it is safe, the system transition
is allowed; if not, it is forbidden. Therefore, avoidance control policies re-
quire the on–line checking for the safeness of a given state, which implies
that very efficient algorithms are needed. The most classical example for this
approach is the well–known Banker’s algorithm [Dij65].

In this work we are going to concentrate on the prevention and avoidance ap-
proaches. Their main differences can be abstracted as follows. Initially, we have a
set of processes that share a set of system resources. In order to execute a process
action, two conditions must hold:

� First, the necessary resources must be available.

1.3. Flexible manufacturing systems 9

� Second, the state reached if the action is executed must be neither a deadlock
nor a state leading in an inevitable way to a future deadlock.

In the case of a prevention approach the control necessary to ensure the good
behavior has been, in some way, embedded in the system structure, so that instead
of executing the original processes a set of transformed ones are executed. The way
the processes have been transformed ensures that as soon as the needed resources
are available, a process action can be executed, because no system deadlock can be
reached in the modified system.

In the class of systems we are going to concentrate on in this work each process
state will be explicitly modeled. A deadlock state corresponds to a given tuple of
process states. A way to prevent such state would consist in establishing a general-
ized mutual exclusion on the involved processes so that the tuple is not reachable.
From the model perspective, these mutual exclusions can be implemented as a kind
of logical resources, whose integration in the model will be straightforward (if we
are able to model physical resources, we are also able to model logical ones) ob-
taining the model of the controlled system. If the control is carried out in this way,
the prevention approach has been adopted.

In the case of an avoidance approach, an external decision procedure has to be
launched each time a resource related action has to be executed. This procedure
will allow the action only if it is sure that no future deadlock problems can arise.

1.3 Flexible manufacturing systems

Flexible manufacturing systems (FMS) are part of an interesting class of concurrent
systems. They are used to organize production systems in such a way that they
can be quickly adapted to new customer demands. In this work we are mainly
concerned with the control of such systems (to avoid deadlock problems). Let us
introduce in this section their main features.

A flexible manufacturing system is an automatically controlled set of machines,
material handling, and storage facilities that can process simultaneously a set of
different types of products.

Usually, a ��� has two main subsystems [VN92], as depicted in Figure 1.2:

� The physical subsystem, composed of the physical elements (hardware com-
ponents) such as transport facilities (conveyors, robots, pallets, automated
guided vehicles –AGVs–, etc.); processing machines (work stations, tools,

10 1. Introduction

Physical Subsystem

Information provided

···

Devices

Device controllers

by the sensors
Commands
and actions

Deadlock
Module

Scheduling
Module

Performance
Module

Control Subsystem

Figure 1.2: The architecture of an FMS

automated inspection systems,etc.) storage places (intermediate stores, ma-
chine buffers, etc.); it also includes other control related hardware compo-
nents such as sensors, and a local area network interconnecting all of the
physical elements.

� The control subsystem, which manages and controls how the elements in
the physical subsystem must be used and interact in order to organize and
optimize the production process. It makes possible the automated operation
of the entire production system. The control system is typically composed of
an interconnected network of programmable controllers, cell controllers, and
the supervisory computers. Each one of these individual controllers need to
communicate with other controllers in the system. The software resident in
the controllers has the capability to enable automated operation as well as
system monitoring and diagnostics.

The main characteristics of a manufacturing system are:

� Flexibility. This parameter has been conventionally associated to the system
ability to process a variety of part types, to carry out a variety of different
tasks, and to be easily adapted to produce new types of goods.

1.3. Flexible manufacturing systems 11

� Automation. The system must be computer controlled: the main objective
for the controller is to accomplish a variety of jobs using the system available
devices in an efficient way.

Flexibility is related to many parameters: machine flexibility (possibility of a
machine to execute different operations), routing flexibility (possibility of parts to
follow different processing routes), ... (see, for example, [BDR�84, SR95] for a
more complete list of flexibility parameters).

As previously stated, in a manufacturing system a set of parts are processed
at a given time. These in–process parts must cooperate (in the case of assembly
systems, for instance) but must also compete for the system resources. These prop-
erties give to FMSs a concurrent nature.

A second characteristic of such systems is complexity [Can98]. Many hard-
ware and software components must be monitored and controlled.

These two features, together with the diversity, specificity, and difficulty to
manage make necessary the use of formal models [ST97]. Among the wide set
of problems related to manufacturing systems the present work concentrates on
deadlock problems related to the use of shared resources.

1.3.1 A classification of systems

Flexible manufacturing systems are usually configured as a set of processes (activ-
ities, parts, jobs, ...) requesting different quantities of resources (machines, tools,
buffer space, ...). When the attention focuses on the use of system resources, an
��� can be seen as a special class of concurrent systems called resource allo-
cation systems (RAS) [PS85]. A RAS is composed of a finite set of processes
that share in a competitive way a finite set of resources. In a system there can be
resources of several types, and for each type there can be several available copies.

The processing of more than one part in a FMS has, as previously stated, a
concurrent nature, where the set of processes is composed of the set of parts being
processed in the system at a given moment. If we pay attention to the processing
of a unique product, it can have either a sequential structure (which corresponds to
the case of a raw material which suffers successive transformations until its final
state) or a concurrent nature (this is usually due some assembly/disassembly op-
erations that introduce the possibility of independent processing steps of different
part components).

RAS where all the products have a sequential structure are named as Sequential
RAS (S–RAS), while RAS where at least one product has a non–sequential nature

12 1. Introduction

are named as Non Sequential RAS (NS–RAS). Obviously, S–RAS is a strict subset
of NS–RAS.

In the case of S–RAS, the set of states in which an in–process part can stay can
be modeled by means of a state machine. In the case of NS–RAS, more compli-
cated models are needed to represent the processing of the involved components.

As a matter of fact, while a lot of work related to S–RAS can be found in the
literature, it is much more difficult to find solutions for NS–RAS systems.

In this work we will concentrate on a wide range of sequential resource al-
location systems. Then, as stated above, the set of reachable states for a part can
be modeled by means of a state machine: that is, a sequence of steps representing
different operations to be applied to the raw part in order to get a finished product.
In each one of these processing steps different system elements can be needed in
order to carry out the operation: storage capacity, tools, machines, robots, drills,
etc.

From the point of view of deadlock prevention/avoidance strategies, the most
important information related to a given resource is its capacity/availability, and it
can be defined as the number of process components that can be simultaneously
using it (or the physical space size they need in the processing facility, if it is
relevant). In the case of a buffer, the capacity term seems the more adequate one,
and refers to the maximal number of parts it can contain. In the case of a tool, the
term availability seems to be more correct: the tool can be busy (non available)
or free (available). However, in the case of several identical tools (or tools with
multi–processing capabilities), they can be grouped and seen as a tool with a higher
degree of availability: more than one process can be using this (grouped) tool at
a given moment. Since from the deadlock point of view both types of resources
behave in the same way, the term ‘resource capacity’ will be used for both.

Solving the deadlock problem, even for S–RAS is a very complicated task.
Of course, it is always possible to solve it by means of strategies based on the
whole set of reachable states. However, this perspective cannot be applied in many
(most) cases since the number of states of an even small system can be very big,
being impossible to manage them (the state explosion problem [CGL94, RW89]).
Therefore, we are going to adopt a structural point of view: the models we are
going to consider are composed of the models of each one of the involved processes
(each type of process is modeled independently of the rest of processes) and the
models of the system resources. Adopting this point of view, the solution of the
deadlock problem becomes more complicated, qualitatively speaking. Due to these
facts, researches have not attacked the problem for the general class of S–RAS, but
for strict subclasses. Each subclass is defined by some constraints imposed to the

1.3. Flexible manufacturing systems 13

Figure 1.3: Skeletons sketching different on–line routings

more general class of S–RAS, focusing on two main aspects: constrains related to
the routing of parts, that is, how are the paths a part can follow across the system;
and constraints related to the number and types of resources allowed to be used
in each processing step.

About the routing of parts

The main constraint about the process structure (when considering sequential pro-
cesses) is related to the availability of different routings: that is, if a part can fol-
low different routings once loaded into the system or, on the contrary, the con-
troller must establish the complete processing route before entering the system
(See, for example [BK90, VNJ90, FMMT97, HC94, XHC96]). However, not much
work has been done allowing real–time decisions for the part routing (for exam-
ple, in [BCZ97, ECM95, TCE00, TGVCE00, PR01]). Predetermined processing
path approaches usually have the advantage of improving response time; however,
flexibility is reduced. In consequence, according to this point of view, resource al-
location systems can be classified into the following categories considering which
constraints are imposed over the set of states in which a part can stay during its
processing. It is important to point out that S–RAS have “precedence” relations
(we use the same term as in [GK90]) among the operations to be carried out on
the parts. Then, the set of states a part can visit can be modeled by means of a di-
rected graph. The constraints imposed to the graph structure allow us to establish
the following classification for S–RAS:

� Totally Ordered RAS (TO–RAS): the graph modeling the set of states (pro-
cessing steps) for a part is totally ordered, as sketched in Figure 1.3(a). These
systems do not allow flexible routing at all. The exact route a part can fol-

14 1. Introduction

low during its processing is fully defined by the controller before the part is
loaded into the system.

� Partially Ordered RAS (PO–RAS): the graph modeling the set of states for
a part is partially ordered, as sketched in Figure 1.3(b). The controller will
have to take some on–line decisions, according to the system state and the
scheduling policies.

� Non–Ordered RAS (NO–RAS): the graph modeling the set of states for a
part is not ordered (that is, it can have inner cycles), as sketched in Fig-
ure 1.3(c).

Since each graph node represents a different state, this means that it is possi-
ble for a part to return back to a state previously reached. Part recirculation
is allowed. This class of inner loops in the system correspond to systems
with some kind of circular transport system, such as a carousel or interme-
diate buffering devices where the parts can temporarily stay between two
processing steps.

It is clear that TO–RAS�PO–RAS�NO–RAS.

Example 1 Let us consider a ��� whose layout is shown in Figure 1.4(a). In
it, parts arrive at the loading station 	 and once processed are unloaded via the
unloading station
 . Machines �� and �� are identical; �� and �
 are also
identical. Conveyor �� is used to load and unload �� and �� , while conveyor
�� is used to load and unload �� and �
 . There are two types of parts. The
first type of parts must be produced in such a way that either �� , and then �

or �� and then, �� have to be visited. The system, once a part is loaded in
�� , decides to execute any of the two possible production sequences, �� ;�
 or
�� ;�� , depending on the load of the machines. There is a second type of part,
which must be processed in�� and then unloaded from the system. �

The system of this example is clearly a PO-RAS, and the routes available for
these types of parts can be seen in Figure 1.5(a).

Example 2 Figure 1.4(b) shows the layout of another production cell, where two
types of parts have to be processed. The cell is composed of four machines, �� ,
�� ,�� ,�
 ; each machine has a processing capacity of two parts. The cell also
contains two tool stores, �� and �� ; the first one contains two classes of tools,
�� and �� , which have to be shared by�� and�� . There are two copies of each

1.3. Flexible manufacturing systems 15

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

C1

L

U

C2

M3

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

R1

M1

M2

R2

M4

(a)

B1 B2

M3

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
�����
�����
�����
�����
�����

������
������
������
������
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

O2I1

H1

H2

O1 I2

R2

R3

M4

M1

M2

R1

(b)

Figure 1.4: Layout of two production systems

16 1. Introduction

L C1M1C1R1 R2 U

C2 M3 C2 M4

Type 1

Type 2

M1C1 C1 M2 C1

C2

L R1 UR2

(a)

I2 R3 M4 R2 M3 R1 O2

B2

Type 1

Type 2

I1 R2 M2 R3

B1
M1

M3

R1 O1

(b)

Figure 1.5: Skeleton of the different routings for the types of parts to be processed
in the cells depicted in Figure 1.4

1.3. Flexible manufacturing systems 17

one of such tools. Machine �� uses one copy of each tool for the processing of
each part, while machine �� uses only one copy of �� . �� contains two copies
of �� tool and two copies of �
 tool. Machines �� and �
 use one �� tool and
one �
 tool for the processing of each part. In order to move parts between the
cell components there are three robots, �� ,�� ,�� . Robot �� loads machines��
and �� from �� , and unloads machine �� towards point �� . Robot �� loads
and unloads the four machines, and can also interact with the intermediate buffers
�� and �� . These buffers are used for the intermediate storage of parts of type 1
and type 2, respectively, whose processing has not finished yet. Each one of these
buffers has capacity for simultaneously storing a maximum of four parts. Finally,
the cell also contains a robot �� , which can load parts into machine �
 from
�� and unload parts from �� to �� . Parts of type 1 are taken from a conveyor
at point ��, processed in machine �� or ��, then in machine �� and finally
unloaded on a conveyor at point ��. Parts of type 2 are first loaded into the system
from a conveyor at point ��, then processed in machine �� and machine �� and
finally unloaded to another conveyor at point ��. �

The system of this example is clearly a NO-RAS. The possible routes for these
types of parts can be seen in Figure 1.5(b).

About the use of resources

The main constraint related to resources refers to the number and type of resources
a process can use at a given state. According to this point of view, resource alloca-
tion systems can be classified into the following categories [LRF98a]:

� Single Unit RAS (SU–RAS): at each processing step, a part requires a single
unit from a single resource type (just one unit of buffering capacity of the
resource holding the part).

� Single Type RAS (ST–RAS): at each processing step, a part can use sev-
eral units of a single resource type. This allows to model the use of differ-
ent buffering capacities that different parts can need, and also the different
buffering capacities that jobs organized in batches can need, depending on
the size of the batch.

� Multiple Type RAS (MT–RAS): at each processing step, a part can use
several units of several types of resources (the buffering capacity used by the
part plus a set of tools, for instance).

18 1. Introduction

It is clear that SU–RAS�ST–RAS�MT–RAS. Most previous work concentrate
on the SU–RAS, however, this constraint was removed, for example, in [BCZ97,
TCE99, TGVCE00].

For the MT–RAS there have been partial approaches, where the resources must
be requested one copy at a time [TGVCE98, JXH00, HJW02, GS02], until the
needed buffering capacity is reached. Another approach is the MT–single unit–
RAS (just one copy of several types of resources allowed) as can be seen in [CX97].

We will comment more on some of them to compare with our approaches,
when needed.

� A lot of work can be found for the SU–TO–RAS ([BK90, VNJ90], [HC94,
FMMT97, XHC96, EGVC98b]).

� A solution for the MT–TO–RAS can be found in [RR92b].

� For a subclass of the SU–PO–RAS class, where a special case of routing
flexibility is allowed (each operation can be carried out in a set of different
resources), solutions can be found in [Rev98, Rev99, Law00]. The flexibility
is reduced because these methods need that a part can flow between any pair
of resources that can be used in two consecutive steps.

� In [GK90, Lan99, TCE00] different solutions for the MT–PO–RAS can be
found.

� Solutions for the MT–NO–RAS can be found in Banker’s like approaches.
For example [KTJK97, TCE00].

In this work, we are going to present different solutions for the deadlock prob-
lem for MT–PO–RAS (Chapter 3) and for the MT–NO–RAS (Chapter 4).

The previous review has been constrained to the case of S–RAS, and less atten-
tion has been paid to the case of NS–RAS. Nevertheless, let us note here that there
are some alternative approaches, exploring the problem different models. Some
examples can be found in [RR92a, FTM99, JXH00].

1.3.2 Petri nets and other formalisms to model and control ���

In previous sections we have seen FMS’s as complex systems. To deal with this
complexity, and given the special characteristics of the type of systems we are con-
sidering, the use of formal methods is highly desirable. Formal methods improve
the understanding of the system, giving tools for the analysis and implementation

1.3. Flexible manufacturing systems 19

steps. They also help in the dialog between the different people related to the de-
sign, construction and system management [ST97].

Although the processing of parts in machines and the transport across different
handling devices can be continuous processes, the system can be seen as a Discrete
Event System (DES) when we concentrate on the use of resources: we have to
consider the events related to the allocation/deallocation of resources (or the events
of sending/receiving messages) which occur in a discrete way.

Different formalisms have been used to deal with the modeling and control of
flexible manufacturing systems (and concurrent systems in general.) Some exam-
ples of models used with similar objectives are:

� Models based on formal languages [RW87];

� Models based on finite state automata [RF96];

� Models based on temporal logic [Ost89];

� Finitely recursive processes [IV88], which are based on Hoare’s communi-
cating sequential processes [Hoa85];

� Graph theoretic tools [CKW95, FMT00, Law99];

� Finally, the approach used here, Petri nets, that have been widely used (see,
for example, [Giu96, HKG97, ST96], for some survey papers. For some
recent work see, for example, [ECM95, BCZ97, Che00, TCE00, TGVCE00,
PR01, Ge03].)

The first three approaches are mainly based on finite state automata: formal
language models use automata in order to model discrete event processes; and
models based on temporal logic use finite state transition systems plus temporal
logic formulae in order to specify and verify some behavioral properties. All of
these approaches have the main disadvantage of the state space explosion problem.
There have been some approaches to overcome this problem. Some examples are
the use of some subclasses of Petri nets to model the system in [Sre00], the use of
a modular and decentralized control [RW92], or the application of a modular and
algebraic manipulation for component interaction [XHD99].

The graph theoretic tools have also the same problems of lack of modularity
and state space explosion.

Finitely recursive processes allow to model the system as a set of recursive
equations. However, as stated in [ZD93a], it is not clear how to use them to design
supervisory controllers for real–time systems.

20 1. Introduction

We are going to use Petri nets in order to model and control the systems consid-
ered here. Petri nets are effective for modeling DESs and FMSs for the following
reasons [SV89, ZD93b, ST97]:

� Easy representation of concurrency, resource sharing, conflicts, mutual ex-
clusions, and non–determinism.

� Availability of different levels of abstraction, allowing to adopt different
classes of Petri nets at different phases of the production process.

� A well–defined semantics, which allows the system validation and property
verification by means of the model analysis.

� The possibility of code generation from the Petri net model in order to get a
prototype of the control program.

� A nice and intuitive graphical representation, which in some cases can be a
great help for the people involved in the modeling of the system.

In consequence Petri nets can be used in all aspects of the design and operation
of a ��� : modeling and verification, performance analysis, scheduling, control
and monitoring, implementation, etc.

The study of a general concurrent system is a difficult task because of the va-
riety of situations that can appear. Fortunately, the class of systems that we are
considering will be modeled with special subclasses of Petri nets, which will be
introduced and studied in the following chapters. The special characteristics of
such classes of nets will allow us to obtain very useful system behavioral proper-
ties which will be used to control the system. These properties will be obtained
in a structural way; that is, using the structure of the model instead of the set of
reachable states, avoiding the state explosion problem.

1.3.3 Characterizing deadlock problems

When trying to eliminate deadlock problems, it is very important to be able to
characterize what causes these problems. Let us concentrate now on the most usual
methods used to study deadlock problems in concurrent systems. These methods
depend on the model used to represent the system, and most of them take advantage
of some structural limitations imposed to the way processes can interact. Anyway,
in some cases models take advantage of methods proposed in other frameworks.
The different methods used to deal with deadlock problems can be classified as
follows:

1.3. Flexible manufacturing systems 21

� Methods based on the reachability set: They construct, either in a total or
partial way, the set of states the system can reach. This makes possible to
exactly know which are the undesirable markings and, in consequence, avoid
them. This approach can give, in general, more accurate results. However,
it is very expensive and, in some cases, unaffordable due to the size of the
reachability set.

Most of the supervisory–based work [RW89], some Petri nets–based work,
and other studies using model checking, use the total or partial construction
of the reachability graph [VNJ90, CKW95, BLP96, CG96, OH00, Giu96,
RJ96, LRF97, BCG98, XHD99, MBSD99, QJ99, LMB97, Sre00, YB00].

� Methods based on structural characterizations: Several approaches try
to capture the hold and wait situations using the structure of the involved
processes:

– The first approach, which will be called based on cycles, looks for cy-
cles of resources that can reach a hold and wait situation. Some of the
work following this line lack of a complete characterization of the prob-
lem; cycles of resources do not completely represent all the hold and
wait situations than can appear. Some work following this approach
can be found in [RYJ91, FNTS94, JD95, HSBM96, FMMT97].

– The second approach, which will be called based on siphons, is related
to some structural components of the Petri net model, called siphons.
The previous approach can be considered as a partial version of the
siphon based methods. Although in some cases ([EGVC98a]) cycles
and siphons are equivalent, the approaches based on siphons can deal
with more general classes of systems. There exist also some algebraic–
based approaches [PR00b, PR00a, Law00] that, in most cases, are
closely related to siphons, and will be considered as siphon–based.

Some work following this approach can be found in [ECM95, BPP96,
CX97, Jen96, AE98, LRF98b, LGB�98, XJ99, Che00, MV00, PR00a,
TGVCE00].

� Look–ahead based methods. These methods are based on some knowledge
about the future needs of resources of each active process. These approaches
do not focus on the set of ‘bad states’; the goal is to keep the system in ‘safe’
states. That is, given a state that is known to be ‘good’, the control policy will
only allow the system evolution into another ‘good’ state. The problem for

22 1. Introduction

these methods is to establish whether a state is safe or not. For this, several
approaches have been considered in the literature, being the main difference
the knowledge about the future states used to define a state as ‘safe’:

– an estimation of the future maximal needs of resources used in the
original Banker’s proposal [Dij65, Hab69, SPG91],

– information about the resources needed to finish the processing in a
zone (zones are usually defined as subsequences of the available pro-
cessing sequences. These zones are selected in such a way that at the
beginning and the end of each zone, the use of resources does not in-
terfere with the use of resources of other processes.) In this way, if
the system can be partitioned taking advantage of intermediate points,
better policies can be obtained [BK90, RR92b, EH93, RF96, Lan99].

– detailed information about where and when resources will be needed,
used in [TCE00, Rev98].

– finally, some approaches use a partial look–ahead policy [VNJ90]. A
number of steps is fixed, and before allowing any system evolution,
they simulate the advance of these steps. If they do not find problems,
the system is allowed to evolve. As they only look forward a fixed
number of steps, these control policies need to have a deadlock detec-
tion algorithm because the absence of problems in a fixed number of
steps does not guarantee the absence of problems in further steps.

Of course, it is always possible to do a complete look-ahead checking,
trying to see if there are system evolutions from a given state that allow
to finish all the active processes [YB00]. Clearly, this approach is very
time consuming since in some cases it can be equivalent to compute
the whole reachability graph.

1.4 Work Outline

Chapter 2 is devoted to the introduction of a new class of nets, named ����, that
will be used for the modeling of flexible manufacturing systems. The class is intro-
duced in a compositional way, which allows a simple and useful model construc-
tion. The class of models considered is able to deal with the multiple type, partially
ordered resource allocation systems (MT–PO–RAS.) For this class, a liveness char-
acterization will be established, followed by some results that will be applicable for
deadlock prevention. It will be presented in three different forms: the first one is

1.4. Work Outline 23

a characterization of the deadlock problem in terms of the marking of some places
related to the set of transitions directly involved in a deadlock; the second and third
characterizations show how liveness problems are related to the existence of a spe-
cial kind of siphons, which will be used to select some ‘representative’ markings
in order to prevent deadlock related problems.

In Chapter 3 the siphon–related liveness characterization presented in Chap-
ter 2 is used to prevent deadlocks. The process behind the control method is as
follows. The liveness characterization relates siphons and deadlocked markings.
The system behavior is represented by the state equation and some integer pro-
gramming problems that allow to obtain a (potential) deadlocked marking. We in-
troduce a way for preventing such markings by means of the addition to the some
new place which makes the considered marking unreachable. It is then proved that
the behavior of the added place is like a virtual resource, and it is then concluded
that the net controlled in this way is a ����. Therefore, the method can be iter-
ated. It is also proven that the algorithm terminates, obtaining a final controlled
� ��� which is live and whose language is a subset of the language of the original
system.

Chapter 4 concentrates on deadlock problems, but from an avoidance point
of view, and using the ideas behind the well–known Banker’s algorithm proposed
by Dijkstra [Dij65]. The avoidance approach we propose is able to deal with the
multiple–type, non–ordered resource allocation systems (NO-RAS. In order to get
a better understanding of the method, a general framework and an algorithm based
on this general framework are presented. The framework is based on the definition
and parametrisation of a set of functions, used to establish a bound of the future
needs of resources for each active process. This framework allows us to present and
study several solutions for the problem as special cases of the general case. Some
particular solutions, together with the study of their runtime costs, are proposed,
being one of them the classical Banker’s algorithm.

Since some of the proposed methods for the deadlock prevention rely on the
computation of sets of siphons ([TCE99, IMA02]), some research has been done
to obtain better solutions for this problem. These results are shown in Chapter 5.
We will show a review of the available methods, trying to establish a classification
for them. Later, one of these methods will be selected, having in mind the kind of
problem we need to solve (siphons that contain resource places in ���� nets), and
the way we expect to reach the improvements (parallel computing). Finally, some
numeric computations have been done in order to test the proposed approach and
to compare it with some recently proposed efficient solutions.

Chapter 2

The ���� class: definition and
properties

Abstract
A new class of systems is going to be presented. This class, named ����, is
adequate for the modeling of a wide variety of RAS. The special syntactic char-
acteristics of the nets of this new class make possible the study of the modeled
systems from a structural perspective. The chapter introduces the class, first by
means of an an example, and then in a formal way. The main structural proper-
ties of the nets belonging to this class are studied. Finally, a characterization of
deadlock situations and several re–formulations in terms of siphons are presented.
These characterizations will be used in the next chapter in order to control the sys-
tem to prevent deadlock problems.

2.1 Introduction

As stated in the introductory chapter, the variety of elements involved in a typical
��� makes necessary the use of some formalism in order to manage this com-
plexity and to improve the understanding of the system. We are going to use Petri
nets to model and control the systems considered here. In the previous chapter
we made a classification of the systems based on two main characteristics: the
routing of parts and the restrictions on the use of resources. The class that will
be presented later allows to model on–line routing flexibility (that is, a part can

26 2. The ���� class: definition and properties

follow different paths in the system, and the election can be done the processing)
and free–conservative use of resources. According to the classification presented
in Section 1.3.1 they belong to the MT–PO–RAS family.

The ���� class will be presented following a constructive, process–oriented
approach: first, the building blocks will be shown, and then, the way they can be
put together in order to model a system. Some interesting properties of the class
will be studied, being the characterization of deadlock problems one of the main
results of the chapter.

2.1.1 A Class of Nets for Production Systems

Let us introduce by means of an example a ���� net. Figure 2.1 sketches a pro-
duction cell composed of four machines, �� , �� , �� , �
 , whose processing
capacity is of two parts each at a time. They are able to carry out different oper-
ations aided with the tools available in two tool stores, �� and �� ; the first one
contains two classes of tools, �� and �� , which have to be shared by�� and�� .
There are two copies of each one of these tools. Machine �� uses one copy of
each tool for the processing of a part, while machine �� uses one copy of �� for
the processing of each part. �� contains two copies of �� tool and two copies of
�
 tool. Machines�� and�
 use one �� tool and one �
 tool for the processing
of each part.

In order to transport the parts along the cell there are three robots, �� ,�� ,�� .
Robot �� loads machines �� and �� from point �� , and unloads machine ��
towards point �� . Robot �� moves parts between the four machines. Finally, the
cell contains a third robot, �� , which can load parts into machine �
 from point
�� and unload parts from�� to �� .

In this cell two different types of parts have to be processed, according to two
different working plans. Parts following the working plan ��� are taken from
a conveyor at point �� , processed in machine �� or �� , then in machine ��
and finally unloaded on a conveyor at point �� . Parts following the working plan
��� are first loaded into the system from a conveyor at point �� , then processed
in machine �
 , then in machine �� and finally unloaded to another conveyor at
point �� .

A usual and natural way to model this kind of systems is based on the use of
finite state automata [EH93, CKW95, Law99]. These automata represent the flow
relations in the system: that is, they show the steps that a part can follow across the
system in order to be processed.

Let us concentrate on the processing of a part following the working plan

2.1. Introduction 27

M3

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

I1 O2

H2

H1

O1 I2

R2

R3

R1

M1

M4M2

Figure 2.1: Layout of a manufacturing cell

28 2. The ���� class: definition and properties

R1

 M1+h1 M3+h1+h3

R2

M2+h2+h4

R3

inR1

inM1 inM3

inR2

inM2

inR3

raw

finished

Figure 2.2: An automaton modeling the processing of a part following the process-
ing plan��� in the cell in Figure 2.1

��� , and let us see the states in which this part can stay. The automaton in
Figure 2.2 represents the set of these states, with the following meaning:

� The initial state, ��� , corresponds to the part being out of the system, waiting
to be processed.

� ���� represents the state in which the raw material is being loaded into the
system by means of robot �� .

� ���� and ���� represent the states in which the part is being processed
at machine �� or �� . Notice that the structure of the graph for these two
states reflects the availability of two alternatives for this processing step.

� ���� represents the state in which the part is being moved by the robot ��
from�� or�� to�� .

� ���� represents the state in which the part is being processed by machine
�� .

� ���� represents the state in which the finished part is being unloaded from
the machine �� by robot �� .

2.1. Introduction 29

� Finally, ������� corresponds to the state in which the part processing has
been terminated and it is out of the system.

In this model, each one of the available paths from the initial state (���) to the
final one (�������) corresponds to a possible production sequence for the consid-
ered part.

In order to have a more complete model, and taking into account that the con-
sidered part uses a different set of resources at each state, each node can be labeled
with the multiset of resorces used by parts at the state represented by the node, as
shown in Figure 2.2. A state change during the processing of a part (a transition in
the automaton) implies that some new resources are engaged and some resources
are released. Let us consider, for instance, transition from ���� to ���� in Fig-
ure 2.2. When the part is at state ���� , robot �� is engaged by the part. The
transition to the state ���� needs that the resources�� , �� , and �
 are available.
Moreover, when the part moves to machine �� and reaches the state ���� , re-
source �� becomes available. The automaton does not properly represent which
is the state of the system resources to know whether transition to ���� is possible
when the part is at state ���� . In order to complete the model, the state of all the
system resources should be represented. In this sense, it is important to identify the
relevant aspects of resources for us. Since we are going to concentrate on deadlock
problems, and resource related deadlock problems depend on the availability of re-
sources at any given moment (as stated in the introductory chapter), the availability
of system resources is the information needed.

Figure 2.3 shows a Petri net model corresponding to the processing of the con-
sidered part. In this model there are two kind of places:

� Places corresponding to the original nodes of the automaton and related tran-
sitions. They have the same meaning as in the original automaton.

� Places modeling resources. Each one of these places will have an initial
marking equal to the capacity of the resource it models. Outgoing arcs repre-
sent resource engagement, while incoming arcs represent resource releasing.

In this way, each firing sequence of the Petri net carrying the token from ���
to ������� corresponds to a processing sequence. The model of Figure 2.3 corre-
sponds to the processing of a unique part following the working plan ��� . What
about the case in which several WP1–parts must be concurrently processed? This
can be easily considered in the model by means of the marking of place ��� :
putting � tokens in place ��� as initial marking the concurrent processing of up to

30 2. The ���� class: definition and properties

h4

h2

h3

h1

raw

R3

inR3

M2

R2

M3
M1

R1

inM2

inR2

inM3
inM1

inR1

finished

T8

T1

T7

T6

T4T4

T3T2

Figure 2.3: A Petri net model for the processing of WP1–parts in the cell of Fig-
ure 2.1

� WP1–parts is allowed. However, this is not the usual approach for the modeling
of these systems: the concurrent processing of as many parts as needed (limited
only by the resource capacities) has to be modeled. This can be modeled substitut-
ing places ��� and ������� by just one place, and modeling each type of part as a
kind of cyclic process as in Figure 2.4. This model is what we will call a process
Petri net. There will be one of these process Petri nets for each type of part to be
produced in the system.

Before presenting a formal definition of process Petri nets, let us comment
on the main features of the proposed model and some alternative approaches that
can be found on the literature. Remember that at each step a process needs a

2.1. Introduction 31

number of resources in order to accomplish the corresponding task. If one or more
of these resources are not available, the step cannot be accomplished. Most of the
restrictions related to the use of resources of previously defined classes used to deal
with the problem of deadlock prevention for similar systems have been suppressed,
and for each processing step it is allowed:

� the use of any number of copies of any resource, and

� the use of as many different resources as needed.

The only remaining restriction is related to the modeling of serially reusable re-
sources, as usually referenced in the literature when talking about resources that
cannot be created nor destroyed.

According to the classification established in the introductory chapter, and the
sketched features of the class, the systems that will be modeled using this new class
can be classified as MT–PO–RAS.

The idea of process Petri net is related to concepts introduced in previous work:

� Free sequential systems, presented in [LT79]. They were constrained to the
family of TO–MT–RAS.

� Production sequence models presented in [BK90] allow the representation
of a set of sequential processing steps. The authors also provide the way to
model resource usage by means of the addition of resource places to these
production sequences, composing what they call process Petri nets. With
these nets they are able to represent TO–SU–RAS with just one type of pro-
cess.

We feel that the idea behind this term is adequate for the representation of
more general processing structures, and this is the reason for using the same
name for our more general class of systems.

� Job subnet, presented in [HC92] are used to model TO–SU–RAS. Job sub-
nets do not include the modeling of the resources because the model is di-
vided in two parts: the job subnets to model the process structure, and the
resource subnets which are used to model the use of resources.

� Simple sequential processes with resources (����) presented in [ECM95]
that can model PO–SU–RAS.

� Extended simple sequential processes with resources (�����) presented
in [TGVCE98] are able to model PO–MT–RAS, with the restriction that

32 2. The ���� class: definition and properties

the resources need to be taken one copy at a time until the total amount of
needed copies is reached.

2.2 The Class of ���� Nets

� ��� nets will be used to model the concurrent processing of a set of parts of dif-
ferent types. All the parts of the same type have the same processing possibilities.
The whole model will be obtained by means of the composition of the process Petri
net modeling the processing of the different types of parts.

2.2.1 Modeling processes: process Petri nets

Let us remember, before defining it, that the class of S–RAS allows flexible routing
(which means that on–line, real–time routing decisions can be modeled) and the
use of any number of reusable, non–consumable resources at each state.

Definition 1 A process Petri net is a generalized strongly connected self–loop free
Petri net � � ��	
	�� where:

1. � is a partition as follows: � � ���� � �� � ��.

2. The subnet generated by ���� � �� �
 , ���������� �� �, is a strongly con-
nected state machine such that every cycle contains ��.

3. �� 	 ��, there exists a unique minimal P–Semiflow �� 	 IN�� � such that
��� �
��
 � ��, ���� �
��
 � �, �� �
��

� � and ����� � �.

4. �� �
�
����

�
��
 � ����.

�

From the application point of view, a process Petri net will be used to model
the processing of a type of part.

Place �� is the idle state place (or idle place); we will use �� � ����. It models
a raw part before entering the system. Places in �� are the state places (or process
places) and model the states for a part of the considered type. Transitions of

model the state changes. A change in the state can correspond to two different
kinds of events: either the part changes its location in the system (moving from
one resource to a different one), or a transformation has been done in the part (as

2.2. The Class of ���� Nets 33

the result of a system operation inside a machine.) Arcs joining places of �� � ��
with transitions correspond to the state changes in the processing of each part.

Places in �� are the resource places and model the state of the system re-
sources. Arcs joining resource places and transitions of the Petri net model how
the state of the resources change when the parts evolve in the system. Arcs related
to resource places model how resources are used for the processing of parts: out-
going arcs from resource places to transitions model the acquisition of resources;
arcs from transitions to resource places model their release.

Let us do some comments about the three last points of Definition 1:

� Point 2 establishes the structure allowed for the set of states that a part can
follow during its processing, as commented before. The fact of imposing
that each cycle must contain place �� corresponds to the idea of “processing
evolution” in the system: if transitions are executed, the processing of a part
will eventually terminate. This forbids the existence of parts evolving in a
limited subset of states inside the system.

� Point 3 establishes that each resource must be serially reusable (it cannot be
created nor destroyed in the system.)

� Point 4 imposes that each processing step requires the use of at least one
resource. This represents that when a part is being processed, it must be
“somewhere” in the system using, at least, some buffer space of it.

From a theoretical point of view, this constraint is not needed, and could be
withdrawn. The results we are going to present will also be valid if con-
straint 4 is suppressed: it can be easily seen that for each place � 	 �� not
belonging to the support of any �� its complementary place can be added,
with an initial marking equal to the one of ��. These added complementary
places are implicit and behave as ‘virtual’ resources. Moreover, the resulting
net is a process Petri net with the same firing sequences as the initial one.

The process Petri net that represents the processing of parts following the work-
ing plan��� in the cell depicted in Figure 2.1 is shown in Figure 2.4. There, the
following elements can be identified:

� �� � ��� 	�

� �� � �����	 ����	 ����	 ����	 ����	 ����	 �

� �� � ���	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ���

34 2. The ���� class: definition and properties

In order to complete the modeling of the dynamics of a process Petri net, an
initial marking must be provided. The tokens in a reachable marking can have
different meanings:

� A token in a place � 	 �� will model an active process (a part being pro-
cessed) whose state is modeled by means of place � (the part is at the state
represented by this node.) Several tokens in the same process place will
represent several active processes (several parts being processed) whose re-
spective states are modeled by means of place �.

� Tokens in a place � 	 �� will model the available buffering capacity of
resource � at the system state modeled by the considered marking (remember
that, as previously said, buffering capacity will be used to represent either
capacity or availability.)

Markings need to represent states that have a physical meaning. In this sense,
only acceptable initial markings, as defined in the following, will be considered.
If the system is well defined, and its initial marking is “correct”, all the markings
that are reachable from it will represent possible states of the system, and will have
a physical meaning.

Definition 2 Let � � ��� � �� � ��	
	�� be a process Petri net. An initial
marking �� is acceptable for � if and only if:

1. ������
 	;

2. �� 	 �� ������ � 	;

3. �� 	 �� ��� 	 �� ������ � �����. �

A process Petri net with its marking will be used to represent the processing of
a set of parts of the same type. Let us remark the following facts:

� The initial marking of �� (condition (1)) represents the maximal number of
parts of the type modeled with this net that are allowed to be concurrently
processed in the system. This initial marking can be chosen in such a manner
that �� becomes implicit [Sil85, CS89], making this kind of systems suitable
for the modeling of open systems (the maximal number of parts of the type
modeled by the process Petri net concurrently processed is limited by the
system itself via the capacities of the system resources.)

2.2. The Class of ���� Nets 35

P1R1

P1M1
P1M3

P1R2

P1M2

R1

M1

M3

R2

M2

P1R3
R3

P1_0
10

h1

h3

h2

h4

T2 T3

T4 T4

T6

T7

T1

T8

Figure 2.4: The process Petri net model of the system whose layout is shown in
Figure 2.1 when the two types of parts to be produced are considered

� No process is active at the initial state (condition (2).)

� The buffering capacity of each resource is such that each processing step
can be executed when the isolated execution of one process is considered
(condition (3).) This property will be proved later.

Some basic structural properties of process Petri nets

Let us now present some structural properties of process Petri nets relating structure
components and its physical meaning.

36 2. The ���� class: definition and properties

We are going to show how the minimal P–Semiflows induced by the structure
of these nets are, and how can be intrepreted from the application domain point of
view. Let us first consider the P–Semiflows related to resources as they appear in
Definition 2.

These minimal P–Semiflows induce marking invariant relations of the form
�� 	
��� 	��� ��� �� � �� ���. They can be interpreted in the following
way:

1. For every reachable state, the buffering capacity of a resource type, �, is
constant and it is equal to the buffering capacity at the initial state: ����� �
�����. Notice that this property establishes an important feature of the class
of systems considered: resources are re–usable. Re–usability implies that the
utilization of the resources by the processes does not change them. Then, the
buffering capacity of each resource is invariant.

2. At a reachable marking�, the initial capacity of a resource � is distributed in
the following way: ���� is the capacity of � available at �; for any � 	 �� ,
����� is the buffering capacity of resource � used by a process at state �, and
���� ������ is the capacity of resource � used by processes at �.

Considering resource �� in Figure 2.4, the associated P–Semiflow is ��� �
�� � ����, which induces the invariant relation ����� � ������� �
������ � � for every reachable marking � 	
��� 	���. In consequence,
one of the following expressions is true:

� ����� � 	 � ������� � �

� ����� � � � ������� � �

� ����� � � � ������� � 	

which means that �� can be processing two, one, or zero parts, respectively.
When ����� � 	, two parts are being processed at machine�� , modeled by the
tokens allocated in ���� (������� � �.)

For a given resource, �, and based on the minimal P–Semiflow��, the holders
of resource � are going to be introduced as the set of process places using this
resource.

Definition 3 Let � � ��� � �� � ��	
	�� be a process Petri net. Let � 	 ��.
The set of holders of r is the support of the minimal P–Semiflow �� without the

2.2. The Class of ���� Nets 37

place �: �� �
��
 � ���. This definition can be extended in the natural way to
sets of resources � � ��: �� �

�
�����. �

Why the name “holder”? Let us consider the net in Figure 2.4 and the resource
place �� . For it, ��� � ������; considering ��� � �� � ����, each
time a token enters place ���� , a token “disappears” from �� (maintaining the
invariant relation), i.e., an active process in ���� is “holding” one capacity unit of
the physical resource represented by place �� . Notice that the invariant induced
by �� also states that ���� �������

�
����

���� ������.
In each process Petri net one more P–Semiflow can be identified; it is related

to the process structure and its configuration as a state machine.

Proposition 4 Let � � ��� � �� � ��	
	�� be a process Petri net.Then, ��
� ����������������� is a minimal P–Semiflow.

Proof
Let us show that �� � ����������������� is a P–Semiflow. The net ���������� � is a
strongly connected state machine and then, it has a unique minimal P–Semiflow whose
support is �� � �� . Moreover, since �� � �� ������ � �, �� is a P–Semiflow of � .
Furthermore, being a minimal P–Semiflow of � ��������� � and being a P–Semiflow of � ,
it also needs to be minimal in � : if � � was a minimal P–Semiflow whose support is
strictly included in the support of ��, and as far as �� does not contain places of ��, it
also would be a minimal P–Semiflow of the net � ��������� �, and then�� � ��. �

This last minimal P–Semiflow induces a marking invariant relations of the form
�� 	
��� 	��� ��� �� � �� ���. This invariant can be interpreted in the
following way:

1. For every reachable marking, the number of tokens representing processes
of the type modeled by the net is constant and it is equal to the number of
tokens in the idle place at the initial state: �� ��� �������. This constrain
is related to the idea that a token that represents a part in the system cannot
generate several parts or, reversely, disappear.

2. The number of parts of the considered type that can be concurrently pro-
cessed is bounded by ������. However, as previously commented, this is
not a limitation since the initial marking of �� can be big enough to allow
the modeling of open systems.

38 2. The ���� class: definition and properties

Let us consider once again the net in Figure 2.4. The minimal P–Semiflow
��� � �� 	 � ���� � ���� � ���� � ���� � ���� � ���� gener-
ates the following invariant relation: �� 	
��� 	��� ����� 	� �������� �
������� � ������� � ������� � ������� � ������� � ����� 	�,
imposing that a part following ��� in the cell of Figure 2.1 can be either held by
a robot (places ����	 ����	 ����) or processed in one of the machines (places
����	 ����	 ����.)

The next lemma presents a result relating rows representing resources in the
flow matrix and rows representing the other places of the net. This lemma will be
used later on to relate net circuits and T–Semiflows.

Lemma 5 Let � � ��� � �� � ��	
	�� be a process Petri net.

�� 	 �� ����	
 � �
�

������������

�� ����	
 � �
�
����

��� ������� ����	
 �

where �� �
������ ������
 	�.

Proof

1. The net ���������� � is a strongly connected state machine. Then, there exists only
one minimal P–Semiflow which establishes the following invariant relation�

�������
���� � � � � �

�
������������

���� � � �
�

����
���� � �

2. By definition of process Petri net,

�� � �� � � � ���� � � �
�

����
����� ����� � �.

3. Then:�
������������

�� ����� � � �
�

����
�� ����� � � � �. Then,

���� � � �
�

����
����� ����� � � �

�
�

������������
�� ����� � � �

�
����

�� ����� � � � �

and then:

���� � � �
�

������������
�� ����� � � �

�
����

��� ������� ����� � �

�

In fact, since �� 	 �� � ��� ������� ����	
 � � 	, this lemma has proved that
each resource place is a structural implicit place (SIP) [Sil85, CS89].

Let us now concentrate on another interesting set of Semiflows related to the
sequencing of processing states: T–Semiflows. In order to simplify the notation
some conventions are going to be used.

2.2. The Class of ���� Nets 39

Note 6 Let � � ��� � �� � ��	
	�� be a process Petri net.

� Let� be a T–Semiflow of � . � induces the following sets: �� �
�
, and
�� � � ��� � ��� � ���� � ���

� � ��� � ����.

� Let � be a simple circuit of � . � induces the following sets: �� � � �
��� � ���, and �� � � �
 . �

For example, in the net in Figure 2.5 the minimal T–Semiflow

�� �
� �
� �
� �
� �
� �
��

induces the sets
��� � �
�	
�	
�	
�	
�	
���

and
��� � ��� 		 ����	��	 ����	 ����	 ������

The following lemma shows the relation between minimal T–Semiflows and
simple circuits of the embedded state machine corresponding to the complete pro-
cessing sequences.

Lemma 7 Let � � ��� � �� � ��	
	�� be a process Petri net.

� Let � be a circuit of � not containing places of ��. �� induces the minimal
T–Semiflow �� � ��	� �� �.

� Conversely, let � be a minimal T–Semiflow of � . �� � �� generates a
simple circuit

Proof
First of all, since the net ���������� � is a strongly connected state machine, each minimal
T–Semiflow of such net induces a simple circuit and vice versa, (because in a strongly
connected state machine the set of transitions in a directed simple circuit is a minimal
T–Semiflow. See [Mur89], where the property is presented for marked graphs and P–
Semiflows.)

Moreover, according to Lemma 5,

�� � �� ����� � � � ���� �� � �
�

����������
�� ����� � �� � ���� �� �

�
�

����
��� ������� ����� � �� � ���� �� �

�
�

����������
� � ����� � � � ���� �� ��

�
�

����
�� ������� � ����� � �� � ���� �� ��

� �

40 2. The ���� class: definition and properties

which implies that it is also a T–Semiflow of � .
Let us prove that minimal T–Semiflows of ���������� � are also minimal in � . Let

us consider a minimal T–Semiflow of ���������� �, that is not minimal for � . Since �� �
� ������ � ��� ��, if�� is non minimal, this implies that there exists another T–Semiflow,
��, such that �� � � ������ � ��� �� and ���� 	 ����. Let us consider � � ����

����. Since�� induces a simple circuit, � �� � ��� � � ���� 	� ����.

This reasoning can be iterated, allowing us to conclude that��
� � �. �

Notice that any T–Semiflow �, if fireable, corresponds to a firing sequence
�� such that � � �� � � � ��, and then, � � ��. From the application
point of view, minimal T–Semiflows are related to firing sequences moving a token
from �� to �� following a path in the process Petri net, which corresponds to a
complete processing of a part. Any minimal T–Semiflow corresponds to a possible
processing sequence. Proposition 11 below shows that any T–Semiflow induces an
effective production sequence for parts of the considered type, provided they can
be executed in isolation.

For example, in the net in Figure 2.5, the previously presented T–Semiflow��
models the complete processing of a���–part.

Note 8 If � is a process Petri net, and being � � �� � simple circuit of �
such that it does not contain places of ���, the set of minimal T–Semiflows is
� � ��� � � 	 ��. �

Note 9 In a process Petri net each transition has a unique input process state place
(whose weight is equal to one) and zero or more input resource places. Extending
the definitions presented in [XHC96] for SU–RAS, and given a marking, � 	

��� 	���, a transition � is said to be

� �–process–enabled (or, process–enabled at �) if, and only if:

�� � ��� � ���
� �, and �� �� � ��� � ����
� 	

That is, the transition is enabled by the corresponding process place (an
active process is ready to fire it.) A transition that is no �–process–enabled
is �–process–disabled.

� �–resource–enabled (or, resource–enabled at �) if, and only if:

�� � ��
� � and �� 	 � �� � ��� ����� � �����	 ��

That is, no resource place is preventing the firing of �. A transition that is no
�–resource–enabled is �–resource–disabled. �

2.2. The Class of ���� Nets 41

Let us now prove a lemma relating the resources used by a state place and the
resource enabling condition.

Lemma 10 Let �� 	���, � � ��� � �� � ��	
	�� be a marked process Petri
net. Let � 	
��� 	��� and let � 	
 such that ��� � �� � ��� � ��� and
��� � �� � ��� � ���. Then, � enables � if and only if ����
 	 and �� 	
�� ����� � �����������.

Moreover, if �

���	, �	 is as follows:

� �	��� ������ �

� �	��� ����� � �

� �	��	� �����, ��	 	 ��� � ��� � ��	 ��

� �	��� ����� ������������, �� 	 ��

Proof
First of all, let us remember that �� � �� ����� �� �

�
������������

�� ����� �� ��
����

��� ������� ����� �� where �� � �	
����
������
 �� (Lemma 5.)

Then, in this case, �� � �� ����� �� � �� � ���� �� � �� ����� �� ������ ����� �� �
����� ����� ��. But ���� �� � ����� �� � ��, and then: �� � �� ����� �� � ��� � �� �
����������� � �����������.

Therefore, the first part of the Lemma is a direct translation of the enabling conditions
for general Petri nets to the considered class of systems, and the second part is a direct
translation of the firing rule. �

Based on the previous properties, the following proposition proves that when
an acceptable initial marking is considered, a part can be processed in isolation, i.e.
the system is well–defined.

Proposition 11 Let �� 	���, � � ��� � �� � ��	
	�� be a marked process
Petri net. Let ���	 ��	 ��	 ���	 ��	 ��	 ����	 ��� be a simple circuit containing ��. Then

��

�
����
���
�� ��

Proof
Let us prove this result by contradiction. Let us assume that there exists � � ������

such that ��
���			���� �
 and such that �
 does not enable �
��. Notice that, according

to Lemma 10,�
 is as follows:

 �
���� �������� �;�
��
� � �;�
��� � �, �� � ��
 ��
�, (� � ����� � ��),

42 2. The ���� class: definition and properties

 �
���� �������, (� � �);

 � � ����
��� ������ �����
�.

Since �
�� is �–process–enabled but not �–resource–enabled, there exists an input
resource place, � � ��, such that

����
 ������ �
���

Considering the marking invariant induced by��,

���� �����
� ����
� �
�

������������	

����� ����� ������

Taking into account that
�

������������	
����� ����� � �, that ���
� � �, and that

����
 ������ �
���, the following inequality can be obtained

�����
 ������ �
��� �����
�

Since � � ��
�� and the net is self–loop free,������ �
���
 � (in fact, let us remember
that������ �
��� � ����
��������
�), which allows us to conclude that����
 ����
���
which contradicts the hypothesis of �� being an acceptable marking. �

2.2.2 Modeling the whole system: ���� nets.

Usually, more than one type of part must be processed in a given system. A process
Petri net is used to model the processing of a type of part. When several types of
parts must be manufactured, a set of process Petri nets are needed. The interactions
among the different types of parts can be established in terms of the competition
for the set of system resources. Therefore, the Petri net modeling a given system
in which a set of types of parts must be processed will be obtained by means of
the composition of the Process Petri nets modeling the different types of parts to
be produced. Since the only interactions among different types of processes are
due to the use of shared resources, the composition of the process Petri nets will
be done by means of the fusion of places modeling these common resources: this
is a ���� net. Let us first remember the definition of the composition of nets via
shared resources ([NV86].)

Definition 12 Let �
 � ��
	

	���	 � 	 ��	 ��, be two generalized Petri nets.
Then:

1. �� and �� are composable (via fusion of places) if and only if

2.2. The Class of ���� Nets 43

(a)
� �
� � � and

(b) �� � �� � ��
� �

2. The net � � ��	
	�� where

(a) � � �� � ��,

(b)
 �
� �
�,

(c) ���	 �� � ����	 �� If ��	 �� 	 �� �
�
�	��	 �� If ��	 �� 	 �� �
�
	 in other case

is called the composed net of �� and �� and it is denoted as � � �� Æ��.
�

This definition is a restricted version of the one presented in [NV86] where
places and transitions could be shared. It has been adapted to feet our needs.

Definition 13 The class of ���� systems is defined recursively as follows:

1. A process Petri net is a ����.

2. The composition of two composable ���� by fusion of the common resource
places is also a ����.

3. All the ���� systems are generated using the previous rules. �

The name ���� has been chosen to identify this class of systems. This name
does not have any specific meaning. It has been chosen because this class of nets is
a generalization of previously introduced classes named as ���� [ECM95], and
	� � ��� [EGVC98b]. In fact, �� ���� � ���� � � ���.

The ���� class (first introduced in [TCE99]) is similar to the ������
presented in [TM95], the ��� presented in [BA96] and the ������ presented
in [PR00a].

The way we have used to compose the models of the different types of parts to
obtain the whole model can also be applied to previous work:

� Free sequential systems, presented in [LT79] can be composed, obtaining a
similar class to the one presented here. Unfortunately, the authors did not
consider this possibility since their objective was to prevent deadlocks on
one-process based systems.

44 2. The ���� class: definition and properties

� The original process Petri nets presented in [BK90] can be composed, ob-
taining a restricted version of the class presented here, called 	� ����
in [EGVC98b] able to model the TO–SU–RAS.

� Job subnet, presented in [HC92] are composed using a different approach to
the one presented here: they merge complete resource nets and job subnets,
by means of the fusion of the matching process–related parts of both kind of
nets. Given the restrictions introduced in the model presented in that paper
this way of merging can be compared with the merging via resource places.
The resulting nets are TO–SU–RAS, as in the previous case.

� Simple sequential processes with resources. The ���� nets were introduced
in [ECM95] and can be composed in the same way proposed here, obtaining
a new class called ����. The obtained nets are adequate to represent PO–
SU–RAS.

� Extended simple sequential processes with resources (�����) presented in
[TGVCE98] can also be composed in the way presented here. The new class
obtained in this way is the ����� that is able to model the same restricted
version of PO–MT–RAS.

� In [XHC96] the production sequence model of [BK90] is used in a similar
way to the one used in 	� ���� [Val99], obtaining what they call produc-
tion Petri nets. These production Petri nets can be composed in a similar
way to the one presented here obtaining a model similar to 	� ���� able
to model TO–SU–RAS.

� In [PR00a] another version of the 	� ���� is used, the systems of simple
linear sequential processes with resources (��	���) defined as an appro-
priately restricted version of the ���� to eliminate dynamic flexible rout-
ings.

All these approaches can be considered as process–oriented: they first describe
how processes are, then the way they can use resources, and finally how they inter-
act with other types of processes.

Note 14 Let �� 	���, � � ��� � �� � ��	
	�� be a marked ����. In the
following, it will be assumed to be of the form � � ���
�
�� �
� Æ ��, where
�� � ������ is a finite set of indices and each �
 � ���� � ��� � ��� 	

	��� is
a process Petri net. As a natural extension of the terms used in process Petri nets,

2.2. The Class of ���� Nets 45

P1R1

P1M1
P1M3

P1R2

P1M2 P2M4

P2R2

P2M3

P2R1

R1

M1

M3

R2

M2 M4

P1R3 P2R3
R3

P1_0
10

P2_0
8

h1

h3

h2

h4

T2 T3

T4 T4

T6

T7

T1 T14

T13

T12

T11

T10

T8 T9

Figure 2.5: The ���� Petri net modeling the processing of parts in the cell of
Figure 2.1

the sets �� �
�

���

��� , �� �
�

���

��� , and �� �
�

���

��� will be called
the sets of idle places, state places, and resource places, respectively.

Moreover, for a given resource � 	 ��, �� � �� 	 �� � � 	 ���� denotes the
set of indices corresponding to component process Petri nets using �. �

Let us now give an initial marking to a ���� net.

Definition 15 Let � � ��� � �� � ��	
	����
����
 be a ����, where
��
	��
�, � 	 �� , is a marked process Petri net. Then, �� 	��� with �� de-
fined as follows is a ���� with an acceptable initial marking.

1. �� 	 �� ��� 	 ��� � ��� ������ ���� ���, and

46 2. The ���� class: definition and properties

2. �� 	 �� ��� 	 ��� ������ ����
���������

In the composition of nets via shared resources the marking of places that are
not common remains the same. For each shared place, the initial marking can
be computed as the maximum of its initial markings in the different sub–systems.
This approach seems reasonable since it assumes that the capacity of each resource
when designing a process plan (a process Petri net) has been properly established
for all the types of parts, either due to the real system constraints (the physical
resources exist) or as a system parameter (used for simulation purposes, for exam-
ple) to be definitively established in the future. Using that maximal value ensures
a correct behavior for each component process Petri net.

In the following, when speaking about a marked ���� we are going to assume
that its initial marking is acceptable.

Note 16 Let �� 	���, � � ��� � �� � ��	
	�� be a marked ����, and let
� 	
��� 	���. The following conventions will be used:

� Each token in one state place will be called an �–active process (or active
process when no reference to the marking is needed.)

� ��� �
�
����

���� will be used to represent the number of �–active pro-
cesses.

� �
 � ��� � � � ��
�� will be used to identify each active process, identifying
each token in a state place;

� the mapping �
 � �
 �� �� applies each �–active process to the corre-
sponding state place;

� finally, if ��
�

���, � is one of the interleavings of the subsequences ��� ,
��� , . . . , �����

, where ��� is the firing sequence carrying �
 	 � from its
corresponding idle state place to �
��
�. �

Figure 2.5 shows the marked ���� corresponding to the processing of two
types of parts in the system whose layout is shown in Figure 2.1.

The following lemma establishes the conditions under which a reachable mark-
ing of a ����� enables a transition.

Lemma 17 Let �� 	���, � � ��� � �� � ��	
	�� be a marked ����. Let
� 	
��� 	��� and let � 	

��
 � such that ��� � �� � ��� � ��� and

2.3. Some properties of ���� nets. 47

��� � �� � ��� � ���. Then, � enables � if and only if ����
 	 and �� 	
�� ����� � �����������.

Moreover, if �

���	, �	 is as follows:

� �	��� ������ �

� �	��� ����� � �

� �	��	� �����, ��	 	 ��� � ��� � ��	 ��

� �	��� ����� ������������, �� 	 ��

Proof
This is an obvious extension of Lemma 10. �

2.3 Some properties of ���� nets.

In this section we are going to see that previous results about minimal P–Semiflows
and the correctness of the initial marking for process Petri nets can be trivially
extended to ���� nets.

First of all, let us take a look at the structure of the incidence matrix for ����
nets guided by the example shown in the previous section. Table 2.1 shows the
incidence matrix of the ���� net depicted in Figure 2.5.

The structure of this matrix can be seen as a set of boxes with the following
meaning:

� The upper left one shows the flow relation for the nodes belonging to the
state machine associated to the process Petri net modeling the processing of
parts of type 1;

� The middle right one shows the flow relation for parts of type 2;

� The rest of the matrix corresponds to the flow relation between resource
places and transitions of the two component process Petri nets.

Let us remark that this last box can be divided into two sub–matrices which
correspond to the competition for the set of system resources.

Notice that for resources that are shared between both subsystems the corre-
sponding row has non–zero values in both sub–matrices and that for resources that
used only in one of them the row corresponding to the other subsystem is 	.

48 2. The ���� class: definition and properties

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14
P1 0 -1 0 0 0 0 0 0 1
P1R1 1 -1 -1 0 0 0 0 0
P1M1 0 1 0 -1 0 0 0 0
P1M3 0 0 1 0 -1 0 0 0
P1R2 0 0 0 1 1 -1 0 0
P1M2 0 0 0 0 0 1 -1 0
P1R3 0 0 0 0 0 0 1 -1
P2 0 -1 0 0 0 0 1
P2R3 1 -1 0 0 0 0
P2M4 0 1 -1 0 0 0
P2R2 0 0 1 -1 0 0
P2M3 0 0 0 1 -1 0
P2R1 0 0 0 0 1 -1
R1 -1 1 1 0 0 0 0 0 0 0 0 0 -1 1
R2 0 0 0 -1 -1 1 0 0 0 0 -1 1 0 0
R3 0 0 0 0 0 0 -1 1 -1 1 0 0 0 0
M1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
M2 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0
M3 0 0 -1 0 1 0 0 0 0 0 0 -1 1 0
M4 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
h1 0 0 -1 0 1 0 0 0 0 0 0 -1 1 0
h2 0 0 -1 0 1 0 0 0 0 0 0 -1 1 0
h3 0 0 0 0 0 -1 1 0 0 -1 1 0 0 0
h4 0 0 0 0 0 -1 1 0 0 -1 1 0 0 0

Table 2.1: Incidence matrix of net in Figure 2.5

We are going to see which properties presented for process Petri nets are also
valid for ����. In this sense, let us recall a simplified version of a property
presented in [NV86] relating P–Semiflows of the composed net and the ones of the
individual component nets.

Theorem 18 Let �� � ���	
�	��� and �� � ���	
�	�	� two composable
Petri nets. Let � � �� Æ�� be the net obtained by composition of them by means
of of the subset of common places (��� � �� � ��.) Let �� and �	 be two P–
Semiflows of �� and ��, respectively, and such that �� 	 ��� ������ � �	���.
Then,

� � ���������������� ��	��������������� ��������������

is a P–Semiflow of � (� �� � �	� � �.) �

The next lemma shows that minimal P–Semiflows related to state places for
each process Petri net are also minimal P–Semiflows of the composed net.

Lemma 19 Let � � ��� � �� � ��	
	����
����
 be a ����. Then, �� 	
�� ���� ������������ ����������

is a minimal P–Semiflow of � .

Proof
Clearly, according to Theorem 18,��� ������������ ���������� is a P–Semiflow of � .

2.3. Some properties of ���� nets. 49

Let us proceed by contradiction: let us suppose that �� � �
 such that the P–Semiflow
�������������� ���������� is not minimal (we can suppose that � � � without lost of

generality.)
Then, there exists ��

��
, ���

��
� 	 ���� ������������ �����������, such that ��

��
�

� � �. Then, ��
��
���� � ��� � ���

� � �� � � and this is a contradiction with the fact
that��� is minimal in ��. �

The following lemma helps us to see that the use of resources is also conserva-
tive in ���� nets.

Lemma 20 Let � � ��� � �� � ��	
	����
����
 be a ����. Let � 	 ��,
and let ��� , � 	 �� , be the minimal P–Semiflows associated to � in each �
. Then
�� � ��������������� �

�

���

��� �������� ����������
is a minimal P–Semiflow

of � .

Proof
According to Theorem 18 �� is clearly a P–Semiflow of � . We have to prove that it is a
minimal one.

Let us assume that �� is not minimal. Since ����� � �, this means that there exists
another P–Semiflow��

� such that ���
�� 	 ����. Let us consider � � �����
 ���

��� �
��� , for some � � �� . Notice that ��

����� � ��� � ���
� ������ � ��� � ���

� � �, which
implies that��

����� ���� � ���
� is a P–Semiflow of �
 such that � � �����
 ��

�
����� �

��� � ���
��, which contradicts the hypothesis of��� being minimal in �
. �

The next proposition shows a basis of the left annuler space for the incidence
matrix of the net.

Proposition 21 Let � � ��� � �� � ��	
	����
����
 be a ����. Then,
the set � �

�

���

����� � ��� � � 	 ��� is a basis of the left annuller space1.

Proof
We are going to proceed in three steps:

1. First of all, we are going to show that ������� � ��� �.

Each net ���������� ����
is a strongly connected state machine, and the rows that

model resources in each net �
 are linear combinations of the rows of the corre-
sponding process places. Then looking at the structure of the matrix, we can trivially
say that ������� �

�

���

�������� �
�

���
���� �.

1In order to define a vectorial space, we need a group, so using this terminology here is an abuse
of language. We could use linear combinations with coefficients in �� (see, for example, [AT85].)

50 2. The ���� class: definition and properties

2. Now we are going to see that the elements of � are linearly independent.

The elements of ��� � � � ��� are mutually linearly independent because each
one of them contains in its support an element � � �� not belonging to the support
of any other of them.

The elements of ��� � � � ��� are linearly independent with respect to the ones in
���� � � � �
 � because these ones do not contain elements from ��.

Finally, the elements of ���� � � � �
 � are linearly independent one respect to
each other because their supports have empty intersection.

3. Let us now prove that � � ���� � � � �
 � � ��� � � � ��� is a basis of the left
annuller space.

Let � be the left annuller space of �.

������ � number of rows of the matrix�� �������

� ����� ��� �� ���� � ��� �

�
���

���
�����

��� ���� � � � ����

Therefore, we can conclude.

�

Now, a similar result about T–Semiflows is going to be presented.

Lemma 22 Let � � ��� � �� � ��	
	����
����
 be a ����.

1. �� 	 �� , if �� is a minimal T–Semiflow of �
, then ������� � is a minimal
T–Semiflow of � .

2. If � is a minimal T–Semiflow of � , then there exists � 	 �� , such that
� � ������� �.

Proof

1. Let �� be a minimal T–Semiflow of �
; then, �� ��� � �. Therefore, ������� � is
such that � �������� � � �. Let us assume that it is not minimal. Then there exists
another T–Semiflow of � whose support is contained in the support of � �. Since
all the components corresponding to transitions not belonging to �
 are zero, it is
also a T–Semiflow of �
 which contradicts the the hypothesis of �� being minimal
in �
.

2.3. Some properties of ���� nets. 51

i Support of the P–Semi-
flow

Projection over ��� �
��� � ���

Projection over ��� �
��� � ���

1 � P1R1, P1M1, P1M3,
P1R2, P1M2, P1R3,
P1 0 �

� P1R1, P1M1, P1M3,
P1R2, P1M2, P1R3,
P1 0 �

2 � P2M4, P2R2, P2M3,
P2R1, P2R3, P2 0 �

� P2M4, P2R2, P2M3,
P2R1, P2R3, P2 0 �

3 � P1R1, P2R1, R1 � � P1R1, R1 � � P2R1, R1 �
4 � P1R2, P2R2, R2 � � P1R2, R2 � � P2R2, R2 �
5 � P1R3, P2R3, R3 � � P1R3, R3 � � P2R3, R3 �
6 � P1M1, M1 � � P1M1, M1 �
7 � P1M2, M2 � � P1M2, M2 �
8 � P2M4, M4 � � P2M4, M4 �
9 � P1M3, P2M3, M3 � � P1M3, M3 � � P2M3, M3 �

10 � P1M1, P1M3, P2M3,
h1 �

� P1M1, P1M3, h1 � � P2M3, h1 �

11 � P1M2, P2M4, h2 � � P1M2, h2 � � P2M4, h2 �
12 � P1M3, P2M3, h3 � � P1M3, h3 � � P2M3, h3 �
13 � P1M2, P2M4, h4 � � P1M2, h4 � � P2M4, h4 �

Table 2.2: Minimal P–Semiflows of the ���� depicted in Figure 2.5

2. Let � be a minimal T–Semiflow of � ; then � �� � �. Considering the structure
of �, �� � ���
� � � for each � � �
 , and considering that ��� � � �
 � � ��
� � �
 � �
 � �, it is obvious.

�

Finally, the next proposition establishes which are the sets of minimal P– and
T–Semiflows of a ���� net.

Proposition 23 Let � � ��� � �� � ��	
	����
����
 be a ����. Then,

1. � � ���� ������������ ����������
� � 	 �� ����������������� ����������

�

� 	 ���� is the set of minimal P–Semiflows of � .

2. � � �������� � � � 	 �� 	�� is a minimal T–Semiflow of �
� is the set of
minimal T–Semiflows of � . �

Let us see these structural components for the considered example. Table 2.2
shows the list of minimal P–Semiflows for the net in Figure 2.5. The two minimal

52 2. The ���� class: definition and properties

i Support of the T–Semiflow
1 � T1, T3, T5, T6, T7, T13 �
2 � T2, T4, T5, T6, T7, T13 �
3 � T8, T9, T10, T11, T12, T14 �

Table 2.3: Minimal T–Semiflows of the ���� depicted in Figure 2.5

P–Semiflows numbered 1 and 2 are related to the state machines associated to each
process Petri net. The others are related to the system resources. The table also
shows in the third and fourth columns the minimal P–Semiflows of each one of the
process Petri nets.

Table 2.3 shows the T–Semiflows of the net depicted in Figure 2.5. The two first
T–Semiflows are associated to the process Petri net on the left, and they correspond
to the first working plan; the other T–Semiflow is related to the process Petri net
on the right, and it corresponds to the type��� .

T–Semiflow�� �
��
��
��
��
��
�� induces the circuit whose
nodes are: ��� ���� � ��� 		
�	 ����	
�	 ����	
�	 ����	
�	 ����	

�	 ����	
���.

These results will be used to study the behavior of ���� nets. In order to com-
plete this section, let us finally present an alternative definition for the ����class
of nets.

Definition 24 Let �� be a finite set of indices. A ���� is a connected generalized
self–loop free Petri net � � ��	
	�� where:

1. � � �� � �� � �� is a partition such that:

(a) �� �
�

���

��� , where for each � 	 �� 	 ���
� �, and for each
�	 � 	 �� 	 �
� �, ��� � ��� � �.

(b) �� �
�

���

�����.

(c) �� � ���	 ��	 � � � 	 ���, �
 	.

2.
 �
�

���

	where for each � 	 �� 	

� �, and for each �	 � 	 �� 	 �
� �,

 �
� � �.

3. For each � 	 �� , the subnet ���������� ����
is a strongly connected state

machine such that every cycle contains ��� .

4. For each � 	 �� there exists a unique minimal P–Semiflow �� 	 IN�� � such
that ��� �
��
 � ��, �� �
��
 � �, �� �
��

� �, and ����� � �.

2.4. Liveness Analysis of ���� Models 53

5. �� �
�
����

�
��
 � ����.

�

It is easy to see that this definition is equivalent to the one presented previously
in a constructive way.

2.4 Liveness Analysis of � �
�� Models

One of the desirable properties of the systems we are considering is that the pro-
cessing of each part, once started, will finish. When talking about concurrent sys-
tems this is related to the deadlock freeness property. Since each started processing
will terminate, the initial state of the system (the idle state) can be reached from
any reachable state. Moreover, since only acceptable initial markings are consid-
ered (adequate initial states from which every transition is fireable), it is clear that
the behavioral property needed from the Petri net point of view is liveness. Live-
ness in systems modeled by means of ���� nets also implies that, provided that
new raw materials arrive, their processing will be also possible.

In this section some important behavioral properties of ���� nets are pre-
sented. Having to deal with this class of nets, one would feel inclined to use
similar results to the ones introduced in previous analogous approaches [ECM95,
TGVCE98]. In [ECM95] the ���� class was presented and for it, empty siphons
were used to detect deadlock problems. Another approach based on siphons for
a class of ordinary nets are process nets with resources ([JXH00, PR01].) An al-
ternative approach, based on transforming a weighted Petri net in an ordinary one
(at least for the arcs that are output of the places of the net) and using the empty
siphon characterization [LR96, IMA02].

However, since most of the previous work are applied to nets whose arc weights
are always one, they use the same liveness characterization as in [ECM95]: a dead-
lock situation is related to some empty siphon. Since the structure of ���� nets
is similar to the ����, the question is whether siphons are useful in order to char-
acterize deadlock problems or not.
� ��� nets, and in general, nets with weighted arcs present some differences

when dealing with deadlock problems: as it will be shown, it is possible to have
deadlock problems with no related empty siphons. This introduces a new dimen-
sion: the distribution of tokens in places related with the siphons must be consid-
ered. Several definitions have been introduced in the literature studying siphons

54 2. The ���� class: definition and properties

P1_1

P1_2 P2_1

P2_2

R1

R2

P1_3

P1_0

P2_0

T7

T6

T5

T4

T1

T2

T3
_3

_2

_5

Figure 2.6: A ���� with deadlock problems.

(structural component) and the token distribution in places related to them (behav-
ioral information) to relate deadlock situations and siphons in weighted Petri nets:

� In [Bra83] the concept of empty siphon in ordinary Petri nets is extended
to the notion of insufficiently marked siphon: a siphon, � , is insufficiently
marked at marking � if �� 	 �� ��� 	 � �� � �� ����� � ��	��	 ��.
This definition extends one of the most important behaviorral properties
based on siphons (a total deadlock in an ordinary Petri net implies an empty
siphon, while a total deadlock in a weighted Petri net implies an insuffi-
ciently marked siphon.) This approach seemed promising when moving
from ���� (if an active process cannot terminate, an empty siphon is reach-
able) to ����. However, this property is not enough. Let us take a look at
the ���� in Figure 2.6: marking � ��� ��������� ��� 	�� ��� 	 is
reachable; for it, transitions
� and
� are dead, but no siphon insufficiently
marked exists.

� [BPP96, AE98] used siphons to deal with deadlock problems in S–RAS, giv-
ing a sufficient condition to ensure that no deadlock can occur. The objective

2.4. Liveness Analysis of ���� Models 55

is to keep all the minimal siphons “marked”. A siphon � is said to be marked
if and only if �� 	
��� 	��� ��� 	 � ����� �
��
��� ���	 ��, that is,
a siphon is “marked” if there exists a place enabling all of its output transi-
tions. As it will be shown later this property is too strong, and reducing the
requirements more permissive approaches can be obtained.

� [TCE99] presented a necessary condition for deadlock situations in terms
of siphons for ���� nets. A deadlock prevention algorithm was proposed
controlling the system so that the necessary condition cannot hold in the
controlled system, obtaining live controlled systems. The proposed solution
was similar to the one presented here but it has some inefficiencies that have
been removed here.

� In [PR01] the idea of resource–induced deadly marked siphons for ����
nets is proposed: a siphon � is a resource–induced deadly marked siphon at
� 	
��� 	��� when each transition � 	 �� is disabled by some place
belonging to �. In order to forbid deadlock problems no resource–induced
deadly marked siphon should be allowed. They also presented a liveness
characterization for ���� nets based on siphons but they do not use it for
deadlock prevention.

In the rest of the chapter we are going to present a set of liveness character-
izations for ���� nets. The first one (Theorem 26) does not use siphons, but
concentrates on states where circular wait situations appear. The second one (The-
orem 28), obtained from the first one, characterizes deadlock problems in terms
of siphons and some related markings. Finally, the last one (Theorem 32) is also
based on siphons, but establishes in a more clear way how deadlocked processes
can be located around siphon components.

We will see that all the proposed characterizations are equivalent and also
equivalent to the one proposed in [PR01]. The main advantage of the one pro-
posed in Theorem 32 is that, as shown in the next chapter, it induces an efficient
way of preventing deadlocks in ���� nets.

Let us present a lemma proving that the activation of a new process at a given
reachable marking cannot increment the number of available resources. Later, a
liveness characterization for ���� nets (Theorem 26) will be introduced.

Lemma 25 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
�	�	 	
��� 	��� such that �� 	 �� ��	��� �����. Then, �� 	 �� ��	��� �
����.

56 2. The ���� class: definition and properties

Proof
Let � � ��. The invariant relation induced by�� and the fact that �� � �� � � ����� �
����� allows us to write

���� �������
�
����

���� ������ �������
�
����

����� ������ ������

�

The following theorem presents a liveness characterization for ���� nets in
terms of a property of circular waits.

Theorem 26 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. The
system is non–live if and only if there exists a marking � 	
��� 	��� such
that the set of �–process–enabled transitions is non–empty and each one of these
transitions is �–resource–disabled.

Proof
�) If �� ���� is non–live, there exists at least a transition, �, that is dead at a marking
�� � ���� ����. Let � � ���� ���� obtained by moving forward all the active
processes (firing transitions of �
 ��

�) until no process enabled transition can fire. At
this marking,����� �� � holds (i.e. there are some active processes and, in consequence,
some �–process–enabled transitions.) On the contrary, �� � �, and then �� could be
reached from��. But, since the system is well defined, any minimal T–Semiflow containing
� would be fireable from �� (Lemma 7 and Proposition 11) and, in consequence, a firing
sequence containing � would exist from ��, which is a contradiction with � being dead at
��. Therefore, any transition � � �����

� for any � � �� is �–process–enabled and
�–resource–disabled.
�) Let � � �����

� for � � ��. In order to fire � some more tokens are needed in
some places belonging to �� � ��. Since �–active processes cannot progress, the only
way to change the marking of such resources is by moving other processes, and the only
possibility is to activate some idle processes. Let �� �

�
����

�������� denote the
set of �–process–enabled transitions and �� �

�
����

������� denote the set of state
places with some�–active-process, and let� �

����. We are going to prove, by induction
over the length of � that:

1. ��� � �� � �.

2. �� � �� ������ �����.

Doing so, and since ����
 �� � � �, it can be deduced that �� � �� ������ � �
�����. Taking into account Lemma 25, �� � �� ������ �����. Therefore, no transition
of �� can be�’–resource enabled.

2.4. Liveness Analysis of ���� Models 57

 Case � � �. Since no transition of �� is enabled at �, then � � ��
� and then,

� �� �� . On the other hand, if � �� ��� , �� � �� ������ �����. If � � ��� , let
�� � �� � ��� � �� . In this case����� ����� � � and the equality holds for the
marking of the rest of places belonging to �� . In both cases, point 2 holds.

 General case. � ���

����� �
����, where ������� verify the induction hypothesis:

����� � �� � � and �� � �� ������ � ����. Applying Lemma 25 (taking also
into account that �����
 �) we can conclude that � �� �� , and point 1 holds.
Moreover, the fact that � � �� implies that �� � �� ������ � ������ � ����,
and we can conclude.

�

In the example of Figure 2.6, at marking �� � � � �� � � �� � �� � � �
�� 	� � ��� 	,
� is the only ��–process–enabled transition, which is disabled
by ��. Therefore, it is dead. Resource �� has only one token at ��, so
� is a
��–resource–disabled transition.

Note 27 A marking � 	
��� 	��� verifying the conditions of Theorem 26 will
be called a deadlocked marking. The term bad marking will also be used. �

Theorem 26 relates non–liveness to the existence of a marking where active
processes are blocked. Their output transitions need resources that are not avail-
able. These needed resources cannot be generated (released by the corresponding
processes) by the system (the transitions are dead) because there exist a set of cir-
cular waits between the blocked processes.

This concept of circular waits can be captured by the existence of a siphon
(in Petri Net terms) whose resource places are the places preventing the firing of
the process–enabled transitions. The following theorem shows that, when a bad
marking as in Theorem 26 exists, a related siphon can be constructed; the reverse
is also true. This establishes the bridge between behavior and model structure.

Theorem 28 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. The
net is non–live if, and only if, there exists a marking � 	
��� 	���, and a
siphon � such that ���� �
 	 and the firing of each �–process–enabled transi-
tion is prevented by a set of resource places belonging to �.

Moreover, the siphon � is such that:

1. �� � � � �� � �� 	 �� � �� 	 �� such that ���� � ��	��	 �� and
�� �� � �� �
 	�
� � ;

58 2. The ���� class: definition and properties

2. �� � � � �� � �� 	 ���
����� � 	�
� �;

Proof
�) According to Theorem 26, �� ���� is non–live if and only if �� � ���� ����
such that the set of �–process–enabled transitions is non–empty and each one of these
transitions is a�–resource–disabled transition. Let us construct � as follows:

 Let �� � �� � �� � �� � �� such that����
 ������ �� and�� �� � �� �
 �� be
the set of resources disabling the�–process–enabled transitions.

�� �� � because there is at least one�–process–enabled transition.

 Let �� � �� � ���
����� � �� be the set of holders of �� unmarked at�.

We are going to prove that �� �� � and �� 	 ���
. Let us suppose that �� �

�. Let � be a minimal T–Semiflow such that ��� � ��� �� �. Let �� be the
directed path defined as �� � �������� � � � ���� such that ���� �� � � � ��� � ���,
�� � ��� � � � � �� � �
 � ��
 � �� and �� � ��� � ��.

This is a well–defined path because in � ��� nets ��
 � � � ��
�������� contains
only a place. Let � be the last transition in the directed path �� such that � � ���.
Let � � �� ���. (Figure 2.7 sketches this situation.)

Since �� � �� � �� and �� � �, ���� � ���
 �, i.e. � is a �–process–enabled
transition. Since � �� ��

� (if � � ��
�, and taking into account that the net is

self–loop free, � could not be the last one), then � is also �–resource–enabled and
therefore � can fire contradicting the hypothesis that from� only transitions in ��

�

can occur.

If �� � ���
, since ����� � �, �� � �� ����� � ����� which makes im-

possible for � to prevent the firing of any transition (�� is acceptable.) Then,
�� 	 ���

.

Let us now prove that � � �� ��� is a siphon. Let � � ��; two cases must be checked:

1. � � ���. Let � � �� be such that � � ��. Let � � �� � �� (there exists such �
because there is an arc from � to �.)

 If ���� � �, then � � �� , and � � ��
�.

 If ����
 �, since � is not enabled, there must exist a place � � � ��� �
��� such that �����
 ������� �� i.e. disabling �. Then �� � ��, and in
consequence, � � ��

�.

2. � �� ���. Then there exists � � �� such that � � �� and ��� � �� such that
� � ��� . If �� � � �� ����, � � �� and we can conclude.

Let us now suppose that ����� � �. In this case, � cannot be�–process–enabled;
if it was, by Theorem 26, � has to be �–resource–disabled, and then, there would
exist � � �� ���.

2.4. Liveness Analysis of ���� Models 59

r

DR

t0

tk

t
p0

Figure 2.7: An abstract representation of the path and the last transition selected in
the proof of Theorem 28

Let ��� � �� � �� (this place exists because � � ��� and �� ��� � �.) Since �
is not�–process–enabled,���� � �.

Moreover, since � � ��� , � belongs to a minimal P–Semiflow containing � � in its
support and since �� �� ��, � is also in the support of such P–Semiflow, which implies
that � � ��� . Therefore � � �� (� is not marked), and � � ��

�.

Finally, notice that the firing of each �–process–enabled transition is prevented by
some resource places belonging to � (by construction.)

�) If each �–process–enabled transition is prevented by a set of resource places
(belonging to �), Theorem 26 allows us to conclude. �

In the example of Figure 2.6, at marking �� � � ��� ��������� ��� 	�
� � �� 	, transition
� is dead and the siphon �� � ��� �	 �� �	 ��� (���
� ����, ��� � ��� �	 �� ��) fulfills conditions stated in previous theorem:
�� is preventing the firing of
�, which is process–enabled, and all the places in
��� have zero tokens.

Note 29 A siphon � and a marking, � 	
��� 	���, verifying the properties of
Theorem 28 will be said to be a bad siphon and a �–deadlocked marking, respec-
tively.

For a given bad siphon �, in the following the next notation will be used:

�� 	 �� ���� ��� �
�
����

�����

Notice that ��� is the total amount of resource units belonging to � (in fact, to
��) used by each active process in �. �

60 2. The ���� class: definition and properties

R2

R1

P2_0 25

P2_3

P2_2

P2_1

P1_0
25

P1_3

P1_2

P1_1

R3

T2_4

T1_4

T2_3

T2_2

T2_1

T1_3

T1_2

T1_1

Figure 2.8: A ���� with deadlock problems.

It is important to remark that Theorem 28 does not state that if a transition
� is dead at marking � this marking verifies the theorem’s conditions, but that a
reachable marking exists verifying them. In order to show this property, let us
consider the ���� in Figure 2.8. At marking � � �� � � �� � � �� � �� �
�� 	 � �� � �� 	 transitions
� �,
� �,
� � and
� � are dead, but no �–
deadlocked siphon exists at �. However, considering ��� �

���	 � �� ���� ��
����� ��� 	��� ��� 	, this marking verifies conditions in Theorem 28 for the
siphon �	 � ���	 ��	 �� �	 �� ��.

One of the constraints imposed to process Petri nets composing a ���� was
that each cycle must contain the corresponding idle place. Let us see that Theo-
rem 28 is not true if this restriction is withdrawn. Let us consider the net shown
in Figure 2.9, which is ‘almost’ a ����: the cycle whose support is ��� �	

�	 �� �		
�� does not contain place �� 	. At the reachable marking � �
�� � � �� � � �� � � � �� 	 � � � �� 	, transition
� is dead. However, no
reachable marking exists verifying the conditions of Theorem 28. In Chapter 4 a
more general class of nets (����) allowing the modeling of systems with internal
part recirculation will be presented, and a different approach to control them will

2.4. Liveness Analysis of ���� Models 61

P1_1

P1_2’ P1_2

P1_3

P2_1

P2_2

r1

r2

r3

P1_0
P2_0

T1

T2

T3

T4
T5

T6

T7

T8

T9

Figure 2.9: A net that is not a ���� (notice the arc from �� to �� � .)

be proposed.
Another important comment to do related to this theorem is that there is not an

alternative liveness characterization based on minimal siphons, as it can be shown
using the ���� of Figure 2.10. Siphon � � ��� ��	 �� ��	 �� �	 ��	 ���
is the only siphon that has associated markings as in Theorem 28 (for example,
marking � � �� � � �� �� � � �� � � � �� 	 � � � �� 	.) However, it is not
minimal (in fact, this siphon contains a minimal one,�� � ��� ��	 �� ��	 �� �	
���.)

Definition 30 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� be a siphon of � . Then, � �� � ���

��� is set of thieves of �2. �

The utility of this set will be understood later; for now, it should be clear that it
represents places of the net that use resources of the siphon and do not belong to it.

Let us now introduce an alternative liveness characterization that shows that
in a non–live system it is always possible to reach a deadlocked marking with all

2We will use sometimes in the following � ���
to show the relation among these two sets.

62 2. The ���� class: definition and properties

P1_1

P1_21

P1_22

P1_0 R2

R1

P2_1

P2_2

P2_0

T1_4

T1_3

T1_2

T1_1

T6

T7

T8T9

_2 _4

_4

_3

_2

_4

Figure 2.10: A different ���� with deadlock problems. It has no minimal siphon
as in Theorem 28

.

the active processes using resources from an associated siphon. That is, the fol-
lowing characterization establishes where active processes can stay if deadlocked
situations are possible.

For this we will need a technical result about reachable markings. The idea
is very simple: given any reachable marking, we can select one of the active pro-
cesses; the marking where all the processes except the selected one are at the same
state as in the original one, and the selected one has not been activated, is reachable.

Proposition 31 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����.
Let � 	
��� 	���, ��
� �. Let � 	 ��� such that ����
 	, and �	 the
token distribution defined as follows:

� �	��� ������ �;

� �� 	 �� � ��� ��	��� �����;

� �	���� � ������ � � �;

� ��� 	 �� � ����� ��
	���� ������;

� �� 	 �� ��	��� ����� ������.

2.4. Liveness Analysis of ���� Models 63

Then, �	 	
��� 	���.

Proof
Let us assume that ��

�
���, being � one interleaving of ��� , ��� , ..., �����

. Let us
consider an �–active process �
 such that ����
� � � (such process exists since we are
considering that ����
 �.) Let us also assume that � � ���������� � � � ���������, with
��� � ������ � � � ���, and let us denote the intermediate markings as

��
������

���
���� � � �

�����	
���
���	

����
���

Let us now prove that��
����			������

�� �� as in the proposition statement.
Let us concentrate on marking ��. From it, the firing of ��� corresponds to the

introduction in the system (and partial evolution) of a new process (the one identified as
�
), while the rest of processes active at �� remain at the same state as in ��. From
the point of view of resources, �� � �� ������ � �����. Therefore, since �� moves
only processes different than �
, and it is fireable from ��, it must also be fireable from
�� where more resources are available (��

�����

�.) Moreover, since all the�

�–active
processes are in the same state as in markings �
 and �
, except �
 that remains in its
idle state place, �� � �� ��

���� ��
���, and �� � �� ��

���� ��
���, which makes

�� fireable from �

�. This reasoning can be inductively applied to ��� � � � ����.

Notice that at�� the following things are true: ��� � ��
��
�; �� � ��� � ������
� �����, while the token corresponding to the process �
 in� is in ��� at ��. Then,

 �� � �� ������ ����� ��������
�� ����� ������;

 �� � ��
 ����� ��
���� �����;

 ������ � ������ � � �;

 ����� � ��� � ��� � ������ � ���

� ��� � ��
 ��
� � ����� � ���

� ����� �

 �� � ��
 ��� ������ � ��� � ��� � ������ � ���

� ��� � ��
 ��
� � ����� � ���

� �����

�

The following liveness characterization establishes that when a ���� is not
live, there exists a deadlocked marking such that all the active processes are “steal-
ing” tokens from the set of resources of an associated siphon. This alternative
characterization is useful to generate a deadlock prevention solution, allowing us
to concentrate on siphon and their thieves, “forgetting” those active processes that
are not related to the siphons, and giving better computational results when con-
trolling the system.

64 2. The ���� class: definition and properties

Theorem 32 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. The
net is non–live if, and only if, there exists a siphon �, and a marking �� 	

��� 	���, such that:

1. ����� �
 	.

2. ����� � � ��� � 	.

3. �� 	 � ���
such that �����
 	, the firing of each � 	 �� is prevented by

a set of resource places belonging to �.

Proof

�) According to Theorem 28, the net is non–live if, and only if, there exists a marking
� � ���� ����, with �����
 �, and a siphon � � �� � �� such that the firing of
each �–process–enabled transition is prevented by a set of resource places belonging to
�.

Now, we are going to prove that there exists a marking �� that characterizes the
non–liveness of the net system being all the active processes in the set of thieves of ��, i.e.
�����
 � �� � � �.

Since �� 	 ���
, and����� � �,��� �� �
 � (if��� �� � � �,��� �� ��� � �

�; then, no process is using resources of �� (then, �� � �� ����� � �����), while ��

is preventing the firing of some �–process–enabled transitions which is a contradiction
with the fact of being�� an acceptable initial marking.)

Let us now consider the following partition of the set of�–marked state places:

�� � �� �����
 �� � �� � � �� �����
 �� � �� � ��
 � �� �����
 ��

Notice that:

 The first subset is non–empty.

 No process of the second subset uses resources of ��.

Now, we can apply Proposition 31 to each one of the processes of the second subset.
In this way we will obtain a marking�� such that:

 �� � � � � �� ������ �����;

 �� � ��
�� ������ ������;

 �� � ��
 ��� � � ��� ������ � �; (there are no active processes out of the
siphon related state places.)

 �� � �
 , ������ � � ����� � �
�

������� ��
���� (the active processes in state

places not related to the siphon are at the corresponding idle state.)

2.5. Conclusions 65

Then, �� verifies ����� � � ���� �� �
 �; since the set of ��–process–enabled
transitions is a subset of the set of �–process–enabled transitions and the resources of
�� were preventing the firing of the�–process–enabled transitions of the first subset, and
�� � �� ������ � ����, clearly each ��–process–enabled transition is still disabled
at�� by resources belonging to ��.
�) Since ����� �
 � and �� � � ���

such that �����
 �, the firing of each � � ��

is prevented by a set of resource places belonging to �, �� and � verify conditions of
Theorem 26, which is sufficient to conclude that �� ���� is non–live. �

This liveness characterization directly relates bad markings with system states
in which all the active processes stay in thief places of a bad siphon. This will
be specially useful when trying to control the system in order to ensure a live
behaviour since the potencial problems are located around siphons. This aspect
will be developed in the following chapter.

2.5 Conclusions

In this chapter, the class of ���� nets has been introduced. The syntactic char-
acteristics of the nets of such class are derived from the domain to which they are
devoted: sequential resource allocation systems, in which a set of sequential pro-
cesses must share a set of (conservative) resources. It has been shown how the
model properties (Petri net properties, in this case) map into domain characteris-
tics. In this sense, token conservation laws induced by (minimal) P–Semiflows
correspond to the conservative nature of system resources or to the closed structure
of the processes running in the system. On the other side, executable (minimal) T–
Semiflows correspond to complete possible executions of the involved processes.
Using this well defined mapping into model and system structures, the deadlock
problem analysis has been studied from the Petri net model structural point of
view, leading to a complete liveness characterization.

From the domain point of view, the ���� nets allowed to remove some of the
restrictions (syntactic from the Petri net point of view, but related to the number
and variety of real systems able to deal with, from the application point of view)
imposed by previous classes of Petri net models devoted to the analysis and control
of S–RAS. In this sense, the only constraint still maintained in ���� nets is that
no inner cycle is allowed in the behavior of a process.

In the second part of the chapter a liveness study for ���� systems has been
presented, showing a characterization for deadlock problems. This characterization
is based on the existence of circular waits (involving resource places) related to the

66 2. The ���� class: definition and properties

existence of problematic system states, re-establishing a classical result related to
deadlock situations for the class of models considered here. Later, the relation of
problematic markings with some special siphons has been shown, providing a way
to study these bad markings in terms of some net siphons. As it will be shown in the
next chapter, the siphon–based characterizations can be used to prevent deadlock
problems.

Chapter 3

Deadlock Prevention Policies for
�
�
�� nets

Abstract
One of the advantages of the use of formal models as ���� is that the model
can be used both to analyze the system behavior, and to control it. In the present
chapter we are going to use the liveness characterizations introduced in Chapter 2
in order to prevent deadlock problems.

3.1 Introduction

The objective of the present chapter is to concentrate on how to add control to the
system to ensure that no deadlock situations can happen. For this task the departure
state is promising: the system is modeled by means of a ����, and for this class
some liveness characterizations have been introduced in the previous chapter. In
consequence, we are going to concentrate on how to use these characterizations to
reach the objective. We need to ensure not only that no deadlock will be reachable
but also that the resulting system is as permissive as possible. Permissiveness here
is related to the number of reachable states in the controlled system.

The quality (based on the permissiveness) of a prevention approach relies in
two main aspects:

� A good identification (a characterization if possible) of deadlock related
states.

68 3. Deadlock Prevention Policies for ���� nets

� A good control method able to forbid the deadlock related states (without
forbidding too many of the good ones).

Considering the first point, most of the previously proposed methods lack of
a full liveness characterization, providing only necessary conditions. Then, the
prevention approach for them will need to ensure that such conditions cannot oc-
cur. This is the case of [LT79, ECM95, TM95, KTJK97, TGVCE98, AE98, TE99,
GL01]. With respect to the second one, the proposed methods usually apply the
control at the level of process activation; that is, if the activation of an idle process
could lead to deadlock, such activation is forbidden. This kind of prevention is easy
to implement, but it usually gives controlled systems with poor use of the system
resources ([IM80, Sin89b]). From this point of view the objective would be to look
for a way to control the system in such a way that only deadlock related states are
forbidden. In this way, the undesired states would be eliminated, while allowing
as many concurrency as possible in the execution of processes in the controlled
system. As it will be shown, the key issue will be to look for “bad states” that are
“around” the siphons of the Petri net model, obtaining quite good solutions.

3.2 What a maximally permissive control policy should
do?

The final objective of a deadlock prevention policy is to constrain the allowable
firing sequences so that only non–deadlocked states are reachable. A way of doing
that consists in the addition of new preconditions to the firing of transitions by
means of new places and arcs, with an adequate initial marking.

Let us give some intuition about this using the reachability graph of the ����
of Figure 2.6 (page 54), which is depicted in Figure 3.1. The reachable states can
be classified into three categories:

1. The first one (type 1) contains those markings from which �� is reachable.
These markings are not involved in deadlock problems (the shadowed states
in Figure 3.1).

2. The second class (type 2) is composed of those markings that are not �–
deadlocked for any siphon, and such that �� is not reachable from them.

3. Finally, the third class (type 3) is composed of those markings that are �–
deadlocked for some siphon � (depicted as black boxes in the Figure).

3.2. What a maximally permissive control policy should do? 69

daVinciV2.1

#2
:P

1_
1+

5R
2

#1
:R

1+
5R

2

M
ar

ki
ng

s
of

 ty
pe

 2

M
ar

ki
ng

s
of

 ty
pe

 3

#1
0:

P1
_2

+
P2

_1
+

R
1+

2R
2

#9
:P

1_
1+

P1
_2

+
3R

2

#1
8:

P1
_2

+
P2

_2
+

3R
2

#1
6:

P1
_1

+
P1

_2
+

P2
_1

+
2R

2
#1

5:
2P

1_
2+

R
1+

R
2

#2
3:

2P
1_

2+
P2

_1
+

R
1

#3
1:

2P
1_

2+
P2

_2
+

R
2

#2
2:

P1
_1

+
2P

1_
2+

R
2

#4
:P

1_
2+

R
1+

3R
2

#7
:P

2_
2+

5R
2

#2
7:

P2
_2

+
P1

_3

#8
:R

1+
P1

_3

#1
4:

P1
_1

+
P1

_3
#1

3:
P2

_1
+

P2
_2

+
4R

2

#2
1:

2P
2_

1+
P2

_2
+

3R
2

#3
:P

2_
1+

R
1+

4R
2

#2
9:

3P
2_

1+
P2

_2
+

2R
2

#6
:2

P2
_1

+
R

1+
3R

2
#5

:P
1_

1+
P2

_1
+

4R
2

#1
2:

3P
2_

1+
R

1+
2R

2
#1

1:
P1

_1
+

2P
2_

1+
3R

2

#2
0:

4P
2_

1+
R

1+
R

2
#1

9:
P1

_1
+

3P
2_

1+
2R

2
#1

7:
P1

_2
+

2P
2_

1+
R

1+
R

2

#2
8:

P1
_1

+
4P

2_
1+

R
2

#2
5:

P1
_2

+
3P

2_
1+

R
1

#2
6:

P1
_2

+
P2

_1
+

P2
_2

+
2R

2
#2

4:
P1

_1
+

P1
_2

+
2P

2_
1+

R
2

#3
3:

P1
_2

+
2P

2_
1+

P2
_2

+
R

2

#3
5:

P1
_2

+
3P

2_
1+

P2
_2

#3
0:

P1
_1

+
2P

1_
2+

P2
_1

#3
4:

2P
1_

2+
P2

_1
+

P2
_2

#3
2:

P1
_1

+
P1

_2
+

3P
2_

1

M
ar

ki
ng

s
of

 ty
pe

 1

Figure 3.1: Reachability graph of the net of Figure 2.6 (marking of the idle places
not shown for the sake of clarity)

70 3. Deadlock Prevention Policies for ���� nets

P1_0

P2_1

P1_1

P1_2

P2_2

R1

R2

P2_0

T1

T2

T3 T4

T5

T6

Figure 3.2: ���� net that can reach a deadlocked marking

For example, marking ��� � �� � � �� � � � � �� � � � � �� 	 � �� 	 is a
��–deadlocked marking, where the siphon is�� � ��� �	 �� �	 ��	 ���, while
the marking ��� � �� � � �� � � �� � � � � �� � � � �� 	 � � � �� 	 is not
�–deadlocked, for any siphon �. Nevertheless, from marking ��� we will reach
in an inevitable way a �–deadlocked marking (both successor markings ��� and
��� are �–deadlocked).

Let us concentrate on how a bad situation can be controlled and all the related
bad markings forbidden. Let us now consider the net in Figure 3.2. Its reachability
graph is depicted in Figure 3.3. There, marking �� � �� ���� ���� 	��� 	
is a deadlock. This deadlock occurs because the process in place �� � is waiting
for the resource �� which is being held by process in place �� � ; this process is
waiting for resource �� that is being held by process in place �� � . In this case,
it is easy to modify the system in such a way that the marking �� is not reachable
anymore: a place, �� � (Figure 3.4), establishing a mutual exclusion between
places �� � and �� � in such a way that they cannot be simultaneously marked
solves the problem. This place will be called control place. While in this example
the addition of just one place is enough to have a controlled system, this will not
be always the case. For other systems, more control places will be needed. This
way of adding control is related to the generalized mutual exclusion constraints
(GMEC) introduced in [GDS92].

The problem with adding control for each deadlocked state is that too many
control places could be needed: in the worst case, one for each marking of types
one and two. Fortunately, Theorems 28 and 32 relate bad states with some special

3.2. What a maximally permissive control policy should do? 71

da
V

in
ci

V
2.

1 #7:P2_1+P2_2

#4:P2_2+R2 #5:P1_1+P2_1

#2:P2_1+R1

#8:P1_1+P1_2

#6:P1_2+R1

#3:P1_1+R2

#1:R1+R2

Figure 3.3: Reachability graph of net of Figure 3.2 (the markings of the idle state
places is not shown for the sake of brevity).

siphons, allowing to establish a middle point between the control based exclusively
on the information provided by deadlocked markings and the control based on
process activation.

Another important question is the way in which bad markings are forbidden; in
the example it is obvious that the addition of �� � strictly avoids the problematic
marking; the general case will be much more complicated.

The addition of a place and its corresponding arcs introduces a new row in the
incidence matrix, that is, a linear restriction. We are interested in control policies
based on the addition of Petri net components: places and arcs (which we will
use to forbid some bad states). The main reason for this is that the control via
the addition of Petri net elements will allow us the study of the new system in
the same terms of the original one. In consequence, the approach proposed in the
following sections corresponds to the addition of a set of linear restrictions to the
initial system, “cutting” a set of markings of the reachability set. As an example
of this, notice that the net of Figure 3.4, resulting from the addition of the control
place to the net in Figure 3.2 is a new ���� net: the added place �� � follows
the restrictions about resource places.

The use of linear restrictions has a drawback: in some cases they forbid not
only the desired bad states but also some good ones. This fact has been previously
shown in [Val99, GVTCE00]. A maximally permissive control policy should pre-
vent all the bad markings (types 2 and 3), forbidding no good markings.

Forbidding deadlocked markings by means of the addition of linear restrictions
can be done according to the following two main perspectives:

� First approach: to cut as few states as possible; that is, once the states that

72 3. Deadlock Prevention Policies for ���� nets

P1_0

P2_1

P1_1

P1_2

P2_2
R1

R2

P2_0

PC_1

T1

T2

T3 T4

T5

T6

Figure 3.4: Controlled net

are �–deadlocked have been characterized, a linear restriction can be added
that avoids just these bad states.

The problem with this approach is that it is not able to deal with the markings
of type three (remember that they are not �–deadlocked). Then, once the
original system has been controlled, a new system is obtained (the old one
plus a linear restriction) that can have deadlock problems: further work is
needed to obtain a “good” one. For this reason this approach will be called
in several steps.

This approach is local, oriented to the control of the transitions closely re-
lated to bad siphons. In this way, new linear restrictions can be added in
consecutive iterations in order to get a live system.

� Second approach: to cut ‘enough’ states to avoid all the problems; that is, for
each siphon that can have �–deadlocked markings, the set of linear restric-
tions to be added can be computed in such a way that neither �–deadlocked
markings nor markings that in an inevitable way conduct to �–deadlocked
ones can be reached.

This way of controlling is usually closely related to the idea of process acti-
vation. The objective is to cut all the �–deadlocked markings (markings of
type 2), all the ones of type 3 and, perhaps, some of the good ones (without
introducing new problems). We can expect that this way of controlling the
system will be more restrictive but more simple and faster to compute.

3.2. What a maximally permissive control policy should do? 73

Let us comment on the main previous prevention solutions based on the addi-
tion of linear restrictions.

� In [LT79], a resource–oriented approach is considered: for each resource, as
many control places as output transitions are added (except for the last one).
They control the system in such a way that once a part starts requesting
tokens from a given resource place (that is, the firing of one of its output
transitions occurs), there will be enough available tokens in the resource to
grant all the future requests and terminate.

This is one of the first control policies that proposed the modification of ex-
isting nets with the addition of linear restrictions in order to get live models.
The main drawbacks are that it is based on the control of each resource and
that it is not easy to generalize the policy to deal with systems with several
different concurrent processes.

� In [ECM95] the control policy is based on the detection of deadlock prob-
lems by means of siphons. It is also an approach in one step. The way to
apply the control was to add a control place for each minimal siphon con-
straining the system evolution in such a way that each part entering into
the system makes a ‘reservation’ of enough copies of the resources related
to the siphon to be sure that it will not reach an empty state. There are
some further evolutions of this control policy for more general classes of
nets in [TM95, TGVCE98, TE99].

� In [BCZ97, AE98] the class of nets is similar to the one used here. It is an
approach in several steps. The control is based on siphons, and the way to
add the control places (one for each siphon) has similarities to the one used
in [LT79], but considering the siphon as a whole; that is, control place arcs
reproduce the total number of tokens that the process has withdrawn from
the resource places belonging to the siphon. The method guarantees that at
each reachable marking there is always a place in the siphon with enough
tokens to fire any of its output transitions.

� In [PR01] the approach in one step is followed. It is based on the division
of the processing paths in zones (neighborhoods) defined by means of the
imposition of a partial order in the set of resources. The authors claim that it
is very efficient and the policy is proposed as an avoidance policy; however,
it can be implemented as a prevention one. The proposed solution is too
constraining.

74 3. Deadlock Prevention Policies for ���� nets

P2_21

P1_1

P1_2

P1_3

P2_3

P1_0

P2_0

P1_4

P2_11

P2_12

R2
P2_1

R1

T12

T11

T10

T9

T8

T7

T6

T5

T4

T3

T2

T1

_2

_3

_5

_3

_3

_3

_2

_2

_3

Figure 3.5: A net with some deadlock problems

3.3 An iterative control policy

Let us present the proposed control policy, implemented in several steps. For this,
the characterizations of Theorem 28 and Theorem 32 will be used, together with
the net state equation.

Since the problematic markings can be identified, some restrictions can be
added to the system in order to make them unreachable. These restrictions should
forbid as few states as possible in order to avoid just the detected bad markings
(markings of type 2). This has a drawback: if we try to avoid just the bad markings
for a siphon, there can appear, as sketched in the previous introductory section,
“new” problems. The next objective would be to forbid another bad markings re-
lated to another siphon. A way to do that will be to add some linear constraints,
implemented as new (virtual) resource places.

This method has a drawback. As proved in [Val99, GVTCE00] in some cases
it is not possible to forbid a given marking (or set of markings), and just this given

3.3. An iterative control policy 75

Places of the siphon
D1 P2 21 P1 2 P1 3 P2 3 P2 12 R1
D2 P2 21 P2 3 P1 4 P2 12 R1 R2
D3 P1 4 P2 11 P2 12 P2 1 R2

Table 3.1: Minimal siphons related to resources of the net in Figure 3.5

marking, by means of the addition of linear constraints. It will be shown later
that for any given marking it will be always possible to add some linear constraint
forbidding it, but this will usually forbid some other markings, perhaps even good
ones.

The advantage of forbidding bad markings by means of linear constraints is
that it can be implemented as virtual resources. This means that, once a given
marking has been forbidden (by means of the addition of the adequate control
place), the resulting system still belongs to the ���� class. Therefore, the method
can continue looking for a new bad marking, forbidding it, and so on, in a iterative
way. Since the number of (potential) states in the sequence of a partially controlled
system is strictly decreasing, the process terminates. Moreover, in each iteration
some new resource is added, and then, the language corresponding to the final
model is an strict subset of the language of the initial one. In consequence, by
construction, no firing sequence can lead to a deadlocked state.

Let us know introduce in the following sections the proposed approach, first by
means of an example, and then in a more formal way.

3.3.1 An intuitive approach to the�–deadlocked markings computa-
tion

As a first approach, let us assume that a bad siphon is already known (later it will be
shown how to compute one of such siphons). Let us consider, for instance, siphon
�� shown in Table 3.1, which is a bad siphon of the net of Figure 3.5. According
to the notations used in Chapter 2, we can write:

� ��� � ��� ��	 �� �	 �� �	 �� ���,

� ��� � ���	 ���,

� �� � ��� ����,

� � ��� � ��� �	 �� �	 �� �	 �� �	 �� ���.

76 3. Deadlock Prevention Policies for ���� nets

Now, ��–deadlocked markings have to be considered. Theorem 321 proved
that there exits a ��–deadlocked markings, ���, verifying the following set of
restrictions.

1. ������ �
 	:

������ ��������� ��������� ��������� ��������� ���
 	

2. ������ � � ���� � 	:

������ ��� � 	 � ������ �� � 	 � ������ ��� � 	 � ������ �� �
	

3. �� 	 � ��� such that ������
 	, the firing of each � 	 �� is prevented by
a set of resource places belonging to ��. These restrictions are:

�� ������ ��
 	 �� ������� � �

 � ������ ��
 	 �� ������� � �

�� ������ ���
 	 �� ������� � �

�� ������ ��
 	 �� ������� � � � ������� � �

In consequence, in a ��–deadlocked marking, the following expression must
be true:

������� � � ���� � 	� � �������� � � 	� � ������� �
 	� � �� �
 � � � ��

For example, for the��–deadlocked marking �
 � ���� 	� �� � ����� 	
��� �� ���, the following facts hold:

1. Since ��
��� ��
 	� � ��
��� ���
 	�, then�
��� ����
��� ���
�
��� �� ��
��� �� ��
��� ���
 	.

2. �� �� ��� � ��� � ��� ��	 �� �	 �� �	 �� ���, and �
��� �� ���� �
	.

3. Finally, �
��� ��
 	 � �
���� � �, and �
��� ���
 	 � �
���� �
�

1We can use this theorem here because the siphon is known. We will see later that it is more
convenient to use Theorem 28 when the siphon is not known.

3.3. An iterative control policy 77

A deadlock situation relates a bad marking and a bad siphon. It is usual that
more than one bad marking can be associated to the same siphon. In order to add
less control elements, we are looking for a method able to control at once all the
bad markings associated to a given bad siphon. Deadlock situations can be viewed
from two different points of view:

1. Too many siphon resources are used simultaneously.

In �
 there are not enough available resources in��� to allow processes in
� ��� to advance. There is just one free copy of ��, while �� � needs three
free copies of �� in order to evolve, and �� �� needs one free copy of ��.
The computation of the maximal number of total tokens in ��� for ��–
deadlocked markings like �
 will give a bound for the number of tokens
allowed to be used by places of � ���; let us call ������ such number.

No ��–deadlocked marking can occur if the active processes in � ��� are
using less than ������������ tokens of��� (that is, they leave more than
������ free resources in ���). Notice that ������ is finite (each place in a
� ��� is in at least one P–Semiflow). In consequence, if the system evolu-
tions are controlled in such a way that processes in � ��� always leave more
free resources than this number, there will be no ��–deadlocked markings.

The value of ������ can be computed as the solution of the following integer
linear programming problem (ILPP):

������ � Maximize
�
�����

����

Subject to � ��� �� ��

� � 		� � 		

���� �
 	 � ���� � � ���� � 		

� � � � � �

Notice that since the set of reachable markings is not known (and we do
not want to have to compute it explicitly) we will use the set of potentially
reachable markings (the solutions of the state equation). The value ������

obtained in this way could be strictly greater than the real (reachable) one.
But since the objective is to find an upper bound of the number of tokens that
remain in the siphon for ��–deadlocked markings, the obtained value can
be used to control the system.

78 3. Deadlock Prevention Policies for ���� nets

2. Too many active processes are using the siphon resources.

Alternatively, the problem can be seen as the existence of too many active
processes in � ��� using resources of ��. For example, at marking �
 the
two active processes are at �� � and �� ��, respectively. �� � is using five
copies of ��, and �� �� is using four copies of ��.

The computation of the minimal number of total tokens in � ��� for �–
deadlocked markings like �
 will give a bound for the number of processes
allowed to enter in this part of the system; let us call ��
��� such minimum.

It is now clear that if the system evolutions are restricted in such a way that
the total number of tokens in � ��� is always strictly less than��
��� , no��–
deadlocked markings will be reachable. The value of ��
��� can be obtained
as the solution of the following ILPP:

��
��� � Minimize
�

��� ���

����

Subject to � ��� �� ��

� � 		� � 		

�����
 	 � ���� � � ���� � 		

� � � � � �

From the integer linear programming problems presented above, a solution for
������ (alternatively, ��
���) will be obtained.

The token conservation properties induced by the set of P–Semiflows clearly
show a relationship between both points of view, even though they are different
and lead to different solutions.

Remember that in a ��–deadlocked marking, an active process in place � 	
� ��� uses ��	� ��� (�

�
�����

�����) tokens of ���. This fact can be used in
two different ways to prevent ��–deadlocked markings.

1. The control policy will need to ensure that at each reachable state,the places
of � ��� are not using too many resources of ��. For this, a new place
��� � can be added, in such a way that its marking is equal to the number
of tokens of ��� engaged by processes in � ���. For example, each active
process at place �� � uses two units of resource ��, while each active pro-
cess in �� � and �� � uses five units of this resource. On the other side,
each process in �� � uses three units of ��, and each process in �� ��,
four.

3.3. An iterative control policy 79

P2_21

P1_1

P1_2

P1_3

P2_3

P1_0

P2_0

P1_4

P2_11

P2_12

R2
P2_1

R1

pD2_R8

pD2_S

T12

T11

T10

T9

T8

T7

T6

T5

T4

T3

T2

T1

_4

_3

_3
_5

_3

_2

_2

_3

_5

_3

_3

_3

_2

_2

_3

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
������
����

����
��
��
��

��
��
��
��

����

����

���
�
�
�

��������
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

��

���
���
���
���

����

��

��
��
��
��

������������

Figure 3.6: ��� � and ��� � are two possible control places for siphon ��

The initial marking for this place will be ������ � ������� � �� to ensure
that these places are not holding too many copies of the resources. Tech-
nically speaking, it can be said that ��� � and � ��� induce an invariant
relation (established by means of a new P–Semiflow) constraining the sys-
tem evolution so that the number of tokens of ��� used by places of � ���
is less than ������� ������� ���; that is, active processes in � ��� are not
using enough resources of ��� to reach a ��–deadlocked marking.

In the example, since ������ � �, ����� �
�
�������� ���	� ��� � �

can be imposed for any reachable marking. To do that, place ��� � can be
added with initial marking equal to �	 � � � �. (Definition 43 will show
how this place is computed).

80 3. Deadlock Prevention Policies for ���� nets

The addition of ��� � generates the following marking invariant:

������ �� � �

������ ��

� � ����� �� � � � ����� �� ����� ���

� � ����� �� � � ����� ���

This P–Semiflow is forbidding the previously cited marking �
. The reason
is that, at �
,

� ��
��� �� � � ��
��� ��� � � � � � � � � � �
 ��������� ���

In the same way, any other ��–deadlocked markings is also forbidden.

2. When considering the processes point of view, we will need to ensure that
there are not “too many” active processes in � ���. For this, place ��� �
can be added, in such a way that its marking is equal to the number of such
active processes. This is a more simple approach, since counting the number
of tokens that enter in relevant places is quite easy to implement.

The initial marking for this place will be ��
��� � �, generating an invariant
relation similar to the one shown in the previous case, ensuring that no more
than this number of parts can enter � ���.

In the example, since ��
��� � �, we want to impose that for each marking,�
��� ���

���� � �. To do that, place ��� � is added with marking �.
(Definition 43 establishes how this place is added.)

This place generates the following new marking invariant:

������ �� � �

������ ��

����� �� ����� �� ����� ��

����� �� ����� ���

This P–Semiflow is forbidding marking �
. This is so because at �
,

�
��� �� ��
��� ��� � � � � � �
 �

Of course, it also forbids any other ��–deadlocked marking.

3.3. An iterative control policy 81

Given a siphon, ��, two possible control places have been suggested. Obvi-
ously, just one of them is needed for each bad siphon. Let us present some final
remarks to this intuitive introduction:

� A control place (using any of the two alternative approaches) is computed
from a given bad siphon. Then, to control the whole system, a first direct
solution would consist in computing all the bad siphons and then to control
each one of them. This can be very time consuming. A different approach
is going to be used: a bad siphon is computed and controlled, then a second
one, and so on. In general, this approach will reach a controlled system in a
faster way, since it is possible that controlling one bad siphon, other siphons
become also controlled at the same time.

� Controlling all the bad siphons of the original net can be insufficient to en-
sure a live behavior. As previously stated, markings of type 2 can be the
source of new problems. From the structure point of view this fact will be
shown by (new) bad siphons involving some of the added control places.
Luckily, each time a control place is added, the controlled net also belongs
to ���� class. This allows to follow an iterative approach. Moreover, since
the addition of a control place forbids some (potentially) reachable marking
and the set of (potentially) reachable markings is finite, it is ensured that the
iterative method terminates.

� Two alternative ways of controlling a bad siphon have been presented. They
both are adequate to control a given siphon, but they are not equivalent, since
the set of reachable markings (after the addition of the control place) can be
different. Let us consider again �
. If �� is controlled using the resource
point of view, the obtained system can reach 138 states. If it is controlled
using the process point of view, only 98 states are reachable in the resulting
system.

� The method starts computing and controlling a bad siphon, using an integer
linear programming problem. If such problem has no solution, the system
is live and no control is needed. This is an important advantage of the pro-
posed deadlock prevention method, when it is compared with any deadlock
avoidance method.

In the following all these ideas will be presented in a formal way.

82 3. Deadlock Prevention Policies for ���� nets

3.3.2 Computation of deadlocked markings

The following proposition relates liveness with the existence of a solution for the
presented system of inequalities. The systems is a linear representation of a bad
marking given a known bad siphon introduced in the statement of Theorem 28.

Proposition 33 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����.
The net is non–live if and only if there exist a siphon � and a marking � 	

��� 	��� such that the following set of inequalities has, at least, one solution:������������������������
�����������������������

�����
 	

�� 	
 � ��
�	 being ��� � �� � �� 	

���� � �

�
 �����!�����

�� 	 ��	

�� 	 �� � ��
�	 ����!��	��	 �� � ��

��
 � ��������	��	 �� � ��!���������	��	 �� � ��

�� 	 �� ���	 �� 	 �� � ��
�	 ��
 � �

�� 	
 � ��
�	

�
�� �

��

��
 � � �� � ���� �� �

�� 	
 � ��
�	 �
 	 �		 ��

�� 	 ��	 �� 	 �� � ��
�	 ��
 	 �		 ��

(3.1)
where ����� denotes the structural bound of � [CS91].

Proof

First of all, let us make some comments about the variables used in these inequalities.

1. For each � � �
��
�, �� indicates whether � is�–process–enabled or not. It follows

immediately from the following facts:

 since 	
���
 �, ����
 � if, and only if, ����		
���
 �, which is equiva-
lent to state that �� � � (remember that �� � ��� ��)

 ���� � � if, and only if, �� � �

2. Let � � ��, and � � ��
 ��
�. Let us prove that ��� indicates whether � is enabled

by � at�:

 If � is enabled by � at �(���� � ������ ��), ����	������ �� � � and � �
����� ������� �� � ��	������ ������� �� � ��
 �; therefore, ��� must be
�.

3.3. An iterative control policy 83

 If � is not enabled by � (����
 ������ ��), ����	������ ��
 � and ������
������ �� � ��	������������� �� � �� � �; then, ��� must be �.

3. If � � ��
��, and � � ��
 ��
�, ��� � � (that is, resources not belonging to the

siphon enable their output transitions).

4. The system of inequalities without the last one has always a solution, and the value
of variables ��, ��� is determined only by�. Therefore, the existence of a solution of
the complete system depends on the last inequality. Two cases can be distinguished:

 If � � �
 ��
� is not �–process–enabled, �� � � and the inequality for � is

trivially fulfilled, because
�

�� ��
��
��� � � �� ����.

 If � � �
 ��
� is �–process–enabled, �� � � and the inequality becomes�

�� ��
��
���
 � �� ����.

Therefore, there is a solution if, and only if, �� � �� � �� such that � is not
enabled by �.

Let us use these points in order to show the truth of the Theorem.
��) If the net is non–live, Theorem 28 ensures that there exists a marking � �

���� ����, with �����
 �, and a siphon � such that the firing of each �–process–
enabled transition is prevented by a set of resource places belonging to �.

This means that there exist places with �� � �. Since each one of these transitions is
prevented by a set of resource places belonging to �, there exists � � �� � �� such that
����
 ������ ��, and then, ��� � �.

In consequence, for these transitions,
�

�� ��
��
���
 � �� � ���� �� ��, is true.

��)
Let us consider �, � � ���� ����, and the set of variables ��� � � � ��� and

���� � � � ��
 ��
��, solutions of the set of inequalities.

Since�����
 �, let � � �� such that ����
 �. For each � � ��, �� � �, and then,�
�� ��
��

���
 � �� � �������� � � �� � ���. Therefore, there must exist � � �����

such that ��� � � which means that � is�–resource disabled. Moreover, � � �� since for
each � � ��
��, each �� � ��, ���� � �. Therefore, any�–process enabled transition is
disabled by a resource place belonging to �� and Theorem 28 allows us to conclude. �

The existing bad siphons and their related bad markings need to be computed
in order to control the system. Our next goal is to reformulate the above system
of inequalities in order to be able to obtain a bad siphon, together with its related
bad markings. The characterization presented in Theorem 28 allows a simple re-
formulation of these equations. To do that, an algebraic characterization of siphon
is necessary. In [AT85, Sil85] a characterization of this kind is given for traps. It is
straightforward to adapt it to the case of siphons.

84 3. Deadlock Prevention Policies for ���� nets

The result establishes that each solution of the following set of inequalities:

"� �
�
�� �

"�	 "� 	 �		 ��	 �� 	 �	 �� 	 ��	

is a siphon (whose components are those places such that the value of variable "�
equal to �). As it will become clear later, this result is not adequate in this original
form, and it has to be transformed into an equivalent form using negated logic (this
approach is similar to the one proposed in [Sil85] and also in [XJ99].) A siphon is
the set of places whose associated variables in the following set of inequalities is
0:

"� �
�
�� �

"� � � ���� �	 "� 	 �		 ��	 �� 	 �	 �� 	 ��

In order to compute a bad siphon, conditions of Proposition 33 can be com-
pleted by the addition of the following equations:

� A set of constraints representing the siphon,

"� �
�
�� �

"� � � ���� �	 "� 	 �		 ��	 �� 	 �	 �� 	 ��

� A restriction that avoids the whole net as solution:�
������

"� � �� � ���

� A set of restrictions relating resource places that are avoiding the firing of
a process–enabled transition and the siphon. For this, �
, ��
, as in previous
proposition are used together with the new introduced variables.

Let us show how this extension can be used to compute bad siphons and related
bad markings.

Proposition 34 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����.
The net is non–live if and only if there exist a siphon � and a marking � 	

��� 	��� such that the system of inequalities (3.2) has a solution with � �
�� 	 �� � �� � "� � 	�:

3.3. An iterative control policy 85

�������������������������������
������������������������������

�� 	 � � ��	�� 	
��	 "� �

�
�� �
 "� � � ���� ��

������
"� � �� � ���

�����
 	

�� 	
 � ��
�	 being ��� � �� � �� 	

���� � �

�
 �����!�����

�� 	 ��	

�� 	 �� � ��
�	 ����!��	��	 �� � "� � ��

��
 � ��������	��	 �� � ��!���������	��	 �� � ��

��
 � "�

�� 	
 � ��
�	

�
�� �

��

��
 � � �� � ���� �� �

�� 	 � � ��	 "� 	 �		 ��

�� 	
 � ��
�	 �
 	 �		 ��

�� 	 ��	 �� 	 �� � ��
�	 ��
 	 �		 ��

(3.2)

Proof

The truth of this proposition is immediate taking into account Proposition 33 and the
following considerations:

1. The two first inequalities, and the fact that �� � ��� ��, define a non–empty siphon
as stated before. Let � be such siphon.

2. The inequality related to the marking of �� is the same as in Proposition 33.

3. The inequalities related to �� are the same as in Proposition 33. Remember that
�� � � if, and only if, � is �–process–enabled.

4. The inequalities involving ��� are:

 The same as in Proposition 33 when �� � �; that is, if resource � belongs to
the siphon �. In this case, restriction ��� � �� becomes ��� � �, which is
redundant.

 If resource � � �� does not belong to �, (�� � �), these inequalities make
��� to be �. They become:

– � � ���, with � � �

– ��� � �, with � � ��������� �� � ��	������� ������ �� � ��� ��, and

86 3. Deadlock Prevention Policies for ���� nets

– ��� � �

These inequalities always have a unique solution, ��� � �. (Notice that in
Proposition 33, ��� was explicitly made equal to � for � � ��
��, because
the siphon was known a priori.)

5. The last inequality is the same as in Proposition 33, and its meaning is exactly the
same (see the proof of the previous proposition for details).

�

The characterization introduced in this proposition is not directly applicable to
control the system, since a reachable marking is needed and we do not want to use
reachable markings (our goal is to avoid the enumeration of the set of reachable
markings). Therefore, we are going to propose an alternative approach using the
set of potentially reachable markings (markings obtained as solutions of the state
equation).

Proposition 35 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. If
net is non–live, there exists a marking � 	 �
��� 	���, with ���� �
 	, and a
siphon � such that the following system of inequalities has, at least, one solution
with � � �� 	 �� � �� � "� � 	�:���

��
� ��� �� � �

� � 		 � 	 ZZ�� ��

�#$��� �����

(3.3)

�

This proposition does not provide a complete characterization (as it was the
case in Proposition 34). It only provides a necessary condition for deadlock. The
reason is the existence of spurious solutions: markings that are solution of the
state equation but are not reachable. This is not a problem when the objective is
to control the system looking for a live system: the only consequence can be that
control places also forbid some marking which are not reachable. In this way, a
system with more control than needed can be obtained which will be, in any case,
live.

Finally, it must also be pointed out that, when possible, adding non necessary or
redundant control should be avoided, since some good markings can be eliminated
together with the bad ones, which is not desirable.

3.3. An iterative control policy 87

Note 36 A siphon and the corresponding marking fulfilling conditions in Proposi-
tion 35 will be called a potential bad siphon and a potential �–deadlocked mark-
ing, respectively. However, and for the sake of simplicity, they will be called bad
siphon and �–deadlocked marking. �

The approach we are going to propose does not obtain all the solutions of the
system of Proposition 35. The considered method will obtain a bad siphon, for
later controlling it by means of the addition of the adequate place, and iteratively
continue computing and controlling new bad siphons. The reason for this is clear:
the added control will modify the system behavior and some bad markings asso-
ciated to another siphons can be forbidden (also some good states). The obtained
system will have different deadlock problems than the original one.

To do that we are going to transform the system of equations into another one
that will obtain just one siphon as solution. This raises the question of how to
decide which siphon to control. The proposed approach selects the siphon with a
minimal number of places in the hope that controlling first smaller siphons may
help to avoid the control of the bigger ones. The following corollary introduces the
problem.

Corollary 37 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. If
the net is non–live, then there exist a siphon � and a marking � 	 �
��� 	���
such that the following set of inequalities has, at at least, one solution with � �
�� 	 �� � �� � "� � 	�:

�
maximize

�
������

"�

s.t. �#$��� �����
(3.4)

�

The solution of this problem is a bad siphon, �, and a �–deadlocked mark-
ing, �. No special consideration has been done about the �–deadlocked marking
associated to the siphon, while some restrictions about minimality have been done
for �.

Nevertheless, we do not want to avoid only just this �–deadlocked marking
but also all the deadlocked markings related to the siphon. In consequence, a new
problem needs to be solved: once the siphon is known, which are the deadlocked
markings for it? This question has a clear theoretical interest but, if we look at it

88 3. Deadlock Prevention Policies for ���� nets

carefully, we discover that its practical application can be very expensive, depend-
ing on the number of such markings.

The approach considered here is to compute some selected ‘representative’
markings that can be used to avoid all the related �–deadlocked markings. This
will be accomplished here in two alternative ways, as presented in the intuitive
introduction:

� Looking at the maximal number of resources available at �–deadlocked
markings.

� Looking at the minimal number of active processes at �–deadlocked mark-
ings.

For this, the characterization of Theorem 32 (page 64) and Proposition 31
(page 62) will be used, that allows us concentrate on different markings, once a
bad siphon is known. In this sense, it will be useful to return to Proposition 33
(page 33). The equations presented there were constructed supposing that the
siphon was known. Let us use them in order to construct the associated �–
restrictions. The restriction ���� � � ��� � 	 from Theorem 32 can be added
since the siphon is now known.

Definition 38 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� be a bad siphon. The set of �–restrictions is:������

�����

� ��� �� � �

� � 		 � 	 ZZ�� ��

���� � � ��� � 	

�#$��� �����

(3.5)

�

These restrictions represent the conditions related to the ones shown in Theo-
rem 32 once the bad siphon is known. With them, we can now select the adequate
bad markings.

Definition 39 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� be a bad siphon, ����� and ��
�� are defined as follows:

�������� � ����� � maximize
�
����

����

s.t. restrictions �����

3.3. An iterative control policy 89

�������� � ��
�� � minimize
�
��� ��

����

s.t. restrictions �����

�

Note 40 These two problems are, in some way, equivalent: either both have so-
lution or none of them has solution: they search for deadlocked markings, con-
centrating on different points of view. That is, while ����� looks at the number
of tokens in �� at deadlocked markings, ��
�� looks at the number of active pro-
cesses in places belonging to � �� that are “stealing” tokens from� at deadlocked
markings.

When referring to a particular �	�� problem of the ones presented in Defi-
nition 39, �������� or �����
�� will be used. When referring to any of them
����� will be used. �

The way to control these systems in order to avoid deadlock problems is based
on the addition of control places, as sketched in the intuitive introduction. Let us
present some terminology to deal with this.

Note 41 Once a bad siphon � has been computed, it can be controlled using
�������� or �����
�� in order to prevent�–deadlocked markings in two differ-
ent ways:

� Adding one control place ensuring that processes in � �� are not using more
resources than ������������ . If this is the adopted approach (called the
�–resource approach), the system will be said to be�–resource–controlled.

� Adding a control place ensuring that there will be no more than ��
�� � �
active process in places belonging to � �� . If this is the adopted approach
(called the �–process approach), the system will be said to be �–process–
controlled.

If the adopted method is not specified, the resulting system will be said to be �–
controlled. �

Let us now present a basic property that will be needed later in order to see that
the added control is correct. The result is related to the minimal number of active
processes at a deadlocked state.

90 3. Deadlock Prevention Policies for ���� nets

Lemma 42 Let �� 	���, �= ��� � �� � ��	
	��, be a non–live ����, and
let � and �� as in Proposition 35. Then, ���� ���
 �.

Proof

Since���� �� � � �, it is enough to see that it cannot be neither 0 nor 1.
If ���� ��� � �, then����� � � � which is a contradiction with Theorem 32.
If ���� �� � � �, �� is a potentially reachable marking with just one token in

�� . This marking must be reachable, and cannot be blocked since the initial marking is
acceptable. �

Obviously, this property is also true for reachable markings.
The following definition shows how to add a control place that prevents �–

deadlocked markings for a given bad siphon �.

Definition 43 Let �� 	���, �= ��� � �� � ��	
	��, be a non–live ����. Let
� be a bad siphon, and ����� and ��
�� as in Definition 39. Then,

� The associated �–resource place, ��, is defined by means of the addition of
the following incidence matrix row and initial marking:

��� ���	
 � � �
�
��� ��

��� ��� ����	
 �

��
�� ���� � ������ ������ � ��

� The associated �–process place, ��, is defined by means of the addition of
the following incidence matrix row and initial marking:

��� ���	
 � � �
�
��� ��

���	
 �	

��
�� ���� � ��
�� � �

�

To exemplify the previous definition, let us come back to the ���� in Fig-
ure 2.6, whose incidence matrix is shown in Table 3.2. �� � ��� �	 �� �	 ���
was a bad siphon.

According to Definition 43, two different control places can be added:

� ��–resource place:

3.3. An iterative control policy 91

T1 T2 T3 T4 T5 T6 T7
P1 1 1 -1 0 0 0 0 0
P1 2 0 1 -1 0 0 0 0
P1 3 0 0 1 -1 0 0 0
P2 1 0 0 0 0 1 -1 0
P2 2 0 0 0 0 0 1 -1
P1 0 -1 0 0 1 0 0 0
P2 0 0 0 0 0 -1 0 1
R1 -1 1 0 0 0 -1 1
R2 0 -2 -3 5 -1 1 0

Table 3.2: Incidence matrix of net of Figure 2.6

– ���� ����� �	
 � � �
�
����� �� � ����� �	
 � �

� �� � �		 �	��	 		 		 		 	� �

� �		��	 �	 		 		 		 	�

– ��
��� ����� �� � ������ ������� � ��

� �� �� � ��

� �

� ��–process place

– ���� � ���� �	
 � � �
�
����� ������ �	
 � �

� ��		 �	��	 		 		 		 	� �

� �		��	 �	 		 		 		 	�

– ��
��� � ���� �� � ��
��� � �

� �� �

� �

Figure 3.7 shows these places.
Now, two important properties need to be proved for the added places. First, we

are going to show that the initial markings for �–control places are non–negative
(this is needed to ensure that the �–controlled net is a well–defined Petri net).
As a second step, it will be shown that the added place can be seen as a new
(virtual) resource (this is needed in order to apply an iterative method). For this

92 3. Deadlock Prevention Policies for ���� nets

P1_1

P1_2
P2_1

P2_2

R1

R2

P1_3

P1_0

P2_0

pD1_S

pD1_R

pD2

pD3
T7

T6

T5

T4

T1

T2

T3

_2 _3

_2 _2

_5

_2

_2
_2

��
��
��
��
����

��
��
��
��
���
���
���
���

���
���
���
���

��
��
��
��

�
�
�
�
��
��
��
��
�
�
�
�
��
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

������������

��
����
����
����
����

����
����
����
����

�
�
�
�

��

��
��
��

��
��
��

�
�
�
�

����
����
����

����
����
����

�������
���
���

���
���
���

Figure 3.7: Control places proposed for the bad siphon �� of the net in Figure 2.6.

second property, two things are needed: �� must verify structure conditions to be
a resource, and the (extended) marking must be acceptable in the resulting ����.

Lemma 44 Let �� 	���, �= ��� � �� � ��	
	��, be a non–live ����. Let
� be a bad siphon, and ����� and ��
�� as in Definition 39. Let ���� 	��

���,
� �� � ��� � �� � �� � ����	
	���� be the net obtained by the addition of
the �–process place or the �–resource place. Then, ���� ����
 	.

Proof
We must check two cases.

 Addition of a �–resource place. ��
�� ���� ������� �����

� � ��
 �

Using Lemma 42, at any �–deadlocked marking,���� ���
 �.

Then, ������
 ������ � � (each place of � �� is holder of, at least, one
resource of ��). In consequence, ����

�
������ �.

Then,��
�� ���� ������� �����

� � ��
������ ������� � � �� � �.

 Addition of a �–process place. ��
�� ���� � ��
�

� � �

Using Lemma 42, at any �–deadlocked marking, ���� �� �
 �. In consequence,
��
�

�
 �, and then,��
�� ���� � ��
�

� � �
 �.

3.3. An iterative control policy 93

�

Lemma 44 proves that the initial markings computed for a �–resource or a
�–process control place are non–negative. Let us consider the net depicted in
Figure 3.8, for which �� � ��� �	 �� �	 �� �	 ��	 ��� is a bad siphon.

Let us first try to apply the �–resource–control approach. For this siphon,
������ � �. This would give a control place that induces the marking invariant
� ����� �� ����� �� ����� �� ������� � �%����� � �, and this initial
marking is not acceptable, since ������	��

����� ��� ��� � �
 �.
However, using the �–process–control approach, ��
��� � �. This would give

the control place that induces the invariant ���� �� � ���� �� � ���� �� �
������ �������� � �. In this case, the marking is acceptable.

This example shows that the initial marking computed for a �–resource place
can be non–acceptable. The question is to know which conditions ensure that such
markings are acceptable. In Lemma 45 we are going to prove the following facts:

� The initial marking computed for a �–process place is always acceptable.
Any �–process place will be also called �–process control place since it is
always possible to use it to control the system.

� The initial marking computed for a �–process place will be acceptable if
and only if ��

�� ���� �
����� �� ���� ����. Those �–resource places
for which the initial marking computed in Definition 39 is acceptable will be
called �–resource control places.

Considering this, we can now prove that under these restrictions, the added
places are valid from the class definition point of view, and that the resulting system
is a marked ����.

Lemma 45 Let �� 	���, �= ��� � �� � ��	
	��, be a non–live ����. Let�
be a bad siphon, and ����� and ��
�� as in Definition 39. The net ���� 	��

���,
� �� � ��� � �� � �� � ����	
	����, obtained by the addition of a�–process
control place or a �–resource control place is a marked ����.

Proof
The structure of the net has not changed except for the addition of the �–resource place
(resp. �–process place). Let us prove that this added place behaves like a new resource,
according to Definition 13. First of all, for each � � ��, and ��� � ��, let us denote��

��

and ��
�� the immersions of �� and �� of the original net into the controlled system so

94 3. Deadlock Prevention Policies for ���� nets

that �� � �� � �� � �����
�� ��� � ����� and ��

�� ��� � �����, while ��
�� ��� � � �,

and��
�� ��� � �. We will not use the super–index in order to alleviate the notation.

Let us see now that the added place, ��, has also an associated P–Semiflow. Two
cases need to be studied:

1. Let �� be a �–resource place. Let us define the following non–negative integer
vector,��� :

���
��

��� ���� � �

��� ��� � ���
���� � � � ��

��� ��� � �� � �� � �� � ����

We have that

��� ��
�� � ��� ���� ��

�� ������ �
�

��� ��

��� ��� ��
�� �����

By Definition 43, we can substitute��� ������, obtaining:

�
�

��� ��

���
��� ����� � � �

�
��� ��

��� ��� ��
�� ����� � �

2. Let �� be a �–process place. Then, let us define the following non–negative integer
vector,

���
��

���
�� ���� � �

���
�� ��� � �� � � � ��

���
�� ��� � �� � �� � �� � ����

For it:

���
�� ���� � ���

�� ���� ��
�� ���� � � �

�
��� ��

���
�� ��� ���� ��� � �

By Definition 43, we can substitute��� ������, obtaining:

�
�

��� ��

���� � � �
�

��� ��

��� ��� � � � �
�

��� ��

���� � � �
�

��� ��

���� � � � �

3.3. An iterative control policy 95

Therefore, in both cases there exists a P–Semiflow associated to the new added place.
Moreover, the chosen P–Semiflow is also minimal. Notice that��� is the only P–Semiflow
that has 1 in the component associated to the place ��, so it cannot be described as a linear
combination of the other P–Semiflows. Furthermore, it is the only one that contains this
place (if there exist two such P–Semiflows, the difference would be also a P–Semiflow and
would be strictly included in �� which is not possible). Finally, by the way it is defined,
��� ���� � �.

Finally, it is important to remark that Lemma 44 and the restrictions imposed on the
hypothesis make the chosen initial marking acceptable. �

As a consequence, the added place can be considered as a new (virtual) re-
source whose holders are ��� � � ��. Let us prove that the addition of any of the
considered control places strictly reduces the size of the potentially reachable set.

Lemma 46 Let �� 	���, �= ��� � �� � ��	
	��, be a non–live ����. Let
� be a bad siphon, and ����� and ��
�� as in Definition 39. Let ���� 	��

���,
� �� � ��� � �� � �� � ����	
	����, the ���� obtained by the addition
of the �–process place or the �–resource place. Then, ��
����� 	��

���� �
��
��� 	����

Proof
Since ����� �� ���

�� � corresponds to the solutions of ����� ���� plus a new re-
source added in a conservative way, ������ �� ���

�� �� � ������ �����. Moreover,

 being �� the �–resource place, let� be a �–deadlocked marking; let us remember
Theorem 32, where it was shown that for any �–deadlocked marking, �, there
exists a marking �� such that it has the same tokens in � �� , and ����� � � �
(among other properties). Let us concentrate on these markings, with ����� � �.

����� ���
�� �����

�
��� ��

���� ����
���

���
�� ���� �����

� � ��
�

��� ��

���� ����
���

������ �����
� � �

� ����
� � �

In consequence, no reachable marking with����� � �will have less than ����
� �

� tokens in ��. If the programming problems have solution, that means that such
markings exist in the original system, so the size of the reachability set decreases
with the addition of the control place.

96 3. Deadlock Prevention Policies for ���� nets

P1_1

P1_2

P2_1

P2_2
P3_1

P3_2
R1

R2

T1

T2

T3

T4

T5

T6 T7

T8

T9

_2

_2_2

_2

Figure 3.8: A (partial) ���� with a bad siphon that is no controllable using the
�–resource approach (idle places have been omitted for the sake of clarity).

 If �� is a �–process place,

��� �� �� � ���
�� ������

�� ����

� ��
�
� � ����� ����

 ��
�
�

In consequence, no �–deadlocked marking can exists in ����� �� ���
�� �, since at least

one �–deadlocked marking existed in ����� ���� �

In our experience, the use of the �–resource approach gives more permissive
controlled systems. In consequence, the approach we are going to propose will
try to first apply the �–resource–control; if the resulting initial marking is not
acceptable, then apply the �–process–control.

Notice that no potential reachable marking in �
����� 	��
��� can be �–

deadlocked, which implies the same property for any reachable marking, since

��� �� 	��

��� � �
��� �� 	��
���.

3.4 Preventing deadlock problems in ����

We have concentrated on the prevention of the bad markings related to a given bad
siphon. An iterative algorithm is going to be proposed to control the whole system.
It is structured in the following steps:

3.4. Preventing deadlock problems in ���� 97

daVinciV2.1

#1
2:

2P
1_

1+
P2

_1
+

R
2

M
ar

ki
ng

s
of

 ty
pe

 1

M
ar

ki
ng

s
of

 ty
pe

 2

M
ar

ki
ng

s
of

 ty
pe

 3
#1

6:
2P

1_
2

#1
7:

P1
_1

+
P1

_2
+

P2
_1

#1
0:

P1
_1

+
P1

_2
+

R
2

#1
8:

2P
1_

1+
2P

2_
1

#5
:2

P1
_1

+
2R

2

#2
0:

2P
1_

1+
P1

_3

#1
5:

P1
_1

+
R

1+
P1

_3

#9
:2

R
1+

P1
_3

#1
1:

P1
_2

+
P2

_1
+

R
1

#4
:P

1_
2+

R
1+

R
2

#1
3:

P1
_1

+
2P

2_
1+

R
1

#6
:P

1_
1+

P2
_1

+
R

1+
R

2

#2
:P

1_
1+

R
1+

2R
2

#1
9:

2P
2_

1+
P2

_2

#1
4:

P2
_1

+
P2

_2
+

R
2

#7
:2

P2
_1

+
2R

1

#3
:P

2_
1+

2R
1+

R
2

#1
:2

R
1+

2R
2

#8
:P

2_
2+

2R
2

Figure 3.9: Reachability graph of the first net of Figure 3.10

98 3. Deadlock Prevention Policies for ���� nets

Algorithm 3.1

Function controlNet(In �� ����: a marked � ���) Return �� ����
��

–—Pre: TRUE
–—Post: �� ����

�� is a live ���� obtained controlling �� ����
Begin

�� ����
�� := �� ����

Repeat
Compute a bad siphon for �� ����

��, �, using system (3.4)
If � �, solution Then

Compute ����
� as stated in Definition 39

If ����
� is acceptable Then
Add the corresponding resource–control–place
as stated in Definition. 43

Else
Compute ��
�

� as stated in Def. 39
Add the corresponding process–control–place
as stated in Definition. 43

End If
End If

Until No new control place is added
End

1. Compute a bad siphon.

2. Compute ����� .

� If the corresponding control place has an acceptable marking, go to the
following step.

� If not, compute ��
�� .

3. Add the control place.

4. Go to the first step, taking as input the partially controlled system, until no
bad siphons exist.

Algorithm 3.1 corresponds to a more detailed implementation of these ideas.
The following theorem proves the correctness of the proposed algorithm.

Theorem 47 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����

3.4. Preventing deadlock problems in ���� 99

� The Algorithm 3.1 applied to �� 	��� terminates.

� The resulting controlled system, ��� 	��
��, is live.

Proof

 Termination: it is a direct consequence of the following facts.

1. If �� ���� is a marked � ���, ������ ����� is finite.

2. When a siphon is controlled, the resulting system is a � ���(Lemma 45).

3. The addition of a control place strictly decreases the number of potentially
reachable states of the controlled system (Lemma 46).

 When the algorithm terminates the controlled net system �� � ���
�� is a ����

with an acceptable initial marking (by Lemma 45) and it has no bad siphon. Then,
no marking � � ������ ���

�� can be �–deadlocked for any bad siphon and
then, no marking�� � ����� ���

�� can have a dead transition (Theorem 28).

Moreover, since the initial marking is acceptable,
�������� ���

��
��
 �.

�

Example 3 Let us use the ���� in Figure 3.10 to see how the Algorithm 3.1
works. In order to see the effect of the control policy, its reachability graph is de-
picted in Figure 3.9. The figure shows the deadlocked states (#16, #17, #18), the
ones that lead in an inevitable way to them (#6, #11, #12, #13), and the ones a
maximally permissive control policy should left (the rest). Notice that the original
system has 20 reachable markings from which the policy should left 13. The mark-
ings forbidden by each restriction are shown in the figure by means of lines labeled
with the name of the control place: the control place forbids the markings under
the corresponding line.

� Iteration 1: The first bad siphon computed is� � ��� �	 �� �	 ���. Solv-
ing the associated ILPP problem, ����� � 	, which generates the control
place ����� whose associated invariant is:

�� � ������ ������� ������ � �� � �

It has an acceptable initial marking and it is added to the system.

100 3. Deadlock Prevention Policies for ���� nets

P1_1

P1_2 P2_1

P2_2

R1

R2

P1_3

P1_0

100

P2_0 100

T7

T6

T5

T4

T1

T2

T3

_2

_2

_2

Figure 3.10: A ���� net.

3.5. A comparison 101

� Iteration 2: System 3.4 obtains the siphon � � ��� �	 �� �	 ��	 ���.
Solving the associated ILPP problems,����� � 	, which generates the con-
trol place ����� whose associated invariant is:

�� � � � � �� � � �� � ������ ������� ������ � �� � �

It has an acceptable initial marking and it is added to the system.

� Iteration 3: A new siphon obtained using System 3.4 is � � ��� �	 �� �	
������. Solving the associated ILPP problems, ����� � 	, which gener-
ates the control place ����� whose associated invariant is:

�� � ������ ������� ������ � �� � �

It has an acceptable initial marking and it is added to the system.

� Iteration 4: The next siphon obtained solving System 3.4 is � � ��� �	
�� �	 ��	 ������. Solving the associated ILPP problems, ����� � �,
which generates the control place ���
� whose associated invariant is:

� � �� � � �� � ������ ������� ������ � �� � �

It has an acceptable initial marking and it is added to the system. No new
bad siphon appears and the algorithm terminates.

This system has 10 reachable states. To control the original ����, four
siphons have been computed and four new places have been added. In Figure 3.11
we can see the resulting ����. In Figure 3.12 we can see the effect of the four
control places added.

3.5 A comparison

This section introduces a set of empirical results in which a set of different control
policies solve the problem of controlling a ���� net. The two versions of the
control policy presented in this chapter (process-oriented and resource-oriented)
are compared with two control policies able to deal with this general class of sys-
tems from a prevention point of view, have been implemented. These policies were
introduced in [BCZ97], and in [EH93], respectively.

102 3. Deadlock Prevention Policies for ���� nets

RCP2D

P1_1

P1_2 P2_1

P2_2
R1

P1_3

P1_0

100

P2_0 100

RCP1D

RCP3D

RCP4D

T7

T6

T5

T4

T1

T2

T3

_2

_2

_2

_2

_2

_2

_2

_2

������
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�����
���
���
���

���
���
���
���

����

���
���
���
���

����������
����
����

����
����
����

����

�
�
�
�
�
�
�
�

R2

Figure 3.11: The ���� net obtained by controlling the system in Figure 3.10

3.5. A comparison 103

daVinciV2.1

#1
6:

2P
1_

2
#1

7:
P1

_1
+

P1
_2

+
P2

_1

#1
0:

P1
_1

+
P1

_2
+

R
2

#1
8:

2P
1_

1+
2P

2_
1

#1
2:

2P
1_

1+
P2

_1
+

R
2

#5
:2

P1
_1

+
2R

2

#2
0:

2P
1_

1+
P1

_3

#1
5:

P1
_1

+
R

1+
P1

_3

#9
:2

R
1+

P1
_3

#1
1:

P1
_2

+
P2

_1
+

R
1

#4
:P

1_
2+

R
1+

R
2

#1
3:

P1
_1

+
2P

2_
1+

R
1

#6
:P

1_
1+

P2
_1

+
R

1+
R

2

#2
:P

1_
1+

R
1+

2R
2

#1
9:

2P
2_

1+
P2

_2

#1
4:

P2
_1

+
P2

_2
+

R
2

#7
:2

P2
_1

+
2R

1
#8

:P
2_

2+
2R

2

#3
:P

2_
1+

2R
1+

R
2

#1
:2

R
1+

2R
2

R
C

P2
D

R
C

P1
D

R
C

P3
D

R
C

P4
D

Fi
gu

re
3.

12
:

R
ea

ch
ab

ili
ty

se
to

f
th

e
ne

ti
n

Fi
gu

re
3.

10
.T

he
st

at
es

un
de

r
th

e
lin

es
ar

e
pr

ev
en

te
d

by
th

e
ad

di
tio

n
of

th
e

re
sp

ec
tiv

e
co

nt
ro

lp
la

ce
s

104 3. Deadlock Prevention Policies for ���� nets

[BCZ97] [EH93] D–resource D–process
NM NB NMC NMC NMC NMC

Net 3 471 427 94.38% 88.29% 100.00% 96.25%
Net 4 140 124 91.94% 78.23% 79.03% 79.03%
Net 5 47 42 100.00% 50.00% 100.00% 100.00%
Net 6 151 143 100.00% 47.55% 100.00% 100.00%
Net 7 1200 1149 94.34% 94.34% 94.34% 76.50%
Net 8 696 653 90.66% 86.68% 90.96% 71.82%

Table 3.3: Number of states and percentage of states left after application of control
policies for the selected nets.

The first one is based on siphons, and it adds restrictions to the net such that
at each reachable marking it is guaranteed that there will exist a resource of each
siphon enabling all its output transitions.

The second one was originally introduced as an avoidance approach for a more
restricted class of nets, but it can be implemented using the prevention point of
view and can be applied to ����. It is based on establishing a set of control
points in the processes. When a process is going to leave one of these control
points, it looks if the multi–set of resources it needs in order to reach one of its
closest control points is available.

In order to carry out the comparison, the methods have been run with a set of
nets. The examples presented here have been chosen in order to show a variety of
results, and cannot be considered as a true statistical sample. Table 3.3 shows the
results corresponding to the nets in Figures 3.10,3.13(a)–3.13(f). The columns of
the table are as follows.

NM: is the number of states of the uncontrolled system;

NB: is the number of states that a maximally permissive control policy would
allow (that is, the number of elements of the strongly connected component
that contains the initial marking);

NMC: is the percentage states allowed by the control policy with respect to the
number of states of the maximally permissive policy.

We would like to point out the following remarks;

� The new control policies proposed here have a good balance between com-
putational cost and permissiveness. In fact, their behavior is as permissive as
the approach in [BCZ97], but with a clear advantage: this methods requires,
at each iteration, the computation and control of each minimal siphon, which
implies the necessity of computing all the minimal siphons at each iteration.

3.5. A comparison 105

R2

R1

P2_0
25

P2_3

P2_2

P2_1

P1_0
25

P1_3

P1_2

P1_1

T8

T7

T6

T5T4

T3

T2

T1

_2

_3

_5

(a) Net 3

P2_21

P1_1

P1_2

P1_3

P2_3
P1_0 P2_0

P1_4

P2_11

P2_12

R2

P2_1

R1

T2_22

T2_21

T2_13

T2_11

T2_12

TO1_5

T1_4

TO2_4
T1_1

T1_3

T1_2

T12

_3

_3

_2

_5

_3

_3

_2

_2

_3

(b) Net 4

106 3. Deadlock Prevention Policies for ���� nets

R2

R1

P2_0
25

P2_3

P2_2

P2_1

P1_0
25

P1_3

P1_2

P1_1

R3

TO2_4

T2_3

T2_2

T2_1TO1_4

T1_3

T1_2

T1_1

(c) Net 5

R2

R1

P2_0
25

P2_3

P2_2

P2_1

P1_0
25

P1_3

P1_2

P1_1

R3

R4
P1_12

T1_31

T1_21

TO2_4

T2_3

T2_2

T2_1TO1_4

T1_3

T1_2

T1_1

(d) Net 6

3.5. A comparison 107

R2

11

R1

P2_0
25

P2_3

P2_2

P2_1

P1_0
25

P1_3

P1_2

P1_1

TO2_4

T2_3

T2_2

T2_1TO1_4

T1_3

T1_2

T1_1

_2

_3

_5

(e) Net 7

P1_0

250

P1_1

P1_2

P1_3

P2_0

250

P2_1

P2_2

P2_3

R1

R2

11

R3 R4

T1_0

T1_1

T1_2

TO1_3 T2_0

T2_1

T2_2

TO2_3

_2

_5

_3

_2

(f) Net 8

108 3. Deadlock Prevention Policies for ���� nets

This can be an enormous effort. The method proposed here requires to obtain
just one siphon at each iteration, which makes this approach more suitable
for real applications.

� The D–resource approach is the most permissive one in most of the exam-
ples; in the other cases no other control policy has a better result than it. Our
feeling is that this is due to the way the control is added: it takes into account
not only the problems of the original system but also the control places added
to the system, trying to add less control places.

� The D–process approach is as permissive as the D–resource one in some
cases, but there are several cases where it is even worse than the previously
existing approaches.

About the computational cost, we can also present some conclusions. The pre-
sented approaches are, in general, more suitable than other siphon based policies,
since they only compute the needed siphons in order to reach a live system. In this
sense, the D–process approach should be faster, since it never ‘fails’ when com-
puting D–deadlocked markings (remember that there can exists D–resource places
with non–acceptable initial markings.)

The policies presented in this chapter can be qualified as structural, that is,
based on the structure of the system, in the sense that they do not need to compute
the reachability set to obtain the solution. Anyway, it is obvious that the approach
is not purely structural, because it depends on the initial marking (available re-
sources).

3.6 Conclusions

In this chapter the liveness characterizations for ���� nets introduced in the pre-
vious chapter have been used to control the initial system, obtaining a final live
controlled system. The control is based on the use of siphons of the Petri net
model and it has the following characteristics:

� it adopts an structural point of view. This has the advantage of avoiding
the computation of the system reachability set, avoiding the state explosion
problem.

� it has been implemented in an iterative way, applying the control in an in-
cremental way: at each iteration, one (potentially) bad siphon is computed

3.6. Conclusions 109

and controlled. Therefore, the method does not need to compute at each it-
eration the set of minimal siphons (as is the case in [BCZ97], for instance).
This is a very interesting feature of the proposed method, since it is possible
for a ���� net to have an exponential number of (minimal) siphons, which
makes very hard (if not unaffordable) the complete enumeration of all the
minimal siphons.

� from the permissiveness point of view, it has been shown to have a good
behavior compared to others methods able to control the class of MT-PO-
RAS.

Chapter 4

Deadlock avoidance policies for
�
�
�� nets.

Abstract
This chapter concentrates on solving the deadlock problem for S–RAS adopting a
deadlock avoidance perspective. The deadlock control policies developed are based
on the Banker’s algorithm, and take advantage of the process structure in order to
produce more permissive control policies. Banker’s-like approaches are based on
a decision procedure to allow the evolution of active processes, using information
about the maximal needs of resources that a process can request in order to ensure
termination. Banker’s algorithm considers only static information that processes
must provide at the beginning of the process–execution. A framework to deal with
a family of Banker’s–like control policies will be presented, where the maximal
need of resources is defined as a function that depends on the resources needed
to ensure termination from the current state, and also on the set of sequences that
must be preserved by the control policy. Several functions are presented in order to
illustrate this approach. Later, an efficient way to solve the problem is presented.
Finally, some examples are presented and compared looking at their “permissive-
ness”.

112 4. Deadlock avoidance policies for ���� nets.

4.1 Introduction

In this chapter we propose a model that covers the previously introduced subclasses
of S–RAS removing all the previously enumerated constraints (except, obviously,
the one related to the conservation/reusability of the resources), the ���� class of
nets. This class extends ���� in the sense that no constraint is imposed to the
process structure: any strongly connected state machine is allowed.

A deadlock avoidance approach based on Banker’s algorithm [Dij65, Hab75]
will be used. In the case of manufacturing systems, a Banker’s approach has al-
ready been applied in the following works:

� In [LRF98a] a control policy is obtained for the SU–RAS class. The authors
present an adapted version of the Banker’s algorithm, obtaining an efficient
solution. The improvement is not only based on the knowledge of the pro-
cess structure, but also on the concept of “partially ordered set of active pro-
cesses”: it is not necessary to find an ordered termination for all the active
processes, but just for some subsets of them.

� For the same class of RAS, [KTJK97] evaluates, from a performance point of
view, a set of different methods for manufacturing systems with Automated
Guided Vehicles (AGV), one of which is the classical Banker’s approach.

� In [Rev98] and [Law00] an adaptation of the Banker’s method is presented,
obtaining polynomial solutions for an extension of the SU–RAS class, where
each processing step can be executed in any resource from a given set.

� Finally, [Rev00] removes some of the constraints usually imposed to the
process structure, developing a Banker’s solution for AGV systems where
controlled recirculation is allowed in the routing of guided vehicles.

Outside the scope of ��� the work in [Lan99] extended the Banker’s approach
to a class of systems where a multi–set of resources can be used at each processing
step and flexible routing is allowed. However, in order to obtain a polynomial
solution, the process structure is constrained so that the set of states has a tree
structure.

In a deadlock avoidance approach, before the evolution of a process is allowed,
the first step is to check if such authorization will lead to a “safe” state, i.e., a state
from which all the parts being processed can terminate. In this context, the decision
procedure of Banker’s algorithm needs to know for each active process its maximal
needs of resources along all its life. This information is static and is used together

4.2. The class of ���� nets 113

with the dynamic information about the resources assigned to each process and the
set of available resources in order to determine if an ordering for the sequential
termination of the active processes exists, where sequential termination means that
a process is able to terminate if the rest of active processes do not move from their
current states. If such an ordering can be found, the decision procedure concludes
that the state is safe and the resource request can be granted.

In this chapter we define a general framework to develop Banker’s-like control
policies for deadlock avoidance taking advantage of the knowledge about the struc-
ture of the processes (for more restricted classes of systems, see [LRF98b, Lan99]).
Two approaches are going to be considered: one that is computable in a static way,
and a second one where only dynamic computations are feasible. The concept of
(global) maximal needs for a whole process is transformed into the concept of max-
imal needs of resources related to a process state. The maximal needs of resources
of a process are defined as a function depending on the needs of resources to termi-
nate the process execution from the current state, and also on the set of execution
sequences that must be preserved by the control policy. As it will be shown, in
most cases this approach will lead to more permissive controlled systems.

The chapter is organized as follows. Section 4.2 introduces the class of sys-
tems and models we are considering. Section 4.3 gives an intuitive presentation of
Banker’s algorithm. Section 4.4 is devoted to the main results, presenting the gen-
eral framework for Banker’s-like algorithms for deadlock avoidance together with
some particular solutions. In Section 4.5 some empirical results about the applica-
tion of different Banker’s–like algorithms are presented. Finally, some conclusions
are presented.

4.2 The class of � ��� nets

Let us introduce the class of ���� nets in a formal way. For an intuitive presen-
tation of the main ideas, let us recall the one presented in Chapter 2, where ����
nets were introduced in an informal way. Here, we are going to present the class
in a formal way. Then, we will show the differences with ����. First of all, the
structure of individual processes is defined.

Definition 48 A extended process Petri net is a generalized strongly connected
self–loop free Petri net � � ��	
	�� where:

1. � is a partition as follows: � � ���� � �� � ��.

114 4. Deadlock avoidance policies for ���� nets.

2. The subnet generated by ���� � �� �
 , ���������� �� �, is a strongly con-
nected state machine.

3. �� 	 ��, there exists a unique minimal P–Semiflow �� 	 IN�� � such that
��� �
��
 � ��, ���� �
��
 � �, �� �
��

� � and ����� � �.

4. �� �
�
����

�
��
 � ����.

�

An extended process Petri net is a simple specification of the processing of a
type of part. Notice that the only difference with a process Petri net as presented in
Definition 1 (Chapter 2, page 32) is that there can exist circuits that do not contain
place ��. With this, the modeling of more complex systems providing tools to
represent, for example, unlimited recirculation of parts. We will show this later
but, in order to complete the modeling of the dynamics of an extended process
Petri net, the introduction of an initial marking is needed. Only acceptable initial
markings, as defined in the following, will be considered. Notice that this definition
and the following results are the same as in ���� nets.

Definition 49 Let � � ��� � �� � ��	
	�� be an extended process Petri net.
An initial marking �� is acceptable for � if and only if:

1. ������
 	;

2. �� 	 �� ������ � 	;

3. �� 	 �� ��� 	 �� ������ � �����. �

In the following, when considering a marked extended process Petri net we
will assume �� to be acceptable for it.

Some basic structural properties of extended process Petri nets

The structural properties of process Petri nets in Chapter 2 are also true for ex-
tended process Petri nets. In this section we will only remark the more important
ones. The results shown in Proposition 4 (page 37) and Lemma 7 (page 7) pre-
sented in Chapter 2 can be trivially extended for this class of nets. They are not
reproduced here.

Let us present here the definition of the ���� class. It is analogous to the
one presented in Definition 24 (page 52), the only difference being the underlying
process structure.

4.3. The Banker’s algorithm for deadlock avoidance 115

Definition 50 The class of ���� systems is defined recursively as follows:

1. An extended process Petri net is a ����.

2. The composition of two ���� by fusion of the common resource places is
also a ����.

3. All the ���� systems are generated using the previous rules. �

The classical Banker’s algorithm will be presented in terms of multi–sets. For
this reason, let us comment about some well–known concepts in terms of this for-
malism.

Let us recall the net shown in Figure 2.9 (page 61) and the FMS shown in
Figure 1.4(b)-(b) whose production routes are depicted in Figure 1.5(b) (pages 15
and 16, respectively). There we can see the main difference between ���� and
� ��� nets: as introduced in Section 1.3.1, the circuits that do not contain places of
�� are related to the part recirculation capabilities. For example, in Figure 2.9 we
can see that parts reaching place �� � can be processed by resource ��, moving to
the state represented by place �� �	. At this state, they can return to place �� �,
and this sequence of steps can be repeated as many times as needed.

All the results concerning the structure of ���� nets presented in Chapter 2
are directly extended to this new class. However it is not the case for the live-
ness characterizations, as it was shown there by means of the counterexample in
Figure 2.9 (page 61).

The term ���� does not have any specific meaning. It has been chosen
since this class of nets is a generalization of previous introduced classes named
as ���� [ECM95], � � ���� [EGVC98b] and ���� [TCE99]. In fact, � �
���� � ���� � ���� � ����. Let us also remark the fact that ���� is the
most general class of S–RAS.

4.3 The Banker’s algorithm for deadlock avoidance

A deadlock avoidance algorithm controls the system evolutions in such a way that
only safe sequences are allowed. A sequence is safe if each state reached during
its execution is safe. A state is considered safe if all active processes can finish.

The classical Banker’s algorithm is, perhaps, the best known algorithm adopt-
ing the deadlock avoidance approach. It is based on the following idea: at the
activation moment, each process must declare the maximal number of instances of

116 4. Deadlock avoidance policies for ���� nets.

each type of resource it may need during its execution (the multi–set of maximal
needs).

In order to ensure that a state is safe, the Banker’s algorithm uses the following
sufficient condition: a state is considered to be safe if an ordering in the “sequential
termination” of the active processes can be found such that the needs of each active
process could be granted using the current free resources and those released by the
previously terminated processes (previously terminated according to the ordering
selected). Sequential termination means that it is possible to find an ordering for
the set of active processes in such a way that if we freeze the system and let them
evolve alone according to this order, each process can terminate with the available
resources plus the ones released by the processes that have finished before.

Let us consider a state � � ���	 ��	 ���	 ��
��, which has to be tested for safe-
ness and let ��� be the number of active processes. The method uses the following
data structures:

���������: The multi–set of available resources at the considered state.

�������	
��� � � means that there are � available copies of resource
type �.

���: A ���–indexed vector of multi–sets of resources. For each active process
�
, �����
� is the multi–set of maximal needs of the process, declared at
the process activation moment. �����
���� � � means that the process �

may request at most � copies of resource �.

���������: A ���–indexed vector of multi–sets of resources. For each active
process, �
,
���������
������ � �, is the number of copies of the resource
� it is using at the state �.

�		�: A ���–indexed vector of multi–sets of resources, representing, for each
process, the resources that it would need in the future from the current state
�. For each process �
, �		�
��
� ������
��
���������
��
�.

The Banker’s algorithm considers that a given state is safe when there exists
an ordering of the active processes allowing all of them to terminate in the fol-
lowing way: the first one can terminate with the resources it is holding plus the
���������
 ones; the second one should be able to terminate when the first one
terminates, increasing ���������
 with the resources allocated to the first pro-
cess (which are assumed to be freed once the first process terminates), and so on
for the rest of active processes. Formally, it can be formulated as follows: let

4.3. The Banker’s algorithm for deadlock avoidance 117

d

a e

P1_0

P2_0

b
r2

c

r1

f

r3

t9

t8

t7

t5

t6

t4

t3

t2

t1

_5

_5

_4

_4

_3

_5

_3

_5

_4

_5

Figure 4.1: A ���� that will be used to show the policies

118 4. Deadlock avoidance policies for ���� nets.

� be a system state with ��� active processes, ��� � � � ��
��. The Banker’s al-
gorithm considers the state � to be safe if and only if there exists an ordering
function (a bijective mapping) &� � ��� � � � ��
�� �� �� � � � ���� such that, for
each � 	 �� � � � ����,

���������
�
���������
��
��
�

����

����

�������������

���������
���� ������
�

Let us now relate the Banker’s algorithm and the ���� models. In the algo-
rithm, each process has to be identified. As stated before, in a ���� model an
active process is a token in a state place. If we consider, for instance, the ���� in
Figure 4.1, marking � � ' � � � �� � � � �� 	 � � � �� 	 can be described as the
set of processes �'�	 '�	 ���, where '�	 '� correspond to the processes modeled by
the tokens in the state corresponding to place ' and �� to the one modeled by the
token in �.

To conclude this introduction, let us see these values for the net of Figure 4.1.
At marking � � � � '� �� �� � � � �� 	 � � � �� 	 we have:

���������
 � ��
����'�� � � � �� � � � �� � ��
����'�� � � � �� � � � �� � ��
������� � � � �� � � � ��

���������
�'�� � � � ��

���������
�'�� � � � ��

���������
���� � � � ��

�		�
�'�� � � � �� � �� � ��
�		�
�'�� � � � �� � �� � ��
�		�
���� � � � ��

Let us consider a system with ��� active processes, each one with a multi–
set of � types of resources (representing the global maximal needs). As proved
in [Gol78], to test if such a state is safe for the original version of the Banker’s
algorithm is ����� � �������� � ��.

4.3.1 A general schema for Banker’s like algorithms

We are going to present a general framework to study algorithms that are similar
to the classical Banker’s approach. For this, let us introduce the Algorithm 4.2.
It shows the general schema of the ‘core’ of what we will consider here Banker’s
based method: the algorithm to decide if a given state is considered safe or not.

4.3. The Banker’s algorithm for deadlock avoidance 119

da
V

in
ci

V
2.

1

#1:
6r2+5r1+r3(−)

#3:
c+3r2+5r1+r3(−)

#6:
2c+5r1+r3(*)

#11:
e+c+3r2+r3(+)

#13:
c+f+3r2+5r1(+)

#17:
2c+f+5r1(*)

#19:
d+f+2r2(+)

#8:
d+2r2+r3(−)

#18:
e+f+6r2(+)

#22:
e+c+f+3r2(+)

#24:
e+2c+f(*)

#7:
e+6r2+r3(−)

#12:
f+6r2+5r1(−)

#14:
e+2c+r3(*)

#16:
a+c+f+3r2 a+6r2+r3(−)

#2:

a+f+6r2(−)
#15:

#20:
b+f+2r2+5r1(−)

#5:
b+2r2+5r1+r3(−)a+b+f+2r2(+)

#23:#4:
a+c+3r2+r3

#21:
a+2c+f

#9:
a+2c+r3

#10:
a+b+2r2+r3(+)

Figure 4.2: Reachability graph of the net in Fig. 4.1.

120 4. Deadlock avoidance policies for ���� nets.

Depending on the function ����� ���!"� , different policies will be obtained;
in this way a family of Banker’s like algorithms can be represented. In this chapter
we will explore several alternative proposals for the function ����� ���!"� , com-
paring them in terms of cost and taking advantage of the special structure of the
� ��� nets. Let us first study the complexity of the Algorithm 4.2 in terms of the
complexity of the function ����� ���!"� .

The number of while iterations is bounded by ��� � (it corresponds to the worst
case: the state with at least one token in each state place). The cost of each iteration
is dominated by the statement looking for a terminable process among those in �1.
Therefore, the cost is ��

���� �

�� ��

�, where ��

 is the cost of looking for a

terminable process among � different processes. Moreover, if ' is a bound for the
cost of checking if any process is terminable with a given set of free resources,
����#� is ��

�����

�� � � '� � ��' � ��� �

��.
In the case of ���� nets it is important to remark the following fact: all the

tokens (processes) in the same state place can be considered as “equivalent”. This
means that once it can be guaranteed that one of them can terminate (adopting a
Banker’s strategy), it is obvious that all these processes represented by tokens in
the same state place can terminate one after the other, without additional checking.
Notice that the presented algorithm uses this property: when it finds a $�� ���!"�
process, it eliminates all the processes that are at the same state from the set of
processes pending in the ordering process. Then, given a set of active processes,
the algorithm only needs to check for the ones that are essentially “different”. This
means that, at a reachable marking �, when looking for an ordering &
 we will
have to “order” as much items as marked state places (� ��� �).

4.4 Several different “Banker’s–like” approaches

The original Banker’s algorithm was applied to a class of systems where each pro-
cess had not a known structure representing the set of its possible execution paths
mainly because the algorithm was conceived for operating systems where the pos-
sible execution sequences can depend on external values, and then can hardly be
known a priori.

This means that, when a a process needs to move to a successor state, the
controller has to take the decision of allowing or not the state change based on:

� the set of available system resources,
1Let us recall the definitions in Note 16 (page 46), where this notation was introduced for ����.

They can be extended in the obvious way to ����.

4.4. Several different “Banker’s–like” approaches 121

Algorithm 4.2

Function isSafe(In �� ����: a marked � ���;
In � � ���� ����
 ����� Return (iS:boolean)

–—Pre: TRUE
–—Post: �� � Is � a safe state?
Begin

� �� ��; �� ���; �� �� TRUE
While �� � � �� �

look for a process � � � s.t. isTerminable(� ,� �,a)
If such � exists Then

For Each � � s.t. ���� � � ������
� �� �
 � �
�� �����

–— ��� represents a state where the process b has terminated
–— and the others remain at the same state as in � �

–— (Notation in Definition 64)
End For

Else
�� �� FALSE

End If
End While
Return (iS)

End

122 4. Deadlock avoidance policies for ���� nets.

� the set of busy system resources when the demand arrives,

� the maximal set of resources each process declared when it was started.

The sequence of steps corresponding to the execution of an active process, from
its current state until termination, is not known. In consequence, the controller must
be able to ensure that the maximal claim of resources (declared before the process
activation) will be granted, if needed (notice that, in fact, it is possible that some
of these maximal claims were used by the process in the past, and they will not be
needed anymore in the rest of the process execution).

In a ���� system the structure of the executions that each active process can
follow is known: at a given reachable marking�, �
��
� represents the state place
where the process �
 stays. Then, the maximal future needs of this process can be
known looking at each path joining �
��
� and the idle state in the corresponding
process Petri net. In consequence, changing the notion of global maximal needs
(along all the life of the process) to a notion of local maximal needs associated
to each state we can obtain (depending on how the “local” term is interpreted) a
family of Banker’s–like algorithms.

4.4.1 Some improvements presented in an intuitive way

Let us present in an intuitive way the improvements considered in this work when
the process structure is known.

The first one corresponds to the a natural extension of the original version using
the process plan structure: for a process, we do not need to guarantee at each step
that the (global) maximal needs will be available during all of its working life, but
only the maximal needs along the paths from the current state of the process to its
termination state (the idle state). Let us explain this idea by means of an example.

Figure 4.2 depicts the reachability graph of the net in Figure 4.1. In order to
show the differences between the original version and this one let us consider state
���, represented by marking ��� � �� '�� � ��� ��� � ��� 	� � ��� 	. In
this state, there are two active processes: the tokens in places ' (let us name it '�)
and � (named ��). For these two processes the maximal needs are as follows:

����'�� �������� � � � �� � � � �� � ��

It is easy to see that this state is not reachable if the original Banker’s approach is
used: Neither

�� � �� � ��� � � � �� �����'��

4.4. Several different “Banker’s–like” approaches 123

nor
�� � �� � ��� � � � �� ��������

This is so because we are assuming that both, '� and �� could need in the
future ����'��, which is not true. This can be solved attaching to each state place
the multi–set of resources that can be needed in the future (as the original version
proposes) but taking advantage of the knowledge about the states a process can
reach during its evolution from its processing until termination. Then, using this
information it is clear that it is possible to terminate �� (since �� is free) and then
terminate '� (once �� terminates, � � �� � � � �� � �� resources are free, which is
enough to ensure that '� could also terminate).

In the previous example, we have ensured that each process will eventually
finish following no matter which path from its current state to the completion of the
processing. But it is enough to find an ordering in such a way that a given process
can finish, which is equivalent to ensure that resources can be granted in such a way
that at least one path from the actual state to the idle one can be followed: if the
maximal needs differ depending on the processing path (completion of a processing
path), we do not need to guarantee the maximal needs but only the adequate needs
to finish following one of the processing paths. Let us concentrate on the state
���, represented by the marking ��� � � � � � ' � �� � � � �� 	 � � � �� 	.
For each process represented by tokens in ' there are two different maximal needs,
depending on which path is chosen for termination. For the path corresponding to
transitions ���	 ��	 ��	 ���, the multi–set of maximal needs is

�� � � � �� � � � �� � ��

while for the path corresponding to transitions ���	 ��	 ��	 ��	 ��� is

�
 � � � �� � � � �� � ��

For the process corresponding to the token in � there is a unique path, which re-
quires �������. This information is sketched in the following table, where column
���� represents the maximal needs of the previous improvement and ���
 the
needs of the current one:

����[*] ���
[*] ��� � ���

'� � � �� � � � �� � �� �� or �
 � � �� ��
'� � � �� � � � �� � �� �� or �
 � � ��
�� � � �� � �� � � �� � �� � � ��

124 4. Deadlock avoidance policies for ���� nets.

It is easy to prove that marking ��� is not safe neither for the first improve-
ment nor for the original algorithm. Now, let us consider that for each process
represented by tokens in ' either �� or �
 can be chosen as the maximal needs
vector.

1. If �� is considered, then

���� � �� � ��� � � � �� � ��

So, �� can finish.

2. Then, let us choose �� for '�; and then:

���� � �� � ��� � �� � ��� � � � �� � � � �� � ��

3. Finally, either �� or �
 can be chosen for '�, since

�� � ��� � ���� � �� � ��� � �� � ��� � � � �� � � � �� � ��

So, following the proposed order and paths, � can be considered safe, accord-
ing to the new Banker’s–like approach.

The exploration of all the available paths can make this policy expensive from
the computation point of view; on the other hand, the requirement of the availability
of the maximal needs of resources along all the available paths proposed in the first
policy seems to be excessive. In consequence, an intermediate approach will be
proposed based on these two approaches: the idea is to select a single path of the
set of available ones and to use it to check whether the part can finish or not. This
will be examined with a proposal based on the shortest path, but more heuristics
can be defined, changing the way to choose the path.

The previous ideas to improve the classical method are based on static in-
formation, computed off–line that attaches to each state place information about
multi–sets of resources needed to follow a set of paths until the process termina-
tion. The on–line computations compare the set of available resources and these
multi–sets. Alternatively, a (more) dynamic solution can be adopted. Let us con-
sider a given state � and let us concentrate on an active process, say �, such that
�
��� � � 	 ��� . We need to know if � can terminate, assuming that the rest of
active processes do not evolve. To do that, process � can use the set of resources it
is already holding, �����, plus those which are free, ��.

Therefore, in order to determine that process � can terminate, it is enough to
check if there exists a path joining � and ��� involving state places of ��� and
requiring no more than ����� ��� resources.

4.4. Several different “Banker’s–like” approaches 125

For example, let us recall ���, represented by the marking ��� � � � ' �
� � �� � �� � � � �� 	 � � � �� 	. For the process �� it is easy to see that its
only successor place, (, could hold a process in it with the available resources,
and that is the only place in a path from � to �� 	, so it can terminate. After this,
there will be five available units of resource ��. With this, it is easy to see that the
system has available resources to have a process in places), �, and (. Then, it is
straightforward to see that a path as needed exists and that processes in ' ('� and
'�) can terminate. In consequence, the state is safe.

4.4.2 A static approach

This section presents a general formal framework for the generation of Banker’s–
like deadlock avoidance policies. The framework is based on the definition and
parametrisation of a set of functions, the bound functions of future needs, that can
be used to guarantee the termination of one active process. One of these functions
applies each state of each type of part (a token in the Petri net) to a set of multi–sets
of resources. Each one of these multi–sets must represent the future needs of the
part following an available path. Different instances of these functions will gener-
ate different Banker’s–like algorithms. Their values can be computed statically for
each state place, and stored to be used during the normal system operation.

Let us first introduce some definitions that will be needed later

Definition 51 Let � � ��� � �� � ��	
	����
����
 be a ����. Let us
assume that � 	 ��� .

� A p–processing path is a path ������� � � � ��
������ where ����� � ��� ,
��	 �� � � � ��
�� � ��� � ��� .

� A p–processing path is a simple p–processing path when the path is simple.

� � ��� denotes the set of all p–processing paths,

� ����� denotes the set of all simple p–processing paths.

�

Now we will use these definitions to introduce some interesting sub–paths.

Definition 52 Let � � ��� � �� � ��	
	�� be a ����, and let us consider a
p–processing path � � �������� � � � ��
������.

126 4. Deadlock avoidance policies for ���� nets.

P–Semiflow
��� �� �� � � � �� � � � � �� � � � � �� � � �� � � �� �� ���
��	 � � �� � � � � �� �� � � � �� �� � � � �� � ���

Table 4.1: Resource related minimal P–Semiflows of the net in Figure 3.5

� �*���	 � � � ��	 ��	 � � � 	 ��
��,

� �*���� �
�
	�� ��� �*���	 � �,

� �*����� �
�
	������

�*���	 � � �

Finally, some parameters related to the use of resources by a part considering
its current state are presented.

Definition 53 Let � � ��� � �� � ��	
	�� be a ����, let � 	 �� , let � 	 ��,
and let � 	 � ���.

� The multi–set of potential needs of resources of state � along � is:

�� 	 �� ����������� � �����������	 ��������

� The multi–set of potential needs of resources of state � is:

�� 	 �� ���������� � ���	�� ���������������

�

Table 4.2 shows these multi–sets for the elements in the ���� represented in
Figure 3.5 (page 74) obtained from the minimal P–Semiflows related to resources
(shown in Table 4.1.)

Definition 54 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� 	 �� , let �� � ������� � � � ��
������ 	 � ��� ��� � �	 �� 	 ���, let (�
�� � �� �� �	
����� and let � 	 �������. The multi–set � bounds the path ��
if, and only if, �� 	 �	 � � � �� ���
 	 (��
� � such that � � �� � �� � � � � � ��.

�

That is, � bounds the path if it is possible to find a non–decreasing sequence of
b–bounded multi–sets along the path.

4.4. Several different “Banker’s–like” approaches 127

Place ������ �����
�� �	 ��

P1 1 � � �� + � � �� 	 	 � ��� � � � ��
P1 2 � � �� � � ��� 	 	 � ��� � � � ��
P1 3 � � �� � � ��� 	 	 � ��� � � � ��
P1 4 � � �� 	 	 � ���
P2 1 0 �� � � � �� �� � � ��� �� � � � ��
P2 11 0 �� � � � �� 0 �� � � � ��
P2 12 0 �� � � � �� 0 �� � � � ��
P2 21 0 �� 0 ��
P2 3 0 �� �� ��

Table 4.2: PNR values the example.

Definition 55 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
(� �� ��� �� �	
����� be a mapping. (is said to be a bound function of future
needs of resources (!%��) for � if, and only if,

1. �� 	 �� � (��� � �

2. �� 	 �� ��� 	 (��� ����� � � � �����

3. �� 	 �� ��� 	 (��� there exists at least a path ���� 	 � ��� such that �
bounds ����. �

That is,

� # is such that it associates the multi–set � to places in ��.

� For each state place & and each � 	 (���:

1. � is bounded by the multi–set of resources available at the initial mark-
ing,

2. � bounds the multi–set of resources used at this place.

� For each state place &, and for each � 	 (���, there exists a path bounded by
�.

In consequence, a !%�� is a set of upper bounds of the real needs of resources
from a given state place that bound at least one path until termination. As it will be
shown, different instances of !%�� will give different Banker’s versions.

128 4. Deadlock avoidance policies for ���� nets.

Note 56 In the following, for a given � 	 �� and � 	 (���, ����	 �� will denote
the set of all the paths verifying last point of Definition 55, that is, the set of all the
paths bounded by �. �

Definition 57 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
(be a !%�� for it, let � 	
��� 	��� and let �
 � ��� � � � ��
�� be the set of
active processes at �. � is said to be a f-safe state if, and only if:

� � ���, or

� �
���, and:

1. there exists an ordering &
 � �
 �� �� � � � ����

2. there exists
 � ��� � � � ��
�� 	 (��
����� � � � � � (��
���
���
such that, for each � 	 �� � � � ����,

��� �����
��
�� �
�

����

����

�������������

����
����� � �
 �

So, a state will be considered f–safe if, and only if:

� there are no active processes, or

� there exists an ordering for the active processes and there exist bounds as-
sociated to them in such a way that, for each active process, the bound is
less or equal than the multi–set of resources available at marking �, plus the
multi–sets of resources held by this process and all the other active processes
previous to it in the ordering.

Note 58 In the sequel, given a ����, �� 	���, and a !%�� for it, (,

� The set
�� �� 	��� � �� 	
��� 	����� is f–safe�, will denote the
set of reachable states that are f–safe (these states will be also called f–
reachable states).

� A � ��� system, controlled in such a way that only f–reachable states are
allowed, is called the f–controlled system.

�

Obviously, a way of avoiding deadlocks could consist in forbidding any process
activation. But this has no sense from the point of view of a physical system. Next
lemma proves that the !%�� ś based approach is less constraining.

4.4. Several different “Banker’s–like” approaches 129

Lemma 59 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let (
be a !%�� for it. Then:

1. �� 	
�� �� 	���.

2. �
�� �� 	���� � �.

Proof

1. From Definition 57, point 1 trivially holds.

2. Let � � ��
� � � , and let us assume that ��

�
��� (notice that, because of the

structure of a � ���, � �� ���). Let ��� � �� � �� . Let �� � !���. Condition
2 of Definition 57 becomes ��� ��
��� � ��, which is equivalent to ���� �
�
��� ��
��� � �� which holds by condition 2 in Definition 55.

�

The following lemma proves that when a system is controlled using a !%��
function, there is always an active process able to evolve in one of its production
sequences.

Lemma 60 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let (
be a !%�� for it, and let � 	
�� �� 	��� � ����. Then, there exists at least one
active process �� such that �
���� � � 	 �� and a transition �� 	 �� such that

1. �
�����.

2. �� 	
�� �� 	��.

Proof
Let � � ��� �� ����, � �� ��. First, we are going to prove that � enables at least a
transition, ��. Then, we will prove that in case of firing ��, the reached marking belongs to
��� �� ����.

Since � �� ��, let �� � ��� � � � �������� ��, and let us also consider "�, �� and
�� � ��� � � ���
�� as in Definition 57. Without lost of generality, let us assume that
"����	 � � and let ������ � �.

Let us first prove that � enables ��. Since ����
 �, �� is process–enabled. If
�� � ���, since in � ��� nets � ��� � �� � �, �� is also resource–enabled. Let us
now assume that �� �� ���. Since � � ��� �� ����, inequality in Definition 57 for
�� is ��� � �
��� � ��. According to Definition 55, let us consider the path � �

130 4. Deadlock avoidance policies for ���� nets.

������ � � � ��������� � �� ������. Since �� � � , there exists �� � !���� such that �� �
�� � �
����, and then, ��� � �
���� � �
���. So, for each � � ��, ������ �
�
������� ��
������ � ������ ���. Then, �� is also resource–enabled, and point 1) can
be concluded.

Let us now prove that�� � ��� �� ���.

 if �� � ���, ���
� ��
 ���� � ��� � � � �����; let us consider the mapping

"��
� ���

�� �� � � � ��� � �� defined as "��
��
� � "���
�� � (where ���

is
�� constrained to ���

), and ���
� ��	 � � ���
��.

Then, inequality in Definition 57 is now

�� � �� � � � ���� � ��	�

� �
�����
��

�
�

����

����

�������������
�
�����
�� � ��

Taking into account that��	�
���� ��
��� and that�
��� � �, the previous

set of inequalities is just a subset of the set of inequalities corresponding to � �
��� �� ����, which are then verified.

 if �� �� ���, then �� � ���
; let us consider the mapping "��

� "� de-
fined as �� � �� � � � ���� � ���

��
� � ����
�, while ���
���� � ��, and ���

�
����� � � ������, where�� is such that �� ���.

– For � � �, inequality in Definition 57 is ��	�
� �
���� � ��; this is

equivalent to ��� ��
���� ��
��� ��
���� � ��, which is true since
��� ��
��� � �� ��� and�
��� � ���
���� � �.

– �� � �� � � � ���� � ��	�

� �
����
��
��

�
�

����

����

���
��������

����
�
����

��
�� � ��

which is equivalent to

�� � �� � � � ���� � ���� ��
���� � ��
����

� �
�����
�� ��
����

�
�

����

����

�������������
�
�����
�� � �

or, in other way,

�� � �� � � � ���� � ���� ��
�����
��

�
�

����

����

�������������
�
�����
�� � �

which is true since� � ��� �� ����.

�

4.4. Several different “Banker’s–like” approaches 131

As a consequence we can show that the initial marking is always reachable
from any f–reachable state. The algorithm simply checks the conditions of Defini-
tion 57.

Theorem 61 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let (
be a !%�� for it, and let � 	
�� �� 	��� � ����. Then �� 	
�� �� 	��.

Proof
Let �� � ��� � � � �������� ��; for each � � �� � � � ����, let us consider a path �
 �

�� ����
��, �
 � ���
��
�

 �

�

 � � � �

��

 �
� .

Let us proceed by induction over #�� �
�

���			���	

������
 � ��
 � � � ���
 �
���. Notice that

since� ����, #�� � �.

If #�� � �, Lemma 60 ensures that �
�������, and we can conclude. If #��
 �,

let us assume that �
 � "�����. Lemma 60 ensures that � �������, �� � ��� �� ����.
Considering for�� the same paths considered for�, #���

� #��� � from which, by
induction hypothesis, we can conclude. �

An immediate corollary is that in a f–controlled system each active process can
terminate and, in consequence, no deadlock problem can exist. Let us present the
last technical result, which establishes a kind of monotonic relation among !%�� ’s
and the set of reachable states of the controlled systems.

Proposition 62 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
(�	 (� be two !%�� for it such that for each � 	 �� , for each �� 	 (����, there
exists �	 	 (����, �� � �	. Then,
����� 	��� �
����� 	���.

Proof
Let � � ������ ����; let us consider �� � ��� � � � �����, "�, �� and �� �
��� � � ���
��. Inequality in Definition 57 is

�� � �� � � � ���� ������
�����
�� �
�

����

����

�������������
�
�����
�� � �

According to the hypothesis, let us choose, for each � � �� � � � ����, a � �
 � !������
��
such that �
 � ��
; then, using "�� ��� ��

� � ���� � � ��
�
����, we have that

�� � �� � � � ���� ���� ��
�����
�� �
�

����

����

�������������
�
�����
�� � �
 � ��

and then,� � ������ ����. �

Note 63 In the sequel, (� � (� will denote that two !%�� ’s, (� and (�, verify
conditions of Proposition 62. �

Algorithm 4.3 shows an adaptation of Algorithm 4.2 to the framework of the
!%�� formalism.

132 4. Deadlock avoidance policies for ���� nets.

Algorithm 4.3

Function isFSafe(In �� ����: a marked � ���; In � � ���� ����
 ����;
In f: a ���� for �) Return (iFS:boolean)

–—Pre: � � ��� � �� � ��� ����
–—Post: ��� � �� � ��� �� �����
Begin

�� �� ��� � � � �����
��� �� FALSE
options :=

�

���			���	 !�����
��

While ���� � $���$�� �� �
choose � � � � � � ���� � $���$��
If there exists an ordering "� as in Definition 57

Then ��� �� TRUE
Else $���$�� �� $���$��
 � �

End If
End While
Return (iFS)

End

Computational cost

Testing the if–guard in Algorithm 4.3 is like applying a classical Banker’s algo-
rithm being (��	 ���	 ��
�) the maximal needs of resources for such processes. Ac-
cording to [Gol78], this is ����� � � ������� �� � �����. Moreover, the loop will be

executed, at most
���	���� (���

��� times. So, the worst–case time complexity of the

previous algorithm is ����� � � ������� �� � ���� �
	
����

�(�����.
Once this general framework for Banker’s–like solutions has been introduced,

let us now concentrate on providing some specific instances of !%�� ’s For each
case, two time costs are estimated.

1. The cost of testing if a given state is safe with respect to the considered !%��
function.

2. The cost of computing the considered !%�� itself.

This last computation has to be carried outline just once for each state place, and
the result has to be stored in such a way that there is a set of multi–set of resources
associated to each state place. The critical cost is the first one, since it corresponds

4.4. Several different “Banker’s–like” approaches 133

to the on–line computing needed to decide if the firing of an enabled transition
should be accepted or not.

The classical Banker’s approach

Let us consider the !%�� (� defined as

�� 	 �� �

�
(������� � ��������������� �� 	 ��� 	�� 	 ��

(���� � �	 �� 	 ��

That is, each place has associated the multi–set of maximal needs of each type
of resource, along all the processing path. Notice that (� trivially verifies conditions
to be a !%�� for � . Clearly,
����� 	��� corresponds to the controlled system
using the Banker’s approach. Let us now see the costs.

1. Since �� 	 �� � �(���� � �, then
	
����

�(���� � � and the time cost of
checking (�–safeness is ����� � � ������� �� � �����.

2. In order to compute the (� function, each � 	 �� has to be visited and for
it, ����� needs to be processed. Therefore, computing the (� function is
������ � ��� ��.

The global look–ahead version

This version corresponds to the first intuitive improvement shown and developed
in Section 4.4.1 ([TCE00]). Let us consider the function (�� defined as�

(�������� �
��	�� ��� ���������	 �� 	 �� 	�� 	 ��

(����� � �	 �� 	 ��

This function associates to each state place � the supremum of the resources
needed along all the paths (composed of state places) joining � and the correspond-
ing idle state place. Obviously (�� also verifies conditions to be a !%�� for � . Let
us now see the computation costs.

1. As in the previous case, (��–safeness checking is ����� � � ������� �� � �����.

2. The computation of (�� for each state place � 	 ��� needs the computation
of the set of paths composed of state places in �
, and for each one of them,
�����must be compared. This can be done in��������

��

������� ������� ��

�

�����, using any breadth–first search algorithm [CLR90].

134 4. Deadlock avoidance policies for ���� nets.

Notice that in both cases the cost is polynomial.

A partial look–ahead version

This version corresponds to the second intuitive improvement developed in sec-
tion 4.4.1, and was also presented in [TCE00]. Let us consider the function (��
defined as�
(����� � ���������� 	 ������	 �� 	 ��

(����� � �	 �� 	 ��

Then, a multi–set is associated for each simple path joining � and the corre-
sponding idle state place, ensuring resources to follow such path, for each state
place � 	 �� . Clearly, (�� is a !%�� for � . Let us now see the costs.

1. Checking (��–safeness is ����� � � ������� �� � ���� �
���	���� (���

����.
It is important to remark the fact that this time can be non–polynomial, as
opposed to the two previous cases. In any case, a bound for the safeness–
checking time is known a–priori and, then, it can be used to know if this time
is enough to meet the real–time constraints imposed by the system.

2. In order to compute (��, the algorithm of Johnson [Joh75] can be adapted
to suit our needs. This algorithm was proposed for the computation of all
the elementary circuits of a directed graph. The algorithm can be adapted
as follows. Let � 	 ��� ; we need to compute all the simple paths joining �
and ��� . Consider the state machine containing �. Remove every transition
� 	 ��. Add a new transition �� joining ��� and � (adding the arcs ���� 	 ���
and ���	 ��). Apply the algorithm of Johnson to compute the elementary
circuits in the transformed state machines and discard those not containing
��� . According to [Joh75] the cost for a given � 	 ��� is ������� � � �

�� ��
�����

��������, which gives. ��
��

�������� �� �

�� �

�
�����

��������� for
the whole net.

Then, since for each � 	 �� , (� � (�� � (�� and according to Proposition 62,

����� 	��� �
���
�� 	��� �
��	
�� 	���. Figure 4.2 shows the reacha-
bility graph of the net in Figure 4.1. Each node corresponds to a reachable state in
the uncontrolled system. Notice that some deadlocks are reachable (for instance,
marking ��). Some markings leading inevitably to a deadlock are also reachable
(for instance, markings ��� and ��). Among the set of reachable markings:

4.4. Several different “Banker’s–like” approaches 135

� those with a “�” mark form the set of reachable markings when the (� !%��
is used (the original version),

� those with a “�” mark must be added to them in order to obtain the states
reachable when (�� is used,

� finally, the markings with a “ ” mark must be added to obtain the set of
reachable markings for the (�� function.

Let us now present how this framework allows the introduction and study of
alternative approaches.

Another polynomial versions

The general framework that has been presented allows the development of a wide
family of deadlock avoidance control policies, as many as !%�� ’s we are able to
establish.

Let us consider now the function (�� defined as

�� 	 �� ��
(����� � ��	
���������� the shortest path joining ��	 �����	 �� 	 ���
(����� � 		 �� 	 ��

Function (�� associates to each place the supremum of the multi–set of re-
sources needed if a part follows the shortest path joining � and the corresponding
idle state place. Let us now see the costs.

1. Since for each state place �, �(������ � �, (��–safeness checking complexity
is the same as for (� and (��.

2. The computation of (��, needs the shortest path between � and the corre-
sponding idle state place for each � 	 �� . This can be done applying the
single–source shortest path algorithm [CLR90]. So, computation of the (��
function is ��

��

������� � � ����� �� �

���.

In a similar way, we could consider the function mapping to each state place
the longest path, or the path corresponding to the shortest processing time, or the
path corresponding to the use of the cheapest resources, any of them, etc. All
of them would require a polynomial time for safeness checking. Moreover, the
computation of the !%�� will also be of polynomial complexity (they correspond
to graph algorithms of polynomial complexity).

136 4. Deadlock avoidance policies for ���� nets.

Finally, notice that (� � (�� � (�� � (�� and in consequence, we can state that

����� 	��� �
���
�� 	��� �
���	�� 	��� �
��	
�� 	���. Another in-
teresting remark is that adopting the concept of Banker’s–like algorithm presented
in this chapter, no !%�� can be more permissive than (��.

4.4.3 A dynamic approach

A !%�� function is a way to associate information to each place about the needs of
resources ensuring that a set of paths can be followed until sequential termination
using the set of free resources.

This set of paths is chosen in a static way, independently of any reachable
marking. However, there is an alternative way which consists in choosing the paths
in a dynamic way, depending on the current marking of the set of resources. For
this, we are going to present an alternative way of testing if at a reachable marking
a process can terminate, based on a graph algorithm. The algorithm determines at a
given reachable marking if there exists a path that can be followed with the current
free resources. As it will be shown, this new method will be as permissive as the
partial look–ahead solution, but with a polynomial cost.

Let us first introduce some more terminology.

Definition 64 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� 	
��� 	���. An active process � 	 �
 is ��–Terminable if, and only if,
there exists a path �� � ������� � � � ��
������ 	 �����, ��� � �
���	 �� 	 ���,
such that �
�
����
��� ��. �

Note 65 The reached marking, ��, will be as follows:

� ������ ������� �,

� ������ ������ � �, �
 	,

� ����� �����	�� 	 �� � ���,

� ��
� ��� �������. �

A path like �� is said to be ��–Executable for the process �. Notice that a
process is ��–terminable (at marking �) if there exists a path joining the state
place where the process stay with the corresponding idle state, and this path can be
followed by the part using the available free resources plus those that at present are
allocated to the process itself.

4.4. Several different “Banker’s–like” approaches 137

In the partial look–ahead approach the selection of the route that the part needed
to follow in order to finish its processing was done considering all the different
available paths from a given place to the end of the processing; with the informa-
tion about all of these paths, one of them can be chosen as in Definition 64. Let us
now show the conditions under which a path is executable.

Proposition 66 Let �� 	���, �= ��� � �� � ��	
	��, be a marked ����. Let
� 	
��� 	���, let � 	 �
 and let �� � ������� � � � ��
������ 	 �����, ��� �
�
���	 �� 	 ���. �� is��-Executable for � if, and only if, �& 	 �� � � � ��	���
������������� � 	.

Proof

��) Let us assume that� ������
������ � � �

����
���
��

�����
 � � � .
By contradiction, let � be the minimal index such that �� ��
���� ��
��
� �� �.

Firing ���� � � � �
��,�
�� is reached, and��
���� ��� ��
������
��
���. Notice
that�
�� enables �
,��
���� ��
��
�����
��
� � �, which is equivalent to say that
�� ��
������
��
��� ��
��
�����
��
� � �. This is clearly a contradiction.

��) Let us prove by induction over the prefix of �� � � � �� which is fireable from� that
�� is ��-Executable.

1. Since �� � �
���� � �
���� � �, �� is both process– and resource–enabled.
Therefore, �� can be fired.

2. Let us now assume that � ������
������ � � �

����
���
��. First, since �
�� � ��
,

�
����
�
 � (�
 is process–enabled). Moreover, ����� � �� � �
���� �
�
��
��� � �. To prove that �
 is also resource–enabled, we must ensure that
�������
��
�����
��
� � �. This is equivalent to����
������
��
����
�
��
�����
��
� � �, which is true by hypothesis.

�

The Algorithm 4.4 checks if an active process corresponding to a reachable
marking � is ��-Executable. Or, in other words, if the free resources are enough
for the process to terminate when the rest of active processes do not move from
their current states.

Complexity of Algorithm 4.4: The cost of the for loop is ������ � �����, while
the cost of looking for a simple path joining two nodes in the graph of marked nodes
is ������ � � �

�� [CLR90]. Then, the cost of the function is ����������� � �
�

� 	 ���� ���� ���. Since ���� � � �

� and ���� � �, the cost is ������ �

��.

Let
��� �
��
������� �

�. Therefore, taking into account the cost computed

in Section 4.3.1, checking for safety of a given marking is ����� �
� � ���� �
����

138 4. Deadlock avoidance policies for ���� nets.

Algorithm 4.4

Function isTerminable(In �� ����: a marked � ���;
In � � ���� ����
 ����;
In a: an active process) Return (iT:boolean)

–—Pre: � � ��� ����� � ���

–—Post: ��= Is process ���–Terminable?
Begin

For Each � � ���

If �� ��
���������
��� � � Then
mark �

End If
End For
�� �� a simple path of marked nodes exists

joining ����� and ���
Return (iT)

End

(clearly, since � �
��� � �
 �, it is also ����� �
� � ���� � �
 �� Let us recall that the

Algorithm 4.2 embeds a call to the Algorithm 4.4 in order to check if a reachable
marking is safe.

It is very important to note that the safeness solution presented is the most
permissive one when the Banker’s approach is adopted: any solution will require
that at least one path could be followed until termination; if such path exists, the
function isSafe will return TRUE.

Let us consider the two more permissive approaches (the one just presented
and also the one based on (��.) Considering only the asymptotic complexity, it
is clear that the last solution has the best behavior: it gives the most permissive
control (when Banker’s like approaches are considered) with a polynomial cost.
However, the partial look–ahead approach can also be taken into consideration
when the number of paths joining state places and their corresponding idle places
is not very big; the cost of the on–line computations can be in some cases lower
than the cost needed for the graph based most permissive approach.

4.5 Some numerical results

Let us present some numerical results in order to highlight how “good” are the
solutions proposed in this chapter. Table 4.3 shows the results obtained when the

4.5. Some numerical results 139

�� ��
 ��	 �	

NM NB NMC (%) NMC (%) NMC (%) NMC (%)

dif–1 66 64 23.44 70.31 78.12 100
dif–2 1570 1568 53.51 94.58 94.90 100
dif–3 14561 14559 68.40 98.04 98.08 100
dif–4 91238 91236 78.24 99.17 99.17 100
fil–4 81 79 54.43 100.00 100.00 100
fil–5 243 241 50.62 100.00 100.00 100
fil–6 729 727 50.89 100.00 100.00 100

Table 4.3: Some empirical results

considered Banker’s like deadlock avoidance policies have been applied to some
particular cases. There:

NM corresponds to the number of states of the uncontrolled system (when some
deadlocks can appear);

NB corresponds to the most permissive controlled system (with no deadlock);

(��� correspond to the percentage of the markings allowed with respect to NB
of each one of the considered control policies. Notice that the column rep-
resented by (�� will be also valid for the control policy presented in Sec-
tion 4.4.3 because it can be considered as the same one but computed in
different ways.

Each row corresponds to a different ���� net.

� The rows labelled as dif-i, � 	 ������ correspond to the net in Figure 4.4,
where different initial markings are considered; the initial marking of row
i-th is i times the initial m marking shown in the figure.

� The rows labelled fil-i, � 	 ������ correspond to the dining philosophers
problem (the model corresponding to one philosopher is shown in Figure 4.3).

In general, and not only for these examples, it can be said that any of the proposed
!%�� improves in a very clear way the original approach. It is also important to
note that, even if in the shown cases (�� gives the more permissive solution, this is
not always the case.

140 4. Deadlock avoidance policies for ���� nets.

forkR_i

phil1Waiting_i

philForkR_i philForkL_i

forkL_i

philEating_i

T5_i

T6_iT3_i

T2_iT1_i

Figure 4.3: Petri net model of a philosopher with decisions

4.6 Conclusions

In this chapter the class of ���� nets has been introduced. This class is adequate
for the modeling and control of MT–NO–RAS, extending the ���� nets so that the
internal cyclic behavior in the structure of the involved processes can be modeled.
Doing so, ���� nets can deal with the most general class of S-RAS.

To deal with deadlock problems in this class of systems an avoidance point of
view has been adopted. It is based on the adaptation of the underlying ideas of
the well–known Banker’s algorithm to the specific characteristics of these systems,
taking advantage of the knowledge of the complete life cycle of each one of the
involved processes that ���� systems provide.

First, a general framework for different Banker’s–like solutions has been devel-
oped, based on the concept of bound functions of the future needs of resources that
a process can demand for. Some interesting properties of these bound functions
of the future needs of resources have been proven. In particular, a monotonicity
property on the number of allowed states and provides a way to compare two given
functions and to select the most permissive one. The property can be used to reach
an adequate trade–off between permissiveness of the controlled system and compu-
tational cost of the (on–line) application of the avoidance method, that the designer
must solve according to real time requirements.

4.6. Conclusions 141

P2_12

P1_1

P2_3

P1_0100 P2_0

100

P1_4

R2

P2_1

R1

10

R5

P13

P14

R6 P16

P17

P18

T2_13

T2_21

T2_12

TO1_5

T1_4

TO2_4

T1_1

T12

T10

T11

T13

T14

T15

T16

_5

_10

_5
_5

_5

_5

_5

_3

_3

_4

_4 _3

_4

Figure 4.4: ���� used for the numerical experiments

142 4. Deadlock avoidance policies for ���� nets.

Since the most permissive of the presented bound functions can be of non-
polynomial cost, the chapter later concentrates on how to obtain an efficient algo-
rithm for this case. In this sense, a polynomial cost solution has been developed
based on some graph algorithms. This last approach can be considered as the most
permissive when an Banker’s approach is adopted. It provides solutions of poly-
nomial cost for some cases in which the approach based on bound functions will
need an exponential time. However, the price we can have to pay in other cases
is more time spent in the on–line computations. This means that, in many cases,
the approach based on bound functions of future needs of resources will be more
adequate, specially in those systems with a polynomial number of paths joining a
state place and its corresponding idle place and where real time processing requires
a fast answer.

Chapter 5

Computing minimal siphons in
�
�
�� nets: a parallel solution

Abstract
Siphons are related to liveness properties of Petri net models. This relation is strong
in the case of resource allocation systems. Siphons can be used in these systems
in order to both, characterize and prevent/avoid deadlock situations. However,
the computation of these structural components can be very time consuming or,
even, impossible. Moreover, if, in general, the complete enumeration of the set of
minimal siphons must be avoided (there can exist an exponential number of such
components), some deadlock prevention methods rely on its (complete or partial)
computation and enumeration. The special syntactical constraints of the classes of
resource allocation systems (remember that ���� is a class of �'�) can help in
developing specific algorithms to compute siphons in a more efficient way.

In this chapter we are going to present an adaptation of the algorithm proposed
in [BM94] to the class of ����. The proposed solution has a parallel nature. Some
empirical results will be presented which try to show the interest of the proposed
method.

5.1 Introduction

Siphons and traps have interesting properties related to the token distribution in a
Petri net. In particular, siphons are closely related to liveness properties, as we have

144 5. Computing minimal siphons in ���� nets: a parallel solution

seen in previous chapters. It is easy to prove a classical property: if there exists a
total deadlock in an ordinary Petri net, there exists an empty siphon ([Com72]). In
non–ordinary Petri nets this idea can be generalized: if there exits a total deadlock,
then there exists a siphon with a “deficient marking” ([Bra83]). Moreover, for some
special classes of nets, siphons can be used to characterize liveness (free choice
nets [ES92], extended free choice nets [BM92], asymmetric choice nets [BPP96],
Petri nets with resources (PNR) [JXH00], system of simple sequential processes
with general resource requirements (���+��) [PR01], and ���� nets as shown
in previous chapters). Finally, these structural components have been used to im-
plement deadlock control policies in [ECM95, BA95, TGVCE00, TCE99, JXH00,
IMA02]. Since the techniques introduced in these works rely on minimal siphons,
some (efficient) methods to compute them are needed.

It is well known that, in general, the computation of minimal siphons for a
Petri net is a NP–complete problem (see, for example [KB92, YW99b]). However,
we wanted to know how time consuming would be computing siphons for ����
nets, and how parallelization could improve this computation. Two facts have been
considered for this computation in ���� nets.

� The special structure of this class of nets.

� Only siphons containing resource places are interesting from the point of
view of deadlock prevention policies.

Among the wide set of methods for the computation of minimal siphons we
have chosen the one proposed in [BM94] for the following reasons:

� As it will be shown, the method can be easily implemented in a parallel way.
This is specially interesting, since the computation of families of siphons can
be very time consuming.

� It is oriented to the computation of the set of siphons containing a given place
(set of places). This makes it interesting for those control policies that rely on
the computation of families of siphons ([ECM95, BCZ97, TCE99, IMA02].)

It is clear that, when possible, the computation of big families of siphons must
be avoided. In the case of ���� nets, the deadlock prevention methods proposed
in Chapter 3 followed this approach computing one siphon at each step by means of
an integer programming problem. However, in other cases this cannot be avoided,
and this makes interesting to obtain efficient implementations.

5.2. Some methods for the computation of siphons 145

5.2 Some methods for the computation of siphons

Researchers have considered and studied different methods for finding siphons and
traps. Among them let us present the main ones, that we will classify based on the
underlying techniques used for their computation:

Algebraic methods

In this group we include those methods that compute families of siphons (traps)
by means of the solution of a set of linear equations or inequalities. The system is
based either in the direct use of the net incidence–matrix or in a transformation of
it. The following methods can be included in this group:

� The method presented in [Tou81, AT85] is based on the resolution of a sys-
tem of linear inequalities. They are obtained via a transformation of the net
by means of the ‘unfolding’ of some transitions. The support of the mini-
mal P–Semiflows of this unfolded net corresponds to a generating family of
siphons of the original one: a family of siphons is a generating family if any
siphon can be constructed by means of the union of siphons of the family.

� In [Lau87, ES92] the proposed method transforms the net via the ‘expansion’
of ‘shared places’ (places with ����
 � or ����
 �) and the addition of
some new restrictions that can be seen as new transitions. Siphons and traps
are obtained as the support of some P–Semiflows of this modified net. The
obtained solutions are not a generating family of all the siphons (traps) of
the net, but a generating family of the strongly connected ones.

� In [EC91, ECS93] the proposed method is based on solving a set of inequal-
ities, whose associated matrix is a slight transformation of the net incidence
matrix. The transformation just changes the weights of some arcs. The sup-
ports of the solutions of such inequalities form a generating family of the set
of siphons (traps).

� The method proposed in [BM94] uses an algebraic characterization, based
on the direct application of the definition of siphon (trap) to an special ver-
sion of the incidence–matrix, the sign incidence matrix. This matrix is like
the incidence matrix where the actual values of the arc weights have been
substituted by signs that represent whether a place is an entry, output, or
both for each transition. With this, they compute a basis of minimal siphons
(traps). This method is further improved in [YW99a].

146 5. Computing minimal siphons in ���� nets: a parallel solution

Methods based on graph theory

This class includes those methods that directly use the graph representation of the
Petri net to compute siphons:

� In [BL89] a simple characterization of minimal siphons in terms of path
properties is presented. The authors presented a polynomial algorithm to
determine if a given set of places is a siphon based on alternating circuits.
This work was later improved in [BM92] for the class of bounded extended
free–choice nets and non self–controlling nets. They are not used to compute
siphons, but to prove liveness and other related properties.

� In [WYT98] some methods based on a branch–and–bound algorithm and
graph theory for the computation, if any, of minimal siphons that contain a
given subset of places were presented. With this method minimal siphons
containing a given set of places can be computed.

� In [JPH99] another approach based in an algorithm that uses recursive depth–
first search in the underlying graph structure of the Petri net is proposed. The
method can compute the set of minimal siphons (traps).

Methods based on logic formulae

� In [Sil85] a method based on characterizing siphons using logic formulae
is presented. For this some logical equations whose variables represent
whether a place belongs to a siphon or not are constructed. This method was
adapted to be used in a more efficient way in Section 3.3.2, in Chapter 3.

� In [MB90] the presented methods are based on the satisfactibility of some
Horn clauses related to these structural components: the idea is to represent
the siphon condition via logic formulas, and then to transform them into
Horn clauses. They can compute minimal siphons containing a specified
subset of places.

� Finally, in [Val99] the use of ordered binary decision diagrams is proposed
to manage and solve the logic equations representing the siphon (trap) con-
dition. The computation of minimal siphons and traps, and also the way to
verify Commoner’s property, is shown as an example of the proposed tech-
niques.

5.2. Some methods for the computation of siphons 147

T1 T2 T3 T4 T5 T6 T7
P1 1 � � 	 	 	 	 	
P1 2 	 � � 	 	 	 	
P1 3 	 	 � � 	 	 	
P2 1 	 	 	 	 � � 	
P2 2 	 	 	 	 	 � �
P1 0 � 	 	 � 	 	 	
P2 0 	 	 	 	 � 	 �
R1 � � 	 	 	 � �
R2 	 � � � � � 	

Table 5.1: Sign incidence matrix of net of Figure 2.6

The selected method

From these methods, we have selected the one presented in [BM94], mainly due
to the following two facts: each row in the sign incidence matrix corresponds to
a place, and the method operates based on selecting one of these rows. In conse-
quence we can select which place–siphons compute, avoiding the non–interesting
ones; moreover, this computation can be done in an independent way for each
place, introducing an easy way to add parallelism to the computation.

The method uses the sign incidence matrix, which is the representation of the
underlying graph.

Definition 67 ([BM94]) Let � � ��	
	��, be a Petri net with �
 � � � and
�� � � �. The sign incidence matrix
 � ��
� � is an���matrix, whose elements
are:

� �
� � � if place i is an output place of transition j.

� �
� � � if place i is an input place of transition j.

� �
� � ! if place i is both input and output place of transition j.

� �
� � 	 otherwise. �

For example, for the net depicted in Figure 2.6 whose incidence matrix is
shown in the Table 3.2, the sign incidence matrix can be seen in Table 5.1.

148 5. Computing minimal siphons in ���� nets: a parallel solution

Since each row represents the set of input/output transitions of a place, the
adequate arithmetic operations with these values need to be defined in order to be
usable for siphon computation.

Definition 68 ([BM94]) The addition, denoted by ", is a commutative binary op-
eration on the set , � ��	�	!	 	�, defined as follows:

� �"� � !

� �" � � �	�� 	 ,

� ! " � � !	�� 	 ,

� 	" � � �	�� 	 , �

Basically this arithmetic allows to cancel any positive entry with a negative or
a ‘!’ valued one.

For example, if we use the sign incidence matrix of Table 5.1, we can sum the
rows corresponding to places �� � and ��, obtaining:

T1 T2 T3 T4 T5 T6 T7
�� � � � 	 	 	 	 	
�� � � 	 	 	 � �

�� �"�� ! ! 	 	 	 � �

The ‘!’ symbols in the first and the second columns represent that, in the net,
���� � ���� � ��� � ����� � �
�	
��. Moreover, the ‘�’ symbol in the
sixth column represents the fact that
� 	 ��� � �����, but it is not an input
transition of this set; finally, the ‘�’ symbol in the seventh column represents that

� is an input transition of this set of places, but it is not an output transition.

Then, if a positive entry represents an input transition for the considered set
of places, a negative one represents an output transition, and a !–signed one rep-
resents a transition that is both input and output of the set, we can try to cancel
positive signs with the addition of places that can produce ‘!’ and negative ones
in order to have a siphon.

The siphons can be obtained with the result presented in the following theorem.
It is based on the selection of a set of rows (places) of the sign incidence matrix.

5.2. Some methods for the computation of siphons 149

Theorem 69 ([BM94]) Let � � ��	
	�� be a Petri net with �
 � � � and �� � �
�. A subset of places, � � ���	 ��	 ���	 ��� � � , is a siphon if and only if the
addition of the � row vectors of the sing incidence matrix of � ,��"��" ���"��,
contains no ‘�’ entries, where �� denotes the row vector corresponding to place
��	 � � �	 �	 ���	 �. �

Given the previously defined arithmetic, if the sum of these rows does not
contain ‘�’ entries, this means that for each ‘�’ in a row (the place is the output of
the corresponding transition), there is another row with a ‘�’, or a ‘!’ (there exists
a place of the net that is the input of this transition).

For example, if we use the sign incidence matrix of Table 5.1, we can sum the
rows corresponding to places �� �, �� � and ��, obtaining:

T1 T2 T3 T4 T5 T6 T7
�� � � � 	 	 	 	 	
�� � 	 	 	 	 	 � �
�� � � 	 	 	 � �

�� �" �� �"�� ! ! 	 	 	 ! !

So they are a siphon, since now ���� �	 �� �	 ��� � ��� �	 �� �	 ����

(they are also a trap).
The method proposed in [BM94] is based on the iterative application of the

previous ‘cancellation’ of ‘�’ signs by means of the addition of matrix rows. Any
grouping of places (addition of a set of rows) with no ‘�’ signs corresponds to a
siphon.

Since the approach is based on selecting a matrix row, the corresponding place
will be always present in the obtained siphon (if any). In consequence, some of the
obtained siphons can be non–minimal. To clarify this, let us show the definition of
place–minimal siphons which are the structural component that this method is able
to compute.

Definition 70 A place–minimal siphon with respect to place & is a siphon contain-
ing place & and a minimal set of places. �

Now it is clear that the algorithm can be adapted to our problem: the method
can select just the rows corresponding to the places that are of interest for the
control policy (resources).

150 5. Computing minimal siphons in ���� nets: a parallel solution

Since the method computes place–minimal siphons (let us remark that they can
be non–minimal), some filtering will be needed in order to obtain the minimal ones.

The specific syntactical constraints of ���� nets pointed towards the use of
the method presented in [BM94] to compute siphons in this class of nets. The
following facts supported that decision:

1. In resource allocation system all the ‘interesting’ siphons must contain re-
source places (Theorem 26 in Chapter 2). We can expect a reduction on the
computation costs.

2. Finally, let us recall that the method starts selecting a row of the sign matrix
in order to compute place–minimal siphons related to it; in consequence, it
is straightforward to parallelize the method: the computation of the siphons
related to a subset of places can be easily distributed among different pro-
cessors.

In order to confirm these ideas, a first experiment was done comparing this
method with Lautenbach’s method [Lau87] when applied to a set of ���� nets.
Table 5.3 (page 158) shows the results of the experiment (the meaning of each
row is explained in Section 5.4). From the results, it seems that the Boer-Murata’s
method is well adapted to the problem. In the table we can see that when the size of
the problem increases, the adopted method tends to be better than the Lautenbach’s
one.

An alternative method to compute siphons containing a set of places was pre-
sented in [WYT98]. It was discarded because of its poor performance in our pre-
liminary tests. Finally, the improvements to the Boer-Murata’s method introduced
in [YW99a] were also considered. However, these improvements are not of inter-
est in ���� nets, since when applied to nets of this class no better results were
obtained.

5.3 The implementation

Since the original algorithm was able to obtain the place–minimal siphons for any
place in the net it is obvious that the computation of the siphons that involve re-
sources can be easily parallelized, computing place–minimal siphons for differ-
ent resources in different processors. In this way, as many sets of place–minimal
siphons as available processors can be computed in parallel. The approach used to

5.3. The implementation 151

R5

R9

R1 R2

R6

R3

R7

R4

R8

R5

R9

R1 R2

R6 R3

R7

R4

R8

R5

R9

R1 R2

R6

R3

R7

R4

R8

Merge Merge

Merge

Filter

P1 P2 P3 P4

P1 P3

P1

Figure 5.1: Schematic representation of the computation with four processors and
nine resources

organize the parallel computation can be seen in the literature with the name of di-
vide and conquer since it follows the well known strategy for sequential programs
(see for example [Akl97]1.)

Let us sketch the basic steps of the parallel implementation. Algorithm 5.5
shows the skeleton of the program implemented in each one of the processors: it is
based on the application of three steps.

� Step 1

First of all, the set of resources is distributed among the available processors,
in such a way that each processor has to compute siphons for a similar num-
ber of resources. For this, an ordered list of active processors is created an
maintained.

Let us consider, for instance, the nine philosophers problem. There will be
nine resources (in this case the resources are the forks, and there is one fork
for each philosopher). Moreover, let us suppose that we have four available
processors. The first step would be to distribute the places modelling the
forks among the processors. Figure 5.1 shows a possible way of distribution

1There is a pattern–based approach [MMS01], where the authors identify, among others, the
DivideAndConquer pattern in the context of parallel application programs design.

152 5. Computing minimal siphons in ���� nets: a parallel solution

Algorithm 5.5

Function computeSiphons(In� : a � ���) Return : (S: set)
–—Pre: TRUE
–—Post: � is the set of minimal siphons of � that contain resource places
Begin

��$%��� �� �� &�� ������!���
�'� ��$%����� �� &�� �'� �� $! ��$%�����
If (process Id = 0) Then

–— Process 0 is the last one to terminate
Start Clock
Send Signal to the other processes to start

Else
–— The other processors wait for the Process 0
Wait Signal from process 0

End If
Read the Petri Net
�������� � := compute place–minimal siphons for the resources assigned to process Id
While �'� ��$%�����
 �

If ��$%��� �� �$� � � � Then
–— Processes in charge of merging
Wait for the process with identifier ��$%��� ��� �
Obtain the Siphons from ��$%��� ��� �
�������� � � �������� � � �������� � ��

Else
–— Processes that send their siphons and terminate
Contact with process ��$%��� ��� �
Send the Siphons to ��$%��� ��� �
Terminate

End If
End While
–— Only process 0 reaches this point
� � minimal siphons from ��

Stop Clock
Return (S)

End

5.3. The implementation 153

of resources among four processors and sketches the execution of the algo-
rithm. There, two resources have been assigned to processors two, three, and
four, and three resources to the first processor.

Each processor will be in charge of computing the set of place–minimal
siphons related to the resources assigned to it. In the example, processor
�� will compute the place–minimal siphons related to forks �� , �� and
�(; processor �� the ones corresponding to �� and �) ; processor �� the
ones corresponding to �� and �* ; finally, processor �
 will compute the
ones related to �
 and �+ .

� Step 2

When each processor terminates its computation, it tries to contact with one
of the remaining active processors. To organize this a simple strategy is
proposed: the processors that are in an odd-numbered position in the list are
in charge of merging, while the others just have to communicate with the
corresponding ones in charge of merging, send the data, and terminate (they
are then eliminated from the list of active processors); each even–numbered
processor will contact with its predessor in the list2.

The merging operation is very simple: the union of both sets of siphons. The
goal is to obtain all the siphons, so this merging will continue until just one
processor remains active.

In the example of Figure 5.1 processor �� merges the siphons it has com-
puted with the ones computed by processor �� (obtaining the place–minimal
siphons corresponding to resources ���	 ��	 ��	 ��	 ���); when this merg-
ing operation terminates, processor �� is eliminated from the list of active
processors. Processor �� merges the siphons it computed with the ones
obtained by processor �
 (in this way, the set of place-minimal siphons cor-
responding to resources ���	 ��	 ��	 ��� is constructed); processor �
 is
also eliminated from the list when this operation terminates.

When one of the processors in charge of merging terminates, and while there
exist more active ones, it tries to contact with other processor (again depend-
ing on its position in the list of active processes, it will have to execute either
a merging operation or just sending its computed data and terminate). This
step will be repeated until just one processor remains active, which is the one
that will have all the place–minimal siphons.

2We will see later that it is a naive approach but useful for the purposes of our experiment.

154 5. Computing minimal siphons in ���� nets: a parallel solution

forkR_i

phil1Waiting_i

philForkR_i philForkL_i

forkL_i

philEating_i

T5_i

T6_iT3_i

T2_iT1_i

Figure 5.2: Petri net model of the i–th philosopher

In the considered example, a second round is needed, where processor ��
merges its place–minimal siphons with the ones obtained by processor �� .

� Step 3

When the previous stages terminate there is a unique remaining active pro-
cess, which contains all the place–minimal siphons (related to resource pla-
ces.) Since some of them could be non–minimal, the last stage consists of a
filtering operation to eliminate the non–minimal siphons.

The merging and filtering steps require the efficient storage and manipulation
of sets of siphons (sets of sets of places). To do that, Ordered Binary Decision Dia-
grams (OBDDs) [Bry92] have been used, transforming these merging and filtering
operations into the manipulation of symbolic boolean functions.

An immediate way of decreasing the number of sets (siphons) that have to
be manipulated consists in doing the filtering operations before executing a new
merging. However, our preliminary experiments with this approach showed that it
was quite expensive, so we decided to do the filtering only at the last step.

5.4. The experiments 155

P1_1

P1_2

P1_3

P1_0

R1_1

R1_2

R1_3

R1_N

P1_N P2_1

R2_N−2

P2_N−1

P2_N R2_N

R2_N−1

P2_N−2

R2_1

P2_0

T2_N−1

T2_N−2

T2_N

T2_0

T2_2

T2_1

T1_N

T1_0

T1_4

T1_3

T1_2

T1_1

. .

. .

. .
��
��
��
��

��

����

��

��
��

����

����

����

�
�
�
�

.

.. ..

Figure 5.3: Petri net model of two sequential processes using resources

5.4 The experiments

In order to study the behaviour of the proposed parallel version some experiments
have been done. Since no benchmarks have been proposed in the literature to
measure the run–time cost, three parametrised families of nets have been chosen:

� The first one corresponds to an implementation of the well known dining
philosophers problem. The parameter corresponds to the number of philoso-
phers. Figure 5.2 shows the model of the �th philosopher. Places #,�-� �
and #,�-	 � model, respectively, the state (free/engaged) of its right and left
forks. The fork #,�-� � will be shared with the philosopher on his right, and
the #,�-	 � will be shared with the philosopher on his left.

The results obtained for this family of nets are entitled Phil in Tables 5.3
(page 158) and 5.5 (page 164).

� The second and third classes of systems are obtained by means of the com-
position of a set of sequential processes: each process, at each processing
step, has attached a single (and different) resource. An skeleton of the Petri
nets representing two of such sequential processes can be seen in Figure 5.3.

156 5. Computing minimal siphons in ���� nets: a parallel solution

P2_1

R2_2R2_3

P2_3 P2_2

R2_1

R1_3R1_2R1_1

P1_3P1_2P1_1

P3_1 P3_2 P3_3

R3_1 R3_2 R3_3

R4_1

P4_2P4_3

R4_3 R4_2

P4_1

P1_0

P2_0

P3_0

P4_0

T1_1 T1_2 T1_3 T1_4

T4_4 T4_3 T4_2 T4_1

T3_2 T2_3 T3_4T3_1

T2_2 T2_1T2_3T2_4

T1_1 T1_2 T1_3 T1_4

Figure 5.4: Petri net model of four sequential processes of length three

5.4. The experiments 157

There are two ways to study size variations in these families of systems: one
of them is changing the length of the process; that is, the number of pro-
cessing steps (. in the Figure). The second one is changing the number
of processes to be composed (in the figure two processes are shown). For
the experiment, the sequential processes are composed with other processes
according to the following rules:

– The first process shares its resources with the second one in reverse
order: the resource used at the first step in the first process is used at
the last step of the second process; the resource used at the second step
of the first process is used by the one that is previous to the last step
in the second process, and so on. That is, if resources are numbered
(according to process one) �	 �	 ���	 - (where . is the length), they
will be used by the first process in this order and by the second one in
reverse order (-	- � �	 ���	 �).

– The second process is composed with the third one in a similar way, and
the same is also true for the composition of the third with the fourth and
so on, until we reach the total number of composed processes.

– Finally, the last process is composed with the first one, following the
same pattern.

Using the previous skeletons, two different families of ���� nets have been
generated, labelled as ���	� and ���'� in Tables 5.3 (page 158) and
5.5 (page 164).

– FMSLD nets are obtained by means of the composition of two sequen-
tial processes as the ones depicted in Figure 5.3, where the parameter
is the length of each process (N in the figure). In the experiments, N is
varying from 1 to 8.

– FMSAD nets are obtained by means of the composition of a variable
number of sequential processes as the ones depicted in Figure 5.3,
whose length is 3 and the parameter is the number of processes. In
the experiments, the number of composed processes is varying from 1
to 11. (Figure 5.4 shows the Petri net model of the FMSAD of size 4).

These last two families have been chosen with the objective of exploring the
two obvious (and different) growing directions; the first one shows a system
whose resources are involved in siphons that can be of a big size, while in
the second one all the siphons are rather small.

158 5. Computing minimal siphons in ���� nets: a parallel solution

Size [BM94] [Lau87]

Phil. 3 (15, 3, 46, 15) 0.35 0.02
Phil. 4 (20,4,64,20) 0.52 0.25
Phil. 5 (25, 5, 80, 25) 0.76 5.49
Phil. 6 (30,6,96,30) 1.09 194.03
Phil. 7 (35, 7, 102, 35) 1.44 4932.85

FMSLD 3 (15,6,20,12) 0.4 0.01
FMSLD 4 (20,8,26,16) 0.54 0.02
FMSLD 5 (25,10,32,20) 0.85 0.9
FMSLD 6 (30,12,38,24) 1.69 26.49
FMSLD 7 (35,14,44,28) 4.17 1012.93

FMSAD 3 (21,9,60,12) 0.93 0.02
FMSAD 4 (28,12,80,16) 2.32 0.43
FMSAD 5 (35, 15,100,20) 9.32 8.51
FMSAD 6 (42,18,120,24) 66.05 258.4
FMSAD 7 (49,21,140,28) 710.7 6337.44

Table 5.3: Comparing Lautenbach’s method with Boer and Murata’s one with pro-
cessor

5.5 Numerical results

Two kinds of experiments have been carried out. The first class of experiments
tried to see if the approach introduced in [BM94] was adequate for ���� nets.
To do that, we have compared the time required to compute the set of minimal
siphons with that method and the one proposed in [Lau87]. Moreover, since the
authors of [JPH99] provided data about the temporal cost of their algorithm, we
decided to include these results in the comparison for the net used as example
there. The second class of experiments measured the speed–up when the parallel
implementation presented above is used.

5.5.1 Comparison of the proposals in [Lau87, BM94, JPH99]

The first set of results has been obtained in a SGI Challenge L (�� R4400 200
MHz) with 512 Mb of RAM. The operating system is IRIX 6.2. The measures are
in seconds.

The results can be seen in Table 5.3. This table has four columns.

1. The first column shows the problem identifier, with the following meanings
for the tags:

� Phil: the philosopher’s problem.

� FMSLD: the composition of two processes of variable length.

� FMSAD: the composition of several processes of length 3.

5.5. Numerical results 159

2. The second column shows the parameters defining the problem size as ex-
plained before. This value is followed by a tuple that corresponds to the
total number of places, the number of resources, the number of arcs, and the
number of transitions.

3. The third column shows the run–time costs when the method in [BM94] is
used.

4. The fourth column shows the run–time costs when the method in [Lau87] is
used.

In the following comments we are going to say that a method is more or less
appropriate for ���� nets. However, it must be clearly stated that we only can
provide some conclusions based on the results of our experiments and that they are
not general enough to obtain conclusions about all the ���� nets.

The experiment results show that the Lautenbach’s method is better for small
� ��� nets. However, when the size of the net grows, the approach in [BM94]
obtains a better performance. These results are coherent with the election done
in [YW99b], where the method proposed in [BM94] was selected to improve their
graph–based approach for general nets.

It must be noticed that the approach presented in [BM94] has been adapted
to compute the set of place–minimal siphons related to resource places, while the
method proposed in [Lau87] computes all the minimal siphons. In this sense, no
conclusion about which method is better in general can be offered, since we were
just trying to measure which one was more adequate for our purposes.

In a second set of experiments both methods have been applied to the net used
as example in [JPH99]. This net modeled a flexible manufacturing system (the net
can be seen in Figure 5.5). In their article, the authors used a reduction of that net
‘in order to save the algorithm run time’, and the siphons and traps were obtained
for this reduced version. The results should be the same for the reduced net and
for the net in the figure (provided the adequate translation from the places of the
original net to the resulting reduced system). They used a PC with a Pentium II
(233 Mhz) CPU processor and 32 Mb of RAM for the test, and the cost3 of the
computation of all the minimal siphons was of 931 minutes and 45 seconds (55905
seconds) and 584 minutes and 17 seconds (35057 seconds) for all the minimal
traps.

Our tests were done with the whole original net, in a Pentium III (1GHz) com-
puter with 256Mb of RAM. The operating system is Linux (kernel version 2.4.9).

3They do not state if this time is the total time, or the processor time.

160 5. Computing minimal siphons in ���� nets: a parallel solution

Our implementation of the method proposed in [Lau87] for the computation of all
the minimal siphons spent 2063.24 seconds of user time, 0.16 seconds of system
time, and 34:23.61 of total time (2063.61 seconds). The time for the computations
of all the minimal traps was 2894.71 seconds of user time, plus 1.19 seconds of
system time which gives a total elapsed time of 48:20.46 (2900.46 seconds).

Since the net in Figure 5.5 is not a ����, we have chosen a set of places as
being (behaving like) resources, and computed the set of place–siphons (traps) for
them (the name of such places starts with ‘R’ in the Figure 5.5). The election of
such places can be difficult in the general case, and then, a second experiment has
been done computing the minimal place–siphons for every place. In this way, we
tried to reproduce the general case, in which there is no information available to
select the adequate places to obtain all the minimal siphons from their minimal
place–siphons.

In the first case the obtained results were: 8.78 seconds of user time, 0.02 sec-
onds of system time, and a total elapsed time of 8.832 seconds for the computation
of the set of minimal siphons. For the computation of all the minimal traps this ap-
proach spent 343.45 seconds of user time, 0.24 seconds of system time and 5:44.46
(344.46 seconds) total time4.

In the second case, the computation of the set of minimal siphons took 57.17
seconds of user time, plus 0.06 seconds of system time, and a total elapsed time
of 57.276 seconds. The computation of the set of minimal traps took 7893.46 sec-
onds of user time, 5.52 seconds system time and a total elapsed time of 2:11:59.43
(7919.43 seconds). Notice that the computation of traps is more expensive in this
case than with the [Lau87] method.

In order to get a more fair comparison, we also did the tests in another com-
puter, with a PII computer with a 350 MHz processor. The results in this case for
the minimal siphons computation with [Lau87] were: 1h20m11.07 of user time
(4811.07 seconds), 1.22 seconds of system time, and 1h20m13.37 of total time
(4813.37 seconds). For the minimal traps computation: 1h52m22.22s of user time,
(6742 seconds), 1.36s of system time, and 1h52m24.18s of total time (6744.18
seconds).

Minimal siphons computation with [BM94] (selecting a sub–set of places as
resources): 29.40 seconds of user time, 0.06 seconds of system time, and 29.51s of
total time. Minimal traps computation: 14m38.30s of user time (878.30 seconds),
0.32s of system time, and 14m43.85s of total time (883.85 seconds).

4In fact, both the previous approach and this one found 179 siphons, instead of the 74 listed
in [JPH99]. Checking by hand the siphons shown in the article we found several errors, so it is
possible that there exists a bad transcription of the obtained results.

5.5. Numerical results 161

Experiment Time
Pentium II-233MHz (32Mb)

Siphons 55905
Traps 35057

Pentium III-1GHz (256Mb)
User System Total

Siphons ([Lau87]) 2063.24 0.16 2063.61
Traps ([Lau87]) 2894.71 1.19 2900.46
Siphons (all) 57.17 0.06 57.276
Traps (all) 7893.46 5.52 7919.43
Siphons (resources) 8.78 0.02 8.832
Traps (resources) 343.45 0.24 344.46

Pentium II-350MHz (256Mb)
User System Total

Siphons ([Lau87]) 4811.07 1.22 4813.37
Traps ([Lau87]) 6742 1.36 6744.18
Siphons (all) 158.32 0.11 229.63
Traps (all) 14085.71 4.14 14096.41
Siphons (resources) 29.40 0.06 29.51
Traps (resources) 878.30 0.32 883.85

Table 5.4: Sketch of the times obtained for the net in Figure 5.5 with different
methods and computers

Minimal siphons computation with the original approach in [BM94] (comput-
ing the place–siphons for all the places of the net): 2m38.32s of user time (158.32
seconds), 0.11s of system time, and 3m49.63s of total time (229.63 seconds). Min-
imal traps computation: 3h54m45.71s of user time (14085.71 seconds), 4.14s of
system time, and 3h54m56.41s of total time (14096.41 seconds).

We did a last experiment limiting the amount of memory allowed to be used by
the program to 32Mb, obtaining similar results.

All of these results are sketched in Table 5.4.

5.5.2 Measuring the proposed parallel implementation

The parallel version has been implemented using 12 Pentium III (1GHz) comput-
ers with 256Mb of RAM each. They are in a swithched network connected via
Ethernet. The operating system is Linux (kernel version 2.4.9). To implement the
parallel version we used mpich 1.2.4 ([GL96]), a freely available implemen-
tation of the Message Passing Interface (��� , [For94]). ��� provides a standard
set of definitions which allow parallel programs to be implemented under the dis-
tributed memory paradigm, together with a mechanism to transfer data between
processors; this mechanism is based on the use of message passing; each processor
is given the ability to send and receive copies of data to and from other processors.
The run–time cost has been aproximated by the run–time cost of the first processor
which is the first to start the computations and the last one to terminate. To do that,
a clock is reset when it starts working (sentence Start Clock in Algorithm 5.5) and

162 5. Computing minimal siphons in ���� nets: a parallel solution

RP1
100

P2

P3

P4

P5

P6

P7

P8

P9

P13

P14

P15

P16

P26

P27

P28

P29

P30

P31

P32

P41

P42

P43

P33

P34

P35

P36

P37

RP53
100

RP22

P46

P47

P48

RP24

RP23

RP18

RP19

P17

RP21

P10

P11

P12

RP20

RP25

RP49

P38

P39

P40

P44

P45

RP52

RP50

RP51

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21

T22

T23

T24

T25

T26

T27

T28

T29

T30

T31

T32

T33

T34

T35

T36

T37

T38

T39

Figure 5.5: Petri net model of a flexible manufacturing system in [JPH99]

5.5. Numerical results 163

stopped when it is terminated (sentence Stop Clock in Algorithm 5.5). No more
processors than resources are used in any case, since we have not investigated
other ways to further divide the needed computations.

We were interested in measuring the relative speed–up as a way to know the
effect of adding paralelism to the application. The relative speed–up is a standard
measure for parallel solutions defined as the quotient of the time spent in solving
the problem with several processors divided by the time spent in solving the same
problem using the same method in just one processor (see [Kuc78], for example).

The numerical results obtained in the experiments are shown in Table 5.5. The
structure of such table is as follows:

1. The first column shows the problem identifier (as in the previous experi-
ment).

2. The second column shows the parameters defining the size of the problem as
explained before. This value is followed by a tuple that corresponds to the
number of places of the net, the number of resources, the number of arcs,
and the number of transitions.

3. The third and following columns show the time of our parallel implementa-
tion of Boer and Murata’s method solved with 1, 2, 4, ..., 12 processors. In
parentheses the relative speed–up is shown.

Empty cells represent cases where the number of processors is bigger than the
number of resources. The proposed approach is not able to take advantage of the
processors that exceed the number of resources.

Following the results obtained in this experiment we can conclude that paral-
lellization clearly improves the computations: important reductions are obtained
when the number of processors grows. Anyway, it is important to notice that no
clear conclusion about the optimal number of processors can be established, since
the growing is different for the proposed families.

The maximum size for each problem has been decided when not enough pro-
cessors were available to show growing in the speed–up or when the base case
(with only one processor) was very expensive.

Notice that the results are significative when the net is big enough. For small–
sized nets no significative results can be obtained. They are graphically depicted in
Figures 5.6, 5.7, and 5.8.

Figure 5.6 shows the program behaviour when applied to the philosophers
problem. The high homogeneity of the models help to reach a good speed–up.

164 5. Computing minimal siphons in ���� nets: a parallel solution

Si
ze

1
2

4
6

8
10

12

Ph
il

2
(1

0,
2,

32
,1

0)
0.

07
(1

.0
0)

0.
09

(0
.7

4)
Ph

il
4

(2
0,

4,
64

,2
0)

0.
27

(1
.0

0)
0.

20
(1

.3
5)

0.
14

(1
.9

1)
Ph

il
6

(3
0,

6,
96

,3
0)

0.
64

(1
.0

0)
0.

44
(1

.4
5)

0.
31

(2
.0

9)
0.

25
(2

.6
1)

Ph
il

8
(4

0,
8,

12
8,

40
)

1.
20

(1
.0

0)
0.

68
(1

.7
8)

0.
42

(2
.8

5)
0.

43
(2

.7
8)

0.
50

(2
.3

9)
Ph

il
10

(5
0,

10
,1

60
,5

0)
2.

17
(1

.0
0)

1.
29

(1
.6

9)
0.

73
(2

.9
6)

0.
65

(3
.3

3)
0.

65
(3

.3
3)

1.
15

(1
.8

9)
Ph

il
12

(6
0,

12
,1

92
,6

0)
3.

83
(1

.0
0)

1.
99

(1
.9

3)
1.

18
(3

.2
5)

0.
83

(4
.6

0)
0.

77
(4

.9
5)

0.
77

(4
.9

8)
0.

66
(5

.7
9)

Ph
il

14
(7

0,
14

,2
24

,7
0)

6.
23

(1
.0

0)
3.

33
(1

.8
7)

2.
16

(2
.8

9)
1.

65
(3

.7
7)

1.
42

(4
.3

8)
1.

48
(4

.2
1)

1.
57

(3
.9

8)
Ph

il
16

(8
0,

16
,2

56
,8

0)
9.

88
(1

.0
0)

5.
27

(1
.8

7)
2.

79
(3

.5
4)

2.
33

(4
.2

4)
2.

08
(4

.7
5)

2.
10

(4
.6

9)
2.

02
(4

.9
0)

Ph
il

18
(9

0,
18

,2
88

,9
0)

15
.6

7
(1

.0
0)

7.
94

(1
.9

7)
4.

44
(3

.5
3)

3.
18

(4
.9

2)
2.

76
(5

.6
8)

2.
24

(7
.0

0)
2.

23
(7

.0
2)

Ph
il

20
(1

00
,2

0,
32

0,
10

0)
24

.8
2

(1
.0

0)
12

.5
3

(1
.9

8)
6.

62
(3

.7
5)

4.
98

(4
.9

9)
4.

55
(5

.4
6)

4.
23

(5
.8

6)
2.

74
(9

.0
7)

Ph
il

22
(1

10
,2

2,
35

2,
11

0)
38

.6
4

(1
.0

0)
19

.3
7

(2
.0

0)
10

.7
3

(3
.6

0)
7.

10
(5

.4
4)

5.
68

(6
.8

0)
5.

67
(6

.8
2)

4.
20

(9
.2

0)
Ph

il
24

(1
20

,2
4,

38
4,

12
0)

58
.6

6
(1

.0
0)

29
.5

6
(1

.9
8)

15
.2

2
(3

.8
5)

9.
98

(5
.8

8)
8.

17
(7

.1
8)

7.
62

(7
.7

0)
6.

44
(9

.1
1)

FM
SL

D
1

(5
,2

,8
,4

)
0.

07
(1

.0
0)

0.
08

(0
.9

0)
FM

SL
D

2
(1

0,
4,

14
,8

)
0.

11
(1

.0
0)

0.
10

(1
.0

4)
0.

13
(0

.8
4)

FM
SL

D
3

(1
5,

6,
20

,1
2)

0.
19

(1
.0

0)
0.

15
(1

.2
6)

0.
15

(1
.2

0)
1.

96
(0

.0
9)

FM
SL

D
4

(2
0,

8,
26

,1
6)

0.
29

(1
.0

0)
0.

21
(1

.4
3)

0.
18

(1
.6

5)
0.

26
(1

.1
2)

0.
82

(0
.3

6)
FM

SL
D

5
(2

5,
10

,3
2,

20
)

0.
48

(1
.0

0)
0.

31
(1

.5
8)

0.
24

(2
.0

3)
0.

23
(2

.0
7)

0.
59

(0
.8

1)
1.

40
(0

.3
4)

FM
SL

D
6

(3
0,

12
,3

8,
24

)
0.

97
(1

.0
0)

0.
55

(1
.7

8)
0.

35
(2

.7
7)

0.
32

(3
.0

2)
0.

32
(3

.0
9)

0.
31

(3
.1

7)
0.

37
(2

.6
4)

FM
SL

D
7

(3
5,

14
,4

4,
28

)
2.

35
(1

.0
0)

1.
25

(1
.8

8)
0.

79
(2

.9
8)

0.
55

(4
.2

9)
0.

53
(4

.4
1)

0.
56

(4
.1

9)
0.

61
(3

.8
7)

FM
SL

D
8

(4
0,

16
,5

0,
32

)
6.

98
(1

.0
0)

3.
57

(1
.9

5)
1.

97
(3

.5
4)

1.
50

(4
.6

4)
1.

35
(5

.1
6)

1.
27

(5
.5

1)
1.

20
(5

.8
2)

FM
SL

D
9

(4
5,

18
,5

6,
36

)
25

.2
5

(1
.0

0)
12

.8
0

(1
.9

7)
6.

68
(3

.7
8)

4.
63

(5
.4

5)
3.

91
(6

.4
6)

3.
80

(6
.6

4)
3.

62
(6

.9
7)

FM
SL

D
10

(5
0,

20
,6

2,
40

)
10

8.
53

(1
.0

0)
54

.0
8

(2
.0

1)
26

.9
8

(4
.0

2)
19

.7
9

(5
.4

8)
14

.2
2

(7
.6

3)
14

.4
1

(7
.5

3)
13

.8
3

(7
.8

5)
FM

SL
D

11
(5

5,
22

,6
8,

44
)

48
0.

84
(1

.0
0)

23
7.

83
(2

.0
2)

12
5.

13
(3

.8
4)

88
.0

3
(5

.4
6)

62
.3

3
(7

.7
1)

59
.0

6
(8

.1
4)

57
.8

8
(8

.3
1)

FM
SA

D
1

(7
,3

,2
0,

4)
0.

08
(1

.0
0)

0.
14

(0
.6

1)
FM

SA
D

2
(1

4,
6,

40
,8

)
0.

20
(1

.0
0)

0.
16

(1
.2

2)
0.

52
(0

.3
7)

0.
50

(0
.3

9)
FM

SA
D

3
(2

1,
9,

60
,1

2)
0.

56
(1

.0
0)

0.
38

(1
.4

8)
0.

31
(1

.8
1)

0.
27

(2
.0

7)
1.

51
(0

.3
7)

FM
SA

D
4

(2
8,

12
,8

0,
16

)
1.

48
(1

.0
0)

0.
87

(1
.6

9)
0.

63
(2

.3
5)

0.
58

(2
.5

3)
0.

52
(2

.8
4)

1.
29

(1
.1

4)
1.

18
(1

.2
5)

FM
SA

D
5

(3
5,

15
,1

00
,2

0)
5.

13
(1

.0
0)

2.
73

(1
.8

8)
1.

94
(2

.6
4)

2.
03

(2
.5

2)
1.

21
(4

.2
4)

1.
37

(3
.7

4)
1.

78
(2

.8
8)

FM
SA

D
6

(4
2,

18
,1

20
,2

4)
26

.5
8

(1
.0

0)
13

.7
9

(1
.9

3)
9.

29
(2

.8
6)

9.
50

(2
.8

0)
5.

83
(4

.5
6)

5.
15

(5
.1

6)
7.

08
(3

.7
5)

FM
SA

D
7

(4
9,

21
,1

40
,2

8)
31

9.
73

(1
.0

0)
15

9.
15

(2
.0

1)
83

.7
2

(3
.8

2)
12

5.
45

(2
.5

5)
43

.4
2

(7
.3

6)
40

.7
8

(7
.8

4)
65

.6
2

(4
.8

7)
FM

SA
D

8
(5

6,
24

,1
60

,3
2)

78
15

.5
3

(1
.0

0)
38

73
.5

6
(2

.0
2)

17
91

.6
0

(4
.3

6)
31

30
.7

0
(2

.5
0)

95
5.

19
(8

.1
8)

90
1.

96
(8

.6
7)

15
35

.2
5

(5
.0

9)

Ta
bl

e
5.

5:
E

xe
cu

tio
n

of
th

e
pa

ra
lle

li
m

pl
em

en
ta

tio
n

fo
r

th
e

co
ns

id
er

ed
fa

m
ili

es
of

��
�
�

ne
ts

5.5. Numerical results 165

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

S
pe

ed
 U

p

Number of Processors

Size 2
Size 4
Size 6
Size 8

Size 10
Size 12
Size 14
Size 16
Size 18

Figure 5.6: Speed–up for the Philosophers family

166 5. Computing minimal siphons in ���� nets: a parallel solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

S
pe

ed
 U

p

Number of Processors

Size 1
Size 2
Size 3
Size 4
Size 5
Size 6
Size 7
Size 8
Size 9

Size 10

Figure 5.7: Speed–up for the FMSLD family

Figure 5.7 shows the growing of the relative speed–up for the FMSLD family.
Finally, Figure 5.8 shows the behaviour of the method for the FMSAD family.

Let us concentrate on some irregularities appearing in the behaviour of the
program, and let us explain our interpretation.

For example, in the case of the Philosophers family of size 18 there is only
small improvement when 8 processors are used in comparison with the case of 6
processors (see Figure 5.6).

Table 5.6 shows how resources would be distributed among 6 processors, and
Table 5.7 shows the distribution of resources among 8 processors. It is clear that
when 8 processors are used processors �� and �� have to do some more work
than the rest (aproximately as many as in the case of 6 processors). Therefore,
little improvement can be obtained. Due to the regular form of the philosophers
model, in this case the reason is clear, and the behaviour is due to a problem of
local–balance.

A second type of irregular behaviour can be seen in the chart in Figure 5.8,
corresponding to the solutions for the ���'� family. If we concentrate on the
speed–ups for the problem sizes 5, 6, 7, and 8 we can notice that: first, it seems that

5.5. Numerical results 167

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

S
pe

ed
 U

p

Number of Processors

Size 1
Size 2
Size 3
Size 4
Size 5
Size 6
Size 7
Size 8

Figure 5.8: Speed–up for the FMSAD family

P1 P2 P3 P4 P5 P6
R1 R2 R3 R4 R5 R6
R7 R8 R9 R10 R11 R12
R13 R14 R15 R16 R17 R18

Table 5.6: Distribution of resources among six processors for the Phil–18 problem

P1 P2 P3 P4 P5 P6 P7 P8
R1 R2 R3 R4 R5 R6 R7 R8
R9 R10 R11 R12 R13 R14 R15 R16
R17 R18

Table 5.7: Distribution of resources among eigth processors for the Phil–18 prob-
lem

168 5. Computing minimal siphons in ���� nets: a parallel solution

P1 P2 P3 P4
R1 1(e) R1 2(i) R1 3(e) R2 1(e)
R2 2(i) R2 3(e) R3 1(e) R3 2(i)
R3 3(e) R4 1(e) R4 2(i) R4 3(e)
R5 1(e) R5 2(i) R5 3(e) R6 1(e)
R6 2(i) R6 3(e) R7 1(e) R7 2(i)
R7 3(e)

Table 5.8: Distribution of resources among four processors for the FMSAD–7
problem

P1 P2 P3 P4 P5 P6
R1 1(e) R1 2(i) R1 3(e) R2 1(e) R2 2(i) R2 3(e)
R3 1(e) R3 2(i) R3 3(e) R4 1(e) R4 2(i) R4 3(e)
R5 1(e) R5 2(i) R5 3(e) R6 1(e) R6 2(i) R6 3(e)
R7 1(e) R7 2(i) R7 3(e)

Table 5.9: Distribution of resources among six processors for the FMSAD–7 prob-
lem

P1 P2 P3 P4
R1 1(e) R2 3(e) R4 2(i) R6 1(e)
R1 2(i) R3 1(e) R4 3(e) R6 2(i)
R1 3(e) R3 2(i) R5 1(e) R6 3(e)
R2 1(e) R3 3(e) R5 2(i) R7 1(e)
R2 2(i) R4 1(e) R5 3(e) R7 2(i)

R7 3(e)

Table 5.10: A different distribution of resources among four processors for the
FMSAD–8 problem

P1 P2 P3 P4 P5 P6
R1 1(e) R2 1(e) R3 2(i) R4 2(i) R5 3(e) R6 3(e)
R1 2(i) R2 2(i) R3 3(e) R4 3(e) R6 1(e) R7 1(e)
R1 3(e) R2 3(e) R4 1(e) R5 1(e) R6 2(i) R7 2(i)

R3 1(e) R5 2(i) R7 3(e)

Table 5.11: A different distribution of resources among six processors for the
FMSAD–8 problem

5.6. Conclusions 169

the speed–up grows until 10 processors are used; second, there is a very irregular
behaviour when 6 (in fact, with any number of processors multiple of 3) processors
are used: the speed–up decreases with respect to the use of 4 processors, and then
it grows whith 8 processors. It clearly shows that this is a spurious behaviour.

Let us try to give an explanation of this behavior. In this family of problems
two ‘types’ of resources can be identified (as we can easily see in Figure 5.3): the
resources used at the beginning (or at the end) of the processing (�� � , �� . ,
�� � , and �� .), that can be named ‘external resources’, and the rest, that can
be named ‘internal resources’. The computation of place–siphons corresponding
to internal resources seems to be more expensive than in the case of external re-
sources. Tables 5.8 and 5.9 show the distribution of internal and external resources
for the FMSAD–8 problem among processors when using 4 and 6 processors, re-
spectively (boldface items correspond to internal resources). There we can see that
in the case of using 6 processors, all the internal resources have to be processed by
two processors (P2 and P5), which is a clear situation where the load balance is not
adequate. Notice that in the case of 4 processors the distribution of hard resources
among processors is balanced in a more adequate way.

To confirm the hypothesis that the reason for the observed anomalies is the bad
load balance, some new experiments have been done, with the resource distribu-
tions shown in Tables 5.10 and 5.11.

Figure 5.9 compares the speed–up results for the FMSAD–7 problem obtained
with the old and the new distributions. Now, the speed–up is also increased with
6 processors (and, for the same reason, with 12 processors). The same can be said
for the FMSAD–8 problems, as shown in Figure 5.10

We can also see the comparison in Table 5.12. There we can see the results for
the original experiment and the new one. The rows are grouped in pairs: the first
row shows the results for the original experiment (as can be found in Table 5.5),
and the second one the results for the new distribution of resources.

5.6 Conclusions

Some deadlock prevention control policies need the set of minimal siphons to be
computed. It is well known that this is a very hard task because the number of
such components can be very big (even exponential in some cases). However, the
special syntactic characteristics of the Petri net models corresponding to RAS and,
specifically, to ���� systems, made us to wonder whether specific adaptations of
methods for siphon computation could be possible. This chapter is devoted to the

170 5. Computing minimal siphons in ���� nets: a parallel solution

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

S
pe

ed
 U

p

Number of Processors

original approach
new approach

Figure 5.9: Speed–up comparison for the FMSAD of size 6

5.6. Conclusions 171

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

S
pe

ed
 U

p

Number of Processors

original approach
new approach

Figure 5.10: Speed–up comparison for the FMSAD of size 8

172 5. Computing minimal siphons in ���� nets: a parallel solution

Si
ze

1
2

4
6

8
10

12

FM
SA

D
7

(4
9,

21
,1

40
,2

8)
32

0.
75

(1
.0

0)
15

9.
81

(2
.0

1)
83

.4
1

(3
.8

5)
12

4.
84

(2
.5

7)
46

.9
8

(6
.8

3)
45

.5
1

(7
.0

5)
70

.8
9

(4
.5

2)
FM

SA
D

7
(4

9,
21

,1
40

,2
8)

31
9.

73
(1

.0
0)

16
1.

62
(1

.9
8)

82
.3

5
(3

.8
8)

76
.8

4
(4

.1
6)

45
.8

3
(6

.9
8)

45
.0

7
(7

.0
9)

44
.3

8
(7

.2
0)

FM
SA

D
8

(5
6,

24
,1

60
,3

2)
78

13
.5

7
(1

.0
0)

38
77

.2
8

(2
.0

2)
17

89
.6

7
(4

.3
7)

31
41

.1
1

(2
.4

9)
96

0.
35

(8
.1

4)
90

7.
68

(8
.6

1)
15

41
.2

6
(5

.0
7)

FM
SA

D
8

(5
6,

24
,1

60
,3

2)
78

47
.6

7
(1

.0
0)

43
11

.8
1

(1
.8

2)
19

52
.9

5
(4

.0
2)

18
93

.0
2

(4
.1

5)
92

8.
31

(8
.4

5)
90

9.
82

(8
.6

3)
90

6.
46

(8
.6

6)

Ta
bl

e
5.

12
:

A
co

m
pa

ri
so

n
w

ith
a

di
ff

er
en

td
is

tr
ib

ut
io

n
of

re
so

ur
ce

s
fo

r
th

e
fir

st
fa

m
ily

5.6. Conclusions 173

study of such question.
For that, a first analysis of the published methods for the computation of siphons

is presented. The aim of this analysis was to determine which methods could be
adapted to concentrate on the minimal siphons used for the control of ���� sys-
tems, trying to take advantage of his syntactical structure, and, in particular, of
the fact that the siphons related to deadlock problems must contain at least one
resource place. As a conclusion of this first analysis and also of some empirical
experiments a the method proposed in [BM94] has been selected.

As a second step, and taking advantage of both the structure of ���� nets and
the way the siphons are computed in the selected method, it has been improved
implementing a parallel solution.

In order to measure the improvements some experiments have been carried out,
comparing the time required for the computations of siphons in families of Petri
nets.

As a result of such experiments we can conclude that the proposed parallel
algorithm is of great interest since the speed–up charts show that the use of a set of
processors (even in the case of them being connected using a network of computers
instead of a multi-processor) gives very good results.

Another conclusion is that, as it was predictable, the Petri net structure is very
important when an adequate load balance is needed. However, we can provide little
insight of how resources should be distributed among the available processors in
order to obtain an adequate distribution of computing time among them.

Chapter 6

Conclusions

In this work we have addressed the analysis, prevention and evitation of deadlock
problems in sequential resource allocation systems, with the domain of flexible
manufacturing systems as an application case.

In the first part we have proposed a new classes of nets, adequate to model
a wide variety of flexible manufacturing systems. For this class, some structural
properties have been established providing a way to show that the class is adequate
for dealing with the kind of systems considered, and that there exist adequate ways
to identify deadlock problems in it. In particular, a characterization of deadlock
problems has been presented, together with some equivalent results more conve-
nient to deal with the deadlock prevention problem. Moreover, it has also been
shown that the characterization is not suitable for more general classes of systems.

In order to apply these results, the characterization has been adapted to the
framework of the linear algebraic view inherent to the proposed Petri net model.
For this, the main following results have been needed: adaptation of existing linear
characterizations of the siphon property to our problem, and an adaptation of the
proposed characterization of deadlocked states to a linear set of inequalities ade-
quate to solve the problem. These two results provide a new way to compute the
problematic states, by means of the solution of an integer linear programming prob-
lem. The method proposed to control the system is based on the addition of new
preconditions implemented as virtual resources. This has two main advantages: the
resulting model can be analyzed with the same tools as the original one (technical
tools and background provided by the study of properties previously presented);
we can apply a more detailed control, trying to prevent only bad states.

From the avoidance point of view, the proposed methods allow to deal with
a wider class of systems. The main properties have also been studied, showing

176 6. Conclusions

similar results to the previous one, plus the advantage obtained by the elimina-
tion of some restrictions. No characterization of the deadlock problem has been
provided, and a framework based on the specialization of the Banker’s algorithm
taking advantage of the “a–priori” knowledge of the whole process structure. This
framework is useful to better understand the approach. In this sense, several solu-
tions have been proposed based on it. One of them has been further reformulated
in order to obtain an efficient on–line solution.

Finally, some results about the computation of siphons have been presented.
Since the proposed methods in the previous chapters include an adequate way of
computing these structural components, these results have been not used there.
However, we feel that these results serve as a suitable approximation that could
be easily extended to more general classes of systems, obtaining further improve-
ments. The main contributions are the selection of a method suitable for the kind of
problems proposed, and its parallelization, together with the reduction of the com-
puting time provided by the ability of the method to start searching the siphons at
adequate places.

Bibliography

[AE98] I. B. Abdallah and H. A. ElMarghy. Deadlock prevention and avoid-
ance in FMS: A Petri net based approach. International Journal of
Advanced Manufacturing Techology, (14):704–715, 1998.

[Akl97] S.G. Akl. Parallel Computation: Models and Methods. Prentice-
Hall, 1997.

[AT85] H. Alaiwan and J.M. Toudic. Recherche des semi-flots, des verroux
et des trappes dans les rseaux de Petri. Technique et Science Infor-
matiques, pages 103–112, 1985. In French.

[BA95] K. Barkaoui and I. Ben Abdallah. A deadlock prevention method for
a class of FMS. In Proc. 1995 IEEE Int. Conf. on Systems, Man and
Cybernetics., pages 4119–4124, Vancouver, Canada, October 1995.
IEEE Systems, Man and Cybernetics Society.

[BA96] K. Barkaoui and I. B. Abdallah. Analysis of a resource allocation
problem in FMS using structure theory of Petri nets. In M. Silva,
R. Valette, and K. Takahashi, editors, Proc. of the workshop: Manu-
facuring and Petri Nets, pages 62–76, Osaka, Japan, June 1996.

[BCG98] Francesco Basile, Pasquale Chiacchio, and Allessandro Giua. Su-
pervisory control of Petri nets based on suboptimal monitor places.
In Proceedings of the IEE International Workshop on Discrete Event
Systems, pages 85–87, Cagliari, Italy, aug 1998. IEE.

[BCZ97] K. Barkaoui, A. Chaoui, and B. Zouari. Supervisory control of dis-
crete event systems based on structure of Petri nets. In SMC’97 Conf.
Proc., pages 3750–3755, Orlando, Florida, USA, October 1997.
IEEE.

178 6. Conclusions

[BDR�84] J. Browne, D. Dubois, K. Rahtmill, P. Sethi, and K.E. Stecke. Clas-
sification of flexible manufacturing systems. The FMS Magazine,
pages 114–117, apr 1984.

[BK90] Z.A. Banaszak and B.H. Krogh. Deadlock avoidance in flexible man-
ufacturing systems with concurrently competing process flows. IEEE
Trans. on Robotics and Automation, 6(6):724–734, December 1990.

[BL89] K. Barkaoui and B. Lemaire. An effective characterization of mini-
mal deadlocks and traps in Petri nets based on graph theory. In Pro-
ceedings of the 10th. International Conference on Theory and Appli-
cations of Petri nets, pages 1–22, Bonn, 1989.

[BLP96] G.C. Barroso, A.M.N. Lima, and A. Perkusich. Supervision of dis-
crete event system using Petri nets and supervisory control theory.
In M. Silva, R. Valette, and K. Takahashi, editors, Proc. of the work-
shop: Manufacuring and Petri Nets, pages 77–96, Osaka, Japan, June
1996.

[BM92] K. Barkaoui and M. Minoux. A polynomial-time graph algorithm
to decide liveness of some basic classes of bounded Petri nets. In
K. Jensen, editor, Advances in Petri Nets 1992, volume 616 of
Lecture Notes in Computer Science, pages 62–75. Springer Verlag,
Berlin, 1992.

[BM94] E. R. Boer and Tadao Murata. Generating basis siphons and traps of
petri nets using the sign incidence matrix. IEEE Trans. on Circuits
and Systems, I – Fundamental Theory and Applications, 41(4):266–
271, 1994.

[BPP96] K. Barkaoui and J.F. Pradat-Peyre. On liveness and controlled
siphons in Petri nets. In Proc. of the 1996 Int. Conf. on Aplications
and Theory of Petri Nets. Springer Verlag, June 1996.

[Bra83] G. W. Brams. Rèseaux de Petri. Theorie et Pratique (2 tomes). Mas-
son, Paris, 1983.

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318,
September 1992.

179

[Can98] Marco Cantamessa. The manufacturing system as a complex arti-
fac. Robotics and Computer–Integrated Manufacturing, (14):403–
141, 1998.

[CES71] E.G. Coffman, M.J. Elphick, and A. Shoshani. System deadlocks.
ACM Computer Surveys, 3(2):67–78, 1971.

[CG96] Darren D. Coffer and Vijay K. Garg. Supervisory control of real–
time discrete–event systems using lattice theory. IEEE Transactions
on Automatic Control, 41(2):199–209, Feb 1996.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. ACM Transactions on Programming Lan-
guages and Systems, 16:1512–1542, 1994.

[Che00] Haoxun Chen. Control synthesis of Petri nets based on s–
decreases. Discrete Event Dynamic Systems: Theory and Applica-
tions, 10(3):233–249, jul 2000.

[CKW95] Hyuenbo Cho, T.K. Kumaran, and Richard A. Wysk. Graph-theoretic
deadlock detection and resolution for flexible manufacturing sys-
tems. IEEE Trans. on Robotics and Automation, 11(3):413–421,
1995.

[CLR90] T.H. Cormen, C.E. Leiserson, and R. L. Rivest. Introduction to Al-
gorithms. The M.I.T. Press, 1990.

[Com72] F. Commoner. Deadlocks in Petri nets. Applied Data Research, 1972.

[CS89] J.M. Colom and M. Silva. Improving the linearly based characteri-
zation of P/T nets. In Proceedings of the 10th International Confer-
ence on Application and Theory of Petri Nets, pages 52–73, Bonn,
Germany, June 1989.

[CS91] J.M. Colom and M. Silva. Improving the linearly based characteri-
zation of P/T nets. In G. Rozenberg, editor, Advances in Petri Nets
1990, volume 483 of Lecture Notes in Computer Science, pages 113–
145. Springer Verlag, Berlin, 1991.

[CX97] Feng Chu and Xiaolan Xie. Deadlock analysis of petri nets us-
ing siphons and mathematical programming. IEEE Transactions on

180 6. Conclusions

Robotics and Automation, 13(6):793–804, dec 1997. Descubrimiento
de los cerrojos para el análisis de S3PR ’extendidos’. Trabajo en la
lı́nea de Teruel,Silva,Colom. Se caracterizan los cerrojos usando un
problema de programación mixta. Cita a [ECM95].

[Dij65] E.W. Dijkstra. Co-operating Sequential Processes. Programming
Languages. Academic Press, f. genyus edition, 1965.

[EC91] J. Ezpeleta and J.M. Couvreur. A new technique for finding a gen-
erating family of siphons, traps and st-components. application to
colored Petri nets. In Proceedings of the 12th. International Con-
ference on Application and Theory of Petri Nets, pages 145–164,
Aarhus (Denmark), June 1991.

[ECM95] J. Ezpeleta, J.M. Colom, and J. Martı́nez. A Petri net based deadlock
prevention policy for flexible manufacturing systems. IEEE Trans.
on Robotics and Automation, 11(2):173–184, April 1995.

[ECS93] J. Ezpeleta, J.M. Couvreur, and M. Silva. A new technique for finding
a generating family of siphons, traps and st-components. application
to colored Petri nets. In G. Rozenberg, editor, Advances in Petri Nets
1993, volume 674 of Lecture Notes on Computer Science, pages 126–
147. Springer-Verlag, Aarhus (Denmark), 1993.

[EGVC98a] J. Ezpeleta, F. Garcı́a-Vallés, and J.M. Colom. A class of well struc-
tured petri nets for flexible manufacturing systems. pages 64–83, jun
1998.

[EGVC98b] J. Ezpeleta, F. Garcı́a-Vallés, and J.M. Colom. A class of well struc-
tured petri nets for flexible manufacturing systems. In J. Desel and
M. Silva, editors, Application and Theory of Petri Nets 1998, volume
1420 of Lecture Notes on Computer Science, pages 64–83. Springer-
Verlag, 1998.

[EH93] J. Ezpeleta and S. Haddad. A distributed algorithm for resource man-
agement. In Proceedings of the Int. Conference on Decentralized
and Distributed Systems (ICDDS’93), Palma de Mallorca (Spain),
September 1993.

[ES92] J. Esparza and M. Silva. A polynomial-time algorithm to decide
liveness of bounded free choice nets. Theoretical Computer Sciences,
102:185–205, 1992.

181

[FMMT97] M.P. Fanti, B. Maione, S. Mascolo, and B. Turchiano. Event–based
feedback control for deadlock avoidance in flexible production sys-
tems. IEEE Trans. on Robotics and Automation, 13(3):347–363, June
1997.

[FMT00] M.P. Fanti, B. Maione, and B. Turchiano. Comparing digraph and
Petri net approaches to deadlock avoidance in FMS. IEEE Trans-
actions on Systems, Man, and Cybernetics–Part B: Cybernetics,
30(5):783–798, oct 2000.

[FNTS94] L. Ferrarini, M. Narduzzi, and M. Tassan-Solet. A new approach
to modular liveness analysis conceived for large logic controllers’
design. IEEE Trans. on Robotics and Automation, 10(2):169–184,
April 1994.

[For94] Message Passing Interface Forum. MPI: A message–passing inter-
face standard. International Journal of Supercomputer Applications,
8(3/4), 1994.

[FTM99] M.P. Fanti, B. Turchiano, and G. Maione. Design and implementa-
tion of supervisory avoiding deadlocks i flexible assembly sytems.
pages 667–672, 1999.

[GDS92] A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclu-
sion constraints for nets with uncontrollable transitions. In Proc.
IEEE Int. Conf. on Systems, Man, and Cybernetics, pages 974–799,
Chicago,USA, Oct 1992.

[Ge03] C. Girault and R. Valk (eds.). Petri Nets for Systems Engineering. A
Guide to Modeling, Verification, and Applications. Springer Verlag,
2003.

[Giu96] Alessandro Giua. Petri net techniques for supervisory control of dis-
crete event systems. In M. Silva, R. Valette, and K. Takahashi, ed-
itors, Proc. of the workshop: Manufacuring and Petri Nets, pages
1–30, Osaka, Japan, June 1996.

[GK90] G. Georgakopoulos and D. Kavadias. The banker’s problem with
precedences. Information and Computation, 84:1–12, 1990.

182 6. Conclusions

[GL96] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a
Portable Implementation of MPI. Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, 1996. ANL-96/6.

[GL01] N.Z. Gebraeel and M.A. Lawley. Deadlock detection, prevention,
and avoidance for automated tool sharing systems. IEEE Transac-
tions on Robotics and Automation, 17(3):342–356, 2001.

[Gol78] E. Mark Gold. Deadlock prediction: Easy and difficult cases. SIAM
J. Comput., 7(3):320–336, Aug 1978.

[GS02] Alessandro Giua and Carla Seatzu. Liveness enforcing supervisors
for railway networks using ,���� Petri nets. In Proceedings of the
6th International Workshop on Discrete Event Systems, pages 55–66,
Zaragoza, Spain, oct 2002. IEEE.

[GVTCE00] F. Garcı́a-Vallés, F. Tricas, J.M. Colom, and J. Ezpeleta. Structuraly
safe net systems. In R. Boel and G. Stremersch, editors, Discrete
Event Systems: Analysis and Control. Proc. of the Workshop On
Discrete Event Systems 2000, pages 441–448, Ghent, Belgium, Aug
2000. Kluwer Academic Publishers.

[Hab69] A. N. Habermann. Prevention of system deadlocks. Communications
of the ACM, 12(7):373–377, 385, 1969.

[Hab75] A.N. Habermann. A new approach to avoidance of system deadlocks.
R.A.I.R.O. Informatique Theorique, B-3:19–28, September 1975.

[HC92] F. Hsieh and S. Chang. Deadlock avoidance controller synthesis for
flexible manufacturing systems. In Proc. of Rensselaer’s 3rd Int.
Confernce on Computer Integrated Manufacturing, pages 252–261,
Troy (New York), May 20-22 1992. Rensselaer Polytechnic Institute.

[HC94] F. Hsieh and S. Chang. Dispatching-driven deadlock avoidance con-
troller synthesis for flexible manufacturing systems. IEEE Trans. on
Robotics and Automation, 10(2):196–209, April 1994.

[HJW02] YiShen Huang, MuDer Jeng, and YuanLin Wen. Analysis of a
siphon–based deadlock prevention policy for flexible manufacturing
systems. In Proceedings of the 2002 IEEE International Confer-
ence on Robotics and Automation, pages 2327–2332, Washington
DC, May 2002.

183

[HKG97] L.E. Holloway, B.H. Krogh, and A. Giua. A survey of petri net meth-
ods for controlled discrete event systems. Discrete Event Dynamic
Systems: Theory and Applications, (7):151–190, 1997.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[HSBM96] K. Hasegawa, M. Sugisawa, Z. A. Banaszak, and L. Qun Ma. Graph-
ical analysis and synthesis of deadlock avoidance in flexible manu-
facturing systems. In M. Silva, R. Valette, and K. Takahashi, editors,
Proc. of the workshop: Manufacturing and Petri Nets, pages 161–
176, Osaka, Japan, June 1996.

[IM80] Sreekaanth S. Isloor and T. Anthony Marsland. The deadlock prob-
lem: An overview. Computer, 13(9):58–78, sep 1980.

[IMA02] Marian V. Iordache, John O. Moody, and Panos Antsaklis. Synthesis
of deadlock prevention supervisors using Petri nets. IEEE Transac-
tions on Robotics and Automation, 18(1):59–68, feb 2002.

[IV88] K. Inan and P. Varaiya. Finitely recursive process models for dis-
crete event systems. IEEE Trans. Automatic Control, 33(7):626–639,
1988.

[JD95] M.D. Jeng and F. DiCesare. Synthesis using resource control nets
for modeling shared-resource systems. IEEE Trans. on Robotics and
Automation, 11(3):317–327, June 1995.

[Jen96] M.D. Jeng. A Petri net synthesis theory for modeling flexible man-
ufacturing systems. IEEE Trans. on Systems, Man and Cybernetics-
Part B: Cybernetics, 27(2):169–183, April 1996.

[Joh75] D. B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM J. Comput., 4(1):77–84, 1975.

[JPH99] Muder Jeng, Maoyu Peng, and Yisheng Huang. An algorithm for
calculating minimal siphons and traps of petri nets. Int. Journal of
Intelligent Control and Systems, 3(3):263–275, 1999.

[JXH00] MuDer Jeng, Xiaolan Xie, and YiSheng Huang. Manufacturing mod-
eling using process nets with resources. In Proc. of the 2000 IEEE

184 6. Conclusions

International Conference on Robotics and Automation, pages 2185–
2190, San Francisco, USA, apr 2000.

[KB92] Peter Kemper and Falko Bause. An efficient polynomial-time al-
gorithm to decide liveness and boundedness of free choice nets. In
Jensen, K., editor, Lecture Notes in Computer Science; 13th Inter-
national Conference on Application and Theory of Petri Nets 1992,
Sheffield, UK, volume 616, pages 263–278. Springer-Verlag, June
1992.

[KTJK97] C.W. Kim, Tanchoco, J.M.A., and P.H. Koo. Deadlock preven-
tion in manufacturing systems with AGV systems: Banker’s algo-
rithm approach. Journal of Manufacturing Science and Engineering,
(119):849–854, 1997.

[Kuc78] David J. Kuck. The structure of computers and computations, vol-
ume 1. iJahn Wiley and Sons, 1978.

[Lan99] Sheau-Dong Lang. An extended banker’s algorithm for deadlock
avoidance. IEEE Transactions on Software Engineering, 25(3):428–
432, May/June 1999.

[Lau87] Kurt Lautenbach. Linear algebraic calculation of deadlocks and
traps. In Voss, Genrich, and Rozemberg, editors, Concurrency and
Nets, pages 315–336. Springer Verlag, 1987.

[Law99] Mark A. Lawley. Deadlock avoidance for production systems with
flexible routing. IEEE Transactions on Robotics and Automation,
15(3):1–13, jun 1999.

[Law00] M. Lawley. Integrating flexible routing and algebraic deadlock avoid-
ance policies in automated manufacturing systems. International
Journal of Production Research, 38(13):2931–2950, 2000.

[LGB�98] F.L. Lewis, A. Gurel, S Bogdan, A Doǧanalp, and OC Pastravanu.
Analysis of deadlock and circular waits using a matrix model for flex-
ible manufacturing systems. Automatica, 34(9):1083–1100, 1998.

[LMB97] S.C. Lauzon, J.K. Mills, and B. Benhabib. An implementation
methodology for the supervisory control of flexible manufacturing
workcells. Journal of Manufacturing Systems, 16(2):91–101, 1997.

185

[LR96] Kurt Lautenbach and Hanno Ridder. The linear algebra of deadlock
avoidance – a PN approach. Technical report, Institute for Computer
Science. U. Koblenz, 1996.

[LRF97] M. Lawley, S. Reveliotis, and P. Ferreira. FMS structural control
and the neghborhood policy: Part 1 correctness and scalability. IIE
Transactions, (29):877–887, 1997.

[LRF98a] M. Lawley, S. Reveliotis, and P. Ferreira. The application and eval-
uation of Banker’s algorithm for deadlock–free buffer allocation in
flexible manufacturing systems. Int. Journal of Flexible Manufactur-
ing Systems, (10):73–100, 1998.

[LRF98b] M. Lawley, S. Reveliotis, and P. Ferreira. A correct and scalable
deadlock avoidance policy for flexible manufacturing systems. IEEE
Trans. on Robotics and Automation, 14(5):796–809, October 1998.

[LT79] K. Lautenbach and P.S. Thiagarajan. Analysis of a resource allo-
cation problem using Petri nets. In J.C. Syre, editor, 1st. European
Conf. on Parallel and Distributed Systems, pages 1–17, 1979.

[MB90] M. Minoux and K. Barkaoui. Deadlocks and traps in petri nets as
horn-satisfiability solutions and some related polynomially solvable
problems. Discrete Mathematics, 29:195–210, 1990. NewsletterInfo:
39.

[MBSD99] Mbi Makungu, Michel Barbeau, and Richard ST-Denis. Synthesis
of controllers of processes modeled as colored petri nets. Discrete
Event Systems: Theory and Applications, 9(2):147–169, may 1999.

[MMS01] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
More patterns for parallel application programs. In Proceedings of
the Eighth Pattern Languages of Programs Workshop, 2001.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[MV00] F. Magnino and P. Valigi. A petri net approach to deadlock analysis
for classes of kanban systems. In IEEE Int. Conf. on Robotics and
Automation, pages 2877–2882, San Francisco, USA, Apr 2000. IEEE
Computer Society.

186 6. Conclusions

[NV86] Y. Narahari and N. Viswanadham. On the invariants of colored Petri
nets. In G. Rozenberg, editor, Advances in Petri Nets 1986, volume
222 of Lecture Notes in Computer Science, pages 330–345. Springer-
Verlag, Berlin, 1986.

[OH00] Yeong-Chang Ou and Jwu-Sheng Hu. A modified method for super-
visor specification and synthesis of a class of discrete event systems.
Asian Journal of Control, 2(4):263–273, dec 2000.

[Ost89] J.S. Ostroff. Temporal Logic for Real-Time Systems. Advanced Soft-
ware Development Series. Research Studies. Press Limited (Jon Wi-
ley and Sons), England, 1989.

[Pet81] J. L. Peterson. Petri Net Theory and The Modeling of Systems.
Prentice-Hall, 1981.

[PR00a] J. Park and S.A. Reveliotis. Algebraic synthesis of efficient deadlock
avoidance policies for sequential resource allocation systems. IEEE
Transactions on Robotics and Automation, 16(2):190–195, apr 2000.

[PR00b] Jonghun Park and Spyros A. Reveliotis. Enhancing the flexibility
of algebraic deadlock avoidance policies through petri net structural
analysis. In Proc. of the 2000 IEEE Int. Conf. on Robotics and Au-
tomation, pages 3371–3376, San Francisco, USA, April 2000.

[PR01] Jonghun Park and Spyros Reveliotis. Deadlock avoidance in se-
quential resource allocation systems with multiple resource acquisi-
tions and flexible routings. IEEE Transactions on Automatic Control,
46(10):1572–1583, oct 2001.

[PS85] J. L. Peterson and A. Silberschatz. Operating System Concepts, 2nd
ed. Addison-Wesley (Reading MA), 1985.

[QJ99] Robin G. Qiu and Sanjay B. Joshi. A structured adaptive super-
visory control methodology for modeling the control of a discrete
event manufacturing system. IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS,
29(6):573–586, nov 1999.

[Rev98] Spiridon A. Reveliotis. Variations on Banker’s algorithm for resource
allocation systems. In 1998 Japan-USA Symposium on Flexible Au-
tomation, pages 1185–1192, Otsu, Japan, Jul 1998.

187

[Rev99] Spyros A. Reveliotis. Acomodating FMS operational contingencies
through routing flexibility. IEEE Trans. on Robotics and Automation,
15(1):3–19, Feb 1999.

[Rev00] Spyros A. Reveliotis. Conflict resolution in AGV systems. IEE
Transactions, 32(7):647–659, 2000.

[RF96] S. Reveliotis and P.M. Ferreira. Deadlock avoidance policies for au-
tomated manufacturing cells. IEEE Transactions on Robotics and
Automation., 12(6):846–857, dec 1996.

[RJ96] Sanjay E. Ramaswamy and Sanjay B. Joshi. Deadlock–free sched-
ules for automated manufacturing workstations. IEEE Transactions
on Robotics and Automation, 12(3):391–400, jun 1996.

[RR92a] E. Roszkowska and R.Wojcik. Problems of process flow feasibility in
FAS. In K. Leiviska, editor, IFAC CIM in Process and manufacturing
Industries, pages 115–120, Espoo, Finland, 1992. Oxford: pergamon
press.

[RR92b] Z.Banaszak R.Wojcik and E. Roszkowska. Automation of self–
recovery resource allocation procedures synthesis in FMS. In
K. Leiviska, editor, IFAC CIM in Process and manufacturing In-
dustries, pages 127–132, Espoo, Finland, 1992. Oxford: pergamon
press.

[RW87] P.J.G. Ramadge and W.M.Wonham. Supervisory control of a class
of discrete event systems. SIAM Journal Control Optim., 25(1):206–
230, jan 1987.

[RW89] P.J. Ramadge and W.M. Wonham. The control of discrete event sys-
tems. Proceedings IEEE, 77(1):81–98, 1989.

[RW92] K. Rudie and W. M. Wonham. Think globally, act locally: decentral-
ized supervisory control. IEEE Transactions on Automatic Control,
37(11):1692–1708, nov 1992.

[RYJ91] R.A.Wysk, N.S. Yang, and S. Joshi. Detection of deadlocks in flex-
ible manufacturing cells. IEEE Trans. on Robotics and Automation,
7(6):853–859, December 1991.

188 6. Conclusions

[Sil85] M. Silva. Las Redes de Petri en la Automática y la Informática.
Editorial AC, Madrid, 1985.

[Sin89a] M. Singhal. Deadlock detection in distributed systems. 22(11):37–
48, November 1989.

[Sin89b] M. Singhal. Deadlock detection in distributed systems. IEEE Com-
puter, pages 37–48, November 1989.

[SPG91] A. Silberschatz, J. Peterson, and P. Galvin. Operating System Con-
cepts. Addison-Wesley, 1991.

[SR95] Kathryn E. Stecke and Narayan Raman. FMS planning decisions,
operating flexibilities, and system performance. IEEE Transactions
on Enginering Management, 42(1):82–90, feb 1995.

[Sre00] Ramavarapu S. Sreenivas. On partially controlled free choice Petri
nets. In R. Boela and G. Stremersch, editors, Discrete Events Sys-
tems: Analysis and Control, pages 159–168, Ghent, Belgium, Aug
2000. Kluwer Academic Publishers.

[ST96] M. Silva and E. Teruel. Petri nets for the design and operation
of manufacturing systems. In Proceedings of the 5th. Conference
on Computer Integrated Manufacturing and Automation Control
(CIMAT 96), pages 330–343. IEEE Computer Society Press, 1996.

[ST97] M. Silva and E. Teruel. Petri nets for the design and operation of
manufacturing systems. European Journal of Control, (3):182–199,
1997.

[SV89] M. Silva and R. Valette. Petri nets and flexible manufacturing. In
G. Rozenberg, editor, Advances in Petri Nets, volume 424 of Lecture
Notes on Computer Science, pages 374–417. Springer-Verlag, Berlin,
1989.

[Tan87] A.S. Tanenbaum. Operating Systems: Desing and Implementation.
Prentice-Hall International Editions, 1987.

[TCE99] F. Tricas, J.M. Colom, and J. Ezpeleta. A solution to the problem of
deadlocks in concurrent systems using Petri nets and integer linear
programming. In G. Horton, D. Moller, and U. Rude, editors, Proc. of

189

the 11th European Simulation Symposium, pages 542–546, Erlangen,
Germany, October 1999. The society for Computer Simulation Int.

[TCE00] F. Tricas, J.M. Colom, and J. Ezpeleta. Some improvements to the
Banker’s algorithm based on the process structure. In Proc. of IEEE
Int. Conf. on Robotics and Automation, pages 2853–2858, San Fran-
cisco, USA, April 2000. IEEE.

[TE99] F. Tricas and J. Ezpeleta. A Petri net solution to the problem of
deadlocks in systems of processes with resources. In Proc. of the 7th
IEEE Int. Conf. on Emerging Technologies and Factory Automation
(ETFA), pages 1047–1056, Barcelona, October 1999.

[TGVCE98] F. Tricas, F. Garcı́a-Vallés, J.M. Colom, and J. Ezpeleta. A struc-
tural approach to the problem of deadlock prevention in processes
with resources. In Proc. of the Int. Workshop on Discrete Event Sys-
tems(WODES’98), pages 273–278. IEE Control, IEE, August 1998.

[TGVCE00] F. Tricas, F. Garcı́a-Vallés, J.M. Colom, and J. Ezpeleta. An iterative
method for deadlock prevention in FMS. In R. Boel and G. Stremer-
sch, editors, Disscrete Event Systems: Analysis and Control. Proc.
of the Workshop On Discrete Event Systems 2000, pages 139–148,
Ghent, Belgium, Aug 2000. Kluwer Academic Publishers.

[TM95] F. Tricas and J. Martı́nez. An extension of the liveness theory for
concurrent sequential processes competing for shared resources. In
Proc. of the 1995 IEEE Int. Conf. on Systems, Man and Cybernetics.,
pages 4119–4124, Vancouver, Canada, October 1995.

[Tou81] J.M. Toudic. Algorithmes d’analyse structurelle de ŕeseaux de Petri.
PhD thesis, Université Pierre et Marie Curie (Paris VI), 1981.

[Val99] Fernando Garcı́a Vallés. Contributions to the Structural and Sym-
bolic Analysis of Place/Transition Nets with Applications to Flexi-
ble Manufacturing Systems and Asynchronous Circuits. PhD the-
sis, Zaragoza. España, Departamento de Ingenierı́a Eléctrica e In-
formática, Universidad de Zaragoza, 1999.

[VN92] N. Viswanadham and Y. Narahari. Performance Modeling of Auto-
mated Manfacturig Systems. Prentice-Hall, 1992.

190 6. Conclusions

[VNJ90] N. Viswanadham, Y. Narahari, and T.L. Johnson. Deadlock pre-
vention and deadlock avoidance in flexible manufacturing systems
using Petri net models. IEEE Trans. on Robotics and Automation,
6(6):713–723, December 1990.

[WYT98] Toshimasa Watanabe, Masahiro Yamauchi, and Shinji Tanimoto. Ex-
tracting siphons containing specified set of places in petri net. In
Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC’98),
11-14 October 1998, San Diego, USA, pages 142–147, October 1998.

[XHC96] K. Xing, B. Hu, and H. Chen. Deadlock avoidance policy for
Petri–net modeling of flexible manufacturing systems with shared re-
sources. IEEE Trans. on Automatic Control, 41(2):289–295, Febru-
ary 1996.

[XHD99] Chen Zhou X. Hua Du. Message–oriented decomposition for super-
visory control in manufacturing systems. Robotics and Computer
Integrated Manufacturing, 15(6):441–452, dec 1999.

[XJ99] Xiaolan Xie and MuDer Jeng. ERCN–merged nets and their analy-
sis using siphons. IEEE Transactions on Robotics and Automation,
15(4):692–703, aug 1999.

[YB00] Ali Yalcin and Thomas O. Boucher. Deadlock avoindance in flexible
manufacturing systems using finite automata. IEEE Transactions on
Robotics and Automation, 16(4):424–429, aug 2000.

[YW99a] M. Yamauchi and T. Watanabe. Algorithms for extracting minimal
siphons containing specified places in a general Petri net. IEICE
Trans. Fundamentals, E82-A(11):2566–2575, November 1999.

[YW99b] M. Yamauchi and T. Watanabe. Time complexity analysis of the
minimal siphon extraction problem of Petri nets. IEICE Trans. Fun-
damentals, E82-A(11):2558–2565, November 1999.

[ZD93a] M. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems. Kluwer Academic Publishers,
1993.

[ZD93b] M. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems. Kluwer Academic Publishers,
1993.

Appendix A

Appendix: Petri nets

In this appendix we recall the basic definitions and notation about Petri nets. Inter-
ested readers can look for more information on the topic in [Pet81, Bra83, Sil85,
Mur89].

A.1 Basic concepts on Petri nets

Petri nets: A Petri net (or Place/Transition net) is a 3-tuple � � ��	
	. � where
� and
 are two non-empty disjoint sets whose elements are called places and
transitions, respectively. In a generic way, elements belonging to � �
 are called
nodes. . � �� �
 � � �
 � � � � IN defines the weighted flow relation: if
. ��	 #�
 	, then we say that there is an arc from � to #, with weight or multi-
plicity . ��	 #�. Ordinary nets are those where . � �� �
 �� �
 �� � � �		 ��.

A Petri net can be seen as a bipartite weighted directed graph in which the two
kinds of nodes are places and transitions. There is a graphical representation for
Petri nets where places are depicted as circles while transitions are depicted as bars
or boxes.

Given a net � � ��	
	. � and a node � 	 � �
 , �� � �# 	 � �
 �
. �#	 ��
 	� is the pre-set of �, while �� � �# 	 � �
 � . ��	 #�
 	� is
the post-set of �. This notation is extended to a set of nodes as follows: given
� � � �
	 �� �

�
��

��	 �� �
�
�� �

�.
A Petri net is self–loop free when . ��	 #�
� 	 implies that . �#	 �� � 	.

The Pre–incidence matrix ��	 � � �
 � IN of � is ��	��	 �� � . ��	 ��. The
Post–incidence matrix ���� � � �
 � IN of � is ������	 �� �. ��	 ��. A self–
loop Petri net � � ��	
	. � can be alternatively represented as � � ��	
	��

192 A. Appendix: Petri nets

where � is the incidence matrix: a � �
 indexed matrix such that ���	 �� �
. ��	 ���. ��	 �� � ������	 �� ���	��	 ��. Being � � � and � �
 , ���	��
denotes the submatrix of � corresponding to rows of places in �, and to columns
of transitions in �. This also will be used for matrices ��	 and ����.

A net � 	 � �� 		
 		. 	� is a subnet of � � ��	
	. � if, and only if, �	 �
�	
 	 �
 , and� 	 is the restriction of� to �	 and � 	. On the other hand, given
a net, � , and � 	 � �	
 	 �
 , we can define the subnet generated by �	 and
 	

(and denote it with ���� ��� ��) as the subnet of � whose places are the ones in �	,
the transitions are the ones in
	 and� 	 is the restriction of� to �	 and � 	. One
of the subsets can be empty, and then the subnet will be defined, if the non empty
subset of nodes is / , as the subnet generated by / and �/ � / �.

A net is a State Machine (��) if and only if is ordinary and for all � 	
	 ���� �
���� � �.

Multi–sets

Let �
� � be a set. A multi–set � over a � is a mapping � � � � IN, which
associates to each element � 	 � a non-negative integer coefficient (or multiplic-
ity) ����. ������ will denote the set of multi-sets over �. A multi–set will be
denoted as the symbolic addition of its components: � �

�
������� � �. The

addition of multi–set is defined as ���	 �
�
�������� ��	���� � �. On the

other hand, � � �	 when for each � 	 �, ���� � �	���. For short, � will
be used to denote the empty multi–set. Let � � ������; ������ denotes the
multi–set � 	 ������ such that for every $ 	 �, � � $ and if �	 	 ������
verifies the same property, then �	 ��. ��� will denote ��� �

�
�������.

Petri net behavior

A marking is a mapping � � � � IN; in general, markings are represented
in vector form. Some times, multi–sets notation will be more convenient for
markings: � �

�
��� ���� � �. When talking about a set of places � � � ,

���� �
�
�������. The pair �� 	���, where � is a Petri net and �� is an (ini-

tial) marking, is called a marked Petri net (or Place/Transition system). A transition
� 	
 is enabled for a marking � if and only if �� 	 �� ����� �. ��	 ��; this fact
will be denoted as �

�� (or ���
). If � is enabled at �, it can occur; when it oc-
curs, this gives a new marking �	 ������	 ��; this will be denoted as �

���	

(or ���
�), and we say that �’ is reached from � by the occurrence of �. A
firing sequence (also occurrence sequence) from � is a sequence � � ���������

A.1. Basic concepts on Petri nets 193

so that �
�����

����������
�

����	 (����
�����
���� � �
��
����
�
).

This is denoted as � �
���	 (or ���
�). The firing count vector of a sequence

� is ���� � ���	 ��, where ���	 �� denotes the number of occurrences of � in �.
Therefore, if� �

���	, then �	 ������. The set of sequences that are fireable
from �� is a language: ��� 	��� � �� ���

�
����.

A marking�	 is reachable from another marking � if and only if there exists a
firing sequence � so that � �

���	. Given a Place/Transition system, �� 	���, the
set of markings reachable from �� in � is denoted as
��� 	��� and is called
the reachability set. If we consider any reachable marking, � 	
��� 	���,

��� 	�� denotes the set of markings reachable from it. The reachability graph
is a labelled directed graph whose nodes are the reachable markings, and the arcs
are given by the occurrence relation for transitions, that is, there is an arc from
node � to node �’ if and only if �� 	
 ��

���	.
The state equation of a marked net is an algebraic equation that gives a neces-

sary condition for the reachability of a marking from the initial marking: a mark-
ings � 	 IN�� � such that �� 	 IN�� � �� � �� � � � � is said to be potentially
reachable. The potentially reachability set of a net is the set of solutions for the
state equation. This set will be denoted as �
�(� ,��). The potentially reacha-
bility graph is the extension of the reachability graph whose nodes are the marking
solutions for the net state equation.

A place � 	 � is k–bounded if, and only if, �� 	
��� 	��� ����� � �. A
net system is k–bounded if, and only if, each place is k–bounded. A net system is
bounded if, and only if, there exists some k for which it is k–bounded. A net system
is safe (or binary) if, and only if, each place is 1–bounded. A net � is structurally
bounded if, and only if, it is bounded no matter which �� is the initial marking.
Related with this, the structural bound of a place is: ����� � �������� � � 	
�
��� 	����.

A transition is live if it can be fired from every reachable marking; a transition
� is dead for a reachable marking � if and only if ��	 	
��� 	�� �#��

���.
It is dead if it is dead for the initial marking. A marked Petri net is live when every
transition is live, and it is deadlock–free when every reachable marking enables at
least a transition. A net, � , is structurally live if, and only if, there exists an initial
marking, ��, such that �� 	��� is live.

Given a net system, �� 	���, and a marking � 	
��� 	���, � is a home
state of the system if, and only if, ��	 	
��� 	��� �� 	
��� 	�	�. The
home space of the net system is the set of its home states.

A path is a sequence of nodes ���� � � � �� belonging to � �
 such that �
�� 	
�

�	 for all � 	 ��	 � � � 	 � � ��. A path is simple if all the nodes are different. A

194 A. Appendix: Petri nets

circuit is a path such that �� � ��. A simple circuit is a circuit such that all the
nodes, except the first one and the last one, are different.

A.2 Some structural objects

Flows (Semiflows) are integer (natural) annuller of matrix �. Right and left an-
nullers are called T–(Semi)flows and P–(Semi)flows, respectively. The support of
T–(Semi)flows is given by:
�
 � �� 	
 � ����
 	� and the support of P–
(Semi)flows is given by:
#
 � �� 	 � � ����
 	�. A (Semi)flow is called
minimal when its support is not a strict superset of the support of any other, and the
greatest common divisor of its elements is one.

A T–Semiflow, � defines the following invariant property:

��� ��� 	 ��� 	��� ���
�
��	 ���	 and � � �

(token conservation law.)
A P–Semiflow, � defines the following invariant property:

��� ��� 	
��� 	��� �� �� � � ���

(cyclic behavior law.)
Several structural properties are defined in terms of the existence of certain

annullers, or similar vectors:

� � is consistent (structurally repetitive) if, and only if ��
 	 � such that
� � � � ���	.

� � is conservative (structurally bounded) if, and only if ��
 	 � such that
� �� � ���	.

The first two properties are related to the existence of potential sequences con-
taining all the transitions that could be fired repeatedly (repetitive sequences or
vectors), because either they do not change or they increase the marking. The sec-
ond two properties are related to the existence of either token conservation or token
non–generation properties for the set of places.

Given � 	 � �� 		
 		�	� a subnet of the net, � � ��	
	��, if �	 is a
P–Semiflow of � ’, we can extend this vector to the whole net in the follow-
ing way: �	� ��� is a vector such that: �� 	 � 	 ��	� ��� ��� � �	��� and �� 	
� � � 	 ��	� ��� ��� � 	.

A.2. Some structural objects 195

Given � an ordinary Petri net, a subset of places � � � is a siphon of the net
� if, and only if, �� � ��. A subset of places , � � is a trap of the net �
if, and only if, ,� � �,. A siphon (trap) is minimal if, and only if, it does not
properly contain another siphon (trap). Siphons have the important property that,
if at a given marking the siphon is unmarked, it never will be marked. Traps have
the reverse property: once they get marked, they will remain marked. For non–
ordinary nets, we define siphons (traps) as the siphons (traps) that can be obtained
in a net that is a copy of the original one, substituting all the arcs’ weights for one.

