FACULTAD DE CIENCIAS
DEPARTAMENTO DE FISICA TEORICA

UNIVERSIDAD DE ZARAGOZA

MASTER EN FISICAS Y TECNOLOGIAS FISICAS

Trabajo fin de Master

TEORIAS DE CAMPOS ESCALARES EN
(14+1) DIMENSIONES

Autor: Cristian Rivera Munio

Director: Luis J. Boya

Curso 2013-2014



Indice general

(1. Introduccion| 2
[L.L1. Notas histéricasl. . . . . . . .. ... oo 3

2. Estudio de los modelos escalares no lineales en (1+1) dimen-

| siones| 6
2.1. Teorema de Derrickl. . . . . . . . . ... .o oL 6
2.2. Dinamica en teorias escalares en (141) dimensiones|. . . . . . . . 7
2.3. Configuraciones del vacio y algunas nociones topoldgicas| . . . . . 9
[2.4. Soluciones de energia finita] . . . . . .. ... ..o 12
[2.5. Cargas topologicas| . . . . . . . .. ... Lo 17
2.6. Fuerzas entre los kinks| . . . . . . . ..o o000 19
2.7. Tratamiento cuantical. . . . . . . .. .. Lo Lo 20

[3. Modelos particulares en (141) dimensiones 26
[3.1. Modelo A . . . . ..o 26
B2 Modelo Seno-Gordonl -+« « . . v v e e 33

4. Conclusiones| 45



Capitulo 1

Introduccion

Esta trabajo esta dedicado a la revisiéon de las teorias de campos escalares
en 141 dimensiones, tanto a nivel cldsico como a nivel cudntico, de un campo
escalar ¢ con una sola componente sometido a un funcional energia potencial
Ul¢]. Las teorias més interesantes son aquellas en las que el funcional energfa
potencial U[¢] posee mds de un minimo. Estudiaremos exclusivamente este tipo
de teorias en este trabajo.

La ecuaciéon de movimiento para el campo ¢ es una ecuaciéon en derivadas
parciales no lineal que puede presenta soluciones cuya densidad de energia per-
manece localizada a lo largo de la evolucién del sistema, es decir, soluciones de
naturaleza no dispersiva. La literatura llama onda solitaria de forma genérica
a ésta solucion. El término soliton también aparece en la literatura relaciona-
da con este tépico, fue introducido por Norman J. Zabusky y Martin Kruskal
en 1965 [73] y hace referencia a una onda solitaria que preserva su identidad
(salvo, quizés, un cambio de fase) tras un proceso de colisién con otra onda
solitaria. Daremos una definicién precisa de estos conceptos en la Sec. 2.4. De
forma genérica las soluciones de una teoria de campos que tienen una densidad
de energia localizada suelen ser denominadas defectos topoldgicos. El teorema
de Derrick [20], [I7, pag. 194] nos permite afirmar, en el caso de una teoria de
campos escalares, que la presencia de ondas solitarias, que viajan a velocidad
constante, tiene lugar sélo en un espacio-tiempo de (1+1) dimensiones. En este
caso particular, estas soluciones reciben el nombre de kinks. El estudio de las
propiedades generales de los kinks es el objetivo fundamental de este trabajo. En
(241) y (341) dimensiones, en el 4&mbito de las teorias cosmoldgicas, se relajan
algunas de las exigencias sobre las ondas solitarias dando origen, por ejemplo,
a las paredes de dominio (domain walls). Las paredes de dominio son defectos
topoldgicos con estructura planar que aparecen cuando colocamos un kink en
un espacio con més de una dimensién espacial [68, pag. 7]. En el marco de las
teorias gauge los defectos topoldgicos aparecen en dos contextos distintos: en
primer lugar, en el contexto de las teorias abelianas en (241) dimensiones con
un grupo de gauge U(1). En este caso el defecto topoldgico se denomina vdrtice
[52] pag. 238] y el ejemplo prototipico de este tipo de defecto topoldgico es el
vdrtice de Nielsen-Olesen [47]. En segundo lugar, en el contexto de las teorfas no
abelianas en (3+1) dimensiones con grupo de gauge SU(2) aparecen los defec-
tos topoldgicos que denominamos monopolos y que fueron independientemente
descubiertos por 't Hooft y Polyakov [65] 53].



Esta memoria esta dividida fundamentalmente en dos capitulos:

= El primer capitulo es una recopilacién de las caracteristicas generales de los
modelos escalares en (1+1) dimensiones. Especialmente estudiaremos las
propiedades cldsicas y cuanticas de los kinks. También dejaremos fijados
los convenios y notaciones que emplearemos en el siguiente capitulo.

s El segundo capitulo es una aplicacién del primero a dos modelos escalares:
el modelo A\¢* y el modelo Seno-Gordon. También comentaremos en este
capitulo algunas particularidades que poseen estos dos modelos.

1.1. Notas historicas

Dado que el concepto de kink es una parte fundamental en este trabajo
vamos a dar un repaso al origen histérico de este objeto.

La historia de la teoria de solitones se remonta al mes de Agosto del ano 1834,
cuando el naturalista e ingeniero naval John Scott Russell observé, montado en
su caballo, una “onda de traslacién” viajando en un canal cercano a Edimburgo.
Se puede leer el relato sobre el fenémeno hecho por el propio Russell en [58].

Russell se dedicé a investigar el fendmeno y después de realizar muchos
experimentos con este tipo de ondas en un tanque de ondas de su propio diseno,
obtuvé la férmula que relaciona la velocidad y la altura de estas ondas

c=+/gh+n) (1.1)

donde ¢ es la velocidad de la onda solitaria, i es la amplitud de la onda, h es
la profundidad del canal y g es la aceleracién de la gravedad. Russell propuso
que el objeto solitario que habia encontrado realmente representaba un tipo
general de soluciones de la Hidrodinamica, que primeramente denominé “ondas
de traslacion”, y mas tarde “ondas solitarias”.

El éxito de Russell fue mucho menor en lo que respecta a convencer a los
cientificos de su tiempo de estos hechos. Airy y Stokes, las mayores autoridades
en la materia de la época, aparentemente “demostraron” que una onda de ese
tipo era necesariamente inestable. Los trabajos posteriores de Boussinesq en
1871 [8], Lord Rayleigh en 1876 [56] y finalmente D.J. Korteweg y G. de Vries en
1895 [37] senalaron los errores de Airy y Stokes y reivindicaron las conclusiones
de Russell.

En [37] Korteweg y de Vries propusieron la siguiente ecuacién que permite
describir ondas sobre fluidos de densidad p y tension superficial T' en canales
poco profundos unidimensionales y de pequena amplitud.

on 3 [go (1, 2 o 0%n
at 2\/;8:5 (2” T3t 3o (12)

donde 1 = n(x,t) es es la elevacién de la onda sobre el nivel de equilibrio h, «
es un parametro constante relativo al movimiento uniforme del liquido y g es la

aceleracién de la gravedad. El pardmetro o que aparece en (1.2) viene dado por
h

o=73— %. La ecuacién (1.2) recibe el nombre de ecuacion Korteweg-de Vries

(ecuacién KdV para abreviar).



Korteweg y de Vries dieron una explicacién analitica completa de lo que hoy
en dia se conoce como el solitén de la ecuacién KdV. La ecuacién (1.2) puede ser
llevada a una forma adimensional realizando los siguientes cambios de variables

1 [y 1 11
— — - = — = — — 1.
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obtenemos que la ecuacién KdV (1.2) se puede expresar como

Uy + 6ung + ugee =0 (1.4)

El nombre de ecuaciéon KdV habitualmente hace referencia a la ecuaciéon
(1.4). Korteweg y de Vries descubrieron que la ecuacién (1.4) presentaba solu-
ciones tipo onda solitaria (ver [Il pags. 2,3]) dada por

u(€,7) = 2k%sech® { k(€ — 4r*T — &)} (1.5)

donde k y & son constantes. La velocidad de la la onda solitaria (1.4) es 4k? que
es, justamente, el doble de amplitud 2x? y la constante & es una fase inicial.
Mas tarde, Zabusky y Kruskal demostraron [73] que la onda solitaria (1.5) era
en realidad un solitén.

El estudio de las ondas solitarias fue précticamente olvidado hasta tal punto
que el resurgimiento de dichas soluciones supuso de nuevo cierta sorpresa.

Entre 1952 y 1955 se construyé en Los Alamos una nueva computadora, MA-
NIAC I, para la realizacién de los célculos necesarios en el diseno de la primera
bomba de hidrégeno. E. Fermi y S. Ulam propusieron un problema-prueba para
calibrar las posibilidades de la nueva maquina; buscaron un problema sencillo de
establecer tal que su resolucién requiriera una cantidad de célculos tan grande
que no pudiera ser resuelto “a mano” ni utilizando las computadoras mecani-
cas existentes. Naturalmente, debia de tratarse de un problema con solucién
ya conocida. La propuesta que realizaron fue el estudio de una cuerda elasti-
ca, con extremos fijos, sujeta no sélo a la fuerza elastica usual, de intensidad
proporcional al estiramiento, sino también a un término corrector no lineal. La
cuestion a estudiar era como el movimiento global termalizaria al cabo del tiem-
po. Se trataba, por tanto, de verificar un hecho que constituia un acto de fe en
mecanica estadistica: la creencia de que cuando un sistema mecanico, con varios
grados de libertad y cercano a una posicion de equilibrio estable, es sometido
a una interaccién no lineal genérica, ésta termalizara su energia total, es decir,
la energia estaria equidistribuida entre los modos normales del correspondiente
sistema linealizado. Fermi pensaba que habia demostrado este hecho, [23].

El experimento fue llevado a cabo por Fermi, Ulam y J. Pasta, quien pro-
gram6 el MANTAC 1. El resultado del hoy conocido como experimento de Fermi-
Pasta-Ulam (FPU para abreviar) fue completamente diferente a lo que se espe-
raba. Los detalles del planteamiento y de los cédlculos realizados pueden verse
en el articulo original [24]. El experimento se realizé discretizando la cuerda
en un numero finito de puntos, de tal manera que las ecuaciones en derivadas
parciales que describen el movimiento de la cuerda pasan a ser un ntimero finito
de ecuaciones diferenciales ordinarias

Mmijn = K (Yny1 + Yn-1 — 2yn) [1 +a (yn+1 - ynfl)} (1.6)



donde y, = yn(t) conn =1... N—1eyy = yny = 0. Las condiciones iniciales que
se introdujeron en la computadora correspondian a los valores iniciales dados
por Y, (0) = sin(F), ¥.(0) = 0 con N = 64. La variable y,, en (1.6) representa
el desplazamiento de la n-ésima masa respecto del equilibrio.

El resultado del experimento fue que la energia, inicialmente concentrada
en el primer modo, no se distribuyé por igual entre todos los modos sino que
fue pasando sucesivamente, casi en su totalidad, de modo en modo. De esta
manera, al cabo de un cierto tiempo la energia habia retornado al primer modo
con una exactitud del 99 % y el proceso se reiniciaba. Esta aparente paradoja
en el experimento FPU se llamado desde entonces problema FPU. Se puede
encontrar una revisién reciente sobre el problema FPU en [5].

La explicacién del problema FPU no fue completada hasta diez afios des-
pués en el famoso articulo de M. Kruskal y N. Zabusky de 1965 [73]. Kruskal
y Zabusky obtuvieron el limite continuo del problema FPU (ver también [49],
[1, pags. 17-18]) llegando a una ecuacién diferencial en derivadas parciales equi-
valente a la ecuacién KdV (1.4). El estudio numérico hecho por Zabusky y
Kruskal en [73] revel6 la presencia de soluciones de la ecuacién KdV de tipo
onda solitaria que preservan su identidad (salvo un posible cambio de fase) tras
interraccionar no linealmente con otras ondas solitarias. Estos autores introdu-
jeron por primera vez el término solitéon para estas ondas solitarias debido a
su comportamiento analogo al de las particulas, en particular encontraron que
la solucién de la ecuacién KdV dada por (1.5) es un solitén. Estos resultados
numéricos dieron origen a un dearrollo posterior de ciertas técnicas para tratar
dichas situaciones, generando nuevas areas en la Matematica Aplicada y Fisica
Matematica.



Capitulo 2

Estudio de los modelos
escalares no lineales en
(141) dimensiones

Vamos a introducir en este capitulo los conceptos generales que seran em-
pleados después, pero en primer lugar tenemos que hacer un comentario de el
porqué la dimensién (141) es tan especial para campos escalares.

2.1. Teorema de Derrick

El fisico G.H. Derrick demostré en 1964 [20] que las soluciones de energia fini-
ta de las ecuaciones de ondas no lineales para campos escalares son estables sélo
en 141 dimensiones. Consideramos los campos escalares & € Maps (R"“, RN ),

donde Maps (R"**, RY) indica el conjunto de aplicaciones continuas de R"*!
a RN,

Teorema 2.1 (Teorema de Derrick). Sea ¢ un campo escalar de N compo-
nentes, ®(x,) = (¢'(zn), -, ¢ (x,)) donde z, = (t,z;), con j =1,...n, y
Ul®] = Ulp', -, ¢N] es el funcional energia potencial que es no negativo y sélo
es cero para los estados fundamentales (vacios) de la teoria. Luego, paran > 2,
las unicas soluciones no singulares, independientes del tiempo y de energia finita
de las ecuaciones de movimiento para el campo ¢ derivadas de L son los estados
fundamentales.

Recalcamos que el teorema de Derrick sélo imposibilita la existencia de solu-
ciones independientes del tiempo de energia finita en el caso de emplear campos
escalares en (n+1) dimensiones con n > 1, pero no dice nada sobre la existencia
de soluciones dependientes del tiempo. En [40] se realiza la primera construccién
de modelos de campos escalares que poseen soluciones de energia finita y son,
ademas, dependientes del tiempo.

Una extensién del teorema de Derrick, para el caso de una densidad la-
grangiana que contenga campos escalares y campos gauge, puede verse en [17]
péags. 198-205 y 398-400]. La extensién a campos gauge es importante por varias
razones:



» En (3+1) dimensiones tener campos gauge es la tnica posibilidad de tener
soluciones independientes del tiempo y de energia finita.

» La visién actual de las cuatro interacciones fundamentales es mediante
teorias gauge.

2.2. Dinamica en teorias escalares en (141) di-
mensiones

El teorema de Derrick, comentado anteriormente, nos dice que sélo en teorias
escalares en (141) dimensiones existen soluciones de energia finita e indepen-
dientes del tiempo. A continuacién vamos a estudiar la dindmica de los campos
escalares, que por simplicidad, salvo que se diga lo contrario, consideraremos
de una sola componente, sometidos a un funcional energia potencial dado por
Ulg).

Consideremos la dindamica del campo escalar real ¢ dada por la densidad
lagrangiana

L= %6“9258“925 —Ul¢] con pu=0,1 (2.1)

Suponemos que U[¢] tiene un valor minimo y afiadiendo una constante, lo
cual no cambia la dindmica del campo ¢, podemos llevar el valor minimo de
Ulg] a 0. Por lo tanto, a partir de ahora consideraremos un funcional energia
potencial que verifica que U[¢] > 0.

La ecuacién de movimiento para el campo ¢, ecuaciéon de Euler-Lagrange,
vienen dada por

P9 _?¢  oU[g]

ot 0x? 0p

donde hemos empleado la métrica para el espacio de Minkowski dada por

=0 (2.2)

0 -1 99

funcional U[¢] respecto del campo ¢. La definicién formal y las reglas de diferen-
ciabilidad para la diferencial de Fréchet pueden encontrarse en [27), pags. 37-39].
El lector también podria consultar, entre otros libros, [25] [I4] para profundizar
en el Célculo de Variaciones.

Los fendmenos mas interesantes, como ya hemos comentado en la introduc-
cién, ocurren en el caso en que U[¢] tenga méds de un minimo.

La accién de la densidad lagrangiana (2.1) viene dada por

Npw = L0 ) Ademas, entendemos por U9l 1, derivada de Fréchet del

S0l = [ & (50"00,0 - Ul (2.3

Vamos a considerar, a no ser que se diga lo contrario, el sistema de unidades
naturales definidas por ¢ = A = 1. Usando este sistema podemos expresar cual-
quier otra magnitud en términos de una unica escala. Elegimos como escala para
todas las magnitudes con dimensiones la masa M, aunque, equivalentemente, se
podria tomar la energia E ya que E = mc? = m. Dado que 1 = [c] = % tenemos
que L =T y dado que 1 = [h] = ET = M|[c]?T = MT tenemos que T = M~!.
Podemos concluir que L = M1,



La accién S tiene dimensiones de A, (se deduce trivialmente del path integral
de Feynman ya que el argumento de la exponencial del integrando que aparece
en la integral de Feynman, i%, debe ser adimensional) y dado que en nuestro
caso tenemos que /i = 1, concluimos que la accién es una cantidad adimensional.

El término cinético de la accién (2.3) viene dado por

Stol = [ x50 60,0

Esta accién nos permitira conocer la dimensién del campo escalar ¢. Veamos,
pues, el andlisis dimensional de la accién anterior. La medida de la integral
anterior, dz, tiene dimensiones de M2, [d?z] = L? = M2, y las derivadas Ous
O* tienen dimensiones de M, [0,] = [0#] = L~ = M. Por lo tanto deducimos,
de la condicién de que la accion es adimensional, que el campo ¢ es adimensional.
Luego usando la adimensionalidad de ¢ podemos ver que cualquier funcional de
energia potencial U[¢] es renormalizable en (141) dimensiones. En particular,
L.J. Boya y J. Casahorrdn estudian en [I0] las soluciones tipo kink en dos
familias distintas de U[g).

La accién (2.3) es invariante bajo las traslaciones espacio-temporales, luego
por el teorema de Noether tenemos una corriente conservada, el tensor energia-
momento TH". Existe una enorme cantidad de literatura sobre teoria cuantica
de campos, podemos citar por ejemplo [55], 40, 50} [70]. El tensor de energia-
momento viene dado por:

TH = 91 pd” § — ' L (2.4)

La integral de T+% a todo el espacio nos da los momentos. Las momentos
vienen dados por el funcional bivector energia-momento P*[¢] para la configu-
raciéon del campo ¢.

P! = / dzTH0 = / dx (9" ¢8° ¢ — n"°L) (2.5)

que corresponden al funcional energia, P°[¢], y al funcional momento lineal,
P1[¢], dados por

Pl = Blo] = [ da (; (%) 5 (%) + Uw])

Pl¢] = —/dﬂc (gi?ﬁ)

La accién (2.3) también es invariante bajo transformaciones de Lorentz
(boost) dadas por

(2.6)

t' = (t—vr) 27
x’z’y(x—c%t) ’

L___ Tanto en (2.7) como en 7 tomaremos ¢ = 1. Las trans-

1=(2)°
formaciones dadas por (2.7) forman el grupo de Lorentz en (1+1) dimensiones,
SO(1,1). EL grupo de Poincaré en (1+1) dimensiones, denotado por Pi, se
define como el producto semidirecto del grupo de Lorentz SO(1,1) y el grupo

donde v =



RY! de traslaciones en una dimensién espacial y una dimensién temporal. Luego
tenemos que

Pl =S50(1,1) x R

Estamos interesados en estudiar las configuraciones del campo ¢ que poseen
una energia total finita. La expresion del funcional energia ya hemos visto que

viene dada por
E[¢] = /dx (; (g(f)z + % (gi)z + U[qi)]) (2.8)

la condicién de energia finita implica, sobre la configuraciéon del campo ¢, que:

99 09 .
2.9
6t—>0, 8x—>0 y Ul¢] —0 si |z|] — o (2.9)

Denotamos por ¢4 €l valor de la configuracién de campo ¢ en el infinito, es
decir, lim|;| o0 ¢(2,1) = P+oo. Estos valores se denominardn a partir de ahora
valores asintoticos. Vemos que el valor asintético del campo ¢, ¢4, debido a
las dos primeras condiciones de (2.8) no depende ni de  ni de ¢, y ademds por la
ultima condicién de (2.8) tenemos que ¢4, es uno de los minimos del funcional
energia potencial, U(¢+) = 0.

Denotamos por C al conjunto de todas las configuraciones del campo ¢ de
energia finita

C={¢ € Maps(R,R)|E[¢] < oo} = {¢ € Maps(R,R)[¢p+o0 = cte,Ulpproo] = 0}
(2.10)
De aquellas configuraciones presentadas por el campo ¢ de energia finita
seran importantes las configuraciones que se corresponden con los minimos ab-
solutos del funcional energfa (2.8), debido a que, desde el punto de vista cudnti-
co, estas soluciones clasicas proporcionan el valor esperado del operador campo
en el estado fundamental de la teoria. Estas soluciones cldsicas se denominan
configuraciones del vacio.

2.3. Configuraciones del vacio y algunas nocio-
nes topologicas

Definicién 2.1. Definimos las configuraciones del vacio, denotadas por ¢g, a
las configuraciones de los campos que, usando U|¢] > 0, verifican

Elpo] =0 (2.11)

Usando (2.11) y (2.8) vemos que se debe de cumplir que:

¢o _ O
I ) U =0 2.12
Ep 9 vy Ul(¢o) (2.12)
Dado que Ul¢] > 0 y de la segunda condicién en (2.12) vemos que se tie-
ne ag—gﬂ s = 0, luego las configuraciones del vacio son los minimos de U.
—=@0



Recordando la definicién de ¢, vemos que los valores asintéticos de las confi-
guraciones del campo estan entre las configuraciones del vacio.

Consideremos fluctuaciones, denotadas por d¢(x,t), alrededor de una de las
posibles configuraciones clasicas del vacio ¢y.

¢($,t) =¢o + 5¢($7t) (213)

Introduciendo (2.13) en (2.1) y despreciando los términos superiores al orden
cuadratico en d¢, debido a que suponemos que la perturbaciéon sobre ¢y es
pequena, obtenemos que

2
L— %auwauw - % 5;(;‘25] (56)? (2.14)
d=do
La densidad lagrangiana (2.14) nos muestra que, dentro de la aproximacién
de pequenias fluctuaciones alrededor del vacio, el campo d¢(z,t), se comportan
como si fuera un campo libre. Esto significa que, una vez cuantizada la teoria,

los campos d¢ vendran representadas por particulas escalares de masa mg dada

por
[ 02U ¢0]

My = || ——5— 2.15

[ 6¢2 ( )

donde, a partir de ahora para agilizar la notacién, emplearemos % para

indicar % . Las particulas escalares de masa mg representan, por lo

tanto, las excitaciones elementales del campo ¢.

Definicién 2.2. Definimos la variedad del vacio, denotada por M, al subcon-
junto del espacio C formado por las configuraciones del vacio

M ={¢ € C|U[¢] = 0} (2.16)

Consideremos, por un momento, un caso mas general en el que ® € Maps (R"‘*‘l, RN ),
es decir, ®(x,) es un campo escalar en n dimensiones espaciales y con N com-
ponentes dado por ®(x,) = ((ﬁl(xu), e ,(bN(a:M)). La accién para el campo ®
vendra dada por

1
S[®] = /d"“x (26”‘1) SOt D — U[(I)]) (2.17)
La configuracion del campo ® tendra una energia dada por
1 100 00
— n+1 - . - .=
E[@]_/d x(2V<I> V<I>+2 ETRT +U[<I>]) (2.18)

Las configuraciones ® que verifican el funcional energia

E[®] = /d”x (;V® VO + U[(I)]) (2.19)

se denominan configuraciones estdticas, es decir, ® es independiente del tiempo.

Sea G el grupo de transformaciones que actuan sobre el espacio interno N-
dimensional del campo ® estatico tal que dejan invariante el funcional energia
dado en (2.19), es decir

10



E[®] = B[0*] (2.20)

donde g es un elemento del grupo G y por ®& entendemos el campo ® después
de haberle aplicado la trasnformacién g. El grupo G es una simetria de la acciéon
(2.17) si (2.20) es cierta para todo g € Gy para cualquier configuracién estética
del campo ®. Sea @ una configuracién del vacio, &g € M, luego E[®y] = 0y por
(2.20) vemos que E[®§] = 0, luego ®§ € M. Denotamos por Og, al conjunto
de todas las configuraciones del vacio que se obtienen como trasnformacién de
@ mediante los elementos g de G, es decir, Og, es la drbita de Pg

O, = {9} € M|g € G} de forma que M = U Oas, (2.21)
PpoeM

Sea H un subgrupo de G, admitiendo la posibilidad de que sea trivial, cuyos
elementos h € H dejan fijo ®g, es decir, 2 = ®,. El grupo H recibe el nombre
del grupo estabilizador (o grupo pequerio) de ®.

Por lo tanto un elemento gh € G actuando sobre @y da la misma configura-
cién de vacio que actuando sélo con g € G ya que @gg = (®2)9 = &Y. Hemos
visto que todos los elementos de M de la forma ®, para cualquier g, tienen la
misma energia que ®y pero no son todos iguales entre si. Todos los elementos
de G de la forma gh para un g € G estan dentro del conjunto {gh|g € G} deno-
tado por gH y que se denomina coset a izquierdas de g. El conjunto gH es una
clase de equivalencia asociada a la relacién de equivalencia sobre G dada por
g1 ~ g2 si go = g1h. La definicién de los cosets a derechas Hg se hace de forma
analoga. El conjunto cociente es el conjunto formados por todos los cosets y se
denota G/H. Dos elementos distintos en G/H, es decir, en distintas clases de
equivalencia nos induce, por todo lo comentado anteriormente, dos elementos
distintintos en M, ®f" # @', luego se puede probar que M =~ G/H.

La equivalencia M = G/H nos permite conectar el grupo de las simetrias G
de la accién (2.17) con la variedad de vacios M y poder estudiar la topologia
de M en términos de la simetrias del modelo.

La topologia de una variedad, V, se puede estudiar, en parte, mediante sus
grupos de homotopia, 7q(V, ), d = 0,1,2.... La idea es considerar maps desde
S¢ (la d — esfera) a M tal que la imagen de una cualquiera de las aplicaciones
continuas contenga al punto x¢y € M. Dos maps se dicen que son homdtopos si
dado un map podemos deformarlo de forma continua y obtener el otro. Podemos
definir una relaciéon de equivalencia en el conjunto formado por todos los maps
de S* a M y el conjunto formado por todas las clases de equivalencia, deno-
minadas clases de homotopia, es wq(M, xg), €l d-ésimo grupo de homotopia. En
ma(M, xg), excepto para d = 0, se puede definir una operacién binaria y darle
una estructura de grupo. Para més detalles se puede consultar [30, pdg. 21] y
también se pueden consultar [63, pdg. 111],[69, pdg. 84] donde se calculan los
grupos de homotopia para varias variedades.

Definimos S ! = {z € R"||z| — oo}, donde, claramente, S7~! C R". Los
valores asintoticos de la configuraciéon del campo ®, &, los podemos expresar
como @, = ®(z € S ). Las configuraciones ®,, tomardn distintos valores
en las distintas direcciones en las que nos aproximemos al infinito, pero, en
cualquier caso, todos tendran energia total cero, ¢, € M. Podemos ver cada
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una de las configuraciones asintdticas del campo como un map entre la esfera
S7-1 y la variedad de vacfos M

Do : S — M (2.22)

El conjunto formado por todas las clases de homotopia de los maps (2.22)
forman el (n — 1)-ésimo grupo de homotopfa.

Supongamos que tenemos dos configuraciones estaticas @, d € Map (R", RN )
y que sus valores asint6ticos, @ y oo, son hométopas, entonces, podemos de-
formar de manera continua el map ® hasta alcanzar el map P, es decir, el map ¢
y ® son hométopos. Por lo tanto, el caracter topologico de ® queda determinado
por la clase de homotopia del map @, el cual es un elemento de m,_1(M).

Si H es un subgrupo normal en G, entonces G/H tiene estructura de grupo
y M también adquiere una estructura de grupo. En este caso, podemos definir
el producto entre dos maps de S° a M como un map de S° a M donde la
imagen de cada elemento de S° es el producto de las dos imagenes de los maps
que estamos multiplicando. Asi en este supuesto de H normal en G tenemos
que mo(M) es un grupo. El mo(M) nos da informacién sobre las componentes
conezas de M. En [J] se revisa la relacion entre la homotopia y los solitones en
varias dimensiones.

2.4. Soluciones de energia finita

Volvemos, en este apartado, a nuestro modelo en (1+1) dimensiones con una
componente N = 1 dado por la accién (2.3). Tomaremos la definicién de onda
solitaria dada en [54, pag. 13].

Definicién 2.3. Llamaremos onda solitaria a las soluciones no singulares de
la ecuacion en derivadas parciales (2.2) cuya densidad de energia permanece
localizada y puede ser escrita bajo la forma

e(x,t) = e(x — vt) (2.23)

donde v es interpretado como la velocidad de dicha onda solitaria. Es decir, la
densidad de energia se mueve a velocidad constante sin distorsionarse.

Vamos a dar un primera definicién de un solitén y de kink. Siguiendo a [I]
péag. 19]

Definicién 2.4. Un soliton es una onda solitaria que preserva asintéticamente
su forma y su velocidad bajo interacciones no lineales con otras ondas solitarias,
o de manera mas general, con otra perturbacion localizada arbitraria.

y ahora definimos los kinks de la siguiente manera
Definicién 2.5. Un kink es toda onda solitaria que no es un soliton

Vamos a aplicar las ideas topoldgicas de la Sec. 2.3 a este caso, N =n = 1.
La esfera del infinito viene dada sélo por dos puntos, SO = {+o00, —00}, luego
¢oo €8 un map de dos puntos a M. Las clases de homotopia de ¢, forma el
grupo mp(M) que nos indican las distintas componentes conexas de M. Los
distintas componentes conexas de M se pueden clasificar en funcién de los dis-
tintos valores que pueden tomar ¢(+00) = @100 ¥ P(—00) = ¢_ . Tenemos
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que, desde un punto de vista topoldgico, las configuraiones de los campos ¢
vienen caracterizadas por elementos de (M) x mo(M). Supongamos que tene-
mos una configuracion del campo ¢ cuyos valores asintéticos vienen dados por
(D100, P—oco) € To(M) X Te(M), en el caso en que ¢ oo = @ tendremos que la
configuracion del campo ¢ puede deformarse de forma continua hasta alcanzar
uno de los dos vacios, es decir, ¢ esta en la misma clase de homotopia que la
configuracion del vacio ¢4 . Ahora supongamos que ¢y, # ¢_oo, €ntonces el
campo ¢ conecta el vacio ¢_,, en —oo con el vacio ¢4, en +o0o. En este ultimo
caso no podemos deformar de manera continua la configuracion ¢ hasta alcanzar
unos de los vacios ¢1c0 6 ¢_. La evolucién temporal del campo ¢ puede en-
tenderse como una deformacién continua del campo que verifica las ecuaciones
de movimiento para ¢ y que preserva la energia finita. Por lo tanto podemos
decir que las configuraciones del campo ¢ que cuya evolucién temporal los lleva
a los valores asintéticos ¢_oo ¥ @100 CON oo = (1o tiene la misma energia
que ellos, es decir, E[¢] = 0. Por el contrario, la configuracién ¢ cuyos valores
asintoticos son distintos no podra ser llevada, mediante la evolucién temporal,
a uno de dichos vacios, luego E[¢] > 0. Recordemos que dado que la expresién
para el funcional energia dado en (2.8) es definido positivo, E[¢] > 0, tenemos
que las configuraciones de energia finita pueden tener energia cero, elementos
de M, o bien pueden tener energia finita mayor que cero. En resumen, pode-
mos decir que las configuraciones del campo que tienen sus valores asintéticos
iguales tienen energia cero y las que los tienen distintos tienen energia positiva.
Ademids, debemos notar también que la evolucién natural es la tinica deforma-
cién continua que preserva la energia finita.

Ya vimos que la clase de homotopia de la configuracion ¢ viene determinada
por sus valores asintéticos ¢_ o, @100 v también vimos que dos configuraciones
¢1 vy ¢2 con sus valores asintéticos no hométopos no pueden ser deformadas
continuamente la una en la otra, por lo tanto, pertenecen a clases de homotopia
distinta. Tendremos tantas clases de homotopia como valores posibles puedan
tomar ¢_oo ¥ P4o00- El espacio de soluciones de energia finita, C, se descom-
pondré en tantos sectores topoldgicamente desconexos como el orden del grupo
producto cartesiano my(M) x mo(M). En particular, si la variedad de vacios
tiene r elementos, M = {vy,...,v,}, tendremos r? sectores topolégicamente
disconexos. Los sectores topologicos vienen caracterizados por un nimero en-
tero, Qr, denominado carga topoldgica. En la Sec. 2.5 daremos una definicion
precisa de la carga topoldgica. El minimo valor no trivial que puede tomar Qr
es |@Qr| = 1. Veremos, més adelante, que las soluciones de energfa finita positiva
que poseen |@Qr| = 1 son aquellas que conectan dos minimos consecutivos de
Ulg]. Ahora podemos dar una definicién més precisa de lo que es un kink y un
soliton

Definicién 2.6. Un soliton es una onda solitaria de energia finita positiva que
conecta dos minimos contiguos del funcional energia potencial U] y que pre-
serva asintoticamente su forma y su velocidad bajo interacciones no lineales con
otras ondas solitarias, o de manera mds general, con otra perturbacion localizada
arbitraria.

y ahora redefinimos también los kinks de la siguiente manera
Definicién 2.7. Un kink es toda onda solitaria de energia finita positiva que

conecta asintdticamente dos minimos consecutivos de U[¢] y que no es un soliton
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Las configuraciones del campo ¢ que tienen energia finita positiva y que
se construyen a partir de dos o mds kinks/solitones conectan dos minimos no
contiguos (salvo el caso del modelo ¢*, como veremos) y se denominan configu-
raciones multikink/multisoliton.

En general, un modelo con una variedad de vacios con r elementos, M =
{v1,...,v.}, tendrd 2(r — 1) kinks/solitones.

Comprobaremos en el siguiente capitulo que, como dice Coleman en [I7],
pag. 186], las soluciones tipo ondas solitarias en el modelo A¢? son kinks y las
soluciones tipo ondas solitaria en el modelo Seno-Gordon son solitones.

La condicién (2.23) nos permite darnos cuenta de que las soluciones busca-
das tipo kink/solitén pueden obtenerse a partir de soluciones estdticas (indepen-
dientes del tiempo) mediante un boost de Lorentz dado por (2.7) ya que, como
hemos dicho, la accién (2.1) es invariante bajo esta transformaciéon. Denotamos
la solucién estética por ¢(z). Las soluciones ¢(z) corresponden a las soluciones
de las ecuacion en derivadas parciales no lineal (2.2) independiente del tiempo,
dadas por

¢ sU[g]
dz2 ~  0¢

El funcional energia para una configuracién de campo estético es

Blg] = /dx (; (;@5)2 + U[qb]) (2.25)

el cual es (2.19) parael cason=1y N = 1.
Hemos visto anteriormente que ¢(z) tienen energfa finita positiva, y por lo
tanto de (2.25) obtenemos que

(2.24)

lim ¢(r) = proo €M, lim — =0 (2.26)

El conjunto de todos los kink con los mismos valores asintéticos, es decir,

que son deformaciones continuas unos de otros, forma la variedad kink Cg. En

general, podemos expresar el espacio de soluciones de energia finita C de la
siguiente manera

C= U cY (2.27)

4,j=1

donde C¥ indica el conjunto de soluciones de energia finita que conecta el vacio
i en —oo con el vacio j en +00. Ademas notamos que la unién debe ser disjunta
v que la variedad de vacios tiene r elementos.
Los kinks y los solitones también pueden ser encontrados, aunque en es-
te trabajo no se discute este punto, en modelos supersimétricos. Por ejemplo,
n [I1] los autores realizan un estudio sobre la existencia de kinks en teorfas
supersimétricas bidimensionales.
Vamos a aplicar ahora el siguiente “truco”
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Blo) = [ do (; g )
:/“<z< ) ﬁ)z

1 ? +o0)
— 5 [ @ (42 ¥ vauT) s [ oy
#(—o0)
dado que U[¢] > 0 tenemos que la segunda integral es positiva, as{ que el minimo
de energia se alcanza para la configuracion del campo que verifica la ecuacion
diferencial de primer orden

® = VAU =0 (2.28)

y ademds, la configuracién ¢ también verifica que ¢(+00) y ¢(—o0) son dos
minimos consecutivos.
Este truco de reducir la ecuacién en derivadas parciales de segundo orden
(2.24) a una de primer orden (2.28) fue descubierto por Bogomolnyi en [6].
Integrando la ecuacién diferencial (2.28) obtenemos que

& () 1 (
r—T9 = i/ ——d¢ 2.29)
#(zo) V 2U[¢]
La configuracion del campo ¢ que verifica la ecuacién diferencial anterior
(2.29) poseerd una energia dada por

¢(+00)
B[] = do/20[9) (2.30)
¢(—00)

La ecuacién (2.29) nos muestra que existen dos tipos de configuraciones
del campo ¢ que tienen la misma energfa finita estatica dada por (2.30): La
correspondiente al signo + (configuracién del campo creciente) que se denomina
kink, dxink, y la corresponde al signo — (configuracién del campo decreciente)
y denominada antikink, @antikink. En ambos casos la constante de integracion
T representa el centro de la configuracién del campo. Ademéas dado que estas
soluciones son de energia finita tienen una anchura w caracteristica.

Si el kink o el antikink se desplazan a velocidad constante v podemos obtener
las soluciones dependientes del tiempo sin mas que realizar un boost de Lorentz
(con ¢ = 1) sobre las soluciones estéticas, @(x)antikink ¥ O(Z)kink

xr — vt

T, t)antikink = —— = 0 ntikin
QS( ) ildinle qz)<\/m>aqntikink (b(’y )atk )

(2.31)
r — vt

A(x, t)kink = @ (m)kink = & (70) kink

donde 0 = x — vt.
La energia para la configuracién ¢(x,t) dada por (2.31) del campo del
kink/antikink vendrd dada por

15



:/dx<;<aaf>2+;<gi¢\/m>2i\/mgﬁ>=

B 1(9o\* 1 /([ 9¢p 00 ?
—/dx lQ (825) +2<78981‘:F QU[d)})

hacemos el cambio de variable de integracion de de x a 8 y obtenemos que
E[(z)]—/dﬁ L(oe 2—1-1 %:I:\/ZUM)] i
- 2\ot) "2\ a0
B 1/06\> 1 [ 0¢ 2
vk [2 (5) +3 (3 = v

El funcional energfa anterior, para ¢(4+00) y ¢(—o0) elementos de M conti-
guos, también se minimiza en el caso en que las configuraciones dadas en (2.31)
no dependan explicitamente del tiempo y se verifique la ecuacién

190 4 \/20Td] = 0 (2:32)

La ecuacién diferencial (2.32) se puede ver como la ecuacién de movimiento
para el kink/antikink dindmico.

La energia minima asociada a la configuracién del campo kink/antikink
dindmico vendra dada por

¢(+00)
Elg] = /(b 4oV (2.33)

Calculemos ahora el funcional bimomento P*[¢] con p = 0,1 para las so-
luciones kink y antikink. Consideremos, en primer lugar, que el kink/antikink
esta en reposo, v = 0, luego P°[¢/ax] = M donde M, representa la masa del
kink/antikink. Donde hemos empleado la notacién ¢x para ¢rink y ¢4k para
(bantikink:

) 2 $(+00)
My = P°[px ax] = /deOO = /dx (; ( (bg;AK) +U[¢K/AK]> =/ doy/2U K/ aK]

¢(—00)
0 0
P'oxax) = /meOl — —/dx Prc/AK 0Pk /AK 0

96 90
+ /dx\/QU[gbha—z%

[ a2 -

¢(+00)
+ /4) ~d\/2UTd)

(=o0)

ot ox
(2.34)
dado que v = 0, debemos tomar las soluciones estaticas para ¢x 4k obtenidas
como soluciones de (2.28).
Supongamos que el kink/antikink se desplaza a v constante, entonces las
configuraciones del campo vienen dadas por (2.31). Los funcionales P'[¢] y
PY[¢] en este caso son:
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b b $(+00)
Plowa] = [air? = [ 0 E0M ) /¢ do/20() = Mayv

(—00)
o ¢(400)
PPlok/ak] = Eldk/akx] = /( : ydg+/2U (¢)
¢(—o0
(2.35)
En este caso, hemos empleado que 345}51“‘ = a¢ggAK % = yo.
Claramente se puede ver, usando (2.35), que
P>+ M =E® (2.36)

donde hemos empleado, por comodidad, P en vez de P! (¢ /ax]y E en vez de

El¢k/ak]-
Comprobemos la expresién (2.36)

H(+00) ?
P2+ MZ = v*y* MZ+M7 = M7 (v +1) = Mfl% = % (/ fydqﬁ\/QU[(b]) =E?
1—w 1—vw ¢(—o0)

Hemos visto que la configuracién del campo tipo kink /antikink verifica (2.36),
que es la relacién de dispersién tipica de las particulas relativistas, asi que po-
demos decir que un kink representa una particula libre con masa en reposo M,;.
Veremos en la seccién siguiente que el antikink represanta una antiparticula
libre de masa en reposo M,;.

2.5. Cargas topologicas

En la Sec. 2.4 introdujimos por primera vez el concepto de carga topoldgica
de un sector topoldgico. Vimos que la carga topoldgica asociada a cada sector
topoldgico es un nimero entero que caracteriza a las soluciones de energia finita
contenidas en dichos sectores.

Acabamos de ver en la seccién anterior que el kink y el antikink se comportan
como particulas ya que verifican la relacion de dispersion relativista tipica de las
particulas libres con masa en reposo M. Estas particulas existen a nivel clasico
y son distintas de las que aparecen cuando cuantificamos la teoria clasica. Los
kinks y antikinks se caracterizan por tener una estructura topoldgica no trivial
a diferencia de las particulas que aparecen al cuantificar la teoria cldsica. Las
particulas de la teoria cuantica se pueden entender como la cuantificacién de
las perturbaciones del campo, que son deformaciones suaves respecto del vacio
y debido a que son deformaciones suaves tienen la misma topologia que el vacio,
es decir, trivial.

El aspecto topolégico de los kinks y antikinks se resume, como dijimos, en
un numero que se denomina carga topoldgica y se denota por Qr. Esta carga
Q@ se obtiene al integrar a todo el espacio la componente cero de una corriente,
J#, denominanda corriente topoldgica dada por

JH = A" 0,0 (2.37)
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donde €*¥ es el tensor totalmente antisimétrico con pu, v = 0,1y A es una cons-
tante que nos permite expresar la carga topoldégica como niimeros enteros y que
depende del modelo bajo estudio. La corriente J* es conservada debido a la
antisimetria del e*”.

8, J" =0 (2.38)

Las corrientes, que se obtienen a partir de transformaciones que dejan in-
variante la accién, se conservan debido a que las configuraciones del campo
verifican la ecuacion de movimiento (Teorema de Noether). La corriente (2.37)
es automaticamente conservada independientemente del que el campo verifique
o no las ecuaciones del movimiento. La corriente (2.37) sélo depende del los
valores asintoticos del campo. Es decir, no existe ninguna simetria subyacente
de la accién que permita obtener dicha corriente.

La carga topoldgica viene dada por la integral de la componente temporal
de la corriente topoldgica, en este caso toma el valor

+o0 +oo
Qr = /deO :/ dmAeOl’&,qb:A/ dz | € 9pp+ € 010 | =

—0o0 —0o0 -0 -1

+o0 Foo
9, _ A / dg = A (¢(+00) — p(—0))

oo Oz

=A

Luego hemos obtenido que

Qr = A (¢(+00) — $(—00)) (2.39)

El kink vendra dado por una expresién ¢(zx,xg,t) creciente, como ya vimos
anteriormente, luego ¢(+00) serd mayor que ¢(—oo) y podremos decir que la
carga topologica del kink, QQIS es un numero positivo, que con la A adecuada
al modelo que estemos estudiando, tendremos que lef = +1. Dado que el an-
tikink es decriente podemos decir que Q‘%K = —1. Sabemos que Qr € Z, luego
tenemos que el kink y el antikink son las configuraciones del campo con |Qr|
més pequena. Ademads, vemos que el antikink representa la antiparticula, con
respecto a la carga topoldgica, del kink.

Los distintos valores que puede tomar Q7 depende del niimero de minimos
que tiene el funcional U[¢]. Un caso extremo se da si U[¢] tiene un inico minimo
(teoria de campos lineal). Este minimo serd ¢ = 0 ya que U(¢) > 0. Sabemos
que los valores asintéticos de ¢ deben de estar entre los minimos del potencial
luego tenemos que

P00 = P =0=Qr =0 (2.40)

Vemos por lo tanto que una teoria de campos en (1+1) dimensiones con un
funcional U[¢] definido positivo y con un solo minimo no tiene configuraciones de
campo de energia finita topolégicamente distintas del vacio. Otro caso extremo
es una teorfa en la que U] =0 V¢, es decir, una teoria dada por la accién

1
S = /d%ciamaw (2.41)
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El funcional energia vendra dado por

st = fae (3 (5) +5 (52)) 212

Los vacios, configuraciones del campo de minima energia, vendran dados por
¢o = A donde A es una constante arbitraria. Luego en este caso Q1 puede tomar
cualquier valor. La teoria dada por la acciéon anterior tiene, una vez cuantizada,
la funcién Wightman de dos puntos mal definida (divergente) que Coleman [16]
interpret6 como la ausencia de bosones de Goldstone en (141) dimensiones y la
ausencia de ruptura espontdnea de simetria. En [31] se hace una anélisis sobre
la veracidad de las suposiciones hechas por Coleman.

2.6. Fuerzas entre los kinks

Dado que el kink y el antikink tienen carga topolégica de distinto signo parece
razonable que exista una cierta interacion entre ellos. Calcularemos en esta
seccién la fuerza que se ejercen entre si un kink y un antikink.Esta propiedadde
los kink/antikink esta tratada en [68, padg. 10] y [40, pag. 115]

Consideremos por simplificar que el antikink esta centrado en x = 0 y que
el kink esta centrado en x = s > 0 de forma que la separacién entre ellos sea
mucho mayor que la anchura del kink/antikink w. Empleando el ansatz aditivo
[45] tenemos que la configuracién multikink estética del kink y del antikink viene
dada por

o) = par(x —0) + o (x — s) + ¢(+00) (2.43)

Aplicamos la segunda ley de Newton para conocer la fuerza como el momen-
to lineal intercambiado, F' = %, entre el kink y el antikink. Sabemos que el
funcional momento lineal P[¢] para la configuracién ¢(x) viene dado por

B b 0¢ 0

donde a y b indican el segmento donde calculamos el funcional momento lineal.
Hallemos la derivada de P[¢] respecto del tiempo

aPlg] __d [" 9600 _

a  at), “oror
/b ¢ 0p 99 ¢
=— [ dv| 555+ 5
u ot? 9x Ot Otox
usando la ecuacién del movimiento para ¢(z,t) dada en (2.2), tenemos que

aPlg]  [* 2¢ UG\ 0 0o 9%¢\
_/a dx(( >6a:+<9158t8x>_

(2.45)

dt

Ox? Y0,

b (2.46)
| Be2e_wise 0o 0

L Ox? Ox d¢ Ox = Ot Otdx
~———

aule]
dx
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y dado que la configuracién ¢ en (2.43) es estdtica, % = 0, tenemos que (2.46)
se puede expresar como

[ ard (822) vta) = [l (- (422 o)

(2.47)
realizando la integraciéon en x tenemos que
dP|¢] 1 /06\°
— - (== 2.48
dt 2 (896 +U9] ( )

Supongamos ahora que ¢ < 0y 0 < b < s. En esta regiéon para todo
z € (a,b) podemos suponer que ¢ax > ¢x y expandir el ¢ de (2.43) entorno a
¢ Ak para pequenos valores de ¢g.

Asf que obtenemos

0\>  (00ar\" (00K | Obax Obx
<8x> _< Oz > + ( Bm) 2 Oxr Oz (249)
N——

~0
y también podemos desrrollar U en serie de Taylor funcional entorno a ¢pax y
quedarnos a primer orden

SU[pak]

Ulg] = U(dak + ¢k + ¢(+00)) = U(pak) + T(cb —QaK) =
6U[paxk] (2:50)
=Ulgax] + T(¢K + ¢(+00))
Introducimos (2.49) y (2.50) en (2.47) y obtenemos que
b
dPl¢] _ 1 (99ax\® _ 9dax 06 6U[ax]
(2.51)

y por ultimo empleamos que ¢4 verifica (2.28) y obtenemos que la fuerza que
hay entre un kink y un antikink viene dada por

_ dP[¢] _ 9¢ak Odk n 6U[¢pak] '

F dt or Ox Y0,

(2.52)

(¢x + d(+00))

a

2.7. Tratamiento cuantico

Vamos a estudiar en esta seccién como se comportan las soluciones clasicas
a nivel cudntico. Vamos a poder asociar, en cierto régimen de la constante de
acoplamiento del modelo, las soluciones de energia finita a estados cuanticos
extendidos. Vamos a estudiar, en particular, la energia de estos estados cuanti-
cos. Sabemos que las soluciones de energia finita son, incluso a nivel clasico,
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soluciones extendidas las cuales poseen, como ya sabemos, una cierta anchura
w. Supongamos que la constante de acomplamiento del modelo bajo estudio es
A, entonces la energfa de la configuracién del kink (2.35) tipicamente se puede
ver que es

m
Ex/ak ~ 74’ (2.53)

donde my es la masa de la excitacién elemental dado por (2.15).
La longuitud de Compton, A¢, nos dard el tamano del kink a nivel cudntico
y viene dada por

Eran ~ mg (2.54)

En la Sec. 2.2 vimos que los campos escalares ¢ en dos dimensiones no
tienen dimensiones (tomando ¢ = i = 1) y veremos que tanto en el modelo A¢*
como en el modelo Seno-Gordon, los dos modelos que vamos a estudiar en este
trabajo, la constante de acoplamiento A tiene unidades de masa al cuadrado.
El régimen de acoplamiento débil, dado que la constante de acoplamiento tiene
dimensiones, se expresa correctamente diciendo que U—)‘Q < 1. El pardmetro o es
algiin parametro que aparece en el modelo que tiene dimensiones de masa. En
los modelos que vamos a estudiar, A¢* y Seno-Gordon, veremos que w ~ m;l
asi que se verifica que

w my : . .

— ~—>1, siestamos en régimen débil (2.55)

Ao A
luego w > A¢ asi que podemos decir que incluso a nivel cuantico el kink es un
objeto esencialmente cldsico, quizds con algunas modificaciones (correcciones).

Aparentemente podria parece que existe una cierta inconsistencia debido a
la permanencia del kink clasico a y la existencia de fluctuaciones a nivel cuanti-
co. Sabemos que las fluctuaciones cudnticas son mayores a distancias cada vez
mdés pequenas, llegando a ser incluso infinitas. Estas fluctuaciones pueden redu-
cirse si promediamos el campo sobre una longuitud mayor. Tenemos que llegar
a un compromiso de forma que esta longuitud tiene que ser lo suficientemente
grande como para eliminar las fluctuaciones cudnticas y lo suficientemente pe-
quena como para que, en régimen de acomplamiento débil, el kink clasico sigua
existiendo a nivel cudntico. Ademds, la masa del kink depende inversamente de
la constante de acoplamiento, A, y en régimen de acoplamiento débil tendremos
una masa para el kink enorme, tendiendo a infinito cuando A tiende a cero. Por
lo tanto, el analisis perturbativo nunca podra mostrar los efectos del kink. Sin
embargo, si conocemos una solucién clasica estatica podemos emplear la teoria
de perturbaciones para cuantizar las perturbaciones sobre dicha solucién clasi-
ca. Este método se conoce como aproximacion semicldsica. Vamos a emplear
métodos funcionales para realizar esta cuantizacion.
Consideremos el funcional energia dado en (2.25) y hagamos un desarrollo

de Taylor funcional alrededor de ¢s(x) que formalmente tiene la forma

SE 6°E[¢s]

516) = Blou) + [ 5T (9(0) — g0+ 1 [ w2 PO (o) - 00(00) 010) — .00 +

S (x)dop(y)
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donde ¢ () es una solucién estética que hace minimo E[¢]. Aplicando las reglas
de la diferenciacion funcional ya citadas anteriormente obtenemos que

o)~ da? T 3p(x) So@)oe(y)

SElO) o 0] _REG [0 S

s | SU[Ps] _
dx? + 5 _0’

y dado que ¢4 es solucién de las ecuaciones de movimiento, —

tenemos que ‘s&i[(‘is)] = 0. Asi obtenemos que

E[¢] = E[¢,] + % /dm(x) [—;ﬂ + %ngﬂ n(x) +... (2.58)

donde 1 = ¢ — ¢, representa las fluctuaciones respecto a la solucion estatica ¢,
y donde, ademas, hemos realizado la integracién respecto de y.

Consideremos ahora el problema espectral de encontrar los autovalores y las
autofunciones del operador Schrédinger independiente del tiempo, ver [2I] pag.
40], dado por

{ 0? | o°U[g]

T ox2 + 5¢(w)2] L_m Vi(x) = K;i(x) (2.59)

donde K; son los autovalores y ;(x) son un conjunto completo y ortonormal
de autofunciones. El problema espectral dado por (2.59) es un caso especial de
un problema de la forma

d2
donde —% +T(z) es un operador diferencial de segundo orden y T verifica que
» 3, TE0) =0

Si los valores propios K son positivos, K = w?, de forma que K € (0, +00),
espectro continuo, el comportamiento asintdtico de las autofunciones para un
valor de w tal que w? € (0, +o0) vendrd dado por

wx

e six — —00
¢UJ(I) ~ { A(w)eiwz + B(w)efiwz siz — +00 (261)
Si los valores propios K son negativos, K = —w?, y ademés hay una cantidad
finita y numerable de ellos, espectro discreto, el comportamiento asintético de
las autofunciones para cada valor de w tal que K = —w? vendra dado por
C_oo(z)e®  siz — —o0
Gu(z) ~ { Cio(x)e ™™ iz — 400 (2.62)

Los autoestados que tiene K = w? = 0 se denominan modos cero. En par-
ticular, las soluciones del vacio ¢g son modos cero. Consideremos una soluciéon
clésica estdtica de energfa finita kink/antikink ¢x/4x () que sabemos que ve-
rifica la ecuacién de movimiento (2.24). Diferenciando (2.24) con respecto a x
obtenemos que
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Pogjax(c)  PU(Pk ak(x)) dor ak (x) . _d? | PU[pk]] dok/ak(x)
dz? B Yox dz dz? Yox dx

(2.63)
luego d%;; AK o5 una solucién del operador de Schrédinger con autovalor w? = 0.
Dado que el kink/antikink son soluciones crecientes/decrecientes, el signo de
%’Zf(x) es constante. Por lo tanto, %’;‘K(x) nunca se hace cero, asi que,
debido a un resultado de Mecédnica Cudntica que nos dice que en un potencial
1-dimensional sélo el estado de minima energia nunca se hace cero, tenemos, por
lo tanto, que el autoestado dg% es el de menor energia, es decir ¢g = %f:{(w).
Por lo tanto, en el operador de Schrédinger no existen autoestados con w? < 0.
Una vez resuelto el problema espectral (2.59) podemos expresar la fluctua-

ci6n del campo ¢ dependiente del tiempo [19] como

=0

n(x,t) = Zci(t)wi(m) + h.c. (2.64)

Empleando (2.64) podemos entender que la presencia de autofunciones con

K = w? <0 en el problema espectral (2.59) implicarfa la inestabilidad del kink

debiddo a (2.62). Este razonamiento nos permite definir la estabilidad como
sigue

Definicién 2.8. Un kink ¢x es estable si el problema de wvalores propios de
Schridinger dado por (2.59) no tiene autoestados con autovalor K = w? < 0.

La estabilidad del kink debida a la ausesencia de estas autofunciones la po-
demos denominar estabilidad dindmica. Ademds, sabemos que la accién dada en
(2.3) es invariante bajo traslaciones, y esto provoca la aparicién de autofunciones
en (2.59) con w =0 (modos cero).

Empleando (2.64) y (2.58), la densidad lagrangiana (2.1) nos queda

—+o0 —+oo
1 1
L= B % & — Elps] — 3 % ciw? + correcciones (2.65)

que representa el lagrangiano de un ntmero infinito de osciladores armédnicos
no acoplados ademds de una constante E[¢s]. Una vez aplicado la cuantizacién
candnica obtendremos que la energia de los estados viene dada por

+oo
1
E{n,y = El¢s] + hz (nl + 2) w; + correcciones (2.66)

donde en el sumatorio se excluye w = 0 (veremos la razén después). Los esta-
dos son etiquetados con n; donde n; representa el niimero de ocupacién de los
osciladores armonicos y las “correcciones” hacen referencia a los términos de
orden superior, y que en el caso en que estemos en régimen de acoplamiento
débil pueden ser tratados perturbativamente. La expresién (2.66) nos relaciona
la energia de los estados cudnticos con la energia de la solucién clasica ¢s. La
constante /i se mantiene en la expresion (2.66) debido a que estamos realizando
una aproximacién semiclasica, aunque todavia ¢ = 1.
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Hemos visto que disponemos de dos soluciones estéticas: la solucién del vacio,
$o, y la solucién kink/antikink, ¢ /45 . Eligiendo como ¢s(x) = ¢o(x) obtene-
mos que los niveles cuanticos son el estado vacio y las excitaciones del estado
vacio. La energia de estos estados vendrd dada por

+o0
1
By = E[¢o] +hz (ni + 2> w; + correcciones (2.67)

El estado de minima energia, correspondiente a n; = 0, es el estado del vacio
y tendra una energia dada por

+o0
1
Eyacio = Efoy = hz iwi + correcciones (2.68)

La expresién anterior es divergente, esta divergencia se puede asociar con el
hecho de que el sistema tiene una extension infinita (divergencia infraroja). Este
tipo de divergencias se pueden solucionar metiendo el sistema en una segmento
de longitud L e imponiendo condiciones de contorno periédicas a los campos y
tomando, al final, el limite L — +o0.

Podemos considerar también como solucién estética ¢, () la solucion ¢4k ()
y estudiar los estados cuanticos en el sector kink. En este caso obtenemos que

—+oo

En,y = Elox/ak] +hz (NZ- + ;) w; + correcciones (2.69)
El estado con N; = 0 representa el estado de la particula kink en reposo y
también el estado de minima energia en el sector kink. El estado con N; = 0 lo
denominaremos kink cudntico. Vamos a restar a la expresion (2.69) la energia del
vacio (2.68) para eliminar la divergencia cuadratica, una vez tomado el limite
L — 400, asociada con la energia del vacio. Realizando los calculos y toman-
do el limite continuo cuidadosamente llegamos a que la diferencia En, — Eyqcio
tiene una divergencia logaritmica. Evidentemente esta divergencia no se elimi-
nard anadiendo una constante a la densidad lagrangiana ya que Ey, — Eyacio
es una diferencia de energia entre dos estados. Esta divergencia se denomina
divergencia ultravioleta y no es sdlo caracteristica de la solucién kink, si hu-
bieramos calculado la masa de la particula escalar obtenida como fluctuaciones
del vacio a orden mas alto en la teoria de perturbaciones habriamos obtenido
otra divergencia logaritmica. Las divergencias ultravioletas en modelos en dos
dimensiones tienen su origen, para cualquier orden en teoria de perturbaciones,
en diagramas de Feynman con un solo lazo formado por una tnica linea interna.
También podemos ver a las divergencias ultravioletas como originadas por el
hecho de que el hamiltoniano que describe al sistema no esta escrita en orden
normal. El reordenamiento normal se realiza, en la aproximacién semiclasica,
al anadir algunos términos al hamiltoniano. Estos términos que anadimos al
hamiltoniano modifican la energia de los estados, de forma que podemos definir
como masa (renormalizada) del kink a My;nr = AEN, — AEyqci0. Hemos, en
definitiva, aplicado las técnicas de la remormalizacion de la teoria cuantica de
campos. Ver por ejemplo los libros [57, [70] sobre renormalizacién en teoria de

campos.
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El modo cero w = 0 debe de ser estudiado separadamente del resto ya que
el procedimiento de cuantizacién aplicado a (2.65) no se puede aplicar si w = 0
debido a que un oscilador con w = 0 no es realmente un oscilador. El campo
bk ax(x,t) lo vamos a poder expresar como

N t) = bxc (@ — 2(0,6) + 3 enlOtnle — () + he. (270)

donde z(t) indica la posicién del kink y se denomina coordenada colectiva [67,
32]. La derivada temporal de ¢(z,t) vendra dada por

(2.71)
Sustituyendo (2.71) en la densidad lagrangiana (2.1) con ¢s = ¢ e inte-
grando en x para obtener el lagrangiano del sistema, obtenemos que

2 +oo
ot o8 om0 am

n

El primer término en (2.72) se puede expresar como

2 2
L= %/dx <dg{> = %/dm (dg() 3?2 = %,22/de[¢] = %?Md
(2.73)
donde hemos empleado (2.28). El primer término en (2.72) hace referencia a la
energia cinética no relativista de una particula de masa M. El momento con-
jugado correspondiente a la coordenada colectiva z es P = Mz y su operador
en teorfa cudntica es conservado ya que conmuta con el hamiltoniano. Dado
que —o0 < z < +00 los autovalores del operador momento tienen un espectro
continuo. Los autoestados de la energia, etiquetados por el momento lineal y
por un conjunto de nimeros de ocupacién, |P, {n;}), vienen dados por

2
E\pnyy = M, + M ink + correcciones (2.74)

donde Mg, es la masa renormalizada.
Vamos a aplicar en el siguiente capitulo todo lo que hemos visto a dos mo-
delos: el modelo A¢* y el modelo Seno-Gordon.
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Capitulo 3

Modelos particulares en
(141) dimensiones

3.1. Modelo \¢*

Vamos a ver en esta seccién uno de los ejemplos més paradigmético que ilus-
tra el concepto de kink. El modelo A¢?* el cual fue estudiado en primer lugar por
Dashen et al. (1974), Goldstone, Jackiw (1975) y Polyakov (1974). El modelo
es aplicado en dos campos distintos: el primero de ellos, dentro del campo de la
Fisica de la materia condensada, donde modeliza un sistema electrén-fonén en
materiales como el polyacetyleno (CH),, constituido por una cadena que pre-
senta, en buena aproximacién, un solo grado de libertad, estructura denominada
trans-(CH ), [64],41]. Una curiosa propiedad sobre esta substancia de naturaleza
aislante es el notable incremento de la conductividad cuando son introducidos
solitones cargados [15], incluso hasta cotas similares a materiales metdlicos. El
segundo campo de intereses del modelo A¢* es el correspondiente a la teoria
cudntica de campos, en particular, Jackiw y Rebbi encontraron [33] de mane-
ra tedrica el fraccionamiento de la carga electrica en un modelo de interaccion
fermién-kink sobre la recta, donde el kink es el producido por el modelo A¢*.
Podemos verificar este resultado experimentalmente sobre una cadena lineal de
poliacetileno, ver [32]. Ademds, en teorfas cosmoldgicas la introduccién de los
defectos topolégicos, generados por este modelo, acoplados a dilatones incorpora
la aparicién de agujeros negros [4].

El funcional energia potencial correspondiente a este modelo viene dado por

A m2\?
Ul == (¢? — — 3.1
o=5(#-5) (3.1)
donde las constantes de acoplamiento A y m? son positivas y se puede observar
que A tiene unidades de masa al cuadrado. Ademds claramente podemos ver que

(3.1) es semidefinida positiva, es decir, U[¢] > 0.
La accién correspondiente al funcional potencial (3.1) se expresa como

Sle] = / (;auqsaw - 2 <¢2 - ";2>2> dx (3.2)
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La energia para una configuracion ¢ del campo viene dada por

Big) = [ (; (?;f)z +3 (3‘5)2 2 (¢2 - ”;2>2> ir (33)

Vimos que las configuraciones de minima energia, configuraciones del vacio,
son aquellas que U[¢] = 0. El U[¢] asociado a nuestro modelo presenta dos
minimos que son :I:%. La variedad del vacio es M = {+%, —%}

La accién (3.2) presenta una simetria en el espacio interno de los campos da-
da por  — —¢. Por lo tanto, el modelo A¢* posee un grupo de simetria G = Z,
de forma que tenemos que G = Zs y H = I luego mp (M) = o (G/H) = Zs.
Dado que 7y (M) es no trivial sabemos que existen kinks en el modelo A¢*.El es-
pacio de configuraciones de energia finita C tiene cuatro componentes desconexas
caracterizadas por los valores de (¢(400), p(—00)) € (M) x mo(M) = Zg X Zs.
Tendremos los siguientes sectores topolégicos caracterizados por las siguientes
parejas de valores asintoticos:

it (+% %)
iii <f%,+%)
v (- %)

Los sectores topoldgicos caracterizadas por i) y iv) verifican ¢(400) = ¢(—00)
% y ¢(400) = ¢(—o0) = —% respectivamente. Vemos que los sectores to-
poldgicos asociados a los valores asintéticos i) e iv) corresponden a los sectores
vacios asociados a los minimos —I—% y —% respectivamente. Siguiendo la no-
tacién introducida en la Sec. 2.4 tenemos que estos sectores los denotamos por
C'' y C?2 donde el 1 hace referencia al minimo —|—% y el 2 hace referencia al

otro mfnimo — . Las configuraciones ¢ € C'' 6 ¢ € C** tendrdn una energfa
dada por E[¢]| = F [—&—%} =06E[¢]=F [—%] = 0. Los sectores topoldgicos
asociados a ii) y iii) se indicaran como C'? y C?! respectivamente. Las configu-
raciones de los campos en C'2 o en C?! verifican que sus valores asintéticos son
distintos, y ademds son vacios consecutivos (trivialmente cierto en este caso, ya
que M solo tiene dos elementos y evidentemente son consecutivos). Por lo tanto,
segtin la definicién 2.7, las configuraciones de campo ¢ que pertenezcan a C'2
6 C?! son kinks (entendiendo que atin faltarfa ver si se preserva su forma tras co-
lisiones). Los sectores C'?, C?! son las variedades kink del modelo A¢*. Tenemos
que el espacio de las configuraciones de energia finita C puede descomponerse
de la siguiente manera:

c=cltuctzuc?uc? (3.4)

Estos kinks, a veces, se denominan Zs — kinks. Denotaremos a la solucién
kink de C?! por ¢x y a la de C'? por ¢4k, veremos un poco mas adelante lo
acertado de esta notacién.
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Los Zsy-kinks estaticos vendran dados por la expresién de la ecuacién (2.29)
para el funcional potencial (3.1). Esta solucién viene dada por

d(z, ) = :I:% tanh <\% (x — xo)) +C (3.5)
donde el signo + corresponde a la solucién que verifica que ¢(+00) = —|—\%
y ¢(—o0) = f%, es decir, ¢ € C?' y la denotamos por ¢x. Analogamente
podemos decir que el signo - en (3.5) implica que ¢ cumple ¢(+o00) = —%

y ¢(—00) = —l—%, por lo tanto ¢ € C'? y la podemos denotar por ¢p4x. El
pardmetro x( corresponde al centro de la configuracién ¢ /dak. La constante
C toma el valor C' = 0 en este modelo.

Dado que (3.2) es invariante bajo las transformaciones de Lorentz (2.7),
como vimos en el caso mas general en la Sec. 2.2, podemos aplicar un boost a
(3.5) y obtenemos que

m m [x—xg— vt
x,x9,t) = t—=tanh — | ——— 3.6
Ya vimos en la Sec. 2.5 que la carga topoldgica caracterizada a los sectores
topoldgicos de C. La carga topoldgica para este modelo viene dada por

2

Qr = o [p(+00) — ¢(—00)] (3.7)

Los sectores topoldgicos C!!, C?? se caracterizan, como vimos anteriormente,
porque todas las configuraciones del campo ¢ tal que ¢ € C!! 6 ¢ € C?? verifican
¢(+00) = ¢(—o0). Por lo tanto, siguiendo (3.7), vemos que las configuraciones
en C'' y C?2 tienen carga topoldgica igual a cero, @ = 0. Las configuraciones
¢ del sector C?! presentan una carga topolégica dada por

Qr =3 fotro0) o0 = o [ = ()] =41 w3)

Vemos por lo tanto que las configuraciones ¢k tienen carga topoldgica +1.
Por 1ltimo, consideremos una cualquiera de las configuraciones ¢ pertene-
ciente al sector C12. La carga topoldgica asociada a esta configuracién vendré da-

da por
Qr = 2 o(ro0) o0 = 1 [ (Z)] =1 wo)

En particular, tenemos que la configuracién ¢4k tiene carga topoldgica -1,
luego ¢ 4k, atin siendo un campo escalar, puede verse como la antiparticula, res-
pecto a la carga topoldgica, de la configuracién ¢ . Por lo tanto, los nombres de
kink y antikink dados anteriormente a estas configuraciones parecen adecuados.

El modelo A\¢* sélo tiene, como acabamos de ver, tres valores de carga to-
polégica Qr = {—1,0,+1} debido a que M tiene inicamente dos elementos.
Cualquier solucién del modelo A\¢* tendrd uno de estos tres valores de Qr, lue-
go no existe ninguna solucién con carga topoldgica |@r| > 1 y por lo tanto
cualquier configuracién multikink tendra que tener siempre los kink y antkink
alternados.

La densidad de energia estdtica asociada a ¢x /4, €(x), viene dada por

28



e(z) = % (%g;“{)g + % ((¢K/AK)2 - ”;2>2 (3.10)

La densidad de energfa estatica (3.10) corresponde al integrando de (3.3)
para el caso de una configuracién estatica.

Usando la forma funcional de ¢ /45 obtenida en (3.5) y sustituyéndola en
(3.10) obtenemos que

e(z) = Ziisech‘* (\’% (z — x0)> (3.11)

La expresién anterior nos permite decir que la anchura w del kink/antikink
del modelo A¢* es w ~ m™! y la masa cldsica de la configuracién OKJAK
vendrd dada por (2.34) usando el funcional potencial (3.1). Esta masa, M,
viene dada por

2m3/2
3\

la expresién (3.12) es de la forma dicha en (2.53).

Vamos a calcular ahora explicitamente el valor de la fuerza entre un ¢, con
Qr =41y ¢pak, con Qr = —1. Supongamos, al igual que hicimos en la secciéon
2.6, que el kink esta colocado inicialemnte en z = s > 0 y el antikink en x = 0.
La fuerza viene dada por (2.52)

My = (3.12)

4
F =10 vams (3.13)
VA

Observamos que la fuerza dada en (3.13) es una fuerza atractiva entre el
kink y el antikink. Similarmente podemos ver que la fuerza entre dos kink o
entre dos antikink es repulsiva. La fuerza (3.13) es una fuerza tipo Yukawa y se
podria haber deducido pensando en que el kink y el antkink se intercambian una
particula escalar, precisamente las excitaciones de campo ¢, cuya masa viene
dada por (2.15) y toma el valor, usando el potencial (3.1), de my = 27”; La
fuerza mediada por la particula escalar my es una fuerza de tipo Yukawa de la
forma F o e=™4% = ¢=V2™s_ Ver por ejemplo [50].

En [3] los autores estudiaron numéricamente el envio de una onda solitaria
contra otra, ambas a la misma velocidad para distintos modelos, entre ellos el
modelo A¢* v midieron la velocidad y el cambio de fase después de la colisién.
Los resultados obtenidos mostraron que el choque entre dos ondas solitarias del
modelo A¢? es ineldstico. Por lo tanto podemos concluir, de la definicién 2.7,
que las las ondas solitarias que estabamos llamando kinks son verdaderamente
kinks.

La colisién entre un kink y un antikink del modelo A¢* fue intensamente es-
tudiada mediante simulacién numérica en [61] donde se obtuvieron los siguientes
resultados:

= Si la velocidad inicial de acercamiento entre el kink y el antikink era me-
nor que 0.193 (en unidades de ¢) siempre se formaba un estado ligado
oscilatorio (Oscilon) el cual desaparecia al cabo de un cierto tiempo.
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s Si la velocidad inicial de acercamiento entre el kink y el antikink era ma-
yor que 0.2598 (en unidades de ¢) ambas soluciones se reflejaban siempre
inesldsticamente tras la colisién.

= Se descubrié que existian intervalos de velocidades iniciales, por debajo
de 0.2598, para los cuales la simulacién indicaba que ocurria una primera
colision entre el kink y el antikink tras la cual el kink y el antikink se sepa-
ran una distancia finita y se acercaban nuevamente y volvian a colisionar
una segunda vez, después de esta segunda colisién el kink y el antikink se
alejaban indefinidamente. Este fenomeno recibe el nombre de ventana de
resonancia o ventana de doble rebote y fue por primera vez sugerido en

Ahora estudiamos el tratamiento cudntico del modelo A\¢* en régimen de aco-
plamiento débil caracterizado por ﬁ < 1. Supongamos que, en primer lugar,
tomamos como solucién estatica una de las dos soluciones del vacio, el resulta-
do final no depende de la eleccién realizada. La energia de las perturbaciones
respecto a la configuracion del vacio viene dada por

1 0? 9
El¢] = Elpo] + 5 /dxn(x) (_8552 +2m ) n(x) (3.14)
donde hemos empleado que 62;]47[3) ol — 9m2 en este caso.

Siguiendo la seccién 2.7 introduciremos el sistema en una longitud finita L e
impondremos condiciones de contorno periédicas a los campos. Al final de todos
los célculos tomaremos el limite L — 4o00. En primer lugar debemos resolver
el siguiente problema espectral

2
(—882 + 2m2) () = win,(2) (3.15)
x
Considerando como soluciones de (3.15) las soluciones de ondas planas n(zx),, =
L3¢ donde k, = %T", con n € 7 y sustituyendo la solucién de onda plana
en (3.15) obtenemos el espectro en frecuencias w(n) = 1/k2 + 2m?2. La energfa
en funcién de los nimeros de ocupacién N, el cual especifica el niimero de

particulas con momento k,,, viene dado por

+oo
1 A
Epngy =h> (N1 + 2) VE2+2m2+0 <mQ> (3.16)
Ni=1

La energfa del vacio E, 4. viene dada por (3.16) con Ny =0

—+o0
1 A
Eige = EHNE ) V k% +2m?2+ 0O <m2) (317)
1=

Sea ¢ la solucidn kink estdtica ¢ x dada por (3.5) con 2y = 0, Luego tenemos
que la expresién (2.58) nos queda
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E[g] = /dmn [ x2+ (sq[;fK]}n(a:)—i—...:

ng\[ /d [— —m? + 3m? tanh® (\/gﬂ n(@) + ... =
(3.18)

donde hemos empleado que E[¢;] = E[¢x] = My = 2% f dada por (3.12).
Ahora debemos resolver el problema de valores proplos siguiente

[_j;_m | 3 tanh? ( g)]nn( )= wlia(x)  (3.19)

realizando el cambio z = % obtenemos que (3.15) se trasforma en

1 82 2

[ 555 T+ 3tanh’z - 1} in(2) = %ﬁn(z) (3.20)
hemos obtenido un problema espectral con término potencial del tipo Pdsch —
Teller [22], Sec. 12.3]. La solucién de este problema espectral viene dada por:

1
2 -
a) wy =0 2) = ——
) 7o) cosh? z
3 sinh z
b w2 = 7m2 n(z) = ——
) 2 (z) cosh? 2
k2 ,
c) w§ =m? (2 + 2) flq(z) = €% (3 tanh® z — 1 — ¢® — 3igtanh® z)

(3.21)

Observando (3.21) vemos que todos los autovalores w? son no negativos, w? >
0, luego el kink es estable segiin la definicién 2.8. El autovalor y la autofunciéon
(3.21a) se denomina el modo traslacional y es debido, como ya sabemos, a la
invarianza traslacional de la accién (3.3). Este modo corresponde fisicamente
a la traslacién del kink. El (3.21c) nos da el espectro continuo de autovalores
y los autoestados para el problema espectral (3.20). El espectro completo de
(3.20) contiene, por dltimo, un autovalor discreto, acompanado con su autovalor,
(3.21b) denominado el modo interno o vibracional y representa una deformacién
localizada alrededor del kink y puede considerarse fisicamente como un modo
de oscilacién interno del kink.

Campbell et al pudieron explicar los resultados obtenidos en [61] mediante
un “mecanismo resonante de intercambio de energia”. Ellos consideraban que
cuando dos kinks de A¢? colisionan parte de la energfa cinética (modo trasla-
cional) era transferido al modo vibracional del kink. El oscilén (estado ligado)
se forma cuando sufciente energia se transfiere desde el modo traslacional al
modo vibracional del kink. Usando este argumento se puede explicar también el
fenémeno de la ventana de doble rebote de la siguiente manera: la primera co-
lisién transfiere suficiente energia cinética (del modo traslacional) para generar
un estado débilmente ligado, el cual permite al kink y antikink separarse una
cierta distancia antes de volver a colisionar. La segunda colisién lleva de vuelta
la energfa del modo vibracional al modo translacional y ambos (kink y antikink)
se escapan al infinito.
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Dado que el sistema esta contenido en un segmento de longuitud L tendremos
unos valores discretos para ¢, denotados por q,.

La energia de los estados perturbados respecto de la solucion clasica ¢x
vienen dados por

2v/2m3 > 1 \/g 1 1 A
Epvy = o v n S (M2 )4/ S (N +5 ) (/52 +2 A
i 3A +hN—o< 1+2> 2m+mhq ( q"+2> 2qn+ +O(m2)

(3.22)

La expresion (3.22) da la energia representa al kink y sus excitaciones. El
primer término es la masa en reposo del kink, el segundo término representa la
energia extra debida a la excitaciones de kink y el tltimo término corresponde a

particulas escalares ya que w, = 4/ (%qu% + 2m2) es la relacién de dispersion

de una particula escalar de masa v/2m y de momento ”f/qi Dado que estamos

en el régimen de acoplamiento débil, A < m?, tenemos que el término cldsico,
2v/2m?

51— domina a los términos cudnticos los cuales se convierten en meras corre-
ciones al término clésico. El estado del kink cudntico serd cuando Ny = N,, =0
en la expresién (3.22). En este caso tenemos que

2v/2m? 1\/§ 1 /1 A
Eink = hoyfS+mhYy [/ 5a3+2 =
Jink o gyt m 5 S0+ +O<m2) (3.23)

Volvemos a seguir la seccién 2.7 y consideramos la diferencia de Egink v Evac
dadas por (3.23) y (3.17) respectivamente

2v/2m3 1 /3 1 /1 A
E.. — _ _ § _ 42 § 2 2

dn
(3.24)

y tomando el limite L — +oo cuidadosamente obtenemos que

2v/2m3 1 /3 3V2 6mh [T 249
Brini = Elgo] = =5 +mn<2\/;_%> Smh [ S e P 12)

(3.25)
av2

m

donde p =

La integral que aparece en la expresion anterior es logaritmicamente diver-
gente. Podemos aplicar las técnicas de renormalizacién de la teoria cuantica de
campos para tratar con esta integral, recordemos que en (141) dimensiones las
Unicas divergencias logaritmicas proceden de los diagramas de Feynman con un
solo lazo. Podemos ver [64, pdgs. 144 y ss| para todos los detalles.

Tenemos, por lo tanto, que la masa del kink con las correcciones cuanticas
viene dada por

2v/2m? 1 /3 3V2 A
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Debido a la existencia del modo cero en (3.21) sabemos que la energia del
kink viene dada por (2.74)

P2 A
Elink = My Pt — 2
kink kink + 2Mcl + O( ) +0 (m2> (3 7)

donde M, viene dada por (3.12) y Mynx viene dada por (3.26).

3.2. Modelo Seno-Gordon

El otro modelo paradigmatico que aparece en la literatura es el modelo de
Seno-Gordon. El funcional energia potencial correspondiente al modelo Seno-
Gordon se puede expresar de la siguiente manera [54], pdg. 200]

Ulg] = m74 (1 — cos <\7{§¢>> (3.28)

este potencial es periddico en ¢, las constantes m y A son constantes positivas
y las unidades de A son de masa al cuadrado. Ademaés es semidefinido positivo,
Ul¢] = 0.

La accién que gobierna el modelo de Seno-Gordon viene dado por

S[¢] = / (;8,@6‘% - m74 (1 — cos (ﬁqﬁ))) A’z (3.29)

La ecuacién del movimiento del campo ¢ viene dada por
0? 0? 3 A
99 _09 ™ G (‘nqu) =0 (3.30)

La energia para una configuracion ¢ del campo para este modelo viene dada
por

El¢] = / (; (88‘25)2 +s (g‘i)Q + m{ (1 _ cos <§¢>>> e (3.31)

y la energia estédtica de la configuracién viene dada por

Elg] = / (; (Z‘j)Q + m; (1 ~ cos (ﬁqﬁ))) e (332)

El minimo de la energfa estética (3.32) se alcanza para las configuraciones del
vacio. En este caso, a diferencia del modelo A¢* tenemos una cantidad infinita
numerable de configuraciones del vacio dadas por

b0 = %(27m) con nez (3.33)

y por la tanto la variedad del vacio para el modelo de Seno-Gordon viene dada
por M = {ﬁ(27m)|n € Z}.

m

33



La accién (3.29) es invariante bajo la transformaciones en el espacio interno
de los campos dadas por ¢ — ¢ + a1, y ¢ — —¢ donde 1 es un elemento
cualquiera de M. Estas trasformaciones forman un grupo, este grupo es G = Z.
Podemos considerar como subgrupo H de G el grupo H =1 y tendremos que,
revisando la seccién 2.3, mo(M) = mo (G/H) = Z. Dado que mo(M) es no trivial,
podemos decir que existen las soluciones tipo kink.

Los sectores topolédgicos los podremos caracterizar por los valores asintéticos
de las configuraciones del campo (¢(+00), p(—00)) € (M) x mo(M) = Z x Z.
Sabemos que los valores asintéticos pertenecen a M luego ¢(400) = %(277711)
y ¢(—o0) = %(2#712). Por lo tanto, los sectores topoldgicos se caracterizan por

dos nimeros enteros (ni,ns) € Z x Z. Obtenemos que el espacio de configura-
ciones de energia finita C se puede descomponer de la siguiente manera

c= | cmm (3.34)

ni,ne€Z

donde, como ya vimos, la unién es disjunta. Si n; = ng el sector topoldgico
correspondiente, C™ "™ es el sector vacio y tenemos tantos sectores vacios como
elementos tiene Z. Facilmente se puede demostrar que Z tiene tantos elementos
como N, card(Z) = N. Claramente una configuracién ¢ € C™™ tendrd una
energia dada por E[¢] = 0.

Consideremos ahora una configuracién ¢ cuyos valores asintéticos son distin-

m —_ m

tos pero contiguos, es decir, ¢(+o0) = \f/\(27m1) y ¢(—00) = ﬁ(27m2) donde
|ny —ng| = 1. Estas configuraciones tienen una energia finita estatica mayor que
cero (ver Sec. 2.4) y siguendo la definicién podemos llamarlas kinks (a falta de
saber como se comportan bajo colisién).

Los kinks estéticos vienen dadas por la expresién de (2.29), usando el po-
tencial dado por (3.28). Las soluciones estdticas de tipo kink se expresan de
la

— ﬁ :I:m(m—rg))
¢(x) 4\/X arctan (e +C (3.35)
donde C' viene definida de manera que los valores asintoticos de ¢ estén en
M. Recordemos que para que (3.35) represente un kink debe de conectar dos
vacos que sean contiguos en M. Vamos a ver algunos ejemplos. Supongamos que
estamos en el sector topoldgico caracterizado por (n1,n2) = (1,0), luego un kink
vendrd dado por una de las dos expresiones (con '+’ o con ’-’) de (3.35). Vemos
que la solucién con '+’ en (3.35) verifica los valores asintGticos del sector si
tomamos C = 0. Vedamoslo: ¢(+00) = 27+C =21y ¢(—o0) = 0+C = 0, luego
en ambos casos C' = 0. Sea ahora el sector (2,1), repitiendo el argumento anterior
La configuracién ¢ correcta es con el signo '+’ en (3.35) y tomando C = %277.
En general, un sector cualquiera caracterizado por (ny,n; — 1) la solucién que
verifica los valores asintéticos son aquellas que tiene el signo '+’ en (3.35) y la
C= %QW(nl —1). Denotaremos genéricamente a estas configuraciones por ¢y

oK () = 4" arctan (em(”'”_x")) + %Zw(nl -1 (3.36)

Vo)

Anélogamente se puede ver que para los sectores caracterizados por (ny,n1+
1) la solucién correcta, de entre las dos de (3.35), que cumplen las condiciones
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asintéticas es la que tiene signo - y la C = %27m1. Estas soluciones las
denotaremos por ¢4

dar(z) = 4% arctan (e*m(x*‘”")) + %27m1 (3.37)

Realizando un boost de velocidad v dado por la transformacién (2.7) sobre
las configuraciones (3.36) y (3.37) obtenemos que

)\ m(x—xzg—vt)
oK (x,t) = £ arctan [e Vi-e? ] + ﬂ271'(711 -1
m

V2

+ 2271"/11

VA

La densidad de energfa estatica asociada a ¢x, 4k, €(z), es el integrando de
(3.32) y viene dada por

1 (90xjak\? | m? (VA
e(x) = 3 <8x> + 7 (1 — cos <m¢>> (3.39)

Usando la forma funcional de ¢x 4k () obtenida en (3.35) y sustituyéndola
en (3.39) obtenemos que

M} (3-38)

dak(x,t) = g arctan {e Vi-v?

m3 2
e(z) = 167 sinh®(m(z — xg)) (3.40)

Claramente se ve que la anchura w del kink /antikink viene dada por w «» m™
y la masa en reposo cldsica del kink/antikink viene dada, aplicando (2.34), por

1

8m3
A
Vemos que en este caso la masa cldsica (3.41) también esta de acuerdo con
(2.53). Sabemos que los distintos sectores topoldgicos se caracterizan por un
nimero entero denominado carga topoldgica Q. La carga topoldgica en el mo-
delo de Seno-Gordon asociada a las soluciones de energia finita viene dada por

M, = (3.41)

Qr = % (¢p(+00,t) — p(—00,t)) = % (\T/nx(%mz) - %(27”11) =n1—ns
(3.42)

La configuracén ¢ (z) del sector (n1,n1 — 1) tiene una carga topoldgica
Qr = +1 ya que n; — (np — 1) = +1 y la configuracién ¢ax(z) del sector
(n1,n1 +1) tiene un valor de carga topoldgica Qr = —1 debido a que ny — (n1 +
1) = —1. Por lo tanto, al igual que hicimos en el caso A¢*, podemos llamar kink
a la solucion ¢ y llamar antikink a la solucién ¢, entendiendo que empleamos
el mismo n, para el sector (n1,n; —1) y para el (n1,n; +1). Las configuraciones
del campo con carga topoldgica |@Qr| > 1 son posibles y pertenecen a sectores
topoldgicos (n1,ns) con |n; —na| > 1y por lo tanto no son kinks ya que no
conectan dos vacios contiguos. La carga topoldgica (3.42) puede tomar cualquier
valor entero, como ya hemos visto, luego las configuraciones multikink pueden

contener cualquier niimero de kinks y antikinks y en cualquier orden.
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Podemos estimar, al igual que hicimos en el modelo A¢?, el valor de la fuerza
de atraccién entre un kink y un antikink (2.52), ya que tienen carga topoldgica
opuesta. Esta fuerza viene dada por

20mvV\ _, .
7)\ €

donde s es la separaracién entre el kink y el antikink. Los calculos realizados
son similares a los realizados para el caso del modelo A¢*. Vemos efectivamente
que la fuerza es atractiva y es también de tipo Yukawa. Anédlagomente se puede
calcular la fuerza de repulsién entre kink-kink y entre antikink-antikink. La
masa de las excitaciones entorno a uno cualquiera de los vacios tienen una masa
me =m.

Las tnicas soluciones estéticas vienen dadas por (3.35) pero este modelo
admite como soluciones no estaticas, verifican la ecuacién de movimiento (3.30),
configuraciones con un kink y un antikink. Los primeros que encontraron estas
soluciones fueron Seeger, Donth y Kochendorfer [36] y de forma independiente
Perring y Skyrme [51]. Estas soluciones vienen dadas por

sinh(vmt/v/1 — v?)
veosh(zm/v1 — v?)

El comportamiento asintético en el tiempo de la solucién (3.44) viene dado
por

F= (3.43)

oK. Ak (T, zo, 1) = 4% arctan [ (3.44)

lim ¢ ar(x,xo,t) = Prink <
t——00

V1 —0? Vv1—v?

m(m i v(t + A))) + d)antikink <m(x — U(t + A))

LAm dxax (@, 20, 1) = Prink

V1 — 2

(3.45)
donde A = 7% In|v] < 0 ya que v <1 (en unidades de ¢). La solucién dada
por (3.44) representa en el pasado remoto (¢ — —o0) una configuraciéon de un
kink y un antikink acercandose el uno al otro. Cuando el tiempo es negativo pero
finito tenemos la colision entre el kink y el antikink y la configuracién tiende a
cero cuando z — Foo0. En ¢ = 0 tenemos que ¢g/4x = 0y por lo tanto pode-
mos decir que, temporalmente, el kink y el antikink se “aniquilan”. Si el tiempo
tiende a +oo tendremos, segin (3.44), otra vez la pareja kink y el antikink.
La existencia de (3.44) como solucién exacta de (3.30) significa explicitamente
que cuando un kink y un antikink del modelo Seno-Gordon colisionan ellos dos
reaparecen con la misma velocidad y forma que al principio. la tnica diferencia
entre el estado inicial y final es que aparece un tiempo de retraso dado por A.

Tenemos otra solucién exacta dependiente del tiempo de (3.30) dada por

vsinh(ma/v/1 —v?)
cosh(tm/v1 — v?)

cuando t — 400 tendremos antes y después de la colisiéon dos kinks con la
misma velocidad, forma y unicamente se diferencian en la aparicién de un cierto
tiempo de retraso. En ambos casos, ¢x,x ¥ ¢K,ax, vemos que el kink y el
antikink del modelo Seno-Gordon verifican la definicién 2.6 y por lo tanto son

oK.k (x,x0,t) = 4% arctan [ (3.46)
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solitones. Apartir de ahora llamaremos a los kinks/antikinks de este modelo
solitén/antisolitén.

Ademads de (3.44) y (3.46) tenemos otra solucién exacta dependiente del
tiempo muy importante correspondiente a un estado ligado de solitén y antiso-
litén. Esta solucién viene dada por

sin(smt/v1+ s2)
scosh(zm/v1 + s2)

Esta solucién es conocida como doblete o mas popularmente como breather y
la hemos obtenido sustituyendo v = is en (3.44). La solucién dada por (3.47) es
real para cualquier valor finito de s. Entre (3.44) y (3.47) existe una diferencia
importante y es que cuando t — £0o la solucién ¢ no se separa en solitén y
antisoliton. En lugar de eso, la separacion relativa entre el soliton y antisoliton
oscila en el tiempo con un periodo T = % Podemos intentar el mismo
truco y considerar v = is en la solucién (3.46) pero en este caso la solucién
no es real. Por lo tanto, no existen estados ligados de una pareja de solitones.
Finalmente, podemos ver que empezando con una configuracién con multiples
solitones y antisolitones podemos, poniendo la adecuada velocidad relativa entre
un solitén y antisolitén imaginaria, tener una soluciéon exacta con un nimero
arbitrario de solitones, antisolitones y breathers.

La energfa del breather vendra dada por

op(z, 0, t) = 4£ arctan (3.47)
m

2My
E, it (3.48)
donde claramente se observa que la energia del estado ligado es mas pequena
que la suma de la masa del solitén y del antisolitéon. La diferencia es la energia
de enlace.

Sabemos que las tnicas soluciones estaticas son el solitén y el antisoliton pe-
ro el hecho de que podamos dar una expresiéon para soluciones multisoliténicas
dependientes del tiempo es debido a que el modelo de Seno-Gordon es un mode-
lo completamente integrable. No existe una definicién universalmente aceptada
de lo que es un sistema completamente integrable de ecuaciones diferenciales en
derivadas parciales. Existen un cierto nimero de caracteristicas comunes entre
todos aquellos sistemas considerados como integrales. Entre las caracteristicas
mas importantes son: la existencia de un nimero infinito de constantes de mo-
vimiento [72] [62], la existencia de pares de Lax [39], colisién eldstica entre los
solitones y la aplicacion de técnicas iterativas de obtencién de soluciones como
la Inverse Scattering Transform [2] y la transformacion de Bdcklund. Vamos a
estudiar las transformacion de Bdcklund para ello vamos a usar las coordenadas
del cono de luz definidas por

_ 1 L1
x zé(x—t) x =§($+t) (3.49)

las derivadas parciales respecto a las coordenadas del cono de luz vienen dadas
por
0 0 0 0 0 0
— = — = Oy =——=—+ = (3.50)
oz~ Oz Ot ozt Ox Ot
La ecuacién de movimiento en estas coordenadas viene dada por

0_
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m® (VX
040_¢ 7 sin ( — ¢> (3.51)

Tomaremos a partir de ahora m = A = 1 por simplicidad. La idea cru-
cial detras de esta transformacion es reducir la ecuacién parcial diferencial de
segundo grado en (3.51) a una pareja de ecuaciones diferenciales de primer or-
den. La pareja de ecuaciones diferenciales de primer orden para el modelo de
Seno-Gordon vienen dadas por

P Pr—¢0\ . [¢1+ o
|\ T ) masin| —5—

9 <¢1+¢0> . <¢1¢0>
([ =—2 ) =gsin [ —=
2 2

donde se comprueba facilmente que ¢1 y ¢¢ verifican (3.51). En particular, si
¢o = 0 obtenemos que ¢; es la solucién correspondiente a un solitén/antisolitén.

Podemos expresar la idea anterior mediante operadores. Supongamos que
¢o es una solucién de (3.51), si introducimos ¢g en (3.52) obtenemos ¢;, otra
solucién de (3.51), que depende de ¢g. Esta dependencia la podemos expresar
diciendo que existe un operador, By, tal que ¢1 = Bgy[dg]. Este operador se
denomina operador de Backlund con parametro de escala a. Obtendremos la
solucién de dos solitones (3.46) aplicando el operador B, a la solucién de un
solitén, y as{ sucesivamente. La pareja de ecuaciones (3.52) se pueden volver
muy complicadas de resolver en cuanto vamos a soluciones de mas de dos so-
litones, pero Bianchi demostré que las transformaciones de Backlund sucesivas
conmutan y que por lo tanto para ¢g se verifica que

(3.52)

¢1 = Ba1 [¢0]a (152 = Baz [(rb()] y ¢3 = Baz [d)l] = Ba1 [¢2] luego (3 53)
B, B, = Ba,Ba,

Esta propiedad se denomina Teorema de permutabilidad de Bianchi y permi-
te reducir la resolucién de (3.52) a un problema puramente algebraico. Para méds
detalles sobre las transformaciones de Béacklund y el teorema de permutabilidad
de Bianchi podemos ver [60} 59].

Vamos a estudiar ahora el tratamiento cuantico de la solucién del vacio, el
solitéon ¢k y el breather ¢,. Vamos a suponer que estamos en régimen débil
en la constante de acoplamiento, al igual que vimos en el caso de A¢?*, esto
significa que A/m? < 1. Vamos a empezar, como hicimos en el caso A\¢* con la
solucién estatica del vacio ¢g. La energia de las perturbaciones respecto de la
configuracién del vacio viene dada por

1 0?
1ol = Blon] + 3 [ donta) (=55 + ) i) (351)
donde hemos empleado que 62;23’ ol — 2 usando el funcional energia potencial

(3.28).
Introducimos nuevamente el sistema en una longitud finita L, siguiendo la
Sec. 2.7, e impondremos condiciones de contorno periddicas a los campos. Al
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final de todos los cédlculos tomaremos el limite L — 4oo. En primer lugar
debemos volver a resolver el problema espectral

82
<_8x2 + m2> (@) = Wyt () (3.55)
Considerando como soluciones de (3.55) las soluciones de ondas planas n(x),, =
L3¢ donde k, = Q’TT", con n € Z y sustituyendo la solucién de onda

plana en (3.55) obtenemos el espectro en frecuencias, que para este caso es
w(n) = \/k2 + m?2. La energfa en funcién de los nimeros de ocupacién N; viene
dado por

E{Nl}—hz <N1+ >m+0< ) (3.56)

Ni=1

La energia correspondiente al estado vacio E,,. viene dada por (3.56) con
N1 =0

Eyac = hZ\/erO( > (3.57)

Ni=1

Los valores con los distintos valores de N1 me daran la energia de las particulas
correspondientes a las excitaciones de del vacio ¢g.

Consideremos la solucién kink estética ¢ dada por (3.36) con ny = 1y con
xo = 0, por simplicidad. La expresién (2.58) nos queda

1 0% 82U
Bl6] = Blox] + 5 [ donte) |- 55 + 555 ) 4. -
(3.58)
2 A
87;1 + 1/d n(x) [—aaxz—i—m2cos <\WC¢K> (&)+...=
Empleamos que
2tan (X2
1 —cos —d) = 2sin? ﬂqﬁK =2 o ( (z)K) =
2m 1 + tan? (QQSK)
2 9 (3.59)
|:1 +e2mx:| |:emx + emz:|

= 2sech?(mzx)

luego hemos obtenido que

1 — cos ({5@() = 2sech?(mzx) (3.60)

Sustituyendo (3.60) en el operador de Schrédinger para este problema obte-
nemos que
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W = [_883322 +m?(1— 2$ech2(mx)} (3.61)
realizamos ahora en (3.61) el cambio de variable z = ma y nos queda que
2
W =m? [_822 +(1- 28€Ch2(z)):| (3.62)

El problema de valores propios para el operador de Schrodinger (3.62) se
expresa como

w2

82
2 2 _
m [_822 + (1 — 2sech (z))] ne(2) = Wnk(z) (3.63)

La solucién de (3.63) es bien conocida [42), pags. 73-74], [26, pags. 94-101] y
viene dada por:

1

2
» Un estado con autovalor =% = 0 y con autofuncién ng(z) = QW

» Un espectro continuo de estados caracterizados por wg = (1 + ¢*)m? con
. 1 . i
autofunciones 7, (z) = W(tanh(mx)z + q)eram®

Observamos claramente que, al igual que ocurria en A¢*, todos los w? son no
negativos, luego el solitén es estable como vimos en la Sec. 2.7. Ademaés también
vemos que existe un modo traslacional, w? = 0, el cual es debido a la invarianza
de la accién (3.29) bajo traslaciones. El modelo de Seno Gordon no presenta, a
diferencia del modelo \¢*, otro modo discreto a parte del modo traslacional, es
decir, no tiene modo vibracional.

Dado que el sistema esta contenido en un segmento de longuitud L tendremos
unos valores discretos para ¢, denotados por q,.

La energia de los estados perturbados respecto de la solucion clasica ¢x
vienen dados, nuevamente, por

8m?> 1 A
Einy = Y + mﬁqz (N w T 2) VE+1+0 (wﬂ) (3.64)

La expresion (3.64) da la energia del solitén. El primer término es la masa
en reposo del soliton, y el segundo representa a particulas escalares ya que
wn = v/(m?q2 + m?) es la relacién de dispersién de una particula escalar de
masa m y de momento mg,. La expresién para la energia (3.64) no contiene
el término asociado al modo vibracional, como si ocurria en (3.22). Dado que
volvemos a estar en el régimen de acoplamiento débil, A < m?2, tenemos que el
término clésico, 87)73 vuelve a dominar al término cuantico. El estado del solitén
cudntico del modelo Seno-Gordon serd cuando N,, = 0 en la expresién (3.64).
Obtenemos

8m? 1 A
Esolitén = T +mh E 5 q,% +14+0 <m2> (365)
qn

Volviendo a tomar la diferencia entre (3.57) y (3.65) como ya hicimos en el
modelo A¢* obtenemos que

40



3
B Eon =5 - 31 - (S v ne) <o ()
an an

(3.66)

Siguiendo [54] obtenemos, una vez tomado el limite L — +00 y manipu-

lando las divergencias que aparezcan, el siguiente valor para la masa del soliton

con las correcciones cuédnticas (masa normalizada) para el caso del solitén de
Seno-Gordon

3 A
Msol = sm = sm - m + 0 (2) (367)
m

Veamos ahora las correcciones a la masa del breather debido a los efectos
cuénticos. Dashen, Hasslacher, y Neveu mostraron [28 29] que los niveles de
energia pueden ser calculados a partir de

1 o
T =iTr / dTeF—H)T (3.68)

"H_E o

la cantidad e~*T puede ser calculado como un path integral

Tre 1T = / d[¢]eS™) (3.69)

donde la integracion es sobre caminos con un periodo 7'y el espacio 1D es tratado
como una circunferencia de longuitud L. Esta longuitud serd llevada al infinito
al final de todos los calculos. El la aproximacion de fase estacionaria el path
integral es dominado por las soluciones peoriddicas clasicas. En aproximacion
domiante los estados del breather tienen una masa M dada por la condicién de
que

S(r(M)) + Mr(M) = 21n (3.70)

16m°

donde 7(M) es el periodo de un breather con energia £ = M = NaEeh La expre-

sién anterior es una generalizacion a teorfa cuantica de campos de la condicién
de cuantizacién de Bohr-Sommerfeld de la mecanica cuantica no relativista.

Aplicando este procedimiento obtenemos que la masa de los estados excita-
dos viene dada por

16m? . nA
M, = S sin (16m2> (3.71)
con n € Z cumpliendo la condicién de que 1&22 < 3.

Dado que estamos en regimen de acoplamiento débil, ﬁ < 1, tenemos que
el estado del breather mas bajo (n = 1) tiene una masa de

M, =m [1 - é <16?n2)2 +0 (2;)] (3.72)

en el limite A — 0 obtenemos que la masa del breather es la misma que la
masa de la excitacién del vacio dada por mg = m. Es decir, el breather es el
bosén correspondiente a la excitacién del vacio, en el rango de A — 0, pero
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vista de una manera diferente. Los estados excitados tienen unas masas dadas

por
M, = M, [n - %(n?’ _n) (16;2)2 +0 (2;)] (3.73)

los cuales pueden ser entendendidos como estados ligados de n bosones. Una

mejor aproximacion se obtiene si se tiene en cuenta los efectos de las fluctuacio-

nes sobre los caminos clasicos. Para el caso del breather de Seno-Gordon estas

fluctuaciones pueden computarse de forma completa [28] y consiste en sustituir
2

25 por az = (1(i‘/7mk)) en (3.67) y (3.71) queddndonos, al mismo orden, las

8mm?2

siguientes expresiones

8m
Msoliton = o
1
(3.74)
1
M, = 6msin(%) con n=1,2...,< S—W
oy 16 (o351

Podemos expresar la segunda ecuacién de (3.74) como

. [nm A/(87m?)
M, = 2M,o; PR_AT ) :
n soliton S1I1 |: 2 1_ )\/(87rm2) (3 75)

2
Dado que n < &rTm — 1 tenemos que no existen breather si A > 47rm?. Por

lo tanto también esta ausente el bosén correspondiente a la excitacion del vacio
yva que lo hemos identificado con el breather en el caso de que n = 1.

Los solitones y breathers de Seno-Gordon tiene muchas aplicaciones, entre
otras, aparecen en: la propagacion de los fluzones (cuantos de flujo mégnetico)
en uniones Josephson [35] [12], los solitones de la versién discreta del modelo
Seno-Gordon, conocida como modelo Frenkel-Kontorva (consultar [I3] para una
revisién general), aparece en la teorfa de dislocaciones en cristales [I3], pdgs. 12
y ss], los solitones también aparecen en las ondas que aparecen en los materiales
ferromdgneticos y antiferromégneticos [75] [76]. Vamos a explicar brevemente
dos dambitos donde aparece los solitones y breathers del modelo Seno Gordon.
Aparecen en el estudio de las pseudoesferas y presenta un ejemplo del fenémeno
de bosonizacidn. Las pseudoesferas son superficies de R? de curvatura constante
-1. Este tipo de superficies se pueden parametrizar con un conjunto concreto de
coordenadas asintéticas en las cuales la primer y segunda forma fundamental
quedan de la siguiente forma

I(x,t) = dx® + cos q(dzdt + dtdx) + dt? (3.76)
I1(z,t) = sin q(dzdt + dtdx) '

donde ¢ es el angulo entre las lineas correspondiente a la z-curva y la t-curva.
Las ecuaciones de Gauss y Codazzi con esta parametrizaciéon se reducen a una
Unica ecuaciéon dada por

qxt = Sinq (377)

Claramente (3.57) corresponde a la ecuacién de Seno-Gordon en coordenadas
del cono de luz. Aplicando el Teorema fundamental de las superficies deduci-
mos que existe un correspondencia, al menos localmente, entre superficies de
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c)

donde a), b) y ¢) representan la pseudosuperficie correspondiente a soluciones
con breather, 2-solitones y un solitén respectivamente.

Veamos ahora la segunda aplicacion de la ecuacién de Seno-Gordon. Consi-
deremos un modelo de un campo fermiénico ¥ (Campo de Dirac) de masa M
en (1+1)-dimensiones dado por la densidad lagrangiana

- g _ 2
£ = 5(ir" 0, — M)y = 5 (57"0) (3.78)
donde y* son las matrices 2 x 2, dadas, en la representacion de Weyl, por

S < (1) (1) ) y Ayl = ( (Z) _OZ ) y 1 es la solucién en ondas planas de la

ecuacion de Dirac y viene representado por un spinor de dos componentes reales
dado por

Yo t) = ( ;‘Eg )ewt (3.79)

Este modelo se conoce como el modelo de Thirring [66]. El espectro de
particulas incluye un fermién y un antifermién, ambos de masa M. Si g > 0 la
interaccion es atractiva y por lo tanto los estados ligados de fermién-antifermion
son posibles. El estado ligado de menor energia tiene una masa, si g es pequeno,
de

>, 4g° 4
M=12-g —|—7—|—(9(g) (3.80)

Volviendo a (3.75), podemos realizar el cambio de variable dado por ﬁ =
1

=z Y estudiar el espectro para A < 4rm?. Obtenemos que el estado del breather

de menor energia tiene una masa de
453

My = My, [2 - 6%+ —+ 0(54)] (3.81)

Se observa claramente que la expresién dada por (3.80) es equivalente a la
dada por (3.81) si hacemos la siguiente identificacién
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A 1
— = 3.82
4mm? 14+ £ (3.82)
Vemos que acomplamiento débil ﬁ — 0 en el modelo Seno-Gordon corres-
ponde a un acomplamiento fuerte ¢ — +00 en el modelo de Thirring. Ademés
tenemos también la siguientes equivalencias entre ambos modelos:

A
(42> — 0 excitacién del vacio +— estado ligado de fermién-antifermién (g — +00)
™m

A — 4m? Solitén «— v (g +—0)
A — 4m? Antisolitén «— 1 (g +—0)

Ademis, el modelo de Thirring tiene la siguiente transformacién ¥ — e*®e)
con « € R como una simetria de su accién y usando las equivalencias ante-
riorieres podemos ver que el nimero férmionico (correspondiente a la simetria
anterior) es equivalente a la carga topoldgica en el modelo Seno-Gordon. Cole-
man en [I8] dié la demostracién rigurosa. Esta equivalencia no es un fenémeno
aislado, debido a que en un espacio (141) dimensional el grupo de Poincaré se
reduce a reflexiones y traslaciones, por lo tanto, no existe el spin en (1+1) di-
mensiones (aunque los spinores y escalares son distintos debido a que tienen
distintas estadisticas). Una equivalencia como esta deberfa permitir construir
operadores que anticonmuten a partir de operadores bosénicos. Este procedi-
miento se denomina bosonizacion. Coleman [18] y Mandelstam [44] introdujeron
el concepto de bosonizacién y éste tltimo dié una construccién explicita de un
operador construido a partir de la exponencial de un operador bosénico que veri-
ficaba relaciones de anticonmutacién. Actualmente, la bosonizacién de Coleman
y Mandelstam se conoce como bosonizacion abeliana.

El proceso de bosonizacion anterior no es valido para modelos fermiénicos
no abelianos, como QCD en dos dimensiones. Witten contruyé en [71], para el
caso de fermiones de Majorana, un procedimiento de bosonizacién no abeliana.

La bosonizacién en el caso de Thirrring y Seno-Gordon tiene lugar como una
dualidad entre el régimen débil en una de las teorias con el régimen fuerte en la
otra. Esta dualidad se denomina dualidad T. Una dualidad de este tipo es uno
de los ingredientes esenciales de la teoria M.
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Capitulo 4

Conclusiones

A lo largo de este trabajo hemos discutido los modelos de campos escalares
en (141) dimensiones sometidos a un funcional energia potencial U[¢] definido
positivo y con mas de un minimo. La ecuacién de movimiento para estos campos
son ecuaciones en derivadas parciales no lineales que admiten soluciones no
triviales de energia finita. Estas soluciones, que hemos llamado genéricamente
como kink, deben su existencia al hecho de que la variedad del vacios tiene una
topologia no trivial. Una vez cuantizada la teoria para estos modelos nos hemos
encontrado con dos tipos de particulas elementales, que son:

= En primer lugar, tenemos las particulas correspondientes a las pequenas
fluctuaciones respecto del vacio que tienen una masa mg dada por (2.15).

» En segundo lugar, tenemos las soluciones de energfa finita kink/antikink
que son particulas, incluso a nivel cldsico, de masa M,; dada en (2.34). La
cuantizacién, en el régimen de acoplamiento débil, nos da correcciones a
la masa clésica.

Hemos visto en el modelo Seno-Gordon que existen particulas que repre-
sentan un estado ligado de solitén/antisolitén, los breathers. El modelo de \¢*
poseé los oscilones, un estado ligado oscilante de vida muy larga denominado
Oscilén [48, 43, 61]. Podriamos decir que esta vida tan larga es debido a que
los oscilones son “casi” breathers debido a que el potencial (3.1) y el potencial
(3.28) tienen una forma muy aproximada cerca de los minimos del potencial
Seno-Gordon.

Hemos estudiado la cuantizacién de estos modelos escalares en el supuesto de
que estamos en régimen de acoplamiento débil. En el caso de que estuvieramos
en régimen de acoplamiento fuerte, aunque el kink puede ser todavia solucién
clasica de las ecuaciones de movimiento, el andlisis perturbativo que hemos
realizado para el tratamiento cudntico fallaria. Sin embargo, podemos salvar este
obstédculo, en algunos casos, gracias al fenémeno de la dualidad como ya hemos
visto en el caso del modelo bosénico de Seno-Gordon y el modelo fermiénico de
Thirrring.

Hemos visto un modelo (el modelo Seno Gordon) un que no poseia modos
vibracionales para el operador de Schrédinger y que tenia una colision trivial
entre dos de sus solitones. También hemos analizado el caso contrario, un modelo
(el modelo A\¢*) que tenfa una colision no trivial entre dos de sus kinks y que en
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este caso posefa modos vibracionales es un correspondiente problema espectral.
Atendiendo a esta situaciéon podriamos formular la siguiente conjetura

Conjetura. La presencia de modos vibracionales en el correspondiente pro-
blema de valores propios es condicion suficiente para garantizar la no integrabi-
lidad del modelo bajo estudio.

Esta conjetura fue primero estableciada en un estudio sobre transicién desde
el modelo Landau-Lifshitz, que es no integrable, a un modelo que describia un
material ferromagnetico biaxial en un campo mégnetico. Este estudio puede
encontrarse en [7].
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