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Resumen

La idea de tener robots desempeñando la tarea para la cual hansido diseñados de forma
completamente autónoma e interactuando con su entorno ha sido el principal objetivo
desde los inicios de la robótica móvil. Para conseguir tal grado de autonomía, es indis-
pensable que el robot disponga de un mapa del entorno y conocer su localización en él,
además de ser capaz de resolver otros problemas como el control del movimiento y la
planificación de trayectorias hacia su objetivo.

En el desempeño de ciertas misiones sin conocimiento previode su entorno, el robot
debe utilizar la información imprecisa proporcionada por sus sensores para construir un
mapa al mismo tiempo que se localiza en él, lo que da lugar al problema de localización
y construcción de mapas de forma simultánea (o con las iniciales de su denominación
anglosajona, SLAM) ampliamente estudiado en robótica móvil.

En los últimos años, ha habido un creciente interés por la utilización de equipos
de robots debido a los múltiples beneficios que ofrecen respecto a sistemas de un solo
robot, tales como una mayor robustez, precisión, eficienciay la posibilidad de cooperar
para realizar una tarea o cubrir entornos más grandes en menos tiempo. En este ámbito
de los robots cooperativos encontramos también el caso específico de las formaciones
de robots, donde deben adoptar una estructura concreta mientras navegan por el entorno.

A pesar de sus ventajas, la complejidad de los sistemas multi-robot autónomos au-
menta con el número de robots ya que es mayor la cantidad de información que ha
de ser manejada, almacenada y transmitida a través de la red de comunicaciones. Así
pues, el desarrollo de estos sistemas presenta nuevas dificultades a la hora de dar solu-
ción a los problemas anteriormente mencionados que, en lugar de abordarlos de manera
individual para cada robot, han de ser resueltos de forma cooperativa para aprovechar de
forma eficiente la información recogida por los todos los miembros del equipo. El di-
seño de los algoritmos en este contexto multi-robot ha de orientarse a obtener la mayor
escalabilidad y rendimiento posible que permitan su ejecución online.

Esta tesis está enmarcada en el ámbito de los sistemas multi-robot, proponiendo
soluciones a cada uno de los procesos de navegación, localización, construcción de
mapas y planificación de caminos que conforman un sistema autónomo. Una primera
parte de las contribuciones presentadas en esta tesis está desarrollada en el contexto
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de las formaciones de robots, que exigen una mayor cooperación y sincronización del
equipo, aunque pueden ser extendidas a sistemas sin esa restricción en la navegación.
Asumiendo que la formación dispone de un mapa del entorno, posiblemente parcial e
imperfecto, en el que debe realizar la misión encomendada proponemos técnicas para
la localización, mejora del mapa previo y exploración del mismo. En una segunda
parte, proponemos un método de SLAM multi-robot sin ningunaasunción en cuanto al
conocimiento previo del mapa o de las relaciones entre robots en el que utilizamos
técnicas pertenecientes al estado del arte para gestionar eficientemente los recursos
disponibles en el sistema. A lo largo de la tesis se ha validado el rendimiento y efi-
cacia de los sistemas de robots en formación y de SLAM multi-robot mediante su im-
plementación y puesta a punto tanto en simulaciones como en equipos de robots reales.



Abstract

The idea of having robots performing the task for which they have been designed com-
pletely autonomously and interacting with the environmenthas been the main objective
since the beginning of mobile robotics. In order to achieve such a degree of autonomy, it
is indispensable for the robot to have a map of the environment and to know its location
in it, in addition to being able to solve other problems such as motion control and path
planning towards its goal.

During the fulfillment of certain missions without a prior knowledge of its environ-
ment, the robot must use the inaccurate information provided by its on-board sensors
to build a map at the same time it is located in it, arising the problem of Simultaneous
Localization and Mapping (SLAM) extensively studied in mobile robotics.

In recent years, there has been a growing interest in the use of robot teams due to
their multiple benefits with respect to single-robot systems such as higher robustness,
accuracy, efficiency and the possibility to cooperate to perform a task or to cover larger
environments in less time. Robot formations also belongs tothis field of cooperative
robots, where they have to maintain a predefined structure while navigating in the envi-
ronment.

Despite their advantages, the complexity of autonomous multi-robot systems in-
creases with the number of robots as a consequence of the larger amount of informa-
tion available that must be handled, stored and transmittedthrough the communications
network. Therefore, the development of these systems presents new difficulties when
solving the aforementioned problems which, instead of being addressed individually
for each robot, must be solved cooperatively to efficiently exploit all the information
collected by the team. The design of algorithms in this multi-robot context should be
directed to obtain greater scalability and performance to allow their online execution.

This thesis is developed in the field of multi-robot systems and proposes solutions
to the navigation, localization, mapping and path planningprocesses which form an au-
tonomous system. The first part of contributions presented in this thesis is developed in
the context of robot formations, which require greater teamcooperation and synchro-
nization, although they can be extended to systems without this navigation constraint.
We propose localization, map refinement and exploration techniques under the assump-
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tion that the formation is provided with a map of the environment, possibly partial and
inaccurate, wherein it has to carry out its commanded mission. In a second part, we pro-
pose a multi-robot SLAM approach without any assumption about the prior knowledge
of a map nor the relationships between robots in which we makeuse of state of the art
methodologies to efficiently manage the resources available in the system. The perfor-
mance and efficiency of the proposed robot formation and multi-robot SLAM systems
have been demonstrated through their implementation and testing both in simulations
and with real robots.
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Chapter 1

Introduction

1.1 Motivation

The development of robots accomplishing their commanded task completely au-
tonomously has been the main objective in mobile robotics during the last decades.
This is motivated by the wide variety of applications eitherin the social sphere, such
as rescue missions, surveillance, guidance of people in emergency situations or explo-
ration in hostile environments of hard access to humans as well as in the industrial field
such as in maintenance, inspection or transportation of goods. Autonomous robots such
as vacuum cleaners and lawn mowers are already present at ourhomes, freeing us from
these time consuming tasks, whereas more advanced roboticssuch as the Mars Curiosity
rover and the Google self-driving car have also been successfully developed.

To fulfill its mission completely autonomously in its surrounding environment, the
robot has to perform a number of tasks which can be grouped inmotion control, path
planning, localizationand mapping, closely interrelated as shown in Fig. 1.1. The
motion control is the problem of computing the actions or control inputs (usually velo-
city commands) to move the robot towards a desired location from its current position.
The path planning seeks the optimal trajectory (sequence ofwaypoints or sub-goals)
the robot has to follow to reach the global goal of the mission. Path planning usually
includes obstacle avoidance to cope with unexpected situations which may modify the
initially computed trajectory. To reach a desired locationor to compute a trajectory, the
robot first needs to know its current position in the environment. The localization system
provides the position with respect to a map of the environment which can be knowna
priori or acquired simultaneously to the performance of the mission. In this latter case,
the mapping process can not be decoupled from the localization process leading to the
problem ofSimultaneous Localization and Mapping(SLAM). Due to the difficulty of
integration of the uncertain information provided by the robot’s on-board sensors, the
SLAM problem became one of the main research topics in mobilerobotics, considering
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2 1. Introduction

Figure 1.1: Tasks to be solved by an autonomous robot.

the concurrent learning of the environment and the robot localization in a probabilistic
manner.

As we can see, these problems can not be addressed independently due to their
interdependencies and solving all them together is a challenge in mobile robotics. Then,
it is usual to solve individual problems by assumming certain previous knowledge. For
example, having a closer look to Fig. 1.1, we can solve localization and path planning
problems if the map of the environment is given. Also, we can focus on the SLAM pro-
blem without concerning of path planning and motion controlby manually teleoperating
the robot.

As the techniques developed for single robots matured, researchers started to show
interest in the use of multiple robots due to their attractive advantages with respect to
the single-robot case. For example, in surveillance and reconnaissance missions, mul-
tiple robots cover the environment in less time and offer increased robustness since, if
one of the robots fails, it does not necessarily imply aborting the mission. However,
the development of an autonomous multi-robot system can notbe addressed by simply
replicating the scheme shown previously on each single entity. That would be an ine-
fficient implementation without taking advantage of the team cooperation. For example,
robot localization can be improved if they are able to detecteach other. Also, the inte-
gration of information coming from multiple robots resultsin more accurate maps and
expanded fields of view to obtain better paths to the goal.

Then, to develop an autonomous multi-robot system, we need to extend the above-
mentioned tasks to exploit as much as possible all the information available in the sys-
tem. In this thesis we focus on providing solutions to the localization and SLAM prob-
lems in the context of multi-robot sytems which are also integrated with path planning
and multi-robot motion control tasks to obtain a complete system. Besides, part of this
thesis aims at giving a practical implementation of the proposed techniques for the case
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of robot formations. A robot formation is a specific case of multi-robot system where
the robots are constrained to navigate following a predefined structure. Tipically, robots
in the formation are organized in such a way that there is a robot leader in charge of
following a precomputed path towards a goal whereas the restof robots, thefollowers,
try to maintain the geometric inter-vehicle restrictions even though these can be ocas-
sionally adapted to the dynamic environment. These kind of multi-robot systems can be
particularly relevant to fulfill missions where, whether due to environmental restrictions
or to exploit a set of heterogeneous robots carrying different sensors, the team is forced
to adopt a specific configuration. In other applications, themain task is achieved by
the leader and the rest of robots follow him closely to act as suppliers of computational
resources.

1.1.1 SLAM and Multi-Robot Issues

For many years, the research efforts were focused on solvingthe SLAM problem by us-
ing filtering techniques, being the most prominent those based on the Extended Kalman
Filter (EKF). Under the Bayesian filtering context, the current state of the vehicle and
the map are estimated by recursively integrating the robot motion and sensor mea-
surements as they are available. However, as these techniques progressed, the eager-
ness of solving the SLAM problem in more challenging scenarios, made some of their
weaknesses such as unbounded computational requirements,scaling and long-term map
maintainance apparent. Besides, due to the inherent nonlinear nature of the SLAM prob-
lem, the EKF framework offers no guarantee of convergence due to linearization errors
that cannot be reverted. These convergence problems make itdifficult to obtain consis-
tent and accurate maps and affects the robot’s ability to determine when it is entering
into an already explored area, the so-called loop closing problem. Despite these draw-
backs, the filtering techniques have also been shown to be very efficient in situations
where the dimension of the problem is bounded such as in smallscale scenarios or
robot localization once the map is provided.

In the last years, the so-calledsmoothingapproaches have attracted the interest in
this field due to their enhanced performance. These alternative methods require solving
the also calledfull SLAM as a least squares optimization problem and allow to recover
from wrong linearization choices since the problem is re-evaluated around the current
estimate using all history of measurements and robot positions.

We have discussed the multiple advantages the use of a multi-robot team offers
with respect to the single-robot case, such as robustness, scalability, accuracy, eficiency
and the possibility of cooperation to perform a task or to cover larger environments.
However, the development of multi-robot systems requires dealing with new issues that
are not present in the single-robot case. We could group theminto three main topics:

Computational issuesOne of the main problems a multi-robot system has to deal with
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is how to combine the local map information acquired by each robot, usually
expressed with respect to its own reference frame. It requires solving a data asso-
ciation problem dependent on the knowledge about their relative positions which
can be easily computed if the robots work with respect the same reference frame.
If this is not the case, the relative positions can be obtained directly through inter-
robot measurements or indirectly by local map matching. Additionally, the use of
multiple robots increases the overall information available, which has to be effi-
ciently managed and stored according to the processing capabilities and memory
resources.

Communication issuesThe way in which the communication network is designed de-
pends principally on the task to be accomplished and on the infrastructure, being
wireless Ad-Hoc networks the common choice in mobile multi-robot systems.
These type of networks have limited communication range, therefore its topology
can be dynamically reconfigured based on the proximity of therobots. Regarding
the kind of data to be transmitted, it is important to adapt the message size to the
bandwidth requirements to avoid overloading the network. This aspect may be
particularly relevant in the case of handling large groups of robots.

Motion coordination Certain tasks such as area coverage or joint manipulation of
goods demand strong coordination to perform them optimally. Coordination is
indispensable in order to avoid robots interfering with each other and to minimize
the task execution time.

Obviously, these issues are highly related, since there is no coordination without
information sharing, which has to be exchanged and managed efficiently to avoid re-
dundancies in the network. In order to address these issues we can adopt two different
schemes depending on the task commanded to the multi-robot system.

Centralized schemeIn centralized schemes, the computational payload and coordina-
tion decisions rely on a single robot upon reception of all information available
in the network. Produces optimal results although its processing complexity is
exponential in the number of robots. They are suitable in tasks where the com-
munication and synchronization between robots can be guaranteed.

Distributed scheme In distributed schemes, the computational payload is shared by all
robots and the system is more fault-tolerant since the completion of the task is
not compromised by the failure of a single robot. However, they require more
coordination (and therefore communication) on decisions about how to perform a
task since it is more difficult to have a global vision of the whole system.
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1.2 Contributions of the Thesis

This thesis presents several contributions in the field of multi-robot localization and
mapping, where both filtering and smoothing approaches are used, adapting them to
the specific requirements of the problems that are going to beaddressed. Some of
the techniques are particularized to the case of robot formations although they can be
extended to more general multi-robot systems. Additionally, we present an integrated
robot formation system considering also path planning and formation control. These
contributions and their organization in the different chapters are summarized below:

• First, in Chapter 3, we address the problem of multi-robot cooperative navigation
in formation. We achieve formation control by means of a virtual spring-damper
system which generates a set of forces on the robots, later transformed into input
velocities by a motion controller. This contribution was published in [85] and
constitutes the starting point of this thesis. Additionally, in this thesis we set out
the problem of maintaining the formation shape and reachingits commanded goal
when we apply velocities corrupted by noise which affect therobots knowledge
about their true position in the environment.

• In order to deal with the robot formation localization problem presented in the pre-
vious chapter, in Chapter 4 we propose an EKF-based algorithm to compute the
robots’ positions with respect to a given stochastic map of the navigation area. We
show how a direct implementation of the EKF algorithm leads to inconsistency in
the estimated localization which makes it unreliable for autonomous navigation.
We justify the origin of the anomalous behaviour of the filterin the time-correlated
nature of the measurement noise sequence. Then, a novel solution based on the
measurement differencing technique is proposed to drive the solution of the EKF
towards consistency. We presented this contribution in [49] and in this thesis we
give further analysis of the problem and statistical results.

• In Chapter 5 we give a step forward towards achieving the goalof developing a
complete working system for robot formations. Then, we integrate the formation
control and localization approaches presented in previouschapters with global
and online path planning techniques which take into accountthe uncertainty of
the given map of the environment. Both feature-based and grid-based techniques
are combined under a probabilistic perspective to obtain paths of bounded risk
of collision towards the goal of the formation. Additionally, we incorporate the
sensor observations in the estimation algorithm presentedin the previous chapter
to obtain a joint and unified cooperative view of the formation surroundings which
benefits the online replanning process. We presented in [52]an overview of our
robot formation system and in this thesis we give a more detailed formulation of
the algorithms and provide additional simulated and real world experiments.
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• In Chapter 6 we propose a filter-based SLAM algorithm not onlyto localize the
formation in ana priori known stochastic map of its navigation environment but
also to jointly refine it. Additionally, we adopt a distributed scheme which con-
tributes to an increased robustness of the system. We achieve a significant re-
duction of the computational cost through the application of conditional indepen-
dence properties over the probabilistic representation ofthe system state. Each
robot maintains its own local and global maps which are improved with the infor-
mation received when communications among robots take place. The contribu-
tions presented in this chapter were published in [50].

• Last but not least, Chapter 7 presents a multi-robot SLAM approach to model
the environment without any prior map information. In this case, the method is
not constrained to robot formations but works with general multi-robot systems
where robots only share the navigation area occasionally. Our approach addresses
the SLAM problem via optimization techniques and is specifically designed to
deal with the communication and computational issues that tipically affect multi-
robot systems. The use of condensed measurements during themap information
exchange process among the robots allows to effectively compress relevant por-
tions of a map in a few data. This results in a substantial reduction of both the
data to be transmitted and processed, that renders the system more robust and e-
fficient. Additionally, we propose a robust map alignment algorithm to solve the
loop closing and intra-robot data association problems. Our multi-robot SLAM
approach was published in [51] and in this thesis we provide further experiments
to test the performance of our map alignment algorithm.

1.2.1 Publications

The novelty and originality of the approaches presented in this thesis are supported by
the following peer-reviewed international conferences and workshops:

• M. T. Lázaro, L. M. Paz, P. Piniés, J. A. Castellanos and G. Grisetti. Multi-Robot
SLAM using Condensed Measurements.IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo Big Sight, Japan, Nov 3-8, 2013.

• M. T. Lázaro, L. M. Paz, P. Piniés and J. A. Castellanos, Distributed Localiza-
tion and Submapping for Robot Formations using a prior map,The 2013 IFAC
Intelligent Autonomous Vehicles Symposium, Gold Coast, Australia, June 26-28,
2013.

• M. T. Lázaro, P. Urcola, L. Montano, J. A. Castellanos, Position Tracking and
Path Planning in Uncertain Maps for Robot Formations,The 2nd IFAC Workshop
on Multivehicle Systems, Espoo, Finland, pp. 7-12, Oct 3-4, 2012.
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• M. T. Lázaro and J. A. Castellanos, Localization of Probabilistic Robot Forma-
tions in SLAM, 2010 IEEE International Conference on Robotics and Automa-
tion, Anchorage, Alaska, pp. 3179-3184, May 3-8, 2010.

• P. Urcola, L. Riazuelo, M. T. Lázaro, L. Montano, Cooperative Navigation using
environment compliant robot formations,IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, France, pp. 2789-2794, Sep 22-26, 2008.

1.2.2 Open Source Contributions

The multi-robot SLAM approach described in Chapter 7 is implemented as a ROS1

package and is publicly available at

https://github.
om/mtlazaro/
g_mrslam.

It provides a multi-robot graph-based 2D SLAM with any assumption about data as-
sociation or initial relative positions between robots. Ithandles communication among
robots working in an Ad-Hoc network where the map information is exchanged by using
condensed maps.

1Robotic Operating System (http://www.ros.org)

https://github.com/mtlazaro/cg_mrslam
http://www.ros.org




Chapter 2

Basic Fundamentals of SLAM

A robot navigating autonomously in an environment requiresthe availability of a map
and its location within it. If the environment is unknown, the robot needs to construct
its own map and, at the same time, determine its position in itby using the information
gathered by its own sensors. However, these sensors providenoisy measurements and
are subject to errors. The Simultaneous Localization and Mapping (SLAM) is a well
known research topic in robotics which takes into account these uncertainties by using
probabilistic techniques. The aim of this chapter is to introduce the SLAM problem from
the point of view of its probabilistic formulation, together with the basic methodologies
of the different approaches that have been addressed in thisthesis.

2.1 SLAM Problem Definition

Let the trajectory of a robot be represented by a discretizedset of posesxR0:K =
{xR0,xR1, ...,xRK} wherexRk is the 2D pose and orientation of the robot(x,y,θ)T at
time stepk. The transition between two consecutive robot statesxRk−1 andxRk is go-
verned by the control inputuk, beingu1:K = {u1, ...,uK} the history of all control inputs
along the trajectory. As the robot moves, it observes the environment with its on-board
exteroceptive sensors, obtaining a set of measurementsz1:K = {z1, ...,zK}.

The inherent inaccuracies in the application of the motion controls and the noisy
sensor readings introduce uncertainties in the system which require the use of a pro-
babilistic framework to deal with the mapping and localization problems. These two
problems can be addressed separately in the following way:

1. If the robot positions are known, a mapm can be inferred from them and the
set of observations. This mapping problem is formulated in aprobabilistic way
represented by the posterior probability,

p(m|xR0:K ,z1:K) (2.1)

9



10 2. Basic Fundamentals of SLAM

2. On the other hand, if the robot is provided with a map of the environment, it
can use this prior knowledge to compute its trajectory with respect to the map’s
reference frame. This represents a robot localization problem which is formally
expressed as,

p(xR0:K |z1:K,u1:K ,m) (2.2)

Equations 2.1 and 2.2 highlight the existing interdependency between both mapping
and localization problems. In order to obtain the map of the environmentm, the robot
requires an accurate estimation of its trajectoryxR0:K which must be determined with res-
pect to the map. Therefore, if both the map and the robot positions are unknown, these
problems can not be solved separately. This is a well known “chicken or egg” problem,
subject of thorough investigation in the last decades by theSimultaneous Localization
and Mapping community. Then, the SLAM consists in estimating the joint posterior
probability of the robot trajectory and the map given the history of control inputs and
measurements,

p(xR0:K ,m|z1:K,u1:K) (2.3)

which is also known as thefull SLAM problem, tipically solved by least squares op-
timization techniques. On the contrary, theonline SLAM computes the current robot
position and the map using the measurements up to certain time stepk,

p(xRk,m|z1:k,u1:k) (2.4)

which is addressed by filtering approaches. Both kind of approaches have been used
along this thesis and they are explained in the rest of this chapter. The formulation for
the individual problems of localization and mapping can be obtained following a similar
derivation, which is detailed in [81]. The derivation of their solutions is based on the
application of probabilistic rules over the variables involved in the SLAM problem,
whose dependencies are represented by the Bayesian networkshown in Fig. 2.1. Along
this document we will make use of other graphical representations, therefore, we give a
brief review of them in the next section. Subsequently, we will describe different types
of map representations and the fundamentals of the filteringand optimization techniques
used in this thesis to construct them.

2.2 Graphical Models for the SLAM Problem

The SLAM problem can be represented by a variety of graphicalmodels to intuitively
visualize its structure and dependencies between the variables involved. The three most
commonly used graph representations are briefly introducedin this section. Further and
general details about the useful properties of these probabilistic graphical models can
be found in [7, 45] and a review of their application in the SLAM context can be found
in [23].
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Figure 2.1: SLAM problem represented as a Bayesian network.

2.2.1 Dynamic Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph where nodes represent either
hidden (i.e., unknown) or observable variables and directed links (arrows) are used to
represent conditional dependencies among them. The directed link establishes aparent-
child relation between the connected nodes where the parent is thenode from which the
edge leaves and the child is the node where the edge leads to. Additionally, Dynamic
Bayesian Networks (DBNs) allow to model how these variablesare related over time.

Figure 2.2 illustrates a short example of a SLAM problem where the variables to
be estimated are the robot posesxR1:4 and the mapm, represented by a set offeatures
F = {F1:4}. The observed variables are the odometry measurementsu1:4 and sensor
observations wherezi

k is theith measurement at time stepk.
Through this kind of graph we can directly represent some conditional distributions

present in the SLAM problem such asp(xRk|xRk−1,uk),∀k> 0 andp(zi
k|xRk,xFjik

)where

Fj ik is the feature associated to measurementzi
k. These probabilities are calledtransition

(or motion)modelandmeasurement(or observation)model. We can also deduce the full
joint posterior over the set of variables factorized as,

p(xR0:K ,m,z1:K,u1:K) = p(xR0)∏
k

p(xRk|xRk−1,uk)∏
i

p(zi
k|xk,xFjik

) (2.5)

2.2.2 Markov Random Fields

A Markov Random Field (MRF) is an undirected graphical modeland may contain
cycles. In MRFs only the hidden variables are represented and measurements are im-
plicitly encoded on the edges between the unknown the variables. The undirected graph
representation from a directed graph can be found by a process calledmoralization
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Figure 2.2: Example of a feature-based SLAM problem represented as a Bayesian network.

Figure 2.3: SLAM problem represented as a MRF.

where arrows are replaced by undirected links and parents ofa common child must be
linked each other. As a example, Fig. 2.3 shows the equivalent MRF representation of
the BN from Fig. 2.2.

One of the benefits of this representation is that MRFs offer an easy way of testing
the conditional independence properties between variables by simple graph separation.

The Conditional Independence Property

We will refer to the example in Fig. 2.4 where a MRF is used to show the conditional
independence (CI) property of a set of random variablesxA, xB andxC. Suppose that
we want to search for a path connecting any node inxA to any node inxB when the
common node subsetxC is removed from the graph. Since no such a path exists, we can
assert that subsetsxA andxB are conditionally independent if we know the subsetxC.
SubsetxC is called avertex separatorsince it partitions the graph in two disconnected
subgraphsxA andxB. Then, in MRFs, the CI property is determined by simple graph
separation ([7]).
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Figure 2.4: This example shows a MRF with no direct links from subsetxA to subsetxB. This
means that the conditional independence propertyp(xA,xB|xC) = p(xA|xC)p(xB|xC) or any of
its equivalents holds for any probability distribution described by this graph. Notice that we
do not make any assumption about the nature of the distribution. Common separator nodes are
surrounded by a dash dark line and depicted in green; nodes inxA andxB sets are shown in red
and blue respectively.

Formally this is expressed by any of the following equivalent expressions:

p(xA,xB|xC) = p(xA|xC)p(xB|xC) (2.6)

p(xA|xB,xC) = p(xA|xC) (2.7)

p(xB|xA,xC) = p(xB|xC) (2.8)

These equations will be applied in the explanation of the following sections and we
will make a explicit use of this property in the distributed multi-robot SLAM algorithm
presented in Chapter 6.

2.2.3 Factor Graphs

A factor graph [46] is a bipartite undirected graph which allows to represent factorized
probability distributions. A factor graph has two kind of nodes,variable nodeswhich,
in our context, can be either robot or landmark poses andfactor nodescontaining pro-
babilistic relations between them. Concretely, each factor node contains one factor of
Eq. 2.5 and is connected to all the variables that such factordepends on. The factor
graph representation of the previous SLAM example is shown in Fig. 2.5. Note how the
prior factor over the posexR0 is also included.

2.2.4 Pose Graphs

The pose graphs are a specific type of graphical model to represent the so-calledpose
SLAM problem. In contrast to the general approach to SLAM, the goal of pose SLAM
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Figure 2.5: SLAM problem represented as a factor graph. Circles and squares correspond to
variable nodes and factor nodes respectively.

is to compute the optimal robot trajectory whereas the map ismaintained implicitly.
As in the case of the general SLAM problem, the pose SLAM problem can be equally
represented by MRFs or factor graphs. The pose graph contains only the robot poses and
each edge/factor between two nodes encodes a spatial constraint between them. These
constraints can be obtained directly from odometry measurements or indirectly when
the robot observes the same part of the environment from two different poses and, based
on this common observation, a “virtual” relative measurement between both positions
can be determined. Once the optimal path is computed, a map estimate can be recovered
by solving an instance of mapping with known poses (Eq. 2.1).

Figure 2.6 shows the pose graph simplification of our currentexample. Note how the
edge/factor between non consecutive poses is derived from the observation of a common
landmark.

(a) (b)

Figure 2.6: Pose graph SLAM problem represented as a MRF (a) and a factor graph (b).

2.3 Map Representations

A variety of map representations have been proposed over theyears, which can be clas-
sified according to different criteria. We classify the kindof map depending on how
the sensorial information is handled and integrated in the SLAM process. This leads
to feature based maps which consider unique and distinguishable elements of the envi-
ronment and dense maps which use raw data. The choice of the map representation is
related to the task to be performed and to the algorithms and methods used to address
the problem.
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2.3.1 Feature Maps

In feature-based SLAM, the map of the environment is characterized by a set offeatures
or landmarks. They are representative elements of the environment and its extraction
depends on the kind of sensor used and the structure of the environment. For exam-
ple, in the 2D case, usual features obtained from laser scansare segments, corners or
even simpler elements, like points. In the 3D case, some common visual features ex-
tracted from images are the Speeded Up Robust Features (SURF), the Scale Invariant
Feature Transform (SIFT) and the Features from AcceleratedSegment Test (FAST). As
downsides, feature detection can be computationally expensive and assumes the pres-
ence of outstanding features in the environment. Furthermore, this abstraction of the
environment may produce a loss of the information availablewhich difficults the data
association process (i.e., determining correspondences between observations and previ-
ously mapped landmarks) in unstructured environments.

The state of a feature map can be described by a vectorxF = {xF1, ...,xFn} contain-
ing the location of then map featuresF = {F1, ...,Fn}. Furthermore, the assumption
of the map being affected by Gaussian error requires the maintainance of the uncer-
tainty estimation over time by means of a covariance matrix.Then, the uncertainty is
maintained not only for each individual feature but also about their correlations and
inter-dependencies, an important aspect to obtain consistent maps [17].

The cost of updating the map covariance matrix is quadratic in the size of the state
vector which grows each time a new feature is detected and added in it. This makes the
map maintainance intractable in large-scale scenarios. Inorder to cope with this issue,
submapping techniques were proposed [89, 25, 40, 70], wherethe mapping problem is
solved for local maps of bounded size which are later fused tocreate a global map.

As example, Fig. 2.7 shows a 2D segment-based map of our Robotics Lab at the
Aragon Institute of Engineering Research of University of Zaragoza.

Figure 2.7: Example of segment-based feature map representation of theRobotics Lab at Uni-
versity of Zaragoza.
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2.3.2 Dense Maps

In contrast to feature-based maps, dense maps are constructed using all raw data gath-
ered from sensors, thus, offering a more detailed reconstruction of the environment.
This fact makes dense maps suitable for both structured and unstructured environments.
Data association is carried out byregistering(aligning, also referred as scan matching
in the 2D case) the raw measurements. The two common types of dense maps are grid
maps and pose graphs, which are introduced below:

Grid maps

An occupancy grid map [59] partitions the environment into cells where each cell holds
the probability of being occupied. The number of cells in thegrid depends on the
desired accuracy which is achieved by setting the size of thecells. The size of the grid
affects the updating cost and memory consumption, then, grid-based algorithms should
trade-off accuracy and online performance.

Since most widely used path planning and obstacle avoidancetechniques are grid-
based, these maps allow the use of a unique representation for SLAM and navigation
purposes.

Pose graphs

Pose graphs have experienced a considerable attention in the last years thanks to their
simplicity to represent the full SLAM problem.

As we introduced in the previous section, pose graphs offer acompact representation
of the environment, where the map is summarized to the robot trajectory. Each node
contains a robot location together with a measurement obtained at that position. Then,
once the optimal trajectory is obtained, the measurements are represented with respect to
the computed poses. As a drawback, raw measurements have to be stored at each node,
then, this information has to be efficiently managed to avoidhigh memory consumption.
This aspect can be particularly relevant when dealing with point clouds in dense visual
SLAM.

Figure 2.8 shows dense representations of the same feature map of Fig. 2.7.

2.4 Filtering Approaches

2.4.1 SLAM as a Recursive Bayesian Filtering Problem

In the filtering context, the current robot positionxRk and the mapm is computed given
the history of sensor observationsz1:k and control inputsu1:k up to time stepk.

p(xRk,m|z1:k,u1:k) (2.9)
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(a) (b)

Figure 2.8: Example of dense map representations of the Robotics Lab at University of
Zaragoza. (a) Grid map representation of the environment. Here, white cells are free of ob-
stacles, black are occupied cells and grey cells denote unexplored area. (b) Pose graph obtained
using the same raw data. The optimized robot trajectory is depicted in red where black dots are
the laser scans acquired at each robot position

This probability is obtained recursively, based on the previously computed state at
timek−1, that isp(xRk−1,m|z1:k−1,u1:k−1).

Equation 2.9 is factorized by using Bayes’ rule as,

p(xRk,m|z1:k,u1:k) = η p(zk|xRk,m,z1:k−1,u1:k)p(xRk,m|z1:k−1,u1:k) (2.10)

whereη is a normalizing factor that ensures Eq. 2.10 represents a valid probability
distribution.

Under the Markov assumption, the current measurementzk is conditionally indepen-
dent of the past measurementsz1:k−1 and control inputsu1:k given the current statexRk

and the mapm. This property can be deduced from Fig. 2.1, wherezk is only directly
related toxRk andm, therefore, the first term on Eq. 2.10 is simplified as,

p(zk|xRk,m,z1:k−1,u1:k) = p(zk|xRk,m) (2.11)

Following with the derivation, the law of total probabilityis applied in the second
term of Eq. 2.10 to consider the state at previous stepk−1. Then,

p(xRk,m|z1:k−1,u1:k) =
∫

xRk−1

p(xRk|xRk−1,m,z1:k−1,u1:k)p(xRk−1,m|z1:k−1,u1:k)dxRk−1

(2.12)
which, again, using the Markov property, is reduced to

p(xRk,m|z1:k−1,u1:k) =
∫

xRk−1

p(xRk|xRk−1,uk)p(xRk−1,m|z1:k−1,u1:k−1)dxRk−1 (2.13)
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Finally, applying Eqs. 2.11 and 2.13 on Eq. 2.10 we obtain,

p(xRk,m|z1:k,u1:k) = η p(zk|xRk,m)

·
∫

xRk−1

p(xRk|xRk−1,uk)p(xRk−1,m|z1:k−1,u1:k−1)dxRk−1

(2.14)

As it can be observed, the problem is formulated in terms of the measurement
model p(zk|xRk,m), the transition model p(xRk|xRk−1,uk) and the previous knowledge
p(xRk−1,m|z1:k−1,u1:k−1).

Tipically, these models are approximated by Gaussians,

p(xRk|xRk−1,uk) ∝ exp

{

−
1
2
(f(xRk−1,uk)−xRk)

TQ−1
k−1(f(xRk−1,uk)−xRk)

}

(2.15)

p(zk|xRk,m) ∝ exp

{

−
1
2
(h(xRk,m)−zk)

TR−1
k (h(xRk,m)−zk)

}

(2.16)

wheref andh are the transition and measurement functions, affected by additive zero-
mean Gaussian noises with covariancesQk−1 andRk respectively.

Usually, Eq. 2.14 is solved in two steps, the prediction and the update step. In the
prediction step we compute:

p(xRk,m|z1:k−1,u1:k) =

∫

xRk−1

p(xRk|xRk−1,uk)p(xRk−1,m|z1:k−1,u1:k−1)dxRk−1 (2.17)

accounting for the transition modelp(xRk|xRk−1,uk) and the estimate at previous step
p(xRk−1,m|z1:k−1,u1:k−1). Notice how, obeying the filtering paradigm, previous robot
position xRk−1 is marginalizedout. At the update step, the probability distribution
p(xRk,m|z1:k−1,u1:k) is updated taking into account the sensor model described byEq.
2.16 and normalized with the constantη to ensure that the result is a valid probability
distribution.

p(xRk,m|z1:k,u1:k) = η p(zk|xRk,m)p(xRk,m|z1:k−1,u1:k) (2.18)

2.4.2 Extended Kalman Filter

The Kalman Filter (KF) is the optimal estimator to recursively solve Eq. 2.14. It is based
on the assumptions that the system is linear with zero-mean Gaussian noise sequences.
However, the SLAM motion and measurement processes are nonlinear. The Extended
Kalman Filter (EKF) is the KF nonlinear extension that allows to apply its equations to
nonlinear models.

The state of the systemxk = (xRk,m)T is described by a normally distributed random
vector with mean̂xk and covariance matrixPk,

xk∼N (x̂k,Pk)
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The transition and measurement models (Eqs. 2.15 and 2.16) let us formulate the
SLAM problem as the nonlinear system,

xk = f(xk−1,uk)+wk−1 ; wk−1∼N (0,Qk−1) (2.19)

zk = h(xk)+vk ; vk ∼N (0,Rk) (2.20)

wherewk−1 andvk are the motion and observation noises respectively.
The application of the EKF equations requires a linearization of the nonlinear pro-

cess and measurement functions around the best estimate available. Then, the EKF
SLAM prediction and update steps are:

Prediction

A linearization of Eq. 2.19 around the estimatedx̂k−1 andûk give us,

xk ≃ f(x̂k−1, ûk)+Fk−1(xk−1− x̂k−1)+wk−1 (2.21)

where

Fk−1 =
∂ f
∂x

∣
∣
∣
∣
x̂k−1,ûk

(2.22)

Then, the EKF prediction equations are,

x̂k|k−1 = f(x̂k−1, ûk) (2.23)

Pk|k−1 = Fk−1Pk−1FT
k−1+Qk−1 (2.24)

Update

Similarly, Eq. 2.20 is linearized around the predicted estimatex̂k|k−1,

zk ≃ h(x̂k|k−1)+Hk(xk− x̂k|k−1)+vk (2.25)

where

Hk =
∂h
∂x

∣
∣
∣
∣
x̂k|k−1

(2.26)

It allows to compute theinnovationνk, its covarianceSk and the filter gainK k based on
the current observations,

νk = zk−h(x̂k|k−1) (2.27)

Sk = HkPk|k−1HT
k +Rk (2.28)

K k = Pk|k−1HT
k S−1

k (2.29)

Finally, the state of the system is updated by,

x̂k = x̂k|k−1+K kνk (2.30)

Pk = (I −K kHk)Pk|k−1 (2.31)
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2.4.3 Extended Information Filter

The Extended Information Filter (EIF) is the algebraic equivalent of the EKF, also
known as itsinverse covarianceform where the state of the system is represented by
the information vectorik and matrixI k, which are defined in terms of the meanx̂k and
covariance matrixPk as,

I k = P−1
k (2.32)

ik = P−1
k x̂k = I kx̂k (2.33)

The prediction and update equations of the EIF can be derivedalgebraically from
the EKF equations in the following way:

Prediction

The prediction of the state in the information form is obtained from the application of
the EKF prediction equations on the definitions of the information vector and matrix.
Then,

I k|k−1 = (Fk−1I−1
k−1FT

k−1+Qk−1)
−1 (2.34)

ik|k−1 = I k|k−1x̂k|k−1 (2.35)

Note that to obtainik|k−1 we need to recover̂xk−1 by solving the linear system,

I k−1x̂k−1 = ik−1 (2.36)

to propagate the state through the nonlinear function,

x̂k|k−1 = f(x̂k−1, ûk) (2.37)

Update

The information matrix update equation is computed from theinverse of the expression
to compute the covariance matrix in Eq. 2.31 and using the matrix inversion lemma
(A+BCD)−1 = A−1−A−1B(DA−1B+C−1)−1DA−1.

I k = P−1
k (2.38)

= (Pk|k−1−Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1HkPk|k−1)

−1 (2.39)

= I k|k−1+HT
k R−1

k Hk (2.40)

The derivation of the information vector update equation makes use of the alternative
form of the Kalman gain [6],

K k = PkH
TR−1 (2.41)
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Then, applying the EKF state update equation 2.30 on the definition,

ik = P−1
k x̂k (2.42)

= P−1
k (x̂k|k−1+K k(zk−h(x̂k|k−1))) (2.43)

= P−1
k x̂k|k−1+P−1

k K k(zk−h(x̂k|k−1)) (2.44)

= (I k|k−1+HT
k R−1

k Hk)x̂k|k−1+HTR−1(zk−h(x̂k|k−1)) (2.45)

= ik|k−1+HT
k R−1

k (zk−h(x̂k|k−1)+Hx̂k|k−1) (2.46)

Summing up, the EIF update equations are,

I k = I k|k−1+HT
k R−1

k Hk (2.47)

ik = ik|k−1+HT
k R−1

k (zk−h(x̂k|k−1)+Hx̂k|k−1) (2.48)

2.4.4 EKF vs. EIF

Although both EKF and EIF provide identical results assuming the measurement and
motion jacobians are evaluated at the same linearization points [61] (except for numer-
ical and rounding errors in the operations involved) their prediction and update stages
are not computationally equivalent.

On the one hand, EKF prediction is efficient whereas the update is more expensive.
On the other hand, the prediction step of the EIF involves solving a linear system to
recover the mean (Eq. 2.36). Fortunately, the information matrix is approximately
sparse (and exactly sparse when robot positions are not marginalized out) which allows
the use of numerical techniques to speed up the computations. Aditionally, its update
step is carried out by simply adding the new measurement information which makes the
filter inherent to decouple multi-robot processes.

Furthermore, each filter offers different possibilities interms of their initialization.
Whereas we can represent the absence of uncertainty in the EKF by settingP0 = 0, the
EIF allows to initialize the estimation process in the case of lack of prior information
with I0 = 0.

2.5 Maximum Likelihood Approaches

Maximum Likelihood approaches address the SLAM problem as awhole, maximizing
the posterior probability of the entire robot trajectory and the map based on the history
of measurements and control inputs,

p(xR0:K ,m|z1:K,u1:K) (2.49)



22 2. Basic Fundamentals of SLAM

Following a similar derivation as in the filtering case we obtain:

p(xR0:k,m|z1:k,u1:k) =

= η p(zk|xR0:k,m,z1:k−1,u1:k)p(xR0:k,m|z1:k−1,u1:k) (2.50)

= η p(zk|xRk,m)p(xR0:k,m|z1:k−1,u1:k) (2.51)

= η p(zk|xRk,m)p(xRk|xR0:k−1,m,z1:k−1,u1:k)p(xR0:k−1,m|z1:k−1,u1:k) (2.52)

= η p(zk|xRk,m)p(xRk|xRk−1,uk)p(xR0:k−1,m|z1:k−1,u1:k−1) (2.53)

This is a recursive solution, which can also be expressed in closed-form as

p(xR0:k,m|z1:k,u1:k) = η p(xR0)p(m)∏
k

p(xRk|xRk−1,uk)p(zk|xRk,m) (2.54)

wherep(xR0) is the prior over the first posexR0 = (0,0,0)T , fixed at the origin of the
global reference frame

p(xR0) ∝ exp

{

−
1
2

xT
R0

ΩΩΩR0xR0

}

(2.55)

and p(m), the prior knowledge about the map, which is usually considered unknown
and subsumed into the normalizerη. As a result, we obtain a factorized posterior of the
full SLAM problem which is usually represented by a factor graph.

The Maximum a Posteriori (MAP) estimation of the robot positions xR0:k and the
mapm is given by:

x∗R0:k
,m∗ = argmax

xR,m
logp(xR0:k,m|z1:k,u1:k) (2.56)

= argmin
xR,m

−logp(xR0:k,m|z1:k,u1:k) (2.57)

Then, taking the logarithm in Eq. 2.54,

logp(xR0:k,m|z1:k,u1:k) = const+ logp(xR0)

+∑
k

(
logp(xRk|xRk−1,uk)+ logp(zk|xRk,m)

) (2.58)

Now, applying Eqs. 2.55, 2.15 and 2.16 we obtain,

logp(xR0:k,m|z1:k,u1:k) = const−
1
2

xT
R0

ΩΩΩR0x
T
R0

−
1
2∑

k

{(f(xRk−1,uk)−xRk)
TQ−1

k−1(f(xRk−1,uk)−xRk)

+(h(xRk,m)−zk)
TR−1

k (h(xRk,m)−zk)}

(2.59)
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Finally, we substitute this expresion into Eq. 2.57 which results in,

x∗R0:k
,m∗ = argmin

xR,m
∑
k

{(f(xRk−1,uk)−xRk)
TQ−1

k−1(f(xRk−1,uk)−xRk)

+(h(xRk,m)−zk)
TR−1

k (h(xRk,m)−zk)} (2.60)

which can be simplified by introducing the error functionseodom
k = f(xRk−1,uk)− xRk

andeobs
k = h(xRk,m)−zk as,

x∗R0:k
,m∗ = argmin

xR,m
∑
k

{(eodom
k )TQ−1

k−1eodom
k +(eobs

k )TR−1
k eobs

k } (2.61)

Then, SLAM is formulated as a nonlinear weighted least squares problem which can
be solved by minimization methods such as Gauss-Newton or Levenberg-Marquardt. In
a pose SLAM problem, the minimization problem of Eq. 2.61 is solved only for the
trajectoryxR0:k, afterwards, the mapm can be reconstructed from the set of poses based
on Eq. 2.1. From this point we turn our attention to how this optimization can be carried
out for a pose SLAM problem using pose graphs.

2.5.1 SLAM as a nonlinear Least Squares Minimization Problem

Equation 2.57 formulates the full SLAM problem as a MAP estimation problem which
can be reduced to determine the positions of a robot along itstrajectory xR0:K =
(xR0, ...,xRK)

T and postponing the estimation of the mapm to when the optimal tra-
jectory is computed. This pose SLAM problem can be represented by a pose-graph
as shown in Fig. 2.6. Let us consider a pose-graph where the robot trajectoryxR0:K is
represented by a set of nodesx = (x0, ...,xK), containing a robot position together with
a measurement (image or laser scan) acquired at each position and each edge encodes
a measurementz about the relative transformation of its two connected nodes. These
measurements can be computed directly from the odometry or indirectly by computing
relative transformations from the observations e.g. by using a visual place recognition
system or scan matching. During the process of graph construction, usually referred
asfront-end, constraints between consecutive nodes and loop closures (constraints be-
tween non-consecutive nodes introduced during place revisiting) are determined. In
other words, in a pose-graph SLAM approach, we assume that our robot is equipped
with a simple sensor capable of measuring the transformation between robot locations
in the trajectory when they are either temporally or spatially close.

Assuming that the measurements are affected by Gaussian noise, a constraint be-
tween two nodesxi andx j is characterized by its meanzi j and its information matrix
ΩΩΩi j . Then, given a pair of nodesxi ,x j and a measurementzi j connecting both nodes, it
is possible to compute the error committed in the estimation:

ei j (xi ,x j) = ẑi j −zi j (2.62)
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where ẑi j = g(xi,x j) is the expected measurement given the current configurationof
nodesxi ,x j . In the 2D caseg(xi,x j) computes the position and the orientation ofx j in
the frame ofxi.

Let C = {〈i, j〉} be the set of pairs of nodes for which a measurementzi j exists.
Note that this measurement represents indistinctly an odometry or sensor observation
with inverse covarianceΩΩΩi j . Based on Eq. 2.61, the goal of the pose-graph approach is
to find the configuration of nodesx∗ which minimizes the overall error:

F(x) = ∑
〈i, j〉∈C

ei j (xi,x j)
TΩΩΩi j ei j (xi,x j)

︸ ︷︷ ︸

Fi j

(2.63)

x∗ = argmin
x

F(x) (2.64)

This constitutes a nonlinear least-squares minimization problem which does not ad-
mit a closed solution. Instead, if a good initial guess is available, the problem can
be addressed by numerical methods such as Gauss-Newton or Levenberg-Marquardt
which iteratively approximate the solution by carrying outlocal linearizations. Recent
implementations (also calledback-ends) to solve this graph optimization problem like
g2o [47] or iSAM [42] require a time that depends on the number of edges, and their
success in finding the correct solution is affected by the initial guess available to the
system.

A general procedure to solve Eq. 2.64 is presented in [32] anddescribed below. Let
us first denote, for simplicity’s sake, the sensor model and error function as

ei j (xi ,x j) = ei j (x) = g(x)−zi j (2.65)

The sensor model is, in general, a nonlinear function. However, it can be approxi-
mated around an initial guessx̌ of the robot’s trajectory by a first-order Taylor expan-
sion:

g(x)≃ g(x̌)+
∂g(x)

∂x

∣
∣
∣
∣
x=x̌

(x− x̌) (2.66)

which, alternatively, can be expressed in terms of theincrements∆x:

g(x̌+∆x)≃ g(x̌)+Ji j ∆x (2.67)

with

Ji j =
∂g(x)

∂x

∣
∣
∣
∣
x=x̌

(2.68)

Applying 2.67 in 2.65, we obtain a linearized version of the error function:

ei j (x̌+∆x) = g(x)−zi j (2.69)

≃ g(x̌)+Ji j ∆x−zi j (2.70)

= ei j +Ji j ∆x (2.71)
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whereei j = ei j (x̌i , x̌ j).
Substituting Eq. 2.71 in the error termsFi j of Eq. 2.63 we obtain,

Fi j (x̌+∆x) = ei j (x̌+∆x)TΩΩΩi j ei j (x̌+∆x) (2.72)

≃ (ei j +Ji j ∆x)TΩΩΩi j (ei j +Ji j ∆x) (2.73)

= eT
i j ΩΩΩi j ei j +2eT

i j ΩΩΩi j Ji j
︸ ︷︷ ︸

bT
i j

∆x+∆xT JT
i j ΩΩΩi j Ji j
︸ ︷︷ ︸

H i j

∆x (2.74)

Now, we can write a linear approximation of the functionF(x) in Eq. 2.63 as,

F(x̌+∆x) = ∑
〈i, j〉∈C

Fi j (x̌+∆x) (2.75)

≃ ∑
〈i, j〉∈C

eT
i j ΩΩΩi j ei j +2bi j ∆x+∆xTH i j ∆x (2.76)

= ∑
〈i, j〉∈C

eT
i j ΩΩΩi j ei j

︸ ︷︷ ︸

c

+2 ∑
〈i, j〉∈C

bT
i j

︸ ︷︷ ︸

bT

∆x+∆xT ∑
〈i, j〉∈C

H i j

︸ ︷︷ ︸

H

∆x (2.77)

With this procedure we have obtained a quadratic form in∆x of the functionF(x).
We get the values for∆x that minimizes function 2.77 by setting its first derivativeequal
to zero:

∂ (∆xTH∆x+2bT∆x+c)
∂∆x

= 2H∆x+2b = 0 (2.78)

Then, the problem is reduced to find a solution of the linear system:

H∆x∗ =−b (2.79)

where the computed increments are applied to the initial guess as,

x∗ = x̌+∆x∗ (2.80)

The matrixH is the information matrix of the system, since it is obtainedby pro-
jecting the measurement error in the space of the trajectories via the Jacobians. It is
sparse by construction, having non-zeros only between poses connected by a constraint.
Its number of non-zero blocks is twice the number of constraints plus the number of
nodes. This allows us to solve the linear system in Eq. 2.79 with efficient approaches
like sparse Cholesky factorization.

The Gauss-Newton algorithm iteratively apply previous equations until some con-
vergence criterion is reached. The current solution can be used as initial guess of the
next iteration. However, the convergence is not guaranteedand it might happen that
one iteration of Gauss-Newton results in a worse solution than the previous one. The
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Levenberg-Marquardt algorithm tries to overcome this problem by introducing a dam-
ping factorλ which allows to recover from wrong steps. Then, instead of Eq. 2.79, the
Levenberg-Marquardt method solves a damped version of it:

(H +λ I)∆x∗ =−b (2.81)

Intuitively, if λ → inf, ∆x∗→ 0. So, the larger isλ , the smaller are the increments. This
parameter is adjusted at each iteration based on the error ofthe new configuration. If
the error is reduced, the damping factor is decreased. Otherwise, the solution is reverted
andλ is increased.

Least Squares on a Manifold

Previous section describes a general solution to the least squares minimization problem
defined in equation 2.64. However, the derivations and operations involved are only
valid under the assumption that the state space is Euclideanwhich, in general, is not the
case in the SLAM context.

For example, in the 2D case, the robot pose(x,y) spans over a Euclidean domain
whereas its orientation spans over the non-Euclidean rotation group SO(2). A common
approach is to represent the orientation using an angleθ ∈ [−π ,π); however, this mi-
nimal representation suffers from singularities when operating in the vicinity of±π and
requires angle renormalization. A different approach is, for example, the use of rotation
matrices, which is an over-parameterized representation (i.e. it is a 2x2 matrix to repre-
sent one angle). However, directly applying Eq. 2.80 to rotation matrices can break the
orthogonality constraint, leading to non-valid solutions. This problem becomes even
more complex in the 3D case, where orientations are in SO(3) and can be described
using an over-parameterization (e.g, rotation matrices orquaternions) or with a minimal
representation (e.g, Euler angles, which present a singularity known as gimbal lock).

In order to take advantage of the benefits of both representations, we can consider
the state space as asmooth manifold[53] which is introduced in the SLAM context
[36, 33] to increase optimization robustness. A manifold isa topological space which
locally behaves like a Euclidean space. Then, the intuitionbehind manifolds is to work
globally with an over-parameterized representation and locally with its minimal form.
As proposed by [37], we can define the following two operatorsto obtain a mapping
between both representations:

⊞ :M×R
m→M (2.82)

⊟ :M×M→ R
m (2.83)

Here,m is the dimension of the manifoldM. The operator⊞ applies a small perturbation
in the Euclidean space to the manifold, whereas⊟ computes the perturbation between
to states in the manifold.
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In order to apply the concept of manifolds into our optimization problem, we can use
an over-parameterized representation for the global statex and a minimal representation
for the increments∆x. Then, given the current estimatex̌ we can move in the manifold
to approximate the solution by iteratively mapping the Euclidean increments into the
global state using the⊞ operator: ∆x 7→ x⊞ ∆x. Moreover, since we assume these
increments are small, they are far from singularities.

Using this operator, we can define a new error function as

ẽi j (x̌⊞∆x̃) = ẑi j ⊟zi j (2.84)

= g(x̌⊞∆x̃)⊟zi j (2.85)

As before, we can compute the Taylor expression of the new error funtion under a
small perturbation of the state variables around a linearization pointx̌ as

ẽi j (x̌⊞∆x̃)≃ ẽi j + J̃i j ∆x̃ (2.86)

with

J̃i j =
∂ (g(x̌⊞∆x̃)⊟zi j )

∂∆x̃

∣
∣
∣
∣
∆x̃=0

(2.87)

With a straightforward extension of the notation, we can insert Eq. 2.86 in Eq. 2.72
leading to the linear system:

H̃∆x̃∗ =−b̃ (2.88)

Note that the HessiañH of the manifold problem no longer represents the information
matrix of the trajectories but of the trajectory increments∆x̃.

Once we find a solution for the increments∆x̃∗ computed in the local Euclidean su-
rroundings of the initial guesšx, they are re-mapped into the original over-parameterized
space as

x∗ = x̌⊞∆x̃∗ (2.89)

Robust optimization using condensed measurements

We have seen that the least squares SLAM problem can be solvedby iterative ap-
proaches like Gauss-Newton or Levenberg-Marquardt. However, their success in find-
ing the global minimum heavily depends on how good is the initial guess and the
smoothness of the sensor model.

In this section we briefly describe the optimization approach presented in [31] which
provides a procedure to solve a factor graph even if the initial guess is poor or in the case
of highly nonlinear measurement functions. The approach exploits the spatial and tem-
poral locality properties of factor graphs present in the SLAM problem. This method-
ology is the basis of the multi-robot SLAM approach that willbe presented in Chapter
7.
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The overall procedure is illustrated in Fig. 2.9 applied on asimple landmark-based
SLAM problem. The original graph is partitioned in local sub-graphs. These local
maps are related to each other throughsharedvariables belonging to more than one
local map, which are vertex separators. These smaller localmaps are easier to solve
even under hard conditions and a reasonable solution can be obtained using a direct
method. To determine a unique solution we need to “fix” aorigin (gauge) for each local
map. After solving the local maps we obtain a Gaussian approximation of each variable
within the local map, relative to its origin.

Then, we seek for a global alignment of the local maps that satisfies all the equal-
ity constraints induced by the shared variables. In order topreserve the structures of
the local maps computed before, we replace each sub-graph with a simpler one which
approximates the original local solution. This reduced problem is constructed by con-
sidering the origin and the shared variables of each local map and computing a set
of condensedfactors relating the origin to each shared variable, therefore obtaining a
star-like topology of the original subproblem. These condensed factors summarize the
relationship between a variable and the origin of the local map by considering all the
measurements when optimizing the local map.

The procedure to determine the condensed factors is outlined below. Given the set
of separators{xi} and the originxg we can define a family of measurement functions

htypeOf(xi)(xg,xi)
def.
= h(xg,xi) (2.90)

that depend on thetypeof the separators which can be either landmark poses or robot
poses. The origin of the local maps is always selected to be a robot pose. Once we
know the type of a factor, we need to compute the meanzi and information matrixΩΩΩi

of the corresponding measurement. To this end, we recall (2.86) that relates measure-
ment function and error vector through the⊟ operator:ei(xg,xi) = h(xg,xi)⊟zi . The
error function depends on the (known) measurement functionhi(·) and on the unknown
measurementzi . Since the error of the local solution is small, the measurement vector
at the equilibrium can be approximated as:

zi = h(x̌g, x̌i), (2.91)

wherex̌g andx̌i are the actual values of the origin and of a separator after solving the
sub-problem.

To qualify the factors we still have to compute the information matrixΩΩΩi . Since the
origin node is fixed, its covariance matrix is zero. Thus, only the marginal covariance
of xi contributes in determiningΩΩΩi . Since we are working with a manifold formulation,
we can extract the covariance matrices of the increments∆xi from the corresponding
blocks of the HessiaňH (Eq. 2.88) of the system and remap them through the error
function:

ei(xg,xi ⊞∆xi) = h(xg,xi ⊞∆xi)⊟zi . (2.92)
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We then remap the marginal covariance of∆xi by using the unscented transform [41].
We extract a set of sigma points{σk

∆xi
} from the marginal covarianceΣ∆xi of the incre-

ments∆xi and we remap them through (2.92) as follows:

σk = ei(x∗g,x
∗
i ⊞σk

∆xi
). (2.93)

We then computeΩΩΩi by inverting the covariance matrix reconstructed from the projected
sigma points.

Once we “condensed” the local maps, we assemble an approximation of the origi-
nal global factor graph by combining all the newly computed factor graphs into a new
sparser factor graph, whose solution is a global configuration of the origins and of the
shared variables. Then, we can determine a good initial guess by arranging the lo-
cal maps computed at the beginning of the procedure accordingly. At this point, an
optimization which considers the original factors can further refine the approximated
solution.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.9: The overview of the optimization procedure on a simple landmark-based SLAM
problem. Here we illustrate the factor graph by highlighting only the variables. The factors
denote binary measurements and are encoded in the edges. (a),(b) The problem is partitioned into
sub-graphs. The shared variables are in red, and dotted lines show the corresponding variables
in different partitions. (c) We solve these problems independently with respect to their origins
(dark blue), and we determine the marginal covariances of the shared variables. (d) We compute
condensed factors connecting each shared variable to its origin. (e) We solve the complete
problem on the condensed factors to determine the layout of the local maps (f).
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Chapter 3

Robot Formations

The first step towards achieving an autonomous multi-robot system is the design of the
motion control strategy to enable the robots to navigate in the environment and reach
their goal. In this chapter, we first address the motion control of each vehicle by means
of a motion generator which provides the input velocities tobe applied to the robot.
Then, we address the cooperative navigation for robot formations based on a spring-
damper analogy which allows the formation to comply with thestructure of the environ-
ment. We point out the difficulties that appear in formation control in the presence of
noise which motivates the use of the probabilistic localization and mapping techniques
presented along this thesis.

3.1 Motivation

The main distinguishing feature between a robot formation and a general multi-robot
system is the navigation of the group maintaining a specific shape. As a consequence,
formations require stronger coordination and communication among the robots.

There are a variety of applications which could benefit from the use of robot for-
mations, i.e., situations in which the robots have to meet certain requirements regarding
their relative distances and angles. Fig. 3.1 shows two applications of robot formations
in emergency situations developed at the University of Zaragoza [74, 84]. For example,
in case of an accident inside a tunnel (Fig. 3.1a), we can deploy a team of robots to in-
spect the area and identify potential hazards to humans. Under this circumstance, where
there is no communications infrastructure, the distance the robots have to maintain is
oriented to guarantee the connectivity with a base station,outside the tunnel. Then, the
chain formation is deployed in such a way that each robot actsas a relay for the next
one till the dangerous area is reached. Another possible application is the guidance of
people towards the exit during a building evacuation (Fig. 3.1b). In this situation, the
robots adapt their motion and shape to the people behaviour which can move inside a
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safe area delimited by the formation.

(a) (b)

Figure 3.1: Example of applications of robot formations developed at University of Zaragoza.
(a) Formation deployment inside a road tunnel. (b) A triangle-shaped robot formation guides a
group of people towards the exit during a building evacuation.

Along the years, many approaches have been proposed to reachthe formation con-
trol where the most commonly used are those based on virtual structures and leader-
following behaviors.

In [55] the concept of virtual structure is introduced to maintain the geometric rela-
tionships among the robots. However, in this model, the formation moves quite rigidly
along the individual trajectories computed for each robot and is not easily reconfigurable
in case of obstacle presence. In leader-following approaches, the robot designated as the
leaderguides the formation to the goal while the other robots, i.e., thefollowers, try to
keep a desired distance and angle with respect to the leader.This strategy simplifies
the path planning problem which is addressed by the leader and the followers maintain
the formation whenever possible, otherwise it is adapted tothe structure of the scenario.
In the worst case, the formation becomes a chain and the path computed by the leader
is also feasible for the followers. Common implementationsof leader-following ap-
proaches are vision-based leader tracking [22], [87] and spring-based systems [34],[56].

In this thesis we make use of our previous work [85] to controlthe robot forma-
tion based on a spring-damper system. It provides a flexible,smooth and environment
compliant navigation by dynamically adapting the velocities of the robots and the for-
mation’s shape to the environment restrictions. In the restof this chapter we describe
this formation control strategy for the sake of completeness. We begin in section 3.2 by
describing how to control each single robot and continue in section 3.3 by explaning the
cooperative control of the formation. Additionally, we perform along this chapter a brief
analysis of the formation behaviour under the influence of noise, (e.g., comming from
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sensor readings or in the application of the input controls), pointing out the importance
of a reliable localization to maintain the formation and to reach its goal. This motivates
the localization and mapping techniques presented in subsequent chapters.

3.2 Single Robot Motion Control

The first step in order to achieve the formation control is to model how a single robot
can move around smoothly and stably in the environment. By following a physical
analogy, we can consider the robot movement originates fromthe application of a virtual
force F on the robot. The source of such force can be, for example, thecombination
of an attractive force generated by the robot’s goal and repulsive forces coming from
obstacles.

The forceF gives a magnitudeF and direction of movementθ which need to be
transformed into the desired control inputu = (v ω)T , the linear and angular velocities
of the robot. To this end, we use the motion controller described in [2], which allows
us to compute linear and angular velocities physically feasible for the robot. It is based
on geometric and dynamic constraints of the robot, characterized by the differential
equation:

u̇ = Au+BF (3.1)

where

A =−2b

[
1 0
0 ki

]

B =

[
1 0
0 kih

]

F =

[
Fcosθ
Fsinθ

]

(3.2)

andb (viscous friction coefficient),ki (inertial coefficient) andh (moment arm) are the
controller parameters which must be tuned to obtain the desired robot behaviour as
explained in [2]. We solve Eq. 3.1 by using finite difference approximation:

vk−vk−1

∆t
=−2bvk+Fcosθ ;

ωk−ωk−1

∆t
=−2bkiωk+kihFsinθ (3.3)

vk =
F∆tcosθ +bvk−1

1+2b∆t
; ωk =

kihF∆tsinθ +ωk−1

1+2bki∆t
(3.4)

From Eq. 3.4 we can observe that the new velocities provided by the controller
depend on the the previous velocities and the force, which iscomputed based on the
relative position of the robot with respect to the goal. In anideal situation, the computed
velocities are effectively applied on the robot and it is moved to the desired position.
Figure 3.2 shows a simulation in a noise-free environment where a robot is commanded
to reach six consecutive goals (black circles). Each goal exerts an attractive force on
the robot which provides a direction of movement based on itscurrent position. At each
time step, the motion controller provides smooth linear andangular velocities to comply
with the desired robot behaviour (Fig. 3.2b).
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Figure 3.2: Single robot motion in a noise-free scenario. (a) Ground-truth trajectory followed
by the robot. (b) Linear and angular velocities computed by the motion controller.

However, in a real situation, different sources of errors may affect the controller
behaviour. For example, if the controller is not well modeled and the robot is not able
to reach the commanded velocities, we can read the actual velocities from the robot
sensors to provide a feedback onvk−1, however, these sensor readings are also subject
to errors. Additionally, the application of the velocitiesitself is corrupted by noise
which affects the robot’s knowledge about its actual position and therefore, the proper
direction of movement to reach its goal. To visualize these problems, we performed
the same experiment shown in Fig. 3.2 where the velocities and localization readings
were corrupted by noise. The result is visualized in Fig. 3.3, where the corrupted
velocities make the robot follow an undesired trajectory (blue path) despite thinking
it has reached its goal (red path). However, despite the presence of noise, the motion
controller adapts smoothly and provides input velocities close to the desired ones (Fig.
3.3b). This suggests the use of the velocities provided by the controller to estimate the
robot’s displacement.

We take account of the difference between the commanded and actual velocities by
establishing an error model for the linear and angular velocities:

v= v̂+ εv; εv∼N (0,σ2
v ) (3.5)

ω = ω̂ + εω ; εω ∼N (0,σ2
ω) (3.6)

Then, the state vector of the velocitiesu is modelled as a Gaussian, with its meanû and
covariancePu:

u =

(
v
ω

)

∼N

(

û =

(
v̂
ω̂

)

,Pu =

(
σ2

v 0
0 σ2

ω

))

(3.7)
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Figure 3.3: Motion controller behaviour in the presence of random noise. (a) Ground-truth
(blue) and odometry-based (red) trajectory. The attractive force towards the goal is computed
based on its inaccurate position knowledge, and therefore,the robot considers it has reached the
goal. (b) Comparison between the velocities computed in a situation with noisy sensor readings
(red) and the ideal ones (grey).

Given this velocity error model, we can estimate the robot motionxRk−1
Rk

between two
consecutive stepsk−1 andk with elapsed time∆t in terms of the robot’s state space
representation(x,y,θ)T . Again, under the Gaussian assumption, the displacement is
characterized by its mean̂xRk−1

Rk
and covariance matrixPRk−1

Rk
. Then, the velocities state

vector is transformed into the robot cartesian coordinatesusing the following transfor-
mation:

xRk−1
Rk

= f(u) =





v
ω sinω∆t

v
ω (1−cosω∆t)

ω∆t



 (3.8)

Note that this transformation is nonlinear. Thus, we perform a first-order lineariza-
tion around the estimated velocitiesû:

xRk−1
Rk
≃ f(û)+

∂ f
∂u

∣
∣
∣
∣
û
(u− û) (3.9)

with,

∂ f
∂u

∣
∣
∣
∣
û
=






sinω∆t
ω

v
ω
(
∆t cosω∆t− sinω∆t

ω
)

(1−cosω∆t)
ω

v
ω

(

∆t sinω∆t− (1−cosω∆t)
ω

)

0 ∆t




 (3.10)
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Finally the estimate of the relative displacement is calculated as:

x̂Rk−1
Rk

=





v̂
ω̂ sinω̂∆t

v̂
ω̂ (1−cosω̂∆t)

ω̂∆t



 (3.11)

and its covariance matrix is mapped from the velocities space into the robot coordinates
space by:

PRk−1
Rk
≃

∂ f
∂u

∣
∣
∣
∣
û
Pu

∂ f
∂u

∣
∣
∣
∣

T

û
(3.12)

3.3 Robot Formation Control

In the spring-damper model, the robots are virtually connected to each other by a set of
linear and torsional springs and dampers (fig. 3.4). Linear springs allow the robots to
maintain a relative established distance whereas torsional springs are used to maintain a
desired angle with respect to their leader.

Figure 3.4: Spring-damper model

Due to the interconnections, a set of virtual internal forces are generated between
the robots which affect the dynamics of the system. The internal force generated by this
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structure that influences robotRi can be computed as follows:

SDi =
N

∑
j=1

ai j sdi j +
N

∑
j=1

bi j sti j (3.13)

wheresdi j is the force generated between robotsRi andRj by the linear spring and
damper andsti j is the one generated by the torsional spring. The elementsai j ,bi j ∈
{0,1}∀i, j ∈ {0...r} represents the influence of the linear spring-damper link and tor-
sional spring link between robotsRi andRj respectively.

Additionaly, a damping term due to the frictionDi is introduced to simulate a real
system,

Di = fdvi (3.14)

where fd is the damping coefficient andvi the velocity vector of the robot.
The influence of the environment can also be included in the dynamics of the system

as a repulsive forceEi coming from the obstacles and therefore, providing the formation
with obstacle avoidance capabilities. In the case of the robot leader, it is assumed to
navigate in a free space, following a safe path computed by a planner. For this reason,
this external force is applied only to the robot followers. Instead of that, the leader of
the formation experiences an attractive forceG0 generated by its goal.

To sum up, the resultant forceFi applied to each robot is, for a robot follower:

Fi = SDi +Di +Ei (3.15)

and for the robot leader:
F0 = G0+SD0+D0 (3.16)

This force is transformed into linear and angular velocities with the motion con-
troller explained in the previous section. For any further details about how to compute
these forces, the reader is referenced to [85]. An extended approach for cooperative
formation control is presented in [83] where the Nearness Diagram (ND) method [57]
for obstacle avoidance is combined with different navigation strategies depending on
the environment complexity.

Figure 3.5 shows the control of a triangle-shaped formationnavigating through the
environment. Thanks to the interaction of the set of virtualsprings and dampers the
robots always try to maintain their relative distances and orientations. We can see this
effect in Fig. 3.5a, where the leader “waits” for the formation reconfiguration each time
it reaches a subgoal and heads towards the next one.

As in the case of single robot control, there are some sourcesof errors affecting
directly to the formation control, such as the location readings used to compute the
forces or the velocity readings to feedback the controller.The problem is more evident
since it does not only affect the reachability of the goal butalso the formation keeping.
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In order to address this problem, in the next chapter we propose a probabilistic for-
mulation of the robot formation to deal with the different sources of uncertainty and we
will provide the formation with a localization system basedon a prior map to improve
the robot formation behaviour.

3.4 Conclusions

In this chapter, we have presented a navigation system for robot formations which makes
use of a virtual structure of springs and dampers that allowsto maintain the relative
distances and orientations imposed to the robots. This virtual structure originates a set
of forces among the robots which can be later transformed into input velocities for each
individual robot by means of a motion generator.

The motion controller provides velocities physically feasible for the robot and adapts
smoothly in the presence of noise thus we use these velocities to estimate the robot
displacement.

Despite the stable behaviour of the controller, we have evidenced that the accumu-
lation of errors results in an inaccurate localization of the robots which prevents the for-
mation to maintain its shape and reach its goal. This constitutes the motivational starting
point for the development of improved multi-robot localization and SLAM techniques
presented in the rest of this thesis.
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Figure 3.5: Motion control of a 3-robot formation. (a) Trajectory followed in a noise-free
situation. Notice how torsional springs oblige the robot followers to maintain their relative
orientation with respect to the leader at any time. (b) Estimated (red) and ground-truth trajectory
in the presence of noise. (c) Comparison between the commanded velocities in the “ideal” error-
free (grey) and noisy scenario (red).





Chapter 4

Localization of Robot Formations in
SLAM

In the previous chapter, we have seen that, in order to achieve the navigation in forma-
tion and to reach their goal, robots need to be accurately localized within the environ-
ment. This chapter presents an EKF-based approach which makes use of a previously
built feature-based stochastic map to solve the robot formation pose tracking problem.
We show how a direct implementation of the EKF algorithm leads to inconsistency in
the estimated localization. We justify the origin of the anomalous behaviour of the fil-
ter in the time-correlated nature of the measurement noise sequence. A novel solution
based on the measurement differencing technique is proposed to drive the solution of
the EKF towards consistency.

4.1 Introduction

Traditionally, SLAM research has focussed on how to efficiently build accurate and
reliable maps and, to this end, a variety of representationshave been proposed such
as feature, grid and graph-based maps. One of the many potential applications of these
maps is their posterior use to localize a robot while it navigates through the environment.

Recalling Chapter 2, the robot localization problem consists in estimating the robot’s
posexRk at the current time stepk with respect to the map’s reference frame using the
information obtained from its on-board sensors. It is stated from a probabilistic point of
view as the problem of estimating the posterior distribution p(xRk|z1:k,u1:k,m) where
z1:k are the set of partial measurements of the environment provided by its perception
sensors,u1:k, the history of control inputs andm, the prior map.

Given a map of the environment, we can distinguish two main localization pro-
blems depending on the robot’s prior knowledge about its initial position: theglobal
localization tries to determine the robot’s position within the given mapwithout any
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information about its initial pose and thepose trackingwhich, once the initial pose is
known, aims to maintain the robot’s pose estimate along time.

This problem has been principally addressed by Bayesian filters, due to their ef-
ficiency and real-time performance. Then, we can follow a similar derivation of the
localization problem as we explained for the filtering-based SLAM problem in Chapter
2, leading to,

p(xRk|z1:k,u1:k,m) = η p(zk|xRk,m)

∫

p(xRk|xRk−1,uk)p(xRk−1|z1:k−1,u1:k−1,m)dxRk−1

(4.1)
which is solved in two phases, prediction and update steps.

Different filtering methods have been proposed over the years, some of them devel-
oped using a specific map representation. For example, grid-based continous localiza-
tion was addressed in [78] by using local to global map registration (i.e., map matching).
In [12, 28], the authors presented a grid-based Markov localization to solve both global
and pose tracking problems. The robustness and efficiency ofthis approach was later
increased by using particle filters [82] or by combining grid-based and topological maps
[80]. From a feature-based perspective, the use of previously built maps to globally lo-
calize individual vehicles has been reported in [62] and [69]. Usually, robot localization
in feature or landmark-based maps is implemented by using Kalman filters. However,
although these maps have been adquired by probabilistic techniques, and therefore, there
is a map uncertainty, these approaches normally consider the position of features and
landmarks fixed and known.

One straightforward extension of any of the aforementionedtechniques to multi-
robot systems would be to address the team localization problem individually for each
robot and to replicate in each vehicle the current implementation of the localization
system. However, this methodology is against the team cooperation and coordination
philosophy to obtain mutual benefit between robots.

For example, in certain situations a robot could lose its localization capability (e.g.,
due to the presence of obstacles occluding its vision of the environment). If another
teammate is able to detect it and communicate their relativeposition, the first robot can
use this information to improve its localization. Besides,if robots share and join all
observations they can obtain a broader and extended view of the environment which can
benefit the whole group.

First works in multi-robot cooperative localization like [48] and [73] divided the
team of robots into two groups: while one group moved, the other group remained sta-
tionary and acted as landmark. This strategy is useful in theabsence of landmarks or in
uncharted environments but the robots must maintain visualcontact which constraints
the robot displacements and requires a robot identificationsystem. Inter-robot position
measurements are also used in [77] within an EKF framework toimprove the estimates
of the group and as well as in [75] where the Kalman Filter equations are decomposed
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and distributed among the robots. This latter work also pointed out the benefits of main-
taining the cross-correlations between the estimates of the robots. When two robots
meet and share their inter-robot measurements to update their positions, the estimates
of rest of the group are also improved due to these inter-dependencies. However, none of
these works make a explicit use of an environmental model to improve robot localization
which is only updated when they detect each other. Additionally, in [27] inter-robot de-
tections are combined with environment measurements usingprobabilistic techniques.

Furthermore, and from a state estimation perspective, consistency issues are of
paramount importance to assure convergence of the solutionprovided by the estimation
algorithm. Intuitively, inconsistency appears when the uncertainty about the estimated
robot position does not correctly represent the true error.In such case, the robot is
unaware of how good its localization is and can not trust in itfor other navigation or
planning purposes. This issue has been discussed in the EKF framework [16, 5, 39] and
several factors affecting the filter consistency have been identified such as linearization
errors, measurement noise, number of measurements in the filter or re-observation times
of a feature, among others. All these factors also affect multi-robot systems, however,
consistency issues have not received as much attention in this context. In [38] the con-
sistency of multi-robot cooperative localization was investigated from an observability
perspective. Also, the effect of using repeated measurements on the consistency of the
algorithm has been reported in [60] by taking into account the correlations between
consecutive relative-state measurements, and in [3] by keeping track of the origins of
measurements and preventing them from being used more than once.

In the rest of this chapter, we turn our attention towards howto use a previously built
feature-based stochastic map to localize a team of autonomous vehicles while they nav-
igate coordinately in formation using the motion control approach described in Chapter
3. Instead of using direct robot-to-robot measurements to strengthen relations among
robot locations, their estimates get correlated by sensingthe same portion of the envi-
ronment.

The contributions are two-fold. First, the work emphasizesthe inherent difficulties
of using stochastic maps to localize a robot formation due tothe existence of time-
correlated measurement sequences. Whenever these statistical dependencies are not
properly considered we show that the algorithms lead to inconsistent estimation of the
robot formation localization. Second, we originally formulate the problem of robot
formation localization in SLAM within the EKF framework by using themeasurement
differencingtechnique [11, 6, 71] which allows the elimination of colored measurement
sequences within the update step of the filtering algorithm.
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4.2 Probabilistic Representation of the Robot Forma-
tion

Let a robot formation be composed ofr +1 heterogeneous vehiclesR0,R1, ...,Rr, where
R0 is the robot leader andRj , j = 1, ..., r are the robot followers. A certain geome-
tric shape, e.g. equilateral triangle, regular pentagon, etc, is imposed to the team de-
pending on the number of vehicles and the task commanded to the formation. From
a probabilistic view-point, the location of the robot formation can be represented by a
discrete-time state vectorxR formed by the location of the robot leaderR0 with respect
to (wrt) a base reference frameB and the location of each robot followerRj wrt the
robot leaderR0 , and by its associated covariance matrixPR which stores the statistical
dependencies between those estimated locations. Following the Gaussinity assumption,
xR ∼N (x̂R,PR) with,

x̂R =








x̂B
R0

x̂R0
R1
...

x̂R0
Rr








;PR =






PR0 · · · PR0Rr
. . .

PRrR0 · · · PRr




 (4.2)

This leader-centric representation reduces the volume of uncertainty, i.e., the deter-
minant of the covariance matrixPR , in comparison with an absolute representation wrt
the base frameB of each robot location vector and, therefore, linearization errors due to
large uncertainty values are minimized [15].

4.3 EKF-based Localization of the Robot Formation

From a Bayesian view-point the pose of the robot formation isgiven by the recursively
estimated conditional probability density functionp(xRk|z1:k,u1:k,yF ) wherez1:k rep-
resent the set of sensor readings gathered by the sensors mounted on the robots from
environmental features from time step 1 up to time stepk, u1:k the sequence of input
controls andyF ∼ N (ŷF ,PF) represents the stochastic map of the previously mapped
navigation area consisting of a set of featuresF = {F1,F2, ...,Fn}. In the sequel, the
EKF algorithm [6] is used as the core estimation technique.

4.3.1 EKF Prediction Step

The method described in section 3.2 provides a displacementestimatex
Ri,k−1
Ri,k

for each
robotRi from time stepk−1 tok based on the input velocities to the motion controller.
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Then, we represent the formation displacement by the randomvariablexRk−1
Rk

:

xRk−1
Rk

= (x
R0,k−1
R0,k

x
R1,k−1
R1,k

. . . x
Rr,k−1
Rr,k

)T (4.3)

with covariance matrix,

PRk−1
Rk

=










P
R0,k−1
R0,k

0 . . . 0

0 P
R1,k−1
R1,k

. . . 0

0 . . .
. . . 0

0 . . . . . . P
Rr,k−1
Rr,k










(4.4)

The EKF-prediction step propagates the state of the robot formation from time step
k−1 to time stepk by using the estimated displacements through the followingnonli-
near function,

xRk = f(xRk−1,x
Rk−1
Rk

) (4.5)

The use of the EKF requires a linearization of the nonlinear model around the best
current estimates(x̂Rk−1, x̂

Rk−1
Rk

) using a Taylor series expansion,

xRk = f(xRk−1,x
Rk−1
Rk

) (4.6)

≃ f(x̂Rk−1, x̂
Rk−1
Rk

)+Fk−1(xRk−1− x̂Rk−1)+Gk−1(x
Rk−1
Rk
− x̂Rk−1

Rk
) (4.7)

whereFk−1 andGk−1 are the jacobians off with respectxRk−1 andxRk−1
Rk

respectively,

Fk−1 =
∂ f

∂xRk−1

∣
∣
∣
∣
∣
(x̂Rk−1

,x̂
Rk−1
Rk

)

; Gk−1 =
∂ f

∂xRk−1
Rk

∣
∣
∣
∣
∣
(x̂Rk−1

,x̂
Rk−1
Rk

)

(4.8)

The linearized equation 4.7 can also be expressed in terms ofthe errors denoted by
x̃ = x− x̂ as

x̃Rk ≃ Fk−1x̃Rk−1 +vk−1; vk−1∼N (0,Gk−1PRk−1
Rk

GT
k−1) (4.9)

Then, the estimates for the state vectorx̂Rk|k−1
and its associated covariance matrix

PRk|k−1
are given by,

x̂Rk|k−1
= f(x̂Rk−1, x̂

Rk−1
Rk

) (4.10)

PRk|k−1
= Fk−1PRk−1F

T
k−1+Gk−1PRk−1

Rk
GT

k−1 (4.11)

Due to our leader-centric representation, function 4.5 differs depending on whether
the robot is the leader or a robot follower. A more detailed description of this function
and the derivation of its jacobians can be followed in appendix A.
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4.3.2 EKF Update Step

At time stepk observationszk are related with map features through the following non-
linear measurement model,

zk = hk(xRk,yFk)+wk (4.12)

beingwk a zero-mean Gaussian noise with covariance matrixRk.
Due to the inherent nonlinearities, a linearized equation around the current predicted

positionx̂Rk|k−1
is used within the EKF-update step,

zk = hk(xRk,yFk)+wk (4.13)

≃ hk(x̂Rk|k−1
, ŷFk)+Hk(xRk− x̂Rk|k−1

)+GFk(yFk− ŷFk)+wk (4.14)

whereHk andGFk are the jacobian matrices (see appendix A) of the linearizedmea-
surement equations with respect to the state vectorxRk and with respect to the subset of
featuresyFk observed at timek from the a priori stochastic map respectively,

Hk =
∂hk

∂xRk

∣
∣
∣
∣
∣
(x̂Rk|k−1

,ŷFk
)

; GFk =
∂hk

∂yFk

∣
∣
∣
∣
∣
(x̂Rk|k−1

,ŷFk
)

(4.15)

The classical EKF update equations provide estimates for the state vector̂xRk|k
and

its associated covariance matrixPRk|k
:

x̂Rk|k
= x̂Rk|k−1

+K k(zk−hk(x̂Rk|k−1
, ŷFk))

PRk|k
= (I −K kHk)PRk|k−1

(4.16)

using the filter gain obtained as,

K k = PRk|k−1
HT

k (HkPRk|k−1
HT

k +GFkPFkG
T
Fk

+Rk)
−1 (4.17)

4.3.3 Simulation Results: Inconsistency

A set of simulation experiments were conducted to analyze the consistency of a direct
implementation of the EKF algorithm based on the aforementioned problem formula-
tion. The single robot localization problem formulation can be seen as the particular
case of considering only the robot leader in the robot formation formulation. Then, a
single robot and two formations composed of 3 and 5 robots were commanded to reach
4 consecutive goals arranged in a loop-trajectory within a previously mapped (2D point-
based stochastic map) navigation area, depicted in Fig. 4.1. Each vehicle was equipped
with a range-bearing sensor capable of observing the available environmental features.
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For these simulation experiments, we assume known data association. As a measure
of consistency [6] a statistical test based on the Normalized Estimation Error Squared
(NEES) was used,

NEES= (xRk− x̂Rk)
T P−1

Rk
(xRk− x̂Rk)≤ χ2

r,1−α (4.18)

whereχ2
r,1−α is a threshold obtained from theχ2 distribution withr = dim(xRk) degrees

of freedom, andα the desired significance level (usually 0.05).
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Figure 4.1: Map of the environment used in the simulation experiments toevaluate the robot
formation localization performance. (a) 2D Point-based stochastic map (blue) and trajectory fol-
lowed by the 3-robot formation. (b) Zoomed part of the formation trajectory where the robots’
ground-truth location is depicted in black and its estimatein red. The small robot covariance
ellipses demonstrate the overconfidence in the error estimation using the classical EKF imple-
mentation.

Figure 4.2 plots the consistency ratio (NEES/χ2
r,1−α ) for the sequence of time steps

of the experiments illustrating a problem of inconsistencyin the estimated solution of
this direct implementation of the EKF algorithm. It can alsobe observed how this incon-
sistency issue gets worse with the number of robots. This fact is not unexpected since
the factors which may influence in the filter consistency suchas number of observations
or feature re-observations increase with the number of robots in the formation.

Additionally, Fig. 4.3 shows the errors and covariance bounds obtained in one of the
simulations with the 3-robot formation. It can be observed how the covariances do not
correctly match the true estimation errors.

In the following section we take a closer view of the results and a modified EKF
formulation is proposed to drive the robot formation estimated localization towards con-
sistency.
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Figure 4.2: Inconsistency of the estimated robot formation localization within a stochastic
map with a direct implementation of the EKF algorithm. (a) shows the consistency ratio
NEES/χ2

r,1−α for the single-robot implementation whereas (b) and (c) show the results for a
3 and 5-robot formation respectively. The estimation is considered consistent when the con-
sistency ratio is less than one. For each experiment, the average of 50 Monte Carlo runs is
depicted.

4.4 Measurement-Differencing EKF-based Localiza-
tion of the Formation

A close view of the robot formation localization problem within an a priori stochastic
map, supported by the simulation results obtained in the previous section, suggests a
re-formulation of the EKF algorithm taking into account thestatistical dependencies
between the map featuresyFk−1 and yFk (both subsets ofyF ) used within the EKF
update step in two consecutive time stepsk−1 andk.

Given the set of matched map features of two consecutive timeinstantsyFk−1 and
yFk, their statistical dependencies are expressed by a linear transformation,

yFk = FCkyFk−1 +nk (4.19)

where1

FCk = PFkFk−1P
−1
Fk−1

(4.20)

andnk is a white noise measurement sequence with covariance matrix Pnk,

Pnk = PFk−PFkFk−1P
−1
Fk−1

PFk−1Fk (4.21)

1Given two jointly Gaussian random variablesx andy:
(

x
y

)

∼N

{(
0
0

)

;

(
Px Pxy
Pyx Py

)}

a linear relation of the formy = Ax +b can be formulated, withA = PxyP−1
x andPb = cov(b) = Py−

PyxP−1
x Pxy.
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Figure 4.3: Errors and 2σ -covariance bounds obtained in the 3-robot formation simulation using
the classical EKF implementation. The errors in each position component(x,y,θ) are depicted
for all robots.

Equation (4.19) defines a colored measurement noise sequence, which together with
eqs. (4.5) and (4.12) completely reformulates the problem at hand.

The first approach reported in the literature which considers the existence of a co-
lored measurement noise sequence within the EKF framework dates back to the works
of Bryson et al. [11] where the state vector was augmented with the colored error terms.
Later work pointed out relevant numerical problems of this approach mainly due to
null-uncertainty observations and ill-conditioned transition matrices. Current practical
approaches [6, 71] concern the so-called measurement differencing technique, which
provides an efficient and mathematically sound method to remove the time-correlated
portion of the measurement errors. We extend previous work by others in the field
of filtering theory by formulating the robot formation localization problem in SLAM
as a measurement differencing based EKF algorithm to whitenthe originally colored
measurement noise sequence defined in eq. (4.19).

4.4.1 Whitening the Measurement Equation

Let rk represent the measurement considered within the EKF-update step at timek, de-
rived from the real measurementszk−1 andzk obtained at two consecutive time instants
as,

rk , zk−ΛΛΛkzk−1 (4.22)

where matrixΛΛΛk is chosen such that{rk, 0< k< ∞} approaches a discrete-time white-
noise driven stochastic process [6, 71]. Following the derivation of the appendix B
measurementrk can be rewritten as,

rk ≃ h∗k+H∗k(xRk− x̂Rk|k−1
)+wrk (4.23)
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where,

h∗k = hk(x̂Rk|k−1
, ŷFk)−ΛΛΛkhk−1(x̂Rk−1|k−1

, ŷFk−1) (4.24)

H∗k = Hk−ΛΛΛkHk−1F−1
k−1 (4.25)

and the white noise sequencewrk, with covariance matrixPwrk
, is given by,

wrk = ΛΛΛkHk−1F−1
k−1vk−1+wk−ΛΛΛkwk−1+GFknk (4.26)

Note from Eq. 4.24 that, at time stepk, jacobians corresponding to the linearized
measurement equation ofzk−1 are re-evaluated at the best state estimate at timek−1,
that isx̂Rk−1|k−1

. Matrix ΛΛΛk is computed (see appendix B) such that the time-correlated
components of the measurementrk are removed,

ΛΛΛk ≃GFkFCkG
T
Fk−1

(GFk−1G
T
Fk−1

)−1 (4.27)

Note that previous works [6, 71], under the linearity assumption both in the motion and
measurement equations, reported thatΛΛΛk = FCk, being a particular case of the more
general result provided in this thesis. In our case, the existence of matrixΛΛΛk has been
verified for the cases of 2D-point and 2D-segment based stochastic maps.

Equation (4.26) introduces a cross-correlation term betweenwrk andvk−1, namely,

Ck = E[vk−1wT
rk
] = Qk−1(ΛΛΛkHk−1F−1

k−1)
T (4.28)

which is introduced in the EKF algorithm following [10] using the filter gain,

K k = (PRk|k−1
H∗Tk +Ck)(H

∗
kPRk|k−1

H∗Tk +Pwrk
+H∗kCk+CT

k H∗Tk )−1 (4.29)

Finally, the Measurement-Differencing EKF-based update (hereinafter referred to as
MD-EKF) equations are given by,

x̂Rk|k
= x̂Rk|k−1

+K k(rk−h∗k) (4.30)

PRk|k
= PRk|k−1

−K k(H
∗
kPRk|k−1

H∗Tk +Pwrk
+H∗kCk+CT

k H∗Tk )KT
k (4.31)

As we can observe from Eq. 4.30, the redefinition of the measurement equation
leads to a modified innovation (rk−h∗k) in the filter update which could be expressed
following equations 4.22 and 4.24 in terms of the differenceof the innovations from
consecutive time steps as,

rk−h∗k = zk−ΛΛΛkzk−1− (hk(x̂Rk|k−1
, ŷFk)−ΛΛΛkhk−1(x̂Rk−1|k−1

, ŷFk−1)) (4.32)

= zk−hk(x̂Rk|k−1
, ŷFk)−ΛΛΛk(zk−1−hk−1(x̂Rk−1|k−1

, ŷFk−1)) (4.33)
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Intuitively, if the difference of innovations is small, themodified filter update yields
more pessimistic estimations than in the classical EKF. This is what happens when fea-
tures are re-observed and contribute to very little additional information. More formally,
this difference is regulated byΛΛΛk which depends onFCk andPFkFk−1, i.e., the degree of
correlation between features observed in consecutive timesteps (see equations 4.20 and
4.27). Conversely, ifPFkFk−1 = 0, thenΛΛΛk = 0 and the filter will behave as the standard
EKF implementation.

Simulation results

As in the previous section, we conducted a set of experimentsto validate the proposed
reformulation of the robot formation localization problem. Figure 4.4 plots the con-
sistency ratio (NEES/χ2

r,1−α ) for the sequence of time steps of the experiments for the
implementation of the measurement differencing algorithmproposed in this section. In
this case, the modified EKF algorithm provides a consistent solution for the robot for-
mation estimated localization.
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Figure 4.4: Improvement in the consistency of the single-robot ((a)) and robot formation ((b)
and (c)) estimated localization with a measurement-differencing based EKF algorithm. The
consistency ratio remains under the threshold (NEES/χ2

r,1−α ≤ 1) during most of the simulation.
However, it is shown less consistent for short periods of time (e.g., around time steps 1000, 2000
and 3000 in the 5-robot formation case) due to formation turning which is a highly nonlinear
situation and increases with the number of robots. The average of 50 Monte Carlo runs is
depicted.

Figure 4.5 shows the estimated and ground-truth trajectoryfollowed by the 3-robot
formation. Although there is no significant difference withrespect to the trajectory
shown in Fig. 4.1, now the covariances match the ground-truth position. This can also
be seen in Fig. 4.6, where the errors and uncertainty bounds are depicted.

It is worth to point out that, although in Fig. 4.5b, the estimates seem to be less
accurate than the estimates in Fig. 4.1b, the latter are inconsistent and unreliable which
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Figure 4.5: Ground-truth and estimated trajectory followed by a 3-robot formation with the
modified measurement differencing based EKF. Now, the uncertainty ellipses correctly include
the actual robot position.

can derive in wrong data association and filter divergence. This fact was also observed
and discussed in [5].

The computational cost of the MD-EKF algorithm does not appreciably increase
over the direct implementation because the dimensions of the matrices involved are the
same.

4.5 Experimental Results

The measurement differencing EKF-based localization algorithm has been tested both
in the multi-robot simulation platform Player/Stage [29] and in real experiments with a
3-robot Pioneer 3-AT team in a triangular-shaped formationscheme.

4.5.1 Experiments in Player/Stage

A first set of experiments have been conducted within the rapid prototyping tool
Player/Stage which allows code development and testing in similar conditions as to
those subsequently faced in the real scenario but constraint to the information provided
by simulated motion control and data acquisition.

The formation was commanded a 100-m loop trajectory within apreviously avail-
able segment-based stochastic map. Thanks to the availability of ground-truth, the con-
sistency of the proposed algorithm in this quasi-real scenario was verified as the consis-
tency ratio plot of Fig. (4.7) highlights. Also, in Figs. 4.8the frontal, lateral and angular
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Figure 4.6: Errors and 2σ -covariance bounds obtained in the 3-robot formation simulation
using the measurement differencing based EKF implementation. The errors in each position
component(x,y,θ) are depicted for all robots.

errors for each robot in the formation are displayed together with their associated 2-σ
uncertainty bounds. In all the cases the estimated errors are within the computed bounds.
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Figure 4.7: Consistency of the estimated robot formation localizationwith a measurement-
differencing based EKF algorithm in the Player/Stage experiments.

4.5.2 Experiments with the Pioneer 3-AT Robots

Real experiments have been conducted by using a 3-robot triangular-shaped formation
of Pioneer 3-AT vehicles. Figure (4.9) depicts the initial localization of the vehicles
within an indoor environment. The formation was commanded to reach a distant goal
location (about 40-m from the starting location) while avoiding obstacles and adapting
its shape to the environment. The robot leader plans a safe path to the goal destination
and the robot slaves follow the leader while maintaining thedesired formation topology.
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Figure 4.8: Experimental results obtained in the Player/Stage setting. Frontal, lateral and an-
gular errors for each vehicle in the 3-robot triangular-shaped formation and their associated 2-σ
uncertainty bounds are shown.

(a) (b) (c)

Figure 4.9: Initial setting of the robot formation in a real experiment:(a) 3-robot triangular-
shaped formation, (b) segment-based stochastic map of the navigation area, and (c) EIF-based
initial localization of the robot formation within the map (with location uncertainty magnified
x5).

Communication among the vehicles of the formation is provided by a real-time wireless
multihop protocol implemented in a centralized mode where robot slaves sent both the
sensors observations and the commanded velocities to the robot leader. The robot leader
executes the localization algorithm and it communicates the estimated poses to each
robot slave ([85] and reference therein).

Initially, a segment-based stochastic map of the navigation area (Fig. 4.9b) is ob-
tained by using the information provided by the 2-D laser scanned mounted in one of the
vehicle (in our case, and without lose of generality, the robot leader) which previously
had explored the environment. Then, the global localization of the vehicles (Fig. 4.9c)
is computed by the algorithms reported in [69].

Figure (4.10) shows the estimated localization of each of the vehicles of the for-
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mation at four different time steps along the planned trajectory towards the goal des-
tination. Even though ground-truth was not available during the execution of the real
experiments, the figure highlights the compatibility between the previously available
stochastic map and the segmented sensor readings plotted wrt the estimated vehicles
localization.

(a) (b)

(c) (d)

Figure 4.10: Four snapshots of the estimated localization of the membersof the robot formation
within the stochastic map (plotted in black). The segmentedsensor observations are plotted in
green, blue and magenta and red lines represent the segmentsuncertainties. Robot uncertainties’
ellipses are magnified by x5.
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4.6 Conclusions

In this chapter we have addressed the problem of utilizationof feature-based stochas-
tic maps for robot formation localization. From the Bayesian perspective, the classical
EKF algorithm was initially formulated by considering the motion models of each vehi-
cle within the formation and the environmental observations gathered by the exterocep-
tive sensors mounted on the vehicles. We have reported the inconsistency of the direct
implementation of the EKF prediction and update equations for the problem at hand,
producing unreliable position estimates. Having a closer view to algorithm hypotheses
we have suggested the time-correlated nature of the sequence of measurements consid-
ered in the previous, direct implementation. We have adapted a solution based on the
measurement differencing technique, already reported in the filtering literature, to the
robot formation localization problem in SLAM and its implementation shows how the
modified EKF estimation is driven towards consistency.



Chapter 5

Robot Formations in Partially a priori
Known Environments

In this chapter we present a complete working system for robot formations where, in
addition to the navigation and localization techniques presented in previous chapters,
cooperative perception and path planning tasks under environment uncertainty are also
considered. Feature-based and grid-based mapping strategies are combined in a prob-
abilistic way to compute an obstacle-free and of bounded-risk plan towards the goal.
The formation benefits from the cooperative perception to obtain a joint vision of the
environment, used for online replanning purposes. The system is tested and validated
by means of a set of simulations as well as in real experiments.

5.1 Introduction

In Chapter 3 we presented an approach to control the formation shape while navigating
towards a designated goal. Then, in the previous chapter we proposed a technique which
provides a reliable localization of the robots in an environment known in advance.

Following with the context presented in previous chapters and to achieve greater
autonomy, we must provide the system with a path planner to compute the best path
towards the final goal. However, in our case, the path planning strategy is constrained
by the presence of uncertainty in the prior map available to the system. This is a problem
of great interest since, when planning through risky areas,the formation may reach a
dead-end, therefore requiring a global replanning which would increase the final cost of
the mission.

The problem of planning under uncertainty is treated in different ways in the litera-
ture depending on the source of the error. Some works take into account the uncertainty
of the environment like [58], who searches the trajectory that minimizes the expected
cost of collision by using probabilistic roadmaps under theassumption of independence

59
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in the probability distribution of the obstacles. In [86], motion and sensing uncertain-
ties are considered to obtain prior probability distributions of the states and the control
inputs of the robot for a previously computed path. Other kind of works focus on the
uncertainty of the path, like [18] who seeks the path which minimizes the uncertainty at
the goal, leading to paths that are no optimal in terms of Euclidean distance to the goal.
The work presented in this chapter considers environment uncertainty for global path
planning, whereas localization and sensor uncertainty is taken into account during the
online execution of the global path.

Most of the successful path planning techniques [35, 44] usea grid representation
of the environment whereas the map is available to the formation as a segment-based
stochastic map. In order to use grid-based path planning techniques, we project the ini-
tial feature-based map into a grid where each cell represents the risk level for traversing
a certain area of the environment. Then, the overall goal is to guarantee the mission
success by planning through areas with low probability of obstacle presence or, in other
words, with less risk of traversability. Unlike the works which minimize the overall ac-
cumulated risk of collision, the path planning technique presented in this chapter aims
at computing the best path where the probability of failure at each cell of the path is
lower than a threshold. This concept is also used in [8], although we propose a rigorous
modeling of the obstacle location uncertainty, used as a measure of collision risk in a
cell.

Once a global path is obtained, we can extract a set of waypoints or sub-goals the
leader (and consequently the rest of robots) has to reach sequentially. However, the final
execution of the planned path may be affected by the presenceof unexpected obstacles
which either were not considered in the prior map or were known with uncertainty. At
the level of each robot and in the event of finally finding an obstacle, the reactive ob-
stacle avoidance system would prevent from the collision. However, at the level of the
formation, is necessary the maintainance of a local map for online path planning be-
tween sub-goals. This local planning task can benefit from the joint and wider vision of
the environment provided by the robot formation. When building this joint local map
from the observations shared by the formation, sensor and robot localization uncertain-
ties have to be taken into account. In order to obtain a set of integrated lower uncertainty
observations we propose a modification of the localization algorithm presented in pre-
vious chapter.

5.2 Path planning under Uncertainty

Path planning for robot formations can be stated globally for all the robots of the team.
But that approach has a high computational burden. In this work, we propose a flex-
ible alternative approach, computationally lighter. The path planning is achieved by
the leader of the formation, and the followers maintain the formation adapting to the
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environment by means of the spring-damper analogy (Chapter3). The formation is
maintained while possible, otherwise it adapts its shape tothe scenario structure. In the
worst case, the formation will become a chain, so the path planned by the leader will
also feasible for the followers.

5.2.1 Definition of Risk Maps

Let a stochastic feature-based representation (e.g. builtby a SLAM algorithm), maybe
partial and incomplete, either of the navigation area or of the local cooperative percep-
tion of the members of the robot formation, be represented bya set of geometric features
yF = {yF1,yF2, ...,yFn} known wrt a certain reference frame (not superscripted for sim-
plicity). A risk mapΓ= {γi j ; i = 1, ...,Ni; j = 1, ...,Nj} is defined as the projection of the
stochastic feature-based representation into anNi ×Nj grid-based representation (Fig.
5.1), with common base reference frame, whereγi j is therisk valueassociated to the
cell (i, j) and intuitively defined as,

γi j , Prob

(
N⋃

n=1

yFn is projected on cell(i, j)

)

(5.1)

where high risk values suggest the likely presence of eithermap features, clutter or
dynamic obstacles and therefore the existence of non-traversable areas for the robot
formation.

Real time constraints refrain from the exact computation ofthe risk values given
by Eq. 5.1 even for medium-scale environments. Thus, an approximate sample-based
strategy is adopted in subsequent paragraphs where the selected number of samples
should trade-off real-time constraints and the precision of the sample distribution in
approximating the real distribution of the stochastic feature-based representation for a
user-defined cell size for the grid-based representation. In our proposal, we use seg-
ments as features for the stochastic map and thus efficient algorithms such as [9] reduce
the computational requirements of the proposed projection.

5.2.2 Global Paths of Bounded Cell Risk

Let xR0,t0
and xR0,t f

be the probabilistic representation of the current location of the
robot leader at timet0 and its desired goal location at timet f respectively. Also,
let yF ∼ N (ŷF ,PF) be the stochastic feature-based representation of the navigation
area, wherêyF is a vector containing the estimated location of the map features
F = {F1,F2, ...,Fn}, andPF its associated covariance matrix.

A rough estimate of a safe (or traversable) pathπ (a set of reachable waypoints) for
the robot leader connecting locationsxR0,t0

andxR0,t f
is computed by anA∗-type method
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Figure 5.1: Sample risk map obtained as the projection of a stochastic segment-based repre-
sentation into a grid-based representation. The marginal probability density functions of two
features (top and right) are shown together with the associated gray-scaled risk values.

as detailed in Alg. 1. From the feature-based representation of the environmentyF ,
a risk mapΓ is computed (functionriskMap) as described in section 5.2.1. Then, the
algorithm iteratively increases the risk levelγ from null risk (γ = 0) up to maximum
risk (γ = 1) searching for safe paths in the binary risk mapΓth , thresholded at the risk
level γ (functioncomputePath).

The computation of a global path for the robot leader connecting two locations in
the navigation area could be performed off-line in criticalsituations (e.g. initialization
of the robot formation at unknown locations, loss of localization information due to
kidnapping, etc.), once recovered from the loss of an estimated location for the robot
formation1. Also, for on-line computation, the risk levelγ used for the projection of the
feature-based stochastic map into the grid-based representation could be user defined.
Under both approaches, the computed safe pathπ returned by Alg. 1 constitutes an
open-loop (using control theory terminology) solution to the path planning with uncer-
tainty problem requiring frequent replanning in real navigation tasks due to unmodelled
effects in the a priori stochastic map or the presence of dynamic objects.

1The absence of previous information suggests the formulation of this subproblem from an Extended
Information Filter (EIF) perspective. In our work, we generalize the previously reported works [62, 69]
to the team{R0,R1, ...,Rr} of r +1 vehicles
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Algorithm 1 Global path planning in risk maps
Require: xR0,t0

,xR0,t f
,yF

Ensure: π is a safe path fromxR0,t0
to xR0,t f

of bounded risk levelγ
1: Γ← riskmap(yF)
2: γ ← 0 {Initial risk level}
3: while γ ≤ 1 do
4: {Decide traversability depending on the risk level}
5: Γth← threshold(Γ,γ)
6: {Find the shortest path at this risk level}
7: π ← computePath(xR0,t0

,xR0,t f
,Γth)

8: if π 6= /0 then
9: {A plan of bounded riskγ is found}

10: return 〈π ,γ〉
11: else
12: {Goal is not reachable. Increase the risk.}
13: γ ← γ +∆γ
14: end if
15: end while
16: {The goal is not reachable at all.}
17: {Return an empty path and the maximum risk}
18: return 〈 /0,1〉
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5.3 Cooperative On-line Replanning

In wide-opened and uncluttered environments once a global path for the robot leader is
obtained, the robot followers would execute their paths, from origint0 to destinationt f ,
thanks to the links derived from the virtual spring-damper analogy of the robot forma-
tion and its commanded geometrical shape. However, in real settings frequent real-time
replanning would be mandatory to avoid unmodeled or dynamicobjects in the envi-
ronment while flexibly and adaptively maintaining the formation structure. Therefore,
local safe paths for the robot formation should be computed based on their common
understanding of the environment and a sufficiently preciselocalization of the robots.

5.3.1 Pose Tracking with Observation Improvement

Real time localization of the robot formation within the a priori stochastic map while it
executes the computed global path towards the goal can be achieved through the filter-
based pose tracking approach proposed in Chapter 4. Recalling from that chapter, after
each prediction step (section 4.3.1), robots gather a set ofobservationszk with measure-
ment noisewk ∼N (0,Rk). Data association provides a set of pairings(yFk,zk) of map
features and sensor observations related by the linearizedmeasurement equation 4.14.

As the robots in the formation usually navigate in the same area, a number of redun-
dant observations and with different levels of uncertaintycould be found. This issue is
illustrated in Fig. 5.2 for a 2D point-based feature map. In order to obtain a unified and
lower uncertainty set of observationsz′k, in this section we propose a modified update
phase of the MD-EKF algorithm presented in Chapter 4. This observation improvement
results from the inclusion of the observations in the state vector and their subsequent
association with the features of the prior map within the measurement update of the
algorithm.

Then, at time stepk, the predicted state of the robot formationxRk|k−1
is augmented

with the set of sensor observationszk gathered from all robots,

xa
k =

(
xRk

z′k

)

; x̂a
k|k−1 =

(
x̂Rk|k−1

zk

)

; Pa
k|k−1 =

(
PRk|k−1

0
0 Rk

)

(5.2)

We formulate the measurement equation implicitly so that the new observations sat-
isfy the following constraint:

fk(x
a
k,yFk) = hk(xRk,yFk)−z′k = 0 (5.3)

As usual, we approximate the measurement equation by its first order Taylor expansion:

hk(x̂Rk|k−1
, ŷFk)−zk+HRk(xRk− x̂Rk|k−1

)+GFk(yFk− ŷFk)+Hzk(z
′
k−zk) = 0

(5.4)
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Figure 5.2: Redundant observations obtained by a robot formation. The zoomed area shows
map features (blue) and robot observations (green). Observations from features not contained
in the a priori map are also considered (left-down corner). Features are observed either by one,
two or the three robots.

where

HRk =
∂ fk

∂xRk

=
∂hk

∂xRk

∣
∣
∣
∣
∣
(x̂Rk|k−1

,ŷFk
)

(5.5)

GFk =
∂ fk

∂yFk

=
∂hk

∂yFk

∣
∣
∣
∣
∣
(x̂Rk|k−1

,ŷFk
)

(5.6)

Hzk =
∂ fk

∂z′k
=−I (5.7)

Note that settingz′k = zk−wk andHzk =−I equation 5.4 derives in the explicit linearized
equation 4.14.

Following a similar derivation as in Chapter 4 we obtain the pseudo-measurement
rk , zk−ΛΛΛkzk−1 considering the augmented state vector,

rk ≃ h∗k +Ha
k(x

a
k− x̂a

k|k−1)+wrk (5.8)

with

h∗k = hk(x̂Rk|k−1
, ŷFk)−ΛΛΛkhk−1(x̂Rk−1|k−1

, ŷFk−1) (5.9)

Ha
k = (HRk−ΛΛΛkHRk−1F

−1
k−1 Hzk) (5.10)



66 5. Robot Formations in Partially a priori Known Environments

and the measurement noisewrk with covariance matrixPwrk
is given by,

wrk = ΛΛΛkHRk−1F
−1
k−1vk−1−ΛΛΛkwk−1+GFknk (5.11)

Finally, the augmented state vector is updated by

x̂a
k|k = x̂a

k|k−1+K k(rk−h∗k) (5.12)

Pa
k|k = Pa

k|k−1−K k(H
a
kPa

k|k−1HaT
k +Pwrk

+Ha
kCk+CT

k HaT
k )KT

k (5.13)

with the filter gain given by

K k = (Pa
k|k−1HaT

k +Ck)(H
a
kPa

k|k−1HaT
k +Pwrk

+Ha
kCk+CT

k HaT)−1 (5.14)

and the cross-correlation term betweenwrk andvk−1, namely,

Ck = E[vk−1wT
rk
] = Qk−1(ΛΛΛkHRk−1F

−1
k−1)

T (5.15)

which is augmented with zeros to fit the dimensions ofHa
k.

After this filter stage, the robot localization is updated asin the original formula-
tion of the measurement differencing based EKF presented inChapter 4 whereas, at the
same time, the uncertainty of the observations included in the state vector and matched
against the map features is decreased. Additionally, the result obtained for different ob-
servations of the same feature is identical as shown in Fig. 5.3. This eases the duplicate
detection and fusion process explained in the next section.

5.3.2 Cooperative Local Planning

The performance (e.g., precision, reliability and robustness) of the robot formation to
complete the commanded task profits from the close cooperation among the different
vehicles of the team emphasizing the importance of a centralized approach (at least
at selected synchronization time steps) to consistently and coherently joint the views
of the different vehicles. Of paramount importance is the availability of this jointly
coherent understanding of the navigation environment, with wider and integrated fields
of views, to increase the efficiency and optimality of the on-line replanning process.
For example, as illustrated in the experimental section, the best available path towards
the next waypoint may be hidden to the robot leader (due to itslimited sensorial field
of view) but visible to one of the followers, thus profiting the performance of robot
formation replanning.

The pose tracking technique of the previous section estimates a set of improved ob-
servationsz′k. Nevertheless, the augmented state vectorxa

k still contains a number of
redundant observations of the environment. Therefore, a duplicate detection and obser-
vation fusion procedure is performed in the leader reference frame. The geometrical
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Figure 5.3: Observation improvement after the filter update. The original measurement covari-
ances (green) are reduced to the red ones which overlap in thecase of redundant observations of
the same feature (e.g., left-upper feature). Non matched observations are not improved after this
process (e.g., left-down observations).

constraints between observed features namely,zRi
l andz

Rj
m expressed wrt the reference

frame of robotRi andRj respectively, could be formulated as,

h(xR0
Ri
,zRi

l ) = h(xR0
Rj
,z

Rj
m ) (5.16)

Subsequently, a statistical test based on the Mahalanobis distance provides jointly
consistent matchings and duplicated observations are removed from the augmented state
vector. This process is straightforward for 2D point features, since, as shown in previous
section (Fig. 5.3b), observations matched against the samemap features are identical
at this stage. In the case of higher level features, like linesegments, a merging step
would take place. Furthermore, common observations from non-mapped features (and
thus, not updated in the filtering process of previous section) included in the state vector
can also be constrained within an EKF-update step, where thelinearization of Eq. 5.16
would be used. As a result, a reduced, reliable, lower-uncertainty set of integrated sensor
observationsz′′k characterizing the common understanding of the formation environment
is obtained. Figure 5.4 shows the result obtained with this procedure in the 2D point
feature based example.

Afterwards, a local risk mapΓR0 in the reference frame of the robot leader (thus
leader-centric) is obtained by the projection ofz′′k into a grid-based representation span-
ning the joint field of view of the robot formation.

The motion planning is similar to the one outlined in section5.2 and described in
more detail in [83]. It computes a local safe pathπlocal for the robot leader inΓR0 for
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Figure 5.4: Final set of reduced-uncertainty integrated observations(cyan).

a risk levelγ. But in this case, the cost function for the A* algorithm is computed in a
different way. As a multi-leg journey, the pathπlocal is formed by an ordered sequence of
cells to be visited{c1, ...,cn} that minimizes the total weighted distance from the initial
to the destination locations, where the weighting coefficient for traveling from cellcl to
cell cl+1 is related to the risk value of the cellcl+1 and computed asαl+1= 1/(1−γl+1).
Thus, the local safe pathπlocal results from the minimization of,

πlocal = argmin
n−1

∑
l=1

αl+1dist(cl ,cl+1) (5.17)

So, the algorithm takes into account both the distance to thegoal and the accumulated
risk along the path.

5.4 System Overview

Figure 5.5 depicts the hybrid centralized-distributed architecture of our integrated sys-
tem with indication of the different modules, data flows and execution threads in the
presence of wireless RT-WMP communication. Centralized execution refers to the robot
leader thread whilst distributed execution refers to the robot followers threads.

Additionally, algorithms 2 and 3 present the pseudo-code ofthe algorithms executed
by the robot leader and the robot followers respectively. The leaderNavigationStrategy
andmoveLeaderfunctions track the local safe path resulting from Eq. 5.17 thanks to
the control strategy described in Chapter 3. Furthermore, functionsfollowerNavigation-
StrategyandmoveFollowercompute, distributively, the motion command for each robot
follower in the formation. These two functions are directlyadapted from the strategy
selection and the leader and follower strategies defined in [83]. As mentioned above,
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Figure 5.5: Overview of the hybrid centralized-distributed architecture of the reported inte-
grated system. The schema depicts modules, relations and data flows, and execution threads
(grey-shaded boxes). Data shared between different robotsrequire the use of a communication
protocol.

the trajectories of each of the members of the robot formation adapt to the structure (e.g.
confined, wide-open, etc) and dynamics (e.g. moving objects, unexpected clutter, etc) of
the navigation area maintaining the user-commanded geometry for the robot formation.

5.5 Experimental Results

In this section we report both simulated and real experiments obtained by a robot for-
mation in the presence of sensing, localization and mappinguncertainties as described
along the previous sections. We first illustrate, from a simulation-based perspective
(Player-Stage simulation environment): (i) the computation of global plans; (ii) the
adaptability of the geometric structure of the robot formation to the dynamics of the
environment; and (iii) the benefits of cooperative perception in replanning tasks. Then,
in a real setting, we show the performance of the complete integration scheme in a
navigation task commanded to a three-robot formation in an indoor scenario.
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Algorithm 2 Leader algorithm

{Algorithm for the robot leaderR0}
Require: xR0,t0,xR0,t f ,yF

π← computeGlobalPath(xR0,t0,xR0,t f ,yF)
while last waypoint ofπ not reacheddo

z← gatherObservationsFromRobots(R0, ...,Rr)
〈xR,z′〉 ← poseTracking(yF ,z)
z′′← cooperativePerception(z′)
Γ← buildLocalRiskMap(z′′)
sendIn f oToFollowers(xR)
πlocal← computeLocalPath(Γ,π)
Sleader← leaderNavigationStrategy(xR,πlocal)
moveLeader(Sleader)

end while

Algorithm 3 Followers algorithm

{Algorithm for robot followerRi}
while R0 keeps movingdo

zi ← gatherObservationsFromSensors(Ri)
sendObservationsToLeader(zi)
xR← getLocFromLeader(R0)
Sf olloweri ← f ollowerNavigationStrategy(xR,zi)
moveFollower(Sf olloweri)

end while
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5.5.1 Global Path Planning

Figure 5.6a displays a stochastic map of an office-like environment (note the sharp edges
at the top left part of the figure and blurred edges at the bottom right due to the greater
distance to the base reference frame). This map was constructed previously to the nav-
igation execution. Two possible global paths connect the initial location of the robot
formation (labelledStart) and its commanded final destination (labelledGoal): (i) a
snake-like path through a long curved corridor, or (ii) a smooth path traversing a door
(labeled in the figure) unobservable from the initial location.

As shown in figures 5.6c and 5.6d the algorithm has a significant sensitivity to the
selected risk level (0.1 and 0.05 respectively) that dramatically changes the planned
path. By setting the risk level to 0.1 the path planner selects a shorter but more risky
path (figure 5.6c) traversing the door, unobservable from the initial location and with a
significant location uncertainty computed during the priormapping stage. Conversely,
setting the risk level to 0.05 results in a more conservativestrategy, that avoids traversing
the uncertain door, with a longer but safer path (figure 5.6d)to the goal destination.

Planning a risky path from a global perspective (figure 5.6e red line traversing the
uncertain door) may lead to replanning during the execution, and therefore longer than
expected paths to the goal destination, suggested by the local planner due to the obser-
vations gathered by on-board sensors. Once the leader of theformation has reached the
top right entrance of figure 5.6f (a zoomed view of figure 5.6e), the suggested path turns
into a dead-end forcing a replanning action and therefore a much longer path.

Finally, it is worth mentioning that, given two different stochastic maps (figures 5.6a
and 5.6b) a closely related risk map (figure 5.6d) could be computed from the correct
selection of risk levels. Therefore, in a real setting, it would be difficult to differentiate
between highly uncertain open spaces and non-traversable spaces.

5.5.2 Formation Adaptability

Figure 5.7 shows a typical office-like indoor environment where a five-robot formation
is commanded to navigate from an initial location (labelledStart) towards a final des-
tination (labelledGoal). Thanks to the robot formation integrated control scheme,the
robots compliantly maintained the user-defined geometric structure (pentagon-shape in
this case) along the way.

The system computes the safest global path (in the risk map associated to the nav-
igation area) between the start and the goal locations that is dynamically updated by
cooperative replanning thanks to the different observations of the individual vehicles.
Note that vehicles align to traverse the different doors whilst they tend towards the com-
manded geometric shape in wide-open areas.
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b

Figure 5.6: Influence of uncertainty in risk-based global path planningfor the robot leader of
the formation.

5.5.3 Cooperative Online Replanning

Figure 5.8 reports the behavior of the five-robot formation in an open-door event de-
tected by one of the robot followers and transmitted to the robot leader thanks to the
cooperative perception strategy reported above. Initially, the global path planning algo-
rithm drives the robot formation from the initial location to the final location (Fig. 5.7)
through the way-pointxG1. Then, while navigating towardsxG1 a shortest path to the
goal destination appears when the labelled door (Fig. 5.7) becomes wide open but, un-
fortunately, this event occurs outside the field of view of the robot leader. Nevertheless,
cooperative replanning thanks to the common understandingof the navigation area (Fig.
5.8a) allows the correction of the previously planned path profiting the robot formation
from the short-cut to the goal.
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Figure 5.7: Five-robot formation adaptability to a simulated indoor environments. From the
individual traces of the different vehicles we observed that they compliantly maintained the
user-defined geometric structure (pentagon-shape in this case) whilst navigating through narrow
and wide open spaces towards the commanded goal destination.

5.5.4 Experiments in Real Scenarios

We have experimented with a three-robot Pioneer 3-AT formation equipped with on-
wheel encoders and SICK LMS-200 laser rangefinders with a 180-deg field of view.
Communication between the vehicles is achieved by a dedicated channel using a real
time wireless multi-hop protocol [79], which includes communication queues to avoid
synchronization failures. The hybrid centralized-distributed implementation of the com-
plete system reported computation times of the order of the laser scan cycle (aprox. 4.5
Hz) where a maximum of 100 samples have been used to compute the risk maps during
cooperative replanning. The similarity between the real and the sampled distributions
has been measured in terms of both the Kullback-Leibler Divergence (KLD) [19] and
the Normalized Estimation Error Squared (NEES) [6]: In the case of 100 samples, the
KLD equal 34,7 nats that represents a 26% improvement over 10samples and it is only
improved by 3% in the case of 1000 samples. Also, the consistency of the approxima-
tion (χ2 -test based on NEES) amounts for 98,4% for 100 samples, with an improvement
of 33,6% with respect to 10 samples, and only improved by the use of 1000 samples in
a roughly 1,5%.

Figure 5.9 illustrates the stochastic feature-based representation of a medium-size
office-like environment (aprox. 30m×40m) where the global path planner have been
executed to compute a safe path from the initial location of the robot formation (labelled
Start) towards the final destination (labelledGoal). A longer but safer path (in solid-red)
is selected by the algorithm instead of the shortest path (indashed-blue) due to the high
risk area (risk map enlarged on the left of the figure) due to the presence of clutter in the
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XG1
XG2

(a) Cooperative view (b) Leader view (c) Follower 1 view

(d) Follower 2 view (e)Follower 3 view (f) Follower 4 view

Figure 5.8: Cooperative replanning towards the goal destinationxG2 . The figure shows the
integrated field of view in the reference frame of the leader (a) and the different individual
perspective of each robot in the formation. Figure (b) showsthe erroneous path planned from
the perspective of the robot leader in the absence of cooperation with other team members.
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corridor.
Furthermore, Fig. 5.10 illustrates the real-time capabilities of the reported strategy

for efficient cooperative replanning under the event of a door-opening. As shown, a
three-robot triangular-shaped formation is commanded from xG1 towardsxG5 via the
sequence of ordered waypoints. During the execution, a door, mapped as closed in the a
priori map and outside of the field of view of the robot leader is opened and observed by
the robot followers, therefore the reported cooperative strategy replans the path towards
the goal destination skipping the waypointxG3 andxG4.

Goal

Start

Figure 5.9: Safety enhanced path planning. The algorithm favors the larger but safer path (red)
against the shortest path (red) due to the unsafe area on the middle of the corridor (risk map
enlarged on the left of the figure).

5.6 Conclusions

This chapter has reported an integrated system for robot formations working in partially
known environments.

Following the framework established in previous chapters,where we addressed the
cooperative navigation in formation and its localization within an uncertain prior map,
in this chapter we have turned our attention to path planningtasks with the goal of
achieving an autonomous robot formation system.
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Figure 5.10: Cooperative replanning in a real-world scenario. (a) A three-robot triangular-
shaped formation (solid red) is commanded fromxG1 towardsxG5 via the sequence of ordered
waypoints (solid blue line). During the execution, a door (labelled) outside of the field of view
of the robot leader is opened and observed by the robot followers (dotted red triangle), therefore
the reported cooperative strategy replans the path towardsthe goal destination (dashed blue line)
skipping the waypointsxG3 and xG4. The cooperative local maps before and after the door
opening event are shown in (b) and (c) together with capturesof the real experiment in (d) and
(e).
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We have seen the existing risk when planning through high uncertain areas, which
might correspond to non-traversable areas in a real setting, forcing a complete replan-
ning of the path to follow to reach the goal. Then, we have presented global and online
path planning strategies to limit the possibility of failure in the execution of the com-
puted plan. The cooperative perception enhances the onlineperformance by expanding
the leader field of view to new open spaces that can lead to shortening the trajectory
towards the goal.

Experimental results, both in simulation and in realistic medium-size office-like set-
tings, have illustrated the performance of the described approach by using a hybrid,
centralized-distributed, architecture with wireless communication capabilities achieving
a 4.5 Hz cycle-time for a three-robot triangular-shaped formation.





Chapter 6

Distributed SLAM for Robot
Formations using a Prior Map

Previous chapters presented a centralized algorithm to localize the robots in the for-
mation within an a priori map of the environment which remained unchanged during
the execution of the mission. In this chapter, we turn our attention to how the robots
can jointly improve this prior stochastic map in an efficientway. Additionally, we seek
to enhance the system robustness by using a distributed scheme where the computa-
tional overhead is shared by all robots. Each robot maintains its own local and global
maps which are improved with the information received when communications among
robots take place. The use of conditional independence properties allows that, after the
synchronization steps, each robot has exactly the same information about the map and
about the location of the robots at its disposal.

6.1 Introduction

In previous chapters, we have proposed an EKF-based approach to localize a team of
robots within ana priori stochastic map of the environment. The method is initially
designed in a centralized way in order to optimally integrate all observations gathered by
the robots and to have a global vision of the system. However,the whole system heavily
relies on the robot leader, which is not exempt from failures, and demands constant
communication between robots to maintain their positions updated.

In order to improve robustness and scalability of the system, in this chapter we
move towards a distributed paradigm in which each robot of the formation is able to
localize itself in the previous map. Additionally, in this chapter we propose the robots
coordinately improve the given stochastic map turning our goal into solving a distributed
multi-robot SLAM problem.

To this end, in this chapter we present a novel and efficient algorithm where each

79
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robot updates its own copy of the prior global map by sending/receiving local infor-
mation to/from the rest of the team. Our distributed estimation algorithm is described
in terms of a Gaussian Markov Random Field (GMRF) which allows us to analyze the
conditional independence (CI) properties of the problem toachieve high efficiency [7].
The application of the CI property in the algorithm is twofold. On the one hand, the
robots in the formation only need to constantly update the local region in which they
move whereas global updates can be postponed reducing computational cost [72]. On
the other hand, robots do not make observations of each otherin our system but get
indirectly related by observing common map features. The load in the communication
channel is then reduced since each robot just sends an information summary of features
observed since last communication. As a result, the algorithm proposed does not rely
on a central server improving flexibility and robustness andreduces the computational
and communication requirements at each step. Moreover, it is shown that, in a linear
filtering context, the resulting decoupled method producesthe exact results than using
only one filter. In this chapter, we use the Extended Information Filter (EIF) as the core
of the distributed algorithm such that after all messages are sent/received each robot’s
estimate is equal to the centralized solution.

Distributed localization can also be addressed if a map is not available to the robots.
For example, in [4], a decentralized EIF algorithm to jointly localize a team of robots is
presented. Each robot integrates its own data and cooperative localization is performed
through inter-robot measurements fused by a central serverwhich can be replicated in
each robot for robustness. In [76], the equations of a centralized EKF are decoupled and
distributed among the robots who share their information when they see each other and
in [63] the distributed localization is formulated as a Maximum a Posteriori problem.
Unlike these previous works and as we did in previous chapters, we assume the robots
do not have the capability of detecting each other and cooperative localization is not
achieved by the use of inter-robot measurements but throughobservation of features
from a common prior map.

One typical problem affecting distributed systems is thedouble countingof infor-
mation (also known asdata incest). This problem arises when the data sent through
the network is not properly managed and is integrated more than once by the robots.
To solve this problem, the Channel Filter (CF) is introducedin [30]. The CF prevents
double-counting of information by using a tree communication topology (i.e., with no
loops) and by keeping a record of the information transmitted over the communication
channel. The transmission of information in our algorithm is similar to this filter but
we avoid double-counting by synchronizing the transmission of messages. The main
difference with that work is that we implement in addition anefficient algorithm to up-
date the state vectors of the robots by postponing global updates without introducing
approximations.

In the same multi-robot context, recent works also address the distributed SLAM



6.2. Problem Statement 81

problem. In [54] each robot computes its own centralized-equivalent estimate of the sys-
tem using the odometry and measurements that have been received from other robots. In
[14] a Rao-Blackwellized Particle Filter is implemented asestimation kernel that works
in simple scenarios with unknown initial correspondences.Each time a pair of robots
communicate they have to calculate their relative transformation and interchange all the
information gathered since the last meeting. The work presented in [64], copes with
bandwidth communication requirements, in such a way that each robot selects a set of
features with the greatest information gain to be sent. To avoid the double counting in-
formation problem, they combine an EIF with the ConvarianceIntersection algorithm,
a sub-optimal filter which guarantees consistency althoughyielding pessimistic esti-
mates. In contrast to these works, in our approach the robotsonly communicate their
positions and the new local information gathered since lastsynchronization using small
local matrices that reduce the communication bandwidth.

The rest of the chapter is organized as follows: Section 6.2 describes the main steps
and notation of our distributed localization and mapping algorithm for robot formations
with a prior map. Section 6.3 makes use of the CI property to reduce the computational
cost for each robot when working on a local region of the global map. Section 6.4 is
devoted to explain the message passing protocol which also takes into account the CI
property. The complete distributed localization and mapping algorithm is described in
section 6.5 together with a computational and communication complexity analysis. In
section 6.6 the results of the testing experiments are presented.

6.2 Problem Statement

Given a previously built feature-based stochastic mapxF , our goal is to localize a for-
mation ofr +1 robots in it while improving the map estimate. The robot formation and
the map are given by[xT

R
xT
F
]T , wherexR = {xRj | j = 0. . . r} contains the location of the

team of robots.
A naive approach to update the joint estimate is to use a centralized method where a

leader fuses all the odometry and sensor measurements gathered by the rest of the team.
Instead, in this chapter we implement a distributed algorithm in which each robotj esti-
mates its own posexRj and updates its own estimate of the mapx j

F
. Robots periodically

broadcast the map information acquired since their last synchronization together with
their position to maintain the shape of the formation while navigating towards the goal.
During the periods of lack of communication, each robot predicts the position of the
rest of the team based on its knowledge about the formation structure. The advantage
of this distributed strategy over the centralized one is that the system becomes more
robust since each robot keeps an estimate of its position andthe global map and does
not depend on the availability of a central server or constant communication with the
rest of the team to maintain the shape of the formation.
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The efficiency of the algorithm proposed in terms of computational cost and com-
munication bandwidth is based on the following two ideas:

1. In order to reduce the computational cost, the prior mapxF is divided into local
working areas. While the formation traverses a local regionxFl each robot updates
the features in it using the measurements gathered at each step whereas the rest
of the mapxFg is not modified. When the formation moves to a new local area
all robots update the previous unmodified featuresxFg, assign the new set of local
landmarks toxFl and repeats the same procedure. Since the number of features
in a local region is bounded, this algorithm maintains a constant computational
costO(1) when working in a local area. In addition, we will show that the map
estimate obtained is the same as if we had been working with the whole map.

2. When working in a local region, robots send messages to each other at synchro-
nization steps to improve their own local estimates by usingthe information gath-
ered by other members of the team. During these synchronization steps, we as-
sume all-to-all communication availability. Instead of transmitting raw measure-
ments, robots send information matrices of the features observed since last syn-
chronization reducing the amount of information on the communication channel.
After each synchornization step, each robot has the same information such that
the map estimates coincide with the one obtained using a centralized version, i.e.
x j
F
→ xF | j = 0. . . r.

Previous ideas are based on the Conditional Independence (CI) property of the vari-
ables involved in the estimation. In section 2.2.2 we give a brief and intuitive review
of this property which will be applied in the explanation of the two following sections.
Along each description we will make use of a MRF similar to Fig. 2.4 to help the reader
recognize the CI property.

6.3 Local Estimates and Global Updates

In this section we focus on how each robot works in a local region and is able to update
the prior map. At instantk, the state vector for a robotj is given byxT

j ,k = [xT
Rj,k

xT
F
]T , i.e

the current robot position and the estimate of the map. During this explanation we will
omit the robot indexj to simplify the notation. We assume a multivariable Gaussian
distribution on the state vector described by the information vectorik and matrixI k.

In order to work in local regions with a consistent procedurefor global map updates,
we distinguish three operations: GlobalToLocal, Local EIFand LocalToGlobal. We will
use the Gaussian Markov Random Field (GMRF) in Fig. 6.1 to show the application of
the conditional independence property in these operations.
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Figure 6.1: GMRF of the individual robot estimation process. The local map corresponds to
elements inside the shadowed region. Since there is no link between robotxRk+p and features
Fg, the initial robot position at instantk and the local featuresFl = {F4 . . .F9} make the robot at
instantk+ p conditionally independent of map elementsFg = {F1 . . .F3,F10. . .F12}. To easily
verify the CI property node colors have been selected to match those in Fig. 2.4. Also, the
common separator is surrounded by a dash line.

6.3.1 Global to Local

The prior map of the example depicted in Fig. 6.1 is composed by feature elements
xF = {xF1 . . .xF12}. Notice that features are already connected since they comefrom
a prior map estimation. For a clear representation, the GMRFin Fig. 6.1 is simpli-
fied by dropping some inter-feature links. Instead of working with the whole mapxF
we want to work in the local region shadowed in the figure. At instantk, the robot
xRk is about to enter to this local region from an already updatedglobal map whose
information matrix and vector are given byI k and ik respectively. The new local state
vector will be xl ,k = [xT

Rk
,xT

Fl
]T formed by the current robot position and the feature

subsetFl = {F4 . . .F9}. Features that are not in the local region correspond to elements
Fg = {F1 . . .F3,F10. . .F12}. To obtain the local regionxl ,k we just marginalize it from
the joint distribution as shown in Eq. 6.1,

p(xRk,xFl ) =
∫

p(xRk,xFl ,xFg)dxFg (6.1)

For Gaussian distributions the marginal is given by the Schur complement [7], ob-
taining the local marginal informationiml ,k, I

m
l ,k from the global stateik, I k as it is shown

in Algorithm 4. A copy of this marginal at instantk is stored for future use in the
distributed algorithm.

6.3.2 Local EIF

While operating in the local regionxl the robot just carries out a standard EIF algorithm
[88] in which the initial robot pose is kept in the state vector (i.e. xRk is not marginalized
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Algorithm 4 (Im
l ,k, i

m
l ,k) = GlobalToLocal (I k, ik)

I k =

(
I l I lg

Igl Ig

)

, ik =
(

i l
ig

)

(6.2)

{ Marginalization of local submap elements from the global state}

Im
l ,k = I l − I lgI−1

g Igl (6.3a)

iml ,k = i l − I lgI−1
g ig (6.3b)

{ Return Marginal distribution at instant k}

out). Then, afterp stepsxl ,k+p = [xT
Rk+p

,xT
Rk
,xT

Fl
]T and the probability distribution of the

global map can be factorized as follows:

p(xRk+p,xRk,xF |z1:k+p) = p(xFg|xRk+p,xRk,xFl ,z1:k+p)p(xRk+p,xRk,xFl |z1:k+p) (6.4)

The second factorp(xRk+p,xRk,xFl |z1:k+p) corresponds to the probability distribution of
the local region. Notice that there is no direct link betweenxFg andxRk+p in Fig. 6.1
therefore the first factor can be simplified by using the CI property as follows:

p(xFg|xRk+p,xRk,xFl ,z1:k+p) = p(xFg|xRk,xFl ,z1:k) (6.5)

Consequently, when the robot performs the move-sense localcycle, the global part
xFg remains conditionally independent of the current local robot xRk+p and the new ob-
servationszk+1:k+p that have been gathered in the local region and therefore does not
require continous updates.

6.3.3 Local to Global

When the robot is about to change to a new local region at stepk+ p, it first updates the
elements of its total mapik andI k. We take advantage again of the fact that the new local
information acquired during lastp steps only affects the elements that correspond to the
local region. Therefore, features inxFg are conditionally independent of measurements
zk+1:k+p (Eq. 6.5). In terms of EIF, this statement allows us to easilyrecover the new
information given byInew

l ,k+1:k+p, i
new
l ,k+1:k+p (Algorithm 5, Eq. 6.6) from the subtraction of

the current local map at instantk+p and the local map at instantk augmented with zeros
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at the position of robotxRk+p to fit the dimensions. This information is finally added to
ik andI k, the global state at stepk, to update the total estimate. Equation 6.7 shows this
operation where⊞ is the operator in charge of adjusting the dimensions of the matrices
and vectors for a coherent addition of information to the common local elements. Once
the total estimate is updated, we marginalize out the oldestrobot positionxRk. Similarly
to Eq. 6.3, we use the Schur Complement to perform the marginalization.

Algorithm 5 (I k+p, ik+p) = LocalToGlobal (Im
l ,k, i

m
l ,k, I

m
l ,k+p, i

m
l ,k+p, I k, ik)

{ Information due to the measurements obtained during last p steps}

Inew
l ,k+1:k+p = Im

l ,k+p− Im
l ,k (6.6a)

inew
l ,k+1:k+p = iml ,k+p− iml ,k (6.6b)

{ Global Update: adding new information}

I k+p = I k⊞ Inew
l ,k+1:k+p (6.7a)

ik+p = ik⊞ inew
l ,k+1:k+p (6.7b)

{ MarginalizexRk out, the oldest position}
(I k+p, ik+p) = marginalizeOut(xRk, I k+p, ik+p)
{ Return Global state vector at instant k+ p}

6.4 Passing Messages between the Robot Formation

We will make use of the CI property to efficiently send and receive update messages
between the team of robots. The key idea is that as the robots do not observe each other
they just get related by measurements of common map features. This indirect relation
means that the robot formation is CI given the map. Formally,this insight is represented
by the following equation:

p(xR0,k, . . . ,xRr,k|xF) = p(xR0,k|xF) . . . p(xRr,k|xF) (6.8)

In Fig. 6.2 we can see a small example that illustrates this property. In the example (fi-
gure left) three robots use information of their individualodometry to move from instant
k to k+1. They also get connected to some map features given the observations at both
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Marginalizing

old poses out

Figure 6.2: GMRF of the robot formation. The example shows three robots that make obser-
vations of some map features during two consecutive steps. Robots are only related through the
features, i.e. they are conditionally independent given the map (green nodes). Previous robot po-
sitionsxRj,k but the first one are marginalized out (left). Red, blue and yellow nodes are separated
by green nodes and therefore they are CI as in Fig. 2.4.

steps. Since we are using a filtering paradigm, robot positions atk are marginalized out
creating a new clique [26] with all the elements that were connected to them. The result
is a new graph (figure right) that links the current positionswith map features. Observe
that there are no direct links between robots, that is, the robot formation is CI given the
map. In subsequent steps this property remains.

In order to obtain the same estimation as in a centralized system, robots are syn-
chronized periodically and broadcast the new information gathered since the last syn-
chronization. From the point of view of a robot, the synchronization is based on two
steps: first, the robot broadcasts its own information to therest of the team; second, it
receives messages from the other members of the formation. We explain these steps in
the following subsections.

6.4.1 Send Messages

Algorithm 6 details the operations performed to send a message from robot j to the
formation. Suppose that at times a synchronization occurred and the estimate kept by
each robot is updated and coincides with the one obtained in acentralized system. From
this recently updated estimate, robotj calculates the marginal of the featuresIm, j

F ,s and

im, j
F ,s.

When a new synchonization step takes place ats+ p the new map information ga-
thered by the robot since last synchronization is calculated. This new information will
be the difference between the feature marginals ats+p ands. Equation 6.9 in Algorithm
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Algorithm 6 sendMessages(I j
s+p, i

j
s+p)

Im, j
F ,s, im, j

F ,s { Feature marginal of robot j stored from last synchronization at instant s}

(Im, j
F ,s+p, i

m, j
F ,s+p) = marginalizedOut(xRs+p , I

j
s+p, i

j
s+p))

Inew, j
F ,s+1:s+p = Im, j

F ,s+p− Im, j
F ,s (6.9a)

inew, j
F ,s+1:s+p = im, j

F ,s+p− im, j
F ,s (6.9b)

broad
ast(Inew, j
F ,s+1:s+p, i

new, j
F ,s+1:s+p)

Algorithm 7 receiveMessages()

for r 6= j do
I r,m
F ,s+p, ir,m

F ,s+p { Feature Marginal received from robot r}

I j
s+p = I j

s+p⊞ I r,m
F ,s+p

i j
s+p = i j

s+p⊞ ir,m
F ,s+p

end for

6 shows this operation. The subtracted information is finally broadcasted from robotj
to the rest of the team.

6.4.2 Receive Messages

Algorithm 7 details the operations carried out when messages are received to update the
map of robot j. As robots are CI given the map, the information sent to robotj only
affects its feature elements in the information matrix and vector and therefore can be
directly added by using the operator⊞, as it was explained in subsection 6.3.3. After
these operations, all robots share the same information about the map.

6.5 Distributed Localization and Mapping Algorithm
for Robot Formations

In this section we combine for each robot the techniques described in sections 6.3 and
6.4. On the one hand, the formation works in a local region of the map to reduce
the computational cost. As the robots navigate relatively close in the formation they
are localized in the same submap. On the other hand, each robot maintains its own
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Algorithm 8
mapChange= f alse
while (k< nsteps) do

(iml ,k, I
m
l ,k)=GlobalToLo
al(ik, Ik)

while not mapChangeand (k< nsteps) do
(iml ,k+1, I

m
l ,k+1,mapChange)=Lo
alEIF(iml ,k, I

m
l ,k)

if mapChangeor checkSinc() then
sendMessages(iml ,k+1, I

m
l ,k+1)

re
eiveMessages()
sendPositionToFormation()
re
eivePositionsFromFormation()

end if
k= k+1

end while
{ After p local EIF steps, a global update takes place}
(Ik+p, ik+p)=Lo
alToGlobal(Im

l ,k, i
m
l ,k, I

m
l ,k+p, i

m
l ,k+p, Ik, ik)

end while

estimation and is in charge of its own observations to updatethe map. From time to time,
the robots get synchronized to obtain the same map estimate.At these instants, each
robot also broadcasts its best estimated position to maintain the formation structure.
Notice that, after a synchronization, the estimated pose ofthe formation and the map
coincide with that of a centralized version.

Our distributed method for each member of the robot formation is presented in Algo-
rithm 8. First, the robot is localized in a local working region (GlobalToLocal). While it
remains in the same region (mapChange= f alse), the standard EIF operations are car-
ried out to estimate its position and features location but without marginalizing out the
initial position of the robot in the submap (LocalEIF). Based on the knowledge about
the formation structure and using the spring-damper approach described in chapter 3
as navigation strategy, each robot is able to predict the position of the rest so that the
robots do not stop navigating in formation towards their goal in absence of commu-
nication. If a synchronization eventcheck_syncis registered (e.g. after a determined
period of time, or when a robot makes a request, etc.), an exchange of messages takes
place to update the states of the team with the same information. Also, when the for-
mation changes to a new local region (mapChange= true), the robots synchronize to
update its total map and another iteration of the main execution loop is realized. The
new information that each robot receives about the featureswill affect its own position
estimation. For this reason and to update their knowledge about the formation, each
time there is an exchange of messages, each robot sends its improved position to the
rest of the robots (sendPositionToFormation) and receivesthe information from the rest
(receivePositionsFromFormation).
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6.5.1 Computational and Communication Complexity Analysis

While each robot is working in its own local submap, it performs the LocalEIF algo-
rithm. The computational cost of this filter depends on the number of features in the
submap. Since we are not adding new features to the map, the number of features re-
mains constant and the cost will beO(1) while working in the local region.

When a change of submap is carried out, there are two operations involved, Local-
ToGlobal, to update the global map, and GlobalToLocal, to extract a new region of the
map. As it was explained in section 6.3, the operation LocalToGlobal consists in adding
the new information to the global map, therefore, its cost isO(1). In GlobalToLocal, we
find the most costly operation of Algorithm 8, where we have toinvert almost the whole
map, (Eq. 6.3), leading to a cost ofO(n3) in the worst case, beingn the fixed number
of features of the prior map. Unlike other algorithms, this operation only takes place
at each map changing step. As it was studied in [68], there exists a trade-off between
the size of the local maps and the frequency with which the robots need to change of
submaps. If the submaps are small, global updates will be more frequent, but, on the
other hand, larger submaps will increase the computationalcost of local updates.

Concerning the communication, the total amount of information to be sent to other
robots is bounded to the number of features in the local map. Since each robot broad-
casts the new information added to the submap to the rest, thecommunication comple-
xity scales with the number of robotsO(r +1).

6.6 Results

Through the following simulation results we want to show theadvantages of the dis-
tributed submapping algorithm proposed in this section. Wehave designed a simulation
environment of 30x30m where three robots set in a triangle formation have to navigate
along a 120m loop scenario (Fig. 6.3). Each robot has a prior stochastic map of the
navigation area divided in submaps of 10x10m. The current local regionxFl is common
to all the robots and is selected depending on which featuresare being observed by the
robots, thus, this local region can be composed of several submaps.

One of the main advantages of this algorithm is the improvement of the given
stochastic map where uncertainties and errors of the map features decrease. This can
be seen in Fig. 6.3 and in its zoomed area (Fig. 6.3b), where the previous and the final
map features are depicted. Additionally, Fig. 6.4a shows the improvement in the map
features errors measured in terms of the Root Mean Squared Error (RMSE).

As a direct consequence of the map improvement, the robots are localized more ac-
curately. Figure 6.4b shows the RMSE obtained on each component of the localization
of the robot formation. We also compare this result to the RMSE error obtained when
the map is not refined and the formation is only localized within the prior map using the
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Figure 6.3: 2D Point-based stochastic map of the simulation environment. (a) Initial setting
of the formation and current local region where local map features and submap bounds are
depicted in red. The area inside the black box is enlarged in (b) which shows the reduction of
the covariances (blue) with respect the a priori map (grey).Black dot in the zoomed in area
represents the ground truth of the feature.

algorithm proposed in chapter 4.

The next advantage concerns the computational cost. Three different implementa-
tions have been compared. First, the submapping and distributed technique proposed in
this section (Dist+sub) where each robot updates its own local and global maps based on
its own observations and synchronizes with the other robotsto obtain a better estimation.
Second, a centralized version of the submapping technique (Cent+sub) based on [72],
where the robot leader is the one who updates the local and global maps using the ob-
servations gathered by all the robots. Finally, a centralized EKF-based version in which
the leader does not work with local maps but only with the global map (Cent+glob).

Figure 6.5a shows a comparison between the first (Dist+sub) and second version
(Cent+sub). We have supposed the worst case time complexityfor the first implemen-
tation in which the formation synchronizes at each time stepand an additional time per
step appears due to the execution of the send-receive operations. However, the cost of
the map update in the distributed version (green line) is lower, resulting in a less time
complexity with respect to the centralized implementation(red line). Peaks in the times
are due to global updates, where Algorithms 4 and 5 are executed.

In Fig. 6.5b, the computational cost of the first (Dist+sub) and the third version
(Cent+glob) is depicted. We can see how even when a global update occurs, the times
of the distributed implementation are lower than the globalversion. We can also ob-
serve that, since we are not adding new features to the map, the cost of the global EKF
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Figure 6.4: Root Mean Squared Error of the map features and the robot formation. (a) Compar-
ison between the RMSE per feature in the a priori map and in thefinal map. In the a priori map,
maximum errors are due to far features wrt the base referencewhile the minimum errors are due
to features involved during a loop closure event or those that are near to the origin. After running
the proposed SLAM algorithm, the error is more balanced in the whole final map. (b) Evolution
of the RMSE error of all the robots of the formation along the simulation. The errors on the
position components obtained when the formation navigateswhile refining the prior map (blue)
are lower than if the map is not updated (grey) and only the localization algorithm proposed in
chapter 4 is used.

mapping remains approximately constant. In the distributed implementation, the times
are also constant while working in the same submap, but thesetimes change depending
on the number of features of the submaps (e.g. time at instant2250 and at instant 2500).
Note that, in a real experiment, an additional time would have to be considered in both
cases, due to the data association process. In the global centralized EKF mapping, the
leader would perform this task by matching all the observations from all robots, thus,
this time would be proportional to the number of robots and observations whereas in the
distributed version, this time would only depend on the number of observations.

Finally, we want to emphasize that the result obtained with the distributed submap-
ping method proposed in this section is equivalent to the result obtained in a centralized-
global mapping implementation. Each time the robots perform a synchronization, they
will obtain the optimal solution (i.e. equivalent to the centralized). In Fig. 6.6 we show
the consistency ratio NEES/χ2

r,1−α , r = dim(xFl ) of the local map features when robots
synchronize every 10 time steps. We can see how, while there is no synchronization,
NEES for each robot’s features is different, but when a synchronization occurs the so-
lution obtained is equal to the centralized. Besides, the estimation of the map features
is consistent, since the ratio NEES/χ2

r,1−α ≤ 1.
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Figure 6.5: Comparison of times between different implementations. (a) Times per step for
the centralized and distributed submapping implementations. Worst case where robots synchro-
nize at each step is shown. For that reason, synchronizationtime (blue), which affects to the
distributed implementation, is never zero. (b) Time comparison between the global centralized
and the submapping distributed implementations. Synchronization messages are transmitted at
every step.

6.7 Conclusions

In this chapter we have proposed a distributed estimation algorithm within the stochastic
framework presented in previous chapters for robot formations. Using a prior map of
the environment, our method efficiently tackles the localization of the robot formation
at the same time the map is improved with new observations.

The proposed algorithm does not rely on a central server improving flexibility and
robustness. This is achieved by describing the distributedestimation problem as a
GMRF, which allows us to take double advantage of the CI properties to reduce the
computational and communication requirements: as first result the formation only ex-
perience constant updates whereas global updates are postponed until a new local region
transition takes place; a second cost reduction is achieveddue to the fact that robots only
get indirectly related through the observation of common map features.

In consequence, the load in the communication channel will only scale linearly with
the number of resources since each robot broadcasts only an information summary of
features observed from the last robot formation communication. The algorithm results
show an accuracy improvement of the a priori map, being the final result equivalent to
the one obtained in a centralized implementation with a lower computational effort.
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Figure 6.6: Consistency ratio NEES/χ2
r,1−α of the features in the centralized (black) and the

distributed (the three blue lines, one for each robot of the formation) implementations. In the
zoomed area, red boxes correspond to synchronization times(every 10 time steps) where cen-
tralized and distributed results are exactly the same. If synchronizations occurred at every time
step, the three blue lines would coincide with the black line.
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Chapter 7

Multi-Robot SLAM using Condensed
Maps

This chapter describes a graph-based SLAM approach specifically designed to address
the communication and computational issues that affect multi-robot systems. The pro-
posed method utilizes condensed measurements to exchange map information between
the robots. These measurements can effectively compress relevant portions of a map in
a few data. This results in a substantial reduction of both the data to be transmitted and
processed, that renders the system more robust and efficient. As documented by the si-
mulated and real world experiments, these advantages come with a very little decrease
in accuracy compared to ideal (but not realistic) methods that share the full data among
all the robots.

7.1 Motivation

In previous chapters, we have presented multi-robot localization and SLAM algorithms
based on filtering techniques, aiming at taking advantage oftheir speed properties. Un-
der the assumption of working in a common previously built map, the system could be
represented with respect to the same base reference and eachrobot had a good guess
about the location of the rest of the team. The use of map features for a compact repre-
sentation of the environment reduced the communication overload. However, frequent
sychronizations were required to maintain coherency in both centralized and distributed
algorithms. Developed in the context of robot formations, communications between
robots could be guaranteed as they move nearby. However, this context is not suitable
and can not be straightforwardly extended to more general multi-robot systems where
robots explore different areas of the environment and they meet only occasionally.

In this chapter we propose a general multi-robot graph-based SLAM approach to
build a dense map of the environment without prior map knowledge nor assumption on
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the robots connectivity. As we already introduced in chapter 2 the single-robot graph-
based SLAM problem involves to construct a pose-graph whosenodes represent robot
poses and in which and edge between twho nodes encodes a sensor measurement that
constrains the connected poses. One such graph is constructed by afront-endalgorithm,
the estimation process is simplified to the problem of findinga configuration of nodes
maximally consistent with the measurements. This requiressolving a large error mini-
mization problem which is often done by means of modern least-squares optimization
approaches, also calledback-endsin the SLAM context. This least-squares minimiza-
tion problem can be re-evaluated at each time new information is incorporated into the
graph, providing a enhanced performance with respect to filtering techniques.

In principle, using multiple robots to acquire the map is more robust, since the failure
of a single system does not necessarily compromise the wholeresult. Furthermore, the
parallel acquisition of data by multiple robots might result in less time needed for build-
ing the map. Despite these attractive properties, multi-robot systems for SLAM presents
substantial challenges of both theoretical and practical nature. Ideally, existing algo-
rithms for single-robot graph-based SLAM could be extendedto handle the multi-robot
case just by constructing and optimizing the graph based on all measurements gathered
by the robots. Unfortunately, such an approach presents several challenges. First, de-
termining constraints between pairs of robots’ graphs requires a re-localization scheme
without any initial guess. This might dramatically increase the chances of adding wrong
edges to the graph, and would compromise the entire process.Second, assuming to have
an ideal error-free front-end, the graph obtained by each robot would rapidly increase
its size. In the worst case, each robot would add a set of edgesto the graph with a
quadratic dependency on the number of robots. Consequentlyit would limit the on-line
performance of any state-of-the-art optimizer whose complexity roughly increases with
the number of edges.

Furthermore, the above scenario assumes the robot can perfectly communicate with
each other, which is typically not the case. Wireless communications in large environ-
ments are usually brittle and depend on the positions of the nodes. Furthermore they
present bandwidth limitations, that would prevent the robots to share large amounts of
data.

In this chapter we propose an approach for multi-robot SLAM that addresses the is-
sues raised above. The method is designed to operate with very limited communication
facilities and allows to dynamically add and remove robots from the system.

Each robot in the team computes its own map, but it refines it byintegrating a set
of virtual or condensed measurements[31] coming from the other robots. These con-
densed measurements can be seen as a reduced version of the graph constructed by the
other robots, that contains only the information relevant to the receiver in order to re-
fine its own map. They are easily managed by the optimization back-end and allow to
substantially reduce the size of the optimization problem that each member of the team
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(a) Map robot 1 (b) Map robot 2

(c) Map robot 1 + condensed graph from robot 2 (d) Final global map

Figure 7.1: This figure illustrates a motivating example of our approach. Two robots cooperate
to construct a map of a building containing a loop of 250m. (a), (b) Each robot is in charge of
mapping one part of the large loop. Due to the lack of enough observations robot 1 commits a
big error and fails in the estimation of its part of the loop ((a), red square). However, it meets
and localizes robot 2 at two points of its trajectory ((a), blue squares) who sends a compressed
version of its map that contains measurements relating these two locations. (c) When robot 1
adds these measurements (blue edges) to its map, it improvesits estimation. (d) Since the maps
become interconnected, we are able to reconstruct the global map by merging the individual
maps and optimizing them together.

has to solve, thus increasing the efficiency. In order to localize a robot in any other
robot’s graph with high presence of outliers, we propose a robust voting approach that
substantially decreases the chances of wrong data associations and loop closings. The
system has been tested both on real robots and on simulated environments. Figure 7.1
illustrates a motivating example of the approach.

7.2 Related Work

Graph-based optimization algorithms have become the most successful techniques to
solve the full SLAM problem due to their improved performance which has motivated
their use in the multi-robot context. In [24] we can find the first comprehensive graph-
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based approach to distributed SLAM with landmarks. The algorithm uses a multifrontal
QR factorization in which no measurements are communicatedbetween robots or robots
and a server. Instead, the communication is limited to QR update messages, which con-
dense the entire measurement history on the individual robots into small upper trape-
zoidal matrices. The data association problem is not considered and the measurements
are processed off-line for each robot. In [1] the authors present a Collaborative Smooth-
ing and Mapping (C-SAM) algorithm to build a joint map from a team of robots without
initial knowledge of their relative positions. Therefore C-SAM does not present a proper
distributed SLAM solution but a centralized version of the problem. Only simulated re-
sults are provided in the paper. A recursive solution for multi-robot pose graph SLAM is
presented in [43]. The main novelties of this approach reside on its incremental nature,
i.e. the solution does not depend on a batch optimization after all measurements are
taken, and on the introduction of anchor nodes that allow each robot to use its own ref-
erence frame whereas inter-robot measurements and graphs obtained from other robots
can be easily managed in the same framework. Therefore in each encounter the robots
interchange their graphs which do not need to be transformedto a common frame since
can be tackled using the anchor nodes. The paper does not takeinto account any issues
of communication bandwidth constraints between robots.

The closest approach to our proposed method is presented in [20] and [21]. The au-
thors address in [20] the multi-robot problem with an extended Smoothing and Mapping
approach called Decentralized Data Fusion (DDF) which is represented using a factor
graph. Each robot optimizes its own trajectory and its landmark map and then creates
a condensed mapformed exclusively by the marginalization ofcommon landmarks.
These condensed maps are mutually interchanged among neighboring robots to create a
simplified neighborhood graph of landmarks that is optimized by each robot. To correct
the local map with the information obtained from the optimization of the neighborhood
map a set of hard equality constraints are established between each neighborhood land-
mark and its corresponding local version. In summary, robots get mutually connected
by sending graph nodes of shared features that must be hard-linked with their corre-
sponding local representations. In [21] the work is extended with a novel multi-robot
data association method for robust decentralized mapping.The data association is based
on a triangulation algorithm that provides matching between maps.

Our multi-robot SLAM system is based on the concept ofcondensed measurements
[31] which were introduced in section 2.5.1. During map construction, robots meet and
exchange data in different parts of the environment. The messages are governed by a
protocol explained in detail later in this chapter and results in each robot augmenting its
pose graph with a measurement about the relative position ofthe encountered partner.
After the first encounter, each time a pair of robots meet theyadditionally interchange a
set ofcondensed measurements, which is just a factor graph of the shared variables ob-
tained from an approximation of their respective global graphs at the equilibrium. The
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advantages of this approach are three-fold: 1- Each robot only carries its own graph that
gets minimally augmented whenever an encounter with other robot of the team takes
place; 2- The mutual influence between the team of robots is easily tackled by using the
condensed measurementssince only new virtual factors (edges in the graph) between
the shared nodes must be taken into account in the optimization process; Neither spe-
cial constraints nor different graph representations are required. 3- The communication
bandwidth is efficiently used since a summarized (condensed) representation of the re-
quired constraints is transmitted between robots. In addition, we propose a technique
to robustly find alignments between local maps. This technique is used to find loop
closures or alignments between local maps from different robots.

7.3 Condensed Graphs

Recall from section 2.5.1, in pose-graph based SLAM we are interested on determining
the robot positionsxR0:K along its whole trajectory. The problem is modelled with a
graph where each nodexi represents a robot positionxRi and each edge encodes a mea-
surementzi j relating a pair of nodes(xi,x j) whose uncertainty is characterized by the
information matrixΩΩΩi j . Then, the problem is formulated as a nonlinear least squares
optimization problem to find a configuration of nodesx∗ which minimizes the overall
error:

x∗ = argmin
x

∑
〈i, j〉∈C

eT
i j (xi,x j)ΩΩΩi j ei j (xi,x j) (7.1)

whereei j (xi,x j) represents the error between a measurementzi j and the expected mea-
surement given the current configuration of nodes:

ei j (xi,x j) = g(xi,x j)−zi j (7.2)

In our case,g(xi ,x j) is the measurement function that computes the position and orien-
tation ofx j in the frame ofxi :

g(xi,x j) = x j ⊖xi (7.3)

To solve this problem, modern optimization approaches likeg2o [47] or iSAM [42]
require a time that depends on the number of edges, and their success in finding the
correct solution is affected by the initial guess availableto the system. In the single
robot case, this initial guess is typically good, since the robot can rely on an estimate that
is constructed incrementally, and that at each point in timecontains all the information
acquired so far. Conversely, in the multi-robot case it might happen that when two
robots meet and want to share their map, the individual estimates are affected by a large
error. Furthermore, to carry out the optimization by using one of these approaches, the
two robot would have to share their entire graph, which is potentially large.
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Figure 7.2: In this figure, we illustrate the use of condensed measurements to share information
between two robots. The graph of robotA is illustrated in red and the graph of robotB is
illustrated in blue. Red edges show the measurements between nodes of the robotA’s graph and
the RobotB’s graph. Instead of sending to robotA all its graph, RobotB sends a condensed
version, consisting of a central node (gauge,xg), and a set of condensed factors connecting the
gauge with each of the nodes (xi , i = 1...n) seen from robotA. Notice thatxg can also be selected
from the nodes already seen by robotA.

To lessen this problem, in this chapter we propose an alternative approach based on
condensed measurements [31]. When two robotsA andB meet, they share a reduced
graph so that each robot receives from the other only the information needed to refine
its own estimate. Figure 7.2 intuitively illustrates this process. Let us assume that robot
A has observed a set of nodesxi , i = 1...n from robotB’s graph. In order to optimize its
own graph, by taking into account the information fromB, robotA should know how
these shared nodes are related in the space. This information is clearly contained in the
graph ofB, but it is too large to be sent over the network. Instead of sending the full
graph,B sends a “condensed” version that has substantially less nodes, but that captures
the information necessary toA to perform this optimization.

The condensed graph will be composed of the nodesxi from robotB’s graph and
a set of condensed measurements relating those nodes. The process to compute the
condensed measurements is the following:

• We select an arbitrary nodexg from the nodesxi of robotB’s graph. This node
is fixed as the origin (gauge) of the graph which is optimized to obtain a local
solution with respect to the gauge.

• Once we have a minimal error configuration for the graph of robot B, we compute
a set of condensed measurementszi betweenxg and each other nodexi . Follow-
ing the procedure explained in section 2.5.1 and using the error function 7.2 we
characterize each measurement by its mean and information matrix. To this end,
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we regard the graph of B as a local map.

This procedure converts robotB’s graph into a condensed version with star topology
where each measurementzi incorporates the knowledge in the original graph of robotB
thatxg has about the position ofxi .

7.4 Multi-Robot SLAM using Condensed Graphs

This section describes in detail the proposed multi-robot SLAM system. The approach
operates on raw sensor measurements acquired by mobile robots equipped with a laser
scanner. Inter-robot communication is based on a wireless Ad-Hoc network that dyna-
mically adapts depending on the mutual locations of the robots. Section 7.4.1 presents
the details of the communication model.

Each robot executes a standard laser-based SLAM pipeline: the state of the system
is stored in a pose-graph which is constantly optimized by theg2o optimizer. When the
robot moves for a certain distance, a new node is added to the graph, and the odometry
measurement is used to label the edge between the new and the previous robot positions.
The laser scan acquired at the new position is matched against a set of candidate scans
stored in the nodes of the graph. The candidate nodes are selected if the current robot
position falls in their uncertainty ellipses. This gives a set of candidate loop closing
edges between non temporally subsequent nodes, that are inserted in the graph upon
validation by a voting scheme procedure described in Section 7.4.3.

To extend this single-robot SLAM algorithm to the multi-robot case, we need to
augment the graph-construction method described above to handle information coming
from other robots. The multi-robot front-end will be in charge of:

• robustly localizing other robots into the current robot’s map, based on their raw
sensor measurements.

• integrating the condensed measurements of the other robotsin the current graph.
This is achieved simply by including the set of condensed edges.

In the remainder of this section we describe in detail our communication model and
how we address the problems outlined above, by taking into account the limitations of
the communication infrastructure.

7.4.1 Communication Model

The approach is founded on the assumption that no infrastructure is present. Thus the
communication between robots is point-to-point. Robots can communicate only when
they are within a certain distance, and the communication graph changes dynamically
based on the current configuration of the multi-robot system.
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This models conservatively the behaviour of wireless Ad-Hoc networks. Wireless
communication has a limited range and bandwidth which will vary depending on the
protocol (WiFi, Bluetooth, ...), the IEEE standard used (e.g. 802.11b/g/n...) and also
the structure of the environment. Not relying in infrastructure has substantial practical
advantages.

The proposed communication model works in a robot-independent way, where the
messages are transmitted asynchronously and contain the most up-to-date information
available. The probability that a message sent is correctlydelivered decreases with
its size. To maximize the probability that the messages are correctly delivered, in our
algorithm we kept the size of the single messages as small as possible, possibly fitting
within an Ethernet frame (1400 bytes). Each robot periodically sends a ping and, based
on the ping messages received by the other robots, it determines its neighbors. When
two robots are within communication range they send two kindof messages: to transmit
their local maps and to manage the condensed graphs.

Local map transmission

The local map is transmitted through a message containing the following information:

• The last measurement (laser scan) acquired, and the currentId of the node con-
taining the laser scan in the graph.

• The up-to-date estimated locations of the lastN nodes.

With this information each robot is able to reconstruct the local maps of the team mates
in range. Notice that a robot sends only the most recent laserscan, which is the bulky
part of the message. To determine a local map consisting ofN scans we need to buffer
the lastN messages from each sender, and render the scans according tothe most recent
list of estimates of the nodes. The latter is transmitted each time a new node is added to
the graph. This allows to update the local maps with minimal communication overhead,
even if the graph changes its configuration. The local maps ofother robots are used
to localize them in the current robot’s map. This is done by using a voting scheme
for robust outlier rejection in combination with a correlative scan matching algorithm,
which is described in detail in Section 7.4.3.

Condensed graph transmission

To manage the graph, a robot sends a message containting the following information:

• A list of nodes of the other robot’s local map it has matched against its own local
map.

• A condensed graph extracted by its own graph and consisting of the edges relating
the nodes that have been matched by some other robot.
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These messages are sent whenever a new node is added to the graph, based on the
number of mates in range.

7.4.2 Multi-Robot SLAM

In this section, we illustrate how the messages defined aboveare used to implement our
multi-robot SLAM approach. To simplify the description, werefer to Figure 7.3 and
without loss of generality we assume having only two robots:A (red) andB (blue).

Initially (see Figure 7.3a), each robot constructs its own map with a single-robot
SLAM algorithm. When a communication is availableA starts receiving the current
local map ofB, by storing its most recent readings. A matching procedure is executed to
align the two local maps, and results in a set of candidate edges connecting the map ofA
and the map ofB (see Figure 7.3b). When reasonably confident about the correctness of
these edges, robotA sends toB this list (see Figure 7.3c).B then computes a condensed
graph containing only the nodes of its map that appear in the candidate edges found by
A (see Figure 7.3d), and sends it toA. Finally A, includes these measurements in its own
graph to get a more consistent map (see Figure 7.3e).

This algorithm can be implemented within a robotA in a straightforward way by
maintaining the following data structures:

• the graphGA obtained by single-robot SLAM

• for each other robotB:

– the most recent local mapMB consisting of the lastN nodes, that is used
for cross-localization.

– the listEB
A of candidate edges between the map ofA and the map ofB that

have been found byA.

– the list ofEA
B edges received fromB, that connect the map ofA and the map

of B and that have been found byB.

– the condensed graphGB
A sent byB.

RobotA updates the local maps of each other robotMB and the list of edgesEA
B

whenever a new message is received. Each time the single-robot SLAM algorithm run-
ning onA adds a new node to the graph, the estimate of the lastN nodes and the last
laser scan are sent to allow the other robots to construct thelocal map ofA. Subse-
quently, RobotA runs a map-alignment algorithm between its local map and eachMB,
and updates the list of candidate edges by using the procedure described in the next
section.

Finally, by knowingEA
B RobotA computes which nodes of its own map are relevant

for RobotB, and sends the corresponding condensed measurements. In computing the
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(a) Local map transmission

(b) Local maps alignment (c) Matched nodes’ IDs transmission

(d) Condensed graph transmission (e)Condensed graph addition

Figure 7.3: Illustration of our multi-robot SLAM algorithm in a two robots scenario. RobotA
is depicted in red and RobotB in blue. Triangles represent the nodes of the graph. (a) Each
robot runs a graph-based SLAM algorithm and constructs its own map. When they are within
a communication range, they share their current local maps;(b) A localizesB and determines
a set of candidate edges connecting the two maps; (c)A informs toB which of its nodes it has
matched; (d)B computes condensed measurements that connect the nodes in its own map that
appear in the edges found byA; (e) A includes these edges in its own graph.

condensed measurements RobotA considers only the portion of the graph acquired with
its own sensors, thus avoiding multiple integration of information.
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7.4.3 Robust Map Alignment

In this section, we describe our approach to robustly align two local mapsMA andMB

onto each other. A local map consists of a portion of the graph. We recall that each node
consists of a robot pose and a laser scan acquired at that pose. Figure 7.4 illustrates the
problem.

(a) Local mapMA. (b) Local mapMB.

(c) Alignment of the two local maps.

Figure 7.4: Example of map alignment between two local maps after findinga set of edges
jointly consistent.

Our goal is to find a set of edgesS between the nodes of the two local maps such
that they are maximally consistent, given the scans. To thisend we match each scan
sB

j contained in nodexB
j of MB with each scansA

i contained in nodexA
i of MA, by

using a correlative scan matcher. Note that each matching can result in zero or more
measurementszk of xB

j with respect toxA
i . Each of these solutions is then converted in

an edgeek relating nodesxA
i andxB

j , and added to a pool of candidate edgesE .
Given this pool of edges, we run a voting scheme procedure to determine which of

them are inliers, summarized in Algorithm 9. The idea is the following: to determine
a translation between the two local maps it is sufficient to translate them so that one
candidate edgeek is satisfied (its error is0).

Let xA
i ,x

B
j the location of the nodes containing scanssA

i ,s
B
j andzk their computed re-

lative measurement be represented as the isometry matricesXA
i ,X

B
j andZk, respectively.
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The transformation matrixTk which satisfies the constraint is:

TkX
B
j = XA

i Zk (7.4)

Tk = XA
i Zk(X

B
j )
−1 (7.5)

Applying this translation affects the error of all other candidate edges, and their error
will be small if they are consistent withek, while it will be large otherwise. Based on
these errors and using an inlier thresholdτ we determine inliers and outliers. Once we
obtain a set of maximally consistent edgesS using this procedure, we decide whether
to accept the match or not if a minimum number of inliers is achieved. Figure 7.5
illustrates the procedure.

The bottleneck of this schema is the scan matching routine and the computational
cost of algorithm will depend on the number of candidates edges inE . Accordingly,
we need to limit the number of times we perform scan-matching. By considering that
the local maps can be assumed to be consistent, and that one ofthe two local maps is
acquired incrementally one scan at a time, we can implement the above procedure in an
efficient way. Each time we receive a new scansB

j , we match it against the local map
constructed by the union of allsA

i . The scan matcher results in a set of transformations
betweensB

j and the mapMA. These transformations are converted in edges between
sB

j and the closest node inMA, after applying the transformation. The resulting edges
are inserted in the pool. The joint consistency validation is done at every step, and the
candidate edges that are marked as outliers for a certain number of times are removed
from the pool.

7.5 Experiments

The multi-robot SLAM approach proposed in this chapter has been validated through
simulations and real world experiments. The system is implemented in C++ as a ROS
package and the simulations have been conducted with the Stage simulator.

7.5.1 Robust Map Alignment

First, we have validated the map alignment procedure explained in section 7.4.3 in a
simulation environment to have the ground truth at our disposal for measuring the qual-
ity of the final map obtained. Additionally, we have comparedthe results with respect to
Single-Cluster Graph Partitioning (SCGP) [66]. Therefore, we will follow with a brief
summary of the SCGP approach and how we apply it to our problemof finding a set of
maximally consistent edges that align two partial maps. Then, the comparison between
both approaches will be presented.
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Algorithm 9 ComputeS

Require: MA,MB, E , τ
1: bestChi2← inf, bestInliers← 0,S ← {}
2: for each edgeek(xA

i ,x
B
j ) ∈ E do

3: Sk←{}
4: inliers← 0; totalChi2← 0;

{ComputeTk such that errorek = 0}
5: Tk← XA

i Zk(XB
j )
−1

{Apply Tk to the nodes inMB;}
6: for eachnodexB

j ∈MB do
7: X̄B

j ← TkXB
j ;

8: end for
{Compute new errorek for each edge inE}

9: for eachedgeek ∈ E do
10: totalChi2 +=ek;
11: if ek < τ then
12: inliers++;
13: Sk←{Sk,ek}
14: end if
15: end for
16: if (inliers> bestInliersor

(inliers = bestInliersand totalChi2< bestChi2))then
17: bestChi2← totalChi2
18: bestInliers← inliers
19: S ← Sk

20: end if
21: end for
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Figure 7.5: Top: In red, nodes belonging to a local map, in blue, current estimation of the re-
ceived nodes and in yellow, the same nodes with respect to thecandidate closure edges. Dashed
red lines represent the error in the estimation for each edge. Middle: Green, position of the
nodes after applying the transformation (blue dashed line)that makes the error of the first node
equal to zero. With this configuration, the error in the second and fourth nodes is small (they
could be selected as inliers if the error is lower than a threshold) whereas the error in the third
node is large (outlier). Bottom: Configuration of the nodes if the transformation to make the
error of the third node equal to zero is applied. Since it is a wrong closure, the error in the rest
of nodes is large, they are selected as outliers and this configuration of nodes is rejected. Notice
that this procedure can be used whether the local maps are from different robots or from the
same robot trying to compute loop closing edges.

Single-Cluster Graph Partitioning for graph-based map alignment

The SCGP method computes, from a set of candidate hypotheses, the subset which is
maximally consistent. It represents the problem as a graph,where each node is a can-
didate hypothesis and an edge between two nodes represents their mutual consistency.
Then, given a set ofn candidate hypotheses, the graph is encoded in an×n consistency
matrixA where each elementai j contains the pairwise consistency between two nodes.

Let u be a binary indicator vector representing a subset of the hypotheses, SCGP
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attempts to maximize the average consensus:

r(u) =
uTAu
uTu

(7.6)

AssumingA being symmetric, the vectoru which maximizes Eq. 7.6 satisfies:

Au= r(u)u (7.7)

which is an eigenvector problem withr(u) the dominant eigenvalue. The two first dom-
inant eigenvectorsv1 andv2 and eigenvaluesλ1 andλ2 of A can be efficiently computed
using the Power Method. A minimum ratioλ1/λ2 can be imposed to assess the con-
fidence of the result, otherwise the whole set of candidates is rejected [67]. Then, the
dominant eigenvector is discretized to obtain the binary indicator vector.

Figure 7.6: Left: Initial configuration of the nodes (red and blue) and current errors with respect
to the constraints. Middle: Configuration of the nodes if thetransformation which satisfies the
first constraint is applied. Right: Configuration of the nodes if the transformation which satisfies
the second constraint is applied.

In order to apply the SCGP method into our map alignment problem, we proceed
similarly as in Algorithm 9. Givenn candidate edges, we compute for each candidate
edgeei the transformation which satisfies the constraint, apply itto the nodes of the rest
of edgesej and compute the new errorei j of each edge. With this procedure we have
a measure of consistency of each edgeej with respect toei . We can not fill matrixA
directly with these values since this measure is not reciprocal (i.e.ei j 6= eji ) as it can be
seen in Fig. 7.6. To obtain a symmetrix matrix A out of these values we set:

ai j = a ji = e−
ei j +eji

2 (7.8)

After applying this function, two compatible edgesei ,ej will have low errorei j and
large compatibility valueai j and viceversa.
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Simulation Results

In order to compare the map alignment algorithm proposed in this chapter with the
SCGP approach, we have designed two different trajectoriesin a simulated environment
containing several loop closings as shown in Fig. 7.7. Giventhe initial trajectories 7.7c
and 7.7d, we have executed the single-robot SLAM routine explained in section 7.4
with both approaches as loop closing detectors and varied their intrinsic parameters
according to the following restrictions: 1) We check if a minimum number of edges are
found jointly consistent in a window of time in order to finally approve a map alignment.
In our implementation, the candidate edges are maintained in the pool for 10 time steps
and we have varied this restriction in both methods from 3 to 8minimum inliers. 2) In
the case of the SCGP method, a minimum ratioλ1/λ2 is imposed to consider the result
confident enough. This ratio depends on the properties of theconsistency matrix and
how it is built. In our implementation, we observed thatλ1/λ2 ratios much higher than
2 were unusual, then we considered this value as the more restrictive one. Note that
λ1/λ2 > 1 is always satisfied and, in this case, SCGP always trusts on the confidence
of the consistency matrix. 3) As it is explained in Algorithm9, the outlier rejection of
our method is based on a thresholdτ. We have a wider range of thresholds in this case
where the lower the threshold is, the more restrictive the algorithm is.

We have measured the quality of the final maps obtained with both approaches with
respect to the ground-truth trajectories in terms of the mean Chi2 error per edge. To
this end, we created a ground-truth graph by extracting a setof virtual edges between
neighboring nodes, by using the approach described in [13].The results for different
thresholds and minimum number of inliers are summarized in Table 7.1 where values are
only shown if the map converged to a correct solution. These results are accompanied
by precision and recall measures (shown in Fig. 7.8) which are defined based on the
number of true/false positive/negatives by:

Precision=
t p

t p+ f p
; Recall=

t p
t p+ f n

(7.9)

From the results we can observe that our proposed algorithm obtains better final
maps proved by a lower overall error. In general, the error ishigher as the minimum
number of inliers is increased since finding a loop closure also depends on how much
portion of the trajectory overlaps and is not always possible to achieve the required
inliers. Additionally, we verify that the minimumλ1/λ2 ratio must be higher than 1
otherwise the simulations always reach a point at which theydiverge.

Regarding the precision and recall measures shown in Fig. 7.8 we observe that our
approach has a slightly smaller precision than SCGP, therefore more wrong loop closing
edges are added to the graph. However, it gets many more rightsince it has a higher
recall. With the use of robust kernels in the optimization phase [65], these few out-
liers could be identified and their effect on the final solution minimized. Conversely,
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(a) Ground truth trajectory 1 (b) Ground truth trajectory 2

(c) Scan matching trajectory 1 (d) Scan matching trajectory 2

Figure 7.7: Trajectories and laser scan data collected by the robot in a simulation environment.
(a) and (b) show the ground-truth maps whereas (c) and (d) show the initial map configuration
after running a sequential scan matching over the two trajectories without loop closure detec-
tions. The initialχ2 mean error per edge is 40.412 for the first map and 63.997 for the second
map.

although SCGP presents better precision values, this comeswith a sacrifice on the over-
all number of detected inliers and, consequently, certain good loop closures are skipped
by the algorithm which contributes in higher errors of the final maps obtained. These
quantitative results support the overall better performance observed and confirmed by
visual inspection of the final maps.

In some cases, the inclusion of outlier loop closing edges results in a complete map
divergence. However, there are certain edges that can be classified as outliers from a
statistical point of view although they are not so wrong froma qualitative perspective
due the good performance of the scan matcher and then, their inclusion in the map do not
prevent from obtaining a good final result. For this reason, we have also measured the
recall values for both approaches in the situation when there are only good (statistically
speaking) inliers. In this case, the absence of outliers implies there are no false positives
and then, the precision is always 1. The results for both trajectories are shown in Fig.
7.9 which confirme the better performance of our method.
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Min. Inliers
3 4 5 6 7 8

τ

3.5 1.417 - 0.647 0.826 10.179 20.515
3 - - 1.105 0.682 1.119 1.441

2.5 1.974 - 0.645 1.29 1.506 1.433
2 0.902 0.495 1.047 0.772 2.159 2.163

1.5 1.133 0.769 0.951 1.466 1.561 2.511

(a) Our method - Trajectory 1

Min. Inliers
3 4 5 6 7 8

λ1/λ2

1 - - - - - -
1.25 18.791 35.691 0.687 0.508 1.837 4.061
1.5 - - 1.308 2.388 1.541 1.344
1.75 0.465 1.305 1.841 3.554 1.572 1.344

2 - 1.403 0.925 2.712 1.266 5.254

(b) SCGP - Trajectory 1

Min. Inliers
3 4 5 6 7 8

τ

3.5 - 0.764 - 0.863 0.853 1.020
3 - 0.647 - 0.627 0.688 0.794

2.5 - 0.561 - 0.833 2.047 0.874
2 1.106 0.686 - 0.72 1.174 70.585

1.5 - 0.687 - 1.190 4.698 6.488

(c) Our method - Trajectory 2

Min. Inliers
3 4 5 6 7 8

λ1/λ2

1 - - - - - -
1.25 - - - 1.871 16.524 73.42
1.5 - 0.87 0.764 1.972 1.266 46.113
1.75 - 0.723 1.197 2.941 73.821 46.114

2 0.773 0.877 1.062 2.935 73.825 46.114

(d) SCGP - Trajectory 2

Table 7.1: Map errors obtained using both methods in the two trajectories. Rows and columns
are ordered from less to more restrictive thresholds. The values are the meanχ2 error per edge.

7.5.2 Multi-Robot SLAM System

Simulation results

We quantitatively evaluated the performance of our system through simulation exper-
iments. In particular, we measure how the proposed multi-robot system performs in
terms of optimization time, bytes transmitted by each robotand accuracy with respect
an ideal implementation in which the robots share their whole graph instead of the con-
densed version. Additionally, we want to analyze how these aspects scale with the
number of robots and therefore we tested our approach with 2,4 and 8 robots. The
simulation environment is shown in Fig. 7.10a. We designed trajectories such that each
robot met at least once with another robot. As an example, thetrajectories and final map
obtained in the 8 robots simulation are shown in Fig. 7.10b.

Figure 7.11 shows the results for the optimization times andcommunication over-
load obtained in the simulations. Clearly, the more robots are used for mapping the less
time is needed to cover the entire environment and the smaller will be the map of each
robot. Figures 7.11a–7.11c show the optimization times forboth approaches. It can be
seen how, in the condensed approach (green), the optimization times increase linearly
as the map grows. Receiving a condensed graph implies addinga few edges to their
graphs and this does not affect substantially the computation. In the ideal implemen-
tation (red), times grow also linearly with the number of edges. However, this number
has a substantial increment when the robots meet and receivethe whole graph from the
others. This happens, for example at time 350 in the two robots simulation.

The communication overload is shown in Figures 7.11d–7.11f. As explained in
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(a) Trajectory 1

(b) Trajectory 2

Figure 7.8: Precision and recall values for both trajectories.

section 7.4.1, two kind of messages are sent, one containingthe local map and another
one to send the condensed graph. Transmitting the local map has a constant size if the
number of nodes to send is fixed. In our implementation, we transmit both the updated
estimates and ids of the last 5 nodes plus the last laser scan obtaining a message of
constant size of 1580 bytes. Since this value is the same for both condensed and ideal
approaches, this type of message is not taken into account inthe results. However, as
it can be seen in the figures, the size of the messages to send the graph in the ideal
approach differs substantially from the messages in the condensed approach, where the
size of the messages stays below 1000 bytes in most of cases. The size of the message
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(a) Trajectory 1 (b) Trajectory 2

Figure 7.9: Recall values obtained for both trajectories in the absenceof outliers.

(a) (b)

Figure 7.10: (a) Simulation environment. (b) Trajectories and final map in a 8 robots experi-
ment.

that a robot has to send in the condensed approach will grow with the number of nodes
of its own map another robot has matched.

By using the ground truth of the simulation, we compared the accuracy of our multi-
robot SLAM approach with the ideal implementation. Table 7.2 shows the overall mean
Chi2 error per edge for each one of the simulations. The number of edges of each
individual map varies with the simulation, and from one robot to another. For this
reason we use the mean error per edge as a measure of accuracy for both approaches.
As it can be seen in Table 7.2 the mean errors are very similar and therefore, we can
conclude that the accuracy is not sacrificed when sharing thecondensed graphs instead
of the whole version. This result is confirmed by the visual inspection of the maps.



7.5. Experiments 117

0 100 200 300 400 500 600 700
0

10

20

30

40

50
Optimization time

Simulation time (s)

m
ill

is
ec

on
ds

(a) Times 2 robots

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50
Optimization time

Simulation time (s)

m
ill

is
ec

on
ds

(b) Times 4 robots
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(c) Times 8 robots
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(d) Bytes 2 robots
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(e)Bytes 4 robots
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(f) Bytes 8 robots

Figure 7.11: Timings for the optimization of the graph and bytes transmitted by each robot. The
results are shown in green for the condensed graph approach and in red for the ideal implemen-
tation.

Real World Experiments

We conducted a real world experiment by using three Pioneer 3-AT robots, equipped
with SICK laser rangefinders. The robots were simultaneously controlled by three per-
sons that steered them manually in the environment shown in Figure 7.12. The robots
communicated through an Ad-Hoc network by sending UDP packets and each of them
was running the algorithm described in this paper. We previously synchronized the
clocks of all robots with NTP. To be able to reproduce the experiment, we recorded
a dataset containing the own measurements each robot loggedits own measurements
(odometry and laser), and the ping received by other robots.This allow us to repro-
duce off-line the connectivity of the communication network, and repeat the experiment
off-board.

The results of this experiment are shown in Figure 7.12. The individual maps ob-
tained by each robot together with the condensed graphs received from other robots are
depicted in Figures 7.12a–7.12c. During their navigation,each robot was able to meet
and localize some other robot into its own map. The meeting points are depicted with
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Accuracy
Condensed GraphsIdeal

2 robots 1.404 1.442
4 robots 1.572 1.548
8 robots 1.884 1.899

Table 7.2: Comparison of the accuracy obtained by our condensed measurement multi-robot
SLAM approach and the ideal implementation. The numbers aretheχ2 error of the edges in the
ground-truth graph, evaluated with nodes placed as reported by the algorithm.

squares in the individual views. These intra-robot localizations make that all maps be-
come interconnected which allows us to reconstruct the global map shown in Figure
7.12d.

In addition to the experiment described here, we executed additional tests with Er-
ratic robots equipped with an Hokuyo UTM laser rangefinder with two robots. The
result after merging the individual maps is shown in Figure 7.13.

Post Processing

The procedures described above are the core of our multi-robot SLAM. Compared with
a centralized approach that has access to all information ofall robots, our system leads
to a higher error in positions where the robots do not meet. This arises from the fact
that robots only share local maps around their current position, thus they cannot relo-
calize. This is visible in the right hand side of Figure 7.13.Solving this problem would
require transmitting substantial more information, sincethe robots would have to share
all the measurements. Despite this limitation, our schema produces solutions that are
sufficient for the robots to navigate. In a subsequent processing stage, a global accu-
rate map can be obtained by merging the solutions of all robots and optimizing them
including the condensed measurements. This aligns the map in a global frame. This
map can be further improved by adding a set of constraints by matching scans between
neighboring nodes. Due to the good initial guess obtained bythe map alignment, this
step is relatively straightforward, leading to results illustrated in Figure 7.14.

7.6 Conclusions

In this chapter we have proposed an approach for multi-robotSLAM that specifically
addresses the limitations in network and computation affecting multi-robot systems.

The use of condensed measurements allows to efficiently share map information
among robots which is easily incorporated into each robot’sgraph. The exchange of data
is carried out under a communication protocol designed to maximize the probability that
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(a) Map robot 1 (b) Map robot 2 (c) Map robot 3

(d) Global map

Figure 7.12: Multi-robot SLAM experiment at the Ada Byron building of theUniversity of
Zaragoza. (a), (b) and (c) show the individual maps obtainedby each robot, depicted in red,
green and blue respectively. The condensed graphs receivedfrom other robots are depicted in
the colour of the sender robot. (d) shows the global map afterall individual maps are merged
and jointly optimized.

the messages are successfully delivered and to guarantee each robot receives the most
up-to-date information available.

Graph optimization results in consistent and accurate map estimates also thanks to
the good initial guess provided by a robust front-end where amap alignment procedure
is used to detect loop closures and solve intra-robot data associations. Our method adds
a relatively limited complexity to the traditional single-robot SLAM methods resulting
in an overall increase of robustness and computational efficiency with respect to naive
multi-robot SLAM implementations.
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Figure 7.13: Experiment at the DIS building of La Sapienza University of Rome. The misalign-
ment observed in the bottom right corner originates from thefact that the robots never meet in
that region, thus they are unable to determine constraints between that part of their trajectories.
This can be recovered when the two robots meet in that region,or in a post-processing phase.

Figure 7.14: Results of the three real world experiments performed to verify the proposed
approach, using a straightforward centralized processingof the joint estimates obtained by our
multi-robot SLAM method.



Chapter 8

Conclusions

8.1 Conclusions

Along this thesis we presented contributions in the different tasks that must be per-
formed to obtain an autonomous multi-robot system. We have mainly addressed the
localization and SLAM problems but we have also contributedto the motion and plan-
ning problems to analyze their application and performancein a real working system.

First of all, we considered the problem of how the team of robots can move in the
environment. Then, in Chapter 3 we presented a cooperative navigation system for robot
formations based on a flexible virtual structure that adaptsits shape to the environment.
In this chapter we also analyzed the importance of having a good localization system to
deal with the accumulation of errors introduced by the sensors which prevent the team
from a correct navigation in formation and the reachabilityof its goal.

This issue motivated the design of a localization algorithmpresented in Chapter 4
developed in a EKF filtering framework to take advantage of its speed properties. The
state of the formation was formulated using a leader-centric probabilistic representation
to reduce the effect of the linearization errors due to high levels of uncertainty. Us-
ing a given feature-based stochastic map of the environmentfor absolute positioning
reference, we demonstrated the direct implementation of the EKF algorithm provided
inconsistent, and therefore, unreliable localization estimates, a matter of importance if
we want to assure the long-term performance of the method. However, although the
convergence in this nonlinear filtering context can not be guaranteed we can propose
alternatives to drive the estimation towards consistency.Insights into the underlying
problem suggested us that cross-correlations among map features observed in consecu-
tive time steps were not properly handled by the algorithm and we proposed a solution
based on the measurement differencing technique to improvethe filter consistency.

This localization algorithm was part of an integrated system for robot formations
described in Chapter 5. With the overall objective of havingthe formation working

121
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in partially known environments, we proposed, in addition to the navigation and lo-
calization techniques from previous chapters, a solution to the path planning problem
considering the uncertainty of a given map. This is motivated since planning through
imprecisely known areas may lead to reach dead-ends requiring a complete global re-
planning, increasing the total execution time of the mission. The global path planning
is carried out by the leader of the formation based on the prior map before starting the
mission, thus this is the less cooperative part of the system. It is, on the contrary, the
online replanning which takes into account the unexpected elements of the environment
not considered in the prior map and makes use of a local map built from the cooperative
perception of the team.

Up to this point, we considered the map provided to the formation, probably impre-
cise or incomplete, was not modified during the execution of the mission. In Chapter 6,
we proposed a distributed SLAM algorithm to jointly improvethe given map while the
robots navigate in the environment. The use of the Conditional Independence property
opened us the possibility to work with submaps, greatly decreasing the computational
cost of the mapping process while obtaining the same result as if we worked with the
entire map. Besides, it allowed us to bound the amount of information shared through
the network and to guarantee the robots have exactly the sameinformation each time
they synchronize.

Finally, in Chapter 7 we addressed the problem of how to use multiple robots to
build a map of the environment from scratch, without any prior information about the
number of robots or their initial locations. We provided a complete multi-robot SLAM
system handling intra-robot data association and capable of working under computa-
tional and communication resource constraints. Concretely, the use of condensed maps
enabled the robots to share portions of their own maps relevant to refine those of others.
The transmission of information was conducted by means of anevent-driven communi-
cation protocol oriented to minimize the possibility of packet loss. As a result of these
strategies we considerably reduced the optimization problem to be solved by each robot
obtaining a comparable accuracy to an ideal implementation, where robots shared their
whole maps.

8.2 Future Work

In this thesis we have demonstrated the performance and efficiency of the proposed con-
tributions, most of them working on real multi-robot systems. However, one can always
progress and do things better. This section points out some possible improvements.

Regarding the cooperative navigation of the formation, we observed how in some
situations (see for example those in Figs. 3.5 and 5.7) sudden changes in the leader
trajectory result in forced behaviors on the followers, which always try to reconfigure
to maintain their relative positions with respect to the leader. A more efficient strategy
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considering the prediction of trajectories of the followers combined with the proposed
formation control could result in shorter and smoother trajectories for the followers.
Also, a dynamic change of the leader role inside the formation, if the system configura-
tion allows it, would provide more efficient performance.

The proposed localization system provides consistent estimates, however, it is im-
plemented in a centralized manner relying heavily on the leader. Future work should be
oriented towards distributed approaches where the EIF, dueto its inherent decoupling
properties could be used. We provide in appendix C first insights into the measurement
differencing EIF-based formulation.

The path planning under uncertainty algorithm proposed in this thesis seeks for the
path that minimizes the risk at each of the steps. This solution considers that, once the
robot reaches a stepk of the planned trajectory, it does not matter which is the risk of
the k−1 previous steps since this part of the trajectory has already successfully been
traversed and it is only concerned if it will be able to traverse stepk+1. Other kind of
approaches try to minimize the accumulated risk of all path and we are already moving
towards this reasearch line where the cost of choosing a wrong path and the need of
rectifying is also being considered.

The multi-robot localization and map improvement algorithm presented in Chapter
6 could be extended to consider new features not present in the prior map. In the case
of non identifiable features (i.e., unknown data association) this would require a con-
sensus between robots to decide whether the new features they observed are the same
or not. Besides, we would have to take care of the map maintainance for long-term
performance since indefinitely updates could lead to overlyoptimistic map estimation.
Optimal submap partitioning and asynchronous communications could also been inves-
tigated.

The multi-robot graph-based SLAM approach presented in Chapter 7 may show map
misalignments in areas where robots did not coincide in timebut which we resolved in
a post-processing phase of the joined map. This additional step could be avoided in
the ideal but inefficient implementation where robots sharetheir whole maps. Instead,
robots could also interchange condensed maps of strategic areas of the environment they
visited at different times. Furthermore, the map alignmentalgorithm could be used not
only to correctly align two local maps but also to disambiguate between local alignments
obtained at different parts of the trajectory. This ambiguity may also appear when two
robots meet in different but symmetric scenarios. A robot identification system could
also be used to solve it but at the expense of restricting robot movements so their iden-
tifiers were visible to each other.
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8.3 Conclusiones

A lo largo de esta tesis hemos presentado contribuciones en las diferentes tareas que han
de llevarse a cabo para conseguir un sistema multi-robot autónomo. Aunque nos hemos
centrado principalmente en los problemas de localización ySLAM, también hemos
contribuido a los problemas de control del movimiento y el cálculo de trayectorias para
analizar su aplicación y rendimiento en un sistema real completo.

En primer lugar, hemos abordado el problema de cómo puede un equipo de robots
moverse por el entorno. Así pues, en el capítulo 3 hemos presentado un sistema de
navegación cooperativa para formaciones de robots basado en un estructura virtual flex-
ible que se adapta al entorno. En este capítulo también hemosanalizado la importancia
de disponer de un buen sistema de localización para hacer frente a la acumulación de
errores introducidos por los sensores que impiden la correcta navegación en formación
y el alcance del objetivo.

Esta cuestión ha motivado el diseño de un algoritmo de localización presentado en
el capítulo 4 y desarrollado en el contexto del filtro de Kalman extendido (EKF) con el
fin de aprovechar su rapidez. Se ha formulado el estado de la formación utilizando una
representación probabilista centrada en el líder que permite reducir los efectos de los
errores de linealización debidos a altos niveles de incertidumbre. Utilizando un mapa
estocástico de características del entorno como referencia para su localización global,
hemos demostrado que una implementación directa del EKF resultaba en estimaciones
de localización inconsistentes y, por consiguiente, poco fiables, siendo éste un asunto de
importancia para la aplicación del algoritmo a largo plazo.Sin embargo, aunque en este
contexto de filtrado no lineal no se pueda garantizar la convergencia, podemos proponer
alternativas para tratar de mejorar la consistencia. Así pues, un análisis más en profundi-
dad del problema nos ha llevado a sugerir que las correlaciones entre características del
mapa observadas en instantes consecutivos no estaban siendo consideradas adecuada-
mente en el algoritmo y hemos propuesto una modificación basada en la diferencia de
medidas para mejorar la consistencia del filtro.

Este algoritmo de localización ha formado parte de un sistema integrado para for-
maciones de robots, descrito en el capítulo 5. Con el objetivo de tener a la formación
trabajando en entornos parcialmente conocidos, hemos propuesto, además de las téc-
nicas de navegación y localización descritas en los capítulos anteriores, una solución
al problema de planificación de trayectorias considerando la incertidumbre del mapa
proporcionado. Este problema viene motivado por el hecho deque planificar por zonas
conocidas de modo impreciso puede llevar a caminos sin salida que requieran una com-
pleta replanificación global, incrementando el tiempo total de ejecución de la misión.
Es el líder quien se encarga de realizar la planificación global antes de iniciar la misión,
siendo esta por tanto la parte menos cooperativa de la tesis.Sí lo es, sin embargo, la
replanificación online que tiene en cuenta los elementos imprevistos del entorno o no
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considerados en el mapa previo y que hace uso de un mapa local construido a partir de
la percepción cooperativa del equipo.

Hasta este punto, se había considerado que el mapa proporcionado a la formación,
probablemente impreciso o incompleto, no era modificado durante la realización de la
misión. En el capítulo 6 hemos propuesto un algoritmo de SLAMdistribuido para mejo-
rar conjuntamente el mapa al mismo tiempo que los robots navegan por el entorno. El
uso de la propiedad de independencia condicional nos ha dadola posibilidad de traba-
jar con submapas, reduciendo ampliamente el coste computacional de la construcción
del mapa y obteniendo el mismo resultado que si hubiéramos trabajado con el mapa
completo. Además nos ha permitido limitar la cantidad de información a ser transmi-
tida a través de la red y garantizar que los robots dispusieran de exactamente la misma
información cada vez que se sincronizaran.

Finalmente, en el capítulo 7 hemos abordado el problema de cómo usar varios robots
para construir un mapa del entorno desde cero, sin ninguna información previa acerca
del número de robots o su localización en el mapa. Hemos propuesto un sistema de
SLAM multi-robot completo que resuelve el problema de asociación de datos entre
robots y es capaz de trabajar bajo recursos computacionalesy de comunicación limita-
dos. Concretamente, el uso de mapas condensados ha permitido que los robots compar-
tan información de sus propios mapas relevante para mejorarlos de otros. El intercam-
bio de información se ha llevado a cabo por medio de un protocolo de comunicaciones
orientado a minimizar la posibilidad de pérdida de paquetes. Como resultado de estas
estrategias hemos reducido considerablemente el problemade optimización que cada
robot debe resolver, obteniendo al mismo tiempo una precisión comparable a una im-
plementación ideal, donde los robots comparten su mapa completo.

8.4 Trabajo Futuro

En esta tesis hemos demostrado el rendimiento y eficiencia delas contribuciones prop-
uestas, teniendo la mayoría de ellas funcionando en equiposmulti-robot reales. Sin em-
bargo, uno siempre puede progresar y hacer mejor las cosas. En esta sección señalamos
algunas de las posibles mejoras.

Respecto a la navegación cooperativa de la formación, observamos cómo, en algu-
nas situaciones (por ejemplo, las mostradas en las figuras 3.5 y 5.7) cambios repentinos
en la trayectoria del líder dan lugar a comportamientos forzados en los seguidores, que
siempre tratan de reconfigurarse para mantener su posición relativa con el líder. Una es-
trategia más eficiente que considerara la predicción de las trayectorias de los seguidores
en combinación con el control de la formación propuesto podría resultar en trayectorias
más cortas y suaves para ellos. Además, si la configuración del sistema lo permite, un
cambio dinámico de líder dentro de la formación podría proporcionar un mejor y más
eficiente rendimiento.
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El sistema de localización propuesto proporciona estimaciones consistentes, sin em-
bargo, está implementado de forma centralizada, dependiendo excesivamente del líder.
El trabajo futuro debería orientarse a obtener algoritmos distribuidos en los que el fil-
tro de información extendido (EIF) por sus propiedades inherentes para desacoplar la
estimación podría usarse. En el apéndice C ofrecemos una primera visión sobre la for-
mulación del EIF con diferencia de medidas.

El algoritmo de planificiación de caminos bajo incertidumbre propuesto en esta tesis
busca el camino que minimiza el riesgo en cada uno de sus pasos. Esta solución consid-
era que, una vez que el robot alcanza un pasok de la trayectoria, no importa cual era el
riesgo de losk−1 pasos anteriores ya que esta parte del recorrido ya ha sido atravesado
con éxito y sólo le preocupa si será capaz de atravesar el siguiente pasok+1. Otro
tipo de estrategias tratan de minimizar el riesgo acumuladoen todo el camino y estamos
actualmente estudiando esta otra línea de investigación donde también consideramos el
coste de elegir un camino incorrecto y tener que rectificar.

El algoritmo de localización multi-robot y mejora de mapa presentado en el capítulo
6 podría extenderse para considerar nuevas características no presentes en el mapa pre-
vio. En el caso de características no identificables requeriría un consenso entre robots
para decidir si las nuevas características observadas por varios robots son las mismas
o no. Además, sería necesario prestar atención al mantenimiento del mapa para un
rendimiento a largo plazo, ya que la actualización del mapa indefinidamente podría ll-
evar a estimaciones excesivamente optimistas. La divisiónóptima de submapas y las
comunicaciones asíncronas también podrían ser investigadas.

El método de SLAM multi-robot basado en grafos presentado enel capítulo 7 puede
mostrar zonas del mapa mal alineadas si los robots no coincidieron al mismo tiempo
en esa zona, lo cual resolvimos procesando el mapa conjunto en una fase posterior.
Este paso adicional puede evitarse en la implementación ideal pero ineficiente en la
que los robots comparten sus mapas completos. En su lugar, los robots podrían inter-
cambiar mapas condensados de áreas estratégicas del entorno que hubieran visitado en
distintos instantes. Además, el algoritmo de alineación demapas podría utilizarse no
solamente para alinear mapas locales sino también para desambiguar entre alineaciones
obtenidas en distintas partes de la trayectoria. Esta ambigüedad también puede aparecer
cuando dos robots se encuentran en escenarios diferentes pero simétricos. Un sistema
de identificación de robots podría utilizarse para resolvereste problema aunque a costa
de restringir los movimientos de los robots para que sus identificadores fueran visibles
entre sí.



Appendix A

Equations of the EKF-based
Localization of the Formation

A.1 Process model equations

Figure A.1: Geometric relations between the robot leaderR0 and a robot followerRj during the
state transition from time stepk−1 to time stepk.

Given the geometric relations given in Fig. (A.1), the stateof the robot formation
is propagated from time stepk− 1 to time stepk using the estimated displacements
xRk−1
Rk
∼N (x̂Rk−1

Rk
,PRk−1

Rk
) through the following function:

xRk = f(xRk−1,x
Rk−1
Rk

) (A.1)

=

(

fR0(x
B
R0,k−1

,x
R0,k−1
R0,k

)

fRj (x
R0,k−1
R0,k

,x
R0,k−1
Rj,k−1

,x
Rj,k−1
Rj,k

)

)

=

(

xB
R0,k−1

⊕x
R0,k−1
R0,k

⊖x
R0,k−1
R0,k

⊕x
R0,k−1
Rj,k−1

⊕x
Rj,k−1
Rj,k

)

(A.2)

wherefR0 andfRj are the state transition functions for the robot leader and for a robot
follower Rj respectively.
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Linearization of the equations using first order Taylor series expansion give us:
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where
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Then, the EKF Prediction of the robot formation is,
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with,
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A.2 Measurement model equations

Figure A.2: Pairing between an observationEi and a featureFi in the case of a robot leader (R0,
left) and a robot follower (Rj , right).

Following the geometric relations represented in Fig. (A.2) a sensor observationEi

is related to the robot’s position and an environmental featureFi through the nonlinear
measurement model,

zk = hk(xRk,yFk)+wk (A.13)

=

(
hR0(x

B
R0,k

,yFk)

hRj (x
B
R0,k

,x
R0,k
Rj,k

,yFk)

)

+wk =

(
⊖xB

R0,k
⊕yFi

⊖x
R0,k
Rj,k
⊖xB

R0,k
⊕yFi

)

+wk (A.14)

wherewk is a zero-mean white gaussian noise with covariance matrixRk.

Due to our leader-centric representation of the robot formation, functionhk differs
depending on the role of the robot, beinghR0 andhRj the function for the robot leader
and for a robot followerRj respectively.

The use of the EKF requires a first order linearization of the nonlinear measurement
model, thus,
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where
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The classical EKF update equations provide estimates for the state vector̂xRk|k
and

its associated covariance matrixPRk|k
:

x̂Rk|k
= x̂Rk|k−1
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using the filter gain obtained as,
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where matricesHk andGFk are formed by,
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Derivation of the
Measurement-Differencing EKF-based

Equations

Let rk be expressed as,
rk , zk−ΛΛΛkzk−1

Substituting the observationszk andzk−1 by their linearized expressions given by eq.
(4.14),

rk ≃ hk(x̂Rk, ŷFk)+Hk(xRk− x̂Rk)+GFk(yFk− ŷFk)+wk

−ΛΛΛk(hk−1(x̂Rk−1, ŷFk−1)+Hk−1(xRk−1− x̂Rk−1)+GFk−1(yFk−1− ŷFk−1)+wk−1)

Rearranging the error propagation equation given by eq. (4.9) following the a-
pproach described in [71] to avoid time-latency leads to,

xRk−1− x̂Rk−1 ≃ F−1
k−1(xRk− x̂Rk)−F−1

k−1vk−1

therefore,
rk ≃ hk(x̂Rk, ŷFk)−ΛΛΛkhk−1(x̂Rk−1, ŷFk−1)

+(Hk−ΛΛΛkHk−1F−1
k−1)(xRk− x̂Rk)

+ΛΛΛkHk−1F−1
k−1vk−1+wk−ΛΛΛkwk−1

+GFk(yFk− ŷFk)−ΛΛΛkGFk−1(yFk−1− ŷFk−1)

Substituting the linear relation betweenyFk andyFk−1 given by eq. (4.19) witĥyFk =
FCkŷFk−1 results in,

rk ≃ hk(x̂Rk, ŷFk)−ΛΛΛkhk−1(x̂Rk−1, ŷFk−1)

+(Hk−ΛΛΛkHk−1F−1
k−1)(xRk− x̂Rk)

+ΛΛΛkHk−1F−1
k−1vk−1+wk−ΛΛΛkwk−1+GFknk

+(GFkFCk−ΛΛΛkGFk−1)(yFk−1− ŷFk−1)
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which can finally be expressed as,

rk ≃ h∗k +H∗k(xRk− x̂Rk)+wrk

with,

h∗k = hk(x̂Rk, ŷFk)−ΛΛΛkhk−1(x̂Rk−1, ŷFk−1)

H∗k = Hk−ΛΛΛkHk−1F−1
k−1

and,

wrk = ΛΛΛkHk−1F−1
k−1vk−1+wk−ΛΛΛkwk−1+GFknk

and, matrixΛΛΛk is computed such that the time-correlated components from the evo-
lution of the measurementrk are removed, thus is,

GFkFCk−ΛΛΛkGFk−1 ≃ 0

thus,
ΛΛΛk ≃GFkFCkG

T
Fk−1

(GFk−1G
T
Fk−1

)−1



Appendix C

Derivation of the
Measurement-Differencing EIF-based

Equations

In this appendix we provide the algebraic derivation of the measurement-differencing
EIF-based update equations from its EKF counterpart.

First, we briefly summarize the MD-EKF update equations (taken from Eqs. 4.29,
4.30 and 4.31):

• Filter gain:

K k = (Pk|k−1H∗Tk +Ck)(H
∗
kPk|k−1H∗Tk +Pwrk

+H∗kCk+CT
k H∗Tk )−1 (C.1)

• State update:
x̂k|k = x̂k|k−1+K k(rk−h∗k) (C.2)

• Covariance update:

Pk|k = Pk|k−1−K k(H
∗
kPk|k−1H∗Tk +Pwrk

+H∗kCk+CT
k H∗Tk )KT

k (C.3)

We are interested on obtaining the EIF-based update equations in terms of the infor-
mation vectorik|k and matrixI k|k defined as,

I k|k = P−1
k|k (C.4)

ik|k = P−1
k|kx̂k|k (C.5)

Hereinafter, we will simplify the notation to make reading easier and will omit sub-
scripts. We makeP= Pk|k−1 andx̂ = x̂k|k−1 but maintain subscripts inPk|k andx̂k|k to
distinguish between thea priori and thea posterioriestimates.
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We will first derive the update equation forI k|k. Inserting Eq. C.1 in C.3 we obtain
these alternative expressions forPk|k:

Pk|k = P− (PH∗T +C)[(PH∗T +C)(H∗PH∗T +Pwr +H∗C+CTH∗T)−1]T (C.6)

= P− (PH∗T +C)(H∗PH∗T +Pwr +H∗C+CTH∗T)−1(H∗P+CT) (C.7)

= P−K(H∗P+CT) (C.8)

Applying the following matrix inversion lemma on Eq. C.7:

(A−BD−1C)−1 = A−1+A−1B(D−CA−1B)−1CA−1

I k|k = P−1
k|k =P−1+P−1(PH∗T +C)

[

(H∗PH∗T +Pwr +H∗C+CTH∗T)

− (H∗P+CT)P−1(PH∗T +C)

]−1

(H∗P+CT)P−1 (C.9)

=P−1+(H∗T +P−1C)

[

(H∗PH∗T +Pwr +H∗C+CTH∗T)

− (H∗P+CT)(H∗T +P−1C)

]−1

(H∗+CTP−1) (C.10)

=P−1+(H∗T +P−1C)(Pwr −CTP−1C)−1(H∗+CTP−1) (C.11)

Then, the measurement-differencing based information matrix update is:

I k|k = I k|k−1+(H∗Tk + I k|k−1Ck)(Pwrk
−CT

k I k|k−1Ck)
−1(H∗k+CT

k I k|k−1) (C.12)

Next, we proceed to derive the information vector update equation. To this end, we
will make use of the following expression for the Kalman gainobtained from C.8:

Pk|k = P−K(H∗P+CT) => (C.13)

K = (P−Pk|k)(H
∗P+CT)+ (C.14)

whereA+ = AT(AAT)−1 is the Moore-Penrose generalized inverse orpseudoinverse.
We replace Eq. C.2 in Eq. C.5 and then Eq. C.11 on the first term.

ik|k = P−1
k|k x̂k|k =P−1

k|k (x̂+K(r −h∗)) (C.15)

=P−1x̂+(H∗T +P−1C)(Pwr −CTP−1C)−1(H∗+CTP−1)x̂

+P−1
k|kK(r −h∗) (C.16)
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We develop the second term using C.11 and C.14

P−1
k|kK =P−1

k|k(P−Pk|k)(H
∗P+CT)+ (C.17)

=P−1
k|kP(H∗P+CT)+− (H∗P+CT)+ (C.18)

=
(
P−1+(H∗T +P−1C)(Pwr −CTP−1C)−1(H∗+CTP−1)

)
P(H∗P+CT)+

− (H∗P+CT)+ (C.19)

=(H∗P+CT)++(H∗T +P−1C)(Pwr −CTP−1C)−1(H∗P+CT)(H∗P+CT)+

− (H∗P+CT)+ (C.20)

=(H∗T +P−1C)(Pwr −CTP−1C)−1 (C.21)

Inserting this result in Eq. C.16:

P−1
k|kx̂k|k =P−1x̂+(H∗T +P−1C)(Pwr −CTP−1C)−1(H∗+CTP−1)x̂

+(H∗T +P−1C)(Pwr −CTP−1C)−1(r −h∗) (C.22)

=P−1x̂+(H∗T +P−1C)(Pwr −CTP−1C)−1(r −h∗+H∗x̂+CTP−1x̂)
(C.23)

Finally, we express this result in terms of the information matrix and vector:

ik|k = ik|k−1+(H∗Tk + I k|k−1Ck)(Pwrk
−CT

k I k|k−1Ck)
−1(rk−h∗k +H∗kx̂k|k−1+CT

k ik|k−1)
(C.24)

In summary, the measurement-differencing EIF-based update equations are:

I k|k = I k|k−1+(H∗Tk + I k|k−1Ck)(Pwrk
−CT

k I k|k−1Ck)
−1(H∗k+CT

k I k|k−1) (C.25)

ik|k = ik|k−1+(H∗Tk + I k|k−1Ck)(Pwrk
−CT

k I k|k−1Ck)
−1(rk−h∗k +H∗kx̂k|k−1+CT

k ik|k−1)

(C.26)

Notice how, when there are no time-correlated measurements, Ck = 0 and previous
equations reduce to the standard EIF update equations shownin section 2.4.3.
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