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Caṕıtulo 1

Introducción

Esta trabajo esta dedicado a la revisión de las teoŕıas de campos escalares
en 1+1 dimensiones, tanto a nivel clásico como a nivel cuántico, de un campo
escalar φ con una sola componente sometido a un funcional enerǵıa potencial
U [φ]. Las teoŕıas más interesantes son aquellas en las que el funcional enerǵıa
potencial U [φ] posee más de un mı́nimo. Estudiaremos exclusivamente este tipo
de teoŕıas en este trabajo.

La ecuación de movimiento para el campo φ es una ecuación en derivadas
parciales no lineal que puede presenta soluciones cuya densidad de enerǵıa per-
manece localizada a lo largo de la evolución del sistema, es decir, soluciones de
naturaleza no dispersiva. La literatura llama onda solitaria de forma genérica
a ésta solución. El término solitón también aparece en la literatura relaciona-
da con este tópico, fue introducido por Norman J. Zabusky y Martin Kruskal
en 1965 [73] y hace referencia a una onda solitaria que preserva su identidad
(salvo, quizás, un cambio de fase) tras un proceso de colisión con otra onda
solitaria. Daremos una definición precisa de estos conceptos en la Sec. 2.4. De
forma genérica las soluciones de una teoŕıa de campos que tienen una densidad
de enerǵıa localizada suelen ser denominadas defectos topológicos. El teorema
de Derrick [20], [17, pág. 194] nos permite afirmar, en el caso de una teoŕıa de
campos escalares, que la presencia de ondas solitarias, que viajan a velocidad
constante, tiene lugar sólo en un espacio-tiempo de (1+1) dimensiones. En este
caso particular, estas soluciones reciben el nombre de kinks. El estudio de las
propiedades generales de los kinks es el objetivo fundamental de este trabajo. En
(2+1) y (3+1) dimensiones, en el ámbito de las teoŕıas cosmológicas, se relajan
algunas de las exigencias sobre las ondas solitarias dando origen, por ejemplo,
a las paredes de dominio (domain walls). Las paredes de dominio son defectos
topológicos con estructura planar que aparecen cuando colocamos un kink en
un espacio con más de una dimensión espacial [68, pág. 7]. En el marco de las
teoŕıas gauge los defectos topológicos aparecen en dos contextos distintos: en
primer lugar, en el contexto de las teoŕıas abelianas en (2+1) dimensiones con
un grupo de gauge U(1). En este caso el defecto topológico se denomina vórtice
[52, pág. 238] y el ejemplo protot́ıpico de este tipo de defecto topológico es el
vórtice de Nielsen-Olesen [47]. En segundo lugar, en el contexto de las teoŕıas no
abelianas en (3+1) dimensiones con grupo de gauge SU(2) aparecen los defec-
tos topológicos que denominamos monopolos y que fueron independientemente
descubiertos por ’t Hooft y Polyakov [65, 53].
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Esta memoria esta dividida fundamentalmente en dos caṕıtulos:

El primer caṕıtulo es una recopilación de las caracteŕısticas generales de los
modelos escalares en (1+1) dimensiones. Especialmente estudiaremos las
propiedades clásicas y cuánticas de los kinks. También dejaremos fijados
los convenios y notaciones que emplearemos en el siguiente caṕıtulo.

El segundo caṕıtulo es una aplicación del primero a dos modelos escalares:
el modelo λφ4 y el modelo Seno-Gordon. También comentaremos en este
caṕıtulo algunas particularidades que poseen estos dos modelos.

1.1. Notas históricas

Dado que el concepto de kink es una parte fundamental en este trabajo
vamos a dar un repaso al origen histórico de este objeto.

La historia de la teoŕıa de solitones se remonta al mes de Agosto del año 1834,
cuando el naturalista e ingeniero naval John Scott Russell observó, montado en
su caballo, una “onda de traslación” viajando en un canal cercano a Edimburgo.
Se puede leer el relato sobre el fenómeno hecho por el propio Russell en [58].

Russell se dedicó a investigar el fenómeno y después de realizar muchos
experimentos con este tipo de ondas en un tanque de ondas de su propio diseño,
obtuvó la fórmula que relaciona la velocidad y la altura de estas ondas

c =
√
g(h+ η) (1.1)

donde c es la velocidad de la onda solitaria, η es la amplitud de la onda, h es
la profundidad del canal y g es la aceleración de la gravedad. Russell propuso
que el objeto solitario que hab́ıa encontrado realmente representaba un tipo
general de soluciones de la Hidrodinámica, que primeramente denominó “ondas
de traslación”, y más tarde “ondas solitarias”.

El éxito de Russell fue mucho menor en lo que respecta a convencer a los
cient́ıficos de su tiempo de estos hechos. Airy y Stokes, las mayores autoridades
en la materia de la época, aparentemente “demostraron” que una onda de ese
tipo era necesariamente inestable. Los trabajos posteriores de Boussinesq en
1871 [8], Lord Rayleigh en 1876 [56] y finalmente D.J. Korteweg y G. de Vries en
1895 [37] señalaron los errores de Airy y Stokes y reivindicaron las conclusiones
de Russell.

En [37] Korteweg y de Vries propusieron la siguiente ecuación que permite
describir ondas sobre fluidos de densidad ρ y tensión superficial T en canales
poco profundos unidimensionales y de pequeña amplitud.

∂η

∂t
=

3

2

√
g

h

∂

∂x

(
1

2
η2 +

2

3
αη +

σ

3

∂2η

∂x2

)
(1.2)

donde η = η(x, t) es es la elevación de la onda sobre el nivel de equilibrio h, α
es un parámetro constante relativo al movimiento uniforme del ĺıquido y g es la
aceleración de la gravedad. El parámetro σ que aparece en (1.2) viene dado por
σ = h

3 −
Th
gρ . La ecuación (1.2) recibe el nombre de ecuación Korteweg-de Vries

(ecuación KdV para abreviar).
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Korteweg y de Vries dieron una explicación anaĺıtica completa de lo que hoy
en d́ıa se conoce como el solitón de la ecuación KdV. La ecuación (1.2) puede ser
llevada a una forma adimensional realizando los siguientes cambios de variables

τ =
1

2

√
g

hσ
t ξ = − 1√

σ
x u =

1

2
η +

1

3
α (1.3)

obtenemos que la ecuación KdV (1.2) se puede expresar como

uτ + 6uuξ + uξξξ = 0 (1.4)

El nombre de ecuación KdV habitualmente hace referencia a la ecuación
(1.4). Korteweg y de Vries descubrieron que la ecuación (1.4) presentaba solu-
ciones tipo onda solitaria (ver [1, págs. 2,3]) dada por

u(ξ, τ) = 2κ2sech2
{
κ(ξ − 4κ2τ − ξ0)

}
(1.5)

donde κ y ξ0 son constantes. La velocidad de la la onda solitaria (1.4) es 4κ2 que
es, justamente, el doble de amplitud 2κ2 y la constante ξ0 es una fase inicial.
Mas tarde, Zabusky y Kruskal demostraron [73] que la onda solitaria (1.5) era
en realidad un solitón.

El estudio de las ondas solitarias fue prácticamente olvidado hasta tal punto
que el resurgimiento de dichas soluciones supuso de nuevo cierta sorpresa.

Entre 1952 y 1955 se construyó en Los Álamos una nueva computadora, MA-
NIAC I, para la realización de los cálculos necesarios en el diseño de la primera
bomba de hidrógeno. E. Fermi y S. Ulam propusieron un problema-prueba para
calibrar las posibilidades de la nueva máquina; buscaron un problema sencillo de
establecer tal que su resolución requiriera una cantidad de cálculos tan grande
que no pudiera ser resuelto “a mano” ni utilizando las computadoras mecáni-
cas existentes. Naturalmente, deb́ıa de tratarse de un problema con solución
ya conocida. La propuesta que realizaron fue el estudio de una cuerda elásti-
ca, con extremos fijos, sujeta no sólo a la fuerza elástica usual, de intensidad
proporcional al estiramiento, sino también a un término corrector no lineal. La
cuestión a estudiar era cómo el movimiento global termalizaŕıa al cabo del tiem-
po. Se trataba, por tanto, de verificar un hecho que constitúıa un acto de fe en
mecánica estad́ıstica: la creencia de que cuando un sistema mecánico, con varios
grados de libertad y cercano a una posición de equilibrio estable, es sometido
a una interacción no lineal genérica, ésta termalizará su enerǵıa total, es decir,
la enerǵıa estaŕıa equidistribuida entre los modos normales del correspondiente
sistema linealizado. Fermi pensaba que hab́ıa demostrado este hecho, [23].

El experimento fue llevado a cabo por Fermi, Ulam y J. Pasta, quien pro-
gramó el MANIAC I. El resultado del hoy conocido como experimento de Fermi-
Pasta-Ulam (FPU para abreviar) fue completamente diferente a lo que se espe-
raba. Los detalles del planteamiento y de los cálculos realizados pueden verse
en el art́ıculo original [24]. El experimento se realizó discretizando la cuerda
en un número finito de puntos, de tal manera que las ecuaciones en derivadas
parciales que describen el movimiento de la cuerda pasan a ser un número finito
de ecuaciones diferenciales ordinarias

mÿn = K (yn+1 + yn−1 − 2yn) [1 + α (yn+1 − yn−1)] (1.6)
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donde yn = yn(t) con n = 1 . . . N−1 e y0 = yN = 0. Las condiciones iniciales que
se introdujeron en la computadora correspond́ıan a los valores iniciales dados
por yn(0) = sin(nπN ), ẏn(0) = 0 con N = 64. La variable yn en (1.6) representa
el desplazamiento de la n-ésima masa respecto del equilibrio.

El resultado del experimento fue que la enerǵıa, inicialmente concentrada
en el primer modo, no se distribuyó por igual entre todos los modos sino que
fue pasando sucesivamente, casi en su totalidad, de modo en modo. De esta
manera, al cabo de un cierto tiempo la enerǵıa hab́ıa retornado al primer modo
con una exactitud del 99 % y el proceso se reiniciaba. Esta aparente paradoja
en el experimento FPU se llamado desde entonces problema FPU. Se puede
encontrar una revisión reciente sobre el problema FPU en [5].

La explicación del problema FPU no fue completada hasta diez años des-
pués en el famoso art́ıculo de M. Kruskal y N. Zabusky de 1965 [73]. Kruskal
y Zabusky obtuvieron el ĺımite continuo del problema FPU (ver también [49],
[1, págs. 17-18]) llegando a una ecuación diferencial en derivadas parciales equi-
valente a la ecuación KdV (1.4). El estudio numérico hecho por Zabusky y
Kruskal en [73] reveló la presencia de soluciones de la ecuación KdV de tipo
onda solitaria que preservan su identidad (salvo un posible cambio de fase) tras
interraccionar no linealmente con otras ondas solitarias. Estos autores introdu-
jeron por primera vez el término solitón para estas ondas solitarias debido a
su comportamiento análogo al de las part́ıculas, en particular encontraron que
la solución de la ecuación KdV dada por (1.5) es un solitón. Estos resultados
numéricos dieron origen a un dearrollo posterior de ciertas técnicas para tratar
dichas situaciones, generando nuevas áreas en la Matemática Aplicada y F́ısica
Matemática.
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Caṕıtulo 2

Estudio de los modelos
escalares no lineales en
(1+1) dimensiones

Vamos a introducir en este caṕıtulo los conceptos generales que serán em-
pleados después, pero en primer lugar tenemos que hacer un comentario de el
porqué la dimensión (1+1) es tan especial para campos escalares.

2.1. Teorema de Derrick

El f́ısico G.H. Derrick demostró en 1964 [20] que las soluciones de enerǵıa fini-
ta de las ecuaciones de ondas no lineales para campos escalares son estables sólo
en 1+1 dimensiones. Consideramos los campos escalares Φ ∈Maps

(
Rn+1,RN

)
,

donde Maps
(
Rn+1,RN

)
indica el conjunto de aplicaciones continuas de Rn+1

a RN .

Teorema 2.1 (Teorema de Derrick). Sea φ un campo escalar de N compo-
nentes, Φ(xµ) =

(
φ1(xµ), · · · , φN (xµ)

)
donde xµ = (t, xj), con j = 1, . . . n, y

U [Φ] = U [φ1, · · · , φN ] es el funcional enerǵıa potencial que es no negativo y sólo
es cero para los estados fundamentales (vaćıos) de la teoŕıa. Luego, para n ≥ 2,
las únicas soluciones no singulares, independientes del tiempo y de enerǵıa finita
de las ecuaciones de movimiento para el campo φ derivadas de L son los estados
fundamentales.

Recalcamos que el teorema de Derrick sólo imposibilita la existencia de solu-
ciones independientes del tiempo de enerǵıa finita en el caso de emplear campos
escalares en (n+1) dimensiones con n > 1, pero no dice nada sobre la existencia
de soluciones dependientes del tiempo. En [40] se realiza la primera construcción
de modelos de campos escalares que poseen soluciones de enerǵıa finita y son,
además, dependientes del tiempo.

Una extensión del teorema de Derrick, para el caso de una densidad la-
grangiana que contenga campos escalares y campos gauge, puede verse en [17,
págs. 198-205 y 398-400]. La extensión a campos gauge es importante por varias
razones:
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En (3+1) dimensiones tener campos gauge es la única posibilidad de tener
soluciones independientes del tiempo y de enerǵıa finita.

La visión actual de las cuatro interacciones fundamentales es mediante
teoŕıas gauge.

2.2. Dinámica en teoŕıas escalares en (1+1) di-
mensiones

El teorema de Derrick, comentado anteriormente, nos dice que sólo en teoŕıas
escalares en (1+1) dimensiones existen soluciones de enerǵıa finita e indepen-
dientes del tiempo. A continuación vamos a estudiar la dinámica de los campos
escalares, que por simplicidad, salvo que se diga lo contrario, consideraremos
de una sola componente, sometidos a un funcional enerǵıa potencial dado por
U [φ].

Consideremos la dinámica del campo escalar real φ dada por la densidad
lagrangiana

L =
1

2
∂µφ∂µφ− U [φ] con µ = 0, 1 (2.1)

Suponemos que U [φ] tiene un valor mı́nimo y añadiendo una constante, lo
cual no cambia la dinámica del campo φ, podemos llevar el valor mı́nimo de
U [φ] a 0. Por lo tanto, a partir de ahora consideraremos un funcional enerǵıa
potencial que verifica que U [φ] ≥ 0.

La ecuación de movimiento para el campo φ, ecuación de Euler-Lagrange,
vienen dada por

∂2φ

∂t2
− ∂2φ

∂x2
+
δU [φ]

δφ
= 0 (2.2)

donde hemos empleado la métrica para el espacio de Minkowski dada por

ηµν =

(
1 0
0 −1

)
. Además, entendemos por δU [φ]

δφ la derivada de Fréchet del

funcional U [φ] respecto del campo φ. La definición formal y las reglas de diferen-
ciabilidad para la diferencial de Fréchet pueden encontrarse en [27, págs. 37-39].
El lector también podŕıa consultar, entre otros libros, [25, 14] para profundizar
en el Cálculo de Variaciones.

Los fenómenos más interesantes, como ya hemos comentado en la introduc-
ción, ocurren en el caso en que U [φ] tenga más de un mı́nimo.

La acción de la densidad lagrangiana (2.1) viene dada por

S[φ] =

∫
d2x

(
1

2
∂µφ∂µφ− U [φ]

)
(2.3)

Vamos a considerar, a no ser que se diga lo contrario, el sistema de unidades
naturales definidas por c = ~ = 1. Usando este sistema podemos expresar cual-
quier otra magnitud en términos de una única escala. Elegimos como escala para
todas las magnitudes con dimensiones la masa M , aunque, equivalentemente, se
podŕıa tomar la enerǵıa E ya que E = mc2 = m. Dado que 1 = [c] = L

T tenemos
que L = T y dado que 1 = [~] = ET = M [c]2T = MT tenemos que T = M−1.
Podemos concluir que L = M−1.
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La acción S tiene dimensiones de ~, (se deduce trivialmente del path integral
de Feynman ya que el argumento de la exponencial del integrando que aparece
en la integral de Feynman, iS~ , debe ser adimensional) y dado que en nuestro
caso tenemos que ~ = 1, concluimos que la acción es una cantidad adimensional.

El término cinético de la acción (2.3) viene dado por

S[φ] =

∫
d2x

1

2
∂µφ∂µφ

Esta acción nos permitirá conocer la dimensión del campo escalar φ. Veamos,
pues, el análisis dimensional de la acción anterior. La medida de la integral
anterior, d2x, tiene dimensiones de M−2, [d2x] = L2 = M−2, y las derivadas ∂µ,
∂µ tienen dimensiones de M , [∂µ] = [∂µ] = L−1 = M . Por lo tanto deducimos,
de la condición de que la acción es adimensional, que el campo φ es adimensional.
Luego usando la adimensionalidad de φ podemos ver que cualquier funcional de
enerǵıa potencial U [φ] es renormalizable en (1+1) dimensiones. En particular,
L.J. Boya y J. Casahorrán estudian en [10] las soluciones tipo kink en dos
familias distintas de U [φ].

La acción (2.3) es invariante bajo las traslaciones espacio-temporales, luego
por el teorema de Noether tenemos una corriente conservada, el tensor enerǵıa-
momento Tµν . Existe una enorme cantidad de literatura sobre teoŕıa cuántica
de campos, podemos citar por ejemplo [55, 40, 50, 70]. El tensor de enerǵıa-
momento viene dado por:

Tµν = ∂µφ∂νφ− ηµνL (2.4)

La integral de Tµ0 a todo el espacio nos da los momentos. Las momentos
vienen dados por el funcional bivector enerǵıa-momento Pµ[φ] para la configu-
ración del campo φ.

Pµ[φ] =

∫
dxTµ0 =

∫
dx
(
∂µφ∂0φ− ηµ0L

)
(2.5)

que corresponden al funcional enerǵıa, P 0[φ], y al funcional momento lineal,
P 1[φ], dados por

P 0[φ] = E[φ] =

∫
dx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+ U [φ]

)

P 1[φ] = −
∫
dx

(
∂φ

∂x

∂φ

∂t

) (2.6)

La acción (2.3) también es invariante bajo transformaciones de Lorentz
(boost) dadas por

t′ = γ (t− vx)

x′ = γ
(
x− v

c2
t
) (2.7)

donde γ = 1√
1−( vc )

2
. Tanto en (2.7) como en γ tomaremos c = 1. Las trans-

formaciones dadas por (2.7) forman el grupo de Lorentz en (1+1) dimensiones,
SO(1, 1). EL grupo de Poincaré en (1+1) dimensiones, denotado por P1

1 , se
define como el producto semidirecto del grupo de Lorentz SO(1, 1) y el grupo
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R1,1 de traslaciones en una dimensión espacial y una dimensión temporal. Luego
tenemos que

P1
1 = SO(1, 1) nR1,1

Estamos interesados en estudiar las configuraciones del campo φ que poseen
una enerǵıa total finita. La expresión del funcional enerǵıa ya hemos visto que
viene dada por

E[φ] =

∫
dx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+ U [φ]

)
(2.8)

la condición de enerǵıa finita implica, sobre la configuración del campo φ, que:

∂φ

∂t
−→ 0,

∂φ

∂x
−→ 0 y U [φ] −→ 0 si |x| −→ ∞ (2.9)

Denotamos por φ±∞ el valor de la configuración de campo φ en el infinito, es
decir, ĺım|x|−→∞ φ(x, t) = φ±∞. Estos valores se denominarán a partir de ahora
valores asintóticos. Vemos que el valor asintótico del campo φ, φ±∞, debido a
las dos primeras condiciones de (2.8) no depende ni de x ni de t, y además por la
última condición de (2.8) tenemos que φ±∞ es uno de los mı́nimos del funcional
enerǵıa potencial, U(φ±∞) = 0.

Denotamos por C al conjunto de todas las configuraciones del campo φ de
enerǵıa finita

C = {φ ∈Maps(R,R)|E[φ] <∞} = {φ ∈Maps(R,R)|φ±∞ = cte, U [φ±∞] = 0}
(2.10)

De aquellas configuraciones presentadas por el campo φ de enerǵıa finita
serán importantes las configuraciones que se corresponden con los mı́nimos ab-
solutos del funcional enerǵıa (2.8), debido a que, desde el punto de vista cuánti-
co, estas soluciones clásicas proporcionan el valor esperado del operador campo
en el estado fundamental de la teoŕıa. Estas soluciones clásicas se denominan
configuraciones del vaćıo.

2.3. Configuraciones del vaćıo y algunas nocio-
nes topológicas

Definición 2.1. Definimos las configuraciones del vaćıo, denotadas por φ0, a
las configuraciones de los campos que, usando U [φ] ≥ 0, verifican

E[φ0] = 0 (2.11)

Usando (2.11) y (2.8) vemos que se debe de cumplir que:

∂φ0

∂x
=
∂φ0

∂t
= 0 y U(φ0) = 0 (2.12)

Dado que U [φ] ≥ 0 y de la segunda condición en (2.12) vemos que se tie-

ne ∂U [φ]
∂φ

∣∣∣
φ=φ0

= 0, luego las configuraciones del vaćıo son los mı́nimos de U .
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Recordando la definición de φ±∞ vemos que los valores asintóticos de las confi-
guraciones del campo están entre las configuraciones del vaćıo.

Consideremos fluctuaciones, denotadas por δφ(x, t), alrededor de una de las
posibles configuraciones clásicas del vaćıo φ0.

φ(x, t) = φ0 + δφ(x, t) (2.13)

Introduciendo (2.13) en (2.1) y despreciando los términos superiores al orden
cuadrático en δφ, debido a que suponemos que la perturbación sobre φ0 es
pequeña, obtenemos que

L =
1

2
∂µδφ∂µδφ−

1

2

δ2U [φ]

δφ2

∣∣∣∣
φ=φ0

(δφ)
2

(2.14)

La densidad lagrangiana (2.14) nos muestra que, dentro de la aproximación
de pequeñas fluctuaciones alrededor del vaćıo, el campo δφ(x, t), se comportan
como si fuera un campo libre. Esto significa que, una vez cuantizada la teoŕıa,
los campos δφ vendrán representadas por part́ıculas escalares de masa mφ dada
por

mφ =

√
δ2U [φ0]

δφ2
(2.15)

donde, a partir de ahora para agilizar la notación, emplearemos δnU [φc]
δφn para

indicar δnU [φc]
δφn

∣∣∣
φ=φc

. Las part́ıculas escalares de masa mφ representan, por lo

tanto, las excitaciones elementales del campo φ.

Definición 2.2. Definimos la variedad del vaćıo, denotada por M, al subcon-
junto del espacio C formado por las configuraciones del vaćıo

M = {φ ∈ C|U [φ] = 0} (2.16)

Consideremos, por un momento, un caso más general en el que Φ ∈Maps
(
Rn+1,RN

)
,

es decir, Φ(xµ) es un campo escalar en n dimensiones espaciales y con N com-
ponentes dado por Φ(xµ) =

(
φ1(xµ), · · · , φN (xµ)

)
. La acción para el campo Φ

vendrá dada por

S[Φ] =

∫
dn+1x

(
1

2
∂µΦ · ∂µΦ− U [Φ]

)
(2.17)

La configuración del campo Φ tendrá una enerǵıa dada por

E[Φ] =

∫
dn+1x

(
1

2
∇Φ · ∇Φ +

1

2

∂Φ

∂t
· ∂Φ

∂t
+ U [Φ]

)
(2.18)

Las configuraciones Φ que verifican el funcional enerǵıa

E[Φ] =

∫
dnx

(
1

2
∇Φ · ∇Φ + U [Φ]

)
(2.19)

se denominan configuraciones estáticas, es decir, Φ es independiente del tiempo.
Sea G el grupo de transformaciones que actuán sobre el espacio interno N -

dimensional del campo Φ estático tal que dejan invariante el funcional enerǵıa
dado en (2.19), es decir
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E[Φ] = E[Φg] (2.20)

donde g es un elemento del grupo G y por Φg entendemos el campo Φ después
de haberle aplicado la trasnformación g. El grupo G es una simetŕıa de la acción
(2.17) śı (2.20) es cierta para todo g ∈ G y para cualquier configuración estática
del campo Φ. Sea Φ0 una configuración del vaćıo, Φ0 ∈M, luego E[Φ0] = 0 y por
(2.20) vemos que E[Φg

0] = 0 , luego Φg
0 ∈ M. Denotamos por OΦ0 al conjunto

de todas las configuraciones del vaćıo que se obtienen como trasnformación de
Φ0 mediante los elementos g de G, es decir, OΦ0

es la órbita de Φ0

OΦ0
= {φg0 ∈M|g ∈ G} de forma que M =

⋃
Φ0∈M

OΦ0
(2.21)

Sea H un subgrupo de G, admitiendo la posibilidad de que sea trivial, cuyos
elementos h ∈ H dejan fijo Φ0, es decir, Φh0 = Φ0. El grupo H recibe el nombre
del grupo estabilizador (o grupo pequeño) de Φ0.

Por lo tanto un elemento gh ∈ G actuando sobre Φ0 da la misma configura-
ción de vaćıo que actuando sólo con g ∈ G ya que Φhg0 = (Φh0 )g = Φg0. Hemos
visto que todos los elementos de M de la forma Φg0, para cualquier g, tienen la
misma enerǵıa que Φ0 pero no son todos iguales entre śı. Todos los elementos
de G de la forma gh para un g ∈ G estan dentro del conjunto {gh|g ∈ G} deno-
tado por gH y que se denomina coset a izquierdas de g. El conjunto gH es una
clase de equivalencia asociada a la relación de equivalencia sobre G dada por
g1 ∼ g2 si g2 = g1h. La definición de los cosets a derechas Hg se hace de forma
análoga. El conjunto cociente es el conjunto formados por todos los cosets y se
denota G/H. Dos elementos distintos en G/H, es decir, en distintas clases de
equivalencia nos induce, por todo lo comentado anteriormente, dos elementos
distintintos en M, Φg10 6= Φg10 , luego se puede probar que M∼= G/H.

La equivalenciaM∼= G/H nos permite conectar el grupo de las simetŕıas G
de la acción (2.17) con la variedad de vaćıos M y poder estudiar la topoloǵıa
de M en términos de la simetŕıas del modelo.

La topoloǵıa de una variedad, V, se puede estudiar, en parte, mediante sus
grupos de homotoṕıa, πd(V, x0), d = 0, 1, 2 . . .. La idea es considerar maps desde
Sd (la d− esfera) a M tal que la imagen de una cualquiera de las aplicaciones
continuas contenga al punto x0 ∈ M. Dos maps se dicen que son homótopos si
dado un map podemos deformarlo de forma continua y obtener el otro. Podemos
definir una relación de equivalencia en el conjunto formado por todos los maps
de Sd a M y el conjunto formado por todas las clases de equivalencia, deno-
minadas clases de homotoṕıa, es πd(M, x0), el d-ésimo grupo de homotoṕıa. En
πd(M, x0), excepto para d = 0, se puede definir una operación binaria y darle
una estructura de grupo. Para más detalles se puede consultar [30, pág. 21] y
también se pueden consultar [63, pág. 111],[69, pág. 84] donde se calculan los
grupos de homotoṕıa para varias variedades.

Definimos Sn−1
∞ = {x ∈ Rn||x| −→ ∞}, donde, claramente, Sn−1

∞ ⊂ Rn. Los
valores asintóticos de la configuración del campo Φ, Φ∞, los podemos expresar
como Φ∞ ≡ Φ(x ∈ Sn−1

∞ ). Las configuraciones Φ∞, tomarán distintos valores
en las distintas direcciones en las que nos aproximemos al infinito, pero, en
cualquier caso, todos tendrán enerǵıa total cero, Φ∞ ∈ M. Podemos ver cada
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una de las configuraciones asintóticas del campo como un map entre la esfera
Sn−1
∞ y la variedad de vaćıos M

Φ∞ : Sn−1
∞ −→M (2.22)

El conjunto formado por todas las clases de homotoṕıa de los maps (2.22)
forman el (n− 1)-ésimo grupo de homotoṕıa.

Supongamos que tenemos dos configuraciones estáticas Φ, Φ̃ ∈Map
(
Rn,RN

)
y que sus valores asintóticos, Φ∞ y Φ̃∞, son homótopas, entonces, podemos de-
formar de manera continua el map Φ hasta alcanzar el map Φ̃, es decir, el map Φ
y Φ̃ son homótopos. Por lo tanto, el caracter topológico de Φ queda determinado
por la clase de homotoṕıa del map Φ∞ el cual es un elemento de πn−1(M).

Si H es un subgrupo normal en G, entonces G/H tiene estructura de grupo
y M también adquiere una estructura de grupo. En este caso, podemos definir
el producto entre dos maps de S0 a M como un map de S0 a M donde la
imagen de cada elemento de S0 es el producto de las dos imagenes de los maps
que estamos multiplicando. Aśı en este supuesto de H normal en G tenemos
que π0(M) es un grupo. El π0(M) nos da información sobre las componentes
conexas deM. En [9] se revisa la relación entre la homotoṕıa y los solitones en
varias dimensiones.

2.4. Soluciones de enerǵıa finita

Volvemos, en este apartado, a nuestro modelo en (1+1) dimensiones con una
componente N = 1 dado por la acción (2.3). Tomaremos la definición de onda
solitaria dada en [54, pág. 13].

Definición 2.3. Llamaremos onda solitaria a las soluciones no singulares de
la ecuación en derivadas parciales (2.2) cuya densidad de enerǵıa permanece
localizada y puede ser escrita bajo la forma

ε(x, t) = ε(x− vt) (2.23)

donde v es interpretado como la velocidad de dicha onda solitaria. Es decir, la
densidad de enerǵıa se mueve a velocidad constante sin distorsionarse.

Vamos a dar un primera definición de un solitón y de kink. Siguiendo a [1,
pág. 19]

Definición 2.4. Un solitón es una onda solitaria que preserva asintóticamente
su forma y su velocidad bajo interacciones no lineales con otras ondas solitarias,
o de manera más general, con otra perturbación localizada arbitraria.

y ahora definimos los kinks de la siguiente manera

Definición 2.5. Un kink es toda onda solitaria que no es un solitón

Vamos a aplicar las ideas topológicas de la Sec. 2.3 a este caso, N = n = 1.
La esfera del infinito viene dada sólo por dos puntos, S0

∞ = {+∞,−∞}, luego
φ∞ es un map de dos puntos a M. Las clases de homotoṕıa de φ∞ forma el
grupo π0(M) que nos indican las distintas componentes conexas de M. Los
distintas componentes conexas de M se pueden clasificar en función de los dis-
tintos valores que pueden tomar φ(+∞) ≡ φ+∞ y φ(−∞) ≡ φ−∞. Tenemos
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que, desde un punto de vista topológico, las configuraiones de los campos φ
vienen caracterizadas por elementos de π0(M)×π0(M). Supongamos que tene-
mos una configuración del campo φ cuyos valores asintóticos vienen dados por
(φ+∞, φ−∞) ∈ π0(M)×π0(M), en el caso en que φ+∞ = φ−∞ tendremos que la
configuración del campo φ puede deformarse de forma continua hasta alcanzar
uno de los dos vaćıos, es decir, φ esta en la misma clase de homotoṕıa que la
configuración del vaćıo φ+∞. Ahora supongamos que φ+∞ 6= φ−∞, entonces el
campo φ conecta el vaćıo φ−∞ en −∞ con el vaćıo φ+∞ en +∞. En este último
caso no podemos deformar de manera continua la configuración φ hasta alcanzar
unos de los vaćıos φ+∞ ó φ−∞. La evolución temporal del campo φ puede en-
tenderse como una deformación continua del campo que verifica las ecuaciones
de movimiento para φ y que preserva la enerǵıa finita. Por lo tanto podemos
decir que las configuraciones del campo φ que cuya evolución temporal los lleva
a los valores asintóticos φ−∞ y φ+∞ con φ−∞ = φ+∞ tiene la misma enerǵıa
que ellos, es decir, E[φ] = 0. Por el contrario, la configuración φ cuyos valores
asintóticos son distintos no podrá ser llevada, mediante la evolución temporal,
a uno de dichos vaćıos, luego E[φ] > 0. Recordemos que dado que la expresión
para el funcional enerǵıa dado en (2.8) es definido positivo, E[φ] ≥ 0, tenemos
que las configuraciones de enerǵıa finita pueden tener enerǵıa cero, elementos
de M, o bien pueden tener enerǵıa finita mayor que cero. En resumen, pode-
mos decir que las configuraciones del campo que tienen sus valores asintóticos
iguales tienen enerǵıa cero y las que los tienen distintos tienen enerǵıa positiva.
Además, debemos notar también que la evolución natural es la única deforma-
ción continua que preserva la enerǵıa finita.

Ya vimos que la clase de homotoṕıa de la configuración φ viene determinada
por sus valores asintóticos φ−∞, φ+∞ y también vimos que dos configuraciones
φ1 y φ2 con sus valores asintóticos no homótopos no pueden ser deformadas
continuamente la una en la otra, por lo tanto, pertenecen a clases de homotoṕıa
distinta. Tendremos tantas clases de homotoṕıa como valores posibles puedan
tomar φ−∞ y φ+∞. El espacio de soluciones de enerǵıa finita, C, se descom-
pondrá en tantos sectores topológicamente desconexos como el orden del grupo
producto cartesiano π0(M) × π0(M). En particular, si la variedad de vaćıos
tiene r elementos, M = {v1, . . . , vr}, tendremos r2 sectores topológicamente
disconexos. Los sectores topológicos vienen caracterizados por un número en-
tero, QT , denominado carga topológica. En la Sec. 2.5 daremos una definición
precisa de la carga topológica. El mı́nimo valor no trivial que puede tomar QT
es |QT | = 1. Veremos, más adelante, que las soluciones de enerǵıa finita positiva
que poseen |QT | = 1 son aquellas que conectan dos mı́nimos consecutivos de
U [φ]. Ahora podemos dar una definición más precisa de lo que es un kink y un
solitón

Definición 2.6. Un solitón es una onda solitaria de enerǵıa finita positiva que
conecta dos mı́nimos contiguos del funcional enerǵıa potencial U [φ] y que pre-
serva asintóticamente su forma y su velocidad bajo interacciones no lineales con
otras ondas solitarias, o de manera más general, con otra perturbación localizada
arbitraria.

y ahora redefinimos también los kinks de la siguiente manera

Definición 2.7. Un kink es toda onda solitaria de enerǵıa finita positiva que
conecta asintóticamente dos mı́nimos consecutivos de U [φ] y que no es un solitón
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Las configuraciones del campo φ que tienen enerǵıa finita positiva y que
se construyen a partir de dos o más kinks/solitones conectan dos mı́nimos no
contiguos (salvo el caso del modelo φ4, como veremos) y se denominan configu-
raciones multikink/multisolitón.

En general, un modelo con una variedad de vaćıos con r elementos, M =
{v1, . . . , vr}, tendrá 2(r − 1) kinks/solitones.

Comprobaremos en el siguiente caṕıtulo que, como dice Coleman en [17,
pág. 186], las soluciones tipo ondas solitarias en el modelo λφ4 son kinks y las
soluciones tipo ondas solitaria en el modelo Seno-Gordon son solitones.

La condición (2.23) nos permite darnos cuenta de que las soluciones busca-
das tipo kink/solitón pueden obtenerse a partir de soluciones estáticas (indepen-
dientes del tiempo) mediante un boost de Lorentz dado por (2.7) ya que, como
hemos dicho, la acción (2.1) es invariante bajo esta transformación. Denotamos
la solución estática por φ(x). Las soluciones φ(x) corresponden a las soluciones
de las ecuacion en derivadas parciales no lineal (2.2) independiente del tiempo,
dadas por

d2φ

dx2
=
δU [φ]

δφ
(2.24)

El funcional enerǵıa para una configuración de campo estático es

E[φ] =

∫
dx

(
1

2

(
dφ

dx

)2

+ U [φ]

)
(2.25)

el cual es (2.19) para el caso n = 1 y N = 1.
Hemos visto anteriormente que φ(x) tienen enerǵıa finita positiva, y por lo

tanto de (2.25) obtenemos que

ĺım
|x|−→∞

φ(x) ≡ φ±∞ ∈M, ĺım
|x|−→∞

∂φ

∂x
= 0 (2.26)

El conjunto de todos los kink con los mismos valores asintóticos, es decir,
que son deformaciones continuas unos de otros, forma la variedad kink CK . En
general, podemos expresar el espacio de soluciones de enerǵıa finita C de la
siguiente manera

C =

r⋃
i,j=1

Cij (2.27)

donde Cij indica el conjunto de soluciones de enerǵıa finita que conecta el vaćıo
i en −∞ con el vaćıo j en +∞. Además notamos que la unión debe ser disjunta
y que la variedad de vaćıos tiene r elementos.

Los kinks y los solitones también pueden ser encontrados, aunque en es-
te trabajo no se discute este punto, en modelos supersimétricos. Por ejemplo,
en [11] los autores realizan un estudio sobre la existencia de kinks en teoŕıas
supersimétricas bidimensionales.

Vamos a aplicar ahora el siguiente “truco”
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E[φ] =

∫
dx

(
1

2

(
dφ

dx

)2

+ U [φ]

)
=

=

∫
dx

(
1

2

(
dφ

dx
∓
√

2U [φ]

)2

±
√

2U [φ]
dφ

dx

)
=

=
1

2

∫
dx

(
dφ

dx
∓
√

2U [φ]

)2

±
∫ φ(+∞)

φ(−∞)

dφ
√

2U [φ]

dado que U [φ] ≥ 0 tenemos que la segunda integral es positiva, aśı que el mı́nimo
de enerǵıa se alcanza para la configuración del campo que verifica la ecuación
diferencial de primer orden

dφ

dx
∓
√

2U [φ] = 0 (2.28)

y además, la configuración φ también verifica que φ(+∞) y φ(−∞) son dos
mı́nimos consecutivos.

Este truco de reducir la ecuación en derivadas parciales de segundo orden
(2.24) a una de primer orden (2.28) fue descubierto por Bogomolnyi en [6].

Integrando la ecuación diferencial (2.28) obtenemos que

x− x0 = ±
∫ φ(x)

φ(x0)

1√
2U [φ]

dφ (2.29)

La configuración del campo φ que verifica la ecuación diferencial anterior
(2.29) poseerá una enerǵıa dada por

E[φ] =

∫ φ(+∞)

φ(−∞)

dφ
√

2U [φ] (2.30)

La ecuación (2.29) nos muestra que existen dos tipos de configuraciones
del campo φ que tienen la misma enerǵıa finita estática dada por (2.30): La
correspondiente al signo + (configuración del campo creciente) que se denomina
kink, φkink, y la corresponde al signo − (configuración del campo decreciente)
y denominada antikink, φantikink. En ambos casos la constante de integración
x0 representa el centro de la configuración del campo. Además dado que estas
soluciones son de enerǵıa finita tienen una anchura ω caracteŕıstica.

Si el kink o el antikink se desplazan a velocidad constante v podemos obtener
las soluciones dependientes del tiempo sin más que realizar un boost de Lorentz
(con c = 1) sobre las soluciones estáticas, φ(x)antikink y φ(x)kink

φ(x, t)antikink = φ

(
x− vt√
1− v2

)
antikink

= φ (γθ)antikink

φ(x, t)kink = φ

(
x− vt√
1− v2

)
kink

= φ (γθ)kink

(2.31)

donde θ = x− vt.
La enerǵıa para la configuración φ(x, t) dada por (2.31) del campo del

kink/antikink vendrá dada por
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E[φ] =

∫
dx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+ U [φ]

)
=

=

∫
dx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x
∓
√

2U [φ]

)2

±
√

2U [φ]
∂φ

∂x

)
=

=

∫
dx

[
1

2

(
∂φ

∂t

)2

+
1

2

(
γ
∂φ

∂θ

∂θ

∂x
∓
√

2U [φ]

)2
]
±
∫
dx
√

2U [φ]γ
∂φ

∂θ

∂θ

∂x

hacemos el cambio de variable de integración de de x a θ y obtenemos que

E[φ] =

∫
dθ

[
1

2

(
∂φ

∂t

)2

+
1

2

(
γ
∂φ

∂θ
±
√

2U [φ]

)2
]
∓
∫
dθ
√

2U [φ]γ
∂φ

∂θ
=

=

∫
dθ

[
1

2

(
∂φ

∂t

)2

+
1

2

(
γ
∂φ

∂θ
∓
√

2U [φ]

)2
]
±
∫ φ(+∞)

φ(−∞)

γdφ
√

2U [φ]

El funcional enerǵıa anterior, para φ(+∞) y φ(−∞) elementos de M conti-
guos, también se minimiza en el caso en que las configuraciones dadas en (2.31)
no dependan explicitamente del tiempo y se verifique la ecuación

γ
∂φ

∂θ
±
√

2U [φ] = 0 (2.32)

La ecuación diferencial (2.32) se puede ver como la ecuación de movimiento
para el kink/antikink dinámico.

La enerǵıa mı́nima asociada a la configuración del campo kink/antikink
dinámico vendrá dada por

E[φ] =

∫ φ(+∞)

φ(−∞)

γdφ
√

2U [φ] (2.33)

Calculemos ahora el funcional bimomento Pµ[φ] con µ = 0, 1 para las so-
luciones kink y antikink. Consideremos, en primer lugar, que el kink/antikink
esta en reposo, v = 0, luego P 0[φK/AK ] = Mcl donde Mcl representa la masa del
kink/antikink. Donde hemos empleado la notación φK para φkink y φAK para
φantikink

Mcl = P 0[φK/AK ] =

∫
dxT 00 =

∫
dx

(
1

2

(
∂φK/AK

∂x

)2

+ U [φK/AK]

)
=

∫ φ(+∞)

φ(−∞)

dφ
√

2U [φK/AK]

P 1[φK/AK ] =

∫
dxT 01 = −

∫
dx
∂φK/AK

∂t

∂φK/AK

∂x
= 0

(2.34)
dado que v = 0, debemos tomar las soluciones estáticas para φK/AK obtenidas
como soluciones de (2.28).

Supongamos que el kink/antikink se desplaza a v constante, entonces las
configuraciones del campo vienen dadas por (2.31). Los funcionales P 1[φ] y
P 0[φ] en este caso son:
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P 1[φK/AK ] =

∫
dxT 01 = −

∫
dx
∂φK/AK

∂t

∂φK/AK

∂x
= vγ

∫ φ(+∞)

φ(−∞)

dφ
√

2U(φ) = Mclγv

P 0[φK/AK ] = E[φK/AK ] =

∫ φ(+∞)

φ(−∞)

γdφ
√

2U(φ)

(2.35)

En este caso, hemos empleado que
∂φK/AK

∂t =
∂φK/AK

∂θ
∂θ
∂t = γv.

Claramente se puede ver, usando (2.35), que

P 2 +M2
cl = E2 (2.36)

donde hemos empleado, por comodidad, P en vez de P 1[φK/AK ] y E en vez de
E[φK/AK ].

Comprobemos la expresión (2.36)

P 2+M2
cl = v2γ2M2

cl+M
2
cl = M2

cl

(
v2γ2 + 1

)
= M2

cl

1

1− v2
=

1

1− v2

(∫ φ(+∞)

φ(−∞)

γdφ
√

2U [φ]

)2

= E2

Hemos visto que la configuración del campo tipo kink/antikink verifica (2.36),
que es la relación de dispersión t́ıpica de las part́ıculas relativistas, aśı que po-
demos decir que un kink representa una part́ıcula libre con masa en reposo Mcl.
Veremos en la sección siguiente que el antikink represanta una antipart́ıcula
libre de masa en reposo Mcl.

2.5. Cargas topológicas

En la Sec. 2.4 introdujimos por primera vez el concepto de carga topológica
de un sector topológico. Vimos que la carga topológica asociada a cada sector
topológico es un número entero que caracteriza a las soluciones de enerǵıa finita
contenidas en dichos sectores.

Acabamos de ver en la sección anterior que el kink y el antikink se comportan
como part́ıculas ya que verifican la relación de dispersión relativista t́ıpica de las
part́ıculas libres con masa en reposo M . Estas part́ıculas existen a nivel clásico
y son distintas de las que aparecen cuando cuantificamos la teoŕıa clásica. Los
kinks y antikinks se caracterizan por tener una estructura topológica no trivial
a diferencia de las part́ıculas que aparecen al cuantificar la teoŕıa clásica. Las
part́ıculas de la teoŕıa cuántica se pueden entender como la cuantificación de
las perturbaciones del campo, que son deformaciones suaves respecto del vaćıo
y debido a que son deformaciones suaves tienen la misma topoloǵıa que el vaćıo,
es decir, trivial.

El aspecto topológico de los kinks y antikinks se resume, como dijimos, en
un número que se denomina carga topológica y se denota por QT . Esta carga
QT se obtiene al integrar a todo el espacio la componente cero de una corriente,
Jµ, denominanda corriente topológica dada por

Jµ = Λεµν∂νφ (2.37)
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donde εµν es el tensor totalmente antisimétrico con µ, ν = 0, 1 y Λ es una cons-
tante que nos permite expresar la carga topológica como números enteros y que
depende del modelo bajo estudio. La corriente Jµ es conservada debido a la
antisimetŕıa del εµν .

∂µJ
µ = 0 (2.38)

Las corrientes, que se obtienen a partir de transformaciones que dejan in-
variante la acción, se conservan debido a que las configuraciones del campo
verifican la ecuacion de movimiento (Teorema de Noether). La corriente (2.37)
es automaticamente conservada independientemente del que el campo verifique
o no las ecuaciones del movimiento. La corriente (2.37) sólo depende del los
valores asintóticos del campo. Es decir, no existe ninguna simetŕıa subyacente
de la acción que permita obtener dicha corriente.

La carga topológica viene dada por la integral de la componente temporal
de la corriente topológica, en este caso toma el valor

QT =

∫
dxJ0 =

∫ +∞

−∞
dxΛε0ν∂νφ = Λ

∫ +∞

−∞
dx

 ε00︸︷︷︸
=0

∂0φ+ ε01︸︷︷︸
=1

∂1φ

 =

= Λ

∫ +∞

−∞

∂φ

∂x
dx = Λ

∫ +∞

−∞
dφ = Λ (φ(+∞)− φ(−∞))

Luego hemos obtenido que

QT = Λ (φ(+∞)− φ(−∞)) (2.39)

El kink vendrá dado por una expresión φ(x, x0, t) creciente, como ya vimos
anteriormente, luego φ(+∞) será mayor que φ(−∞) y podremos decir que la
carga topológica del kink, QKT es un número positivo, que con la Λ adecuada
al modelo que estemos estudiando, tendremos que QKT = +1. Dado que el an-
tikink es decriente podemos decir que QAKT = −1. Sabemos que QT ∈ Z, luego
tenemos que el kink y el antikink son las configuraciones del campo con |QT |
más pequeña. Además, vemos que el antikink representa la antipart́ıcula, con
respecto a la carga topológica, del kink.

Los distintos valores que puede tomar QT depende del número de mı́nimos
que tiene el funcional U [φ]. Un caso extremo se da śı U [φ] tiene un único mı́nimo
(teoŕıa de campos lineal). Este mı́nimo será φ = 0 ya que U(φ) ≥ 0. Sabemos
que los valores asintóticos de φ deben de estar entre los mı́nimos del potencial
luego tenemos que

φ+∞ = φ−∞ = 0 =⇒ QT = 0 (2.40)

Vemos por lo tanto que una teoŕıa de campos en (1+1) dimensiones con un
funcional U [φ] definido positivo y con un solo mı́nimo no tiene configuraciones de
campo de enerǵıa finita topológicamente distintas del vaćıo. Otro caso extremo
es una teoŕıa en la que U [φ] = 0 ∀φ, es decir, una teoŕıa dada por la acción

S =

∫
d2x

1

2
∂µφ∂

µφ (2.41)
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El funcional enerǵıa vendrá dado por

E[φ] =

∫
dx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2
)

(2.42)

Los vaćıos, configuraciones del campo de mı́nima enerǵıa, vendrán dados por
φ0 = A donde A es una constante arbitraria. Luego en este caso QT puede tomar
cualquier valor. La teoŕıa dada por la acción anterior tiene, una vez cuantizada,
la función Wightman de dos puntos mal definida (divergente) que Coleman [16]
interpretó como la ausencia de bosones de Goldstone en (1+1) dimensiones y la
ausencia de ruptura espontánea de simetŕıa. En [31] se hace una análisis sobre
la veracidad de las suposiciones hechas por Coleman.

2.6. Fuerzas entre los kinks

Dado que el kink y el antikink tienen carga topológica de distinto signo parece
razonable que exista una cierta interación entre ellos. Calcularemos en esta
sección la fuerza que se ejercen entre śı un kink y un antikink.Esta propiedadde
los kink/antikink esta tratada en [68, pág. 10] y [46, pág. 115]

Consideremos por simplificar que el antikink esta centrado en x = 0 y que
el kink esta centrado en x = s > 0 de forma que la separación entre ellos sea
mucho mayor que la anchura del kink/antikink ω. Empleando el ansatz aditivo
[45] tenemos que la configuración multikink estática del kink y del antikink viene
dada por

φ(x) = φAK(x− 0) + φK(x− s) + φ(+∞) (2.43)

Aplicamos la segunda ley de Newton para conocer la fuerza como el momen-
to lineal intercambiado, F = dP

dt , entre el kink y el antikink. Sabemos que el
funcional momento lineal P [φ] para la configuración φ(x) viene dado por

P [φ] = −
∫ b

a

dx
∂φ

∂t

∂φ

∂x
(2.44)

donde a y b indican el segmento donde calculamos el funcional momento ĺıneal.
Hallemos la derivada de P [φ] respecto del tiempo

dP [φ]

dt
= − d

dt

∫ b

a

dx
∂φ

∂t

∂φ

∂x
=

= −
∫ b

a

dx

(
∂2φ

∂t2
∂φ

∂x
+
∂φ

∂t

∂2φ

∂t∂x

) (2.45)

usando la ecuación del movimiento para φ(x, t) dada en (2.2), tenemos que

dP [φ]

dt
= −

∫ b

a

dx

((
∂2φ

∂x2
− δU [φ]

δφ

)
∂φ

∂x
+
∂φ

∂t

∂2φ

∂t∂x

)
=

= −
∫ b

a

dx

∂
2φ

∂x2

∂φ

∂x
− δU [φ]

δφ

∂φ

∂x︸ ︷︷ ︸
dU[φ]
dx

+
∂φ

∂t

∂2φ

∂t∂x


(2.46)
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y dado que la configuración φ en (2.43) es estática, ∂φ∂t = 0, tenemos que (2.46)
se puede expresar como

dP [φ]

dt
= −

∫ b

a

dx
∂

∂x

((
1

2

∂2φ

∂x2

)2

− U [φ]

)
=

∫ b

a

dx
∂

∂x

(
−
(

1

2

∂2φ

∂x2

)2

+ U [φ]

)
(2.47)

realizando la integración en x tenemos que

dP [φ]

dt
= −1

2

(
∂φ

∂x

)2

+ U [φ]

∣∣∣∣∣
b

a

(2.48)

Supongamos ahora que a � 0 y 0 � b � s. En esta región para todo
x ∈ (a, b) podemos suponer que φAK � φK y expandir el φ de (2.43) entorno a
φAK para pequeños valores de φK .

Aśı que obtenemos(
∂φ

∂x

)2

=

(
∂φAK
∂x

)2

+

(
∂φK
∂x

)2

︸ ︷︷ ︸
≈0

+2
∂φAK
∂x

∂φK
∂x

(2.49)

y también podemos desrrollar U en serie de Taylor funcional entorno a φAK y
quedarnos a primer orden

U [φ] = U(φAK + φK + φ(+∞)) = U(φAK) +
δU [φAK ]

δφ
(φ− φAK) =

= U [φAK ] +
δU [φAK ]

δφ
(φK + φ(+∞))

(2.50)

Introducimos (2.49) y (2.50) en (2.47) y obtenemos que

dP [φ]

dt
= −1

2

(
∂φAK
∂x

)2

− ∂φAK
∂x

∂φK
∂x

+ U [φAK ] +
δU [φAK ]

δφ
(φK + φ(+∞))

∣∣∣∣∣
b

a
(2.51)

y por último empleamos que φAK verifica (2.28) y obtenemos que la fuerza que
hay entre un kink y un antikink viene dada por

F =
dP [φ]

dt
= −∂φAK

∂x

∂φK
∂x

+
δU [φAK ]

δφ
(φK + φ(+∞))

∣∣∣∣b
a

(2.52)

2.7. Tratamiento cuántico

Vamos a estudiar en esta sección como se comportan las soluciones clásicas
a nivel cuántico. Vamos a poder asociar, en cierto régimen de la constante de
acoplamiento del modelo, las soluciones de enerǵıa finita a estados cuánticos
extendidos. Vamos a estudiar, en particular, la enerǵıa de estos estados cuánti-
cos. Sabemos que las soluciones de enerǵıa finita son, incluso a nivel clásico,
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soluciones extendidas las cuales poseen, como ya sabemos, una cierta anchura
ω. Supongamos que la constante de acomplamiento del modelo bajo estudio es
λ, entonces la enerǵıa de la configuración del kink (2.35) t́ıpicamente se puede
ver que es

EK/AK ∼
mφ

λ
(2.53)

donde mφ es la masa de la excitación elemental dado por (2.15).
La longuitud de Compton, λC , nos dará el tamaño del kink a nivel cuántico

y viene dada por

λC ∼
1

EK/AK
∼ λ

mφ
(2.54)

En la Sec. 2.2 vimos que los campos escalares φ en dos dimensiones no
tienen dimensiones (tomando c = ~ = 1) y veremos que tanto en el modelo λφ4

como en el modelo Seno-Gordon, los dos modelos que vamos a estudiar en este
trabajo, la constante de acoplamiento λ tiene unidades de masa al cuadrado.
El régimen de acoplamiento débil, dado que la constante de acoplamiento tiene
dimensiones, se expresa correctamente diciendo que λ

σ2 � 1. El parámetro σ es
algún parámetro que aparece en el modelo que tiene dimensiones de masa. En
los modelos que vamos a estudiar, λφ4 y Seno-Gordon, veremos que ω ∼ m−1

φ

aśı que se verifica que

ω

λC
∼
m2
φ

λ
� 1, si estamos en régimen débil (2.55)

luego ω � λC aśı que podemos decir que incluso a nivel cuántico el kink es un
objeto esencialmente clásico, quizás con algunas modificaciones (correcciones).

Aparentemente podŕıa parece que existe una cierta inconsistencia debido a
la permanencia del kink clásico a y la existencia de fluctuaciones a nivel cuánti-
co. Sabemos que las fluctuaciones cuánticas son mayores a distancias cada vez
más pequeñas, llegando a ser incluso infinitas. Estas fluctuaciones pueden redu-
cirse si promediamos el campo sobre una longuitud mayor. Tenemos que llegar
a un compromiso de forma que esta longuitud tiene que ser lo suficientemente
grande como para eliminar las fluctuaciones cuánticas y lo suficientemente pe-
queña como para que, en régimen de acomplamiento débil, el kink clásico sigua
existiendo a nivel cuántico. Además, la masa del kink depende inversamente de
la constante de acoplamiento, λ, y en régimen de acoplamiento débil tendremos
una masa para el kink enorme, tendiendo a infinito cuando λ tiende a cero. Por
lo tanto, el análisis perturbativo nunca podrá mostrar los efectos del kink. Sin
embargo, si conocemos una solución clásica estática podemos emplear la teoŕıa
de perturbaciones para cuantizar las perturbaciones sobre dicha solución clási-
ca. Este método se conoce como aproximación semiclásica. Vamos a emplear
métodos funcionales para realizar esta cuantización.

Consideremos el funcional enerǵıa dado en (2.25) y hagamos un desarrollo
de Taylor funcional alrededor de φs(x) que formalmente tiene la forma

E[φ] = E[φs] +

∫
dx
δE[φs]

δφ(x)
(φ(x)− φs(x)) +

1

2

∫∫
dxdy

δ2E[φs]

δφ(x)δφ(y)
(φ(x)− φs(x)) (φ(y)− φs(y)) + . . .

(2.56)
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donde φs(x) es una solución estática que hace mı́nimo E[φ]. Aplicando las reglas
de la diferenciación funcional ya citadas anteriormente obtenemos que

δE[φ]

δφ(x)
= −d

2φ

dx2
+
δU [φ]

δφ(x)
,

δ2E[φ]

δφ(x)δφ(y)
=

[
− ∂2

∂x2
+
δ2U [φ]

δφ(x)2

]
δ(x− y) (2.57)

y dado que φs es solución de las ecuaciones de movimiento, −d
2φs
dx2 + δU [φs]

δφ = 0,

tenemos que δE[φs]
δφ(x) = 0. Aśı obtenemos que

E[φ] = E[φs] +
1

2

∫
dxη(x)

[
− ∂2

∂x2
+
δ2U [φs]

δφ(x)2

]
η(x) + . . . (2.58)

donde η = φ− φs representa las fluctuaciones respecto a la solución estática φs
y donde, además, hemos realizado la integración respecto de y.

Consideremos ahora el problema espectral de encontrar los autovalores y las
autofunciones del operador Schrödinger independiente del tiempo, ver [21, pág.
40], dado por [

− ∂2

∂x2
+
δ2U [φ]

δφ(x)2

]∣∣∣∣
φ=φs

ψi(x) = Kiψi(x) (2.59)

donde Ki son los autovalores y ψi(x) son un conjunto completo y ortonormal
de autofunciones. El problema espectral dado por (2.59) es un caso especial de
un problema de la forma [

− d2

dx2
+ T (x)

]
φ = Kφ (2.60)

donde − d2

dx2 +T (x) es un operador diferencial de segundo orden y T verifica que

ĺım
x−→±∞

T (x) = 0

Si los valores propios K son positivos, K = ω2, de forma que K ∈ (0,+∞),
espectro continuo, el comportamiento asintótico de las autofunciones para un
valor de ω tal que ω2 ∈ (0,+∞) vendrá dado por

φω(x) ≈
{
eiωx si x −→ −∞
A(ω)eiωx +B(ω)e−iωx si x −→ +∞ (2.61)

Si los valores propios K son negativos, K = −ω2, y además hay una cantidad
finita y numerable de ellos, espectro discreto, el comportamiento asintótico de
las autofunciones para cada valor de ω tal que K = −ω2 vendrá dado por

φω(x) ≈
{
C−∞(x)eωx si x −→ −∞
C+∞(x)e−ωx si x −→ +∞ (2.62)

Los autoestados que tiene K = ω2 = 0 se denominan modos cero. En par-
ticular, las soluciones del vaćıo φ0 son modos cero. Consideremos una solución
clásica estática de enerǵıa finita kink/antikink φK/AK(x) que sabemos que ve-
rifica la ecuación de movimiento (2.24). Diferenciando (2.24) con respecto a x
obtenemos que

22



d3φK/AK(x)

dx3
=
δ2U(φK/AK(x))

δφ2

dφK/AK(x)

dx
=⇒

[
− d2

dx2
+
δ2U [φK ]

δφ2

]
dφK/AK(x)

dx
= 0

(2.63)

luego
dφK/AK
dx es una solución del operador de Schrödinger con autovalor ω2 = 0.

Dado que el kink/antikink son soluciones crecientes/decrecientes, el signo de
dφK/AK(x)

dx es constante. Por lo tanto,
dφK/AK(x)

dx nunca se hace cero, aśı que,
debido a un resultado de Mecánica Cuántica que nos dice que en un potencial
1-dimensional sólo el estado de mı́nima enerǵıa nunca se hace cero, tenemos, por

lo tanto, que el autoestado dφK
dx es el de menor enerǵıa, es decir φ0 =

dφK/AK(x)

dx .
Por lo tanto, en el operador de Schrödinger no existen autoestados con ω2 < 0.

Una vez resuelto el problema espectral (2.59) podemos expresar la fluctua-
ción del campo φ dependiente del tiempo [19] como

η(x, t) =
∑
i

ci(t)ψi(x) + h.c. (2.64)

Empleando (2.64) podemos entender que la presencia de autofunciones con
K = ω2 < 0 en el problema espectral (2.59) implicaŕıa la inestabilidad del kink
debiddo a (2.62). Este razonamiento nos permite definir la estabilidad como
sigue

Definición 2.8. Un kink φK es estable si el problema de valores propios de
Schrödinger dado por (2.59) no tiene autoestados con autovalor K = ω2 < 0.

La estabilidad del kink debida a la ausesencia de estas autofunciones la po-
demos denominar estabilidad dinámica. Además, sabemos que la acción dada en
(2.3) es invariante bajo traslaciones, y esto provoca la aparición de autofunciones
en (2.59) con ω = 0 (modos cero).

Empleando (2.64) y (2.58), la densidad lagrangiana (2.1) nos queda

L =
1

2

+∞∑
i

ċ2i − E[φs]−
1

2

+∞∑
i

c2iω
2
i + correcciones (2.65)

que representa el lagrangiano de un número infinito de osciladores armónicos
no acoplados además de una constante E[φs]. Una vez aplicado la cuantización
canónica obtendremos que la enerǵıa de los estados viene dada por

E{ni} = E[φs] + ~
+∞∑
i

(
ni +

1

2

)
ωi + correcciones (2.66)

donde en el sumatorio se excluye ω = 0 (veremos la razón después). Los esta-
dos son etiquetados con ni donde ni representa el número de ocupación de los
osciladores armónicos y las “correcciones” hacen referencia a los términos de
orden superior, y que en el caso en que estemos en régimen de acoplamiento
débil pueden ser tratados perturbativamente. La expresión (2.66) nos relaciona
la enerǵıa de los estados cuánticos con la enerǵıa de la solución clásica φs. La
constante ~ se mantiene en la expresión (2.66) debido a que estamos realizando
una aproximación semiclásica, aunque todav́ıa c = 1.
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Hemos visto que disponemos de dos soluciones estáticas: la solución del vaćıo,
φ0, y la solución kink/antikink, φK/AK . Eligiendo como φs(x) = φ0(x) obtene-
mos que los niveles cuánticos son el estado vaćıo y las excitaciones del estado
vaćıo. La enerǵıa de estos estados vendrá dada por

E{ni} = E[φ0]︸ ︷︷ ︸
=0

+~
+∞∑
i

(
ni +

1

2

)
ωi + correcciones (2.67)

El estado de mı́nima enerǵıa, correspondiente a ni = 0, es el estado del vaćıo
y tendrá una enerǵıa dada por

Evacio = E{0} = ~
+∞∑
i

1

2
ωi + correcciones (2.68)

La expresión anterior es divergente, esta divergencia se puede asociar con el
hecho de que el sistema tiene una extensión infinita (divergencia infraroja). Este
tipo de divergencias se pueden solucionar metiendo el sistema en una segmento
de longitud L e imponiendo condiciones de contorno periódicas a los campos y
tomando, al final, el limite L −→ +∞.

Podemos considerar también como solución estática φs(x) la solución φK/AK(x)
y estudiar los estados cuánticos en el sector kink. En este caso obtenemos que

E{Ni} = E[φK/AK ]︸ ︷︷ ︸
=0

+~
+∞∑
i

(
Ni +

1

2

)
ωi + correcciones (2.69)

El estado con Ni = 0 representa el estado de la part́ıcula kink en reposo y
también el estado de mı́nima enerǵıa en el sector kink. El estado con Ni = 0 lo
denominaremos kink cuántico. Vamos a restar a la expresión (2.69) la enerǵıa del
vaćıo (2.68) para eliminar la divergencia cuadratica, una vez tomado el limite
L −→ +∞, asociada con la enerǵıa del vaćıo. Realizando los cálculos y toman-
do el limite continuo cuidadosamente llegamos a que la diferencia ENi −Evacio
tiene una divergencia logaŕıtmica. Evidentemente esta divergencia no se elimi-
nará añadiendo una constante a la densidad lagrangiana ya que ENi − Evacio
es una diferencia de enerǵıa entre dos estados. Esta divergencia se denomina
divergencia ultravioleta y no es sólo caracteŕıstica de la solución kink, si hu-
bieramos calculado la masa de la part́ıcula escalar obtenida como fluctuaciones
del vaćıo a orden más alto en la teoŕıa de perturbaciones habriamos obtenido
otra divergencia logaŕıtmica. Las divergencias ultravioletas en modelos en dos
dimensiones tienen su origen, para cualquier orden en teoŕıa de perturbaciones,
en diagramas de Feynman con un solo lazo formado por una única ĺınea interna.
También podemos ver a las divergencias ultravioletas como originadas por el
hecho de que el hamiltoniano que describe al sistema no esta escrita en orden
normal. El reordenamiento normal se realiza, en la aproximación semiclásica,
al añadir algunos términos al hamiltoniano. Estos términos que añadimos al
hamiltoniano modifican la enerǵıa de los estados, de forma que podemos definir
como masa (renormalizada) del kink a Mkink = ∆EN1 − ∆Evacio. Hemos, en
definitiva, aplicado las técnicas de la renormalización de la teoŕıa cuántica de
campos. Ver por ejemplo los libros [57, 70] sobre renormalización en teoŕıa de
campos.
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El modo cero ω = 0 debe de ser estudiado separadamente del resto ya que
el procedimiento de cuantización aplicado a (2.65) no se puede aplicar si ω = 0
debido a que un oscilador con ω = 0 no es realmente un oscilador. El campo
φK/AK(x, t) lo vamos a poder expresar como

η(x, t) = φK(x− z(t), t) +
∑
n

cn(t)ψn(x− z(t)) + h.c. (2.70)

donde z(t) indica la posición del kink y se denomina coordenada colectiva [67,
32]. La derivada temporal de φ(x, t) vendrá dada por

φ̇(x, t) = −ż
(
φK(x− z(t), t)

dz

)
+
∑
n

[
ċnψi(x− z(t))− żcn(t)

(
ψn(x− z(t), t)

dz

)]
(2.71)

Sustituyendo (2.71) en la densidad lagrangiana (2.1) con φs = φK e inte-
grando en x para obtener el lagrangiano del sistema, obtenemos que

L =
1

2

∫
dx

(
dφK
dz

)2

ż2 − E[φK ] +
1

2

+∞∑
n

(
ċ2(t)− ω2c2

)
(2.72)

El primer término en (2.72) se puede expresar como

L =
1

2

∫
dx

(
dφK
dz

)2

ż2 =
1

2

∫
dx

(
dφK
dx

)2

ż2 =
1

2
ż2

∫
dxU [φ] =

1

2
ż2Mcl

(2.73)
donde hemos empleado (2.28). El primer término en (2.72) hace referencia a la
enerǵıa cinética no relativista de una part́ıcula de masa Mcl. El momento con-
jugado correspondiente a la coordenada colectiva z es P = Mclż y su operador
en teoŕıa cuántica es conservado ya que conmuta con el hamiltoniano. Dado
que −∞ < z < +∞ los autovalores del operador momento tienen un espectro
continuo. Los autoestados de la enerǵıa, etiquetados por el momento lineal y
por un conjunto de números de ocupación, |P, {ni}〉, vienen dados por

E|P,{ni}〉 =
P 2

2Mcl
+MKink + correcciones (2.74)

donde MKink es la masa renormalizada.
Vamos a aplicar en el siguiente caṕıtulo todo lo que hemos visto a dos mo-

delos: el modelo λφ4 y el modelo Seno-Gordon.
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Caṕıtulo 3

Modelos particulares en
(1+1) dimensiones

3.1. Modelo λφ4

Vamos a ver en esta sección uno de los ejemplos más paradigmático que ilus-
tra el concepto de kink. El modelo λφ4 el cual fue estudiado en primer lugar por
Dashen et al. (1974), Goldstone, Jackiw (1975) y Polyakov (1974). El modelo
es aplicado en dos campos distintos: el primero de ellos, dentro del campo de la
F́ısica de la materia condensada, donde modeliza un sistema electrón-fonón en
materiales como el polyacetyleno (CH)x, constituido por una cadena que pre-
senta, en buena aproximación, un solo grado de libertad, estructura denominada
trans-(CH)x [64, 41]. Una curiosa propiedad sobre esta substancia de naturaleza
aislante es el notable incremento de la conductividad cuando son introducidos
solitones cargados [15], incluso hasta cotas similares a materiales metálicos. El
segundo campo de intereses del modelo λφ4 es el correspondiente a la teoŕıa
cuántica de campos, en particular, Jackiw y Rebbi encontraron [33] de mane-
ra teórica el fraccionamiento de la carga electrica en un modelo de interacción
fermión-kink sobre la recta, donde el kink es el producido por el modelo λφ4.
Podemos verificar este resultado experimentalmente sobre una cadena lineal de
poliacetileno, ver [32]. Además, en teoŕıas cosmológicas la introducción de los
defectos topológicos, generados por este modelo, acoplados a dilatones incorpora
la aparición de agujeros negros [4].

El funcional enerǵıa potencial correspondiente a este modelo viene dado por

U [φ] =
λ

4

(
φ2 − m2

λ

)2

(3.1)

donde las constantes de acoplamiento λ y m2 son positivas y se puede observar
que λ tiene unidades de masa al cuadrado. Además claramente podemos ver que
(3.1) es semidefinida positiva, es decir, U [φ] ≥ 0.

La acción correspondiente al funcional potencial (3.1) se expresa como

S[φ] =

∫ (
1

2
∂µφ∂

µφ− λ

4

(
φ2 − m2

λ

)2
)
dx (3.2)
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La enerǵıa para una configuración φ del campo viene dada por

E[φ] =

∫ (
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
λ

4

(
φ2 − m2

λ

)2
)
dx (3.3)

Vimos que las configuraciones de mı́nima enerǵıa, configuraciones del vaćıo,
son aquellas que U [φ] = 0. El U [φ] asociado a nuestro modelo presenta dos
mı́nimos que son ± m√

λ
. La variedad del vaćıo es M = {+ m√

λ
,− m√

λ
}.

La acción (3.2) presenta una simetŕıa en el espacio interno de los campos da-
da por φ −→ −φ. Por lo tanto, el modelo λφ4 posee un grupo de simetŕıa G = Z2

de forma que tenemos que G = Z2 y H = I luego π0 (M) = π0 (G/H) = Z2.
Dado que π0 (M) es no trivial sabemos que existen kinks en el modelo λφ4.El es-
pacio de configuraciones de enerǵıa finita C tiene cuatro componentes desconexas
caracterizadas por los valores de (φ(+∞), φ(−∞)) ∈ π0(M)×π0(M) = Z2×Z2.
Tendremos los siguientes sectores topológicos caracterizados por las siguientes
parejas de valores asintóticos:

i
(

+ m√
λ
,+ m√

λ

)
ii
(

+ m√
λ
,− m√

λ

)
iii
(
− m√

λ
,+ m√

λ

)
iv
(
− m√

λ
,− m√

λ

)
Los sectores topológicos caracterizadas por i) y iv) verifican φ(+∞) = φ(−∞) =

m√
λ

y φ(+∞) = φ(−∞) = − m√
λ

respectivamente. Vemos que los sectores to-

pológicos asociados a los valores asintóticos i) e iv) corresponden a los sectores
vaćıos asociados a los mı́nimos + m√

λ
y − m√

λ
respectivamente. Siguiendo la no-

tación introducida en la Sec. 2.4 tenemos que estos sectores los denotamos por
C11 y C22 donde el 1 hace referencia al mı́nimo + m√

λ
y el 2 hace referencia al

otro mı́nimo − m√
λ

. Las configuraciones φ ∈ C11 ó φ ∈ C22 tendrán una enerǵıa

dada por E[φ] = E
[
+ m√

λ

]
= 0 ó E[φ] = E

[
− m√

λ

]
= 0. Los sectores topológicos

asociados a ii) y iii) se indicaran como C12 y C21 respectivamente. Las configu-
raciones de los campos en C12 o en C21 verifican que sus valores asintóticos son
distintos, y además son vaćıos consecutivos (trivialmente cierto en este caso, ya
queM solo tiene dos elementos y evidentemente son consecutivos). Por lo tanto,
según la definición 2.7, las configuraciones de campo φ que pertenezcan a C12

ó C21 son kinks (entendiendo que aún faltaŕıa ver si se preserva su forma tras co-
lisiones). Los sectores C12, C21 son las variedades kink del modelo λφ4. Tenemos
que el espacio de las configuraciones de enerǵıa finita C puede descomponerse
de la siguiente manera:

C = C11 ∪ C12 ∪ C21 ∪ C22 (3.4)

Estos kinks, a veces, se denominan Z2 − kinks. Denotaremos a la solución
kink de C21 por φK y a la de C12 por φAK , veremos un poco más adelante lo
acertado de esta notación.
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Los Z2-kinks estáticos vendrán dados por la expresión de la ecuación (2.29)
para el funcional potencial (3.1). Esta solución viene dada por

φ(x, x0) = ± m√
λ

tanh

(
m√

2
(x− x0)

)
+ C (3.5)

donde el signo + corresponde a la solución que verifica que φ(+∞) = + m√
λ

y φ(−∞) = − m√
λ

, es decir, φ ∈ C21 y la denotamos por φK . Análogamente

podemos decir que el signo - en (3.5) implica que φ cumple φ(+∞) = − m√
λ

y φ(−∞) = + m√
λ

, por lo tanto φ ∈ C12 y la podemos denotar por φAK . El

parámetro x0 corresponde al centro de la configuración φK/φAK . La constante
C toma el valor C = 0 en este modelo.

Dado que (3.2) es invariante bajo las transformaciones de Lorentz (2.7),
como vimos en el caso más general en la Sec. 2.2, podemos aplicar un boost a
(3.5) y obtenemos que

φK/AK(x, x0, t) = ± m√
λ

tanh
m√

2

(
x− x0 − vt√

1− v2

)
(3.6)

Ya vimos en la Sec. 2.5 que la carga topológica caracterizada a los sectores
topológicos de C. La carga topológica para este modelo viene dada por

QT =

√
λ

2m
[φ(+∞)− φ(−∞)] (3.7)

Los sectores topológicos C11, C22 se caracterizan, como vimos anteriormente,
porque todas las configuraciones del campo φ tal que φ ∈ C11 ó φ ∈ C22 verifican
φ(+∞) = φ(−∞). Por lo tanto, siguiendo (3.7), vemos que las configuraciones
en C11 y C22 tienen carga topológica igual a cero, QT = 0. Las configuraciones
φ del sector C21 presentan una carga topológica dada por

QT =

√
λ

2m
[φ(+∞)− φ(−∞)] =

√
λ

2m

[
m√
λ
−
(
− m√

λ

)]
= +1 (3.8)

Vemos por lo tanto que las configuraciones φK tienen carga topológica +1.
Por último, consideremos una cualquiera de las configuraciones φ pertene-

ciente al sector C12. La carga topológica asociada a esta configuración vendrá da-
da por

QT =

√
λ

2m
[φ(+∞)− φ(−∞)] =

√
λ

2m

[
− m√

λ
−
(
m√
λ

)]
= −1 (3.9)

En particular, tenemos que la configuración φAK tiene carga topológica -1,
luego φAK , aún siendo un campo escalar, puede verse como la antipart́ıcula, res-
pecto a la carga topológica, de la configuración φK . Por lo tanto, los nombres de
kink y antikink dados anteriormente a estas configuraciones parecen adecuados.

El modelo λφ4 sólo tiene, como acabamos de ver, tres valores de carga to-
pológica QT = {−1, 0,+1} debido a que M tiene únicamente dos elementos.
Cualquier solución del modelo λφ4 tendrá uno de estos tres valores de QT , lue-
go no existe ninguna solución con carga topológica |QT | > 1 y por lo tanto
cualquier configuración multikink tendrá que tener siempre los kink y antkink
alternados.

La densidad de enerǵıa estática asociada a φK/AK , ε(x), viene dada por
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ε(x) =
1

2

(
∂φK/AK

∂x

)2

+
λ

4

((
φK/AK

)2 − m2

λ

)2

(3.10)

La densidad de enerǵıa estática (3.10) corresponde al integrando de (3.3)
para el caso de una configuración estática.

Usando la forma funcional de φK/AK obtenida en (3.5) y sustituyéndola en
(3.10) obtenemos que

ε(x) =
m4

2λ
sech4

(
m√

2
(x− x0)

)
(3.11)

La expresión anterior nos permite decir que la anchura ω del kink/antikink
del modelo λφ4 es ω ∼ m−1 y la masa clásica de la configuración φK/AK
vendrá dada por (2.34) usando el funcional potencial (3.1). Esta masa, Mcl,
viene dada por

Mcl =
2m3
√

2

3λ
(3.12)

la expresión (3.12) es de la forma dicha en (2.53).
Vamos a calcular ahora explicitamente el valor de la fuerza entre un φK , con

QT = +1 y φAK , con QT = −1. Supongamos, al igual que hicimos en la sección
2.6, que el kink esta colocado inicialemnte en x = s > 0 y el antikink en x = 0.
La fuerza viene dada por (2.52)

F =
16m4

√
λ
e−
√

2ms (3.13)

Observamos que la fuerza dada en (3.13) es una fuerza atractiva entre el
kink y el antikink. Similarmente podemos ver que la fuerza entre dos kink o
entre dos antikink es repulsiva. La fuerza (3.13) es una fuerza tipo Yukawa y se
podŕıa haber deducido pensando en que el kink y el antkink se intercambian una
part́ıcula escalar, precisamente las excitaciones de campo φ, cuya masa viene
dada por (2.15) y toma el valor, usando el potencial (3.1), de mφ = 2m√

2
. La

fuerza mediada por la part́ıcula escalar mφ es una fuerza de tipo Yukawa de la

forma F ∝ e−mφs = e−
√

2ms. Ver por ejemplo [50].
En [3] los autores estudiaron numéricamente el envio de una onda solitaria

contra otra, ambas a la misma velocidad para distintos modelos, entre ellos el
modelo λφ4 y midieron la velocidad y el cambio de fase después de la colisión.
Los resultados obtenidos mostraron que el choque entre dos ondas solitarias del
modelo λφ4 es inelástico. Por lo tanto podemos concluir, de la definición 2.7,
que las las ondas solitarias que estabamos llamando kinks son verdaderamente
kinks.

La colisión entre un kink y un antikink del modelo λφ4 fue intensamente es-
tudiada mediante simulación numérica en [61] donde se obtuvieron los siguientes
resultados:

Si la velocidad inicial de acercamiento entre el kink y el antikink era me-
nor que 0.193 (en unidades de c) siempre se formaba un estado ligado
oscilatorio (Oscilón) el cual desaparecia al cabo de un cierto tiempo.
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Si la velocidad inicial de acercamiento entre el kink y el antikink era ma-
yor que 0.2598 (en unidades de c) ambas soluciones se reflejaban siempre
ineslásticamente tras la colisión.

Se descubrió que exist́ıan intervalos de velocidades iniciales, por debajo
de 0.2598, para los cuales la simulación indicaba que ocurŕıa una primera
colisión entre el kink y el antikink tras la cual el kink y el antikink se sepa-
ran una distancia finita y se acercaban nuevamente y volvian a colisionar
una segunda vez, después de esta segunda colisión el kink y el antikink se
alejaban indefinidamente. Este fenómeno recibe el nombre de ventana de
resonancia o ventana de doble rebote y fue por primera vez sugerido en
[3].

Ahora estudiamos el tratamiento cuántico del modelo λφ4 en régimen de aco-
plamiento débil caracterizado por λ

m2 � 1. Supongamos que, en primer lugar,
tomamos como solución estática una de las dos soluciones del vaćıo, el resulta-
do final no depende de la elección realizada. La enerǵıa de las perturbaciones
respecto a la configuración del vaćıo viene dada por

E[φ] = E[φ0] +
1

2

∫
dxη(x)

(
− ∂2

∂x2
+ 2m2

)
η(x) (3.14)

donde hemos empleado que δ2U [φ0]
δφ2 = 2m2 en este caso.

Siguiendo la sección 2.7 introduciremos el sistema en una longitud finita L e
impondremos condiciones de contorno periódicas a los campos. Al final de todos
los cálculos tomaremos el ĺımite L −→ +∞. En primer lugar debemos resolver
el siguiente problema espectral(

− ∂2

∂x2
+ 2m2

)
ηn(x) = ω2

nηn(x) (3.15)

Considerando como soluciones de (3.15) las soluciones de ondas planas η(x)n =

L−
3
2 eiknx donde kn = 2πn

L , con n ∈ Z y sustituyendo la solución de onda plana

en (3.15) obtenemos el espectro en frecuencias ω(n) =
√
k2
n + 2m2. La enerǵıa

en función de los números de ocupación N1, el cual especifica el número de
part́ıculas con momento kn, viene dado por

E{N1} = ~
+∞∑
N1=1

(
N1 +

1

2

)√
k2
n + 2m2 +O

(
λ

m2

)
(3.16)

La enerǵıa del vaćıo Evac viene dada por (3.16) con N1 = 0

Evac =
1

2
~

+∞∑
N1=1

√
k2
n + 2m2 +O

(
λ

m2

)
(3.17)

Sea φs la solución kink estática φK dada por (3.5) con x0 = 0, Luego tenemos
que la expresión (2.58) nos queda
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E[φ] = E[φK ] +
1

2

∫
dxη(x)

[
− ∂2

∂x2
+
δ2U [φK ]

δφ2

]
η(x) + . . . =

=
2m3
√

2

3λ
+

1

2

∫
dxη(x)

[
− ∂2

∂x2
−m2 + 3m2 tanh2

(
mx√

2

)]
η(x) + . . . =

(3.18)

donde hemos empleado que E[φs] = E[φK ] = Mcl = 2m3
√

2
3λ dada por (3.12).

Ahora debemos resolver el problema de valores propios siguiente[
− ∂2

∂x2
−m2 + 3m2 tanh2

(
mx√

2

)]
ηn(x) = ω2

nηn(x) (3.19)

realizando el cambio z = mx√
2

obtenemos que (3.15) se trasforma en[
−1

2

∂2

∂z2
+ 3 tanh2 z − 1

]
η̃n(z) =

ω2
n

m2
η̃n(z) (3.20)

hemos obtenido un problema espectral con término potencial del tipo P ösch−
Teller [22, Sec. 12.3]. La solución de este problema espectral viene dada por:

a) ω2
0 = 0 η̃0(z) =

1

cosh2 z

b) ω2
1 =

3

2
m2 η̃1(z) =

sinh z

cosh2 z

c) ω2
q = m2

(
k2

2
+ 2

)
η̃q(z) = eiqz

(
3 tanh2 z − 1− q2 − 3iq tanh2 z

)
(3.21)

Observando (3.21) vemos que todos los autovalores ω2
i son no negativos, ω2

i ≥
0, luego el kink es estable según la definición 2.8. El autovalor y la autofunción
(3.21a) se denomina el modo traslacional y es debido, como ya sabemos, a la
invarianza traslacional de la acción (3.3). Este modo corresponde fisicamente
a la traslación del kink. El (3.21c) nos da el espectro continuo de autovalores
y los autoestados para el problema espectral (3.20). El espectro completo de
(3.20) contiene, por último, un autovalor discreto, acompañado con su autovalor,
(3.21b) denominado el modo interno o vibracional y representa una deformación
localizada alrededor del kink y puede considerarse fisicamente como un modo
de oscilación interno del kink.

Campbell et al pudieron explicar los resultados obtenidos en [61] mediante
un “mecanismo resonante de intercambio de enerǵıa”. Ellos consideraban que
cuando dos kinks de λφ4 colisionan parte de la enerǵıa cinética (modo trasla-
cional) era transferido al modo vibracional del kink. El oscilón (estado ligado)
se forma cuando sufciente enerǵıa se transfiere desde el modo traslacional al
modo vibracional del kink. Usando este argumento se puede explicar también el
fenómeno de la ventana de doble rebote de la siguiente manera: la primera co-
lisión transfiere suficiente enerǵıa cinética (del modo traslacional) para generar
un estado débilmente ligado, el cual permite al kink y antikink separarse una
cierta distancia antes de volver a colisionar. La segunda colisión lleva de vuelta
la enerǵıa del modo vibracional al modo translacional y ambos (kink y antikink)
se escapan al infinito.
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Dado que el sistema esta contenido en un segmento de longuitud L tendremos
unos valores discretos para q, denotados por qn.

La enerǵıa de los estados perturbados respecto de la solucion clásica φK
vienen dados por

E{N1} =
2
√

2m3

3λ
+ ~

∞∑
N1=0

(
N1 +

1

2

)√
3

2
m+m~

∑
qn

(
Nqn +

1

2

)√
1

2
q2
n + 2 +O

(
λ

m2

)
(3.22)

La expresión (3.22) da la enerǵıa representa al kink y sus excitaciones. El
primer término es la masa en reposo del kink, el segundo término representa la
enerǵıa extra debida a la excitaciones de kink y el último término corresponde a

part́ıculas escalares ya que ωn =
√(

1
2m

2q2
n + 2m2

)
es la relación de dispersión

de una particula escalar de masa
√

2m y de momento mqn√
2

. Dado que estamos

en el régimen de acoplamiento débil, λ � m2, tenemos que el término clásico,
2
√

2m3

3λ , domina a los términos cuánticos los cuales se convierten en meras corre-
ciones al término clásico. El estado del kink cuántico será cuando N1 = Nqn = 0
en la expresión (3.22). En este caso tenemos que

Ekink =
2
√

2m3

3λ
+m~

1

2

√
3

2
+m~

∑
qn

1

2

√
1

2
q2
n + 2 +O

(
λ

m2

)
(3.23)

Volvemos a seguir la sección 2.7 y consideramos la diferencia de Ekink y Evac
dadas por (3.23) y (3.17) respectivamente

Ekink − E[φ0] =
2
√

2m3

3λ
+m~

1

2

√
3

2
+m~

∑
qn

1

2

√
1

2
q2
n + 2−

(∑
qn

√
q2
n + 2m2

)
+O

(
λ

m2

)
(3.24)

y tomando el ĺımite L −→ +∞ cuidadosamente obtenemos que

Ekink − E[φ0] =
2
√

2m3

3λ
+m~

(
1

2

√
3

2
− 3
√

2

2π

)
− 6m~

4π
√

2

∫ +∞

−∞
dp
√
q2 + 2m2

(p2 + 2)√
p2 + 4(p2 + 1)

+O
(
λ

m2

)
(3.25)

donde p = q
√

2
m .

La integral que aparece en la expresión anterior es logaŕıtmicamente diver-
gente. Podemos aplicar las técnicas de renormalización de la teoŕıa cuántica de
campos para tratar con esta integral, recordemos que en (1+1) dimensiones las
únicas divergencias logaŕıtmicas proceden de los diagramas de Feynman con un
solo lazo. Podemos ver [54, págs. 144 y ss] para todos los detalles.

Tenemos, por lo tanto, que la masa del kink con las correcciones cuánticas
viene dada por

Mkink =
2
√

2m3

3λ
+m~

(
1

2

√
3

2
− 3
√

2

2π

)
+O

(
λ

m2

)
(3.26)
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Debido a la existencia del modo cero en (3.21) sabemos que la enerǵıa del
kink viene dada por (2.74)

Ekink = Mkink +
P 2

2Mcl
+O(P 4) +O

(
λ

m2

)
(3.27)

donde Mcl viene dada por (3.12) y Mkink viene dada por (3.26).

3.2. Modelo Seno-Gordon

El otro modelo paradigmático que aparece en la literatura es el modelo de
Seno-Gordon. El funcional enerǵıa potencial correspondiente al modelo Seno-
Gordon se puede expresar de la siguiente manera [54, pág. 200]

U [φ] =
m4

λ

(
1− cos

(√
λ

m
φ

))
(3.28)

este potencial es periódico en φ, las constantes m y λ son constantes positivas
y las unidades de λ son de masa al cuadrado. Además es semidefinido positivo,
U [φ] ≥ 0.

La acción que gobierna el modelo de Seno-Gordon viene dado por

S[φ] =

∫ (
1

2
∂µφ∂

µφ− m4

λ

(
1− cos

(√
λ

m
φ

)))
d2x (3.29)

La ecuación del movimiento del campo φ viene dada por

∂2φ

∂t2
− ∂2φ

∂x2
+
m3

√
λ

sin

(√
λ

m
φ

)
= 0 (3.30)

La enerǵıa para una configuración φ del campo para este modelo viene dada
por

E[φ] =

∫ (
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
m4

λ

(
1− cos

(√
λ

m
φ

)))
dx (3.31)

y la enerǵıa estática de la configuración viene dada por

E[φ] =

∫ (
1

2

(
∂φ

∂x

)2

+
m4

λ

(
1− cos

(√
λ

m
φ

)))
dx (3.32)

El mı́nimo de la enerǵıa estática (3.32) se alcanza para las configuraciones del
vaćıo. En este caso, a diferencia del modelo λφ4 tenemos una cantidad infinita
numerable de configuraciones del vaćıo dadas por

φ0 =
m√
λ

(2πn) con n ∈ Z (3.33)

y por la tanto la variedad del vaćıo para el modelo de Seno-Gordon viene dada

por M =
{√

λ
m (2πn)|n ∈ Z

}
.
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La acción (3.29) es invariante bajo la transformaciónes en el espacio interno
de los campos dadas por φ −→ φ + α1, y φ −→ −φ donde α1 es un elemento
cualquiera deM. Estas trasformaciónes forman un grupo, este grupo es G = Z.
Podemos considerar como subgrupo H de G el grupo H = I y tendremos que,
revisando la sección 2.3, π0(M) = π0 (G/H) = Z. Dado que π0(M) es no trivial,
podemos decir que existen las soluciones tipo kink.

Los sectores topológicos los podremos caracterizar por los valores asintóticos
de las configuraciones del campo (φ(+∞), φ(−∞)) ∈ π0(M)× π0(M) = Z×Z.
Sabemos que los valores asintóticos pertenecen a M luego φ(+∞) = m√

λ
(2πn1)

y φ(−∞) = m√
λ

(2πn2). Por lo tanto, los sectores topológicos se caracterizan por

dos números enteros (n1, n2) ∈ Z × Z. Obtenemos que el espacio de configura-
ciones de enerǵıa finita C se puede descomponer de la siguiente manera

C =
⋃

n1,n2∈Z
Cn1n2 (3.34)

donde, como ya vimos, la unión es disjunta. Si n1 = n2 el sector topológico
correspondiente, Cn1n1 , es el sector vaćıo y tenemos tantos sectores vaćıos como
elementos tiene Z. Fácilmente se puede demostrar que Z tiene tantos elementos
como N, card(Z) = N. Claramente una configuración φ ∈ Cn1n1 tendrá una
enerǵıa dada por E[φ] = 0.

Consideremos ahora una configuración φ cuyos valores asintóticos son distin-
tos pero contiguos, es decir, φ(+∞) = m√

λ
(2πn1) y φ(−∞) = m√

λ
(2πn2) donde

|n1−n2| = 1. Estas configuraciones tienen una enerǵıa finita estática mayor que
cero (ver Sec. 2.4) y siguendo la definición podemos llamarlas kinks (a falta de
saber como se comportan bajo colisión).

Los kinks estáticos vienen dadas por la expresión de (2.29), usando el po-
tencial dado por (3.28). Las soluciones estáticas de tipo kink se expresan de
la

φ(x) = 4
m√
λ

arctan
(
e±m(x−x0)

)
+ C (3.35)

donde C viene definida de manera que los valores asintóticos de φ estén en
M. Recordemos que para que (3.35) represente un kink debe de conectar dos
vacós que sean contiguos enM. Vamos a ver algunos ejemplos. Supongamos que
estamos en el sector topológico caracterizado por (n1, n2) = (1, 0), luego un kink
vendrá dado por una de las dos expresiones (con ’+’ o con ’-’) de (3.35). Vemos
que la solución con ’+’ en (3.35) verifica los valores asintóticos del sector si
tomamos C = 0. Veámoslo: φ(+∞) = 2π+C = 2π y φ(−∞) = 0+C = 0, luego
en ambos casos C = 0. Sea ahora el sector (2,1), repitiendo el argumento anterior
La configuración φ correcta es con el signo ’+’ en (3.35) y tomando C = m√

λ
2π.

En general, un sector cualquiera caracterizado por (n1, n1 − 1) la solución que
verifica los valores asintóticos son aquellas que tiene el signo ’+’ en (3.35) y la
C = m√

λ
2π(n1− 1). Denotaremos genéricamente a estas configuraciones por φK

φK(x) = 4
m√
λ

arctan
(
em(x−x0)

)
+

m√
λ

2π(n1 − 1) (3.36)

Análogamente se puede ver que para los sectores caracterizados por (n1, n1+
1) la solución correcta, de entre las dos de (3.35), que cumplen las condiciones
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asintóticas es la que tiene signo ’-’ y la C = m√
λ

2πn1. Estas soluciones las

denotaremos por φAK

φAK(x) = 4
m√
λ

arctan
(
e−m(x−x0)

)
+

m√
λ

2πn1 (3.37)

Realizando un boost de velocidad v dado por la transformación (2.7) sobre
las configuraciones (3.36) y (3.37) obtenemos que

φK(x, t) =

√
λ

m
arctan

[
e
m(x−x0−vt)√

1−v2

]
+

m√
λ

2π(n1 − 1)

φAK(x, t) =

√
λ

m
arctan

[
e

−m(x−x0−vt)√
1−v2

]
+

m√
λ

2πn1

(3.38)

La densidad de enerǵıa estática asociada a φK/AK , ε(x), es el integrando de
(3.32) y viene dada por

ε(x) =
1

2

(
∂φK/AK

∂x

)2

+
m4

√
λ

(
1− cos

(√
λ

m
φ

))
(3.39)

Usando la forma funcional de φK/AK(x) obtenida en (3.35) y sustituyéndola
en (3.39) obtenemos que

ε(x) = 16
m3

λ
sinh2(m(x− x0)) (3.40)

Claramente se ve que la anchura ω del kink/antikink viene dada por ω v m−1

y la masa en reposo clásica del kink/antikink viene dada, aplicando (2.34), por

Mcl =
8m3

λ
(3.41)

Vemos que en este caso la masa clásica (3.41) también esta de acuerdo con
(2.53). Sabemos que los distintos sectores topológicos se caracterizan por un
número entero denominado carga topológica QT . La carga topológica en el mo-
delo de Seno-Gordon asociada a las soluciones de enerǵıa finita viene dada por

QT =

√
λ

2πm
(φ(+∞, t)− φ(−∞, t)) =

m√
λ

(
m√
λ

(2πn2)−
√
λ

m
(2πn1)

)
= n1−n2

(3.42)
La configuracón φK(x) del sector (n1, n1 − 1) tiene una carga topológica

QT = +1 ya que n1 − (n1 − 1) = +1 y la configuración φAK(x) del sector
(n1, n1 +1) tiene un valor de carga topológica QT = −1 debido a que n1− (n1 +
1) = −1. Por lo tanto, al igual que hicimos en el caso λφ4, podemos llamar kink
a la solución φK y llamar antikink a la solución φK , entendiendo que empleamos
el mismo n1 para el sector (n1, n1−1) y para el (n1, n1 +1). Las configuraciones
del campo con carga topológica |QT | > 1 son posibles y pertenecen a sectores
topológicos (n1, n2) con |n1 − n2| > 1 y por lo tanto no son kinks ya que no
conectan dos vaćıos contiguos. La carga topológica (3.42) puede tomar cualquier
valor entero, como ya hemos visto, luego las configuraciones multikink pueden
contener cualquier número de kinks y antikinks y en cualquier orden.
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Podemos estimar, al igual que hicimos en el modelo λφ4, el valor de la fuerza
de atracción entre un kink y un antikink (2.52), ya que tienen carga topológica
opuesta. Esta fuerza viene dada por

F =
20m
√
λ

λ
e−ms (3.43)

donde s es la separaración entre el kink y el antikink. Los cálculos realizados
son similares a los realizados para el caso del modelo λφ4. Vemos efectivamente
que la fuerza es atractiva y es también de tipo Yukawa. Análagomente se puede
calcular la fuerza de repulsión entre kink-kink y entre antikink-antikink. La
masa de las excitaciones entorno a uno cualquiera de los vaćıos tienen una masa
mφ = m.

Las únicas soluciones estáticas vienen dadas por (3.35) pero este modelo
admite como soluciones no estáticas, verifican la ecuación de movimiento (3.30),
configuraciones con un kink y un antikink. Los primeros que encontraron estas
soluciones fueron Seeger, Donth y Kochendorfer [36] y de forma independiente
Perring y Skyrme [51]. Estas soluciones vienen dadas por

φK,AK(x, x0, t) = 4

√
λ

m
arctan

[
sinh(vmt/

√
1− v2)

v cosh(xm/
√

1− v2)

]
(3.44)

El comportamiento asintótico en el tiempo de la solución (3.44) viene dado
por

ĺım
t−→−∞

φK,AK(x, x0, t) = φkink

(
m(x+ v(t+ ∆))√

1− v2

)
+ φantikink

(
m(x− v(t+ ∆))√

1− v2

)
ĺım

t−→+∞
φK,AK(x, x0, t) = φkink

(
m(x+ v(t−∆/2))√

1− v2

)
+ φantikink

(
m(x− v(t−∆/2))√

1− v2

)
(3.45)

donde ∆ =
√

1−v2
vm ln |v| < 0 ya que v < 1 (en unidades de c). La solución dada

por (3.44) representa en el pasado remoto (t −→ −∞) una configuración de un
kink y un antikink acercándose el uno al otro. Cuando el tiempo es negativo pero
finito tenemos la colisión entre el kink y el antikink y la configuración tiende a
cero cuando x −→ ±∞. En t = 0 tenemos que φK/AK = 0 y por lo tanto pode-
mos decir que, temporalmente, el kink y el antikink se “aniquilan”. Si el tiempo
tiende a +∞ tendremos, según (3.44), otra vez la pareja kink y el antikink.
La existencia de (3.44) como solución exacta de (3.30) significa explicitamente
que cuando un kink y un antikink del modelo Seno-Gordon colisionan ellos dos
reaparecen con la misma velocidad y forma que al principio. la única diferencia
entre el estado inicial y final es que aparece un tiempo de retraso dado por ∆.

Tenemos otra solución exacta dependiente del tiempo de (3.30) dada por

φK,K(x, x0, t) = 4

√
λ

m
arctan

[
v sinh(mx/

√
1− v2)

cosh(tm/
√

1− v2)

]
(3.46)

cuando t −→ ±∞ tendremos antes y después de la colisión dos kinks con la
misma velocidad, forma y únicamente se diferencian en la aparición de un cierto
tiempo de retraso. En ambos casos, φK,K y φK,AK , vemos que el kink y el
antikink del modelo Seno-Gordon verifican la definición 2.6 y por lo tanto son
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solitones. Apartir de ahora llamaremos a los kinks/antikinks de este modelo
solitón/antisolitón.

Además de (3.44) y (3.46) tenemos otra solución exacta dependiente del
tiempo muy importante correspondiente a un estado ligado de solitón y antiso-
litón. Esta solución viene dada por

φb(x, x0, t) = 4

√
λ

m
arctan

[
sin(smt/

√
1 + s2)

s cosh(xm/
√

1 + s2)

]
(3.47)

Esta solución es conocida como doblete o más popularmente como breather y
la hemos obtenido sustituyendo v = is en (3.44). La solución dada por (3.47) es
real para cualquier valor finito de s. Entre (3.44) y (3.47) existe una diferencia
importante y es que cuando t −→ ±∞ la solución φb no se separa en solitón y
antisolitón. En lugar de eso, la separación relativa entre el solitón y antisolitón

oscila en el tiempo con un periodo T = 2π
√

1+s2

sm . Podemos intentar el mismo
truco y considerar v = is en la solución (3.46) pero en este caso la solución
no es real. Por lo tanto, no existen estados ligados de una pareja de solitones.
Finalmente, podemos ver que empezando con una configuración con multiples
solitones y antisolitones podemos, poniendo la adecuada velocidad relativa entre
un solitón y antisolitón imaginaria, tener una solución exacta con un número
arbitrario de solitones, antisolitones y breathers.

La enerǵıa del breather vendrá dada por

Eb =
2Mcl√
1 + s2

(3.48)

donde claramente se observa que la enerǵıa del estado ligado es más pequeña
que la suma de la masa del solitón y del antisolitón. La diferencia es la enerǵıa
de enlace.

Sabemos que las únicas soluciones estáticas son el solitón y el antisolitón pe-
ro el hecho de que podamos dar una expresión para soluciones multisolitónicas
dependientes del tiempo es debido a que el modelo de Seno-Gordon es un mode-
lo completamente integrable. No existe una definición universalmente aceptada
de lo que es un sistema completamente integrable de ecuaciones diferenciales en
derivadas parciales. Existen un cierto número de caracteŕısticas comunes entre
todos aquellos sistemas considerados como integrales. Entre las caracteŕısticas
maś importantes son: la existencia de un número infinito de constantes de mo-
vimiento [72, 62], la existencia de pares de Lax [39], colisión elástica entre los
solitones y la aplicación de técnicas iterativas de obtención de soluciones como
la Inverse Scattering Transform [2] y la transformación de Bäcklund. Vamos a
estudiar las transformación de Bäcklund para ello vamos a usar las coordenadas
del cono de luz definidas por

x− =
1

2
(x− t) x+ =

1

2
(x+ t) (3.49)

las derivadas parciales respecto a las coordenadas del cono de luz vienen dadas
por

∂− =
∂

∂x−
=

∂

∂x
− ∂

∂t
∂+ =

∂

∂x+
=

∂

∂x
+
∂

∂t
(3.50)

La ecuación de movimiento en estas coordenadas viene dada por
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∂+∂−φ =
m3

√
λ

sin

(√
λ

m
φ

)
(3.51)

Tomaremos a partir de ahora m = λ = 1 por simplicidad. La idea cru-
cial detrás de esta transformación es reducir la ecuación parcial diferencial de
segundo grado en (3.51) a una pareja de ecuaciones diferenciales de primer or-
den. La pareja de ecuaciones diferenciales de primer orden para el modelo de
Seno-Gordon vienen dadas por

∂+

(
φ1 − φ0

2

)
= a sin

(
φ1 + φ0

2

)
∂−

(
φ1 + φ0

2

)
= a sin

(
φ1 − φ0

2

) (3.52)

donde se comprueba facilmente que φ1 y φ0 verifican (3.51). En particular, si
φ0 = 0 obtenemos que φ1 es la solución correspondiente a un solitón/antisolitón.

Podemos expresar la idea anterior mediante operadores. Supongamos que
φ0 es una solución de (3.51), si introducimos φ0 en (3.52) obtenemos φ1, otra
solución de (3.51), que depende de φ0. Esta dependencia la podemos expresar
diciendo que existe un operador, Ba, tal que φ1 = Ba[φ0]. Este operador se
denomina operador de Bäcklund con parámetro de escala a. Obtendremos la
solución de dos solitones (3.46) aplicando el operador Ba a la solución de un
solitón, y aśı sucesivamente. La pareja de ecuaciones (3.52) se pueden volver
muy complicadas de resolver en cuanto vamos a soluciones de más de dos so-
litones, pero Bianchi demostró que las transformaciones de Bäcklund sucesivas
conmutan y que por lo tanto para φ0 se verifica que

φ1 = Ba1 [φ0], φ2 = Ba2 [φ0] y φ3 = Ba2 [φ1] = Ba1 [φ2] luego

Ba1Ba2 = Ba2Ba1
(3.53)

Esta propiedad se denomina Teorema de permutabilidad de Bianchi y permi-
te reducir la resolución de (3.52) a un problema puramente algebráico. Para más
detalles sobre las transformaciones de Bäcklund y el teorema de permutabilidad
de Bianchi podemos ver [60, 59].

Vamos a estudiar ahora el tratamiento cuántico de la solución del vaćıo, el
solitón φK y el breather φb. Vamos a suponer que estamos en régimen débil
en la constante de acoplamiento, al igual que vimos en el caso de λφ4, esto
significa que λ/m2 � 1. Vamos a empezar, como hicimos en el caso λφ4 con la
solución estática del vaćıo φ0. La enerǵıa de las perturbaciones respecto de la
configuración del vaćıo viene dada por

E[φ] = E[φ0] +
1

2

∫
dxη(x)

(
− ∂2

∂x2
+m2

)
η(x) (3.54)

donde hemos empleado que δ2U [φ0]
δφ2 = m2 usando el funcional enerǵıa potencial

(3.28).
Introducimos nuevamente el sistema en una longitud finita L, siguiendo la

Sec. 2.7, e impondremos condiciones de contorno periódicas a los campos. Al
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final de todos los cálculos tomaremos el ĺımite L −→ +∞. En primer lugar
debemos volver a resolver el problema espectral(

− ∂2

∂x2
+m2

)
ηn(x) = ω2

nηn(x) (3.55)

Considerando como soluciones de (3.55) las soluciones de ondas planas η(x)n =

L−
3
2 eiknx donde kn = 2πn

L , con n ∈ Z y sustituyendo la solución de onda
plana en (3.55) obtenemos el espectro en frecuencias, que para este caso es
ω(n) =

√
k2
n +m2. La enerǵıa en función de los números de ocupación N1 viene

dado por

E{N1} = ~
+∞∑
N1=1

(
N1 +

1

2

)√
k2
n +m2 +O

(
λ

m2

)
(3.56)

La enerǵıa correspondiente al estado vaćıo Evac viene dada por (3.56) con
N1 = 0

Evac =
1

2
~

+∞∑
N1=1

√
k2
n +m2 +O

(
λ

m2

)
(3.57)

Los valores con los distintos valores de N1 me darán la enerǵıa de las part́ıculas
correspondientes a las excitaciones de del vaćıo φ0.

Consideremos la solución kink estática φK dada por (3.36) con n1 = 1 y con
x0 = 0, por simplicidad. La expresión (2.58) nos queda

E[φ] = E[φK ] +
1

2

∫
dxη(x)

[
− ∂2

∂x2
+
δ2U [φK ]

δφ2

]
η(x) + . . . =

=
8m3

λ
+

1

2

∫
dxη(x)

[
− ∂2

∂x2
+m2 cos

(√
λ

m
φK

)]
η(x) + . . . =

(3.58)

Empleamos que

1− cos

(√
λ

m
φK

)
= 2 sin2

(√
λ

2m
φK

)
= 2

 2 tan
(√

λ
4mφK

)
1 + tan2

(√
λ

4mφK

)
2

=

= 2

[
emx

1 + e2mx

]2

= 2

[
2

e−mx + emx

]2

=

= 2sech2(mx)

(3.59)

luego hemos obtenido que

1− cos

(√
λ

m
φK

)
= 2sech2(mx) (3.60)

Sustituyendo (3.60) en el operador de Schrödinger para este problema obte-
nemos que
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W =

[
− ∂2

∂x2
+m2(1− 2sech2(mx)

]
(3.61)

realizamos ahora en (3.61) el cambio de variable z = mx y nos queda que

W = m2

[
− ∂2

∂z2
+ (1− 2sech2(z))

]
(3.62)

El problema de valores propios para el operador de Schrödinger (3.62) se
expresa como

m2

[
− ∂2

∂z2
+ (1− 2sech2(z))

]
ηk(z) =

ω2

m2
ηk(z) (3.63)

La solución de (3.63) es bien conocida [42, págs. 73-74], [26, págs. 94-101] y
viene dada por:

Un estado con autovalor
ω2

0

m2 = 0 y con autofunción η0(x) = 2 1
cosh(mx)

Un espectro continuo de estados caracterizados por ω2
q = (1 + q2)m2 con

autofunciones ηq(x) = 1
(1+k2)

√
2π

(tanh(mx)i+ q)eiqmx

Observamos claramente que, al igual que ocurŕıa en λφ4, todos los ω2 son no
negativos, luego el solitón es estable como vimos en la Sec. 2.7. Además también
vemos que existe un modo traslacional, ω2 = 0, el cual es debido a la invarianza
de la acción (3.29) bajo traslaciones. El modelo de Seno Gordon no presenta, a
diferencia del modelo λφ4, otro modo discreto a parte del modo traslacional, es
decir, no tiene modo vibracional.

Dado que el sistema esta contenido en un segmento de longuitud L tendremos
unos valores discretos para q, denotados por qn.

La enerǵıa de los estados perturbados respecto de la solucion clásica φK
vienen dados, nuevamente, por

E{N1} =
8m3

λ
+m~

∑
qn

(
Nqn +

1

2

)√
q2
n + 1 +O

(
λ

m2

)
(3.64)

La expresión (3.64) da la enerǵıa del solitón. El primer término es la masa
en reposo del solitón, y el segundo representa a part́ıculas escalares ya que
ωn =

√
(m2q2

n +m2) es la relación de dispersión de una part́ıcula escalar de
masa m y de momento mqn. La expresión para la enerǵıa (3.64) no contiene
el término asociado al modo vibracional, como si ocurŕıa en (3.22). Dado que
volvemos a estar en el régimen de acoplamiento débil, λ� m2, tenemos que el

término clásico, 8m3

λ vuelve a dominar al término cuántico. El estado del solitón
cuántico del modelo Seno-Gordon será cuando Nqn = 0 en la expresión (3.64).
Obtenemos

Esolitón =
8m3

λ
+m~

∑
qn

1

2

√
q2
n + 1 +O

(
λ

m2

)
(3.65)

Volviendo a tomar la diferencia entre (3.57) y (3.65) como ya hicimos en el
modelo λφ4 obtenemos que
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Esolitón − E[φ0] =
8m3

λ
+m~

∑
qn

1

2

√
q2
n + 1−

(∑
qn

√
q2
n +m2

)
+O

(
λ

m2

)
(3.66)

Siguiendo [54] obtenemos, una vez tomado el limite L −→ +∞ y manipu-
lando las divergencias que aparezcan, el siguiente valor para la masa del solitón
con las correcciones cuánticas (masa normalizada) para el caso del solitón de
Seno-Gordon

Msol =
8m

λ
' 8m3

λ
− m

π
+O

(
λ

m2

)
(3.67)

Veamos ahora las correcciones a la masa del breather debido a los efectos
cuánticos. Dashen, Hasslacher, y Neveu mostraron [28, 29] que los niveles de
enerǵıa pueden ser calculados a partir de

Tr
1

H − E
= iT r

∫ ∞
0

dTei(E−H)T (3.68)

la cantidad e−iHT puede ser calculado como un path integral

Tre−iHT =

∫
d[φ]eiS(T ) (3.69)

donde la integración es sobre caminos con un periodo T y el espacio 1D es tratado
como una circunferencia de longuitud L. Esta longuitud será llevada al infinito
al final de todos los cálculos. El la aproximación de fase estacionaria el path
integral es dominado por las soluciones peoriódicas clásicas. En aproximación
domiante los estados del breather tienen una masa M dada por la condición de
que

S(τ(M)) +Mτ(M) = 2πn (3.70)

donde τ(M) es el periodo de un breather con enerǵıa E = M = 16m3
√

1+s2
. La expre-

sión anterior es una generalización a teoŕıa cuántica de campos de la condición
de cuantización de Bohr-Sommerfeld de la mecánica cuántica no relativ́ısta.

Aplicando este procedimiento obtenemos que la masa de los estados excita-
dos viene dada por

Mn =
16m3

λ
sin

(
nλ

16m2

)
(3.71)

con n ∈ Z cumpliendo la condición de que nλ
16m2 <

π
2 .

Dado que estamos en regimen de acoplamiento débil, λ
m2 � 1, tenemos que

el estado del breather mas bajo (n = 1) tiene una masa de

M1 = m

[
1− 1

6

(
λ

16m2

)2

+O
(
λ3

m6

)]
(3.72)

en el limite λ −→ 0 obtenemos que la masa del breather es la misma que la
masa de la excitación del vaćıo dada por mφ = m. Es decir, el breather es el
bosón correspondiente a la excitación del vaćıo, en el rango de λ −→ 0, pero

41



vista de una manera diferente. Los estados excitados tienen unas masas dadas
por

Mn = M1

[
n− 1

6
(n3 − n)

(
λ

16m2

)2

+O
(
λ3

m6

)]
(3.73)

los cuales pueden ser entendendidos como estados ligados de n bosones. Una
mejor aproximación se obtiene si se tiene en cuenta los efectos de las fluctuacio-
nes sobre los caminos clásicos. Para el caso del breather de Seno-Gordon estas
fluctuaciones pueden computarse de forma completa [28] y consiste en sustituir
λ
m2 por α2 ≡ (λ/m2)

(1− λ
8πm2 )

en (3.67) y (3.71) quedándonos, al mismo orden, las

siguientes expresiones

Msoliton =
8m

α1

Mn =
16m

α1
sin
(nα1

16

)
con n = 1, 2, . . . , <

8π

α1

(3.74)

Podemos expresar la segunda ecuación de (3.74) como

Mn = 2Msoliton sin

[
nπ

2

λ/(8πm2)

1− λ/(8πm2)

]
(3.75)

Dado que n < 8πm2

λ − 1 tenemos que no existen breather si λ ≥ 4πm2. Por
lo tanto también esta ausente el bosón correspondiente a la excitación del vaćıo
ya que lo hemos identificado con el breather en el caso de que n = 1.

Los solitones y breathers de Seno-Gordon tiene muchas aplicaciones, entre
otras, aparecen en: la propagación de los fluxones (cuantos de flujo mágnetico)
en uniones Josephson [35, 12], los solitones de la versión discreta del modelo
Seno-Gordon, conocida como modelo Frenkel-Kontorva (consultar [13] para una
revisión general), aparece en la teoŕıa de dislocaciones en cristales [13, págs. 12
y ss], los solitones también aparecen en las ondas que aparecen en los materiales
ferromágneticos y antiferromágneticos [75, 76]. Vamos a explicar brevemente
dos áambitos donde aparece los solitones y breathers del modelo Seno Gordon.
Aparecen en el estudio de las pseudoesferas y presenta un ejemplo del fenómeno
de bosonización. Las pseudoesferas son superficies de R3 de curvatura constante
-1. Este tipo de superficies se pueden parametrizar con un conjunto concreto de
coordenadas asintóticas en las cuales la primer y segunda forma fundamental
quedan de la siguiente forma

I(x, t) = dx2 + cos q(dxdt+ dtdx) + dt2

II(x, t) = sin q(dxdt+ dtdx)
(3.76)

donde q es el ángulo entre las ĺıneas correspondiente a la x-curva y la t-curva.
Las ecuaciones de Gauss y Codazzi con esta parametrización se reducen a una
única ecuación dada por

qxt = sin q (3.77)

Claramente (3.57) corresponde a la ecuación de Seno-Gordon en coordenadas
del cono de luz. Aplicando el Teorema fundamental de las superficies deduci-
mos que existe un correspondencia, al menos localmente, entre superficies de
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curvatura -1 y soluciones de la ecuacion de Seno-Gordon. Para ver los detalles
de esta aplicación podemos recurrir a [60, págs. 31 y ss.]. Veamos ahora algunos
ejemplos de esta correspondencia

donde a), b) y c) representan la pseudosuperficie correspondiente a soluciones
con breather, 2-solitones y un solitón respectivamente.

Veamos ahora la segunda aplicación de la ecuación de Seno-Gordon. Consi-
deremos un modelo de un campo fermiónico ψ (Campo de Dirac) de masa M
en (1+1)-dimensiones dado por la densidad lagrangiana

L = ψ̄(iγµ∂µ −M)ψ − g

2

(
ψ̄γµψ

)2
(3.78)

donde γµ son las matrices 2 × 2, dadas, en la representación de Weyl, por

γ0 =

(
0 1
1 0

)
y γ1 =

(
0 −i
i 0

)
y ψ es la solución en ondas planas de la

ecuación de Dirac y viene representado por un spinor de dos componentes reales
dado por

ψ(x, t) =

(
u(x)
v(x)

)
eiωF t (3.79)

Este modelo se conoce como el modelo de Thirring [66]. El espectro de
part́ıculas incluye un fermión y un antifermión, ambos de masa M . Si g > 0 la
interacción es atractiva y por lo tanto los estados ligados de fermión-antifermión
son posibles. El estado ligado de menor enerǵıa tiene una masa, si g es pequeño,
de

M =

[
2− g2 +

4g3

π
+O(g4)

]
(3.80)

Volviendo a (3.75), podemos realizar el cambio de variable dado por λ
4πm2 =

1
1+ δ

π

y estudiar el espectro para λ ≤ 4πm2. Obtenemos que el estado del breather

de menor enerǵıa tiene una masa de

M1 = Msol

[
2− δ2 +

4δ3

π
+O(δ4)

]
(3.81)

Se observa claramente que la expresión dada por (3.80) es equivalente a la
dada por (3.81) si hacemos la siguiente identificación
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λ

4πm2
=

1

1 + g
π

(3.82)

Vemos que acomplamiento débil λ
m2 −→ 0 en el modelo Seno-Gordon corres-

ponde a un acomplamiento fuerte g −→ +∞ en el modelo de Thirring. Además
tenemos también la siguientes equivalencias entre ambos modelos:

(
λ

4πm2

)
−→ 0 excitación del vaćıo←→ estado ligado de fermión-antifermión (g −→ +∞)

λ −→ 4m2 Solitón←→ ψ (g ←→ 0)

λ −→ 4m2 Antisolitón←→ ψ̄ (g ←→ 0)

Además, el modelo de Thirring tiene la siguiente transformación ψ −→ eiαψ
con α ∈ R como una simetŕıa de su acción y usando las equivalencias ante-
riorieres podemos ver que el número férmionico (correspondiente a la simetŕıa
anterior) es equivalente a la carga topológica en el modelo Seno-Gordon. Cole-
man en [18] dió la demostración rigurosa. Esta equivalencia no es un fenómeno
aislado, debido a que en un espacio (1+1) dimensional el grupo de Poincaré se
reduce a reflexiones y traslaciones, por lo tanto, no existe el sṕın en (1+1) di-
mensiones (aunque los spinores y escalares son distintos debido a que tienen
distintas estad́ısticas). Una equivalencia como esta debeŕıa permitir construir
operadores que anticonmuten a partir de operadores bosónicos. Este procedi-
miento se denomina bosonización. Coleman [18] y Mandelstam [44] introdujeron
el concepto de bosonización y éste último dió una construcción explicita de un
operador construido a partir de la exponencial de un operador bosónico que veri-
ficaba relaciones de anticonmutación. Actualmente, la bosonización de Coleman
y Mandelstam se conoce como bosonización abeliana.

El proceso de bosonización anterior no es válido para modelos fermiónicos
no abelianos, como QCD en dos dimensiones. Witten contruyó en [71], para el
caso de fermiones de Majorana, un procedimiento de bosonización no abeliana.

La bosonización en el caso de Thirrring y Seno-Gordon tiene lugar como una
dualidad entre el régimen débil en una de las teoŕıas con el régimen fuerte en la
otra. Esta dualidad se denomina dualidad T. Una dualidad de este tipo es uno
de los ingredientes esenciales de la teoŕıa M.
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Caṕıtulo 4

Conclusiones

A lo largo de este trabajo hemos discutido los modelos de campos escalares
en (1+1) dimensiones sometidos a un funcional enerǵıa potencial U [φ] definido
positivo y con más de un mı́nimo. La ecuación de movimiento para estos campos
son ecuaciónes en derivadas parciales no lineales que admiten soluciones no
triviales de enerǵıa finita. Estas soluciones, que hemos llamado genéricamente
como kink, deben su existencia al hecho de que la variedad del vaćıos tiene una
topoloǵıa no trivial. Una vez cuantizada la teoŕıa para estos modelos nos hemos
encontrado con dos tipos de part́ıculas elementales, que son:

En primer lugar, tenemos las part́ıculas correspondientes a las pequeñas
fluctuaciones respecto del vaćıo que tienen una masa mφ dada por (2.15).

En segundo lugar, tenemos las soluciones de enerǵıa finita kink/antikink
que son part́ıculas, incluso a nivel clásico, de masa Mcl dada en (2.34). La
cuantización, en el régimen de acoplamiento débil, nos da correcciones a
la masa clásica.

Hemos visto en el modelo Seno-Gordon que existen part́ıculas que repre-
sentan un estado ligado de solitón/antisolitón, los breathers. El modelo de λφ4

poseé los oscilones, un estado ligado oscilante de vida muy larga denominado
Oscilón [48, 43, 61]. Podŕıamos decir que esta vida tan larga es debido a que
los oscilones son “casi” breathers debido a que el potencial (3.1) y el potencial
(3.28) tienen una forma muy aproximada cerca de los mı́nimos del potencial
Seno-Gordon.

Hemos estudiado la cuantización de estos modelos escalares en el supuesto de
que estamos en régimen de acoplamiento débil. En el caso de que estuvieramos
en régimen de acoplamiento fuerte, aunque el kink puede ser todav́ıa solución
clásica de las ecuaciones de movimiento, el análisis perturbativo que hemos
realizado para el tratamiento cuántico fallaŕıa. Sin embargo, podemos salvar este
obstáculo, en algunos casos, gracias al fenómeno de la dualidad como ya hemos
visto en el caso del modelo bosónico de Seno-Gordon y el modelo fermiónico de
Thirrring.

Hemos visto un modelo (el modelo Seno Gordon) un que no poséıa modos
vibracionales para el operador de Schrödinger y que teńıa una colisión trivial
entre dos de sus solitones. También hemos analizado el caso contrario, un modelo
(el modelo λφ4) que teńıa una colisioń no trivial entre dos de sus kinks y que en
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este caso poséıa modos vibracionales es un correspondiente problema espectral.
Atendiendo a esta situación podriamos formular la siguiente conjetura

Conjetura. La presencia de modos vibracionales en el correspondiente pro-
blema de valores propios es condición suficiente para garantizar la no integrabi-
lidad del modelo bajo estudio.

Esta conjetura fue primero estableciada en un estudio sobre transición desde
el modelo Landau-Lifshitz, que es no integrable, a un modelo que describ́ıa un
material ferrómagnetico biaxial en un campo mágnetico. Este estudio puede
encontrarse en [7].
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