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Resumen

La idea de tener robots desempefiando la tarea para la cusitloatisefiados de forma
completamente autbnoma e interactuando con su entornald&lsprincipal objetivo
desde los inicios de la robdtica movil. Para conseguir &dlgde autonomia, es indis-
pensable que el robot disponga de un mapa del entorno y aoswbecalizacion en él,
ademas de ser capaz de resolver otros problemas como ellaeitmovimiento y la
planificacién de trayectorias hacia su objetivo.

En el desempefio de ciertas misiones sin conocimiento pdesa entorno, el robot
debe utilizar la informacion imprecisa proporcionada p& $ensores para construir un
mapa al mismo tiempo que se localiza en él, lo que da lugapohlgma de localizacién
y construccion de mapas de forma simultanea (o con las lescée su denominacion
anglosajona, SLAM) ampliamente estudiado en robética movi

En los ultimos afos, ha habido un creciente interés por lzadion de equipos
de robots debido a los multiples beneficios que ofrecen céspesistemas de un solo
robot, tales como una mayor robustez, precision, eficigniagosibilidad de cooperar
para realizar una tarea o cubrir entornos mas grandes ersrtiempo. En este &mbito
de los robots cooperativos encontramos también el casci@ispale las formaciones
de robots, donde deben adoptar una estructura concretaasiaavegan por el entorno.

A pesar de sus ventajas, la complejidad de los sistemas-rabtit autbnomos au-
menta con el nimero de robots ya que es mayor la cantidad deniafion que ha
de ser manejada, almacenada y transmitida a través de l& reahtlinicaciones. Asi
pues, el desarrollo de estos sistemas presenta nueva#taifesia la hora de dar solu-
cion a los problemas anteriormente mencionados que, endegebordarlos de manera
individual para cada robot, han de ser resueltos de formaecativa para aprovechar de
forma eficiente la informacién recogida por los todos losmtieos del equipo. El di-
sefo de los algoritmos en este contexto multi-robot ha émtaise a obtener la mayor
escalabilidad y rendimiento posible que permitan su ejéauanline.

Esta tesis esta enmarcada en el ambito de los sistemasramgti- proponiendo
soluciones a cada uno de los procesos de navegacion, &mahz construccion de
mapas y planificacion de caminos que conforman un sistenda@uib. Una primera
parte de las contribuciones presentadas en esta tesisesst@allada en el contexto
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de las formaciones de robots, que exigen una mayor coopargaincronizacion del
equipo, aunque pueden ser extendidas a sistemas sin egxi@sten la navegacion.
Asumiendo que la formacion dispone de un mapa del entorrsihlpmente parcial e
imperfecto, en el que debe realizar la misibn encomendam@opemos técnicas para
la localizacién, mejora del mapa previo y exploracion desmo. En una segunda
parte, proponemos un método de SLAM multi-robot sin ningasuncion en cuanto al
conocimiento previo del mapa o de las relaciones entre sobiotel que utilizamos
técnicas pertenecientes al estado del arte para gestiboi@nemente los recursos
disponibles en el sistema. A lo largo de la tesis se ha validhdendimiento y efi-
cacia de los sistemas de robots en formacién y de SLAM muittdt mediante su im-
plementacién y puesta a punto tanto en simulaciones comguinas de robots reales.



Abstract

The idea of having robots performing the task for which thayehbeen designed com-
pletely autonomously and interacting with the environnteas been the main objective
since the beginning of mobile robotics. In order to achiewshsa degree of autonomy;, it
is indispensable for the robot to have a map of the environar@hto know its location
in it, in addition to being able to solve other problems susetion control and path
planning towards its goal.

During the fulfillment of certain missions without a priordwledge of its environ-
ment, the robot must use the inaccurate information pravlmeits on-board sensors
to build a map at the same time it is located in it, arising trabfem of Simultaneous
Localization and Mapping (SLAM) extensively studied in nielvobotics.

In recent years, there has been a growing interest in thefusdat teams due to
their multiple benefits with respect to single-robot systesuch as higher robustness,
accuracy, efficiency and the possibility to cooperate tdqoer a task or to cover larger
environments in less time. Robot formations also belonghitofield of cooperative
robots, where they have to maintain a predefined structuile wavigating in the envi-
ronment.

Despite their advantages, the complexity of autonomougimaldot systems in-
creases with the number of robots as a consequence of tleg Ergunt of informa-
tion available that must be handled, stored and transntthitedgh the communications
network. Therefore, the development of these systems miesew difficulties when
solving the aforementioned problems which, instead of dp@iddressed individually
for each robot, must be solved cooperatively to efficientgleit all the information
collected by the team. The design of algorithms in this rmaliot context should be
directed to obtain greater scalability and performancdltovaheir online execution.

This thesis is developed in the field of multi-robot systemd proposes solutions
to the navigation, localization, mapping and path planpiragesses which form an au-
tonomous system. The first part of contributions presemtékis thesis is developed in
the context of robot formations, which require greater temmperation and synchro-
nization, although they can be extended to systems withisiinavigation constraint.
We propose localization, map refinement and exploratidmiegcies under the assump-

\Y



Vi

tion that the formation is provided with a map of the envir@mtj possibly partial and
inaccurate, wherein it has to carry out its commanded mis$ioa second part, we pro-
pose a multi-robot SLAM approach without any assumptioruabite prior knowledge

of a map nor the relationships between robots in which we makeof state of the art
methodologies to efficiently manage the resources availabthe system. The perfor-
mance and efficiency of the proposed robot formation andivmlibt SLAM systems

have been demonstrated through their implementation atichgeboth in simulations
and with real robots.
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Chapter 1

Introduction

1.1 Motivation

The development of robots accomplishing their commande#t tompletely au-
tonomously has been the main objective in mobile robotiagnduthe last decades.
This is motivated by the wide variety of applications eithethe social sphere, such
as rescue missions, surveillance, guidance of people imgamey situations or explo-
ration in hostile environments of hard access to humans ks the industrial field
such as in maintenance, inspection or transportation agjodutonomous robots such
as vacuum cleaners and lawn mowers are already presentlames, freeing us from
these time consuming tasks, whereas more advanced robaticss the Mars Curiosity
rover and the Google self-driving car have also been suftdlsdeveloped.

To fulfill its mission completely autonomously in its surraing environment, the
robot has to perform a number of tasks which can be groupeabiion contro} path
planning localizationand mapping closely interrelated as shown in Fig. 11.1. The
motion control is the problem of computing the actions ortoannputs (usually velo-
city commands) to move the robot towards a desired locatmm fts current position.
The path planning seeks the optimal trajectory (sequenseagpoints or sub-goals)
the robot has to follow to reach the global goal of the missiBath planning usually
includes obstacle avoidance to cope with unexpected gihsaivhich may modify the
initially computed trajectory. To reach a desired locatoo compute a trajectory, the
robot first needs to know its current position in the enviremin The localization system
provides the position with respect to a map of the envirortmdrich can be knowma
priori or acquired simultaneously to the performance of the nisdiothis latter case,
the mapping process can not be decoupled from the localizatiocess leading to the
problem ofSimultaneous Localization and Mappi(8LAM). Due to the difficulty of
integration of the uncertain information provided by theats on-board sensors, the
SLAM problem became one of the main research topics in mobldetics, considering

1
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Autonomous Robot

: /Map\ A
. Sensor
Mapping SLAM Localization ‘isurements
Map Position Position
Path Planning Trajectory ; /
( Local replanning (waypoints) Motion Control Input velocities
- J

Goal

Figure 1.1: Tasks to be solved by an autonomous robot.

the concurrent learning of the environment and the robalipation in a probabilistic
manner.

As we can see, these problems can not be addressed indefhertiiento their
interdependencies and solving all them together is a aiggler mobile robotics. Then,
it is usual to solve individual problems by assumming cerfaevious knowledge. For
example, having a closer look to Fig. 1.1, we can solve laa&ibn and path planning
problems if the map of the environment is given. Also, we @au$ on the SLAM pro-
blem without concerning of path planning and motion corttsomanually teleoperating
the robot.

As the techniques developed for single robots maturedareisers started to show
interest in the use of multiple robots due to their attractdvantages with respect to
the single-robot case. For example, in surveillance anonmegissance missions, mul-
tiple robots cover the environment in less time and offereased robustness since, if
one of the robots fails, it does not necessarily imply abgrthe mission. However,
the development of an autonomous multi-robot system caba&atdressed by simply
replicating the scheme shown previously on each singléyerfthat would be an ine-
fficient implementation without taking advantage of thente@operation. For example,
robot localization can be improved if they are able to detecth other. Also, the inte-
gration of information coming from multiple robots resulismore accurate maps and
expanded fields of view to obtain better paths to the goal.

Then, to develop an autonomous multi-robot system, we neegtend the above-
mentioned tasks to exploit as much as possible all the irdtion available in the sys-
tem. In this thesis we focus on providing solutions to thalzation and SLAM prob-
lems in the context of multi-robot sytems which are alsograged with path planning
and multi-robot motion control tasks to obtain a complet&tay. Besides, part of this
thesis aims at giving a practical implementation of the pegul techniques for the case
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of robot formations. A robot formation is a specific case ofltimabot system where
the robots are constrained to navigate following a predeéfsteicture. Tipically, robots
in the formation are organized in such a way that there is atri@aderin charge of
following a precomputed path towards a goal whereas theofesbots, theollowers
try to maintain the geometric inter-vehicle restrictiongm though these can be ocas-
sionally adapted to the dynamic environment. These kindwfirobot systems can be
particularly relevant to fulfill missions where, whetheredo environmental restrictions
or to exploit a set of heterogeneous robots carrying diffesensors, the team is forced
to adopt a specific configuration. In other applications, rtfan task is achieved by
the leader and the rest of robots follow him closely to actuggpbers of computational
resources.

1.1.1 SLAM and Multi-Robot Issues

For many years, the research efforts were focused on salven§LAM problem by us-
ing filtering techniques, being the most prominent those based on thadeddalman
Filter (EKF). Under the Bayesian filtering context, the ewmtrstate of the vehicle and
the map are estimated by recursively integrating the robatian and sensor mea-
surements as they are available. However, as these teesnpagressed, the eager-
ness of solving the SLAM problem in more challenging scessgnmade some of their
weaknesses such as unbounded computational requireseaiisg and long-term map
maintainance apparent. Besides, due to the inherent mamlature of the SLAM prob-
lem, the EKF framework offers no guarantee of convergeneetalinearization errors
that cannot be reverted. These convergence problems mdikecitlt to obtain consis-
tent and accurate maps and affects the robot’s ability terdehe when it is entering
into an already explored area, the so-called loop closioglpm. Despite these draw-
backs, the filtering techniques have also been shown to hyeefiécient in situations
where the dimension of the problem is bounded such as in soalé scenarios or
robot localization once the map is provided.

In the last years, the so-callethoothingapproaches have attracted the interest in
this field due to their enhanced performance. These alteeaiethods require solving
the also calledull SLAM as a least squares optimization problem and allow tovec
from wrong linearization choices since the problem is rakgated around the current
estimate using all history of measurements and robot positi

We have discussed the multiple advantages the use of a robtt-team offers
with respect to the single-robot case, such as robustregaldity, accuracy, eficiency
and the possibility of cooperation to perform a task or toecdarger environments.
However, the development of multi-robot systems requiesgidg with new issues that
are not present in the single-robot case. We could group thienthree main topics:

Computational issues One of the main problems a multi-robot system has to deal with
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is how to combine the local map information acquired by eaathot, usually
expressed with respect to its own reference frame. It regqolving a data asso-
ciation problem dependent on the knowledge about theitivelpositions which
can be easily computed if the robots work with respect theesaierence frame.
If this is not the case, the relative positions can be obthiheectly through inter-
robot measurements or indirectly by local map matching.i#aithlly, the use of
multiple robots increases the overall information avdéakvhich has to be effi-
ciently managed and stored according to the processingi#iea and memory
resources.

Communication issuesThe way in which the communication network is designed de-
pends principally on the task to be accomplished and on finasiimucture, being
wireless Ad-Hoc networks the common choice in mobile mudbet systems.
These type of networks have limited communication rangeetiore its topology
can be dynamically reconfigured based on the proximity ofthets. Regarding
the kind of data to be transmitted, it is important to adaptrtfessage size to the
bandwidth requirements to avoid overloading the networkis Bspect may be
particularly relevant in the case of handling large group®bots.

Motion coordination Certain tasks such as area coverage or joint manipulation of
goods demand strong coordination to perform them optimallgordination is
indispensable in order to avoid robots interfering withreather and to minimize
the task execution time.

Obviously, these issues are highly related, since ther® isoordination without
information sharing, which has to be exchanged and mandtfjectetly to avoid re-
dundancies in the network. In order to address these isseieamwadopt two different
schemes depending on the task commanded to the multi-rg$teins.

Centralized schemeln centralized schemes, the computational payload andiotnr
tion decisions rely on a single robot upon reception of dlbimation available
in the network. Produces optimal results although its psicg complexity is
exponential in the number of robots. They are suitable ikstaghere the com-
munication and synchronization between robots can be gteed.

Distributed scheme In distributed schemes, the computational payload is shayell
robots and the system is more fault-tolerant since the cetiopl of the task is
not compromised by the failure of a single robot. Howeveeythequire more
coordination (and therefore communication) on decisidmaiaihow to perform a
task since it is more difficult to have a global vision of thealéhsystem.
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1.2 Contributions of the Thesis

This thesis presents several contributions in the field oltimabot localization and
mapping, where both filtering and smoothing approaches sed, adapting them to
the specific requirements of the problems that are going tadskkessed. Some of
the techniques are particularized to the case of robot filomaalthough they can be
extended to more general multi-robot systems. Additignate present an integrated
robot formation system considering also path planning amch&tion control. These
contributions and their organization in the different dieap are summarized below:

e First, in Chaptel 3, we address the problem of multi-robojpavative navigation
in formation. We achieve formation control by means of avattspring-damper
system which generates a set of forces on the robots, latesfarmed into input
velocities by a motion controller. This contribution wasbpshed in [85] and
constitutes the starting point of this thesis. Additiopaih this thesis we set out
the problem of maintaining the formation shape and readtsrgpmmanded goal
when we apply velocities corrupted by noise which affectribteots knowledge
about their true position in the environment.

e Inorder to deal with the robot formation localization preil presented in the pre-
vious chapter, in Chaptér 4 we propose an EKF-based algotithcompute the
robots’ positions with respect to a given stochastic mapehiavigation area. We
show how a direct implementation of the EKF algorithm leadsitonsistency in
the estimated localization which makes it unreliable failwaomous navigation.
We justify the origin of the anomalous behaviour of the filtethe time-correlated
nature of the measurement noise sequence. Then, a novebsdlased on the
measurement differencing technique is proposed to drivadtution of the EKF
towards consistency. We presented this contributioh i §4@ in this thesis we
give further analysis of the problem and statistical ressult

¢ In Chaptef’b we give a step forward towards achieving the gbdkveloping a
complete working system for robot formations. Then, wegrdée the formation
control and localization approaches presented in previbapters with global
and online path planning techniques which take into acctwnuncertainty of
the given map of the environment. Both feature-based andagsed techniques
are combined under a probabilistic perspective to obtathspaf bounded risk
of collision towards the goal of the formation. Additionglive incorporate the
sensor observations in the estimation algorithm presentéae previous chapter
to obtain a joint and unified cooperative view of the formatsoirroundings which
benefits the online replanning process. We presented ingid2jverview of our
robot formation system and in this thesis we give a more kdetédormulation of
the algorithms and provide additional simulated and realdvexperiments.
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e In Chaptefb we propose a filter-based SLAM algorithm not daliocalize the
formation in ana priori known stochastic map of its navigation environment but
also to jointly refine it. Additionally, we adopt a distrilmet scheme which con-
tributes to an increased robustness of the system. We a&chisignificant re-
duction of the computational cost through the applicatibcomditional indepen-
dence properties over the probabilistic representaticin@fsystem state. Each
robot maintains its own local and global maps which are im@dowith the infor-
mation received when communications among robots takeepl@be contribu-
tions presented in this chapter were published in [50].

e Last but not least, Chaptér 7 presents a multi-robot SLAMr@ggh to model
the environment without any prior map information. In thase, the method is
not constrained to robot formations but works with generaltiamobot systems
where robots only share the navigation area occasionallya@proach addresses
the SLAM problem via optimization techniques and is speaifycdesigned to
deal with the communication and computational issues ipiatlly affect multi-
robot systems. The use of condensed measurements duringafhaformation
exchange process among the robots allows to effectivelypoess relevant por-
tions of a map in a few data. This results in a substantialataiu of both the
data to be transmitted and processed, that renders thersgstee robust and e-
fficient. Additionally, we propose a robust map alignmewgiogithm to solve the
loop closing and intra-robot data association problemst r@uiti-robot SLAM
approach was published in [51] and in this thesis we providdnér experiments
to test the performance of our map alignment algorithm.

1.2.1 Publications

The novelty and originality of the approaches presentetisithesis are supported by
the following peer-reviewed international conferences anrkshops:

e M. T. Lazaro, L. M. Paz, P. Piniés, J. A. Castellanos and Gseé®tii Multi-Robot
SLAM using Condensed MeasurementSEE/RSJ International Conference on
Intelligent Robots and SystenT®kyo Big Sight, Japan, Nov 3-8, 2013.

e M. T. Lazaro, L. M. Paz, P. Piniés and J. A. Castellanos, isted Localiza-
tion and Submapping for Robot Formations using a prior nfdqe 2013 IFAC
Intelligent Autonomous Vehicles Symposi@old Coast, Australia, June 26-28,
2013.

e M. T. Lazaro, P. Urcola, L. Montano, J. A. Castellanos, RosifTracking and
Path Planning in Uncertain Maps for Robot Formatiadrtse 2nd IFAC Workshop
on Multivehicle Systemg&spoo, Finland, pp. 7-12, Oct 3-4, 2012.
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e M. T. Lazaro and J. A. Castellanos, Localization of Prohatid Robot Forma-
tions in SLAM, 2010 IEEE International Conference on Robotics and Automa-
tion, Anchorage, Alaska, pp. 3179-3184, May 3-8, 2010.

e P. Urcola, L. Riazuelo, M. T. Lazaro, L. Montano, CooperatNavigation using
environment compliant robot formation§EE/RSJ International Conference on
Intelligent Robots and SystenMice, France, pp. 2789-2794, Sep 22-26, 2008.

1.2.2 Open Source Contributions

The multi-robot SLAM approach described in Chapier 7 is enpénted as a Rds
package and is publicly available at

https://github.com/mtlazaro/cg_mrslam.

It provides a multi-robot graph-based 2D SLAM with any asption about data as-
sociation or initial relative positions between robotshdndles communication among
robots working in an Ad-Hoc network where the map informaigexchanged by using
condensed maps.

1Robotic Operating Systera€tp: //www.ros . org)


https://github.com/mtlazaro/cg_mrslam
http://www.ros.org




Chapter 2

Basic Fundamentals of SLAM

A robot navigating autonomously in an environment requiresavailability of a map
and its location within it. If the environment is unknownre tilobot needs to construct
its own map and, at the same time, determine its positionkg itsing the information
gathered by its own sensors. However, these sensors pmwidg measurements and
are subject to errors. The Simultaneous Localization angpiag (SLAM) is a well
known research topic in robotics which takes into accouaséuncertainties by using
probabilistic techniques. The aim of this chapter is toadtnce the SLAM problem from
the point of view of its probabilistic formulation, togethweth the basic methodologies
of the different approaches that have been addressed ithibsss.

2.1 SLAM Problem Definition

Let the trajectory of a robot be represented by a discretestdof posexg,, =
{XRy, XRy; ---, XR¢ } Wherexg, is the 2D pose and orientation of the rolaty, 6)" at
time stepk. The transition between two consecutive robot statgs, andxg, is go-
verned by the control inputy, beingui.x = {us, ..., ux } the history of all control inputs
along the trajectory. As the robot moves, it observes the@@mwnent with its on-board
exteroceptive sensors, obtaining a set of measuremepts: {z1, ...,z }.

The inherent inaccuracies in the application of the motiontmls and the noisy
sensor readings introduce uncertainties in the systemhareiguire the use of a pro-
babilistic framework to deal with the mapping and locali@atproblems. These two
problems can be addressed separately in the following way:

1. If the robot positions are known, a map can be inferred from them and the
set of observations. This mapping problem is formulated madbabilistic way
represented by the posterior probability,

P(M|XRyy s 21K ) (2.1)

9
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2. On the other hand, if the robot is provided with a map of theirenment, it
can use this prior knowledge to compute its trajectory wépect to the map’s
reference frame. This represents a robot localizationlprolwhich is formally
expressed as,

P(XRyx |Z1:K, U1K, M) (2.2)

Equationd 2]1 and 2.2 highlight the existing interdepengdretween both mapping
and localization problems. In order to obtain the map of tm@renmentm, the robot
requires an accurate estimation of its trajectagy, which must be determined with res-
pect to the map. Therefore, if both the map and the robotipasiare unknown, these
problems can not be solved separately. This is a well knowitken or egg” problem,
subject of thorough investigation in the last decades bySihaultaneous Localization
and Mapping community. Then, the SLAM consists in estintatime joint posterior
probability of the robot trajectory and the map given thedng of control inputs and
measurements,

P(XRox » M|Z1:k, U1k ) (2.3)
which is also known as thiill SLAM problem, tipically solved by least squares op-

timization techniques. On the contrary, theline SLAM computes the current robot
position and the map using the measurements up to certagnstiepk,

P(XR, M|Z1:k, U1k) (2.4)

which is addressed by filtering approaches. Both kind of @ggites have been used
along this thesis and they are explained in the rest of thapten. The formulation for
the individual problems of localization and mapping can b&med following a similar
derivation, which is detailed i [81]. The derivation of thsolutions is based on the
application of probabilistic rules over the variables iwveal in the SLAM problem,
whose dependencies are represented by the Bayesian natvoovk in Fig[2.]1. Along
this document we will make use of other graphical represems, therefore, we give a
brief review of them in the next section. Subsequently, wedeiscribe different types
of map representations and the fundamentals of the filt@magptimization techniques
used in this thesis to construct them.

2.2 Graphical Models for the SLAM Problem

The SLAM problem can be represented by a variety of grapmadels to intuitively
visualize its structure and dependencies between theblasiavolved. The three most
commonly used graph representations are briefly introdurctids section. Further and
general details about the useful properties of these piidtabgraphical models can
be found in[[7|-45] and a review of their application in the 3 A&ontext can be found

in [23].
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Figure 2.1: SLAM problem represented as a Bayesian network.

2.2.1 Dynamic Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph where esoodepresent either
hidden (i.e., unknown) or observable variables and dicebidks (arrows) are used to
represent conditional dependencies among them. Theeliréok establishes parent
child relation between the connected nodes where the parentnetieefrom which the
edge leaves and the child is the node where the edge leadgltbtiohally, Dynamic
Bayesian Networks (DBNs) allow to model how these variablesrelated over time.

Figure[2.2 illustrates a short example of a SLAM problem \ehie variables to
be estimated are the robot posgs, and the mapn, represented by a set tdatures
F = {F1.4}. The observed variables are the odometry measureroggtand sensor
observations wherg, is theit" measurement at time stép

Through this kind of graph we can directly represent somelitimmal distributions
present in the SLAM problem such p&g, [Xr, ;,Uk), Vk>0 andp(zL\ka,ijik) where
Fj,. is the feature associated to measurenagrithese probabilities are callé@nsition
(or motion)modelandmeasuremer{br observationjnodel We can also deduce the full
joint posterior over the set of variables factorized as,

P(XRoy s M, Zu:x, Uik ) = P(XRy) [ PR IXRe 1 k) [ P(Z[Xk: XFy, ) (2.5)
) |

2.2.2 Markov Random Fields

A Markov Random Field (MRF) is an undirected graphical moaietl may contain
cycles. In MRFs only the hidden variables are representddraasurements are im-
plicitly encoded on the edges between the unknown the Vdasalbhe undirected graph
representation from a directed graph can be found by a psazatedmoralization
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Figure 2.2: Example of a feature-based SLAM problem represented as esizaynetwork.

Figure 2.3: SLAM problem represented as a MRF.

where arrows are replaced by undirected links and parergssommon child must be
linked each other. As a example, Fig.12.3 shows the equivM&F representation of
the BN from Fig[2.D.

One of the benefits of this representation is that MRFs offiezasy way of testing
the conditional independence properties between vagdlylsimple graph separation.

The Conditional Independence Property

We will refer to the example in Fid._2.4 where a MRF is used tovskhe conditional
independence (CI) property of a set of random variakjes<g andxc. Suppose that

we want to search for a path connecting any nodegajrio any node inxg when the
common node subsgg is removed from the graph. Since no such a path exists, we can
assert that subsexs andxg are conditionally independent if we know the subsget
Subsetxc is called avertex separatosince it partitions the graph in two disconnected
subgraphxa andxg. Then, in MRFs, the CI property is determined by simple graph
separation ([[7]).
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XA XC XB

Figure 2.4: This example shows a MRF with no direct links from subseto subseig. This
means that the conditional independence proppfi,Xs|Xc) = p(Xa|Xc)p(Xs|xc) or any of
its equivalents holds for any probability distribution deksed by this graph. Notice that we
do not make any assumption about the nature of the diswilbutCommon separator nodes are
surrounded by a dash dark line and depicted in green; nodesandxg sets are shown in red
and blue respectively.

Formally this is expressed by any of the following equivakxpressions:

P(Xa, XslXc) = P(XalXc)pP(Xs/Xc) (2.6)
P(XalXs,Xc) = p(XalXc) 2.7)
P(XslXa,Xc) = p(Xs/Xc) (2.8)

These equations will be applied in the explanation of thie¥ahg sections and we
will make a explicit use of this property in the distributedititrobot SLAM algorithm
presented in ChaptEr 6.

2.2.3 Factor Graphs

A factor graph([46] is a bipartite undirected graph whicloat to represent factorized
probability distributions. A factor graph has two kind ofdes,variable nodesvhich,
in our context, can be either robot or landmark posesfaatbr nodesontaining pro-
babilistic relations between them. Concretely, each factale contains one factor of
Eqg. 2.5 and is connected to all the variables that such falgpends on. The factor
graph representation of the previous SLAM example is shovig.[2.5. Note how the
prior factor over the poser, is also included.

2.2.4 Pose Graphs

The pose graphs are a specific type of graphical model togepte¢he so-callegose
SLAM problem. In contrast to the general approach to SLAM, gbal of pose SLAM
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(S ——(xe-m—()

Figure 2.5: SLAM problem represented as a factor graph. Circles andreguarrespond to
variable nodes and factor nodes respectively.

is to compute the optimal robot trajectory whereas the mapastained implicitly.
As in the case of the general SLAM problem, the pose SLAM mabtan be equally
represented by MRFs or factor graphs. The pose graph cemainthe robot poses and
each edge/factor between two nodes encodes a spatialaohbitween them. These
constraints can be obtained directly from odometry measengs or indirectly when
the robot observes the same part of the environment from iffeveht poses and, based
on this common observation, a “virtual” relative measuretizetween both positions
can be determined. Once the optimal path is computed, a niapaés can be recovered
by solving an instance of mapping with known poses (Eq. 2.1).

Figure 2.6 shows the pose graph simplification of our curegample. Note how the
edge/factor between non consecutive poses is derived fremliservation of a common
landmark.

e O I ae e
(b)

(a)
Figure 2.6: Pose graph SLAM problem represented as a MR (a) and a faeton[gb).

2.3 Map Representations

A variety of map representations have been proposed ovgetirs, which can be clas-
sified according to different criteria. We classify the kiodmap depending on how

the sensorial information is handled and integrated in th&NS process. This leads

to feature based maps which consider unique and distinghlisielements of the envi-
ronment and dense maps which use raw data. The choice of {hegpesentation is

related to the task to be performed and to the algorithms agttiods used to address
the problem.
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2.3.1 Feature Maps

In feature-based SLAM, the map of the environment is chareeetd by a set deatures
or landmarks They are representative elements of the environment arekitaction
depends on the kind of sensor used and the structure of thement. For exam-
ple, in the 2D case, usual features obtained from laser st@segments, corners or
even simpler elements, like points. In the 3D case, some aonmvisual features ex-
tracted from images are the Speeded Up Robust Features {|SthieFScale Invariant
Feature Transform (SIFT) and the Features from Accelei@ggpnent Test (FAST). As
downsides, feature detection can be computationally estperand assumes the pres-
ence of outstanding features in the environment. Furtheeptbis abstraction of the
environment may produce a loss of the information availaileh difficults the data
association process (i.e., determining corresponderetegebn observations and previ-
ously mapped landmarks) in unstructured environments.

The state of a feature map can be described by a vegter {xg,,...,Xr,} contain-
ing the location of then map featuresF = {Fy,...,R,}. Furthermore, the assumption
of the map being affected by Gaussian error requires thetaiaance of the uncer-
tainty estimation over time by means of a covariance maifixen, the uncertainty is
maintained not only for each individual feature but alsowthibeir correlations and
inter-dependencies, an important aspect to obtain cemsistaps/[17].

The cost of updating the map covariance matrix is quadratibe size of the state
vector which grows each time a new feature is detected aneldaddt. This makes the
map maintainance intractable in large-scale scenariostder to cope with this issue,
submapping techniques were proposed [89] 25, 40, 70], whenmapping problem is
solved for local maps of bounded size which are later fusetdate a global map.

As example, Fig[2]7 shows a 2D segment-based map of our Rehath at the
Aragon Institute of Engineering Research of University afagjoza.

a7\
w /

i\

| ! I\ T—
A _ = _=~
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Figure 2.7: Example of segment-based feature map representation &abetics Lab at Uni-
versity of Zaragoza.



16 2. Basic Fundamentals of SLAM

2.3.2 Dense Maps

In contrast to feature-based maps, dense maps are coedtugihg all raw data gath-
ered from sensors, thus, offering a more detailed recartgtruof the environment.
This fact makes dense maps suitable for both structuredmstductured environments.
Data association is carried out ggistering(aligning, also referred as scan matching
in the 2D case) the raw measurements. The two common typesnsednaps are grid
maps and pose graphs, which are introduced below:

Grid maps

An occupancy grid map [59] partitions the environment irdiscwhere each cell holds
the probability of being occupied. The number of cells in grel depends on the
desired accuracy which is achieved by setting the size ofelis. The size of the grid
affects the updating cost and memory consumption, thedslsed algorithms should
trade-off accuracy and online performance.

Since most widely used path planning and obstacle avoid@otmiques are grid-
based, these maps allow the use of a unique representati®.fM and navigation
purposes.

Pose graphs

Pose graphs have experienced a considerable attentioa laghyears thanks to their
simplicity to represent the full SLAM problem.

As we introduced in the previous section, pose graphs offengpact representation
of the environment, where the map is summarized to the robmdtory. Each node
contains a robot location together with a measurement ddaat that position. Then,
once the optimal trajectory is obtained, the measuremeatepresented with respect to
the computed poses. As a drawback, raw measurements hagstored at each node,
then, this information has to be efficiently managed to atagéh memory consumption.
This aspect can be particularly relevant when dealing watihtxclouds in dense visual
SLAM.

Figure[2.8 shows dense representations of the same feaaprefrrig.[2.7.

2.4 Filtering Approaches

2.4.1 SLAM as a Recursive Bayesian Filtering Problem

In the filtering context, the current robot positigg, and the man is computed given
the history of sensor observationg and control inputsi; . up to time stek.

p(XRw m|Z1x, U1k) (2.9)
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Figure 2.8: Example of dense map representations of the Robotics Labnatetdity of
Zaragoza.[ (&) Grid map representation of the environmemte Hvhite cells are free of ob-
stacles, black are occupied cells and grey cells denoteplorex! ared. () Pose graph obtained
using the same raw data. The optimized robot trajectorypéctied in red where black dots are
the laser scans acquired at each robot position

This probability is obtained recursively, based on the jonesly computed state at
timek—1, that isp(Xr,_,,M|Z1:k—1,U1k—1)-
Equatiori 2D is factorized by using Bayes'’ rule as,

P(XR, M|Z1k, U1 k) = N P(Zk|XR,, M, Z1:k—1, U1:k) P(XR s M| Z1:k—1, U1 k) (2.10)

wheren is a normalizing factor that ensures Eq. 2.10 representdic pabability
distribution.

Under the Markov assumption, the current measuremaatconditionally indepen-
dent of the past measuremenig_1 and control inputsi;y given the current stabter,
and the mapn. This property can be deduced from Hig.12.1, wheres only directly
related toxg, andm, therefore, the first term on Elg. 2110 is simplified as,

P(Zk|XRr,, M, Z1k—1, U1k) = P(Zk|XR,, M) (2.11)

Following with the derivation, the law of total probability applied in the second
term of Eq[Z.1D to consider the state at previous ktefd. Then,

P(XR,, M|Z1k—1,U1k) = / P(XR IXRe_1,M, Z1:k—1, U1k) P(XR, 1> M|Z1k—1, U1:k)AXR,

XRe—1
(2.12)
which, again, using the Markov property, is reduced to

P(XR,, M|Z1k—1,U1k) = /X P(XR |XR,_1,Uk) P(XR, 1, M|Z1:k—1,U1k—1)dXR, , (2.13)
Re_1
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Finally, applying Eqsl. 2.11 arid 2]13 on Eq. 2.10 we obtain,
P(XR, M|Z1:k, U1k) = N P(Zk|XR,, M)

/ P(XR,[XR, 1, Uk) P(XR,_ 1, M|Z1:k—1,U1k—1)dXR, ,
X

Re—1

(2.14)

As it can be observed, the problem is formulated in terms ef rtfeasurement
model gzx|xr,m), thetransition model pxr |Xr,_,,Uk) and the previous knowledge
P(XR,_1,M|Z1k1,U1k1)-

Tipically, these models are approximated by Gaussians,

P(XR[XR_1,Uk) [ eXp{ —%(f(XRkl, uk) — xR0 " Q1 (FOXR, 15 UK) —XR,) } (2.15)

p(zk|XR,, M) O exp{—%(h(ka, m) —z) R (h(xr, M) — zk)} (2.16)

wheref andh are the transition and measurement functions, affecteditiyize zero-
mean Gaussian noises with covarian@gs; andRy respectively.

Usually, Eq.[2.14 is solved in two steps, the prediction dredupdate step. In the
prediction step we compute:

PO M1k 1,01k = | POXRXR, 1, UKPOXR, 1M Zatc 1. Uni1) R ; (2:17)
Rk-1

accounting for the transition modelxr, |Xr, ,,Ux) and the estimate at previous step
P(XR_,,M|Z1:k—1,U1:k—1). Notice how, obeying the filtering paradigm, previous robot
position xg,_, is marginalizedout. At the update step, the probability distribution
P(Xr,,M|Z1x—1,U1k) iS updated taking into account the sensor model describéthby
[2.16 and normalized with the constanto ensure that the result is a valid probability
distribution.

P(XR; M|Z1k, U1k) = N P(Zk|XR,, M) P(XRy, M|Z1k—1, U1k) (2.18)

2.4.2 Extended Kalman Filter

The Kalman Filter (KF) is the optimal estimator to recurspsolve Eq[2.T1. Itis based
on the assumptions that the system is linear with zero-meas$an noise sequences.
However, the SLAM motion and measurement processes ar@éean| The Extended
Kalman Filter (EKF) is the KF nonlinear extension that altot apply its equations to
nonlinear models.

The state of the systerg = (xg,,m)" is described by a normally distributed random
vector with meark, and covariance matrii,

Xk ~ N (Xk, Pk)
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The transition and measurement models (Egs.]2.1%9 and 2163 formulate the
SLAM problem as the nonlinear system,
Xk = f(Xko1,Uk) + W1 5 Wi1 ~ N(0,Qk-1) (2.19)
zx=h(x)+vik ; vik~N(O,Ry) (2.20)
wherewy_1 andvy are the motion and observation noises respectively.
The application of the EKF equations requires a lineamratf the nonlinear pro-

cess and measurement functions around the best estimal@bk/a Then, the EKF
SLAM prediction and update steps are:

Prediction

A linearization of Eq[2.19 around the estimafed; and(y give us,

Xk =~ F(R—1, Ok) + Fro1(Xk-1 — Xk—1) +Wk_1 (2.21)
where y
Fg= 2 (2.22)
ox Ri—1,0K

Then, the EKF prediction equations are,

Kigk—1 = F(Xk—1, Ok) (2.23)
Pigk_1 = Fi1Pr 1P 1 + Qi1 (2.24)
Update
Similarly, Eq.[2.20 is linearized around the predictedreateXy 1,
Z =2 (K1) +Hi(Xk — Kigk—1) + Vi (2.25)
where ah
Hi= — (2.26)
Rifk—1

It allows to compute thenovationvy, its covariances, and the filter gairkx based on
the current observations,

Vk = Zk — h(Xygk—1) (2.27)
Sc = HPy_1Hy + R« (2.28)
Kk = Pk_1Hg St (2.29)

Finally, the state of the system is updated by,
Xk = Xigk—1 + KkVk (2.30)
Pk = (I = KiHk)Pijk-1 (2.31)
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2.4.3 Extended Information Filter

The Extended Information Filter (EIF) is the algebraic egient of the EKF, also
known as itsinverse covariancéorm where the state of the system is represented by
the information vector, and matrixlx, which are defined in terms of the megnand
covariance matri®y as,

=Pt (2.32)
k= Plzl)A(k: | X (2.33)
The prediction and update equations of the EIF can be dealgzbraically from
the EKF equations in the following way:
Prediction

The prediction of the state in the information form is ob&irfrom the application of
the EKF prediction equations on the definitions of the infation vector and matrix.
Then,

ko1 = (Fieah Feea + Q) ™t (2.34)
k=1 = Nk—1Xkjk—1 (2.35)

Note that to obtair_, we need to recovety 1 by solving the linear system,

lk—1Xk—1 = k-1 (2.36)
to propagate the state through the nonlinear function,
Xigk—1 = (X1, Uk (2.37)

Update

The information matrix update equation is computed fromitkrerse of the expression
to compute the covariance matrix in Efg._2.31 and using theixniatersion lemma
(A+BCD) 1=A1_A"1B(DAB+C 1) DAL

k=P ' (2.38)
= (Pik—1— Puk_1Hg (HkPk_1HR +Ri) HHiP1) (2.39)
= g1+ Hg R Hy (2.40)

The derivation of the information vector update equatiork@sause of the alternative
form of the Kalman gain [6],
Kg=PHTR? (2.41)
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Then, applying the EKF state update equafionI2.30 on theitiefin

ik = P (2.42)
= P M (Rige1+ Ki(zc— (k1)) (2.43)
= P g1+ P Kz — h(Rige-1)) (2.44)
= (lgke1 + HER THIRig-1 + HTR ™z — h(&qi—1)) (2.45)
= i1+ HER M (Zc— h(Rigk-1) + Hiyg 1) (2.46)

Summing up, the EIF update equations are,

I = i1+ HE R MHy (2.47)
i = iigk-1+ Hig Ric (2 — h(Rige1) + HRyge-1) (2.48)

244 EKFvs. EIF

Although both EKF and EIF provide identical results assugrime measurement and
motion jacobians are evaluated at the same linearizationig[®1] (except for numer-
ical and rounding errors in the operations involved) thegadiction and update stages
are not computationally equivalent.

On the one hand, EKF prediction is efficient whereas the @idahore expensive.
On the other hand, the prediction step of the EIF involvesisgla linear system to
recover the mean (Eq._2136). Fortunately, the informatiairixi is approximately
sparse (and exactly sparse when robot positions are notmabzgd out) which allows
the use of numerical techniques to speed up the computathuisonally, its update
step is carried out by simply adding the new measurementirgton which makes the
filter inherent to decouple multi-robot processes.

Furthermore, each filter offers different possibilitieg@énms of their initialization.
Whereas we can represent the absence of uncertainty in tRebfzKettingPg = 0, the
EIF allows to initialize the estimation process in the cakkck of prior information
with 1o = 0.

2.5 Maximum Likelihood Approaches
Maximum Likelihood approaches address the SLAM problemabale, maximizing
the posterior probability of the entire robot trajectoryddahe map based on the history

of measurements and control inputs,

P(XRyx » M|Z1:k, U1k ) (2.49)
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Following a similar derivation as in the filtering case weaibt

P(XRyy M|Z1k, U1k) =

= 1 P(Zk|XRyy: M, Z1:k—1, U1:k) P(XRgye» M| Z1:k—1, U1:k) (2.50)
= N P(Zk|XR,, M) P(XRoy> M| Z1:k—1, U1k ) (2.51)
= 1N P(Zk|XR,; M) P(XR [ XRoy_1 M Z1:k—1, U1:k) P(XRoy_1> M|Z1:k—1, U1k) (2.52)
= N P(Zk|XR, M) P(XRIXR, 1> Uk) P(XRoy_1sM|Z1:k—1, U1k 1) (2.53)

This is a recursive solution, which can also be expresselbsed-form as

P(XRog M[Z1:k; Uzk) = NP(XRy) P(M) [] P(XRIXR 1, Uk) P(Zk[XR,, M) (2.54)
k

wherep(xg,) is the prior over the first poses, = (0,0,0)7, fixed at the origin of the
global reference frame

1
P(Xr,) O exp{—éxEOQROXRO} (2.55)

and p(m), the prior knowledge about the map, which is usually consideinknown
and subsumed into the normalizgr As a result, we obtain a factorized posterior of the
full SLAM problem which is usually represented by a factoagjn.

The Maximum a Posteriori (MAP) estimation of the robot piesis xg,, and the
mapm is given by:

Koy M’ = IGMaXOG P(XRoy. M1 Ut (2.56)
= argmin—log p(XRy,.; M|Z1:x, U1:) (2.57)
XRr,M

Then, taking the logarithm in Ef._2]54,
l0g P(XRox» M|Z1:k; U1k) = CONSt-l0g p(XR)
+3 (Iog (i, U) +10g Pz, ) (2.58)

Now, applying Eqsl_2.5%, 2115 ahd 2.16 we obtain,

1
10G P(XRy: M| 21k Urie) = CONSE- X, QRXR,

N % Z{(f(Xkala Uk) = XR) Q1 (R 1, k) —XR,)

+ (h(xr, M) —2¢) "R (M (xR, M) — )}
(2.59)
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Finally, we substitute this expresion into £q. 2.57 whicsutés in,
Xy M = argmlng{ (XRe_1>Uk) —XR) TQt (F(XR,_, Uk) —XR,)

+ (h(XR,, M) — 2¢) "R (M (xR, M) — 2)} (2.60)

which can be simplified by introducing the error functic§°™ = f(xg,_,,Ux) — XRr,
andePPS = h(xg,, M) — z as,

XROk’m _argmmg{ odom)T _11q(2dom+ obﬂTRlzlqtzbs} (2.61)

Then, SLAM is formulated as a nonlinear weighted least segijgroblem which can
be solved by minimization methods such as Gauss-Newtonwariberg-Marquardt. In
a pose SLAM problem, the minimization problem of Hg. 2.61ak/ed only for the
trajectoryxg,,, afterwards, the mam can be reconstructed from the set of poses based
on Eq.2.1. From this point we turn our attention to how thisrajzation can be carried
out for a pose SLAM problem using pose graphs.

2.5.1 SLAM as a nonlinear Least Squares Minimization Problen

Equatior 2.57 formulates the full SLAM problem as a MAP esitiion problem which
can be reduced to determine the positions of a robot alongrajsctory xr,,, =
(xRO,...,xRK)T and postponing the estimation of the m@apto when the optimal tra-
jectory is computed. This pose SLAM problem can be represehy a pose-graph
as shown in Fig[_2]6. Let us consider a pose-graph where to¢ t@jectoryxg,, is
represented by a set of nodes- (o, ...,Xk), containing a robot position together with
a measurement (image or laser scan) acquired at each paasitibeach edge encodes
a measuremert about the relative transformation of its two connected sodéhese
measurements can be computed directly from the odometndaectly by computing
relative transformations from the observations e.g. bypaisi visual place recognition
system or scan matching. During the process of graph cantisting usually referred
asfront-end constraints between consecutive nodes and loop clostwast(aints be-
tween non-consecutive nodes introduced during placeitiegk are determined. In
other words, in a pose-graph SLAM approach, we assume thabbot is equipped
with a simple sensor capable of measuring the transformatween robot locations
in the trajectory when they are either temporally or spiticbse.

Assuming that the measurements are affected by Gaussiae, rroconstraint be-
tween two nodes; andx; is characterized by its meayy and its information matrix
Qjj. Then, given a pair of nodes,xj and a measuremenj connecting both nodes, it
is possible to compute the error committed in the estimation

& (Xi,Xj) = Zij — Zj (2.62)
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wherezjj = g(xi,X;j) is the expected measurement given the current configurafion
nodesx;,X;. In the 2D case(xj,Xxj) computes the position and the orientatiorxpin
the frame ofx;.

Let C = {(i,])} be the set of pairs of nodes for which a measurenagnéxists.
Note that this measurement represents indistinctly an etignor sensor observation
with inverse covariancf;j. Based on Ed._2.61, the goal of the pose-graph approach is
to find the configuration of nodes which minimizes the overall error:

F(x)= Gj(Xi,Xj)TQijaj(Xi,XjZ (2.63)
(i,])eC ng

Fij
X" = argminF (x) (2.64)
X

This constitutes a nonlinear least-squares minimizatroblpm which does not ad-
mit a closed solution. Instead, if a good initial guess isilalsée, the problem can
be addressed by numerical methods such as Gauss-Newtorvemdezg-Marquardt
which iteratively approximate the solution by carrying ¢atal linearizations. Recent
implementations (also calldaack-endsto solve this graph optimization problem like
g0 [47] or iSAM [42] require a time that depends on the numberdifes, and their
success in finding the correct solution is affected by thiainguess available to the
system.

A general procedure to solve Hg. 2.64 is presented in [32Pasdribed below. Let
us first denote, for simplicity’s sake, the sensor model anat éunction as

&j (Xi,Xj) = &j(X) = g(x) — zij (2.65)

The sensor model is, in general, a nonlinear function. Hewet/can be approxi-
mated around an initial guegsof the robot’s trajectory by a first-order Taylor expan-

sion: 2g(x)
. X .
g0x) = g%+ “7 | (x=X) (2.66)
X=X
which, alternatively, can be expressed in terms ofitlceesment\x:
g(X+Ax) >~ g(X) + JijAx (2.67)
with P
35 = 29 (2.68)
ox X=X
Applying[2.67 iN2.65, we obtain a linearized version of tn@efunction:
&j (X +Ax) = g(x) — zij (2.69)
~ g(X) + JijAX — zjj (2.70)

= gj +JijAX (2.71)
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wheregj = gj (Xi,X;).
Substituting EqLZ.71 in the error terrfg of Eq.[2.68 we obtain,

Fij (X4 Ax) = g (X +Ax) T Qjj & (X +AX) (2.72)
~ (&) + 3 %) " Qij (&) + Jij AX) (2.73)
:QTjQijaj+2(-:‘,TjQijJijAX+AXTJﬁQijJijAx (2.74)

bﬁ Hij

Now, we can write a linear approximation of the functi®(x) in Eq.[2.63 as,

F(X+Ax) = g Rj(X+Ax) (2.75)
(i,])eC
o~ Z Q-EQijaj+2bijAX+AXTHijAX (2.76)
fi.jec
= 5 elQej+2 5 bjAx+AxT 5 Hijix (2.77)
fi.jjec BIES (i.ec
Cc T H
b

With this procedure we have obtained a quadratic forrwirof the functionF (x).
We get the values fakx that minimizes function 2.77 by setting its first derivatacual

to zero:
A (AXTHAX + 20T Ax +-c)

0AX
Then, the problem is reduced to find a solution of the lineatesy:

= 2HAX+2b =0 (2.78)

HAX* = —b (2.79)
where the computed increments are applied to the initisdgas,
X* =X+ Ax* (2.80)

The matrixH is the information matrix of the system, since it is obtaitgdpro-
jecting the measurement error in the space of the trajestotia the Jacobians. It is
sparse by construction, having non-zeros only betweerspaseected by a constraint.
Its number of non-zero blocks is twice the number of constsaplus the number of
nodes. This allows us to solve the linear system in[Eq.]12.78 efficient approaches
like sparse Cholesky factorization.

The Gauss-Newton algorithm iteratively apply previousamuns until some con-
vergence criterion is reached. The current solution cansieel @as initial guess of the
next iteration. However, the convergence is not guaranéeeldit might happen that
one iteration of Gauss-Newton results in a worse solutiam tine previous one. The
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Levenberg-Marquardt algorithm tries to overcome this f@obby introducing a dam-
ping factorA which allows to recover from wrong steps. Then, instead ofZE£@9, the
Levenberg-Marquardt method solves a damped version of it:

(H+ADAX* = —b (2.81)

Intuitively, if A — inf, Ax* — 0. So, the larger id, the smaller are the increments. This
parameter is adjusted at each iteration based on the ertbe afew configuration. If
the error is reduced, the damping factor is decreased. Wigerthe solution is reverted
andA is increased.

Least Squares on a Manifold

Previous section describes a general solution to the lgaaras minimization problem
defined in equation 2.64. However, the derivations and opesinvolved are only
valid under the assumption that the state space is Euclidbah, in general, is not the
case in the SLAM context.

For example, in the 2D case, the robot p@sg/) spans over a Euclidean domain
whereas its orientation spans over the non-Euclideanioatgtoup SO(2). A common
approach is to represent the orientation using an afigld—, 17); however, this mi-
nimal representation suffers from singularities when apeg in the vicinity of+-mand
requires angle renormalization. A different approachdsgikample, the use of rotation
matrices, which is an over-parameterized representatnit(is a 2x2 matrix to repre-
sent one angle). However, directly applying Eq. 2.80 totrotematrices can break the
orthogonality constraint, leading to non-valid solutionkhis problem becomes even
more complex in the 3D case, where orientations are in SQ(8)can be described
using an over-parameterization (e.g, rotation matricegiaternions) or with a minimal
representation (e.g, Euler angles, which present a sintyukaown as gimbal lock).

In order to take advantage of the benefits of both represensatwe can consider
the state space assaooth manifold53] which is introduced in the SLAM context
[36,[33] to increase optimization robustness. A manifold ispological space which
locally behaves like a Euclidean space. Then, the intultieimind manifolds is to work
globally with an over-parameterized representation acdllp with its minimal form.
As proposed by [37], we can define the following two operatorsbtain a mapping
between both representations:

H:MxR™" =M (2.82)
B:MxM —R" (2.83)

Here,mis the dimension of the manifol. The operatoid applies a small perturbation
in the Euclidean space to the manifold, whereasomputes the perturbation between
to states in the manifold.
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In order to apply the concept of manifolds into our optimiaaproblem, we can use
an over-parameterized representation for the global statel a minimal representation
for the incrementéx. Then, given the current estimatave can move in the manifold
to approximate the solution by iteratively mapping the kledn increments into the
global state using th& operator: Ax — x B Ax. Moreover, since we assume these
increments are small, they are far from singularities.

Using this operator, we can define a new error function as

éj()?EEIAf():Zj Hzj (2.84)
= g(XHAX) Bz (2.85)

As before, we can compute the Taylor expression of the news &rntion under a
small perturbation of the state variables around a linatidm pointx as

&) (XBAX) ~ &j + Jjj A% (2.86)
with L
x  0d(g(xHAX)Bzj)
ij = S
00X A%—0
With a straightforward extension of the notation, we caeinEq.[2.8b in Eq_2.12
leading to the linear system:

(2.87)

HAX* = —b (2.88)

Note that the HessiaH of the manifold problem no longer represents the infornmatio
matrix of the trajectories but of the trajectory incremefits
Once we find a solution for the incremerts* computed in the local Euclidean su-
rroundings of the initial guess they are re-mapped into the original over-parameterized
space as
X" = XHAX* (2.89)

Robust optimization using condensed measurements

We have seen that the least squares SLAM problem can be sbjvéerative ap-
proaches like Gauss-Newton or Levenberg-Marquardt. Hewelreir success in find-
ing the global minimum heavily depends on how good is thaahguess and the
smoothness of the sensor model.

In this section we briefly describe the optimization apphoa@sented i [31] which
provides a procedure to solve a factor graph even if theirgtiess is poor or in the case
of highly nonlinear measurement functions. The approagtoés the spatial and tem-
poral locality properties of factor graphs present in théBlLproblem. This method-
ology is the basis of the multi-robot SLAM approach that Wil presented in Chapter
[.
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The overall procedure is illustrated in F[g. 2.9 applied asimaple landmark-based
SLAM problem. The original graph is partitioned in local sgiaphs. These local
maps are related to each other throwgffaredvariables belonging to more than one
local map, which are vertex separators. These smaller loegls are easier to solve
even under hard conditions and a reasonable solution camtaéed using a direct
method. To determine a unique solution we need to “figfigin (gauge) for each local
map. After solving the local maps we obtain a Gaussian apmiation of each variable
within the local map, relative to its origin.

Then, we seek for a global alignment of the local maps thafe all the equal-
ity constraints induced by the shared variables. In ordgréserve the structures of
the local maps computed before, we replace each sub-graptawimpler one which
approximates the original local solution. This reducedopgm is constructed by con-
sidering the origin and the shared variables of each locad aval computing a set
of condensedactors relating the origin to each shared variable, tloeesbbtaining a
star-like topology of the original subproblem. These corssel factors summarize the
relationship between a variable and the origin of the locaproy considering all the
measurements when optimizing the local map.

The procedure to determine the condensed factors is odttiakw. Given the set
of separatorgx; } and the origirxg we can define a family of measurement functions

hPeOtx) (. xi) L' h(xg,x)) (2.90)
that depend on thigpe of the separators which can be either landmark poses or robot
poses. The origin of the local maps is always selected to lmbat pose. Once we
know the type of a factor, we need to compute the mgamd information matrix;
of the corresponding measurement. To this end, we réc8li2hat relates measure-
ment function and error vector through theoperator:e (Xg, i) = h(Xg,xi) Hz. The
error function depends on the (known) measurement funttiohand on the unknown
measuremert;. Since the error of the local solution is small, the measergnector
at the equilibrium can be approximated as:

Zi = h(S/(gJ/(i)? (291)

wherexy andX; are the actual values of the origin and of a separator afteingothe
sub-problem.

To qualify the factors we still have to compute the inforrmatmatrixQ;. Since the
origin node is fixed, its covariance matrix is zero. Thusydhk marginal covariance
of x; contributes in determinin€;. Since we are working with a manifold formulation,
we can extract the covariance matrices of the incremé&xitgrom the corresponding
blocks of the Hessiakl (Eq. [2.88) of the system and remap them through the error
function:

& (Xg, Xi BAX;) = h(xg,xi BAX) Hz. (2.92)
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We then remap the marginal covariancesf by using the unscented transform[[41].
We extract a set of sigma poin{sr'A‘Xi} from the marginal covariancgay, of the incre-
mentsAx; and we remap them throudh (2192) as follows:

ok = a(xg,xi*EHGXXi). (2.93)

We then comput&; by inverting the covariance matrix reconstructed from ttuggrted
sigma points.

Once we “condensed” the local maps, we assemble an appriboumned the origi-
nal global factor graph by combining all the newly computactér graphs into a new
sparser factor graph, whose solution is a global configumadf the origins and of the
shared variables. Then, we can determine a good initialsghgsarranging the lo-
cal maps computed at the beginning of the procedure acaiydirt this point, an
optimization which considers the original factors canHtertrefine the approximated
solution.
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Figure 2.9: The overview of the optimization procedure on a simple laadabased SLAM
problem. Here we illustrate the factor graph by highligbtionly the variables. The factors
denote binary measurements and are encoded in the edgés). Tag problem is partitioned into
sub-graphs. The shared variables are in red, and dottesidlm@v the corresponding variables
in different partitions. (c) We solve these problems indefsmtly with respect to their origins
(dark blue), and we determine the marginal covarianceseoliared variables. (d) We compute
condensed factors connecting each shared variable toigs.or(e) We solve the complete
problem on the condensed factors to determine the layotiedbtal maps (f).
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Chapter 3

Robot Formations

The first step towards achieving an autonomous multi-ropstiesn is the design of the
motion control strategy to enable the robots to navigatenm ¢nvironment and reach
their goal. In this chapter, we first address the motion colndf each vehicle by means
of a motion generator which provides the input velocitieb#oapplied to the robot.

Then, we address the cooperative navigation for robot feiona based on a spring-
damper analogy which allows the formation to comply withdtracture of the environ-

ment. We point out the difficulties that appear in formationteol in the presence of

noise which motivates the use of the probabilistic locgic@aand mapping techniques
presented along this thesis.

3.1 Motivation

The main distinguishing feature between a robot formatioth @ general multi-robot
system is the navigation of the group maintaining a spedif@ps. As a consequence,
formations require stronger coordination and commuracedimong the robots.

There are a variety of applications which could benefit frév@ tise of robot for-
mations, i.e., situations in which the robots have to megaterequirements regarding
their relative distances and angles. Fig] 3.1 shows twaagifmns of robot formations
in emergency situations developed at the University of gaza [74] 84]. For example,
in case of an accident inside a tunnel (Fig, B.1a), we caroglepteam of robots to in-
spect the area and identify potential hazards to humansetdhis circumstance, where
there is no communications infrastructure, the distaneerdbots have to maintain is
oriented to guarantee the connectivity with a base statiotside the tunnel. Then, the
chain formation is deployed in such a way that each robotaxts relay for the next
one till the dangerous area is reached. Another possiblécappn is the guidance of
people towards the exit during a building evacuation (EidBR In this situation, the
robots adapt their motion and shape to the people behavibizchvean move inside a

33
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safe area delimited by the formation.

(@) (b)

Figure 3.1: Example of applications of robot formations developed aivehsity of Zaragoza.
Formation deployment inside a road tunfel] (b) A triarstiaped robot formation guides a
group of people towards the exit during a building evacumatio

Along the years, many approaches have been proposed totheafdrmation con-
trol where the most commonly used are those based on virtuadtsres and leader-
following behaviors.

In [55] the concept of virtual structure is introduced to ntain the geometric rela-
tionships among the robots. However, in this model, the &iom moves quite rigidly
along the individual trajectories computed for each rolpotia not easily reconfigurable
in case of obstacle presence. In leader-following appremdhe robot designated as the
leaderguides the formation to the goal while the other robots, itefollowers try to
keep a desired distance and angle with respect to the ledties. strategy simplifies
the path planning problem which is addressed by the leadethenfollowers maintain
the formation whenever possible, otherwise it is adaptédatructure of the scenario.
In the worst case, the formation becomes a chain and the patputed by the leader
is also feasible for the followers. Common implementatiohseader-following ap-
proaches are vision-based leader tracking [22], [87] andgibased systems [34],[56].

In this thesis we make use of our previous wark|[85] to continel robot forma-
tion based on a spring-damper system. It provides a flexsinh@oth and environment
compliant navigation by dynamically adapting the vel@stof the robots and the for-
mation’s shape to the environment restrictions. In the oéshis chapter we describe
this formation control strategy for the sake of completen&ge begin in sectidn 3.2 by
describing how to control each single robot and continueatisn 3.8 by explaning the
cooperative control of the formation. Additionally, we foem along this chapter a brief
analysis of the formation behaviour under the influence aenqe.g., comming from
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sensor readings or in the application of the input contrg@iginting out the importance
of a reliable localization to maintain the formation andeach its goal. This motivates
the localization and mapping techniques presented in sules¢ chapters.

3.2 Single Robot Motion Control

The first step in order to achieve the formation control is wdel how a single robot
can move around smoothly and stably in the environment. Hpviing a physical

analogy, we can consider the robot movement originatestinerapplication of a virtual
force F on the robot. The source of such force can be, for examplesdah#ination

of an attractive force generated by the robot’s goal andlsemuforces coming from
obstacles.

The forceF gives a magnitud& and direction of movemer@ which need to be
transformed into the desired control input= (v w)T, the linear and angular velocities
of the robot. To this end, we use the motion controller degctiin [2], which allows
us to compute linear and angular velocities physicallyidagor the robot. It is based
on geometric and dynamic constraints of the robot, charaett by the differential
equation:

{ — Au +BF (3.1)
where
10 1 0 FcosH
A=-2b [o k;] B= [o kih} F= [Fsine} (32)

andb (viscous friction coefficient)k; (inertial coefficient) andi (moment arm) are the
controller parameters which must be tuned to obtain thereksbbot behaviour as
explained in[[2]. We solve E@._3.1 by using finite differenpg@aximation:

""‘T‘t"‘*l — _2b\+ Fco: ‘”‘_T?‘*l — bk +khFsid  (3.3)
FAtcos9 + bv_1 kihFAtsinG + w1
Yk 1+ 200t “ 1+ 2bkAt (3.4)

From Eq. [3.## we can observe that the new velocities provigethé controller
depend on the the previous velocities and the force, whidomsputed based on the
relative position of the robot with respect to the goal. Indeal situation, the computed
velocities are effectively applied on the robot and it is mato the desired position.
Figure3.2 shows a simulation in a noise-free environmertreva robot is commanded
to reach six consecutive goals (black circles). Each goaltexan attractive force on
the robot which provides a direction of movement based oruiteent position. At each
time step, the motion controller provides smooth linearamgular velocities to comply
with the desired robot behaviour (Flg._3.2b).
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Figure 3.2: Single robot motion in a noise-free scenafio] (a) Grounthttrajectory followed
by the robot[ () Linear and angular velocities computedhgyrotion controller.

However, in a real situation, different sources of errorg/ rafiect the controller
behaviour. For example, if the controller is not well modedand the robot is not able
to reach the commanded velocities, we can read the actuatities from the robot
sensors to provide a feedbackan ;, however, these sensor readings are also subject
to errors. Additionally, the application of the velocitigself is corrupted by noise
which affects the robot’s knowledge about its actual posiand therefore, the proper
direction of movement to reach its goal. To visualize thesiblems, we performed
the same experiment shown in Fig.13.2 where the velocitidd@ralization readings
were corrupted by noise. The result is visualized in Hig.] S«Bere the corrupted
velocities make the robot follow an undesired trajectorpdlbpath) despite thinking
it has reached its goal (red path). However, despite theepoesof noise, the motion
controller adapts smoothly and provides input velocitiese to the desired ones (Fig.
[3.3B). This suggests the use of the velocities provided bytmtroller to estimate the
robot’s displacement.

We take account of the difference between the commandedcinal aelocities by
establishing an error model for the linear and angular viésc

v="VU+¢&; &~ N(0,02)
W= QO+ &y; £~ N(0,02)

(3.5)
(3.6)
Then, the state vector of the velocitiess modelled as a Gaussian, with its méeand

covarianceP,; uz((z),v/v@:(a))ﬂ:( ))

L

oz 0

0 o (3.7)
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Figure 3.3: Motion controller behaviour in the presence of random noj&g Ground-truth
(blue) and odometry-based (red) trajectory. The attradivce towards the goal is computed
based on its inaccurate position knowledge, and theretloeaobot considers it has reached the
goal.[(B) Comparison between the velocities computed ituatin with noisy sensor readings
(red) and the ideal ones (grey).

Given this velocity error model, we can estimate the robdiicmmo(g“k*l between two
consecutive steps— 1 andk with elapsed time\t in terms of the robot’s state space
representatiorix,y,8)T. Again, under the Gaussian assumption, the displacement is
characterized by its meaiﬁt*l and covariance matriR*. Then, the velocities state
vector is transformed into the robot cartesian coordinasasg the following transfor-
mation:

L sinwAt
Xt =f(u) = | ¥%(1- coswAt) (3.8)
WAt

Note that this transformation is nonlinear. Thus, we penfarfirst-order lineariza-
tion around the estimated velocitiés

Re-1 /1 ~
XRy _f(u)+% l](u—u) (3.9)
with,
smwAt v At COSWAL — smwAt)
of
sl = (1—coslt) COS‘*’N %Z Atsinwnt — 1= Cff"“) (3.10)
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Finally the estimate of the relative displacement is caliad as:

N ) T sin@At
R, "= | (1 cos@At) (3.11)
WAL

and its covariance matrix is mapped from the velocities sjiato the robot coordinates
space by:

PRt o-| Py (3.12)

- Jdu

a Oulg

3.3 Robot Formation Control

In the spring-damper model, the robots are virtually cotectto each other by a set of
linear and torsional springs and dampers (fig] 3.4). Linpangs allow the robots to
maintain a relative established distance whereas torsspniags are used to maintain a
desired angle with respect to their leader.

Figure 3.4: Spring-damper model

Due to the interconnections, a set of virtual internal feraee generated between
the robots which affect the dynamics of the system. Themaldorce generated by this
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structure that influences robBt can be computed as follows:
N N
SDi = % aijsdj+ ) bijst; (3.13)
=1 =1

wheresd; is the force generated between robBfsand R;j by the linear spring and
damper andst;j is the one generated by the torsional spring. The elemegntsj <
{0,1}Vi, ] € {0...r} represents the influence of the linear spring-damper lirktan
sional spring link between robok andR; respectively.
Additionaly, a damping term due to the fricti@ is introduced to simulate a real
system,
Di = fgqvi (3.14)

wherefy is the damping coefficient ang the velocity vector of the robot.

The influence of the environment can also be included in tim@aahjcs of the system
as a repulsive forcgj coming from the obstacles and therefore, providing the &tiom
with obstacle avoidance capabilities. In the case of thetrtéader, it is assumed to
navigate in a free space, following a safe path computed bgranpr. For this reason,
this external force is applied only to the robot followersstead of that, the leader of
the formation experiences an attractive fo&ggenerated by its goal.

To sum up, the resultant forég applied to each robot is, for a robot follower:

Fi = SD +Dj +E; (3.15)

and for the robot leader:
Fo= Go+ SDp+ Do (3.16)

This force is transformed into linear and angular velositigth the motion con-
troller explained in the previous section. For any furthetadls about how to compute
these forces, the reader is referenced_to [85]. An extendptbach for cooperative
formation control is presented in [83] where the Nearnesgim (ND) method [57]
for obstacle avoidance is combined with different navigatstrategies depending on
the environment complexity.

Figure[3.5 shows the control of a triangle-shaped formatiarigating through the
environment. Thanks to the interaction of the set of virg@ings and dampers the
robots always try to maintain their relative distances amentations. We can see this
effect in Fig.L3.5R, where the leader “waits” for the formatreconfiguration each time
it reaches a subgoal and heads towards the next one.

As in the case of single robot control, there are some sowtesrors affecting
directly to the formation control, such as the location regd used to compute the
forces or the velocity readings to feedback the controllée problem is more evident
since it does not only affect the reachability of the goalddab the formation keeping.
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In order to address this problem, in the next chapter we m®pgorobabilistic for-
mulation of the robot formation to deal with the differentisces of uncertainty and we
will provide the formation with a localization system bas®da prior map to improve
the robot formation behaviour.

3.4 Conclusions

In this chapter, we have presented a navigation systemibot formations which makes
use of a virtual structure of springs and dampers that all@amaintain the relative
distances and orientations imposed to the robots. Thigaligtructure originates a set
of forces among the robots which can be later transformedmmut velocities for each
individual robot by means of a motion generator.

The motion controller provides velocities physically féde for the robot and adapts
smoothly in the presence of noise thus we use these vekddiestimate the robot
displacement.

Despite the stable behaviour of the controller, we haveengdd that the accumu-
lation of errors results in an inaccurate localization @ tbbots which prevents the for-
mation to maintain its shape and reach its goal. This carteithe motivational starting
point for the development of improved multi-robot locativa and SLAM techniques
presented in the rest of this thesis.
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Figure 3.5: Motion control of a 3-robot formation[ (&) Trajectory folled in a noise-free
situation. Notice how torsional springs oblige the robdtofwers to maintain their relative
orientation with respect to the leader at any time| (b) Estéd (red) and ground-truth trajectory
in the presence of noise. [c) Comparison between the comedaredocities in the “ideal” error-
free (grey) and noisy scenario (red).






Chapter 4

Localization of Robot Formations In
SLAM

In the previous chapter, we have seen that, in order to aethtie® navigation in forma-
tion and to reach their goal, robots need to be accuratehalzed within the environ-
ment. This chapter presents an EKF-based approach whiclesnage of a previously
built feature-based stochastic map to solve the robot folongrose tracking problem.
We show how a direct implementation of the EKF algorithm ¢efadinconsistency in
the estimated localization. We justify the origin of the rmwatous behaviour of the fil-
ter in the time-correlated nature of the measurement nassgisnce. A novel solution
based on the measurement differencing technique is prdgoserive the solution of
the EKF towards consistency.

4.1 Introduction

Traditionally, SLAM research has focussed on how to effityehbuild accurate and
reliable maps and, to this end, a variety of representati@ve been proposed such
as feature, grid and graph-based maps. One of the many abegntlications of these
maps is their posterior use to localize a robot while it nateg through the environment.

Recalling Chaptdrl2, the robot localization problem cassisestimating the robot’s
posexg, at the current time stepwith respect to the map’s reference frame using the
information obtained from its on-board sensors. It is stétem a probabilistic point of
view as the problem of estimating the posterior distributdxg, |21, U1k, M) where
z, are the set of partial measurements of the environment ¢gedvy its perception
sensorsuy k, the history of control inputs ana, the prior map.

Given a map of the environment, we can distinguish two magalleation pro-
blems depending on the robot’s prior knowledge about itsainposition: theglobal
localizationtries to determine the robot’s position within the given nveithout any

43
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information about its initial pose and tip@se trackingvhich, once the initial pose is
known, aims to maintain the robot’s pose estimate along.time

This problem has been principally addressed by Bayesiandijldue to their ef-
ficiency and real-time performance. Then, we can follow ailamderivation of the
localization problem as we explained for the filtering-lthS& AM problem in Chapter
2, leading to,

P(XRy|Z1k, U1k, M) = r’p(zk|XRk7m>/p(XRk|XRk17uk>p(XRk1|Zlik—17u1:k—17m)dXRk1
(4.2)
which is solved in two phases, prediction and update steps.

Different filtering methods have been proposed over thesysmme of them devel-
oped using a specific map representation. For example pasédd continous localiza-
tion was addressed in [[78] by using local to global map regfisin (i.e., map matching).
In [12,[28], the authors presented a grid-based Markov ipatadn to solve both global
and pose tracking problems. The robustness and efficientlyisodpproach was later
increased by using particle filtefs [82] or by combining gwased and topological maps
[80]. From a feature-based perspective, the use of prelyibudt maps to globally lo-
calize individual vehicles has been reportedin [62] and.[688ually, robot localization
in feature or landmark-based maps is implemented by usihg&afilters. However,
although these maps have been adquired by probabilishinigees, and therefore, there
IS a map uncertainty, these approaches normally considgodhkition of features and
landmarks fixed and known.

One straightforward extension of any of the aforementioteetiniques to multi-
robot systems would be to address the team localizatiorigmolmdividually for each
robot and to replicate in each vehicle the current implert@nt of the localization
system. However, this methodology is against the team gatipe and coordination
philosophy to obtain mutual benefit between robots.

For example, in certain situations a robot could lose italiaation capability (e.g.,
due to the presence of obstacles occluding its vision of tve@ment). If another
teammate is able to detect it and communicate their relptgdion, the first robot can
use this information to improve its localization. Besidégpbots share and join all
observations they can obtain a broader and extended vidve @fitvironment which can
benefit the whole group.

First works in multi-robot cooperative localization likdg] and [73] divided the
team of robots into two groups: while one group moved, themwgnoup remained sta-
tionary and acted as landmark. This strategy is useful imbsence of landmarks or in
uncharted environments but the robots must maintain visoatiact which constraints
the robot displacements and requires a robot identificatystem. Inter-robot position
measurements are also used.in [77] within an EKF frameworkpsove the estimates
of the group and as well as in [75] where the Kalman Filter équna are decomposed
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and distributed among the robots. This latter work alsofesciout the benefits of main-
taining the cross-correlations between the estimateseofdhots. When two robots
meet and share their inter-robot measurements to updatgtstions, the estimates
of rest of the group are also improved due to these inter+tigoecies. However, none of
these works make a explicit use of an environmental modeipoave robot localization
which is only updated when they detect each other. Additignia [27] inter-robot de-
tections are combined with environment measurements psotgabilistic techniques.

Furthermore, and from a state estimation perspective,istensy issues are of
paramount importance to assure convergence of the solutieded by the estimation
algorithm. Intuitively, inconsistency appears when theartainty about the estimated
robot position does not correctly represent the true erhorsuch case, the robot is
unaware of how good its localization is and can not trust fioritother navigation or
planning purposes. This issue has been discussed in thergiiework [16] 5, 39] and
several factors affecting the filter consistency have bdentified such as linearization
errors, measurement noise, number of measurements intén@fire-observation times
of a feature, among others. All these factors also affectirmibot systems, however,
consistency issues have not received as much attentiorsindghtext. In[[38] the con-
sistency of multi-robot cooperative localization was istvgated from an observability
perspective. Also, the effect of using repeated measuresnoerthe consistency of the
algorithm has been reported in_[60] by taking into accousmt ¢brrelations between
consecutive relative-state measurements, and in [3] byikgdrack of the origins of
measurements and preventing them from being used more tiean o

In the rest of this chapter, we turn our attention towards teuse a previously built
feature-based stochastic map to localize a team of autom®rehicles while they nav-
igate coordinately in formation using the motion contrgbegach described in Chapter
[3. Instead of using direct robot-to-robot measurementsrémgthen relations among
robot locations, their estimates get correlated by sertsi@game portion of the envi-
ronment.

The contributions are two-fold. First, the work emphasittesinherent difficulties
of using stochastic maps to localize a robot formation duthéexistence of time-
correlated measurement sequences. Whenever thesecsthtispendencies are not
properly considered we show that the algorithms lead tonsisbent estimation of the
robot formation localization. Second, we originally foriaie the problem of robot
formation localization in SLAM within the EKF framework bysing themeasurement
differencingtechniquel[11,16, 71] which allows the elimination of coldraeasurement
sequences within the update step of the filtering algorithm.
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4.2 Probabilistic Representation of the Robot Forma-
tion

Let a robot formation be composedrof 1 heterogeneous vehiclBg, Ry, ..., R, where
Ro is the robot leader anRj,j = 1,...,r are the robot followers. A certain geome-
tric shape, e.g. equilateral triangle, regular pentagtm,ige imposed to the team de-
pending on the number of vehicles and the task commandecetotmation. From
a probabilistic view-point, the location of the robot fortiaa can be represented by a
discrete-time state vectay; formed by the location of the robot lead®s with respect
to (wrt) a base reference franieand the location of each robot follow&; wrt the
robot leadeRy , and by its associated covariance maRjx which stores the statistical
dependencies between those estimated locations. FofdihenGaussinity assumption,
xg ~ N (Xr,Pr) with,

%R,
%% PR PRoR:

=1 " |[:Pr= (4.2)
*sﬁ’ PrRR, -+ PR

This leader-centric representation reduces the volumeaacénainty, i.e., the deter-
minant of the covariance matriz , in comparison with an absolute representation wrt
the base fram®8 of each robot location vector and, therefore, linearizaéioors due to
large uncertainty values are minimizéd|[15].

4.3 EKF-based Localization of the Robot Formation

From a Bayesian view-point the pose of the robot formatiagiven by the recursively
estimated conditional probability density functipixz, |z1:x, U1k, Y7) Wherezyy rep-
resent the set of sensor readings gathered by the sensorded@n the robots from
environmental features from time step 1 up to time $tep, the sequence of input
controls andy» ~ NV (Y £,Pr) represents the stochastic map of the previously mapped
navigation area consisting of a set of featurfés= {Fi,F,...,F}. In the sequel, the
EKF algorithm [6] is used as the core estimation technique.

4.3.1 EKF Prediction Step

The method described in sectibnl3.2 provides a dis.pIaceermimnate»(g:"Iz’1 for each
robotR; from time stegk — 1 tok based on the input velocities to the motion controller.
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Then, we represent the formation displacement by the ranmmblexgtfl:
Rk-1 __ s Rok-1 Rik-1 Rik—1:\T
Xpe = (XROA,k XRi o KRy ) (4.3)
with covariance matrix,
Rok-1
PRo,k RO 0
0 Pt ... 0
PRt = Rk (4.4)
0 0
Rrk-1
0 PRr,k

The EKF-prediction step propagates the state of the robotdtion from time step
k—1 to time stegk by using the estimated displacements through the followiogji-
near function,

R
xRy = F(XRy 1> Xpy ) (4.5)
The use of the EKF requires a linearization of the nonlineadeharound the best
current estimate@A(kal,Rgtfl) using a Taylor series expansion,
R
XRy = f(Xkalvat ") (4.6)

. oRic o Ri1  oRie
~ f(RRy 1, Xy )+ Fie1(XRye ;s — &Ry 4) + Ckea(Xy =R ) (4.7)
whereFy_1 andGy_1 are the jacobians dfwith respeckz, , andxgtflrespectively,

of of

0 XR ’ Ri-1
k-1 (9XRk

Fro1 (4.8)

oRk-1

o oRk-1
(Xkal 7XRk )

()A(kal 7XRk )

The linearized equatidn 4.7 can also be expressed in terthe @frors denoted by
X=X-—Xas

. < R
XRy ~ Fke1Xry  +Vk—1; Vk—1~ N(O’kalpRt lGI_l) (4.9)
Then, the estimates for the state veomﬁ‘kfl and its associated covariance matrix
PRk|k—1 are given by,
Rp.. - =f(Rp, ., K1 (4.10)
Rigk-1 (XRy 1 Ry ) .
Ry
PRy = Fk-1PRr, Fk 1+ Gk 1PR’ "Gk_1 (4.11)

Due to our leader-centric representation, funcioh 4.fedifdepending on whether
the robot is the leader or a robot follower. A more detailesdition of this function
and the derivation of its jacobians can be followed in appeAd
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4.3.2 EKF Update Step

At time stepk observationgy are related with map features through the following non-
linear measurement model,

7 = h(XR,, Y7, + Wi (4.12)

beingwy a zero-mean Gaussian noise with covariance maxix
Due to the inherent nonlinearities, a linearized equationmd the current predicted
positionf(Rk‘kfl is used within the EKF-update step,

Zx = h(XRy Y7.) + Wi (4.13)
= hk(s\(RHk,l?y}—k) +H k(XRk - )A(Rk\k,l) + G]:k (y]:k - 9fk) + Wk (414)

whereHy and G r, are the jacobian matrices (see appendix A) of the lineanaed-
surement equations with respect to the state veggpand with respect to the subset of
featuresy r, observed at tim& from the a priori stochastic map respectively,

ohy dhy

’ k
dXRk s - dy]:k o -
(XRk‘kfl 7y.7:k) (XRklkfl 7y]‘—k)

K (4.15)

The classical EKF update equations provide estimates éosttite vectofmklk and
its associated covariance matﬁ&k‘k:
)A(Rk|k = )?Rk\kfl +Kk(zk— hk()A(Rk‘k,lay}'k))

PRk|k = (I = KkHk) PRk‘k,l (4.16)

using the filter gain obtained as,

Ki = Pry Hk (HkPRy HE +GAPAGE +RW) (4.17)

4.3.3 Simulation Results: Inconsistency

A set of simulation experiments were conducted to analyeectimsistency of a direct
implementation of the EKF algorithm based on the aforenoeetd problem formula-
tion. The single robot localization problem formulatiomdae seen as the particular
case of considering only the robot leader in the robot foilwnafiormulation. Then, a
single robot and two formations composed of 3 and 5 robote wemmanded to reach
4 consecutive goals arranged in a loop-trajectory withireaipusly mapped (2D point-
based stochastic map) navigation area, depicted il FigE4dh vehicle was equipped
with a range-bearing sensor capable of observing the &aigvironmental features.
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For these simulation experiments, we assume known dataiasen. As a measure
of consistencyl[6] a statistical test based on the Normalistimation Error Squared
(NEES) was used,

NEES= (X, —%®r,)" Pr, (%R — X)) < XP1-a (4.18)

wherexrzylia is a threshold obtained from the distribution withr = dim(xz, ) degrees
of freedom, andr the desired significance level (usually 0.05).
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215

(a) (b)

Figure 4.1: Map of the environment used in the simulation experimentsviduate the robot
formation localization performanci. (a) 2D Point-based!isastic map (blue) and trajectory fol-
lowed by the 3-robot formatiori._(b) Zoomed part of the forimatrajectory where the robots’
ground-truth location is depicted in black and its estimateed. The small robot covariance
ellipses demonstrate the overconfidence in the error etsimasing the classical EKF imple-
mentation.

Figure[4.2 plots the consistency ratio (NEE(%?G) for the sequence of time steps
of the experiments illustrating a problem of inconsisteircthe estimated solution of
this direct implementation of the EKF algorithm. It can disoobserved how this incon-
sistency issue gets worse with the number of robots. Thisgawt unexpected since
the factors which may influence in the filter consistency saaschumber of observations
or feature re-observations increase with the number oftsabdhe formation.

Additionally, Fig.[4.3 shows the errors and covariance lofsusbtained in one of the
simulations with the 3-robot formation. It can be observed lthe covariances do not
correctly match the true estimation errors.

In the following section we take a closer view of the resutid @ modified EKF
formulation is proposed to drive the robot formation esteddocalization towards con-
sistency.
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Figure 4.2: Inconsistency of the estimated robot formation local@ativithin a stochastic
map with a direct implementation of the EKF algorithni. ] (apwh the consistency ratio

NEES/Xsl_a for the single-robot implementation wherédas| (b) (cwstiee results for a
3 and 5-robot formation respectively. The estimation isstdered consistent when the con-

sistency ratio is less than one. For each experiment, thegweof 50 Monte Carlo runs is
depicted.

4.4 Measurement-Differencing EKF-based Localiza-
tion of the Formation

A close view of the robot formation localization problem kit an a priori stochastic
map, supported by the simulation results obtained in theique section, suggests a
re-formulation of the EKF algorithm taking into account thtatistical dependencies
between the map featurgs, , andyr, (both subsets of ) used within the EKF
update step in two consecutive time st&ps1 andk.

Given the set of matched map features of two consecutiveitistantsy r,_, and
Y 7., their statistical dependencies are expressed by a lir@sformation,

YA =FoaYrA. , +Nk (4.19)

wherd@l
Fo, = P}—k}—k—lp}kl,l (4.20)
andny is a white noise measurement sequence with covariancexiafri

Pnk = P]:k - Pfkfkflp}s,l P}—k—lfk (4.21)

1Given two jointly Gaussian random variabbeandy:

()= (e ) (e 5 )y
a linear relation of the forny = Ax +b can be formulated, with = PyyPx* andP, = cov(b) = Py —
PyxPx Pxy-
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Figure 4.3: Errors and &-covariance bounds obtained in the 3-robot formation sathrh using
the classical EKF implementation. The errors in each positomponentx,y, 6) are depicted
for all robots.

Equation[(4.19) defines a colored measurement noise segjueich together with
eqs. [([4.5) and(4.12) completely reformulates the problenaad.

The first approach reported in the literature which considlee existence of a co-
lored measurement noise sequence within the EKF framewatdsdack to the works
of Bryson et al.[[111] where the state vector was augmentdutivit colored error terms.
Later work pointed out relevant numerical problems of tippraach mainly due to
null-uncertainty observations and ill-conditioned triéine matrices. Current practical
approaches [6, 71] concern the so-called measurementetiffimg technique, which
provides an efficient and mathematically sound method tomwenthe time-correlated
portion of the measurement errors. We extend previous wegrktbers in the field
of filtering theory by formulating the robot formation location problem in SLAM
as a measurement differencing based EKF algorithm to whiiteroriginally colored
measurement noise sequence defined inleq.1(4.19).

4.4.1 Whitening the Measurement Equation

Letry represent the measurement considered within the EKF-aestiap at timés, de-
rived from the real measuremenis ;1 andz, obtained at two consecutive time instants
as,

Ik £ Zk—/\ka,l (4.22)

where matrixAy is chosen such thdry, 0 < k < «o} approaches a discrete-time white-
noise driven stochastic process [6) 71]. Following the@ion of the appendik1B
measuremerrt, can be rewritten as,

Mg o~ hﬁ"’Hi(XRk_ﬁRk‘k,l)‘i‘er (4.23)
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where,

hie = hk(Xryy 15 Y A) — A1 (%R, gy 15 Y 7o) (4.24)
Hi = Hi— AdHi 1Ry (4.25)

and the white noise sequeneg,, with covariance matrii?wrk, is given by,

Wr, = AHi 1 Y Vi 1+ Wi — AW 1+ G 7 Nk (4.26)

Note from Eq.[4.24 that, at time stépjacobians corresponding to the linearized
measurement equation nf 1 are re-evaluated at the best state estimate atkimg,
that isRkal‘kfl. Matrix Ay is computed (see appendix B) such that the time-correlated
components of the measuremegpare removed,

A~ GrFcGF (Gr ,GE )7t (4.27)

Note that previous work$ [6, 71], under the linearity asstiomgboth in the motion and
measurement equations, reported that= Fc,, being a particular case of the more
general result provided in this thesis. In our case, the@xé® of matrixAx has been
verified for the cases of 2D-point and 2D-segment based astichmaps.
Equation[(4.26) introduces a cross-correlation term betwe, andvy_1, namely,

Ck = EVicaw], ] = Quet(AHk R )T (4.28)
which is introduced in the EKF algorithm following [1L0] ugjnhe filter gain,
Kk = (PR HK' +Ci) (HiPry  Hi' +Pw, +HiC+CrHE) ™ (4.29)

Finally, the Measurement-Differencing EKF-based upda¢edinafter referred to as
MD-EKF) equations are given by,

)A(Rk|k - RRk|k—1 + Ki(r—hy) (4.30)
PRk\k - PRk\k—l - Kk<H>||2PRk\k71H|>zT + Per +HiCk+ C-I[HItT)K-IE (4.31)
As we can observe from Ed._4]30, the redefinition of the messant equation
leads to a modified innovatiom(— hy) in the filter update which could be expressed

following equation§ 4.22 and 424 in terms of the differen€¢he innovations from
consecutive time steps as,

M —hy = zc= Az 1 — (e(Xryyy Y 7) = A1 (Rzy Ly 40 V7)) (4.32)

=Zx— hk()A(RHk,l,)A’]-'k) - Ak(zk—l - hk—l(f(Rk,l‘k,lvy}—lGl)) (433)
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Intuitively, if the difference of innovations is small, theodified filter update yields
more pessimistic estimations than in the classical EKFs idwvhat happens when fea-
tures are re-observed and contribute to very little add@ianformation. More formally,
this difference is regulated b, which depends okc, andPz, 7 _,, i.e., the degree of
correlation between features observed in consecutivesiaps (see equatiops 4.20 and
[4.27). Conversely, iPr, 7, =0, thenA, = 0 and the filter will behave as the standard
EKF implementation.

Simulation results

As in the previous section, we conducted a set of experintentalidate the proposed
reformulation of the robot formation localization problerkigure[4.4 plots the con-
sistency ratio (NEE@(EPO,) for the sequence of time steps of the experiments for the
implementation of the measurement differencing algorigioposed in this section. In
this case, the modified EKF algorithm provides a consistelution for the robot for-
mation estimated localization.
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Figure 4.4: Improvement in the consistency of the single-rolyof] ((a)) evbot formation[(()
and[(c)) estimated localization with a measurement-diffeing based EKF algorithm. The
consistency ratio remains under the threshold (NE)Eﬁa < 1) during most of the simulation.
However, it is shown less consistent for short periods oétfeng., around time steps 1000, 2000
and 3000 in the 5-robot formation case) due to formationitigravhich is a highly nonlinear

situation and increases with the number of robots. The geecd 50 Monte Carlo runs is
depicted.

Figure[4.b shows the estimated and ground-truth trajedtdigwed by the 3-robot
formation. Although there is no significant difference wittspect to the trajectory
shown in Fig[4.Il, now the covariances match the groundi-pasition. This can also
be seen in Fid. 416, where the errors and uncertainty boued$epicted.

It is worth to point out that, although in Fig._4]5b, the esites seem to be less
accurate than the estimates in Hig, 4.1b, the latter aragistent and unreliable which



54 4. Localization of Robot Formations in SLAM

(a) (b)

Figure 4.5: Ground-truth and estimated trajectory followed by a 3-tdleomation with the
modified measurement differencing based EKF. Now, the taiogy ellipses correctly include
the actual robot position.

can derive in wrong data association and filter divergentes fact was also observed
and discussed in[5].

The computational cost of the MD-EKF algorithm does not apjably increase
over the direct implementation because the dimensionseaitirices involved are the
same.

4.5 Experimental Results

The measurement differencing EKF-based localizationrdlgo has been tested both
in the multi-robot simulation platform Player/Stage|[28dan real experiments with a
3-robot Pioneer 3-AT team in a triangular-shaped formasicmeme.

4.5.1 Experiments in Player/Stage

A first set of experiments have been conducted within thedrgpodtotyping tool
Player/Stage which allows code development and testingmilas conditions as to
those subsequently faced in the real scenario but conistodime information provided
by simulated motion control and data acquisition.

The formation was commanded a 100-m loop trajectory withimewviously avail-
able segment-based stochastic map. Thanks to the avigylabiground-truth, the con-
sistency of the proposed algorithm in this quasi-real scemeas verified as the consis-
tency ratio plot of Fig.[(4]7) highlights. Also, in Figs. & frontal, lateral and angular
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Figure 4.6: Errors and #&-covariance bounds obtained in the 3-robot formation St
using the measurement differencing based EKF implementatThe errors in each position
componenix,y, ) are depicted for all robots.

errors for each robot in the formation are displayed togethth their associated 2-
uncertainty bounds. In all the cases the estimated erressidltin the computed bounds.
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Figure 4.7: Consistency of the estimated robot formation localizatidgth a measurement-
differencing based EKF algorithm in the Player/Stage darpenmts.

4.5.2 Experiments with the Pioneer 3-AT Robots

Real experiments have been conducted by using a 3-robogtiiar-shaped formation
of Pioneer 3-AT vehicles. Figuré_(4.9) depicts the init@atdlization of the vehicles
within an indoor environment. The formation was commandaeckach a distant goal
location (about 40-m from the starting location) while aling obstacles and adapting
its shape to the environment. The robot leader plans a s#idg@#he goal destination
and the robot slaves follow the leader while maintainingdésired formation topology.
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Figure 4.8: Experimental results obtained in the Player/Stage settiinigntal, lateral and an-
gular errors for each vehicle in the 3-robot triangularpgthformation and their associated?2-
uncertainty bounds are shown.
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Figure 4.9: Initial setting of the robot formation in a real experimefi&) 3-robot triangular-
shaped formatior}, (b) segment-based stochastic map ofathgation area, ard (c) EIF-based
initial localization of the robot formation within the mawith location uncertainty magnified

X5).

Communication among the vehicles of the formation is pregidy a real-time wireless
multihop protocol implemented in a centralized mode wheimt slaves sent both the
sensors observations and the commanded velocities tolibeleader. The robot leader
executes the localization algorithm and it communicatesetstimated poses to each
robot slave ([85] and reference therein).

Initially, a segment-based stochastic map of the navigatiea (Fig.[4.9b) is ob-
tained by using the information provided by the 2-D lasensea mounted in one of the
vehicle (in our case, and without lose of generality, theotdbader) which previously
had explored the environment. Then, the global localiratibthe vehicles (Fig._4.9c)
is computed by the algorithms reported(inl[69].

Figure [4.10) shows the estimated localization of each efvishicles of the for-
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mation at four different time steps along the planned ttajgctowards the goal des-
tination. Even though ground-truth was not available dytime execution of the real
experiments, the figure highlights the compatibility betwehe previously available
stochastic map and the segmented sensor readings plottedeagstimated vehicles
localization.
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Figure 4.10: Four snapshots of the estimated localization of the mendj¢he robot formation
within the stochastic map (plotted in black). The segmesttsor observations are plotted in
green, blue and magenta and red lines represent the segmeattainties. Robot uncertainties’
ellipses are magnified by x5.
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4.6 Conclusions

In this chapter we have addressed the problem of utilizasfdieature-based stochas-
tic maps for robot formation localization. From the Bayesperspective, the classical
EKF algorithm was initially formulated by considering th@tnon models of each vehi-

cle within the formation and the environmental observaigathered by the exterocep-
tive sensors mounted on the vehicles. We have reported tbeasistency of the direct

implementation of the EKF prediction and update equatiengie problem at hand,

producing unreliable position estimates. Having a clos&aw\o algorithm hypotheses
we have suggested the time-correlated nature of the seg@éneeasurements consid-
ered in the previous, direct implementation. We have adiatsolution based on the
measurement differencing technique, already reportebdarfiltering literature, to the

robot formation localization problem in SLAM and its implentation shows how the

modified EKF estimation is driven towards consistency.



Chapter 5

Robot Formations in Partially a priori
Known Environments

In this chapter we present a complete working system fortrédronations where, in
addition to the navigation and localization techniquessameted in previous chapters,
cooperative perception and path planning tasks under enwrent uncertainty are also
considered. Feature-based and grid-based mapping stedege combined in a prob-
abilistic way to compute an obstacle-free and of boundsi-plan towards the goal.
The formation benefits from the cooperative perception tainka joint vision of the
environment, used for online replanning purposes. Theesy$$ tested and validated
by means of a set of simulations as well as in real experiments

5.1 Introduction

In ChaptefB we presented an approach to control the formatiape while navigating
towards a designated goal. Then, in the previous chapterep®ped a technique which
provides a reliable localization of the robots in an envnamt known in advance.

Following with the context presented in previous chapterd & achieve greater
autonomy, we must provide the system with a path planner topcte the best path
towards the final goal. However, in our case, the path plansirategy is constrained
by the presence of uncertainty in the prior map availablbeststem. Thisis a problem
of great interest since, when planning through risky ardasformation may reach a
dead-end, therefore requiring a global replanning whichldiancrease the final cost of
the mission.

The problem of planning under uncertainty is treated inedéht ways in the litera-
ture depending on the source of the error. Some works tali@otount the uncertainty
of the environment like [58], who searches the trajectoat thinimizes the expected
cost of collision by using probabilistic roadmaps underabgumption of independence

59
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in the probability distribution of the obstacles. [n[86]ption and sensing uncertain-
ties are considered to obtain prior probability distribus of the states and the control
inputs of the robot for a previously computed path. Othedlohworks focus on the
uncertainty of the path, liké [18] who seeks the path whichimizes the uncertainty at
the goal, leading to paths that are no optimal in terms ofiHeah distance to the goal.
The work presented in this chapter considers environmecgntainty for global path
planning, whereas localization and sensor uncertaintgkisrt into account during the
online execution of the global path.

Most of the successful path planning techniques [35, 44Jauged representation
of the environment whereas the map is available to the foomats a segment-based
stochastic map. In order to use grid-based path plannirpigees, we project the ini-
tial feature-based map into a grid where each cell represkatrisk level for traversing
a certain area of the environment. Then, the overall goa guarantee the mission
success by planning through areas with low probability atable presence or, in other
words, with less risk of traversability. Unlike the works it minimize the overall ac-
cumulated risk of collision, the path planning techniquesgnted in this chapter aims
at computing the best path where the probability of failureach cell of the path is
lower than a threshold. This concept is also used]in [8]paigh we propose a rigorous
modeling of the obstacle location uncertainty, used as asureaof collision risk in a
cell.

Once a global path is obtained, we can extract a set of waigpoimsub-goals the
leader (and consequently the rest of robots) has to reacieseglly. However, the final
execution of the planned path may be affected by the presd#nagexpected obstacles
which either were not considered in the prior map or were knaith uncertainty. At
the level of each robot and in the event of finally finding antable, the reactive ob-
stacle avoidance system would prevent from the collisiooweéler, at the level of the
formation, is necessary the maintainance of a local map ribn® path planning be-
tween sub-goals. This local planning task can benefit framdimt and wider vision of
the environment provided by the robot formation. When boddhis joint local map
from the observations shared by the formation, sensor dmat focalization uncertain-
ties have to be taken into account. In order to obtain a setefrated lower uncertainty
observations we propose a modification of the localizatigor&ghm presented in pre-
vious chapter.

5.2 Path planning under Uncertainty

Path planning for robot formations can be stated globalyafbthe robots of the team.
But that approach has a high computational burden. In thikwee propose a flex-
ible alternative approach, computationally lighter. Traghpplanning is achieved by
the leader of the formation, and the followers maintain thenfation adapting to the
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environment by means of the spring-damper analogy (Ch&)tehe formation is
maintained while possible, otherwise it adapts its shapleg@cenario structure. In the
worst case, the formation will become a chain, so the pathngld by the leader will
also feasible for the followers.

5.2.1 Definition of Risk Maps

Let a stochastic feature-based representation (e.g.dydtSLAM algorithm), maybe
partial and incomplete, either of the navigation area oheflocal cooperative percep-
tion of the members of the robot formation, be representeald®st of geometric features
Yr ={Yr, Y5, -, YF,} Known wrt a certain reference frame (not superscriptedifor s
plicity). A risk mapl = {y;j;i=1,...,N;; j=1,...,N;} is defined as the projection of the
stochastic feature-based representation intblianN; grid-based representation (Fig.
[5.7), with common base reference frame, whgyes therisk valueassociated to the
cell (i, j) and intuitively defined as,

N
yij = Prob( | Yr, is projected on celi, j)) (5.1)

n=1

where high risk values suggest the likely presence of emhap features, clutter or
dynamic obstacles and therefore the existence of nonrtabke areas for the robot
formation.

Real time constraints refrain from the exact computatiothefrisk values given
by Eq.[5.1 even for medium-scale environments. Thus, anoappate sample-based
strategy is adopted in subsequent paragraphs where theteseleumber of samples
should trade-off real-time constraints and the precisibthe sample distribution in
approximating the real distribution of the stochastic dleatbased representation for a
user-defined cell size for the grid-based representatioroul proposal, we use seg-
ments as features for the stochastic map and thus efficgmtitdms such as$ [9] reduce
the computational requirements of the proposed projection

5.2.2 Global Paths of Bounded Cell Risk

Let xr,,, and xr,,, be the probabilistic representation of the current locatb the

robot leader at timeéy and its desired goal location at time respectively. Also,
letyr ~ N (Y7,Pr) be the stochastic feature-based representation of thgatan
area, whergyr is a vector containing the estimated location of the mapufeat
F ={F1,F2,...,Jn}, andP its associated covariance matrix.

A rough estimate of a safe (or traversable) paita set of reachable waypoints) for
the robot leader connecting Iocaticm@tO andeO’tf is computed by aA*-type method
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Figure 5.1: Sample risk map obtained as the projection of a stochaggimest-based repre-
sentation into a grid-based representation. The margimddapbility density functions of two
features (top and right) are shown together with the aswatigray-scaled risk values.

as detailed in Alg.[]J1. From the feature-based representafidghe environmeny r,
a risk maprl is computed (functiomiskMap) as described in sectidn 5.2.1. Then, the
algorithm iteratively increases the risk leyefrom null risk (y = 0) up to maximum

risk (y = 1) searching for safe paths in the binary risk nigp, thresholded at the risk
level y (functioncomputePath

The computation of a global path for the robot leader conngdtvo locations in
the navigation area could be performed off-line in critis@lations (e.g. initialization
of the robot formation at unknown locations, loss of locatiian information due to
kidnapping, etc.), once recovered from the loss of an estichimcation for the robot
formatio. Also, for on-line computation, the risk levglused for the projection of the
feature-based stochastic map into the grid-based repetgencould be user defined.
Under both approaches, the computed safe patbturned by Alg.[1l constitutes an
open-loop (using control theory terminology) solutionte path planning with uncer-
tainty problem requiring frequent replanning in real nawign tasks due to unmodelled
effects in the a priori stochastic map or the presence ofymabjects.

1The absence of previous information suggests the fornamati this subproblem from an Extended
Information Filter (EIF) perspective. In our work, we gealere the previously reported works [62,]69]
to the team{Ry, Ry, ..., R} of r + 1 vehicles
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Algorithm 1 Global path planning in risk maps

Require: XRogg» XRog; > Y F

Ensure: mis a safe path fromg,, toXg,, of bounded risk levey
1: T < riskmagyr)
2: y <+ O{lInitial risk level}
3: whiley<1do

4:

10:
11:
12:
13:
14:

{Decide traversability depending on the risk level}
th < thresholdT , y)
{Find the shortest path at this risk level}
1T+ computePat{Xr,, , XRro,, - 'th)
if T 0then
{A plan of bounded risky is found}
return (71, Yy)
else
{Goal is not reachable. Increase the risk.}
y < y+A4y
end if

15: end while

16: {The goal is not reachable at all.}

17: {Return an empty path and the maximum risk}
18: return (0,1)
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5.3 Cooperative On-line Replanning

In wide-opened and uncluttered environments once a glaihlfpr the robot leader is
obtained, the robot followers would execute their pathtenforiginty to destinatiorts,

thanks to the links derived from the virtual spring-dampaalagy of the robot forma-
tion and its commanded geometrical shape. However, in ettahgs frequent real-time
replanning would be mandatory to avoid unmodeled or dynashjects in the envi-
ronment while flexibly and adaptively maintaining the fotma structure. Therefore,
local safe paths for the robot formation should be compugskd on their common
understanding of the environment and a sufficiently preloisalization of the robots.

5.3.1 Pose Tracking with Observation Improvement

Real time localization of the robot formation within the agor stochastic map while it
executes the computed global path towards the goal can levadhithrough the filter-
based pose tracking approach proposed in Chapter 4. Recttim that chapter, after
each prediction step (sectibn 413.1), robots gather a sdts&rvationg, with measure-
ment noisevy ~ A (0, Ri). Data association provides a set of pairifigs, , zc) of map
features and sensor observations related by the lineanieadurement equation 4114.

As the robots in the formation usually navigate in the sarea,aa number of redun-
dant observations and with different levels of uncertagsayld be found. This issue is
illustrated in Fig[ 5. for a 2D point-based feature map. riaheo to obtain a unified and
lower uncertainty set of observatiogs in this section we propose a modified update
phase of the MD-EKF algorithm presented in Chajpter 4. Thigolation improvement
results from the inclusion of the observations in the sta&ar and their subsequent
association with the features of the prior map within the sneament update of the
algorithm.

Then, at time stef, the predicted state of the robot formatim;rak‘kfl is augmented
with the set of sensor observatiansgathered from all robots,

a_ [ XR¢ V.ga  _ f(Rk|kfl .pa PRk\kfl 0
Xk = ( Z )  Xik—1 = < 2 ) Prk-1= < 0 R (5.2)

We formulate the measurement equation implicitly so thatw observations sat-
isfy the following constraint:

fk(xli.?y]‘—k> - hk(XRwy]‘—k) - Z,k =0 (53)

As usual, we approximate the measurement equation by itefdsr Taylor expansion:

hk(XRyy 19 7) — 2+ HR (¥R, — XRy 1) + CR (YA —Y7R) +Ha(z—20) =0
(5.4)
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Figure 5.2: Redundant observations obtained by a robot formation. Dleened area shows
map features (blue) and robot observations (green). Gdiseng from features not contained
in the a priori map are also considered (left-down cornegatéires are observed either by one,
two or the three robots.

where
ofy dhy
Hp, = — = —~ .
R dXRk dXRk ~ . (5 5)
(XRk|kfl’y]:k)
of dh
oy " v (50
k k (f(Rk‘k,rg/]'-k)
ofk
=g = —1 (5.7)
Note that setting, = z.—wy andH, = —I equatiofi.5.4 derives in the explicit linearized
equation4.14.

Following a similar derivation as in Chapiéer 4 we obtain tseydo-measurement
re £ z, — Azi_1 considering the augmented state vector,

with

hg = hk(RRy 1, Y7) = A1 Ry gy 1 Y7 1) (5.9)
HE = (Hgr, —AHr,Fily Hz) (5.10)
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and the measurement noisg,_ with covariance matri)lP\,\,rk is given by,

Wr, = AHR,  Fr Vi 1 — Akwi_ 1+ G5 Nk (5.11)
Finally, the augmented state vector is updated by

Riik = K1+ Ki(re—hg) (5.12)
PRk = PRik_1— Kk(HRPRy 1 HR' + P, +HRCk+ CHETKE (5.13)

with the filter gain given by
Ki = (PRi_1HR" + Ci) (HEPR_1HET +Pw,, +HRCk+CgHT) ™ (5.14)
and the cross-correlation term betwe®n andvy_1, namely,
Ck = Evicaw/, ] = Qi1 (AHR,  Fi )T (5.15)

which is augmented with zeros to fit the dimensionsi@f

After this filter stage, the robot localization is updatedrashe original formula-
tion of the measurement differencing based EKF presentEthaptef # whereas, at the
same time, the uncertainty of the observations includebarstate vector and matched
against the map features is decreased. Additionally, gdtrebtained for different ob-
servations of the same feature is identical as shown il E8y. This eases the duplicate
detection and fusion process explained in the next section.

5.3.2 Cooperative Local Planning

The performance (e.g., precision, reliability and robas#) of the robot formation to
complete the commanded task profits from the close cooperatnong the different
vehicles of the team emphasizing the importance of a cérgchlapproach (at least
at selected synchronization time steps) to consistentliycamerently joint the views
of the different vehicles. Of paramount importance is thailability of this jointly
coherent understanding of the navigation environmenty witler and integrated fields
of views, to increase the efficiency and optimality of theliore- replanning process.
For example, as illustrated in the experimental sectiom st available path towards
the next waypoint may be hidden to the robot leader (due tiimited sensorial field
of view) but visible to one of the followers, thus profitingetiperformance of robot
formation replanning.

The pose tracking technique of the previous section estsreaset of improved ob-
servationsz,. Nevertheless, the augmented state vexfostill contains a number of
redundant observations of the environment. Therefore plicite detection and obser-
vation fusion procedure is performed in the leader refexdr@me. The geometrical
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Figure 5.3: Observation improvement after the filter update. The odlgmeasurement covari-
ances (green) are reduced to the red ones which overlap oasleeof redundant observations of
the same feature (e.g., left-upper feature). Non matchsereations are not improved after this
process (e.g., left-down observations).

constraints between observed features nanztE"Iyamdszf]j expressed wrt the reference
frame of robotR; andR; respectively, could be formulated as,
h(xgio,

Subsequently, a statistical test based on the Mahalandtende provides jointly
consistent matchings and duplicated observations arevedricom the augmented state
vector. This process is straightforward for 2D point feasisince, as shown in previous
section (Fig.[5.3b), observations matched against the saapefeatures are identical
at this stage. In the case of higher level features, like $&@ments, a merging step
would take place. Furthermore, common observations frommapped features (and
thus, not updated in the filtering process of previous segticluded in the state vector
can also be constrained within an EKF-update step, wherknisrization of Eq[5.16
would be used. As aresult, areduced, reliable, lower-uaicey set of integrated sensor
observationg, characterizing the common understanding of the formativirenment
is obtained. Figure 5.4 shows the result obtained with thiggdure in the 2D point
feature based example.

Afterwards, a local risk mapr, in the reference frame of the robot leader (thus
leader-centric) is obtained by the projectiorgfinto a grid-based representation span-
ning the joint field of view of the robot formation.

The motion planning is similar to the one outlined in secfioh and described in
more detail in[[83]. It computes a local safe paih.y for the robot leader i g, for

Z%) = h(x, zn) (5.16)
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Figure 5.4: Final set of reduced-uncertainty integrated observatfoyan).

a risk levely. But in this case, the cost function for the A* algorithm isWqouted in a
different way. As a multi-leg journey, the path,5 is formed by an ordered sequence of
cells to be visited cy, ..., ¢y} that minimizes the total weighted distance from the initial
to the destination locations, where the weighting coefficfer traveling from celk; to
cellc 1 is related to the risk value of the cejl,; and computed ag .1 =1/(1— Y1 1).
Thus, the local safe pattig.q results from the minimization of,

n-1
Tiocal = argminz a4 1 dist(c, ¢ 1) (5.17)
=1

So, the algorithm takes into account both the distance tgda¢and the accumulated
risk along the path.

5.4 System Overview

Figure[5.5 depicts the hybrid centralized-distributechaecture of our integrated sys-
tem with indication of the different modules, data flows amdaition threads in the
presence of wireless RT-WMP communication. Centralizextetion refers to the robot
leader thread whilst distributed execution refers to thmtdollowers threads.
Additionally, algorithm$ R andl3 present the pseudo-codb@algorithms executed
by the robot leader and the robot followers respectivelye [EaderNavigationStrategy
andmovelLeadefunctions track the local safe path resulting from Eq. bHahks to
the control strategy described in Chapter 3. FurthermaretfonsfollowerNavigation-
StrategyandmoveFolloweicompute, distributively, the motion command for each robot
follower in the formation. These two functions are diredlyapted from the strategy
selection and the leader and follower strategies define@3h [As mentioned above,
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Figure 5.5: Overview of the hybrid centralized-distributed architeet of the reported inte-

grated system. The schema depicts modules, relations d@adloas, and execution threads
(grey-shaded boxes). Data shared between different robgtsre the use of a communication
protocaol.

the trajectories of each of the members of the robot formataapt to the structure (e.g.
confined, wide-open, etc) and dynamics (e.g. moving ohjacexpected clutter, etc) of
the navigation area maintaining the user-commanded gepfoethe robot formation.

5.5 Experimental Results

In this section we report both simulated and real experimehtained by a robot for-
mation in the presence of sensing, localization and mappnogrtainties as described
along the previous sections. We first illustrate, from a $aton-based perspective
(Player-Stage simulation environment): (i) the compotatdf global plans; (ii) the
adaptability of the geometric structure of the robot formato the dynamics of the
environment; and (iii) the benefits of cooperative pera@pin replanning tasks. Then,
in a real setting, we show the performance of the completgration scheme in a
navigation task commanded to a three-robot formation iménar scenario.
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Algorithm 2 Leader algorithm
{Algorithm for the robot leadeRg}
Require: XRr,.ty, XRy t;>YF
T+ computeGlobalPattXg, t,, Xr, t , Y.F)
while last waypoint ofrt not reachedlo
z + gatherObservationsFromRobdR, ..., R)
(XRr,Z') «+ poseTrackingy r,z)
Z" + cooperativePerceptida’)
I < buildLocalRiskMafz”)
sendInfoToFollowery)
Tiocal < computelLocalPatft, i)
Seader < leaderNavigationStrategyr, Tocal)
movelead€iSeader)
end while

Algorithm 3 Followers algorithm

{Algorithm for robot follower R;}

while Ry keeps movinglo
zi < gatherObservationsFromSens(Ry
sendObservationsTolLeadan
XR <— getLocFromLead€Ry)
Stollower, <— followerNavigationStrategxr, z)
moveFollowe(Stoliower )

end while
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5.5.1 Global Path Planning

Figure[5.6a displays a stochastic map of an office-like envirent (note the sharp edges
at the top left part of the figure and blurred edges at the bottght due to the greater
distance to the base reference frame). This map was cotestrpeviously to the nav-
igation execution. Two possible global paths connect thit@ainocation of the robot
formation (labelledStarf) and its commanded final destination (labell@dal): (i) a
shake-like path through a long curved corridor, or (ii) a sthgpath traversing a door
(labeled in the figure) unobservable from the initial locati

As shown in figure§ 5]16¢ arid 5.6d the algorithm has a signifieansitivity to the
selected risk level (0.1 and 0.05 respectively) that drasally changes the planned
path. By setting the risk level to 0.1 the path planner selacthorter but more risky
path (figurd_5.6c¢) traversing the door, unobservable fraarhial location and with a
significant location uncertainty computed during the pri@apping stage. Conversely,
setting the risk level to 0.05 results in a more conservatirgegy, that avoids traversing
the uncertain door, with a longer but safer path (fiquré 5téde goal destination.

Planning a risky path from a global perspective (figuré 5eikline traversing the
uncertain door) may lead to replanning during the execyaod therefore longer than
expected paths to the goal destination, suggested by takedanner due to the obser-
vations gathered by on-board sensors. Once the leader fafrthation has reached the
top right entrance of figuife 53.6f (a zoomed view of figuré 5.6® suggested path turns
into a dead-end forcing a replanning action and thereforeehrtonger path.

Finally, it is worth mentioning that, given two differentshastic maps (figurés 5.6a
and[5.6b) a closely related risk map (figlrel 5.6d) could bepedgad from the correct
selection of risk levels. Therefore, in a real setting, itbbe difficult to differentiate
between highly uncertain open spaces and non-travergaées.

5.5.2 Formation Adaptability

Figure[5.7 shows a typical office-like indoor environmengenda five-robot formation
is commanded to navigate from an initial location (label&édr) towards a final des-
tination (labelledGoal). Thanks to the robot formation integrated control schetime,
robots compliantly maintained the user-defined geometinictire (pentagon-shape in
this case) along the way.

The system computes the safest global path (in the risk megrased to the nav-
igation area) between the start and the goal locations shdymamically updated by
cooperative replanning thanks to the different obsermatiof the individual vehicles.
Note that vehicles align to traverse the different doordstiiney tend towards the com-
manded geometric shape in wide-open areas.
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Figure 5.6: Influence of uncertainty in risk-based global path planrfiogthe robot leader of
the formation.

5.5.3 Cooperative Online Replanning

Figure[5.8 reports the behavior of the five-robot formatioran open-door event de-
tected by one of the robot followers and transmitted to theotdeader thanks to the
cooperative perception strategy reported above. Ingtitde global path planning algo-
rithm drives the robot formation from the initial locatiom the final location (Figl_517)
through the way-poinkg,. Then, while navigating towardss, a shortest path to the
goal destination appears when the labelled door (Eig. ®£@)mes wide open but, un-
fortunately, this event occurs outside the field of view @& tbbot leader. Nevertheless,
cooperative replanning thanks to the common understamditing navigation area (Fig.
[5.8a) allows the correction of the previously planned padiifing the robot formation
from the short-cut to the goal.
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Figure 5.7: Five-robot formation adaptability to a simulated indoowiesnments. From the

individual traces of the different vehicles we observed thay compliantly maintained the
user-defined geometric structure (pentagon-shape indk&) evhilst navigating through narrow
and wide open spaces towards the commanded goal destination

5.5.4 Experiments in Real Scenarios

We have experimented with a three-robot Pioneer 3-AT foionatquipped with on-
wheel encoders and SICK LMS-200 laser rangefinders with adegOfield of view.
Communication between the vehicles is achieved by a desdiagtannel using a real
time wireless multi-hop protocal [79], which includes commnication queues to avoid
synchronization failures. The hybrid centralized-disited implementation of the com-
plete system reported computation times of the order ofaberlscan cycle (aprox. 4.5
Hz) where a maximum of 100 samples have been used to comgutiskhmaps during
cooperative replanning. The similarity between the real #tre@ sampled distributions
has been measured in terms of both the Kullback-Leibler @&mece (KLD) [19] and
the Normalized Estimation Error Squared (NEES) [6]: In tasecof 100 samples, the
KLD equal 34,7 nats that represents a 26% improvement oveatiples and it is only
improved by 3% in the case of 1000 samples. Also, the comgigtef the approxima-
tion (x -test based on NEES) amounts for 98,4% for 100 samples, witharovement
of 33,6% with respect to 10 samples, and only improved by igeaf 1000 samples in
a roughly 1,5%.

Figure[5.9 illustrates the stochastic feature-based septation of a medium-size
office-like environment (aprox. 30r¥0m) where the global path planner have been
executed to compute a safe path from the initial locatiomefrbbot formation (labelled
Starf) towards the final destination (labell&@bal). A longer but safer path (in solid-red)
is selected by the algorithm instead of the shortest pattiggmed-blue) due to the high
risk area (risk map enlarged on the left of the figure) dueeqilesence of clutter in the
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(b) Leader view (c) Follower 1 view

(d) Follower 2 view (e) Follower 3 view (f) Follower 4 view

Figure 5.8: Cooperative replanning towards the goal destinatign. The figure shows the
integrated field of view in the reference frame of the leddgrand the different individual
perspective of each robot in the formation. Figuré (b) shthweserroneous path planned from
the perspective of the robot leader in the absence of cobpenaith other team members.
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corridor.

Furthermore, Figl_5.10 illustrates the real-time captédiof the reported strategy
for efficient cooperative replanning under the event of ardgening. As shown, a
three-robot triangular-shaped formation is commandenh fxg, towardsxg, via the
sequence of ordered waypoints. During the execution, a duapped as closed in the a
priori map and outside of the field of view of the robot leadsopened and observed by
the robot followers, therefore the reported cooperatikatagy replans the path towards
the goal destination skipping the waypoxd, andxg,.

Start P

™ - ———— -

Figure 5.9: Safety enhanced path planning. The algorithm favors tlygetdsut safer path (red)
against the shortest path (red) due to the unsafe area onitliberof the corridor (risk map
enlarged on the left of the figure).

5.6 Conclusions

This chapter has reported an integrated system for roboitions working in partially
known environments.

Following the framework established in previous chaptetsre we addressed the
cooperative navigation in formation and its localizatioithm an uncertain prior map,
in this chapter we have turned our attention to path plantasgs with the goal of
achieving an autonomous robot formation system.
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Figure 5.10: Cooperative replanning in a real-world scenarfo.| (a) Aekm@bot triangular-
shaped formation (solid red) is commanded freg) towardsxg, via the sequence of ordered
waypoints (solid blue line). During the execution, a doabglled) outside of the field of view
of the robot leader is opened and observed by the robot felle\idotted red triangle), therefore
the reported cooperative strategy replans the path towlaedgoal destination (dashed blue line)
skipping the waypointxg, and xg,. The cooperative local maps before and after the door
opening event are shown[in [b) gnd] (c) together with captofése real experiment in (H) and

[(e).
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We have seen the existing risk when planning through higledain areas, which
might correspond to non-traversable areas in a real sefongng a complete replan-
ning of the path to follow to reach the goal. Then, we havegmwe=d global and online
path planning strategies to limit the possibility of faguin the execution of the com-
puted plan. The cooperative perception enhances the qdirfiermance by expanding
the leader field of view to new open spaces that can lead tdeshing the trajectory
towards the goal.

Experimental results, both in simulation and in realistedim-size office-like set-
tings, have illustrated the performance of the describgdageh by using a hybrid,
centralized-distributed, architecture with wireless ocaumication capabilities achieving
a 4.5 Hz cycle-time for a three-robot triangular-shapecdtion.






Chapter 6

Distributed SLAM for Robot
Formations using a Prior Map

Previous chapters presented a centralized algorithm taliae the robots in the for-

mation within an a priori map of the environment which reneglrunchanged during
the execution of the mission. In this chapter, we turn ougrdgton to how the robots
can jointly improve this prior stochastic map in an efficiargy. Additionally, we seek
to enhance the system robustness by using a distributedngcivrere the computa-
tional overhead is shared by all robots. Each robot maingats own local and global

maps which are improved with the information received whanraunications among
robots take place. The use of conditional independencespties allows that, after the
synchronization steps, each robot has exactly the samematmn about the map and
about the location of the robots at its disposal.

6.1 Introduction

In previous chapters, we have proposed an EKF-based approdacalize a team of
robots within ana priori stochastic map of the environment. The method is initially
designed in a centralized way in order to optimally integedt observations gathered by
the robots and to have a global vision of the system. Howéwveryhole system heavily
relies on the robot leader, which is not exempt from failu@sd demands constant
communication between robots to maintain their positiqrdatied.

In order to improve robustness and scalability of the systenthis chapter we
move towards a distributed paradigm in which each robot efftimation is able to
localize itself in the previous map. Additionally, in thibapter we propose the robots
coordinately improve the given stochastic map turning @ai gto solving a distributed
multi-robot SLAM problem.

To this end, in this chapter we present a novel and efficiggarahm where each

79
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robot updates its own copy of the prior global map by sendewgiving local infor-
mation to/from the rest of the team. Our distributed estioma&lgorithm is described
in terms of a Gaussian Markov Random Field (GMRF) which aflas to analyze the
conditional independence (Cl) properties of the probleradieve high efficiency [7].
The application of the CI property in the algorithm is twafolOn the one hand, the
robots in the formation only need to constantly update tlcalloegion in which they
move whereas global updates can be postponed reducing tatiopal cost([72]. On
the other hand, robots do not make observations of each wtharr system but get
indirectly related by observing common map features. The la the communication
channel is then reduced since each robot just sends an atfiormsummary of features
observed since last communication. As a result, the algoriroposed does not rely
on a central server improving flexibility and robustness gettlices the computational
and communication requirements at each step. Moreoversiiown that, in a linear
filtering context, the resulting decoupled method produbesexact results than using
only one filter. In this chapter, we use the Extended Inforomeilter (EIF) as the core
of the distributed algorithm such that after all messagessant/received each robot’s
estimate is equal to the centralized solution.

Distributed localization can also be addressed if a maptiavailable to the robots.
For example, in[4], a decentralized EIF algorithm to joirtdcalize a team of robots is
presented. Each robot integrates its own data and coopelatialization is performed
through inter-robot measurements fused by a central servieh can be replicated in
each robot for robustness. [n [76], the equations of a ckrethEKF are decoupled and
distributed among the robots who share their informatioemitney see each other and
in [63] the distributed localization is formulated as a Maxim a Posteriori problem.
Unlike these previous works and as we did in previous chaptes assume the robots
do not have the capability of detecting each other and cadiperlocalization is not
achieved by the use of inter-robot measurements but throbghrvation of features
from a common prior map.

One typical problem affecting distributed systems is dibeble countingdf infor-
mation (also known adata incest. This problem arises when the data sent through
the network is not properly managed and is integrated mare timce by the robots.
To solve this problem, the Channel Filter (CF) is introduce{B0]. The CF prevents
double-counting of information by using a tree commun@atiopology (i.e., with no
loops) and by keeping a record of the information transmhitteer the communication
channel. The transmission of information in our algoritlsxsimilar to this filter but
we avoid double-counting by synchronizing the transmissibmessages. The main
difference with that work is that we implement in additionefficient algorithm to up-
date the state vectors of the robots by postponing globahtegdwvithout introducing
approximations.

In the same multi-robot context, recent works also addresgistributed SLAM
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problem. In[54] each robot computes its own centralizedihedent estimate of the sys-
tem using the odometry and measurements that have beeveg&@m other robots. In
[14] a Rao-Blackwellized Particle Filter is implementedeaimation kernel that works
in simple scenarios with unknown initial correspondendeach time a pair of robots
communicate they have to calculate their relative tramsé&tion and interchange all the
information gathered since the last meeting. The work piteskin [64], copes with
bandwidth communication requirements, in such a way thelt eabot selects a set of
features with the greatest information gain to be sent. Badathe double counting in-
formation problem, they combine an EIF with the Convariaimtersection algorithm,
a sub-optimal filter which guarantees consistency althoyiglling pessimistic esti-
mates. In contrast to these works, in our approach the rardyscommunicate their
positions and the new local information gathered sincesiasthronization using small
local matrices that reduce the communication bandwidth.

The rest of the chapter is organized as follows: Se¢tioh és2ribes the main steps
and notation of our distributed localization and mappirgpathm for robot formations
with a prior map. Section @.3 makes use of the CI propertydace the computational
cost for each robot when working on a local region of the globap. Sectiol 6l4 is
devoted to explain the message passing protocol which ak&s tinto account the ClI
property. The complete distributed localization and maglgorithm is described in
sectiof 6.b together with a computational and communinat@mplexity analysis. In
sectior 6.6 the results of the testing experiments are prede

6.2 Problem Statement

Given a previously built feature-based stochastic mapour goal is to localize a for-
mation ofr + 1 robots in it while improving the map estimate. The robotdation and
the map are given bix},x]T, wherexz = {Xgr;|j =0...r} contains the location of the
team of robots.

A naive approach to update the joint estimate is to use aalesetd method where a
leader fuses all the odometry and sensor measurementseghtiethe rest of the team.
Instead, in this chapter we implement a distributed alpariin which each roboj esti-
mates its own posez; and updates its own estimate of the nxégp Robots periodically
broadcast the map information acquired since their lastleymization together with
their position to maintain the shape of the formation whagigating towards the goal.
During the periods of lack of communication, each robot mtsdhe position of the
rest of the team based on its knowledge about the formatrantate. The advantage
of this distributed strategy over the centralized one i¢ tha system becomes more
robust since each robot keeps an estimate of its positiorttendlobal map and does
not depend on the availability of a central server or constammunication with the
rest of the team to maintain the shape of the formation.
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The efficiency of the algorithm proposed in terms of compatet cost and com-
munication bandwidth is based on the following two ideas:

1. In order to reduce the computational cost, the prior mas divided into local
working areas. While the formation traverses a local regipeach robot updates
the features in it using the measurements gathered at egehvbereas the rest
of the mapxg, is not modified. When the formation moves to a new local area
all robots update the previous unmodified featwigsassign the new set of local
landmarks taxg and repeats the same procedure. Since the number of features
in a local region is bounded, this algorithm maintains a tamtscomputational
costO(1) when working in a local area. In addition, we will show that thap
estimate obtained is the same as if we had been working wetlvtiole map.

2. When working in a local region, robots send messages to @haer at synchro-
nization steps to improve their own local estimates by uiegnformation gath-
ered by other members of the team. During these synchraoizstieps, we as-
sume all-to-all communication availability. Instead arismitting raw measure-
ments, robots send information matrices of the featuresrgbd since last syn-
chronization reducing the amount of information on the camiwation channel.
After each synchornization step, each robot has the sarmnemation such that
the map estimates coincide with the one obtained using aateetd version, i.e.
X5 —Xz|j=0...r.

Previous ideas are based on the Conditional Independeihicer{Perty of the vari-
ables involved in the estimation. In section 212.2 we giveaieftand intuitive review
of this property which will be applied in the explanation béttwo following sections.
Along each description we will make use of a MRF similar to.EAg} to help the reader
recognize the CI property.

6.3 Local Estimates and Global Updates

In this section we focus on how each robot works in a localoegind is able to update
the prior map. At instark, the state vector for a robgis given byx] , = [XELK X7, i.e
the current robot position and the estimate of the map. [Qutis explanation we will
omit the robot index to simplify the notation. We assume a multivariable Gaussia
distribution on the state vector described by the infororatiectoriy and matrixl .

In order to work in local regions with a consistent procedorgylobal map updates,
we distinguish three operations: GlobalToLocal, Local &he LocalToGlobal. We will
use the Gaussian Markov Random Field (GMRF) in Eigl 6.1 tevsthe application of
the conditional independence property in these operations
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k XRitp

Figure 6.1: GMRF of the individual robot estimation process. The localpncorresponds to
elements inside the shadowed region. Since there is no éhkeen robokg,, , and features
Fg, the initial robot position at instarktand the local features = {F4...Fo} make the robot at
instantk + p conditionally independent of map elemefis= {F;...F3,Fio...F12}. To easily
verify the CI property node colors have been selected to mtitose in Fig.[214. Also, the
common separator is surrounded by a dash line.

6.3.1 Globalto Local

The prior map of the example depicted in Flg.]6.1 is composeteature elements
Xr = {Xr,...XFr,}. Notice that features are already connected since they ¢ame
a prior map estimation. For a clear representation, the GMRFg. [6.1 is simpli-
fied by dropping some inter-feature links. Instead of wogkith the whole map+
we want to work in the local region shadowed in the figure. Attamtk, the robot
XRr, IS about to enter to this local region from an already updalebal map whose
information matrix and vector are given Iby andiy respectively. The new local state
vector will be x| x = [x}{k,xE]T formed by the current robot position and the feature
subsef = {F4...Fy}. Features that are not in the local region correspond toeziésn
Fg = {F1...F3,F10...F12}. To obtain the local regior; x we just marginalize it from
the joint distribution as shown in EQ. 6.1,

P(XRe: XR) = / P(XRy, XF XFg ) dXFy (6.1)

For Gaussian distributions the marginal is given by the Ecbmplement([7], ob-
taining the local marginal informatioif,, I"} from the global staté, | as it is shown
in Algorithm[@. A copy of this marginal at instattis stored for future use in the
distributed algorithm.

6.3.2 Local EIF

While operating in the local region the robot just carries out a standard EIF algorithm
[88] in which the initial robot pose is kept in the state vedie. xr, is not marginalized
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Algorithm 4 (11, i]",) = GlobalToLocal (I, ix)

=y )= (8)

{Marginalization of local submap elements from the globatejt

IMe=11—liglg g (6.3a)
i =11 —liglgtig (6.3b)

{Return Marginal distribution at instant}k

out). Then, aftep stepsx x;p = [x}zkm,xT ,xt]T and the probability distribution of the
global map can be factorized as follows:

p<XRk+p7 XRk7 X}_‘Zlik+ p) - p(XFg |XRk+p7 XRk7 XF| y Z1:k+ p) p(XRk+p7 XRk7 XF| |Zl:k+p) (64)

The second factop(Xr,, ,, Xr,: Xr |Z1:k+p) corresponds to the probability distribution of
the local region. Notice that there is no direct link betwegpandxg,, in Fig. 6.1
therefore the first factor can be simplified by using the Cperty as follows:

P(XFy[XRe; pr XRes XF 5 Z1k-p) = P(XFg|XRe> XF » Z1:k) (6.5)

Consequently, when the robot performs the move-sensedygchd, the global part
Xr, remains conditionally independent of the current locabtod, , , and the new ob-
servationgy 1k, p that have been gathered in the local region and therefore ot
require continous updates.

6.3.3 Local to Global

When the robot is about to change to a new local region atistep it first updates the
elements of its total maip andl . We take advantage again of the fact that the new local
information acquired during lagtsteps only affects the elements that correspond to the
local region. Therefore, features>p, are conditionally independent of measurements
Zi1k+p (EQ.[6.5). In terms of EIF, this statement allows us to easibover the new
information given byl "RY, ., o iTY4, p (Algorithm[3, EqL6.6) from the subtraction of
the current local map at instakit- p and the local map at instakugmented with zeros
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at the position of robotg, , to fit the dimensions. This information is finally added to
ik andly, the global state at stép to update the total estimate. Equation 6.7 shows this
operation wheréH is the operator in charge of adjusting the dimensions of tagioes
and vectors for a coherent addition of information to the gwn local elements. Once
the total estimate is updated, we marginalize out the oldéstt positiorxg,. Similarly

to Eq.[6.3, we use the Schur Complement to perform the mdizatian.

. . — —————————— .
Algorithm 5 (lyp,ik4+p) = LocalToGlobal (||,k7'|,k7||,k+pv'|,k+p7|k7'k)

{Information due to the measurements obtained during las¢pss

new _m m
ik = Nikep — ik (6.6a)
rnew _m m
krikep = Nkep — ik (6.6b)

{Global Update: adding new informati$n

lerp = BB R 1t p (6.7a)
ketp = ik BiR 1kp (6.7b)

{Marginalizexg, out, the oldest positign

(Iktpsiksp) = marginalizeOut(XR,, lktp,iksp)
{Return Global state vector at instanttkp}

6.4 Passing Messages between the Robot Formation

We will make use of the CI property to efficiently send and nez@ipdate messages
between the team of robots. The key idea is that as the robatstcbbserve each other
they just get related by measurements of common map featlires indirect relation
means that the robot formation is ClI given the map. Formtig,insight is represented
by the following equation:

P(XRos - - - XR  [XF) = P(XRoye[XF) - - - PXR [ XF) (6.8)

In Fig.[6.2 we can see a small example that illustrates tlupgaty. In the example (fi-
gure left) three robots use information of their individadbmetry to move from instant
ktok+ 1. They also get connected to some map features given thevabisas at both
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Marginalizing
old poses out

Figure 6.2: GMRF of the robot formation. The example shows three robws inake obser-
vations of some map features during two consecutive steisotR are only related through the
features, i.e. they are conditionally independent givemtiap (green nodes). Previous robot po-
sitionsxg,  but the first one are marginalized out (left). Red, blue arlidyenodes are separated
by green nodes and therefore they are Cl as in[Eig. 2.4.

steps. Since we are using a filtering paradigm, robot positatk are marginalized out

creating a new cliqué [26] with all the elements that werenemted to them. The result
is a new graph (figure right) that links the current positiafith map features. Observe
that there are no direct links between robots, that is, thetrtormation is CI given the

map. In subsequent steps this property remains.

In order to obtain the same estimation as in a centralizetesysobots are syn-
chronized periodically and broadcast the new informatiatngred since the last syn-
chronization. From the point of view of a robot, the synclization is based on two
steps: first, the robot broadcasts its own information torése of the team; second, it
receives messages from the other members of the formatierexyain these steps in
the following subsections.

6.4.1 Send Messages

Algorithm [6 details the operations performed to send a nges§@m robotj to the
formation. Suppose that at tingea synchronization occurred and the estimate kept by
each robot is updated and coincides with the one obtainedentsalized system. From

this recently updated estimate, rootalculates the marginal of the featurléj[%’S and
iml

When a new synchonization step takes placgefap the new map information ga-
thered by the robot since last synchronization is calcdlaldis new information will

be the difference between the feature marginads-gt ands. Equatioi 6.9 in Algorithm
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Algorithm 6 sendMessaged iﬂ), iiﬂ))

Ii',_?‘s |J”T”s { Feature marginal of robot j stored from last synchronizatat instant $

m, j -m, j _ . . j -

(IJ_-7JS+p, IJ_—7JS+p) = marglnallzedOut(XRHp,IJ&HO, IJ&HO))
newj _mj mj
I]‘—,S-l-lZS—O—p_ |f7s+p_|f,s (6.9a)
'ner _'mvj _'mvj
IJ:,S-i-l:SH—p - IJ—",erp IJ—",s (6.9b)

newj nNewj
broadeast(l r/ysp i Fsivsip)

Algorithm 7 receiveMessage§

for r # j do

r,m -r,m . .
| Fsip 1 Fstp { Feature Marginal received from robo} r
J _ 1l r,m
lsip =lsip®l Fsip
.J - .J .r’m
lsip=lsipHiFsip
end for

shows this operation. The subtracted information is finalbadcasted from robqt
to the rest of the team.

6.4.2 Receive Messages

Algorithm[7 details the operations carried out when messagereceived to update the
map of robotj. As robots are CI given the map, the information sent to rgboly
affects its feature elements in the information matrix ardter and therefore can be
directly added by using the operatél; as it was explained in subsection 613.3. After
these operations, all robots share the same informatiout &lve map.

6.5 Distributed Localization and Mapping Algorithm
for Robot Formations

In this section we combine for each robot the techniquesriestin sections 613 and
[6.4. On the one hand, the formation works in a local regionhefmap to reduce
the computational cost. As the robots navigate relativedgesin the formation they
are localized in the same submap. On the other hand, each mabotains its own
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Algorithm 8

mapChange- false
while (k < nstep$ do
(iM, 11" )=GlobalToLocal(ik,lk)
while not mapChangeand (k < nstepg do
(iMks 10 1ky 1, mapChangg=LocalEIF (i}, I[")
if mapChanger checkSing) then
sendMessages(if'}, 1.1k, 1)
receiveMessages()
sendPositionToFormation()
receivePositionsFromFormation()
end if
k=k+1
end while
{ After p local EIF steps, a global update takes place
(Ik+p;ik+p)=LocalToGlobal(l H‘k,iﬂ‘k, [ H‘ker, im(+p,|k,ik)
end while

estimation and is in charge of its own observations to uptth&enap. From time to time,
the robots get synchronized to obtain the same map estimdatihese instants, each
robot also broadcasts its best estimated position to maitha formation structure.
Notice that, after a synchronization, the estimated poséeformation and the map
coincide with that of a centralized version.

Our distributed method for each member of the robot fornmegresented in Algo-
rithm[8. First, the robot is localized in a local working regi(GlobalToLocal). While it
remains in the same regiom@pChange- falsé, the standard EIF operations are car-
ried out to estimate its position and features location hitliout marginalizing out the
initial position of the robot in the submap (LocalEIF). Bdsan the knowledge about
the formation structure and using the spring-damper agproascribed in chaptér 3
as navigation strategy, each robot is able to predict theipoof the rest so that the
robots do not stop navigating in formation towards theirlgnaabsence of commu-
nication. If a synchronization eveoheck syncis registered (e.g. after a determined
period of time, or when a robot makes a request, etc.), anaexyEhof messages takes
place to update the states of the team with the same infama#ilso, when the for-
mation changes to a new local regiangpChange= true), the robots synchronize to
update its total map and another iteration of the main exatlbop is realized. The
new information that each robot receives about the featuileaffect its own position
estimation. For this reason and to update their knowledgeitatihe formation, each
time there is an exchange of messages, each robot sendrtsvad position to the
rest of the robots (sendPositionToFormation) and recehesformation from the rest
(receivePositionsFromFormation).
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6.5.1 Computational and Communication Complexity Analyss

While each robot is working in its own local submap, it penisrthe LocalEIF algo-
rithm. The computational cost of this filter depends on thmber of features in the
submap. Since we are not adding new features to the map, theanwf features re-
mains constant and the cost will 5§ 1) while working in the local region.

When a change of submap is carried out, there are two opesatigolved, Local-
ToGlobal, to update the global map, and GlobalToLocal, toaex a new region of the
map. As it was explained in sectibn b.3, the operation Lan@ldbal consists in adding
the new information to the global map, therefore, its coél($). In GlobalToLocal, we
find the most costly operation of AlgoritHoh 8, where we havtert almost the whole
map, (Eq[6.B), leading to a cost 6(n3) in the worst case, beingthe fixed number
of features of the prior map. Unlike other algorithms, thgeation only takes place
at each map changing step. As it was studied_in [68], therst®ai trade-off between
the size of the local maps and the frequency with which thetheed to change of
submaps. If the submaps are small, global updates will be rirequent, but, on the
other hand, larger submaps will increase the computatmsdlof local updates.

Concerning the communication, the total amount of infororato be sent to other
robots is bounded to the number of features in the local mamgeS:ach robot broad-
casts the new information added to the submap to the restpthenunication comple-
xity scales with the number of robot3(r +1).

6.6 Results

Through the following simulation results we want to show #uvantages of the dis-
tributed submapping algorithm proposed in this sectionh@iee designed a simulation
environment of 30x30m where three robots set in a triangi@mébion have to navigate
along a 120m loop scenario (Fig._B.3). Each robot has a pramhastic map of the
navigation area divided in submaps of 10x10m. The currezal Ieegionxg, is common
to all the robots and is selected depending on which feaamebeing observed by the
robots, thus, this local region can be composed of sevebahaps.

One of the main advantages of this algorithm is the improvenoé the given
stochastic map where uncertainties and errors of the maprésadecrease. This can
be seen in Fig_6l3 and in its zoomed area (Fig.16.3b), wherprévious and the final
map features are depicted. Additionally, Fig._6.4a showsrtiprovement in the map
features errors measured in terms of the Root Mean Squared(RMSE).

As a direct consequence of the map improvement, the robetsealized more ac-
curately. Figuré 6.4b shows the RMSE obtained on each coemaf the localization
of the robot formation. We also compare this result to the EM®&or obtained when
the map is not refined and the formation is only localized inithe prior map using the
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Figure 6.3: 2D Point-based stochastic map of the simulation environnéaj Initial setting
of the formation and current local region where local mapguiess and submap bounds are
depicted in red. The area inside the black box is enlargé8)imvfich shows the reduction of
the covariances (blue) with respect the a priori map (gré&tack dot in the zoomed in area
represents the ground truth of the feature.

algorithm proposed in chapter 4.

The next advantage concerns the computational cost. Tliffeeedt implementa-
tions have been compared. First, the submapping and distdlechnique proposed in
this section (Dist+sub) where each robot updates its owal boed global maps based on
its own observations and synchronizes with the other rdbaibtain a better estimation.
Second, a centralized version of the submapping techniQeet¢sub) based oh [72],
where the robot leader is the one who updates the local amdigheaps using the ob-
servations gathered by all the robots. Finally, a cenedlEZKF-based version in which
the leader does not work with local maps but only with the glabap (Cent+glob).

Figure[6.58 shows a comparison between the first (Dist+sutb)sacond version
(Cent+sub). We have supposed the worst case time compfexitige first implemen-
tation in which the formation synchronizes at each time atgpan additional time per
step appears due to the execution of the send-receive mperaHowever, the cost of
the map update in the distributed version (green line) ielpwesulting in a less time
complexity with respect to the centralized implementafread line). Peaks in the times
are due to global updates, where AlgoritHths 4[dnd 5 are exécut

In Fig. [6.5b, the computational cost of the first (Dist+subdl @he third version
(Cent+glob) is depicted. We can see how even when a globatemdcurs, the times
of the distributed implementation are lower than the glomakion. We can also ob-
serve that, since we are not adding new features to the mapp#t of the global EKF
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Figure 6.4: Root Mean Squared Error of the map features and the roboat@m[(a) Compar-

ison between the RMSE per feature in the a priori map and ifinaémap. In the a priori map,
maximum errors are due to far features wrt the base referghite the minimum errors are due
to features involved during a loop closure event or thoskedtenear to the origin. After running
the proposed SLAM algorithm, the error is more balancedénthole final mag. () Evolution

of the RMSE error of all the robots of the formation along timawdation. The errors on the
position components obtained when the formation navigatéke refining the prior map (blue)
are lower than if the map is not updated (grey) and only thalipation algorithm proposed in
chaptei# is used.

mapping remains approximately constant. In the distributgplementation, the times
are also constant while working in the same submap, but tiraes change depending
on the number of features of the submaps (e.g. time at in32&tt and at instant 2500).
Note that, in a real experiment, an additional time wouldeh@vbe considered in both
cases, due to the data association process. In the gloheahlceed EKF mapping, the

leader would perform this task by matching all the obseovetifrom all robots, thus,

this time would be proportional to the number of robots ansbobations whereas in the
distributed version, this time would only depend on the nands observations.

Finally, we want to emphasize that the result obtained wighdistributed submap-
ping method proposed in this section is equivalent to theltrebtained in a centralized-
global mapping implementation. Each time the robots parfarsynchronization, they
will obtain the optimal solution (i.e. equivalent to the taized). In Fig[6.6 we show
the consistency ratio NEEZ#, ., r = dim(xg ) of the local map features when robots
synchronize every 10 time éteps. We can see how, while tkame synchronization,
NEES for each robot’s features is different, but when a sgorazation occurs the so-
lution obtained is equal to the centralized. Besides, thiemason of the map features
is consistent, since the ratio NEB3{ , < 1.
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Figure 6.5: Comparison of times between different implementatidng] T{enes per step for
the centralized and distributed submapping implememtatidVorst case where robots synchro-
nize at each step is shown. For that reason, synchronizatian(blue), which affects to the
distributed implementation, is never zefo.] (b) Time corguer between the global centralized
and the submapping distributed implementations. Synération messages are transmitted at
every step.

6.7 Conclusions

In this chapter we have proposed a distributed estimatgrdéhm within the stochastic
framework presented in previous chapters for robot foromsti Using a prior map of
the environment, our method efficiently tackles the lo@dian of the robot formation
at the same time the map is improved with new observations.

The proposed algorithm does not rely on a central serverawpg flexibility and
robustness. This is achieved by describing the distribettnation problem as a
GMRF, which allows us to take double advantage of the ClI pitagseto reduce the
computational and communication requirements: as firstirése formation only ex-
perience constant updates whereas global updates arepedtpntil a new local region
transition takes place; a second cost reduction is achewedtb the fact that robots only
get indirectly related through the observation of commoip features.

In consequence, the load in the communication channel niyl scale linearly with
the number of resources since each robot broadcasts onhf@mation summary of
features observed from the last robot formation commuimcaflhe algorithm results
show an accuracy improvement of the a priori map, being tte fesult equivalent to
the one obtained in a centralized implementation with a favweenputational effort.
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Figure 6.6: Consistency ratio NEERf, , of the features in the centralized (black) and the
distributed (the three blue lines, one for each robot of tirenfition) implementations. In the
zoomed area, red boxes correspond to synchronization {ievesy 10 time steps) where cen-
tralized and distributed results are exactly the same.ri€ssonizations occurred at every time
step, the three blue lines would coincide with the black.line
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Chapter 7

Multi-Robot SLAM using Condensed
Maps

This chapter describes a graph-based SLAM approach spabyfiesigned to address
the communication and computational issues that affectiraldot systems. The pro-
posed method utilizes condensed measurements to exchapgaformation between
the robots. These measurements can effectively compteganeportions of a map in
a few data. This results in a substantial reduction of bothdhta to be transmitted and
processed, that renders the system more robust and effidderdocumented by the si-
mulated and real world experiments, these advantages caothewery little decrease
in accuracy compared to ideal (but not realistic) methogs 8hare the full data among
all the robots.

7.1 Motivation

In previous chapters, we have presented multi-robot Ipaatin and SLAM algorithms
based on filtering techniques, aiming at taking advantaglesdf speed properties. Un-
der the assumption of working in a common previously builpitae system could be
represented with respect to the same base reference andobatthad a good guess
about the location of the rest of the team. The use of mapresafor a compact repre-
sentation of the environment reduced the communication@a@. However, frequent
sychronizations were required to maintain coherency ih bentralized and distributed
algorithms. Developed in the context of robot formationsmmunications between
robots could be guaranteed as they move nearby. HoweveGdhtext is not suitable
and can not be straightforwardly extended to more generél-nobot systems where
robots explore different areas of the environment and thegtranly occasionally.

In this chapter we propose a general multi-robot graph&&teAM approach to
build a dense map of the environment without prior map kndgéenor assumption on

97
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the robots connectivity. As we already introduced in chdfitthe single-robot graph-
based SLAM problem involves to construct a pose-graph whosles represent robot
poses and in which and edge between twho nodes encodes a seasurement that
constrains the connected poses. One such graph is coesthycéfront-endalgorithm,
the estimation process is simplified to the problem of findingpnfiguration of nodes
maximally consistent with the measurements. This reqiobgng a large error mini-
mization problem which is often done by means of modern {sgstres optimization
approaches, also calldxdhck-endsn the SLAM context. This least-squares minimiza-
tion problem can be re-evaluated at each time new informasiancorporated into the
graph, providing a enhanced performance with respect &uifity techniques.

In principle, using multiple robots to acquire the map is exambust, since the failure
of a single system does not necessarily compromise the wasldt. Furthermore, the
parallel acquisition of data by multiple robots might resalless time needed for build-
ing the map. Despite these attractive properties, multeteystems for SLAM presents
substantial challenges of both theoretical and practiatdine. Ideally, existing algo-
rithms for single-robot graph-based SLAM could be extenddtandle the multi-robot
case just by constructing and optimizing the graph based omeasurements gathered
by the robots. Unfortunately, such an approach presentsaeshallenges. First, de-
termining constraints between pairs of robots’ graphsirequa re-localization scheme
without any initial guess. This might dramatically incredlse chances of adding wrong
edges to the graph, and would compromise the entire proSessnd, assuming to have
an ideal error-free front-end, the graph obtained by eabbtravould rapidly increase
its size. In the worst case, each robot would add a set of emgiee graph with a
quadratic dependency on the number of robots. Consequewibyld limit the on-line
performance of any state-of-the-art optimizer whose cexipt roughly increases with
the number of edges.

Furthermore, the above scenario assumes the robot carghedemmunicate with
each other, which is typically not the case. Wireless conmoations in large environ-
ments are usually brittle and depend on the positions of tdies1 Furthermore they
present bandwidth limitations, that would prevent the tetio share large amounts of
data.

In this chapter we propose an approach for multi-robot SLAK taddresses the is-
sues raised above. The method is designed to operate withiméied communication
facilities and allows to dynamically add and remove robotstfthe system.

Each robot in the team computes its own map, but it refines ihtggrating a set
of virtual or condensed measuremeif#d] coming from the other robots. These con-
densed measurements can be seen as a reduced version @fpheagnstructed by the
other robots, that contains only the information relevanthe receiver in order to re-
fine its own map. They are easily managed by the optimizatamk{end and allow to
substantially reduce the size of the optimization probleat each member of the team
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(c) Map robot 1 + condensed graph from robot 2 (d) Final global map

Figure 7.1: This figure illustrates a motivating example of our approalkio robots cooperate

to construct a map of a building containing a loop of 250m), Each robot is in charge of
mapping one part of the large loop. Due to the lack of enougieations robot 1 commits a
big error and fails in the estimation of its part of the lopa)((red square). However, it meets
and localizes robot 2 at two points of its trajectdry|((ajebbquares) who sends a compressed
version of its map that contains measurements relatinge ttves locations (¢) When robot 1
adds these measurements (blue edges) to its map, it imptsestimation[ (d) Since the maps
become interconnected, we are able to reconstruct the Ighadya by merging the individual
maps and optimizing them together.

has to solve, thus increasing the efficiency. In order tolibea robot in any other
robot’s graph with high presence of outliers, we proposebaisbvoting approach that
substantially decreases the chances of wrong data assosiand loop closings. The
system has been tested both on real robots and on simulatiedrenents. Figuré 711
illustrates a motivating example of the approach.

7.2 Related Work

Graph-based optimization algorithms have become the nuasessful techniques to
solve the full SLAM problem due to their improved performarwehich has motivated
their use in the multi-robot context. In [24] we can find thetftomprehensive graph-
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based approach to distributed SLAM with landmarks. Therélgm uses a multifrontal
QR factorization in which no measurements are communidsggeen robots or robots
and a server. Instead, the communication is limited to QRatgohessages, which con-
dense the entire measurement history on the individualtsolntéo small upper trape-
zoidal matrices. The data association problem is not censitland the measurements
are processed off-line for each robot. [l [1] the authorsgméa Collaborative Smooth-
ing and Mapping (C-SAM) algorithm to build a joint map fromesamm of robots without
initial knowledge of their relative positions. ThereforeSA\M does not present a proper
distributed SLAM solution but a centralized version of thielgem. Only simulated re-
sults are provided in the paper. A recursive solution fortirrobot pose graph SLAM is
presented in [43]. The main novelties of this approach eesitits incremental nature,
i.e. the solution does not depend on a batch optimizaticer aft measurements are
taken, and on the introduction of anchor nodes that allova ealgot to use its own ref-
erence frame whereas inter-robot measurements and grafsises from other robots
can be easily managed in the same framework. Therefore mezamunter the robots
interchange their graphs which do not need to be transfotmad¢ommon frame since
can be tackled using the anchor nodes. The paper does nohtalkecount any issues
of communication bandwidth constraints between robots.

The closest approach to our proposed method is presentg@]iard [21]. The au-
thors address in [20] the multi-robot problem with an exesh8moothing and Mapping
approach called Decentralized Data Fusion (DDF) whichpsegented using a factor
graph. Each robot optimizes its own trajectory and its laadnmap and then creates
a condensed maformed exclusively by the marginalization cbmmon landmarks
These condensed maps are mutually interchanged amondnoeigirobots to create a
simplified neighborhood graph of landmarks that is optimilzg each robot. To correct
the local map with the information obtained from the optiatian of the neighborhood
map a set of hard equality constraints are established bateach neighborhood land-
mark and its corresponding local version. In summary, r®lget mutually connected
by sending graph nodes of shared features that must be in&edtiwith their corre-
sponding local representations. [In]21] the work is extenaéh a novel multi-robot
data association method for robust decentralized mappimg data association is based
on a triangulation algorithm that provides matching betwesps.

Our multi-robot SLAM system is based on the concept@idensed measurements
[31]] which were introduced in sectign 2.5.1. During map ¢arion, robots meet and
exchange data in different parts of the environment. Thesawss are governed by a
protocol explained in detail later in this chapter and rissiml each robot augmenting its
pose graph with a measurement about the relative posititmeogéncountered partner.
After the first encounter, each time a pair of robots meet Huglitionally interchange a
set ofcondensed measurementdhich is just a factor graph of the shared variables ob-
tained from an approximation of their respective globap@saat the equilibrium. The
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advantages of this approach are three-fold: 1- Each roblyptarries its own graph that
gets minimally augmented whenever an encounter with othleotrof the team takes
place; 2- The mutual influence between the team of robotssitygackled by using the
condensed measuremestace only new virtual factors (edges in the graph) between
the shared nodes must be taken into account in the optimizptocess; Neither spe-
cial constraints nor different graph representationsegeired. 3- The communication
bandwidth is efficiently used since a summarized (condgnepadesentation of the re-
quired constraints is transmitted between robots. In aditve propose a technique
to robustly find alignments between local maps. This teamig used to find loop
closures or alignments between local maps from differenbi®

7.3 Condensed Graphs

Recall from sectioh 2.5.1, in pose-graph based SLAM we dezaésted on determining
the robot positionxg,, along its whole trajectory. The problem is modelled with a
graph where each noderepresents a robot positiog, and each edge encodes a mea-
surement;; relating a pair of nodeéxi, xj) whose uncertainty is characterized by the
information matrixQ;jj. Then, the problem is formulated as a nonlinear least square
optimization problem to find a configuration of node€swhich minimizes the overall
error:

X" = argmin qﬁ(xi,Xj)Qijaj(Xi,Xj) (7.1)

X ipec

wheregj (xi,Xj) represents the error between a measuremeand the expected mea-
surement given the current configuration of nodes:

&j(Xi,Xj) = 9(Xi,X;j) — Zij (7.2)

In our caseg(xi,X;) is the measurement function that computes the position ead-o
tation ofx; in the frame ofx;:

9(Xi, Xj) = Xj O Xi (7.3)

To solve this problem, modern optimization approachesdfe[47] or iSAM [42]
require a time that depends on the number of edges, and timiess in finding the
correct solution is affected by the initial guess availabléhe system. In the single
robot case, this initial guess is typically good, since tit#ot can rely on an estimate that
is constructed incrementally, and that at each point in torgains all the information
acquired so far. Conversely, in the multi-robot case it migéppen that when two
robots meet and want to share their map, the individual eséisrare affected by a large
error. Furthermore, to carry out the optimization by using of these approaches, the
two robot would have to share their entire graph, which i€poally large.
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Figure 7.2: In this figure, we illustrate the use of condensed measuremeshare information
between two robots. The graph of robatis illustrated in red and the graph of robBtis
illustrated in blue. Red edges show the measurements betveeles of the robod’s graph and
the RobotB’s graph. Instead of sending to robéatall its graph, RoboB sends a condensed
version, consisting of a central node (gaugy), and a set of condensed factors connecting the
gauge with each of the nodes ( = 1...n) seen from robof. Notice thatxgq can also be selected
from the nodes already seen by rolot

To lessen this problem, in this chapter we propose an atteerapproach based on
condensed measuremernits|[31]. When two roBoasd B meet, they share a reduced
graph so that each robot receives from the other only thenmdton needed to refine
its own estimate. Figuife 7.2 intuitively illustrates thimpess. Let us assume that robot
A has observed a set of nodgsi = 1...nfrom robotB’s graph. In order to optimize its
own graph, by taking into account the information fr@nrobotA should know how
these shared nodes are related in the space. This informatitearly contained in the
graph ofB, but it is too large to be sent over the network. Instead oflsgnthe full
graph,B sends a “condensed” version that has substantially lesssnbdt that captures
the information necessary foto perform this optimization.

The condensed graph will be composed of the nogésom robotB’s graph and
a set of condensed measurements relating those nodes. ddesgrto compute the
condensed measurements is the following:

e We select an arbitrary nodg from the nodes; of robotB’s graph. This node
is fixed as the origin (gauge) of the graph which is optimized to ebtaiocal
solution with respect to the gauge.

e Once we have a minimal error configuration for the graph obt@&)we compute
a set of condensed measurememtsetweernxg and each other node. Follow-
ing the procedure explained in sectlon 215.1 and using tiee &mction[7.2 we
characterize each measurement by its mean and informattnixmrTo this end,
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we regard the graph of B as a local map.

This procedure converts robBk graph into a condensed version with star topology
where each measurememincorporates the knowledge in the original graph of rddot
thatxg has about the position of.

7.4 Multi-Robot SLAM using Condensed Graphs

This section describes in detail the proposed multi-rolh@&M system. The approach

operates on raw sensor measurements acquired by mobiles iipgpped with a laser
scanner. Inter-robot communication is based on a wirelessléc network that dyna-

mically adapts depending on the mutual locations of the tob®ectioh _7.4]1 presents
the details of the communication model.

Each robot executes a standard laser-based SLAM pipeheestate of the system
is stored in a pose-graph which is constantly optimized eyt optimizer. When the
robot moves for a certain distance, a new node is added ta#pd gand the odometry
measurement is used to label the edge between the new anewi@s robot positions.
The laser scan acquired at the new position is matched d@ased of candidate scans
stored in the nodes of the graph. The candidate nodes atexklethe current robot
position falls in their uncertainty ellipses. This giveset of candidate loop closing
edges between non temporally subsequent nodes, that aréethén the graph upon
validation by a voting scheme procedure described in Sedtid.3.

To extend this single-robot SLAM algorithm to the multi-adlcase, we need to
augment the graph-construction method described abowenidinformation coming
from other robots. The multi-robot front-end will be in charof:

e robustly localizing other robots into the current robot'apnbased on their raw
sensor measurements.

e integrating the condensed measurements of the other rwbibts current graph.
This is achieved simply by including the set of condenseesdg

In the remainder of this section we describe in detail ourmomication model and
how we address the problems outlined above, by taking intowad the limitations of
the communication infrastructure.

7.4.1 Communication Model

The approach is founded on the assumption that no infraeteics present. Thus the
communication between robots is point-to-point. Robots @ammunicate only when
they are within a certain distance, and the communicatiaplychanges dynamically
based on the current configuration of the multi-robot system
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This models conservatively the behaviour of wireless Ad:Hetworks. Wireless
communication has a limited range and bandwidth which valyvwdepending on the
protocol (WiFi, Bluetooth, ...), the IEEE standard used)(e802.11b/g/n...) and also
the structure of the environment. Not relying in infrastire has substantial practical
advantages.

The proposed communication model works in a robot-independay, where the
messages are transmitted asynchronously and contain tsteumado-date information
available. The probability that a message sent is corralglivered decreases with
its size. To maximize the probability that the messages anectly delivered, in our
algorithm we kept the size of the single messages as smatissshte, possibly fitting
within an Ethernet frame (1400 bytes). Each robot peridjicgnds a ping and, based
on the ping messages received by the other robots, it detesniis neighbors. When
two robots are within communication range they send two kindessages: to transmit
their local maps and to manage the condensed graphs.

Local map transmission
The local map is transmitted through a message containenfptlowing information:

e The last measurement (laser scan) acquired, and the cldrehthe node con-
taining the laser scan in the graph.

e The up-to-date estimated locations of the Mstodes.

With this information each robot is able to reconstruct el maps of the team mates
in range. Notice that a robot sends only the most recent &sat, which is the bulky
part of the message. To determine a local map consistihgsafans we need to buffer
the lastN messages from each sender, and render the scans accorttiagrost recent
list of estimates of the nodes. The latter is transmitteth ¢éate a new node is added to
the graph. This allows to update the local maps with minimatmunication overhead,
even if the graph changes its configuration. The local mapstttér robots are used
to localize them in the current robot’'s map. This is done bygi® voting scheme
for robust outlier rejection in combination with a corrélatscan matching algorithm,
which is described in detail in Sectibn 714.3.

Condensed graph transmission

To manage the graph, a robot sends a message containtirgltvérig information:

e A list of nodes of the other robot’s local map it has matcheairgt its own local
map.

e A condensed graph extracted by its own graph and consistihg @edges relating
the nodes that have been matched by some other robot.
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These messages are sent whenever a new node is added tophe lgased on the
number of mates in range.

7.4.2 Multi-Robot SLAM

In this section, we illustrate how the messages defined af@vesed to implement our
multi-robot SLAM approach. To simplify the description, wefer to Figurd_7J3 and
without loss of generality we assume having only two robat&ed) andB (blue).

Initially (see Figurd 7.3a), each robot constructs its owaprwith a single-robot
SLAM algorithm. When a communication is availabAestarts receiving the current
local map ofB, by storing its most recent readings. A matching procedues@cuted to
align the two local maps, and results in a set of candidatesdgnnecting the map &f
and the map oB (see Figuré7.3b). When reasonably confident about theatnass of
these edges, robétsends td this list (see Figure_7.BcB then computes a condensed
graph containing only the nodes of its map that appear indhdidate edges found by
A (see Figuré7.3d), and sends itXoFinally A, includes these measurements in its own
graph to get a more consistent map (see Figuré 7.3e).

This algorithm can be implemented within a rol#tn a straightforward way by
maintaining the following data structures:

e the graphja obtained by single-robot SLAM
e for each other robds:

— the most recent local map1g consisting of the lasi nodes, that is used
for cross-localization.

— the IistSE of candidate edges between the mag\aind the map oB that
have been found bxx.

— the list ofSQ edges received frof, that connect the map éfand the map
of B and that have been found By

— the condensed gra;ﬂﬁ sent byB.

RobotA updates the local maps of each other rodg and the list of edgegs
whenever a new message is received. Each time the sing¢-3aAM algorithm run-
ning onA adds a new node to the graph, the estimate of theNasbdes and the last
laser scan are sent to allow the other robots to construdbtia map ofA. Subse-
guently, RobofA runs a map-alignment algorithm between its local map ankd #dg,
and updates the list of candidate edges by using the prosetiscribed in the next
section.

Finally, by knowingSé\ RobotA computes which nodes of its own map are relevant
for RobotB, and sends the corresponding condensed measurementsnpuatoaog the
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Figure 7.3: lllustration of our multi-robot SLAM algorithm in a two rolt® scenario. RoboA

is depicted in red and Rob& in blue. Triangles represent the nodes of the grdpH. (a) Each
robot runs a graph-based SLAM algorithm and constructswis imap. When they are within

a communication range, they share their current local nji@sh localizesB and determines

a set of candidate edges connecting the two nfaps {igforms toB which of its nodes it has
matched[ (dB computes condensed measurements that connect the notleswnimap that
appear in the edges found By[(€) A includes these edges in its own graph.

condensed measurements Rohobnsiders only the portion of the graph acquired with
its own sensors, thus avoiding multiple integration of mfation.
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7.4.3 Robust Map Alignment

In this section, we describe our approach to robustly aligmlbcal mapsMa and Mg
onto each other. Alocal map consists of a portion of the gréidrecall that each node
consists of a robot pose and a laser scan acquired at thatfigsee[ 7.4 illustrates the

problem.

St
»’

>p /
Wa<ea<

(a) Local mapMa. (b) Local mapMp.

\ Waea<

S

(c) Alignment of the two local maps.

Figure 7.4: Example of map alignment between two local maps after findirgget of edges
jointly consistent.

Our goal is to find a set of edgesbetween the nodes of the two local maps such
that they are maximally consistent, given the scans. Toghtswe match each scan
sj contained in node} of Mg with each scars* contained in node{* of Ma, by
using a correlative scan matcher. Note that each matchimgesalt in zero or more
measurementg of xJB with respect to. Each of these solutions is then converted in
an edgex relating nodes andeB, and added to a pool of candidate ed§es

Given this pool of edges, we run a voting scheme proceduretermhine which of
them are inliers, summarized in Algoritimh 9. The idea is WioWing: to determine
a translation between the two local maps it is sufficient émgtate them so that one
candidate edge is satisfied (its error i9).

Letxf*,x? the location of the nodes containing scafis? andz their computed re-
lative measurement be represented as the isometry ma)q%ﬁ andzy, respectively.
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The transformation matriX, which satisfies the constraint is:

TiXP = XAz (7.4)
T = X2 (XP) (7.5)

Applying this translation affects the error of all other datate edges, and their error
will be small if they are consistent witd, while it will be large otherwise. Based on
these errors and using an inlier threshole determine inliers and outliers. Once we
obtain a set of maximally consistent edgesising this procedure, we decide whether
to accept the match or not if a minimum number of inliers isiaobd. Figurd 715
illustrates the procedure.

The bottleneck of this schema is the scan matching routidetlaa computational
cost of algorithm will depend on the number of candidateseedg&. Accordingly,
we need to limit the number of times we perform scan-matchBy considering that
the local maps can be assumed to be consistent, and that ¢ime twfo local maps is
acquired incrementally one scan at a time, we can implerherdliove procedure in an
efficient way. Each time we receive a new sﬁnwe match it against the local map

constructed by the union of af. The scan matcher results in a set of transformations
betweens'j3 and the mapMa. These transformations are converted in edges between

s‘j3 and the closest node i, after applying the transformation. The resulting edges
are inserted in the pool. The joint consistency validateodone at every step, and the
candidate edges that are marked as outliers for a certaibewaf times are removed
from the pool.

7.5 Experiments

The multi-robot SLAM approach proposed in this chapter heenbvalidated through
simulations and real world experiments. The system is implged in C++ as a ROS
package and the simulations have been conducted with tge Siimulator.

7.5.1 Robust Map Alignment

First, we have validated the map alignment procedure axgdhin sectiol 7.413 in a
simulation environment to have the ground truth at our digpfor measuring the qual-
ity of the final map obtained. Additionally, we have compatteglresults with respect to
Single-Cluster Graph Partitioning (SCGP) [66]. Therefave will follow with a brief
summary of the SCGP approach and how we apply it to our probfdinding a set of
maximally consistent edges that align two partial maps.nJ tliee comparison between
both approaches will be presented.
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Algorithm 9 ComputeS

Require: Ma, Mg, &, T
1: bestChi— inf, bestlnliers« 0, S + {}

2: fo
3:
4.

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:

r each edgee,(x,x®) € £ do
Sk {}
inliers < O; totalChi2«+ 0;
{ComputeTy such that errog, = 0}
T X2 (XP) 1
{Apply Ty to the nodes inVg;}
for each nodexjB € Mgdo
)sz +— TiXB:
end for
{Compute new errogy for each edge ig’}
for eachedgee € £ do
totalChi2 +=g;
if ex < T then
inliers++;
Sk + {Sk, &}
end if
end for
if (inliers > bestInliersor
(inliers = bestinliersand totalChi2< bestChi2)Xhen
bestChiz— totalChi2
bestinliers« inliers
S+ Sk
end if

21: end for
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Figure 7.5: Top: In red, nodes belonging to a local map, in blue, curretimation of the re-
ceived nodes and in yellow, the same nodes with respect watihdidate closure edges. Dashed
red lines represent the error in the estimation for each.edigjedle: Green, position of the
nodes after applying the transformation (blue dashed timeg) makes the error of the first node
equal to zero. With this configuration, the error in the selcand fourth nodes is small (they
could be selected as inliers if the error is lower than a tiole whereas the error in the third
node is large (outlier). Bottom: Configuration of the nodethé transformation to make the
error of the third node equal to zero is applied. Since it issang closure, the error in the rest
of nodes is large, they are selected as outliers and thisgewafion of nodes is rejected. Notice
that this procedure can be used whether the local maps arediferent robots or from the
same robot trying to compute loop closing edges.

Single-Cluster Graph Partitioning for graph-based map alignment

The SCGP method computes, from a set of candidate hypothtsesubset which is
maximally consistent. It represents the problem as a gnapbre each node is a can-
didate hypothesis and an edge between two nodes reprelsemtmttual consistency.
Then, given a set af candidate hypotheses, the graph is encodedir a consistency
matrix A where each elemeat; contains the pairwise consistency between two nodes.
Let u be a binary indicator vector representing a subset of thethgses, SCGP
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attempts to maximize the average consensus:

u'Au
ru) = 7.6
(U) = (7.6)
AssumingA being symmetric, the vectarwhich maximizes Ed._716 satisfies:
Au=r(uju (7.7)

which is an eigenvector problem witlu) the dominant eigenvalue. The two first dom-
inant eigenvectorg; andv, and eigenvalues; andA, of A can be efficiently computed
using the Power Method. A minimum ratia /A> can be imposed to assess the con-
fidence of the result, otherwise the whole set of candidatesjécted[[67]. Then, the
dominant eigenvector is discretized to obtain the binadycator vector.

4 4 4
2 2 K 2
€ijy
1 1 1
2 4 2 4 2 4

Figure 7.6: Left: Initial configuration of the nodes (red and blue) andent errors with respect
to the constraints. Middle: Configuration of the nodes if ttamsformation which satisfies the
first constraint is applied. Right: Configuration of the nedfd¢he transformation which satisfies
the second constraint is applied.

In order to apply the SCGP method into our map alignment prablwe proceed
similarly as in Algorithn{®. Givem candidate edges, we compute for each candidate
edgeg the transformation which satisfies the constraint, apply ke nodes of the rest
of edgesej and compute the new errey; of each edge. With this procedure we have
a measure of consistency of each eegevith respect tag. We can not fill matrixA
directly with these values since this measure is not recgirg.e. e # eji) as it can be
seen in Fig['7J6. To obtain a symmetrix matrix A out of thedeeswe set:

_ &1

gjj =ajj =€ 2 (7.8)

After applying this function, two compatible edgese; will have low errorej and
large compatibility valuey; and viceversa.
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Simulation Results

In order to compare the map alignment algorithm proposedis ¢chapter with the
SCGP approach, we have designed two different trajectoreesimulated environment
containing several loop closings as shown in Eigl 7.7. Giterinitial trajectorie§ 7.7¢
and[7.7d, we have executed the single-robot SLAM routindagx@d in section_7]4
with both approaches as loop closing detectors and varied ititrinsic parameters
according to the following restrictions: 1) We check if a miwm number of edges are
found jointly consistent in a window of time in order to fina#lpprove a map alignment.
In our implementation, the candidate edges are maintam#tkipool for 10 time steps
and we have varied this restriction in both methods from 3 mail@mum inliers. 2) In
the case of the SCGP method, a minimum radtipA, is imposed to consider the result
confident enough. This ratio depends on the properties ofdhsistency matrix and
how it is built. In our implementation, we observed tiaf A, ratios much higher than
2 were unusual, then we considered this value as the momctestone. Note that
A1/A2 > 1is always satisfied and, in this case, SCGP always trustseonanfidence
of the consistency matrix. 3) As it is explained in Algorit@nthe outlier rejection of
our method is based on a thresheldWe have a wider range of thresholds in this case
where the lower the threshold is, the more restrictive therdhm is.

We have measured the quality of the final maps obtained witth dygproaches with
respect to the ground-truth trajectories in terms of themt@hi2 error per edge. To
this end, we created a ground-truth graph by extracting afsattual edges between
neighboring nodes, by using the approach described in [IBg results for different
thresholds and minimum number of inliers are summarizedbid7.1 where values are
only shown if the map converged to a correct solution. Thesalts are accompanied
by precision and recall measures (shown in Fig] 7.8) whiehdafined based on the
number of true/false positive/negatives by:

Precision= tp ; Recall= tp (7.9)
tp+fp tp+ fn

From the results we can observe that our proposed algorithtains better final
maps proved by a lower overall error. In general, the errdrigher as the minimum
number of inliers is increased since finding a loop closuse depends on how much
portion of the trajectory overlaps and is not always posstbl achieve the required
inliers. Additionally, we verify that the minimum; /A, ratio must be higher than 1
otherwise the simulations always reach a point at which tinegrge.

Regarding the precision and recall measures shown il Ehwe .observe that our
approach has a slightly smaller precision than SCGP, thexefiore wrong loop closing
edges are added to the graph. However, it gets many moresiigte it has a higher
recall. With the use of robust kernels in the optimizatiomgd[65], these few out-
liers could be identified and their effect on the final solntrinimized. Conversely,
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(c) Scan matching trajectory 1 (d) Scan matching trajectory 2

Figure 7.7: Trajectories and laser scan data collected by the robotim@ation environment.
and (B) show the ground-truth maps whefeds (c) and (ay #®initial map configuration
after running a sequential scan matching over the two ti@jes without loop closure detec-
tions. The initialy? mean error per edge is 40.412 for the first map and 63.997 éos¢hond
map.

although SCGP presents better precision values, this casitiea sacrifice on the over-
all number of detected inliers and, consequently, certaoddoop closures are skipped
by the algorithm which contributes in higher errors of thefimaps obtained. These
quantitative results support the overall better perforoeanbserved and confirmed by
visual inspection of the final maps.

In some cases, the inclusion of outlier loop closing edgeslt®in a complete map
divergence. However, there are certain edges that can bgfedd as outliers from a
statistical point of view although they are not so wrong frarqualitative perspective
due the good performance of the scan matcher and then,ribkision in the map do not
prevent from obtaining a good final result. For this reasomhave also measured the
recall values for both approaches in the situation wherethez only good (statistically
speaking) inliers. In this case, the absence of outlierdi@nghere are no false positives
and then, the precision is always 1. The results for botledtajies are shown in Fig.
[7.9 which confirme the better performance of our method.
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Min. Inliers Min. Inliers
3 4 5 6 7 8 3 4 5 6 7 8
3.5/ 1.417] - ]0.647]0.826] 10.179] 20.515 1 - - - - - -
3 - - [1.105] 0.682| 1.119 | 1.441 1.25| 18.791] 35.691] 0.687| 0.508| 1.837| 4.061
1251974 - 0.645| 1.29 | 1.506 | 1.433 | | A1/A2| 1.5 - - 1.308| 2.388| 1.541| 1.344
2 [0.902] 0.495| 1.047| 0.772] 2.159 | 2.163 1.75| 0.465 | 1.305 | 1.841] 3.554| 1.572| 1.344
1.5]1.133] 0.769] 0.951| 1.466| 1.561 | 2.511 2 - 1.403 | 0.925] 2.712] 1.266] 5.254
(a) Our method - Trajectory 1 (b) SCGP - Trajectory 1
Min. Inliers Min_Tnliers
3.5 - 0.764| - | 0.863| 0.853| 1.020 1 N - - . - -
3 - 0.647| - | 0.627] 0.688| 0.794 1.25] - - - | 1.871] 16.524] 73.42
7|25 - 0.561] - [ 0.833] 2.047] 0.874 | | A1/A2 | 1.5 - 0.87 | 0.764| 1.972| 1.266 | 46.113
2 11.106] 0686 - | 0.72 | 1.174| 70.585 175 - 0.723| 1.197| 2.941| 73.821| 46.114
151 - 10687 - 1190 4.698] 6.488 2 | 0.773]0.877| 1.062| 2.935]| 73.825] 46.114
(c) Our method - Trajectory 2 (d) SCGP - Trajectory 2

Table 7.1: Map errors obtained using both methods in the two trajeztorRows and columns
are ordered from less to more restrictive thresholds. Theegare the meax? error per edge.

7.5.2 Multi-Robot SLAM System

Simulation results

We quantitatively evaluated the performance of our systaough simulation exper-
iments. In particular, we measure how the proposed multpreystem performs in
terms of optimization time, bytes transmitted by each rabwt accuracy with respect
an ideal implementation in which the robots share their wlgoaph instead of the con-
densed version. Additionally, we want to analyze how thegmeets scale with the
number of robots and therefore we tested our approach withghd 8 robots. The
simulation environment is shown in Fig. 7.10a. We designgédtories such that each
robot met at least once with another robot. As an exampldrafextories and final map
obtained in the 8 robots simulation are shown in Eig. 7.10b.

Figure[Z11 shows the results for the optimization times @ munication over-
load obtained in the simulations. Clearly, the more robatsuged for mapping the less
time is needed to cover the entire environment and the snvailldbe the map of each
robot. Figure§ 7.118=7.11c show the optimization timed&th approaches. It can be
seen how, in the condensed approach (green), the optionzaties increase linearly
as the map grows. Receiving a condensed graph implies addieqy edges to their
graphs and this does not affect substantially the commutatin the ideal implemen-
tation (red), times grow also linearly with the number of esigHowever, this number
has a substantial increment when the robots meet and rebeivehole graph from the
others. This happens, for example at time 350 in the two sosiatulation.

The communication overload is shown in Figures 7111d=I.14$ explained in
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Figure 7.8: Precision and recall values for both trajectories.

sectiof 7,411, two kind of messages are sent, one contaiménigcal map and another
one to send the condensed graph. Transmitting the local msp bonstant size if the
number of nodes to send is fixed. In our implementation, westrat both the updated
estimates and ids of the last 5 nodes plus the last laser ditaming a message of
constant size of 1580 bytes. Since this value is the sameotbrdondensed and ideal
approaches, this type of message is not taken into accotiné iresults. However, as
it can be seen in the figures, the size of the messages to semgaph in the ideal
approach differs substantially from the messages in thdewsed approach, where the
size of the messages stays below 1000 bytes in most of caBesiZe of the message
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Figure 7.9: Recall values obtained for both trajectories in the absehoetliers.

gi RNl ﬂi@ﬂ
Nyl

Figure 7.10: Simulation environmen{._(b) Trajectories and final maja i8 robots experi-
ment.

(b)

that a robot has to send in the condensed approach will grétwvtiae number of nodes
of its own map another robot has matched.

By using the ground truth of the simulation, we compared tloeieacy of our multi-
robot SLAM approach with the ideal implementation. Tdb@shows the overall mean
Chi2 error per edge for each one of the simulations. The nurabedges of each
individual map varies with the simulation, and from one roblw another. For this
reason we use the mean error per edge as a measure of acaurhoyhf approaches.
As it can be seen in Table T.2 the mean errors are very similduttzerefore, we can
conclude that the accuracy is not sacrificed when sharingdhdensed graphs instead
of the whole version. This result is confirmed by the visuapiection of the maps.
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Figure 7.11: Timings for the optimization of the graph and bytes trantadiby each robot. The
results are shown in green for the condensed graph approddh eed for the ideal implemen-

tation.

Real World Experiments

We conducted a real world experiment by using three Pione&r Bbots, equipped
with SICK laser rangefinders. The robots were simultangozshtrolled by three per-
sons that steered them manually in the environment showiguréf7Z.I2. The robots
communicated through an Ad-Hoc network by sending UDP packed each of them
was running the algorithm described in this paper. We preshosynchronized the
clocks of all robots with NTP. To be able to reproduce the expent, we recorded
a dataset containing the own measurements each robot loggedn measurements
(odometry and laser), and the ping received by other robbkss allow us to repro-
duce off-line the connectivity of the communication netly@nd repeat the experiment

off-board.

The results of this experiment are shown in Figure [7.12. Tdéidual maps ob-
tained by each robot together with the condensed graphseeideom other robots are
depicted in Figures 7.1Pa—7.12c. During their navigateath robot was able to meet
and localize some other robot into its own map. The meetingtpare depicted with
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Accuracy
Condensed Graphsldeal
2 robots 1.404 1.442
4 robots 1.572 1.548
8 robots 1.884 1.899

Table 7.2: Comparison of the accuracy obtained by our condensed nesasat multi-robot
SLAM approach and the ideal implementation. The numbersharg? error of the edges in the
ground-truth graph, evaluated with nodes placed as rapbstehe algorithm.

squares in the individual views. These intra-robot locdlans make that all maps be-
come interconnected which allows us to reconstruct theajlotap shown in Figure
[7.12d.

In addition to the experiment described here, we executddiadal tests with Er-
ratic robots equipped with an Hokuyo UTM laser rangefindethwivo robots. The
result after merging the individual maps is shown in Fiqudg7

Post Processing

The procedures described above are the core of our mulbtit@IbAM. Compared with
a centralized approach that has access to all informatiail adbots, our system leads
to a higher error in positions where the robots do not meets @hses from the fact
that robots only share local maps around their current jposithus they cannot relo-
calize. This is visible in the right hand side of Figlire 7.$8lving this problem would
require transmitting substantial more information, sitieerobots would have to share
all the measurements. Despite this limitation, our schemdyzes solutions that are
sufficient for the robots to navigate. In a subsequent peicgsstage, a global accu-
rate map can be obtained by merging the solutions of all oot optimizing them
including the condensed measurements. This aligns the mamlobal frame. This
map can be further improved by adding a set of constraintsdigimmng scans between
neighboring nodes. Due to the good initial guess obtainethéymap alignment, this
step is relatively straightforward, leading to resultastrated in Figure 7.14.

7.6 Conclusions

In this chapter we have proposed an approach for multi-r&h#tM that specifically
addresses the limitations in network and computation affgenulti-robot systems.
The use of condensed measurements allows to efficientle shap information
among robots which is easily incorporated into each rolgpéiph. The exchange of data
is carried out under a communication protocol designed tamiae the probability that
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(a) Map robot 1 (b) Map robot 2 (c) Map robot 3

(d) Global map

Figure 7.12: Multi-robot SLAM experiment at the Ada Byron building of théniversity of
Zaragoza. (&), (b) arffd {c) show the individual maps obtalmedach robot, depicted in red,
green and blue respectively. The condensed graphs redearadbther robots are depicted in
the colour of the sender robdt. [d) shows the global map aftendividual maps are merged
and jointly optimized.

the messages are successfully delivered and to guarartieecdmt receives the most
up-to-date information available.

Graph optimization results in consistent and accurate rsimates also thanks to
the good initial guess provided by a robust front-end whareap alignment procedure
Is used to detect loop closures and solve intra-robot datacagions. Our method adds
a relatively limited complexity to the traditional singtebot SLAM methods resulting
in an overall increase of robustness and computationalesifig with respect to naive
multi-robot SLAM implementations.
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Figure 7.13: Experiment at the DIS building of La Sapienza University ohfe. The misalign-
ment observed in the bottom right corner originates fromféog that the robots never meet in
that region, thus they are unable to determine constragttsd®en that part of their trajectories.
This can be recovered when the two robots meet in that regran,a post-processing phase.

Figure 7.14: Results of the three real world experiments performed tawéne proposed
approach, using a straightforward centralized processirige joint estimates obtained by our
multi-robot SLAM method.



Chapter 8

Conclusions

8.1 Conclusions

Along this thesis we presented contributions in the diffietasks that must be per-
formed to obtain an autonomous multi-robot system. We haamignaddressed the
localization and SLAM problems but we have also contributethe motion and plan-
ning problems to analyze their application and performaneereal working system.

First of all, we considered the problem of how the team of telwan move in the
environment. Then, in Chapiéer 3 we presented a cooperatingation system for robot
formations based on a flexible virtual structure that adapthape to the environment.
In this chapter we also analyzed the importance of havingoa ¢grcalization system to
deal with the accumulation of errors introduced by the senatiich prevent the team
from a correct navigation in formation and the reachabdityts goal.

This issue motivated the design of a localization algorifim@sented in Chaptét 4
developed in a EKF filtering framework to take advantageo$peed properties. The
state of the formation was formulated using a leader-aeptobabilistic representation
to reduce the effect of the linearization errors due to higlels of uncertainty. Us-
ing a given feature-based stochastic map of the environfieergbsolute positioning
reference, we demonstrated the direct implementationeo&tkF algorithm provided
inconsistent, and therefore, unreliable localizatiomestes, a matter of importance if
we want to assure the long-term performance of the methodveMer, although the
convergence in this nonlinear filtering context can not barguateed we can propose
alternatives to drive the estimation towards consistenogights into the underlying
problem suggested us that cross-correlations among mapdeabserved in consecu-
tive time steps were not properly handled by the algorithohvaa proposed a solution
based on the measurement differencing technique to impheviter consistency.

This localization algorithm was part of an integrated syster robot formations
described in Chaptdd 5. With the overall objective of havihg formation working
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in partially known environments, we proposed, in additiorttie navigation and lo-
calization techniques from previous chapters, a solutiothé path planning problem
considering the uncertainty of a given map. This is motidaiece planning through
imprecisely known areas may lead to reach dead-ends reguarcomplete global re-
planning, increasing the total execution time of the missidhe global path planning
is carried out by the leader of the formation based on the pnp before starting the
mission, thus this is the less cooperative part of the system, on the contrary, the
online replanning which takes into account the unexpedtdents of the environment
not considered in the prior map and makes use of a local m#faum the cooperative
perception of the team.

Up to this point, we considered the map provided to the foiwnaprobably impre-
cise or incomplete, was not modified during the executiomefission. In Chaptél 6,
we proposed a distributed SLAM algorithm to jointly impra¥e given map while the
robots navigate in the environment. The use of the Conditibrdependence property
opened us the possibility to work with submaps, greatly e#sing the computational
cost of the mapping process while obtaining the same resuftvae worked with the
entire map. Besides, it allowed us to bound the amount ofim&dion shared through
the network and to guarantee the robots have exactly the sdorenation each time
they synchronize.

Finally, in Chaptef]7 we addressed the problem of how to uskipteurobots to
build a map of the environment from scratch, without any pimdormation about the
number of robots or their initial locations. We provided angdete multi-robot SLAM
system handling intra-robot data association and capdbleking under computa-
tional and communication resource constraints. Congieted use of condensed maps
enabled the robots to share portions of their own maps nelévaefine those of others.
The transmission of information was conducted by means efant-driven communi-
cation protocol oriented to minimize the possibility of gatloss. As a result of these
strategies we considerably reduced the optimization prolib be solved by each robot
obtaining a comparable accuracy to an ideal implementatibere robots shared their
whole maps.

8.2 Future Work

In this thesis we have demonstrated the performance anaeatficof the proposed con-
tributions, most of them working on real multi-robot systerfdlowever, one can always
progress and do things better. This section points out sass e improvements.
Regarding the cooperative navigation of the formation, Wwseoved how in some
situations (see for example those in Figs.] 3.5 5.7) sudbanges in the leader
trajectory result in forced behaviors on the followers, evhalways try to reconfigure
to maintain their relative positions with respect to thellera A more efficient strategy
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considering the prediction of trajectories of the followeombined with the proposed
formation control could result in shorter and smootherectgries for the followers.

Also, a dynamic change of the leader role inside the formatfdhe system configura-
tion allows it, would provide more efficient performance.

The proposed localization system provides consisternas#is, however, it is im-
plemented in a centralized manner relying heavily on thédeaFuture work should be
oriented towards distributed approaches where the EIFtaite inherent decoupling
properties could be used. We provide in appendix C first msimto the measurement
differencing EIF-based formulation.

The path planning under uncertainty algorithm proposedtimthesis seeks for the
path that minimizes the risk at each of the steps. This swiutonsiders that, once the
robot reaches a stdpof the planned trajectory, it does not matter which is thk ok
thek — 1 previous steps since this part of the trajectory has ajreadcessfully been
traversed and it is only concerned if it will be able to tragestegk + 1. Other kind of
approaches try to minimize the accumulated risk of all pathwse are already moving
towards this reasearch line where the cost of choosing agvwaith and the need of
rectifying is also being considered.

The multi-robot localization and map improvement algarithresented in Chapter
[@ could be extended to consider new features not preseng ipribr map. In the case
of non identifiable features (i.e., unknown data assoaciatibis would require a con-
sensus between robots to decide whether the new featusesliberved are the same
or not. Besides, we would have to take care of the map maaraa for long-term
performance since indefinitely updates could lead to ov@plymistic map estimation.
Optimal submap partitioning and asynchronous commuricattould also been inves-
tigated.

The multi-robot graph-based SLAM approach presented ip@id@ may show map
misalignments in areas where robots did not coincide in totevhich we resolved in
a post-processing phase of the joined map. This additidepl uld be avoided in
the ideal but inefficient implementation where robots shheé& whole maps. Instead,
robots could also interchange condensed maps of strategis af the environment they
visited at different times. Furthermore, the map alignnadgorithm could be used not
only to correctly align two local maps but also to disambiguzetween local alignments
obtained at different parts of the trajectory. This amitigmay also appear when two
robots meet in different but symmetric scenarios. A robenidication system could
also be used to solve it but at the expense of restrictingtnoloeements so their iden-
tifiers were visible to each other.
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8.3 Conclusiones

Alo largo de esta tesis hemos presentado contribucionesealiférentes tareas que han
de llevarse a cabo para conseguir un sistema multi-robéhanto. Aunque nos hemos
centrado principalmente en los problemas de localizaci®&LA&M, también hemos
contribuido a los problemas de control del movimiento y &dwé de trayectorias para
analizar su aplicacion y rendimiento en un sistema real éstap

En primer lugar, hemos abordado el problema de cémo puedguipcede robots
moverse por el entorno. Asi pues, en el capitulo 3 hemos mieske un sistema de
navegacion cooperativa para formaciones de robots basattoestructura virtual flex-
ible que se adapta al entorno. En este capitulo también hanatigado la importancia
de disponer de un buen sistema de localizacién para hacge fada acumulacién de
errores introducidos por los sensores que impiden la darrevegacion en formacion
y el alcance del objetivo.

Esta cuestion ha motivado el disefio de un algoritmo de lazbn presentado en
el capituld 4 y desarrollado en el contexto del filtro de Kalreatendido (EKF) con el
fin de aprovechar su rapidez. Se ha formulado el estado detaéodn utilizando una
representacion probabilista centrada en el lider que pemeducir los efectos de los
errores de linealizacion debidos a altos niveles de irtwgribre. Utilizando un mapa
estocastico de caracteristicas del entorno como refer@aca su localizacion global,
hemos demostrado que una implementacion directa del EKiRaba en estimaciones
de localizacién inconsistentes y, por consiguiente, p@tnds, siendo éste un asunto de
importancia para la aplicacion del algoritmo a largo pl&io.embargo, aunque en este
contexto de filtrado no lineal no se pueda garantizar la ageveia, podemos proponer
alternativas para tratar de mejorar la consistencia. Aess pun analisis mas en profundi-
dad del problema nos ha llevado a sugerir que las correlesientre caracteristicas del
mapa observadas en instantes consecutivos no estabao s@xideradas adecuada-
mente en el algoritmo y hemos propuesto una modificaciéndbasa la diferencia de
medidas para mejorar la consistencia del filtro.

Este algoritmo de localizacion ha formado parte de un sestenegrado para for-
maciones de robots, descrito en el capitdlo 5. Con el objelévtener a la formacion
trabajando en entornos parcialmente conocidos, hemosigsty ademas de las téc-
nicas de navegacion y localizacién descritas en los cagitateriores, una solucion
al problema de planificacion de trayectorias consideraadadertidumbre del mapa
proporcionado. Este problema viene motivado por el hechyquéeplanificar por zonas
conocidas de modo impreciso puede llevar a caminos siresglie requieran una com-
pleta replanificacién global, incrementando el tiempoltdéaejecucion de la mision.
Es el lider quien se encarga de realizar la planificacionajlaites de iniciar la mision,
siendo esta por tanto la parte menos cooperativa de la 8&ls. es, sin embargo, la
replanificacion online que tiene en cuenta los elementosewvigios del entorno o no
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considerados en el mapa previo y que hace uso de un mapadosaiicdo a partir de
la percepcion cooperativa del equipo.

Hasta este punto, se habia considerado que el mapa propaatoia la formacion,
probablemente impreciso o incompleto, no era modificadardarla realizaciéon de la
misién. En el capitulbl6 hemos propuesto un algoritmo de Sldégétibuido para mejo-
rar conjuntamente el mapa al mismo tiempo que los robotsgaaveor el entorno. El
uso de la propiedad de independencia condicional nos haldgusibilidad de traba-
jar con submapas, reduciendo ampliamente el coste coniugidde la construccion
del mapa y obteniendo el mismo resultado que si hubiérambsajardo con el mapa
completo. Ademas nos ha permitido limitar la cantidad derimfcion a ser transmi-
tida a través de la red y garantizar que los robots dispusdgaxactamente la misma
informacion cada vez que se sincronizaran.

Finalmente, en el capituld 7 hemos abordado el problemarde uéar varios robots
para construir un mapa del entorno desde cero, sin ningdiornacion previa acerca
del numero de robots o su localizacion en el mapa. Hemos pstpwn sistema de
SLAM multi-robot completo que resuelve el problema de asmdn de datos entre
robots y es capaz de trabajar bajo recursos computaciondeesomunicacion limita-
dos. Concretamente, el uso de mapas condensados ha pewugitbs robots compar-
tan informacién de sus propios mapas relevante para mégsrde otros. El intercam-
bio de informacion se ha llevado a cabo por medio de un pri@mscomunicaciones
orientado a minimizar la posibilidad de pérdida de paque@Esno resultado de estas
estrategias hemos reducido considerablemente el proldenoptimizacion que cada
robot debe resolver, obteniendo al mismo tiempo una pgetisdmparable a una im-
plementacion ideal, donde los robots comparten su mapaletomp

8.4 Trabajo Futuro

En esta tesis hemos demostrado el rendimiento y eficiendasd®ntribuciones prop-
uestas, teniendo la mayoria de ellas funcionando en eguoiplbisrobot reales. Sin em-
bargo, uno siempre puede progresar y hacer mejor las casasté&seccion sefialamos
algunas de las posibles mejoras.

Respecto a la navegaciéon cooperativa de la formacion, wdrses como, en algu-
nas situaciones (por ejemplo, las mostradas en las figd#a$537) cambios repentinos
en la trayectoria del lider dan lugar a comportamientosaftoz en los seguidores, que
siempre tratan de reconfigurarse para mantener su posatativa con el lider. Una es-
trategia mas eficiente que considerara la prediccion dedgsdtorias de los seguidores
en combinacién con el control de la formacion propuestoipagisultar en trayectorias
mas cortas y suaves para ellos. Ademas, si la configuracl@istiema lo permite, un
cambio dinamico de lider dentro de la formacién podria prdpaar un mejor y mas
eficiente rendimiento.
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El sistema de localizacion propuesto proporciona estiom&s consistentes, sin em-
bargo, esta implementado de forma centralizada, depata@tcesivamente del lider.
El trabajo futuro deberia orientarse a obtener algoritmsisilbuidos en los que el fil-
tro de informacién extendido (EIF) por sus propiedadesriites para desacoplar la
estimacioén podria usarse. En el apéndite C ofrecemos unarnarvision sobre la for-
mulacion del EIF con diferencia de medidas.

El algoritmo de planificiacion de caminos bajo incertiduenpropuesto en esta tesis
busca el camino que minimiza el riesgo en cada uno de sus. izstassolucion consid-
era que, una vez que el robot alcanza un ped® la trayectoria, no importa cual era el
riesgo de lok — 1 pasos anteriores ya que esta parte del recorrido ya hatsadesado
con éxito y soélo le preocupa si sera capaz de atravesar eésigypasdk+ 1. Otro
tipo de estrategias tratan de minimizar el riesgo acumutadodo el camino y estamos
actualmente estudiando esta otra linea de investigaciithedlambién consideramos el
coste de elegir un camino incorrecto y tener que rectificar.

El algoritmo de localizacion multi-robot y mejora de mapegantado en el capitulo
[6 podria extenderse para considerar nuevas caractesistigaesentes en el mapa pre-
vio. En el caso de caracteristicas no identificables reaam consenso entre robots
para decidir si las nuevas caracteristicas observadasaposvobots son las mismas
0 no. Ademas, seria necesario prestar atencion al mantrionilel mapa para un
rendimiento a largo plazo, ya que la actualizacion del magafinidamente podria II-
evar a estimaciones excesivamente optimistas. La divigdbima de submapas y las
comunicaciones asincronas también podrian ser inveasgad

El método de SLAM multi-robot basado en grafos presentads eapituld ¥ puede
mostrar zonas del mapa mal alineadas si los robots no ca@nmidal mismo tiempo
en esa zona, lo cual resolvimos procesando el mapa conjonima fase posterior.
Este paso adicional puede evitarse en la implementaci@ pdgo ineficiente en la
que los robots comparten sus mapas completos. En su lugagbots podrian inter-
cambiar mapas condensados de &reas estratégicas debaqpierhubieran visitado en
distintos instantes. Ademas, el algoritmo de alineacidmdpas podria utilizarse no
solamente para alinear mapas locales sino también panabligger entre alineaciones
obtenidas en distintas partes de la trayectoria. Esta drethegl también puede aparecer
cuando dos robots se encuentran en escenarios diferentesipétricos. Un sistema
de identificacion de robots podria utilizarse para resagés problema aunque a costa
de restringir los movimientos de los robots para que sudifa&dores fueran visibles
entre si.



Appendix A

Equations of the EKF-based
Localization of the Formation

A.1 Process model equations

Rokr-1 Ry,

Figure A.1: Geometric relations between the robot lea8gand a robot followeR; during the
state transition from time stdp— 1 to time stefk.

Given the geometric relations given in Fidg._(A.1), the switéhe robot formation

is propagated from time stdp— 1 to time stepk using the estimated displacements

x%fl ~ N(kgtfl, P%E*l) through the following function:

Ri—
XRy = f<XRk,17XR:z l) (Al)
B Rok-1 B Rok-1
_ ( fRRoO(XRoﬁkF%;XRoﬁk R) ) _ ( ROXRo,kflgéxRoﬁk . ) (A.2)
k-1 k-1 JRjk-1 K1 k-1 k-1 .
1ERJ’ <XRO,k ’XRj,kfl’ Rjk ) 6XF\’o,k @XRj.kfl EBXRj,k

wherefg, andej are the state transition functions for the robot leader anc frobot
follower R; respectively.
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Linearization of the equations using first order Tayloreggxpansion give us:

oB cRok- B oB Rok-1  oRok-
1:Ro = fRO(XRo.kfl’XRo;I; l) + FRO(XRO.k—l B XRO,k—l) + GRo(XRoA,:z - XRO,E 1) (A-3)

- cRok-1 cRok-1 oRjk-1
1:Ri _ij (XRo,k ’XRjﬁk—l’XRj,k )

Rok-1  oRok- Rok-1  oRok Ri1 oRik
ORI R )+ PO 130 )+ O O S (A4

where
of - ~Rok_
Fro = 0XBRO - Jl@{xgo,kfl’XRoj:z '} (A.5)
Rok-1
afRo B cRok-1 6
Cro= 0 Rok1 JZ@{XRO,kfl’XRo.k } (A.6)
XRox
Ofr:
Ro _ cRok-1 gRok-1 cRok-1
GRj a 0xR0.|i,1 o Jl@{@XRoﬁk l’XRjﬁk }J@{XRo,k } (A.7)
Rok
OfR, oRok-1 ¢Rok-1 oRok-1 oRjk-1 A8
FRj a 0xR0A,k71 :JZ@{@XR&,k ’XRjﬁk }Jl@{XRi,kfl’XRjﬁk ¥ (A.8)
Rjk-1
G afRi -] f(ROﬁkfl f(RO,kfl J {RROﬁk—l f(Rj,kfl} (A 9)
Rj dXRl-sk*]- - 2@{@ ROA,k ) Rjﬁk } 29 Rj,kfl’ RLk )
Rj,k

Then, the EKF Prediction of the robot formation is,

~ ~ ARk
XRyk-1 = f<XRk717XR:z ") (A.10)

Ri—
PRy = Fk-1PRr, Fk 1+ Gk 1PR’ "Gk_1 (A.11)

with,

_(Fry 0 . [ Gr O
Fk—l— ( 0 FRj )’Gk—l_ < GE(J) GR]- (A12)
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A.2 Measurement model equations

A\%

Figure A.2: Pairing between an observati&and a featur&; in the case of a robot leadeRy,
left) and a robot followerR;, right).

Following the geometric relations represented in Hig. jA 2ensor observatids
is related to the robot’s position and an environmentaluiiesf through the nonlinear
measurement model,

7 = h(XR,, Y7) + Wi (A.13)

MRy (%R 0 Y 7 OXB DY,
= B ROkROk ‘ + Wy = ROkR°k + Wy (A.14)
hRj (XR0k7XR k’y}-k) @XR P @XROk@yFI

wherewy is a zero-mean white gaussian noise with covariance miagrix

Due to our leader-centric representation of the robot féionafunctionhy differs
depending on the role of the robot, being, andhg, the function for the robot leader
and for a robot followeR; respectively.

The use of the EKF requires a first order linearization of thelimear measurement
model, thus,

hRr, =~ hRo()A(Eo 7yfk)+HR0(XR0k_XR0k>+GRo(y}'k Y7 (A.15)
2B

SRok o
hr; ~ hRr; (XR,,» XRJE,Yfk)

+HRO(EO XR0k>+HRJ(XE0: XR k)+GR](y.7:k 9.7:k> (A.16)
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where
He, = 2R _ (5B Jr1I-{%8 1} (A.17)
Ro — 0)(%0 = Jip R07k7y|:| S Ry .
K
oh B -
Gro = Gy = T2 SFRy o9} (A18)
ohg .
HE? =g = = J16{ORR . F }2a {O%R k,@x%k}ae{x,%o’k} (A.19)
Rox
ohg, .
Hr; = dXROk = J1:{O%R, . Ir N1 {O%g k7@XROk}‘]@{X§?:} (A.20)
Rj x
dhr .
Gr, = ay;l — 32@{@xgjﬁk,yﬁ} (A.21)
k

The classical EKF update equations provide estimates éosttite vectofmklk and

its associated covariance matﬁﬁk‘k

)A(Rk|k - RRk\kfl + Ki(z— hk()A(Rk‘k,la V7))
PRy = (I = KikHi)Pry, (A.22)

using the filter gain obtained as,
Ky = Pry Hk (HkPry Hk +GAPAGE +RW) (A.23)

where matrice$l, andG r, are formed by,

Hr, 0 ) 0 ... Gp O
Hk:(HE;; HRj>’Gfk_(o Gr, ... o) (A.24)



Appendix B

Derivation of the
Measurement-Differencing EKF-based
Equations

Letry be expressed as,
A
Nk =2k — Nuzk-1

Substituting the observatiorzg andz, 1 by their linearized expressions given by eq.

(@.13),

re >~ hy(Xz,,¥7) +Hk(Xr, —XRr,) + GA (YA — VA ) +Wk
—N(he1(Xry Y7 ,) FHc1 (X, —XRy 1) +Cr (YA, — YA L) +Wik1)

Rearranging the error propagation equation given by €q9) f@llowing the a-
pproach described in[71] to avoid time-latency leads to,

XRyo1 — )’Zkal = FI;—ll(XRk - )A(Rk) - I:IZ—llkal
therefore,
e =~ h(Xr,Y7)—MAdh1(Xr, 1, Y7 1)

+(Hk— AdHi 1Rty (X, — &Ry )

FAH K 1Pt Vie 1 Wic— Awg g

+Gr (YA —YA) —MNCr YA —VFA.)
Substituting the linear relation betwegr, andyr,_, given by eq. [(4.19) witlyr, =
Fc.Y 7 _, resultsin,

e =~ h(Xr,Yr)—MAh-1(Xr 1 Y7,)
+(Hk— AdHi 1R ) (ry — %R,)
FAH 1Rt Ve 1+ Wi— AWy 1+ Gz Nk
+(GrFe,—MNGF ) YA —IF1)
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which can finally be expressed as,
M= hi + Hic(XRy — X,.) + Wi,
with,

hlt = hk(s\(ng/}_k) - Akhkfl(s\(Rk,py}_kfl)
Hi = Hk— AdHic Ry

and,

1
Wr = AkHik-1F 5 Vi 1 +Wie— AW 1 + G g g

and, matrixAy is computed such that the time-correlated components fnenevo-
lution of the measuremenj are removed, thus is,

GrFc, — MGz, ~0

thus,
N ~ GkoCkG}k,l (G]:kilG}kiﬁ_l



Appendix C

Derivation of the
Measurement-Differencing ElIF-based

Equations

In this appendix we provide the algebraic derivation of threasurement-differencing
ElF-based update equations from its EKF counterpart.

First, we briefly summarize the MD-EKF update equationseitekom Eqs[4.29,
and 4.31):

e Filter gain:
Kk = (Pik_1Hi" + C) (HiPik_1Hi" + Py, +Hj THHL 1
k= (Puk-1Hk +Cik) (HiPuk-1Hik +Pw,, +HCk+CyHi') (C.1)

e State update:
ik = Xigk—1 + Kk(r —hy) (C.2)

e Covariance update:
Pigk = Pigk—1 — Kk(HkPii_1HK + P, + HiCi+ CrHEKE (C.3)

We are interested on obtaining the EIF-based update eqgsatiderms of the infor-
mation vector and matrixl i defined as,
ik = Py (C.4)
ik\k = P|Z||1-)’Zk‘k (C.5)

Hereinafter, we will simplify the notation to make readiregeer and will omit sub-
scripts. We make® = Pyj_; andX = Xqx_1 but maintain subscripts iRy, andXy to
distinguish between the priori and thea posterioriestimates.
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134 C. Derivation of the Measurement-Differencing EIF-based Euations

We will first derive the update equation foyy. Inserting EQL.CJ1 il CI3 we obtain
these alternative expressions Ryjy:

Pk =P — (PH'T +C)[(PHT + C)(H*"PH*T + P, + H'C+CTH*T)Y|T  (C.6)
=P— (PH*T +C)(H*"PH*T + Py, + H*C+CTH*T)"}(H*P+CT) (C.7)
=P—K(H*P+C") (C.8)

Applying the following matrix inversion lemma on Hq. C.7:

(A-BDIC)"1=A14A1B(D-CcAlB) cat

lik = Pgie =P+ P H(PHT +C) {(H*PH*T +Py, +H*C+CTH*T)
-1
—(H*P—i—CT)P‘l(PH*T—i—C)} (H*P+CT)P? (C.9)
:P—1+(H*T+P—1c) |:<H*PH*T+Pwr+H*C+CTH*T)

—(H*P+CT)(H*T+P_1C)] l(H*—i—CTP_l) (C.10)
=P 1 (HT +PIC)(Py, —CTPIC) Y H* +CTP ) (C.11)

Then, the measurement-differencing based informatiomixngbdate is:
Lk = N1+ (HET + i 1C0) (P, — Clklige-1Ck) ~H(Hk+Chge-1) - (C.12)

Next, we proceed to derive the information vector updateagqao. To this end, we
will make use of the following expression for the Kalman gelrtained froni. CJ8:

Pgk=P—K(H*P+CT)=> (C.13)
K = (P—Pyi)(H*P+ ch* (C.14)

whereAt = AT(AAT)~1is the Moore-Penrose generalized inverspseudoinverse
We replace EJ._Cl2 in Eq. Q.5 and then Eq._C.11 on the first term.,

ik = PigieXick =Pigje (X +K (r —h")) (C.15)
:Pfl)A( + (H*T + |:)*1(:)<|:)Wr _ CT Pflc)fl(H* + CT Pfl)f\(
+ P (r —h”) (C.16)
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We develop the second term using C.11land IC.14

P;‘&K :Pl;“i(P—F>k|k)(H*F>jL chHt (C.17)
=P P(H'P+CT)* — (H*P+CT)* (C.18)
=P+ (HT+PC)(Py, —CTPIC) }(H*+CTP 1)) P(H*P+CT)"

—(H*P+CH)* (C.19)
—(H"P+CHT+HT+PIC)(Py, —CTPIC) L H*P+CT)(H*P+CT)T

—(H*P+CH)T (C.20)
—(HT+PC)(Py, —CTP1C) ! (C.21)

Inserting this result in EG_C.16:

P&k =P~ 2%+ (H*T +P~1C)(Ry, — CTPIC) "} (H* + CTP )%

+(HT+P1C)(Py, —~CTPIC) }(r — 1) (C.22)
=P I+ (HT +P1C)(Py, ~CTPIC) L (r —h* + H*R + CTP 1K)
(C.23)

Finally, we express this result in terms of the informatioatrix and vector:

gk = k1 + (HE" 4 Tigke1C6) (Pwy, — Cie g 1Ci) ™ (ke — i+ Higkige 1+ Cirlig-1)
(C.24)
In summary, the measurement-differencing EIF-based epstpiations are:

ke = N1+ (HK" + T 1C0) (P, — Cik lig-1C1) ~H(Hic+ Ci 1) (C.25)
gk = Tigk—1+ (HET 4 1igke1.C1) (Pwy, — Cie gk 1) ™ (ke — i+ Higkigpe1 + Crrlige-1)
(C.26)

Notice how, when there are no time-correlated measurem@pts 0 and previous
equations reduce to the standard EIF update equations shaentiorl 2.4.3.
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