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Abstract. 

El embalse de Yesa (río Aragón), en el Pirineo meridional presenta riesgos geológicos 

asociados a la inestabilidad de las laderas sobre las que se apoyan los estribos de la presa. 

En el citado caso del embalse de Yesa, los deslizamientos son recurrentes y además son 

agravados por actividades de origen antrópico como la realización de desmontes y 

descalces. El cometido de este trabajo es ayudar a entender cuál es el origen de la 

inestabilidad y como cuantificar el riesgo que presenta dicha inestabilidad, para ello se 

estudian los antecedentes, la geología de la zona, se toman datos, se comparan y se 

procesan mediante un programa que nos ofrecerá una serie de resultados, en nuestro caso, 

factores de seguridad que posteriormente serán debidamente interpretados y a partir de 

esas interpretaciones sacar conclusiones y responder a las cuestiones planteadas. 

 

Palabras clave: presa, riesgo, factor de seguridad, ladera, deslizamiento, riesgos 

geológicos. 

 

The Yesa Reservoir (Aragon river), which is located at the southern Pyrenees, shows 

geological risks associated with the instability of the slopes that hold the abutments of the 

dam. Slides are frequent as well as exacerbated by anthropogenic activities such as 

conducting clearing and mismatches. The aim of the present paper is to achieve a better 

understanding of the origin of this instability and the way to quantify the risk that it poses. In 

order to reach this purpose, I will consider the precedents and the geology of the area. Also, I 

will take data of them which I will compare and process through a programme. The results 

offered by this programme are security factors which will be later properly interpreted. Finally, 

I will draw several conclusions from these interpretations as well as I will answer to the 

contemplated questions. 

 

Key words: dam, risk, safety factor, slope, slide, geohazards. 
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1- Introducción  

1.1- Objetivos.  

Los objetivos del presente trabajo son: 

 Conocer las características geomorfológicas del entorno del embalse y de la presa. 

 Desarrollar el contexto geológico de la zona en torno al embalse y la presa. 

 Proceder a la estimación de la estabilidad de las laderas de dicha zona. 

 Estudiar y caracterizar el deslizamiento de la margen derecha. 

 Estimar también el riesgo que presenta el deslizamiento de la margen derecha. 

 

1.2- Marco geográfico y características del embalse y la presa. 

1.2-1. Situación de la zona de estudio: 

El área propuesta para este trabajo se localiza en el Pirineo donde tiene lugar el 

represamiento del río Aragón, en la población navarra de Yesa (España). Está ubicado en el 

noroeste de la provincia aragonesa de Zaragoza y al noreste de la Comunidad Foral de 

Navarra (figura 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://es.wikipedia.org/wiki/Pirineo
http://es.wikipedia.org/wiki/R%C3%ADo_Arag%C3%B3n
http://es.wikipedia.org/wiki/Navarra
http://es.wikipedia.org/wiki/Yesa
http://es.wikipedia.org/wiki/Espa%C3%B1a
http://es.wikipedia.org/wiki/Arag%C3%B3n
http://es.wikipedia.org/wiki/Provincia_de_Zaragoza
http://es.wikipedia.org/wiki/Comunidad_Foral_de_Navarra
http://es.wikipedia.org/wiki/Comunidad_Foral_de_Navarra
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Fig. 1.- Mapa 175 detallado y aumentado con la situación del área de estudio (Instituto Geográfico Nacional) y 

fotografía vía satélite (en los círculos rojos las laderas que presentan o han presentado inestabilidad) , (Google 

Maps, 2014). 

 

1.2-2. Características del embalse y la presa:  

El embalse en su mayoría abarca e inunda tierras de la llamada Canal de Berdún, en la 

comarca aragonesa de la Jacetania desarrollándose en los términos municipales de Sigüés, 

Ruesta, Escó y Tiermas. De él deriva el Canal de Bardenas que trasvasa agua hasta la zona 

de la Ribera al sur de Navarra y riega las Bardenas Reales y la comarca zaragozana de 

Cinco Villas. Posee una capacidad de 446,86 hm³, alcanzando las siguientes cotas: mínima, 

435 m; coronación, 490 m; aliviadero, 482,61 m y cota de máximo embalse normal de 

488,61 m. La longitud de la cola del embalse es de 10 km con anchuras que abarcan entre 1 

y 2,5 km. Ocupa una superficie de 2.098 hectáreas.  

Se inauguró en 1960 y forzó el abandono de varios pueblos: Ruesta, Tiermas y Escó con 

una población afectada de más de 1.500 personas.  

La presa se localiza a 400 m del núcleo urbano de Yesa en dirección Norte. Está dotada de 

un aliviadero de superficie situado en la margen izquierda. Tiene dos tomas para central 

hidroeléctrica y otra para el canal de Bardenas, como se muestra en la figura 2. 

 

 

 

 

 

 

 

Fig. 2.- Foto en la que se observa la presa, su aliviadero de cuatro bocas y su desagüe (www.yesano.com, 

2013). 

 

La longitud en coronación es de 398 m, con una altura sobre cimientos de 76,5 m y sobre el 

cauce de 62,1 m; la anchura en la coronación es de 7 m. Consta de una galería perimetral 

de cinco accesos de los cuales tres están a pie de presa y los otros dos en la parte superior, 

que se unen en la cota 460 con una galería horizontal en los estribos a la cual se puede 

acceder desde el parámetro de la presa, al lado de la toma para el canal, se trata de una 

presa de gravedad de planta recta construida a base de hormigón con un talud vertical en la 

parte alta y un escalonado en la parte inferior. En la figura 3 se muestra la sección de la 

presa. 

 

 

 

http://es.wikipedia.org/wiki/Canal_de_Berd%C3%BAn_%28geograf%C3%ADa%29
http://es.wikipedia.org/wiki/Jacetania
http://es.wikipedia.org/wiki/Sig%C3%BC%C3%A9s
http://es.wikipedia.org/wiki/Ruesta
http://es.wikipedia.org/wiki/Esc%C3%B3
http://es.wikipedia.org/wiki/Tiermas
http://es.wikipedia.org/wiki/Canal_de_Bardenas
http://es.wikipedia.org/wiki/Bardenas_Reales
http://es.wikipedia.org/wiki/Hm%C2%B3
http://es.wikipedia.org/wiki/1960
http://es.wikipedia.org/wiki/Ruesta
http://es.wikipedia.org/wiki/Tiermas
http://es.wikipedia.org/wiki/Esc%C3%B3
http://es.wikipedia.org/wiki/Canal_de_Bardenas
http://es.wikipedia.org/w/index.php?title=Presa_de_gravedad&action=edit&redlink=1
http://es.wikipedia.org/wiki/Hormig%C3%B3n
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Fig. 3.- Sección tipo de la presa de Yesa (Ingeniería del suelo S.A., 2013). 

 

La superficie de la cuenca hidrográfica es de 2.170 km2. Tiene una capacidad de 446,90 

hm3, de los cuales 411 hm3 son útiles y 114,60 hm3 de reserva. La aportación anual media 

es de 1.322 hm3, siendo la mayor avenida registrada de 2.625 m3/s, mientras que la máxima 

prevista es de 2.800 m
3
/s (https://es.wikipedia.org/). 

 

1.3- Planteamiento del problema.  

Partimos de que la gran mayoría de cursos de agua como los ríos del Pirineo tienen gran 

cantidad de embalses, construidos en un intervalo de tiempo perteneciente al siglo pasado 

(s. XX). En general están construidos aprovechando las características geológicas del 

Pirineo, es decir, estructuras de dirección Este-Oeste y que son atravesadas de manera 

perpendicular por los ríos, dichas estructuras se conforman predominantemente por 

unidades alternas de naturaleza calcárea y son relativamente competentes lo que favorece 

la construcción de las cerradas de los embalses pues los estribos resultan ser de materiales 

adecuados para su finalidad, destacando que hacia el Norte de dichas estructuras, donde la 

litología es más blanda, se observa una ampliación de los valles de manera relevante y 

ofrece un lugar idóneo para la instalación de los vasos de dichos embalses. Por todo ello los 

embalses construidos hasta los años 50 en el Pirineo meridional se han aprovechado de 

dicha situación y no han generado problemas de seguridad graves como apunta Casas 

(2007). 

Frente a esta situación, a partir de los años 50 se comienzan a estudiar otro tipo de zonas 

con características geológicas diferentes a las anteriores y se procede a la proyección y 

construcción de presas sobre estos lugares. Entre otros el primer caso es el del embalse 

que nos ocupa, el embalse de Yesa. 

Dicho embalse se ubica sobre litologías poco competentes, ya que se ancla sobre 

materiales turbidíticos, que aparecen localmente entre margas eocenas. En este caso es 

previsible que los problemas geotécnicos y aspectos relativos a la seguridad de la presa se 

agraven y de hecho así ocurre (Casas, 2007). 

http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%A1fica
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Otro aspecto importante en los distintos proyectos del embalse de Yesa que se comentará 

más adelante es la sismicidad de la zona, que normalmente se ha minusvalorado junto con 

la geología en general.  

En consonancia con lo anterior y a modo de prólogo un breve historial de incidencias en el 

embalse de Yesa ordenadas cronológicamente: 

 En 1930 se desprende la ladera derecha a la altura del estribo que en ese momento 

se estaba excavando. 

 Entre los años 1957-1958, la inestabilidad del terreno donde se han construido los 

aliviaderos obliga a inyectar cemento en los cimientos. 

 En el año 1960 el debido al cierre y llenado de la presa y su posterior desembalse 

provoca la reactivación del deslizamiento de 1930, con un movimiento de 60.000 m 3 

de tierra.  

 En 1964 se reactiva el deslizamiento de 1930 y 1960. Los abancalamientos no 

soportan el movimiento y la ladera se desliza de nuevo. 

 En 1983 se terminó el proyecto de recrecimiento del pantano de Yesa. 

Diez años más tarde surge el Proyecto Modificado 03/1993, cuyas obras comenzaron en 

mayo de 2001, donde se vieron afectadas de nuevo por problemas de inestabilidad según 

Aretxabala (2013) y https://rioaragon.wordpress.com/historia-deslizamientos-yesa/: 

 En 2003 la excavación del estribo de la ladera izquierda provoca la aparición de 

grandes grietas, así como deslizamientos en capas. 

 En 2004 aparecieron grietas de gran tamaño. 

 En 2006 se produjo un deslizamiento de tierras 3,5 hm3 (Monte Mélida) que amenaza 

con caer al vaso del embalse.  

 En 2007 se reabren grietas, agujeros y la pista que recorre la ladera izquierda se 

derrumba. 

 En 2008 rotura de un talud en la ladera izquierda. 

 En el 2012 y 2013 la ladera izquierda del embalse de Yesa vuelve a deslizarse y el 

deslizamiento del estribo derecho de la presa provoca la evacuación de 60 viviendas 

por peligro de desprendimiento respectivamente. 

Como podemos observar el historial de inestabilidad y por ende la aparición de 

deslizamientos en el entorno de Yesa son fenómenos que acontecieron desde el 1930 hasta 

la actualidad, es decir unos 80 años, lo que nos hace cuestionarnos las causas, el valor de 

riesgo real que presenta dicha inestabilidad y cuan relevante resulta un buen conocimiento 

geológico de una zona para afrontar ciertas situaciones y prevenir o mitigar sus 

consecuencias negativas si las hubiese. 

http://es.wikipedia.org/wiki/1983
http://es.wikipedia.org/wiki/2001
http://es.wikipedia.org/wiki/2007
http://www.yesano.com/noticias2012/20120425_Yesa_deslizamiento.htm
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Debido a la ingente cantidad de información que se nos ofrece nos centraremos en el 

análisis de uno de los deslizamientos más recientes y que ha afectado de manera más 

directa a la población, hablamos  del deslizamiento ocurrido en 2013. 

 

1.4- Metodología de trabajo. 

Disponemos de una base sobre la que trabajar y un problema planteado por lo que se 

procede a describir la metodología que se ha seguido  para la realización de este trabajo y 

que se resume en los siguientes pasos: 

1- Revisión y recopilación de datos bibliográficos sobre la zona de estudio (informes 

geotécnicos y geológicos), además de la consulta y revisión de la geología de la 

zona a través de mapas. 

2- Recopilación de datos de campo: Para la realización del trabajo se han utilizado 

datos recogidos en campo tales como dirección y buzamientos además de 

fotografías tomadas en campo. 

3- Elaboración de una cartografía geomorfológica con software informático Adobe 

Illustrator CS5.1 mediante fotos aéreas y trabajo de campo, esta cartografía está 

orientada sobre todo a los deslizamientos a modo de inventario. 

4- Modelización de uno de los deslizamientos y tratamiento de información mediante el 

software informático Slide 6.0 introduciendo en él datos recogidos en campo y datos 

bibliográficos. Dicho programa realiza el cálculo de estabilidad según el método de 

equilibrio límite mediante Janbu simplificado. 

 

2- Contexto geológico. 

Nos situamos en el marco de los Pirineos meridionales concretamente en la Cuenca 

sinorogénica cenozoica de Jaca, situada originalmente en el antepaís meridional del Pirineo, 

(figura 4). Tiene una morfología alargada en dirección E-W, paralela a la directriz estructural 

pirenaica y que se extiende desde la transversal del Anticlinal de Boltaña al Este, posee más 

sentido estructural que estratigráfico, hasta el oeste de Pamplona. En su sector central, la 

Cuenca de Jaca se halla bordeada actualmente por el Norte y por el Sur por las elevaciones 

estructurales de la Zona Axial y del frente  
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Fig. 4.- Mapa geológico esquemático de la parte central de la vertiente surpirenaica (Teixell y García-

Sansegundo, 1995).  

 

montañoso de las Sierras Exteriores respectivamente (figura 4), si bien durante parte de su 

evolución se extendía más allá de los límites de afloramiento actuales. Su relleno 

estratigráfico posee un carácter regresivo, pasando de turbiditas en los estadios antiguos a 

sedimentos molásicos continentales en los más recientes (Puigdefàbregas, 1975). El 

conjunto de estos materiales alcanza un espesor de varios miles de metros como veremos 

más adelante. 

El relleno sedimentario de la Cuenca de Jaca tiene una edad que va desde el Paleoceno 

hasta el Oligoceno inferior (Rupeliense). Su substrato está constituido por rocas del 

Cretácico superior, que yacen sobre rocas pérmico-triásicas o sobre el basamento 

Hercínico, en la siguiente figura se ven en corte las principales unidades de la cuenca. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.- Cortes geológicos transversales del sector central de la Cuenca de Jaca (Teixell y García-Sansegundo, 

1995). 
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El embalse y la presa se localizan en una cuenca alargada orientada siguiendo la dirección 

pirenaica, en la cual aparecen materiales más modernos de Norte a Sur (figura 7). 

En la zona más al Sur formando los relieves de lo que hoy es Ruesta y Javier, se ubican 

areniscas y arcillas de colores rojizos pertenecientes a facies deltaicas, de edades 

pertenecientes al Eoceno superior-Oligoceno. 

Coincidiendo con la depresión de la Canal de Berdún, en el centro, afloran las margas grises 

del Eoceno medio conformando la formación de margas de Arguís-Pamplona, cuyo espesor 

se estima en 1.000 metros destacando que en los alrededores de Yesa y ubicándose en la 

cerrada de la presa, muestran hacia techo una alternancia de tipo flysch alternando margas 

calcáreas con areniscas de cemento calcáreo de facies turbidíticas, estos materiales se 

corresponden con el Eoceno superior y alcanzan una potencia de 100 metros y se 

denominan flysch de Yesa como describen Teixell y García-Sansegundo, (1995). 

En la zona más septentrional, perteneciente a la Sierra de Leyre, se ubican materiales de 

naturaleza calcárea que presentan edades comprendidas entre Cretácico y Paleoceno tales 

como calizas arenosas, areniscas calcáreas y calizas, coloreadas en verde y azul (figura 6). 

  

 

 

 

 

 

 

 

 

Fig. 6.- Corte N-S modificado de la figura 12, perteneciente a la zona Norte, la Sierra de Leyre. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.- Esquema geológico perteneciente al embalse de Yesa (Geoveo - Navegador cartográfico, hoja 175). 
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En las inmediaciones de la zona de estudio el río Aragón ha ido originando sucesivos 

niveles de terrazas. Correlativas con estas terrazas se pueden ver superficies de glacis 

antiguas además de conos de deyección de carácter torrencial a la par que acumulaciones 

de materiales coluviales al pie de las laderas que veremos más adelante en el apartado de 

geomorfología, y que también se pueden ver también en la figura 7. 

 

2.1- Estratigrafía. 

En esta sección vamos a describir los materiales (figuras 8 y 10) que se reconocen en el 

embalse de Yesa y en sus proximidades y que son los que se enumeran a continuación 

ordenados cronológicamente de más antiguos a más modernos:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.- Esquema estratigráfico (Modificado de Rojas y Latorre, 1972). 

 

Cretácico superior 

Calizas y Calcarenitas: Son rocas de naturaleza calcárea, en la que hay presencia de 

tramos areniscosos, se pueden apreciar hasta tramos conglomeráticos situados más arriba 

pertenecientes al Maastrichtiense dichos materiales forman parte de la Arenisca de Marboré. 

(Puigdefàbregas, 1975). Dichos materiales se observan en la Sierra de Leyre, al frente del 

cabalgamiento y también en los núcleos anticlinales del desfiladero socavado por el río 
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Esca, localizado entre Sigüés y Salvatierra. La potencia de estos materiales sobrepasa los 

100 metros. 

Paleoceno 

Arcillas y margas rojas: Facies Garum. La potencia de los materiales arcillosos y margosos 

es bastante reducida y además están caracterizados por un color rojo teja, estos materiales 

pertenecen a la facies Garumniense y alcanzan una potencia de algunas decenas de 

metros. 

Calizas de Alveolinas: Estos materiales poseen tonos grises claros, son bastante masivas y 

presentan estratificación métrica a decimétrica, se calcula un espesor aproximado a un 

centenar de metros. Localizadas en la base observamos dolomías de grano fino, 

estratificadas formando bancos de escala  métrica. 

Eoceno medio-superior 

Margas de Pamplona: Conforman el macizo rocoso en el cual se ubica casi en su totalidad 

el vaso del embalse. Su carácter masivo dificulta la observación de la estratificación en los 

afloramientos a no ser que presenten intercalaciones de areniscas aunque su presencia 

suele ser escasa. Dichas areniscas presentan cemento calcáreo y color gris oscuro, el 

tamaño de grano se considera fino y de naturaleza silícea y micácea. Hay algunas zonas 

donde se ha encajado de manera profunda la red fluvial y se puede observar que las margas 

afloran sanas desde la superficie (figura 9). La potencia que alcanzan los materiales en la 

zona es de unos 1.000 metros. 

 

 

 

 

 

 

 

 

 

 

Fig. 9.- Margas de Pamplona localizadas en la margen derecha del embalse de Yesa. 

 

Flysch de Yesa: Datado como Eoceno superior, estos materiales hacen referencia a 

aquellos sedimentos que afloran sobre las margas de Pamplona y que se da especialmente 

en las inmediaciones de la cerrada de la presa. Lo que caracteriza a esta facies es la 

presencia de capas de arenisca de génesis turbidítica intercaladas con las margas. De vez 

en cuando se observan intercalaciones de margas arenosas con frecuentes pliegues 
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intraformacionales y nódulos de arenisca que evidencia su origen a partir de capas 

turbidíticas deslizadas durante el proceso de sedimentación. 

En dichas capas de arenisca se observa una granoclasificación positiva, además de 

presentar un contacto neto en la parte inferior en  su base también se ven frecuentes 

marcas de erosión debidas a corrientes, mientras que hacia techo se ven pistas generadas 

por organismos. 

Señalar que la disposición de las capas areniscosas  es irregular y se encuentran en tramos 

separados por margas de carácter masivo, dichos tramos van de 5 a 10 metros. La potencia 

del conjunto puede sobrepasar el centenar de metros. 

Eoceno superior 

Arcillas y areniscas versicolores: Éste paquete lo conforman arcillas de tonos rojo, gris y 

verde, se presentan en láminas finas dispuestas en capas milimétricas, que incluyen 

esporádicamente evaporitas, tales como yeso. Hacia techo, se ven progresivamente 

intercalaciones de areniscas con capas de orden decimétrico a centimétrico. 

Areniscas: Son de naturaleza calcárea, de colores grises y se disponen en capas de 

potencias decimétrica a métrica además de que presentan intercalaciones decimétricas de 

arcillas también grises. 

Oligoceno 

Respecto al Oligoceno decir que nos encontramos una alternancia de areniscas, arcillas y 

conglomerados. Dichos materiales se distribuyen hacia el Sur y forman parte de las facies 

continentales de origen fluvial que se localizan en el borde de la Depresión del Ebro. 

Cuaternario 

Terrazas: Estas terrazas se sedimentaron por el río Aragón a lo largo de su historia 

geológica. Se caracterizan por presentar potencias que van de 1 a 5 metros constituidas por 

gravas sobre limos arenosos de potencias métricas. 

Coluviales: Los materiales que los forman son en general gravas arcillosas con abundantes 

bloques de areniscas, señalar que en las inmediaciones de la cerrada de la presa pueden 

alcanzar espesores de hasta 30 metros. 
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Fig. 10.- Mapa geológico de los alrededores del embalse de Yesa (Rojas y Latorre, 1972). 

 

2.2- Estructura. 

Desde el punto de vista estructural, la zona de estudio se encuentra situada en el bloque 

inferior del Cabalgamiento de Leyre. Esta estructura de dirección E‐O y vergencia Sur, 

superpone diversas formaciones marinas y continentales de edades comprendidas entre el 

Cretácico superior y el Eoceno inferior sobre las margas de Pamplona, formando la Sierra 

de Leyre al norte del embalse (Rojas y Latorre, 1972). En la zona de la presa, la serie 

paleógena del bloque inferior del Cabalgamiento de Leyre está afectada por un haz de 

pliegues de dirección preferente ONO‐ESE desplazados por la Falla de Yesa. Esta 

estructura corresponde a una falla inversa de rumbo E‐O y buzamiento Norte cuya traza 

discurre por el fondo del valle del Aragón. En la zona de la presa, la Falla de Yesa posee un 

salto estratigráfico de unos 150‐200 m y yuxtapone las margas Pamplona, al Norte, con el 

flysch de Yesa, al Sur, esta información queda reflejada en la figura 12. 

En la ladera la serie eocena presenta un anticlinal y un sinclinal con orientación preferente 

ONO‐ESE e inmersión Oeste. La charnela y el flanco sur del anticlinal corresponden a la 

parte superior de la ladera, aproximadamente al norte de la carretera ZN‐240. En la zona de 

divisoria (Marmayor), el flysch presenta un disposición subhorizontal, aumentando 

rápidamente su buzamiento hacia el valle. En el grueso de la porción de la ladera situada 

por encima de la ZN‐240, las capas presentan un buzamiento de 20‐30°S concordante con 

la topografía (dip slope). Los afloramientos existentes en los desmontes de la ZN‐240 

permiten observar, tanto el contacto transicional entre las margas y el flysch in situ, como la 

estructura anticlinal, (figura 12). El eje del sinclinal se encuentra en el rellano estructural por 

el que discurre la carretera ZN‐240, por debajo de las urbanizaciones Lasaitasuna y Mirador 

de Yesa, aunque resulta difícil precisar su traza por la escasez de afloramientos. En la 

porción de la ladera situada por debajo de la ZN‐240, incluyendo la zona donde se ha 

realizado la excavación del estribo derecho de la nueva presa, el sustrato presenta 

direcciones y buzamientos variables hacia el interior del talud. El contacto entre las margas y 

el flysch se encuentra situado ligeramente por debajo de la coronación de la presa actual.  
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Fig. 11.- Corte regional N-S realizado a partir de la información citada en el apartado 2.2  y que sintetiza el 

contexto estructural de la zona. En amarillo y marrón claro están representados el flysch de Yesa y las margas 

de Pamplona respectivamente. 

 

2.3- Geomorfología. 

Las laderas que constituyen las dos vertientes del vaso y la cerrada del embalse de Yesa se 

localizan sobre las margas de la Formación de Arguis-Pamplona y sobre el flysch de Yesa, 

que se sitúa intercalado dentro de la unidad mencionada. Las laderas presentan un perfil 

cóncavo hacia arriba en las margas y con geometría más irregular dentro del flysch. En el 

entorno del vaso del embalse pueden identificarse numerosas cicatrices de deslizamientos, 

con lóbulos en la parte baja, que indican que existe una cierta inestabilidad de las laderas, 

debida probablemente al comportamiento plástico de las margas meteorizadas. Además se 

aprecian procesos de acarcavamiento debidos a la escorrentía de aguas superficiales. 

En el sector donde se encuentra la cerrada del embalse la morfología sufre un cambio 

brusco, debido a la aparición del flysch de Yesa. Debido a ello las pendientes de las laderas 

son mayores y se aprecian cicatrices y lóbulos de deslizamientos de mucha mayor entidad 

que los que se observan en las margas de Arguis. Dichas cicatrices se sitúan sobre todo en 

la margen derecha del río Aragón, que constituye la cara norte del interfluvio entre el Aragón 

y el Arroyo de la Gardonera, que presenta una dirección subparalela. Los deslizamientos 

más importantes se localizan justo aguas abajo y aguas arriba de la presa actual. En la 

figura 12 se muestra un esquema con los deslizamientos en detalle y en los anexos un 

mapa geomorfológico general de la zona con el resto de deslizamientos.  

 

 

 

 

 

 

 

 

 

 

Fig. 12.- Esquema en el que aparecen en rojo los deslizamientos históricos más conocidos (Aretxabala, 2013). 

 

2.4- Sismicidad. 

En la zona pirenaica han sucedido al menos cuatro grandes terremotos con magnitudes que 

van de 6 a 7 e intensidades de VIII a X durante los últimos 650 años (Aretxabala, 2014). 
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Fig. 13.- Terremotos de intensidad > VI en la canal de Berdún, (Aretxabala, 2014). 

 

En su mayoría los terremotos fuertes siempre acarrean fenómenos de ladera, pero en la 

zona sometida a estudio no hace falta que éstos sean tan enérgicos para que éstas se 

muevan, es más, la ladera derecha lo hace sin temblores y como veremos son relativamente 

habituales. Además de la sismicidad natural de la región (figuras 15 y 16) no podemos 

olvidar que la sismicidad inducida por embalses es un hecho ya muy bien contrastado, uno 

de los ejemplos está muy cerca: Itoiz como se reseña en la figura 14. Al aumentar la presión 

de una zona amplia y la presión intersticial de las zonas donde se ubican las fallas, se 

incrementa la sismicidad, muchas veces se adelanta en el tiempo, algunos autores afirman 

que la sismicidad desatada en Itoiz fue por ese motivo y que tarde o temprano iba a 

suceder, otros estudios más recientes, sin embargo, argumentan que el nuevo peso y 

cambio tensional es el que provocó las inestabilidades y por lo tanto los terremotos 

inducidos y algo similar puede ocurrir también en Yesa. Los parámetros de aceleración 

sísmica básica aplicables a la zona pirenaica y en especial de Yesa a partir del estudio de la 

sismicidad histórica y de su historia geológica, prácticamente se van a duplicar en la nueva 

norma sismorresistente española; debemos tener en cuenta que el terremoto del 10 de julio 

de 1923 con epicentro en la cola del embalse (Martes, Mianos, Bagüés) fue de entre 5,8 y 

6,2 Mw con intensidad VIII, tras él cientos de réplicas se extendieron hasta 1925. Con todo 

esto queremos decir que la sismicidad en la actualidad, estudiada más a fondo, no sólo 

podría afectar a la estructura de la propia cerrada sino también a las laderas, perjudicando 

de manera significativa su estabilidad y haciéndolas más inestables de lo que ya son, en 

definitiva mayor riesgo de deslizamiento. 
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Fig. 14.- Tabla comparativa de terremotos con intensidad > III de la crisis sísmica del llenado del embalse de Itoiz  

y esquema de fallas estimuladas durante su llenado. (Aretxabala, 2014). 

 

En la figura 15 se ve qué magnitud se puede alcanzar en torno a nuestra zona de estudio 

ubicada en el cuadrante 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.- Mapa tectónico de España (IGME-SGE Rodríguez-Fernández LR, 2004). 

 

Para facilitar la comprensión de la peligrosidad sísmica natural no inducida que supone la 

zona de la Canal de Berdún se adjunta el siguiente mapa (figura 16). 
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Fig. 16.- Mapa de peligrosidad sísmica de España, el periodo de retorno relativo a los datos del mapa es de 475 

años (Instituto Geográfico Nacional). 

 

Una vez que conocemos las características geológicas y el modo negativo en qué pueden 

afectar la actividad sísmica, natural e inducida de las inmediaciones del embalse, tanto a las 

estructuras geológicas naturales (laderas) como a la propia cerrada, se procede a 

desarrollar el análisis de la ladera derecha, para cuantificar el riesgo. 

 

3- Presentación en detalle de la zona de estudio (deslizamiento de la ladera derecha). 

Tanto en el caso de los depósitos coluviales como en el de los paleodeslizamientos se trata 

de materiales con una estructura poco definida. Este deslizamiento está actualmente en fase 

de estudio, las obras para su estabilización están avanzadas, y se encuentra instrumentado 

mediante inclinómetros, piezómetros y control topográfico, para llevar a cabo un seguimiento 

del mismo. 

Se va a profundizar en la ladera derecha, atendiendo a las litologías que son las que se 

exponían en apartados anteriores: un potente sustrato de margas de Arguís-Pamplona al 

que se superpone un recubrimiento de hasta 100 m de espesor de una alternancia de 

areniscas y margas conocida como flysch de Yesa. 
En superficie, se observan diversos recubrimientos de escasa potencia, destacando 

depósitos coluviales al pie de la ladera y antiguos deslizamientos rotacionales en la parte 

superior de la misma, que provocan ligeros cambios de pendiente respecto a la morfología 

homogénea de la ladera generada por la estructura del sustrato rocoso del flysch. 

Los depósitos de flysch de Yesa abarcan casi toda la ladera objeto de estudio, presentan un 

espesor que alcanza los 100 m en algunos casos y originan unas laderas características 

subparalelas a la estructura.  

Bajo el flysch aparecen las margas de Pamplona que constituyen el sustrato de toda la zona 

de estudio y afloran, tanto lateralmente (hacia el E) como hacia el fondo del valle, donde se 

ubica la presa. 
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Respecto al macizo rocoso decir que está definido por los materiales citados anteriormente y 

presenta una estructura plegada, caracterizada por la presencia de una estructura anticlinal 

en la coronación de la ladera, lo que implica que el relieve que se observa es en realidad un 

relieve estructural, tal y como ocurre en la zona de Monte de Mélida situado en la margen 

izquierda, y un sinclinal al pie de la ladera, en el entorno definido entre la carretera nacional 

y la presa actual. 

La estructura característica de la margen derecha estudiada es un anticlinal que define la 

coronación de la ladera, extendiéndose ésta por su flanco sur, e invirtiéndose el buzamiento 

al pie de la misma, pasando a ser Norte por la presencia de un sinclinal abierto de 

orientación E-O y con vergencia al Oeste. 

Al pie de la ladera, por efecto del sinclinal, afloran las margas de Pamplona, con buzamiento 

al Norte, la ladera finaliza en el fondo de valle del río Aragón, delimitada al S por la Falla de 

Yesa. Estos buzamientos predominantes a favor de la pendiente de las laderas provocan 

muchos de los problemas de inestabilidad detectados en los depósitos de flysch, tanto en la 

ladera derecha estudiada en este caso como en la contraria, mirar figura 11. 

En la figura 17 se observa cómo en el pie de la ladera, tanto en los depósitos de flysch como 

las margas infrayacentes, presentan un suave buzamiento hacia el N. 

 

N S 

 

 

 

 

 

 

Fig. 17.- Foto tomada en la margen derecha y que corrobora lo anterior, si se observa detenidamente se puede 

apreciar como la los lados de la carretera la formación flysch de Yesa se encuentra buzando hacia el NNW entre 

15 y 20 grados, puede intuirse que forma parte del flanco de un pliegue sinclinal de amplio radio.     
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Fig. 18.- Foto tomada en la margen derecha, en la carretera que aparece en la figura anterior y en el que se 

aprecia claramente el buzamiento de los niveles de arenisca hacia el NNW. 

 

 

En la ladera izquierda también se observa que el buzamiento 

de las capas tiende hacia el embalse (N), además es más 

acusado que la pendiente de la ladera como se muestra a 

continuación (figuras 19 y 20).  

 

 

 

Fig. 19.- Fotografía, tomada en la margen izquierda en la que se aprecian 

dos estratos de arenisca cuyo buzamiento y dirección son 73,5 065 NNW 

respectivamente, cuentan con una potencia de 10 cm. 

 

 

 

 

 

 

 

 

 

Fig. 20.- Fotografía, en la que se ve al detalle un nivel de arenisca que aparece en la figura 20. 

 

En la figura 21 se aprecia cómo en el pie de la ladera, tanto en los depósitos de flysch como 

las margas infrayacentes, presentan un suave buzamiento hacia el N. En la coronación de la 

ladera los buzamientos se suavizan hasta cambiar buzando hacia el S pasada la coronación 

de la ladera y pasan de nuevo a tener sentido Norte, describiendo la estructura de un 

pliegue anticlinal. 
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Fig. 21.- Fotografía en la que se observa el detalle del buzamiento hacia el N que presentan las capas de flysch 

aguas abajo de la presa actual, al pie de la ladera, como evidencia del sinclinal existente. 

 

La estructura en el entorno de la presa utilizando la información citada anteriormente nos 

quedaría tal y como se observa en la figura 22. 

 

 

 

 

 

 

 

 

 

 

Fig. 22.- Corte N-S modificado de la figura 12, en el que se señalan el anticlinal y el sinclinal que se localizan en 

la ladera derecha. Representado con el amarillo tenemos  el flysch de Yesa y con el marrón claro las margas de 

Pamplona subyacentes. 

 

Ahora vamos a definir con más detalle la estructura de la margen derecha y que ha de 

ajustarse a nuestro corte para modelizarla posteriormente (figura 23).  

 

 

 

 

 

 

 

 

Fig. 23.- Modelo geométrico de la ladera derecha de la cerrada del embalse de Yesa con orientación N-S basado 

en el corte de la figura 23, en rojo se muestra la posib le masa deslizada.  

 

Tomaremos como referencia este perfil para elaborar la modelización mediante el software 

Slide 6.0 extrapolando la geometría a dicho programa como veremos en el siguiente 

apartado. 

 

4-Modelización  

En los apartados anteriores se ha presentado el alcance de la zona afectada por el proceso 

de inestabilidad y se describían sus características. Con dicha información, junto con las 
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observaciones de campo, así como con el estudio de antecedentes, se ha procedido a 

realizar análisis específicos y estimaciones sobre las condiciones de estabilidad de la ladera. 

Pasamos a introducir el método: 

La condición de equilibrio límite se alcanza cuando la magnitud de las fuerzas 

estabilizadoras es igual a la de las que ofrecen resistencia, alcanzándose así un factor de 

seguridad de valor la unidad, es decir, igual a 1. 

Dentro de los métodos de equilibrio límite se ha optado por utilizar el método de Janbu 

simplificado. Este método es muy similar al método de Bishop simplificado, pero en el caso 

de Janbu para alcanzar un valor definitivo de factor de seguridad, el método asume que se 

alcance un equilibrio de fuerzas tanto en la horizontal como en la vertical, obviando el 

equilibrio de momentos. Esta característica hace que este método sea el más adecuado 

para el cálculo de estabilidad de laderas como la estudiada, en la que los movimientos de 

masas se producen de manera traslacional preferentemente, a diferencia de otros métodos 

(Bishop simplificado) en los que considera el equilibrio de momentos, fundamentales para el 

análisis de movimientos rotacionales puros. 

El método de cálculo utilizado considera un criterio de rotura de tipo Mohr Coulomb, en el 

que se considera la cohesión y el ángulo de rozamiento interno de los materiales 

involucrados (González de Vallejo et al., 2002). 

Las superficies de rotura analizadas en la ladera han sido definidas manualmente, 

reproduciendo los procesos de inestabilidades observadas en el terreno. En este caso no se 

han llevado a cabo simulaciones mediante roturas circulares aleatorias, puesto que el 

condicionante estructural que presenta la ladera estudiada en este caso, es incompatible 

con la generación de dichas superficies. Ello equivaldría a considerar el material afectado 

por la inestabilidad (flysch de Yesa) como un material isótropo y homogéneo. Si el 

movimiento del terreno afectara a las margas de Pamplona, de carácter más masivo, podría 

barajarse esa situación como una hipótesis más de cálculo. 

En los análisis de estabilidad se han considerado las siguientes unidades litológicas 

denominadas como: margas de Pamplona y flysch de Yesa.  

 

Geometría de la ladera y datos introducidos en el programa 

Cohesión: C=0-10-20 kN/m2 

Ángulo de rozamiento interno: Φ=23-25-28-30º             valor real Φ=20º 

Los valores se han recogido de informes técnicos en el caso de la cohesión y en lo referente 

al ángulo de rozamiento decir que hemos elegido éstos entre otros para poder acotar un 

margen de error y posicionarnos en un contexto lo más realista posible a la hora de obtener 

resultados fiables que poder interpretar a posteriori, inclinándonos por una visión un poco 

más conservadora que bien se traduce en un mayor interés por la seguridad. 
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N          S 

 

 

Fig. 24.- En esta imagen se ven los resultados emitidos por el programa tras introducir los parámetros, en la zona 

superior vemos los factores de seguridad para tres superficies de rotura, en la inferior vemos el factor de 

seguridad para una única superficie de rotura. 

 

Como se puede apreciar en la figura 24 el factor de seguridad que nos devuelve el programa 

al introducirle los parámetros es inferior a 1 en todas las superficies de rotura que hemos 
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considerado aunque se acercan mucho a la unidad en todas ellas, este valor de factor de 

seguridad nos indica que los esfuerzos que sostienen la ladera son inferiores a los esfuerzos 

que la empujan, por lo que la ladera se ha estado moviendo y no deja lugar a dudas de la 

inestabilidad que presenta y que la peligrosidad es evidente, además si tenemos en cuenta 

la afección que supondría la aceleración sísmica de la zona desarrollada con anterioridad 

podemos deducir que el factor de seguridad sería aún más bajo de lo que muestra el 

programa, por lo que queda patente la inestabilidad de la ladera y por lo tanto seguirá 

habiendo problemas al respecto. 

 

5-Discusión  

5.1-Discusión sobre el origen de los deslizamientos 

En la ladera derecha como hemos visto presenta claramente evidencias de inestabilidad, 

dicha inestabilidad se puede trasladar a las inmediaciones de Yesa y en todos los episodios 

de inestabilidad acontecidos vemos claras coincidencias: 

 Se producen después de una actuación humana con un descalce o excavación.  

 No es crucial el hecho de atravesar épocas lluviosas o no, incluso muy lluviosas, esta 

aseveración queda patente en la gráfica que se muestra en el apartado 5.2 figura 26. 

Por ello el inicio de los desequilibrios no hay que buscarlos en factores climáticos u otras 

razones ajenas a la actuación de hombre, sino en las propias actuaciones de excavación 

realizadas en la propia obra y sus infraestructuras además de los descalces más recientes. 

De las inestabilidades contabilizadas y citadas anteriormente, tres se produjeron en la ladera 

izquierda, a partir de las obras del recrecimiento y una vez descalzada la base. Incluso la 

cuarta, fue un hundimiento del muro acompañado de rotura de bulones, que fueron 

sustituidos por una simple carga de material de desecho (Aretxabala, 2013). 

De las otras tres de la ladera derecha, podemos afirmar que dos son coincidentes con el 

descalce de la ladera realizado por la CHE y la tercera en tiempos de René Petit (ingeniero 

que diseñó la presa), por descalce al vaciar el pantano, en el año 1991. 

El problema radica en que no se han tenido en cuenta los antecedentes, ni se han 

considerado parámetros reales de rozamiento o permeabilidad y que el análisis geológico 

minucioso debe acometerse antes y no después de comenzar un proyecto como acontece 

en nuestro caso. 

El caso de las inestabilidades y los riesgos que presentan los deslizamientos del entorno del 

embalse de Yesa es un claro ejemplo que se toma como referencia sobre cómo la 

improvisación y la deficiente inversión en investigación geológica produce grandes 

desviaciones presupuestarias, daños irreparables en el medio natural y humano y otras 

cuestiones que no atañen a este trabajo. 
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5.2-Discusión sobre agua y estabilidad 

La causa real de estas inestabilidades, tal  y como hemos visto, es la significativa 

susceptibilidad de las laderas de facies flysch y margas de Yesa a la pérdida de estabilidad 

posterior a un descalce, aun así muchos creen que el agua es el principal eje en torno al 

cual gira la inestabilidad. 

El agua generalmente supone inestabilidad, ya que es una sustancia pesada, que actúa 

como lubricante y que depende directamente de las condiciones climáticas. Pero el agua 

también supone estabilidad como posteriormente veremos. 

Esa naturaleza del agua dinámica y dual en el terreno no se tiene en cuenta, ya que en el 

tema que nos ocupa pocas veces ha podido el agua demostrar su capacidad de aportar 

cohesión en condiciones de semisaturación, y por lo tanto estabilidad al conjunto de masa 

deslizada. 

El agua en cierta medida y gradualmente, dependiendo de las condiciones climáticas, es 

una de las responsables de la variación de los parámetros de peso específico, cohesión y 

ángulo de rozamiento, lo que aumenta la inestabilidad y el riesgo de deslizamientos. 

Pero resulta que como hemos querido mostrar, la afirmación recíproca además de ser igual 

de cierta en nuestro caso es muy significativa, aporta la visión científica que desde el 

principio debió adoptarse: las laderas en Yesa son inestables de manera natural, y después 

de la construcción del embalse, viales, infraestructuras, etc., acompañado de descalces, son 

aún más inestables, y a veces, con ayuda del agua en su justa medida, atraviesan períodos 

de estabilidad. Si se hubiesen planteado esta situación hace ya muchos años, se hubieran 

evitado muchos problemas. 

Sin embargo, que los descalces de origen antropogénico son los culpables directos de las 

inestabilidades no dejan lugar a duda, son el reflejo del problema, jamás podremos 

atestiguar que un descalce óptimo es el ideal para fijar una ladera, pues lo que estamos 

haciendo es privarla de una serie de resistencias que contribuyen a su estabilidad y por 

ende afecta de manera directa al factor de seguridad de la ladera en cuestión haciendo que 

éste disminuya. 

Por tanto, deberemos admitir el hecho de que la estabilidad ha ido cambiando con el tiempo 

y las condiciones climáticas, y si lo queremos ver desde perspectivas de estabilidad hacia 

condiciones de inestabilidad así lo haremos. 

También podemos afirmar que las condiciones climáticas variables influyen directamente 

sobre los parámetros geotécnicos, por lo que al ser variables, deberemos ponerle unos 

límites prudentes para comprender desde posiciones cuasi-estáticas el peor de los 

escenarios posibles de cohesión, rozamiento, peso, como hemos hecho en la modelización 

en el apartado 4, aplicando unos parámetros más conservadores. 
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El cambio que han experimentado esos parámetros ha sido continuo, regido directamente 

por condiciones climáticas entre otras cosas; las condiciones geométricas han sido las que 

el ser humano ha estimado oportuno introducir, tanto para adecuar el terreno a las 

infraestructuras (excavaciones y descalces) como para estabilizarlo (excavaciones de alivio 

en coronación). 

Para entender esto se ha realizado un análisis retrospectivo (back analysis) mediante el 

software Slide 6.0 (figura 25) en el que si se ha considerado el efecto climático variable, por 

lo que hemos optado por hacer nula la cohesión y disminuir el ángulo de rozamiento. Con 

ello obtenemos  valores del factor de seguridad ajustados a la realidad, acercándose 

asintóticamente a la unidad, es decir, factores de seguridad inferiores a 1, es decir, evidente 

inestabilidad. 

En nuestro caso, llegamos a la conclusión de que el ángulo de rozamiento interno del 

conjunto para deslizamientos planares sería menor de 18º. 

 

N       S 

 

Fig. 25.- Análisis retrospectivo en el que se han variado factores para adecuar la modelización a la realidad, para 

ello se han utilizado valores pésimos del ángulo de rozamiento menores de 18º - 20º. 

 

Este hecho es importante para comenzar a considerar en los análisis valores de hasta 15º 

en el ángulo de rozamiento además de las razones que siguen a continuación, ya que si 

consideramos también la permeabilidad pasa justo lo contrario, es decir, el conjunto 
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manifiesta un posible efecto presa que se estaría sumando a la inestabilidad, provocando 

con ello el efecto de convertir la parte más arcillosa, alterada y lutítica en gel, (refiriéndonos 

a gel como un sistema coloidal donde la fase continua es sólida y la dispersa es líquida), 

bajando los ángulos de rozamiento hasta los valores de 12º y 15º.  

Podemos resumir en definitiva que la relación entre lluvias y acontecimientos importantes 

carecen de relación causa efecto, en el siguiente diagrama puede verse la evolución de las 

precipitaciones desde enero de 2012 hasta finales de abril de 2013. En abril de 2012 se 

termina el descalce que comenzó a finales de 2011 y un par de meses después se detectan 

los primeros movimientos de la ladera que continúan durante un  verano seco en 2012 (en 

verde se pueden seguir las precipitaciones históricas y en naranja la correspondiente al 

período estudiado). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26.- Itinerario cronológico de los acontecimientos más importantes sobre un gráfico de lluvias 2012-2013. En 

verde la media histórica de precipitaciones, en naranja la correspondiente a 2012 y 2013, con flechas se indican 

las fechas en las que se observan o se producen los referidos acontecimientos (Aretxabala, 2014). 

 

Las lluvias han demostrado que por sí solas rara vez son la causa directa de las 

inestabilidades como la inestabilidad que origina un descalce antropogénico, lo que sí se 

vuelve de la inseguridad y no vamos a profundizar es el hecho de retener el agua con 

impermeabilizaciones que actúan como frontera de almacenamiento, aumentando en el 

trasdós la acumulación, es decir, aumento de peso, presión, disminución de la cohesión y 

del rozamiento, dicha acción no es sino otra causa antropogénica al igual que los descalces 

y excavaciones (ver figura 27, casos 2 y 3). 
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Fig. 27.- Las tres formas de disparar una fractura, falla, superficie de cizalla o deslizamiento  (cuando el 

semicírculo toca la recta envolvente) según el criterio de rotura de Mohr-Coulomb: 

1. Aumentando la presión principal sigma 1 (aumentando el peso de la ladera) 

2. Disminuyendo la presión de confinamiento sigma 3 (descalzando por ejemplo la parte baja) 

3. Aumentando la presión de fluidos P (efecto presa del gunitado-bulonado) que reduce la presión efectiva sigma 

1 y la sigma 3 a modo de lubricante. 

 

Si además tenemos en cuenta que la aceleración sísmica de la zona es relativamente alta 

como ya hemos visto, que las características geológicas (tanto litológicas como 

estructurales) no ofrecen garantías de estabilidad de partida, podemos afirmar que la zona 

va a seguir sufriendo problemas derivados de esa inestabilidad en el futuro. 

 

Como síntesis de la discusión podemos afirmar que: 

 A la hora de modelizar debemos acercarnos a la realidad para obtener resultados 

fiables y objetivos, en caso de no ser posible y debido a la influencia de estos 

estudios en la toma de decisiones que afectan a la población, anteponer su 

seguridad a otros valores debería ser la norma en estos casos. 

 Los factores de seguridad que hemos obtenido para los deslizamientos del entorno 

de la presa son inadmisibles (factores de seguridad <1) en una obra de este tipo, ya 

en este momento, lo cual no significa que sepamos cuándo se va a producir un 

evento como un deslizamiento. 

 El origen de la inestabilidad actual es antropogénico, ello no quiere decir que no haya 

otros factores como el agua en algunos casos que ayuden al proceso de 

inestabilidad, pero no son su causa directa. 

 La presa de Yesa actual no es la presa de 1959 debido a que con el tiempo las 

presas pierden capacidad y efectividad, por tanto también deben cambiar las 

medidas de seguridad, adaptándose a nuevas normas y tener en cuenta los nuevos 

estudios referidos a la sismicidad, que no estaban presentes en los inicios de su 
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construcción, por lo que el riesgo que presenta es mayor en la actualidad que 

cuando se construyó. 

 La situación de la presa se puede extrapolar a las laderas circundantes por las 

mismas razones, las laderas per se ya eran inestables si a eso añadimos la 

influencia de la sismicidad y las alteraciones humanas la inestabilidad aumenta 

significativamente y supondrá problemas de forma continuada en el futuro. 

 El riesgo geológico que presenta la zona en lo referente a la aparición de 

deslizamientos es evidente, calificándolo como medio-alto atendiendo a los 

resultados obtenidos en los análisis de las modelizaciones realizadas. 

  

6-Conclusions  

The history of instabilities of Yesa slopes are always linked to the mismatches made by 

humans at the feet of the slopes, whether for roads, highways, stirrups or excavations with 

other tasks. Instabilities have also been detected by the accumulation of materials, provided 

by the trigger of man. 

Weather conditions are important in affecting the mechanical conditions, which directly affect 

the geotechnical parameters once theoretical facts are reflected in analytical models in 

general and these exceptions have not been consistent with what is observed in reality. 

After the events of early 2013 it is clear that friction angles have been overestimated and the 

permeability of the rock mass underestimated. 

The relationship between the rainfall and the lack of important events is just a causal one, 

regarding the origin of the instabilities. The water depending on conditions of the  

weather is the one responsible of the variation of the parameters of specific weight, cohesion 

and angle of friction. Thus it can be seen as a destabilizing factor if the gaze is directed from 

the belief of being positioned in a state of continued stability. 

No second interpretations, nature has marked his itinerary and humans have lost the holistic 

view in their actions, the only way to success is to return to that vision and to make it 

practical and intelligent. 
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