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Abstract 
 

There is an outcrop of sediments belonging to the Camarillas Formation (Barremian) in 
the municipality of Cabra de Mora (province of Teruel, Spain), Penyagolosa sub-basin. 
Two stratigraphic columns have been made in two outcrops, chosen for their good 
quality, describing: lithology, sedimentary structures, bioturbation, paleocurrents and 
morphology. According to the observed characteristics, the described sediments have 
been grouped into seven facies associations: offshore, offshore transition, lower 
shoreface, upper shoreface, foreshore, tidal plain and tidal channel. The relation among 
the different facies has been analysed along both columns, dividing the columns in 
parasequences. A series of stratigraphic surfaces, related to relative sea level variations, 
are described and interpreted among the parasequences. These surfaces are: 
transgressive surfaces (Wave Ravinement Surface, wRs), sea regression surfaces 
(Regressive Surface of Marine Erosion, RSME), and non-depositional surfaces. On the 
whole, the sedimentary environment has been interpreted as a siliciclastic shelf, where 
rises and falls of relative sea level condition the stratigraphic architecture, the different 
parasequence stackings and the formation of different stratigraphic surfaces.  
 
 

 
Resumen 

 
En la localidad de Cabra de Mora (provincia de Teruel, España) afloran sedimentos 
pertenecientes a la Fm. Camarillas (Barremiense), Subcuenca de Penyagolosa. En dos 
afloramientos, elegidos por su buena calidad, se han levantado sendas columnas 
estratigráficas detallando: litología, estructuras sedimentarias, bioturbación, 
paleocorrientes y morfología. En función de las características observadas se han 
agrupado los sedimentos descritos en ambas columnas en un total de siete asociaciones 
de facies: offshore, offshore de transición, shoreface inferior, shoreface superior, 
foreshore, llanura mareal y canal mareal. A lo largo de ambas columnas se ha analizado 
la relación entre las distintas asociaciones de facies  dividiendo las columnas en 
parasecuencias. Entre las parasecuencias se describen e interpretan una serie de 
superficies estratigráficas relacionadas con las variaciones en el nivel del mar relativo. 
Estas superficies son: superficies transgresivas (Wave Ravinement Surface, wRs), 
superficies de regresión marina  (Regressive Surface of Marine Erosion, RSME) y 
superficies no deposicionales. En conjunto, el medio sedimentario se ha interpretado 
como una plataforma siliciclástica donde las subidas y bajadas del nivel del mar relativo 
condicionan la arquitectura estratigráfica, los diferentes apilamientos de parasecuencias 
y la formación de las diferentes superficies estratigráficas. 
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Capítulo 1 

Introducción, contexto geológico y metodología 
 

1.1. Introducción  

Este trabajo de fin de master se centra en el estudio sedimentológico de los 

sedimentos pertenecientes a la Formación Camarillas en la Subcuenca de Penyagolosa 

perteneciente a la Cuenca del Maestrazgo, al sureste de la Cordillera Ibérica. Esta 

formación representa la sedimentación sinrift durante el Cretácico Inferior de sistemas 

continentales fluviales y lacustres (Salas, 1987). La falta de estudios detallados en esta 

subcuenca y la reinterpretación de la misma en otras subcuencas cercanas como 

sistemas costeros y litorales (Navarrete et al., 2013) son algunas de las razones para la 

realización de este estudio. 

Los objetivos de este trabajo son el estudio de los sedimentos encontrados en la 

Fm. Camarillas en la Subcuenca de Penyagolosa y realizar una primera caracterización 

en detalle de la estratigrafía y la sedimentología en dicha subcuenca para la 

interpretación del sistema sedimentario en el cual se depositó. A su vez, interpretar una 

evolución vertical en la medida de lo posible del sistema sedimentario y su comparación 

con otros trabajos realizados para la misma formación en otras subcuencas dentro de la 

Cuenca del Maestrazgo. 

El área de trabajo se centra en la localidad de Cabra de Mora, provincia de 

Teruel. La elección de esta zona de trabajo se basa en la buena calidad de los 

afloramientos debido a la presencia de cortes de carreteras y valles permitiendo una 

buena visualización vertical y lateral de los mismos.  

1.2. Contexto geológico 

 

La Subcuenca de Penyagolosa es de una cuenca sedimentaria desarrollada 

durante el Barremiense-Aptiense (Cretácico inferior) al noreste de la Península Ibérica 
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(Fig, 1A). La sedimentación en esta subcuenca está representada principalmente por la 

Formación Areniscas y Lutitas de  Camarillas formada por material detrítico  en la parte 

basal y media y más carbonatado en los términos superiores. 

 

Los afloramientos de esta subcuenca se sitúan al sureste de la actual Cordillera 

Ibérica, en la denominada Cuenca del Maestrazgo (Soria, 1997).  Actualmente, la 

Cordillera Ibérica tiene una dirección NW-SE, una longitud de 350 km y hasta 200 km 

de anchura máxima (Capote et al., 2002). Su origen se debe a la inversión tectónica de 

las cuencas mesozoicas que comenzaron a desarrollarse durante el Pérmico y fueron 

levantadas durante la Orogenia Alpina. 

 

Durante el Mesozoico se produce en el interior de la Placa Ibérica la 

sedimentación en un contexto tectónico extensional formándose una serie de grabens y 

semigrabens que condicionan la arquitectura estratigráfica de las distintas cuencas y 

subcuencas. Este proceso de rifting de la corteza comienza en el Pérmico superior con la 

rotura de Pangea y la formación de las primeras fallas normales y transversas. 

 

Dentro del proceso de rifting se distingue dos ciclos de rift  y post-rift . En primer 

ciclo abarca del Pérmico superior al Jurásico medio y en segundo del Jurásico superior 

al Cretácico medio (Sánchez-Moya et al., 1992; Salas y Casas, 1993; Salas et al., 2001; 

Capote et al., 2002). 

 

En el primer ciclo de rift se desarrolla un sistema de fallas normales con 

dirección NW-SE y NW-SE asociadas con la rotura continental de Pangea. La 

propagación de la deformación se produce desde el W hacia el NE acomodándose la 

deformación en distintos sistemas de tipo graben y semigraben asociados a distintos 

zonas dentro del Sistema Ibérico (Sánchez-Moya et al., 1992). 

 

Entre el Sinemuriense y el Kimmeridgiense (Jurásico medio) se produce la etapa 

de post-rift  caracterizada por subsidencia térmica de la Cuenca Ibérica y la aparición de 
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materiales volcánicos (Salas y Casas, 1993). Los  sedimentos durante esta etapa 

continúan siendo de tipo marinos carbonatados en zonas de plataforma. 

 

En el segundo ciclo (Jurásico-Cretácico) que comprende desde el 

Kimmeridgiense (Jurásico superior) hasta el Albiense (Cretácico medio). La Cuenca 

Ibérica se fragmenta en cuatro grandes dominios paleogeográficos: Zona Centro, Zona 

Suroeste, Zona Noroeste o Cameros y Zona Sureste o Maestrazgo (Soria et al., 2000). 

Cameros y el Maestrazgo son las dos zonas más importantes donde se encuentran las 

mayores acumulaciones de sedimentos. Cada una de estas zonas se encuentra a su vez 

dividas en subcuencas delimitadas por estructuras tectónicas locales. El Maestrazgo se 

encuentra dividido en seis subcuencas: La Salzedella, Morella, El Perelló, Las Parras, 

Galve y Penyagolosa (Fig 1B). Las fallas que dividen las diferentes subcuencas tienen 

una dirección NW-SE y NE-SW. Entre las más importantes se distinguen las fallas de 

La Rambla, Las Parras, Herbers, Segre, Turmell, Miravete y Cedrillas (Soria 1997, 

Liesa et al., 2000a,b). 

 

La estratigrafía sinrift de la Subcuenca de Penyagolosa es similar a la que se 

existente en la Subcuenca de Galve (Fig. 1C) y se divide en las siguientes formaciones: 

 

- Formación El Castellar: Sedimentos aluviales y lacustres. Representan la 

transición de momentos iniciales del rifting al momento de climax. De edad 

Berriasiense-Barremiense inferior (Liesa et al., 2006; Meléndez et al., 2009). 

- Formación Camarillas: Arcillas rojas y areniscas anteriormente interpretadas 

originalmente como sedimentos fluviales y lacustres de edad Barremiense (Salas, 1987). 

- Formación Artoles: Margas, y calizas con moluscos, foraminíferos y algas 

interpretadas como un ambiente marino somero transicional desde ambientes 

continentales y litorales a ambientes de plataforma carbonática de edad Barremiense 

(Salas, 1987; Soria, 1997). 

-Formaciones Chert, Forcall y Villarroya de los Pinares: Ambientes marinos de 

plataforma siliciclásticos y carbonatados representando las denominadas facies 

urgonianas de edad Aptiense (Venin y Aurell, 2001; Peropadre, 2012). 
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Fig.1: A) Mapa de la situación de la Cordillera Ibérica dentro de la Península Ibérica. B) 

Situación de las subcuencas cretácicas en la Cuenca del Maestrazgo. C) Columna 

estratigráfica con las formaciones descritas en la Subcuenca de Galve. Figura modificada de 

Liesa et al., 2006.  
 

Este trabajo se centra en el estudio de la Fm. Areniscas y Lutitas de Camarillas 

(Fig. 2)interpretada como un sistema puramente continental (Salas, 1987) que 

actualmente tiene gran importancia por la aparición de múltiples restos de dinosaurios 

tanto en forma de restos óseos fósiles como de icnitas (Cobos y Gascó, 2012). 

 

El post-rift  se desarrolla entre el Albiense y el Maastrichtiense (Cretácico 

superior) con la disminución de la actividad tectónica y la colmatación de las diferentes 

cuencas formadas durante la etapa de rift. 

 

El cambio de un régimen extensional a compresivo en el inicio del Cenozoico 

produce la deformación de los materiales tanto mesozoicos como la de los sedimentos 
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sintectónicos del Terciario. La Compresión Alpina provoca la reactivación de fallas 

generadas durante la etapa anterior pasando de normales a inversas generando diferentes 

cuencas terciarias con distintos estilos de deformación en función de  su geometría y su 

potencia de sedimento acumulado (Capote et al., 2002). Se diferencian cinco grandes 

unidades estructurales en la Cordillera Ibérica: Demanda-Cameros (NW), Sierra de 

Altomira (SW), Rama Castellana (centro-SW), Rama Aragonesa (centro-NE) y 

Maestrazgo (SE) (Capote et al., 2002). 

 

Fig. 2. Mapa geológico y situación de las dos columnas estratigráficas levantadas en la 

Formación Camarillas. Hoja nº 591 del MAGNA) (Godoy et al., 1986)  

 

1.3. Metodología 

El trabajo de campo en la Formación Camarillas ha sido realizado a lo largo del 

período comprendido entre Noviembre de 2013 y Junio de 2014. Los métodos 

empleados en el campo comprenden una combinación de técnicas usadas 

tradicionalmente en estudios sedimentológicos como es el levantamiento de columnas 

estratigráficas de detalle, montaje de panorámicas de los depósitos estudiados y foto-
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interpretación de imágenes. Complementariamente se han utilizado imágenes de satélite 

tomadas de la página web del SITAR perteneciente al Gobierno de Aragón. 

El trabajo de fin de master está basado en el levantamiento de dos columnas 

estratigráficas de detalle señaladas en área de trabajo. A lo largo de ambas columnas se 

detallan aspectos sedimentológicos como la textura, composición, estructuras 

sedimentarias y tipos de contactos litológicos. También se harán referencia a elementos 

relacionados con bioturbación, tendencia de unidades siliciclásticas, orientación de las 

paleocorrientes medidas en el campo, facies, y asociaciones de facies definidas a lo 

largo de la columna. La leyenda utilizada queda recogida en la figura 3. 

La foto-interpretación representa un método rápido de recogida de múltiples 

datos a lo largo del afloramiento tales como la arquitectura estratigráfica y la relación 

que los distintos estratos y las distintas asociaciones de facies tienen entre sí. Los 

fotomontajes de los afloramientos comprenden una serie de fotos con un solapamiento 

de aproximadamente el 30% tomadas lo más horizontal posible para disminuir la 

distorsión de las mismas. Estas fotos se han tomado de tres formas posible: alejándose 

horizontalmente lo más del afloramiento para poder tener el mayor grado de visión 

posible, desde el otro lado del valle donde se han levantado las columnas y, por último, 

mediante la utilización de un drone  con cámara fotográfica incorporada con el fin de 

obtener imágenes de alta resolución desde distintos ángulos y alturas. Estas fotos han 

sido montadas con Adobe Photoshop y posteriormente editadas mediante el uso 

de Adobe Illustrator. 
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Fig. 3: Leyenda utilizada que describe los símbolos utilizados para la litología, las estructuras 

sedimentarias y asociaciones de facies definidas. 
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Capítulo 2 

Estratigrafía 

 

2. Estratigrafía  

 

En la localidad de Cabra de Mora se han levantado un total de 154 metros 

repartidos en dos columnas: la primera llamada Cabra de Mora 1con un total de 76,4 

metros y la segunda denominada Cabra de Mora 2 con un total de 77,60 metros. La 

presencia de sistemas de fallas entre ambas columnas impide que la correlación entre 

ambas sea fiable. Sin embargo, ocupan una posición estratigráfica equivalente. 

 

2.1. Columna Cabra de Mora 1 

De base a techo se han diferenciado un total de seis tramos señalados en la 

Figura 4. 

Tramo 1: 10,10 metros. Tramo formado por lutitas rojas y grises en la base y areniscas 

de distinto tamaño de grano en la parte superior. 

Las lutitas de la base con un espesor de 5,10 metros en total. Son de color rojizo-

violáceo en superficie y de color gris a negro en corte fresco. Aparecen por norma 

general con un aspecto masivo aunque ocasionalmente aparecen de forma laminada y 

bioturbada. La bioturbación se concentra en superficies más o menos endurecidas con 

espesores de 10-15 centímetros siendo estas de tipo burrow sin lograr identificar el 

género ni el tipo. Estas bioturbaciones se marcan en las lutitas por ser de tono verdoso.  

Las areniscas ocupan la parte superior del tramo con espesor de 5 metros. Son 

principalmente de tamaño de grano medio apareciendo ocasionalmente algunos estratos 

de tamaño de grano grueso. Su composición es de tipo cuarzoarenita encontrando en su 

interior laminación por acumulación de moscovitas. Las areniscas aparecen en distintos 

cuerpos tabulares con espesores que pueden variar desde los 20 cm hasta el metro y 

medio de potencia. La base puede ser de tipo erosiva o plana. En su interior 

encontramos laminación paralela,  estratificación cruzada, cantos duros, cantos blandos 
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de arcillas negras y fragmentos de restos vegetales. Algunos de los cuerpos de areniscas 

se encuentran bioturbados a techo por perforaciones verticales sin identificar el tipo. 

Tramo 2: 9 metros. Tramo compuestos fundamentalmente por lutitas de color gris a 

negro con intercalaciones de areniscas. 

Las lutitas ocupan la mayor parte del tramo con un espesor máximo de 5,1 

metros. Son de color gris y negro con aspecto tanto masivo como laminado. En su 

interior se encuentran acumulaciones de fragmentos de restos vegetales y materia 

orgánica carbonificada. Ocasionalmente aparecen bioturbaciones verticales 

indiferenciadas. Dentro de las lutitas aparecen estratos de arenisca con tamaño de grano 

fino y espesores que varían entre los 5 y los 15 cm con bases ligeramente erosivas y 

poca continuidad lateral. 

 El cuerpo de areniscas principal tiene un espesor máximo de 1,60 metros a 2,05 

metros de la base del tramo. El tamaño de grano es de medio a grueso compuesto por es 

granos de cuarzo, feldespato y micas. En su interior encontramos estratificación cruzada 

de surco, planar y cantos duros. Además se ha observado la presencia de una superficie 

erosiva cóncava con estratificación heterolítica inclinada formada por pares de areniscas 

de grano grueso a muy grueso y lutitas negras laminadas que gradualmente pasa a 

areniscas de grano medio y fino a techo del estrato. En el interior de este cuerpo erosivo 

encontramos abundantes restos vegetales y de carbón detrítico. Las paleocorrientes 

medidas tienen una dirección hacia el SE o SSE. 

Tramo 3: 14 metros. Compuesto en su totalidad por areniscas de grano medio y grueso 

con estratos ocasionales de conglomerados y lutitas. 

Las areniscas son de color blanco compuestas casi en su totalidad por cuarzo, 

con una proporción menor de feldespato y micas. En el interior de las areniscas se 

encuentran múltiples estratificaciones cruzadas de tipo planar y de surco, superficies de 

erosión interna, cantos duros dispersos de cuarcita, lags de cantos, ripples de corriente, 

ripples de oscilación y restos vegetales. En la parte superior del tramo, las areniscas 

aparecen bioturbadas por raíces y otras bioturbaciones verticales indiferenciadas. 

En la base del tramo aparece un estrato de 40 cm de espesor de conglomerados 

formado por cantos de cuarcita mal seleccionados. En la parte superior de este estrato 

aparecen cantos blandos y restos vegetales así como una estratificación cruzada difusa. 
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Las lutitas que aparecen en el interior de las areniscas tienen poca continuidad 

lateral con un espesor máximo de 10 centímetros. Son de color negras y están 

ligeramente laminadas. 

Tramo 4: 16,7 metros. Tramo compuesto por alternancia de lutitas negras y areniscas 

grises. 

Las lutitas son de color negro y gris tanto en superficie como en corte fresco, 

con un espesor máximo de 4 metros. Pueden aparecer tanto masivas como laminadas. 

En algunos lugares aparecen bioturbadas siendo la bioturbación por raíces frecuente en 

la parte inferior del tramo. 

Las areniscas aparecen con una geometría tabular con una continuidad lateral 

pequeña con un espesor que puede variar entre los 5 centímetros hasta los 1,2 metros. 

Son de tamaño de grano fino a medio de color grisáceo en corte fresco compuestas por 

cuarzo y micas. Presenta laminación paralela, estratificaciones cruzadas en surco y 

planar y ripples de oscilación. Estos cuerpos de arenisca se encuentran frecuentemente 

muy bioturbados. 

Tramo 5: 19,2 metros. Tramo compuesto totalmente por areniscas de grano fino a 

grueso. 

Los primeros 17,7 metros está compuesto por una sucesión estratos de areniscas 

de grano  medio y grueso de color blanco compuestas principalmente por cuarzo y 

micas. La base de este cuerpo es erosiva con el tramo inferior marcado por un lag de 

cantos duros de cuarcita. A lo largo del tramo encontramos abundantes estratificaciones 

cruzadas de tipo planar y cruzada, estratificaciones cruzadas de bajo ángulo marcada 

por alineaciones de cantos, múltiples superficies de erosión interna y lags de cantos 

blandos a techo. Las paleocorrientes medidas dan una dirección preferente hacia el NNE 

y hacia el E. 

El metro y medio superior del tramo está compuesto por areniscas de grano fino 

y medio de color rojizo en afloramiento y grises en corte fresco con aspecto ondulado y 

múltiples marcas de bioturbación vertical. 

Tramo 6: Espesor total del tramo 7,3 metros. La parte inferior del tramo está compuesta 

por lutitas y la parte superior por areniscas. 
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Las lutitas tienen un espesor de 1,20. Son de color grises, negras y verdes. 

Aparecen de forma masiva y laminada y bioturbadas en la parte superior. 

El resto del tramo corresponden a areniscas de grano entre fino y grueso que 

comienza con una superficie erosiva marcada por un lag de cantos subredondeados de 

cuarcita bien seleccionado y centil máximo de 0,5 mm. Las areniscas presentan 

múltiples estratificaciones cruzadas, estratificación cruzada de surco, estratificación 

cruzada tipo swaley y superficies de erosión interna. Ocasionalmente en el interior 

aparecen lentejones de poca continuidad lateral de lutitas negras laminadas con un 

espesor máximo de 7 cm. El techo del tramo se encuentra bioturbado. Las 

paleocorrientes medidas van hacia el N y  el NNE. 
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Fig. 4: Columna Cabra de Mora 1. (Ver leyenda en Figura 3) 
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Fig. 4 (continuación): Columna Cabra de Mora 1 (Ver leyenda en Figura 3). 
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2.2. Columna Cabra de Mora 2 

La Columna 2 comprende un total de 77,60 metros que han sido resumidos en un 

total de siete tramos. 

Tramo 1: 38,25 metros. Formado mayormente por lutitas con pequeñas intercalaciones 

de areniscas de grano muy fino a medio. 

Las lutitas son dominantes a lo largo del todo el tramo llegando a tener espesores 

en algunos lugares de más de 7 metros. En superficie son de color rojizo violáceo y de 

color negro, gris y verde en corte fresco. Aparecen generalmente de forma masiva y de 

forma laminada por debajo de los cuerpos de areniscas. La bioturbación es escasa 

apareciendo en zonas endurecidas en trazas verticales sin identificar. Estas superficies 

tienen una buena continuidad lateral con un espesor máximo de 10 cm. 

Los cuerpos de areniscas son de color grisáceo y rojizo en superficie y grises en 

corte fresco y tamaño de grano de muy fino a medio. El espesor de estos cuerpos  que 

son tabulares pueden variar desde los 15 cm a l85 cm. La base de estos cuerpos puede 

tanto gradual como neta. Generalmente tienen una estructura laminar  o ligeramente 

ondulada. Suelen estar fuertemente bioturbados con icnogéneros del tipo Talassinoides, 

Arenicolites, Skolitos y Diplocraterion. Las bioturbaciones se concentran especialmente 

a techo de los cuerpos de areniscas  modificando la estructura original del sedimento. 

Tramo 2: 1,85 metros. Tramo compuesto por areniscas de tamaño de grano de grueso a 

medio. 

Las areniscas son de color blanco formadas casi en su totalidad por cuarzo y en 

menor medida feldespato. La base del cuerpo es plana con una tendencia 

estratodecreciente y granodecreciente con una continuidad lateral de entre 4 y 5 metros. 

En la base aparecen cantos dispersos con centil máximo de 0,4 cm. A techo se observa 

estratificación cruzada planar con una paleocorriente de N 30º E y ripples de oscilación. 

Tramo 3: 8,60 metros. Tramo semicubierto de lutitas. 

Tramo 4: 9,85 metros. Tramo compuesto casi en su totalidad por lutitas y con algunas 

intercalaciones de areniscas grano muy fino a fino a techo del tramo. 

Las lutitas son de color rojizo en superficie y de color gris, y verde en corte 

fresco. La bioturbación es muy escasa. 
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En la base del tramo aparecen 27 cm de areniscas de color grisáceo 

estratodecrecientes con bioturbaciones en el techo de tipo Skolitos y Diplocraterion. 

A techo, las lutitas pasan gradualmente a areniscas de grano muy fino a fino de 

color grisáceo negro  con un espesor que va desde 1,80 a 2 metros. Estas areniscas están 

intensamente bioturbadas con icnogéneros del tipo Skolitos, Arenicolites, 

Diplocraterion y otras bioturbaciones sin identificar. En su interior, observamos una 

laminación suave pero muy retocada por la intensa bioturbación.  

Tramo 5: 7,15 metros. Tramo compuesto por areniscas de grano medio a muy grueso. 

Los primeros 80 cm están formados por areniscas de grano medio de color 

blanco y amarillento compuesto de cuarzo. La base del cuerpo es ligeramente erosiva. 

Estructura estratodecreciente y ligeramente granodecreciente con estratificación cruzada 

de tipo hummocky y laminación paralela a techo. En su interior se observan abundantes 

fragmentos de restos vegetales, principalmente troncos de árboles con tamaños que 

llegan hasta los 1,5 metros de longitud. 

Continua con un estrato con un espesor variable entre 2 cm y 35 cm. Está 

formado por conglomerado de cuarzo de granos subredondeados y con un centil de 

entre 0,2 y 0,3 cm. Muy erosivo con las areniscas subyacentes. 

Los siguientes 4 metros están compuestos de areniscas de tamaño de grano 

grueso a medio de color amarillento y blanco. Se divide en diferentes estratos con un 

espesor máximo de hasta 2,3 metros. En el interior de estas areniscas encontramos 

múltiples estratificaciones cruzadas, superficies de erosión interna, alineamiento de 

canto duros y de cantos blandos y restos vegetales. La paleocorriente medida en este 

cuerpo indica cierta bipolaridad entre el NE y el SO. 

El resto del tramo está formado por areniscas de grano medio-grueso con 

diferentes estratos con estratificación cruzada hummocky amalgamados. En su interior 

también encontramos restos vegetales, cantos duros y estructuras de escapes de fluidos. 

Tramo 6: 8,15 metros. Tramo semicubierto de lutitas grises y negras. 

Tramo 7: 7,6 metros. Tramo formado fundamentalmente por areniscas  y en menor 

medida conglomerados y lutitas. 

Las lutitas aparecen en los primeros 45 cm de la base. Son de color gris y verde 

y aspecto masivo. 
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Los 2,70 metros siguientes están formados por areniscas de color blanco y 

amarillento de grano medio a grueso compuestos fundamentalmente por cuarzo y 

feldespato. Estas areniscas presentan en su interior múltiples estratificaciones de surco, 

superficies de erosión interna y fragmentos vegetales en forma de tronco de has 20 cm 

de longitud. La paleocorriente medida en las estratificaciones es de N 36 º E. Algunas 

de estas estratificaciones cruzadas están marcadas por lineaciones de cantos de cuarcita 

de hasta 6 mm de centíl. 

A 1,70 metros desde la base del cuerpo de arenisca, aparece un cuerpo irregular 

de conglomerados con la base muy erosiva y techo muy ondulado. Está formado por 

cantos de cuarcita subredondeados de entre 3 y 5 mm de centíl. Este estrato tiene un 

espesor irregular pudiendo tener desde 5 cm hasta 40 cm de potencia máxima. 

El resto del tramo está formado por areniscas de tamaño de grano medio a 

grueso con estratificaciones cruzadas tipo swaley, estratificaciones cruzadas tipo 

hummocky y restos vegetales. 
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Fig. 5: Columna Cabra de Mora 2 (Ver leyenda en la Figura 3) 
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Fig. 5 (continuación): Columna Cabra de Mora 2 (Ver leyenda en Figura 3). 
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Capítulo 3 

Asociaciones de facies 

3.1.    Introducción 

Los medios marinos someros dominados por el oleaje abarcan una serie de 

subambientes desde zonas más profundas en el interior de la cuenca denominadas 

offshore, hasta zonas de costa denominadas shoreface y foreshore (Fig 6). El aporte de 

sedimentos proviene fundamentalmente de la desembocadura de sistemas fluviales y 

acumulados en barras. Posteriormente, el oleaje, ya sea de buen tiempo o de tormentas, 

lo redistribuye a lo largo de una franja paralela a la línea de costa. 

Las diferentes zonas en las que se dividen estos ambientes se basan en la acción 

de diferentes procesos formadores en cada uno de ellos. El offshore se caracteriza por la 

sedimentación en ambiente de baja energía y su bioturbación por organismos en el 

fondo marino, así como algunos depósitos de tamaño de grano mayor asociados a 

eventos de tormentas. En la zona inferior del shoreface, la acción de las tormentas 

controla gran parte de la sedimentación que se produce. Estos se generan a partir de la 

erosión de zonas más someras y cercanas a la costa y su redistribución mediante 

corrientes de resaca y de deriva a lo largo de la plataforma siliciclástica durante eventos 

de tormentas. Entre estos períodos predomina la sedimentación fina característica de 

ambientes con una baja energía. Por último, tanto en el shoreface como en el foreshore, 

la acción del oleaje de buen tiempo erosiona los sedimentos más finos y redistribuye a 

lo largo de corrientes de deriva los sedimentos más gruesos.  

Fig. 6: Perfil sedimentológico de la plataforma siliciclástica dominada por el oleaje y las tormentas y 

su división en subambientes. Modificado de MacEachern (1999) 
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3.2. Asociaciones de facies. 

3.2.1. Asociación de facies de Offshore (AF1). 

Descripción  

La mayor parte de estos depósitos correspondientes a AF1 están situados al S de 

la localidad de Cabra de Mora. El lugar donde afloran estos materiales suele estar poco 

vegetado y muy erosionado. Dentro de la Formación Camarillas, la AF1 se sitúa en los 

términos más basales de la misma. 

Esta asociación está formada por unas facies lutíticas, que ocasionalmente 

contienen un pequeño porcentaje en arena muy fina, con espesores que pueden ir desde 

un metro hasta superar la decena de metros. Las lutitas que la forman son de color 

rojizo-violáceo en superficie y de color negro, gris oscuro y verde en corte fresco 

pudiendo presentar ocasionalmente moteados de diferentes colores (Fig. 7, Tabla 1). 

Pueden aparecer tanto de forma masiva como con laminación paralela. En su interior se 

pueden encontrar nódulos de hierro y restos carbonosos. La bioturbación dentro de  las 

lutitas no es continua a lo largo del tramo sino que se concentra en superficies 

endurecidas en las cuales esta bioturbación es muy intensa llegando a eliminar toda 

estructura anterior. Los tipos de bioturbación que se encuentran son de tipo Skolithos y 

Chondrites. 

En algunos lugares se observa un paso gradual de lutitas a areniscas de grano 

muy fino. Estas areniscas son de color rojizo-violáceo en superficie y grises en corte 

fresco y están compuestas por cuarzo, feldespato y moscovita. Tienen un espesor de 

entre 30 centímetros y  1,5 metros  con un techo plano y arquitectura  relativamente 

continua y tabular. Estos materiales aparecen siempre muy bioturbados con 

bioturbaciones de tipo Skolitos marcado con trazas verdosas que mantienen restos 

carbonosos en su interior. 
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Fig. 7: Aspecto general de afloramiento 

de las lutitas rojizo-violáceas de offshore 

(AF1) Por encima sedimentos de 

Offshore de transición (AF2) y shoreface 

superior (AF4). 

 

Interpretación  

Las lutitas, indican un medio sedimentario de muy baja energía donde el proceso 

de sedimentación está dominado por la decantación de partículas en suspensión. Las 

bioturbaciones de tipo Chondrites  y  Skolitos indican un ambiente marino que junto con 

los procesos de sedimentación asociados a zonas de baja energía indicaría un medio por 

debajo del nivel de base del oleaje de tormentas (Walker y Plint, 1992). Conforme a 

estas características este medio sedimentario se interpreta como el offshore de 

plataforma siliciclástica (Van Wagoner et al., 1990; Walker y Plint, 1992; Clifton 

2000). 

El color oscuro de las lutitas junto con la presencia de bioturbación en niveles 

muy limitados indica que el fondo marino era poco oxigenado. De esta manera, la 

mayor parte del tiempo se trata de un fondo anóxico donde la materia orgánica se 

preserva en gran medida y había una ausencia total de organismos bioturbadores del 

sedimento (Beatty et al., 2008). Por otra parte, las superficies endurecidas en las lutitas 
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con bioturbación muy intensa realizada por organismos perforadores indican que en 

momentos concretos el fondo marino se oxigena permitiendo la colonización puntual 

del fondo marino y la bioturbación del sedimento.  

La presencia de areniscas de tamaño de grano muy fino intercaladas entre las 

lutitas es interpretada como resultado de entrada de material de mayor tamaño de grano 

en un momento de mayor energía en el medio. Su transporte se produce mediante 

corrientes de turbidez que transportarán material desde zonas de mayor energía hacia  

las zonas más internas de la plataforma (Walker y Plint, 1992). Este proceso genera el 

movimiento de las aguas más profundas provocando la oxigenación del fondo, lo cual, 

junto con la entrada de nutrientes asociada permite la colonización de las capas de 

arenisca por parte de organismos oportunistas. 

Por encima del offshore (AF1) encontramos siempre el offshore de transición 

(AF2). Por debajo de ella estratigráficamente podemos encontrar tanto el offshore de 

transición como el shoreface inferior y superior (AF3 y AF4). 

 

3.2.2. Asociación de facies de offshore de transición (AF2). 

Descripción 

La AF2 se trata de una unidad heterolítica dominantemente lutítica pero con 

intercalaciones de areniscas de grano muy fino a fino.  También se observa que 

conforme ascendemos en la asociación, la proporción de areniscas aumenta con respecto 

a la cantidad de lutitas (Fig. 8A, Tabla 1). 

Las areniscas son de color rojizo en superficie y de color grisáceo en corte 

fresco, compuestas fundamentalmente por feldespato, micas y cuarzo. El tamaño de 

grano varía entre muy fino y fino. Se presentan en estratos de geometría tabular. El 

espesor que presentan puede variar desde los 5 hasta los 60 centímetros Como 

estructuras internas se distingue laminación paralela, ripples de oscilación (Fig 8B) y 

ocasionalmente, estratificación cruzada hummocky con una longitud de onda menor de 

15 cm. Gran parte de las areniscas se encuentran bioturbadas de manera intensa, 

borrando en gran parte las estructuras sedimentarias origina. Los principales tipos que 

se observan son de  Diplocraterion, Skolithos y Ophiomorpha nodosa (Fig 8C). Dentro 
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Fig. 8: Asociación de facies de offshore de transición (AF2)A) Aspecto general en afloramiento 

formado por alternancia de lutitas y areniscas de grano muy fino a fino. B) Ripples de oscilación en 

areniscas de grnao fino. C) Bioturbación en las areniscas de grano fino (AR: Arenicolites; Sk: Skolitos) 

D) Aspecto laminado en lutitas de color gris oscuroentre estratos de arenisca. 

 

de esta asociación de facies, se encuentran varios estratos  marcados por una intensa 

bioturbación con una gran continuidad lateral. 

Las lutitas que se observan presentan un color superficial verde o violáceo y  

verde, negro y gris  en corte fresco (Fig 8D). Internamente se encuentran laminadas con 

zonas que se encuentran ligeramente bioturbadas. 

Interpretación: 

Las lutitas se acumularon a partir de sedimento de grano fino en suspensión 

depositado entre distintos eventos de tormenta que quedan reflejados en los niveles de 

areniscas. El transporte de las areniscas se produce por el movimiento de oscilación en 

el offshore generado por eventos de tormentas. Esta asociación de facies se interpreta 
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como un offshore de transición situado por encima del nivel de base de tormentas y por 

debajo del nivel de base de oleaje de buen tiempo (Walker y Plint, 1992; Clifton 2000). 

La estratificación cruzada hummocky se origina bajo un flujo combinado 

formado por una fuerte componente oscilatoria originada por oleaje, y una corriente más 

débil con una componente unidireccional determinada por la corriente de resaca. 

(Walker y Plint, 1992). La formación de ripples de oscilación también es indicativa de 

que el medio en el que se encontraba estaba afectado por corrientes oscilatorias. 

La bioturbación se concentra especialmente en los niveles de areniscas mientras 

que los niveles de lutitas esta bioturbación no es tan intensa. El color oscuro de las 

lutitas y la poca actividad orgánica indican que durante las épocas entre eventos de 

tormentas el fondo sería poco oxigenado o con unas condiciones ambientales poco 

favorables para la proliferación de organismos (Beatty et al., 2008). Posteriormente a 

estos eventos de tormenta, los depósitos arenosos depositados son rápidamente 

bioturbados en mayor o menor medida. Esto es indicativo de cierta oxigenación del 

fondo hasta volver a las condiciones anteriores de anoxia. La formación de superficies 

marcadas por una bioturbación muy intensa formada por Diplocraterion, Skolithos  y 

Ophiomorpha nodosa se interpreta como un momento de entrada de nutrientes al 

sistema junto con una  tasa de sedimentación prácticamente nula o muy baja (Beatty et 

al., 2008; Buatois, 2011). 

Esta asociación verticalmente se encuentra siempre sobre el offshore (AF1). A 

techo podemos encontrarla bajo el shoreface inferior (AF3), y el shoreface superior 

(AF4). 

 

3.2.3. Asociación de facies de shoreface inferior (AF3). 

Descripción  

Esta asociación de facies está formada casi en su totalidad por potentes tramos 

de areniscas con algún pequeño nivel de lutitas. El espesor de esta asociación puede 

variar entre 1 y 15 metros (Tabla 1). 

Las areniscas se caracterizan por tener un tamaño de grano que puede ir desde 

fino a medio y un color que puede ir desde el amarillo hasta el blanco. Generalmente, 

aparecen en secuencias granocrecientes y estratodecrecientes. La base es ligeramente 
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erosiva seguida por estratos con estratificación cruzada hummocky amalgamados (Fig 

9A) con una amplitud de onda superior a 1 metro en las zonas basales a tamaños de 

menos de 20 cm en las zonas más cercanas al techo de la asociación, con espesores de 

más de dos metros pero con una morfología irregular (Fig 9B). Las areniscas con 

estratificación cruzada tipo hummocky pasan gradualmente a techo a areniscas de grano 

medio con estratificación cruzada de tipo swaley (Fig 9C). Entre los niveles de 

hummockys se observan pequeños niveles de material lutítico de color oscuro y 

laminado con espesores que varían entre 1 y 5 centímetros. En el interior de las 

areniscas con estratificación cruzada hummocky es frecuente encontrar restos vegetales 

tanto carbonoso como de troncos (Fig 9D). Estos troncos pueden tener tamaños 

superiores al metro y medio de longitud. Las paleocorrientes medidas dan una dirección 

hacia  N 035º E. Algunos de ellos presentan bioturbaciones de tipo Teredolytes en la 

corteza.  

La presencia de bioturbación en la asociación es muy reducida concentrándose 

principalmente en los niveles basales de la misma. 

 

Interpretación 

La presencia de estratificación cruzada hummocky en estratos de areniscas 

amalgamados junto con el paso hacia el techo de la asociación a estratificación cruzada 

de tipo swaley nos indica que nos encontramos en el shoreface inferior situado por 

encima del nivel de base de tormenta y por debajo del nivel de base de buen tiempo 

(Walker y Plint, 1992; Clifton 2000). 

Los  sedimentos de tamaño más fino en esta asociación son muy ocasionales 

apareciendo intercalados entre algunos de los estratos amalgamados de hummockys. 

Estos niveles se interpretan como episodios de sedimentación en momentos de baja 

energía entre eventos de tormentas (Eide et al., 2014).  

La ausencia de bioturbación se debería a un aumento en la energía del medio 

impidiendo el establecimiento de organismos bioturbadores.  
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Fig. 9: Asociación de facies de shoreface inferior. A) Estratos amalgamados de areniscas de grano 

grueso con estratificación cruzada hummocky. B) Estratificación cruzada hummocky de gran 

tamaño en areniscas de grano medio. C) Estratificación cruzada tipo swaley en areniscas de grano 

medio. D) Restos de tronco entre areniscas de grano grueso asociado a eventos de tormenta. 

 

 

3.2.4. Asociación de facies de shoreface superior (AF4) 

Descripción 

Asociación de facies formadas por areniscas de tamaño de grano medio a grueso 

de color blanco y gris claro con espesores que superan la decena de metros. Están 

compuestas por cuarzo y en menor medida feldespato y moscovitas, con matriz. La 

arquitectura estratigráfica que se observa es la de cuerpos tabulares de tamaño métrico 

organizados  en secuencias estratodecrecientes y granodecrecientes (Fig. 10A). Algunos 

de estos cuerpos están separados entre sí por niveles de conglomerados de cuarcita que 

pueden llegar a tener un centil superior a los 4 cm empastados en una matriz lutítica o 

arenosa. Estas superficies sin planoparelalas a las superficies de estratificación y tienen 

una buena continuidad lateral.  Dentro de cada uno de los estratos de arenisca 
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encontramos múltiples estratificaciones cruzadas, estratificaciones cruzadas de surco 

laminación paralela (, estratificación planar, ripples de corriente, ripples de oscilación, 

cantos blandos, cantos dispersos de cuarcita y  múltiples superficies de erosión interna 

(Fig. 10B-E, Tabla 1). En la vertical, la tendencia es a pasar de estratificaciones 

cruzadas de surco a planares con disminución en el tamaño del set. Las paleocorrientes 

medidas tienen una dirección NE (N 030º E - 040º E). En algunos puntos dentro de las 

estratificaciones se pueden ver láminas de lutitas o areniscas de grano muy fino de color 

grisáceo menores de 1 cm. Las bioturbaciones en estos materiales son escasas teniendo 

morfología vertical sin llegar a poder identificar el tipo. 

Interpretación 

La acumulación de areniscas de grano medio y grueso con estructuras como 

estratificaciones cruzadas de surco y ripples de oscilación se interpretan como un medio 

energético situado por encima del nivel de base del oleaje de buen tiempo. 

Concretamente este medio sedimentario se  interpreta como depósitos de shoreface  

(Van Wagoner et al., 1990) o shoreface superior (Walker y Plint 1992, Clifton, 2000). 

Las estructuras están  formadas por el oleaje y la acción de corrientes de deriva que 

actúan a lo largo de la costa. La presencia de distintos tipos de estructuras sedimentarias  
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Fig. 10: Asociación de facies de shoreface superior (AF4) A) Fotografía tomada con el drone de los 

sedimentos de shoreface superior y foreshore. El cuerpo de areniscas se encuentra dividido en 

diferentes estratos tabulares con múltiples superficies de erosión internas y estratificaciones 

cruzadas de gran escala. B) Estratificaciones cruzadas de surco en areniscas de grano grueso. C) 

Estratificación cruzada en areniscas de grano medio. D) Detalle de las superficies de erosión internas. 

E) Detalle de la laminación paralela en areniscas de grano medio. 
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de mayor o menor energía estaría condicionada por la energía del oleaje y las corrientes 

(Hill et al., 2003, Plink- Björklund, 2008). 

 Por debajo del shoreface superior (AF5) podemos encontrar el offshore de 

transición (AF2) y el shoreface inferior (AF3). Por encima de la misma, podemos 

encontrar el offshore (AF1), el offshore de transición (AF2) y el shoreface inferior 

(AF4). 

 

3.2.5. Asociación de facies de foreshore (AF5). 

Descripción 

Se trata de la asociación menos común de las encontradas. Aparece y con 

espesores de entre 20 y 80 cm. Los materiales que la componen son areniscas bien 

seleccionadas de color blanco o amarillo claro, con un tamaño de grano fino-medio y 

geometría tabular. 

En los estratos de areniscas, se observan laminaciones paralelas o de bajo ángulo. Esta 

estratificación cruzada de bajo ángulo viene marcada por alineaciones de cantos de entre 

0,2 y 1,5 cm de centil de cuarcita (Fig. 11, Tabla 1)). En la parte superior de la 

asociación encuentran areniscas con marcas verticales de bioturbación por raíces 

Ocasionalmente aparecen lags de cantos blandos de color gris oscuro.  

 

Interpretación 

La presencia de areniscas laminadas, bien seleccionadas, la ausencia de 

bioturbación y la estratificación cruzada de bajo ángulo de cantos de cuarcita se 

interpreta como un ambiente de alta energía donde la acción de oleaje lavaría los 

sedimentos más finos transportándolos a zonas más distales (Pemberton et al., 1992a, 

Walker y Plint, 1992). A su vez, la presencia de huellas de raíces indica que se trata de 

un medio somero que puede sufrir en ciertos momentos procesos de exposición 

subaérea con  el crecimiento de plantas sobre el sedimento expuesto. Esta asociación de 

facies se interpreta como un foreshore (Walker y Plint, 1992; Boggs, 2001, Plink-

Björklund, 2008). 
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Fig. 11: Asociación de facies de foreshore (AF5) encima de areniscas de shoreface superior (AF4). Las 

laminaciones de bajo ángulo están marcadas por cantos de cuarcita. 

 

El foreshore (AF5)  se encuentra por encima del shoreface superior (AF4)  y por 

debajo del shoreface inferior (AF3), shoreface superior (AF4) y la llanura mareal 

(AF6). 

 

3.2.6. Asociación de facies de llanura mareal (AF6) 

Descripción 

Asociación de facies compuesta principalmente de lutitas con intervalos 

centimétricos de areniscas. Esta asociación de facies puede tener un espesor máximo de 

hasta 15 metros (Tabla 1). 
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Las lutitas son 

de color negro en la 

base pasando a verdes 

en el techo de la 

asociación. En 

conjunto se encuentran 

laminadas con algunos 

centímetros donde la 

laminación se pierde 

pasando a tener 

aspecto masivo (Fig. 

12). Es frecuente que 

contengan 

acumulaciones de 

restos vegetales y otros restos carbonosos sin identificar. 

Las areniscas son de grano fino y color grisáceo compuestas por cuarzo y 

moscovita ligeramente laminadas. Su espesor varía desde los 5 a los 15 cm siendo más 

abundantes y potentes en el tercio inferior de la asociación. La base de estos cuerpos es 

ligeramente erosiva y techo ondulado.  

Interpretación 

Esta asociación de facies se interpreta como depositado en una llanura mareal 

(tidal flat), en un ambiente de baja energía donde predomina la sedimentación por 

decantación de materiales finos y acumulación de restos de materia orgánica 

principalmente vegetales provenientes de zonas subaéreas (Dalrymple, 2010). Cada una 

de las láminas de areniscas encontradas en el interior de las lutitas se interpretan como 

momentos de mayor energía producida por la acción de las mareas (Kim, 2003; Yang et 

al., 2005). El carácter heterolítico de la asociación permite interpretarla como una 

llanura mareal mixta a fangosa.  

Esta asociación de facies presenta un cambio lateral de facies con el canal 

mareal (AF6) llegando también a encontrarse por encima de ella. 

 

 

Fig. 12: Asociación de 

facies de llanura 

mareal (AF6) 

compuesto por lutitas 

negras laminadas y 

areniscas de grano 

fino a medio con 

marcas  de raíces y 

restos vegetales. 
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3.2.7. Asociación de facies de canal mareal (AF7) 

Descripción 

Cuerpo de base marcadamente erosiva y techo plano, heterolítico formado por 

lutitas y areniscas con un espesor de 1,60 metros y una extensión lateral de 

aproximadamente 10 metros. Las areniscas son de tamaño de grano muy grueso 

formados principalmente por granos subredondeados de cuarzo. En su interior se 

encuentran estratificaciones cruzadas y ripples de corriente con paleocorrientes  N 166º 

E y N 132º E. Las lutitas son de color negro y aspecto laminado con acumulación de 

restos vegetales. En conjunto se trata de una secuencia granodecreciente y 

estratodecreciente, terminando en un estrato de areniscas de grano fino con 

estratificación cruzada planar y bioturbado a techo. Este canal presenta estratificación 

heterolítica inclinada (Inclined Heterolithic Stratification, IHS en sus siglas en inglés) 

que consiste en pares de areniscas y lutitas formando superficies de acreción lateral  que  

separan cada una de ellas (Fig. 13A-B; Tabla 1)). 

 

Interpretación 

La presencia de IHS formada por areniscas y lutíticas es característica de 

ambientes donde las condiciones hidrodinámicas del medio varían. Estos depósitos se 

forman en las superficies de acreción lateral de canales mareales meandriformes (point-

bars mareales donde la sedimentación de arena y sedimento más fino está controlada 

por las variaciones en la energía del medio, típico en sistemas sedimentarios mareales 

(Dalrymple et al., 1992; Gingras, 2006; Dalrymple et al., 2007).  

Por tanto, la IHS junto con la forma lenticular, la base erosiva y la tendencia 

general granodecreciente y estratodecreciente permite interpretar esta asociación de 

facies como un canal mareal (Dalrymple et al., 2007). 

El canal mareal se encuentra en interior de areniscas interpretadas como 

shoreface superior. Por encima y lateralmente encontramos la llanura mareal (AF7). 
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Fig. 13 A-B: Fotointerpretación del afloramiento de la asociación de facies de canal mareal (AF7). En el centro de la imagen se observa la IHS 

formada por la estratificación tipo épsilon compuesta por alternancia de areniscas de grano grueso y lutitas grises y negras. 
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Asociación 

de facies 

Ambiente 

sedimentario 

Litología y estructuras 

sedimentarias 
Bioturbación 

Paleocorriente

s 

AF1 Offshore Lutitas masivas y laminadas 

con niveles de areniscas de 

grano muy fino. Laminación 

paralela y geometría tabular 

de las areniscas. 

Lutitas: 

bioturbaciones 

verticales de tipo 

Skolithos y 

Chondrytes. 

Areniscas: 

bioturbaciones 

verticales de tipo 

Skolithos . 

 

AF2 Offshore de 

transición 

Alternancia de lutitas y 

areniscas no amalgamadas 

con ripples de oscilación, 

laminación paralela y 

estratificación cruzada 

hummocky. 

Bioturbación 

intensa  tanto en 

las lutitas 

(Skolithos) como 

en las areniscas 

(Skolithos, 

Ophiomorpha y 

Diplocraterion) 

 

AF3 Shoreface 

inferior 

Areniscas de grano fino a 

medio amalgamadas con 

estratificación cruzada 

hummocky y tipo swaley. 

Escasa. 

Bioturbaciones 

verticales 

N 035º E 

AF4 Shoreface 

superior 

Areniscas grano medio-

grueso. Estratificación 

cruzada de surco y planar. 

Ripples de corriente y de 

oscilación 

Escasa. N 030º E – N 

040º E 

AF5 Foreshore Areniscas de grano medio-

fino. Laminación paralela y 

estratificación cruzada de 

bajo ángulo de areniscas y 

cantos de cuarcita. Cantos 

blandos. 

Huellas de raíces.  

AF6 Llanura mareal Lutitas negras laminadas y 

masivas con acumulación de 

restos vegetales. Areniscas 

laminadas grises. 

Nula  

AF7 Canal mareal Alternancia de lutitas negras 

laminadas con areniscas de 

tamaño de grano grueso-muy 

grueso. Estratificación  tipo 

IHS. Estratificación cruzada 

planar y ripples de corriente 

Bioturbaciones 

verticales. 

N 166º E – N 

132º E. 

Tabla 1: Principales características de las asociaciones de facies descritas en la Fm. Camarillas en la 

localidad de Cabra de Mora 
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Capítulo 4 

Superficies estratigráficas 

 

4.1.  Introducción 
 

La estratigrafía secuencial se define como el estudio de sistemas sedimentarios  

y la relación de las facies que la componen dentro de un marco cronoestratigráfico 

mediante la definición de superficies erosivas, superficies no deposicionales y 

lateralmente sus conformidades correlativas (Van Wagoner et al., 1990, Posamentier y 

Allen, 1999). El uso de este método de correlación reside en su carácter predictivo 

otorgándole a las facies una posición temporal permitiendo la reconstrucción completa 

del sistema sedimentario. Por ello, actualmente se trata de un método muy importante a 

la hora de análisis y posterior modelización de almacenes de hidrocarburos (Van 

Wagoner et al., 1990). 
El primero en definir el término secuencia como aquellos estratos delimitados 

por inconformidades fue Sloss en el año 1948. Su principal idea consistía en el uso de 

estas superficies como método de correlación estratigráfica. Posteriormente un equipo 

de producción y exploración de la petrolera Exxon junto con un antiguo estudiante de 

Sloss, Vail, publicaron en 1977 una serie de artículos en los cuales detallaban la 

estratigrafía secuencial usando datos de sísmica. A su vez, se publicó la Memoria 26 de 

la AAPG sobre estratigrafía sísmica. De esta manera se empezaron a desarrollar los 

primeros modelos y a introducirse nuevos conceptos tales como la propia estratigrafía 

sísmica, eustatismo, espacio de acomodación y patrones de variación del mar dentro de 

los paquetes definidos entre inconformidades.  

A finales de los años 80 y comienzo de los años 90, esta nueva disciplina sufre 

un nuevo empujón presentándose  los primeros modelos conceptuales entre las 

variaciones del nivel del mar y la subsidencia (p. ej: Posamentier y Vail, 1988., Van 

Wagoner, 1988). Jervey (1988) define tres cortejos sedimentarios en función del 

desarrollo de las secuencias a lo largo de un ciclo de subida y bajada del nivel del mar. 

El cortejo transgresivo (Transgressive System Track, TST) consiste en la retrogradación 
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de los sedimentos y está limitado en la parte inferior por una superficie transgresiva y en 

la parte superior por la superficie de máxima inundación (MFS). El cortejo sedimentario 

de alto nivel (Highstand System Track, HST) es el momento en agradación y 

progradación de los sedimentos. Se interpreta como un momento en el cual el nivel del 

mar sube lentamente y/o comienza a caer lentamente. Por último, el cortejo de bajo 

nivel (Lowstand System Track, LST) corresponde al momento más bajo del ciclo  

marcado por la progradación forzada de la cuña clástica sobre materiales más 

profundos. Se  desarrolla durante la mayor parte de la caída del nivel de base y un ligero 

ascenso, siendo delimitado por la superficie de máxima inundación. Estos términos son 

los mismos que utilizaría Van Wagoner et al., (1988) posteriormente para sedimentos 

siliciclásticos depositados en ambientes de plataforma. 

Van Wagoner et al. 

(1990) define el término 

parasecuencia como una 

“sucesión concordante 

de estratos o conjunto 

de estratos 

genéticamente 

relacionados limitados 

por superficies máximas 

de inundación o sus 

superficies 

correlativas”. El 

principal modelo usado 

para la definición de 

parasecuencia 

corresponde a ambiente 

somero siliciclástico dominado por el oleaje en las Book Cliffs, Utah (Fig 1). Esta 

sucesión de facies representan una progradación de ambientes más someros sobre más 

profundos, pasando desde el offshore, offshore de transición, shoreface inferior, 

 

Fig. 14: Modelo de 

parasecuencia 

para las 

plataformas 

siliciclásticas 

dominadas por el 

oleaje y tormentas 

(Modificado de 

VanWagoner et 

al., 1990) 
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shoreface superior y foreshore. Terminando la parasecuencia en una superficie de 

máxima inundación representado por un cambio brusco en las facies.  

 

4.2. Parasecuencias 

En la Formación Camarillas se han definido varias de parasecuencias siguiendo 

el modelo definido para plataformas siliciclásticas por Van Wagoner et al. (1990) en las 

Book Cliffs. 

A lo largo de la Columna 1 se han diferenciado seis parasecuencias diferentes. 

Cada una de ellas ha sido limitada por la presencia de superficies transgresivas 

marcadas por cambios bruscos en las asociaciones de facies por debajo y por encima de 

ellas. 

Estas parasecuencias están compuestas fundamentalmente por asociaciones de 

facies de shoreface inferior (AF3), shoreface superior (AF4), foreshore (AF5) y de 

llanura mareal (AF6). Dentro de cada parasecuencia las asociaciones de facies siguen 

una tendencia somerizante. El límite entre la Parasecuencia 1 y la Parasecuencia 2 

además de aparecer una superficie transgresiva entre ambas, la parasecuencia superior 

 

Fig. 15: Vista aérea del límite entre la Parasecuencia 1 y la Parasecuencia 2 en la Columna 1 de 

Cabra de Mora. Se observa que entre ambas parasecuencias hay una superficie erosiva y cierto 

basculamientode los estratos.  
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aparece ligeramente basculada respecto a la inferior además de presentar una fuerte 

erosión  en el límite entre ambas (Fig. 15). Esta arquitectura de las parasecuencias 

es la muestra del posible control tectónico en la sedimentación durante el Barremiense 

en esta zona de la Cuenca Ibérica. 

La mayor parte de las parasecuencias definidas en la Columna 2 están 

compuestas por asociaciones de facies de offshore (AF1) y offshore de transición (AF2). 

El límite entre las parasecuencias se define por la presencia de cambios en las 

asociaciones de facies que indiquen un aumento de profundidad junto con la presencia 

de superficies no deposicionales (Hampson, 2000) (Fig. 16). La Parasecuencia 10 y la 

Parasecuencia 11 situadas en los tramos finales de la Columna 2, están formada por 

shoreface superior (AF4), shoreface inferior (AF3) y offshore de transición (AF2). El 

límite de las parasecuencias viene marcada por la presencia de la Regressive Surface of 

 

Fig. 16: Vista general del afloramiento donde se ha levantado la Columna Cabra de Mora 2. A lo largo 

de la foto se han ido señalando la posición de las parasecuencias definidas hasta la RSME situada en el 

Tramo 5 de la columna. 
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Marine Erosion debido a que es un cambio brusco y neto en la naturaleza de las 

asociaciones a un lado y a otro de la misma. 

4.3 Superficies estratigráficas 

Van Wagoner et al.  (1990) ya definió superficies dentro de las parasecuencias. 

Estas superficies, de menor rango, se generan por erosión del sedimento, no deposición, 

o un aumento brusco en el espacio de acomodación de la cuenca. 

En la Formación Camarillas se han identificado varias de las superficies 

descritas relacionando distintos ambientes sedimentarios y con distintos significados 

genéticos: 

 

4.2.1. Superficie regresiva de erosión marina. 

La superficie regresiva de erosión marina (Regressive Surface of Marine 

Erosion, RSME en sus siglas en inglés) se caracteriza por una superficie erosiva y un 

cambio brusco en la naturaleza de las facies. 

A lo largo de las dos columnas levantadas en la Fm. Camarillas se han 

distinguido varias de estas superficies: 

 

- Descripción 

o Shoreface-Shoreface 

En primer lugar tenemos la superficie que separa el shoreface superior (AF4) y 

shoreface inferior (AF3). Esta superficie se caracteriza por tener un aspecto irregular y 

muy erosivo. Los materiales que componen esta superficie son granos de cuarzo 

subredondeados con una pequeña porción de matriz caolinítica. Además estas 

superficies pueden llevar asociados importantes acumulaciones de restos vegetales, 

principalmente troncos de más de un metro de longitud y cantos blandos compuestos 

por lutitas de color gris oscuro. También se observan en los depósitos suprayacentes a 

esta superficie estructuras erosivas de tipo gutter cast y un mayor amalgamamiento de 

las estructuras sedimentarias, principalmente de la estratificación cruzada de tipo 

hummocky (Fig. 17). 
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Fig. 17: A) Imagen a escala de afloramiento donde se diferencian dos parasecuencias separadas 

entre sí por la RSME. B) Detalle de la imagen de la superficie formada por cantos de cuarcita y restos 

vegetales. 

 

También se identifica este tipo de superficies delimitando niveles dentro del 

shoreface superior del shoreface superior (AF4). Estas superficies se encuentran menos 

marcadas siendo más complicado de identificar, encontrándose únicamente una de ellas 

a lo largo de la columna 1. Se caracteriza por un aumento en el tamaño de grano de las 

areniscas así como la aparición de a lo largo de la superficie de  cantos de cuarcita de 

hasta 4 cm de centil empastados en una matriz arcillosa color verdoso.  

o Shoreface-Offshore 

La superficie que separa ambas asociaciones de facies está marcada por una 

fuerte erosión de los sedimentos de offshore (AF1) y offshore de transición (AF2) por 

sedimentos de shoreface superior e inferior (AF4 y AF5). Esta superficie es muy 

marcada, de aspecto irregular, observándose un cambio muy brusco y neto en el tamaño 
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de grano pasando de 

lutitas  a areniscas de 

tamaño medio y 

grueso (Fig. 18). Es 

frecuente encontrar 

en la base del 

shoreface, justo por 

encima de la 

superficie erosiva, 

acumulaciones de 

cantos blandos 

compuestas por lutitas grises y negras con tamaños que pueden variar entre 0,5 y 6 cm 

de diámetro.  

 

- Interpretación 

Esta discontinuidad en el interior de las parasecuencias caracterizada por 

erosión, aumentos en el tamaño de grano, aumento en la cantidad de aporte de 

sedimentos de grano grueso, amalgamiento de estratos con estratificación cruzada de 

tipo hummocky se interpreta como una superficie de regresión marina formada por el 

descenso del nivel de base del oleaje, tanto  de buen tiempo como de tormentas 

(MacEachern, 1992; Hampson, 2000; Catuneanu 2006). El descenso de estos niveles de 

base aumenta la energía del medio, erosionando los sedimentos más finos. La presencia 

de un aumento de estratos amalgamados con estratificación cruzada de tipo hummocky 

indica un descenso en el nivel de base de tormentas permitiendo que el transporte de 

sedimento hacia el interior de la plataforma sea más importante (Dott y Bourgeois, 

1962).  

Brunn (1962)  describió cual era el perfil de equilibrio que las plataformas 

siliclásticas tendían a tener con una forma cóncava aumentando gradualmente la 

pendiente hacia la línea de costa. El descenso del nivel del mar cambia dicho equilibrio 

dando como respuesta la erosión por parte del oleaje de los sedimentos previamente 

depositados. (Brunn, 1962; Plint, 1988; Hampson, 2000; Catuneanu, 2006). La 

 

Fig. 18: Aspecto de la RSME 

entre sedimentos de offshore de 

transición y shoreface. 
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magnitud de las diferentes superficies encontradas puede variar ya que depende de cuál 

ha sido el rango de disminución del nivel de base y el ángulo de la plataforma antes de 

producirse la erosión (Brunn, 1962, Hampson, 2000; Catuneanu, 2006) 

 

4.2.2. Superficie transgresiva. 

La superficie transgresiva representa el desplazamiento de facies más externas a 

zonas más internas de la plataforma de forma neta. En la Columna 1 levantada en la 

Formación Camarillas encontramos una de estas superficies. 

 

- Descripción 

o Llanura Mareal – Shoreface superior 

Superficie que pone en contacto facies de llanura mareal (AF7) compuesto 

principalmente por lutitas negras con facies de shoreface superior (AF4). Esta superficie 

está marcada por una importante discordancia y un fuerte carácter erosivo (Fig. 19). Por 

encima de esta superficie, encontramos un depósito irregular con un espesor máximo de  

40 cm de conglomerados de cuarcita con centíl de hasta 1 cm, cantos blandos y 

abundantes restos vegetales dispersos. Estos depósitos pasan gradualmente a areniscas 

de grano medio con abundantes estratificaciones cruzadas interpretado como generado 

por acción del oleaje en el shoreface superior. 

 

- Interpretación 

Esta superficie refleja un cambio brusco en la naturaleza de las facies pasando de 

un ambiente de llanura mareal en la parte inferior de la superficie, a otro de shoreface 

superior controlado por la acción del oleaje. Este cambio brusco en las facies se 

interpreta como el desplazamiento la retrogradación de facies de plataforma sobre facies 

mareales situadas tierra a dentro (Van Wagoner et al., 1990; Catuneanu, 2006).  
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La presencia de un depósito de conglomerados justo por encima se interpreta 

como la removilización de los sedimentos al desplazarse el nivel de base del oleaje 

tierra dentro originando una Wave Ravinement Surface (wRs) (Swift, 1975; Cattaneo, 

2003). Este aumento de energía tiene como consecuencia el depósito de sedimento de 

grano muy grueso como son los sedimentos, y la erosión del sedimento infrayacente 

formando acumulaciones importantes de lags de cantos blandos y restos vegetales. 

(Cattaneo y Steel, 2003; Catuneanu, 2006; Embry 2009). 

 

4.3.3. Discontinuidad no-deposicional 

- Descripción 

Superficie encontrada entre depósitos de offshore (AF1) y offshore de transición 

(AF2). Estas superficies son difíciles de encontrar. Se encuentran en depósitos de 

areniscas de grano muy fino o como superficies endurecidas en lutitas de color gris o 

negro. Se caracterizan por un fuerte aumento en la bioturbación del sedimento de tipo 

Arenicolites, Diplocraterion y Skolithos (Fig. 20A-B) Estas bioturbaciones marcan 

superficies muy netas y que se pueden reconocer a lo largo de varias decenas de metros. 

 

Fig. 19: Wave Ravinement Surface situada entre el límite de la Parasecuencia 1 y la Parasecuencia 2 

en la Columna 1 de Cabra de Mora. Sobre esta superficie aparece un depósito transgresivo compuesto 

por conglomerados y areniscas de grano muy grueso. 
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Ocasionalmente, en estas superficies encontramos depósitos aislados de areniscas de 

grano fino a medio con estratificaciones cruzadas. 

 

- Interpretación 

Las discontinuidades no deposicionales se interpreta también como ligeros 

aumentos en el nivel de base disminuyendo la sedimentación en las zonas más internas 

de la plataforma y dejando aislados en la plataforma areniscas del shoreface inferior 

(Dott y Bourgeois, 1982; Hampson, 2000). La baja tasa de sedimentación junto al 

aumento de nutrientes propician la aparición de organismos bioturbadores, 

especialmente perforantes, del sedimento Buatois, 2011). 

Fig. 20: A) Depósitos de Offshore de transición (AF2) y  Offshore (AF1) limitados a techo por una 

superficie no deposicional B) Detalle de la bioturbación de las areniscas que marcan la superficie. 
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Capítulo 6 

Discusión 

 

6.1.   Interpretación del sistema sedimentario 

Con el análisis detallado de las asociaciones de facies descritas e interpretadas 

anteriormente, el sistema sedimentario es el de una plataforma siliciclástica dominada 

por el oleaje y las tormentas (Walker y Plint, 1992). La sucesión de facies desde zonas 

más profundas a zonas más someras de offshore, offshore de transición, shoreface 

inferior, shoreface superior, foreshore  y llanura mareal indican distintas zonas en la  

plataforma siliciclástica dentro de la Formación Camarillas. 

 Salas (1987)  la Fm. Camarillas para la Cuenca del Maestrazgo como un sistema 

fluvial de baja sinuosoidad. Estudios recientes en la Subcuenca de Galve, cercana a la 

Subcuenca de Penyagolosa, reinterpretan esta formación como sistemas costeros de isla 

barrera-lagoon (Navarrete et al, 2013).  

Algunos elementos que creemos que han podido llevar al error en la 

interpretación del sistema sedimentario son: color rojizo de los sedimentos más finos, 

principalmente lutitas, alineaciones de cantos subredondeados, presencia de cuerpos 

canaliformes y descripción de huellas de dinosaurios. El color rojo en los sedimentos se 

ha interpretado comúnmente como de origen continental debido a la oxidación de 

minerales con hierro (ej: Wang et al., 2014). En los sedimentos de la Formación 

Camarillas, los sedimentos finos de color rojo se asocian fundamentalmente a facies de 

tipo offshore, sedimentadas en zonas profundas por debajo del nivel de base de 

tormentas. Estos colores rojizos y violáceos se deben a  alteración superficial del 

sedimento, siendo realmente el color en corte fresco gris y negro. Ozturh et al. (2002) 

relacionan los colores rojos y violáceos en facies de offshore con la acumulación de 

pirita en fondos marinos anóxicos. La alteración supergénica de los sedimentos bajo 

condiciones subaéreas produce la oxidación de la pirita en otros óxidos de hierro dando 

el color rojizo a los sedimentos. Este puede ser el caso de los colores de alteración que 

presentan las facies de offshore de la Formación Camarillas.  
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La ausencia de bioturbación en las facies de offshore estaría relacionada con la 

estratificación de las aguas marinas y la formación de fondos anóxicos. Beatty (2008) 

describe para el Triásico inferior en el norte de Canadá sedimentos de offshore carentes 

de  bioturbación debido a la estratificación de las aguas que impiden la colonización 

continua de los mismos. De tal modo, la superficies donde se concentra la bioturbación 

sería el resultado de la entrada de aguas oxigenadas y con nutrientes al fondo marino, 

posiblemente relacionado con eventos de tormenta (Beatty, 2008). Entre distintos 

eventos de tormentas y de manera temporal, se produce la entrada de nutrientes y 

oxígeno permitiendo que algunos organismos colonicen momentáneamente el fondo 

llegando a bioturbar el sedimento. (Beatty, 2011, Buatois, 2011). 

La presencia de huellas de dinosaurio en la Formación Camarillas es otra de las 

razones por las que este sistema se ha interpretado tradicionalmente como un sistema 

continental. Recientemente, se ha publicado la descripción del  icnogénero 

Iguanodontipus en la localidad de Cabra de Mora (Cobos y Gascó, 2012) donde se 

interpreta que se habrían producido en un sistema fluvial de baja sinuosoidad. Por otra 

parte, Navarrete (2012) describe igualmente huellas de dinosaurios para la misma 

formación en la Subcuenca de Galve en sistemas costeros. Con la reinterpretación 

propuesta en este trabajo del sistema sedimentario, la presencia de huellas de dinosaurio 

estará asociada a zonas de llanura costera  y mareal. 

 

6.2.   Relación vertical de las parasecuencias 

A lo largo de las dos columnas levantadas en la formación Camarillas se han 

descrito diferentes superficies estratigráficas y parasecuencias. A pesar de la falta de 

correlación entre ambas columnas debido a la presencia de fallas cercanas, es posible 

evaluar las variaciones en el espacio de acomodación a lo largo de ellas desde la 

perspectiva de la estratigrafía secuencial y su reflejo en el registro sedimentario (Fig. 

21). 
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6.2.1. Apilamiento de parasecuencias agradante 

 

Este tipo de apilamiento se encuentra en dos zonas. Por una parte, en la zona 

inferior y  media de la Columna 2 formada por el sucesivo apilamiento de facies de 

offshore y offshore  de transición. Por otra parte, la Columna 1 en su conjunto está 

formada por la repetición de parasecuencias de shoreface superior, foreshore, y llanura 

mareal separadas entre sí por superficies transgresivas. En ambos casos, cada 

parasecuencia contiene el mismo conjunto de facies de la parasecuencia inferior y 

superior. El conjunto de parasecuencias no muestra una tendencia definida hacia la 

somerización o a la profundización. 

 

En conjunto, el apilamiento de las parasecuencias es de tipo agradante (Van 

Wagoner et al., 1990). Este tipo de arquitectura se forma cuando la tasa de 

sedimentación está en equilibrio con la tasa de creación de espacio de acomodación. 

 

6.2.2. Apilamiento de parasecuencias progradante 

Este tipo de apilamiento lo encontramos en las dos últimas parasecuencias de la 

Columna 2. En ellas se observa el encajamiento de facies de shoreface con base 

fuertemente erosiva sobre facies más profundas de offshore y offshore de transición de 

la parasecuencia inferior. Este tipo de apilamiento corresponde a un sistema progradante 

con pérdida de acomodación (Van Wagoner et al., 1990).  

La progradación de las parasecuencias se produce mediante el desarrollo de 

cuñas de shoreface con una base muy erosiva (Sharp-based shoreface deposits). Este 

tipo de depósitos es uno de los principales indicadores del descenso brusco en el nivel 

relativo del mar. (Plint, 1988) Se forman cuando al descender el nivel del mar, los 

distintos cinturones de facies se desplazan hacia el interior de la cuenca así como el 

nivel de base del oleaje de tormentas y el nivel de base del oleaje de buen tiempo 

descienden, afectando a zonas que antes se encontraban por debajo de ellos (Catuneanu, 

2006; Coe, 2010). Esta superficie que separa sedimentos de offshore en la parte inferior 

de sedimentos de shoreface  en la parte superior es la denominada Regressive Surface of 

Marine Erosion (RSME) (Coe, 2010). 
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Ejemplos de depósitos asociados a descensos del nivel del mar y progradación 

de las parasecuencias similares a los encontrados en la Formación Camarillas se 

encuentran en la Formación Blackhawk (Utah, EE.UU), más concretamente los 

Miembros Aberdeen y Kenilworth (Van Wagoner et al., 1990; Pattison, 1995) y en la 

Formación Dunvegan en Canadá (Puspoki et al., 2009). 

 Dentro de la Península Ibérica, en la zona de las Béticas, se han estudiado 

depósitos barremienses de plataforma siliciclástica con evidencias de regresión forzada 

de cuñas de shoreface  (García-García, 2013).  

 

6.3.   Modelo sedimentario 

A lo largo de las dos columnas se han definido dos tendencias diferentes. Por 

una parte, la parte inferior del sistema corresponde a una  plataforma siliciclástica con 

tendencia agradante. Esta tendencia aparece tanto en las zonas proximales como en las 

zonas distales. Por otro lado, la parte superior del sistema muestra una clara tendencia 

progradante con la aparición de sistemas someros sobre sistemas profundos. 

La base de la serie representa un periodo de equilibrio entre la tasa de 

sedimentación y la tasa de creación de espacio de acomodación (Van Wagoner et al., 

1990; Catuneanu, 2006). En cambio, la parte superior registra momentos donde la tasa 

creación de espacio de acomodación es negativa (Van Wagoner et al, 1990) Estos 

momentos están representados por las RSME y aumentando posteriormente.  

Dada la relación entre ambas tendencias es probable compararlo con dos cortejos 

sedimentarios. La parte basal del sistema correspondería al Highstand System Tract 

(HST). Este sistema se caracteriza en general por tendencias agradantes o ligeramente 

progradantes que reflejan ligeras pérdidas o creación lenta de espacio de acomodación 

(Coe, 2010).  

La parte superior del sistema representado por las dos últimas parasecuencias de 

la Columna 2 correspondería al Falling Stage System Tract (FSST) o al cortejo de caída 

del nivel del mar. El comienzo de este cortejo se basa en la presencia de la RSME 

(Posamentier et al., 1992) y la de cuerpos de shoreface erosivos sobre facies más 

profundas (Plint, 1988; Plint y Nummedal, 2000). 
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El límite entre ambos cortejos diferenciando entre los sedimentos de highstad y 

los depósitos transgresivos sigue en discusión hoy en día. Algunos autores proponen 

que este límite se sitúe en la base de la primera cuña siliciclástica que representa los 

depósitos regresivos de shoreface (RSME) (Posamentier y Morris, 2000). Otros autores 

determinan que el límite entre ambos cortejos se sitúa en la parte superiorcatu de la 

misma cuña siliciclástica (Plint y Nummedal, 2000). 

 

Fig. 21: Modelo sedimentario regresivo para la Fm. Camarillas para sedimentos de plataforma 

siliciclástica dominada por el oleaje y las tormentas (Modificado de Posamentier y Allen, 1999; 

Catuneanu, 2006). La Columna 1 representa agradación de parasecuencias en un momento de HST 

indicando un ligero aumento en el espacio de acomodación. La columna 2 muestra la sedimentación 

de facies distales en zonas profundas y el truncamiento erosivo y formación de la RSME por 

sedimentos de shoreface. Se asocia a un descenso del nivel del mar relativo y regresión forzada de las 

facies durante el FSST. 
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Capítulo 7 

Conclusiones 

A lo largo de las dos columnas estratigráficas levantadas en la Formación 

Camarillas en la localidad de Cabra de mora se han diferenciado un total de siete 

asociaciones de facies ordenadas desde las zona más profunda a la zona más somera: 

offshore, offshore de transición, shoreface inferior, shoreface superior, foreshore, 

llanura mareal y canal mareal. El conjunto de las asociaciones de facies es un medio 

sedimentario de plataforma siliciclástica dominada por el oleaje y las tormentas. 

A lo largo de ambas columnas existen evidencias de variaciones del nivel 

relativo del mar durante la sedimentación de la plataforma quedan reflejadas en la 

formación de diferentes superficies con distinto origen: Wave Ravinement surface, 

Regressive Surface of Marine Erosion y superficies no deposicionales. Por una parte, el 

espacio de acomodación creado aumenta ligeramente siendo compensado por la tasa de 

sedimentación produciendo una arquitectura agradante. Por otra parte, el espacio de 

acomodación desciende bruscamente produciendo el encajamiento de facies someras 

sobre facies profundas y la progradación del cinturón de facies hacia el interior de la 

cuenca. 
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