
Trabajo Fin de Máster

Caracterización del comportamiento y gestión de
interrupciones en sistemas empotrados Linux sobre

arquitecturas ARM

Memoria Principal

Autor/es

Iván Rodríguez Perales

Director/es

José Luis Briz Velasco

Escuela de Ingeniería y Arquitectura
2013-2014

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Máster Iván Rodríguez Perales

Resumen

El objetivo de este TFM es caracterizar el comportamiento de las
interrupciones sobre SoCs con núcleo ARM orientado a aplicaciones,
gestionados mediante Linux. Para ello se parte del estudio de todos
los posibles mecanismos hardware disponibles en ARM para gestionar
y disminuir la latencia de interrupción. Se estudia el tratamiento de
las excepciones en el núcleo de Linux, prestando especial atención a
la influencia de los diferentes modos de expulsión, incluyendo la ex-
pulsión total para tiempo real estricto, en condiciones de carga y sin
carga. Sobre dos placas (Beaglebone y Raspberry Pi) con diferentes
microprocesadores ARM, en ambos casos orientados a aplicación, se
caracterizan las latencias en diferentes niveles y condiciones, desde la
generación /retorno de la señal hasta los handlers y rutinas de servicio
de niveles más altos del núcleo. Se estudian las diferencias en los tiem-
pos de respuesta de las dos placas analizadas en diferentes condicio-
nes. Se muestra que la programación baremetal sin sistema operativo,
recurriendo a librerías optimizadas por el fabricante, puede ser más
estable pero poco eficiente, proporcionando una latencia de respuesta
en torno a 1.5 ms, en relación a Linux/ARM que proporciona laten-
cias de respuesta medias en torno a 10 us. Se estudian las variaciones
en la latencia de interrupción que aparecen en Linux/ARM y se con-
cluye por exclusión que puede deberse a la gestión de los gpios y el
sistema de entrada/salida de las placas, y no con los controladores de
interrupciones del SoC o con los mecanismos de gestión de Linux.

1

Trabajo Fin de Máster Iván Rodríguez Perales

Índice
1. Introducción 3

2. Fundamentos 4
2.1. Factores que influyen en la latencia de interrupción en ARM . 4

2.1.1. Mecanismo básico vectorizado. FIQ y IRQ. 4
2.1.2. Controladores de interrupciones 5
2.1.3. Mecanismos hardware relacionados 5

2.2. Características del núcleo de Linux 7
2.2.1. Gestión de interrupciones en Linux 8
2.2.2. Modos de expulsión del núcleo y gestión de excepciones 9

3. Entorno experimental 10

4. Metodología 11
4.1. Toma de muestras . 11

4.1.1. Registro de tiempo mediante osciloscopio 12
4.1.2. Registro de tiempo de alta resolución 12
4.1.3. Datos y métricas . 13
4.1.4. Experimentación con carga y sin carga 14
4.1.5. Programación bare-metal 15

5. Resultados 15
5.1. Comparativa de latencias de interrupción 16
5.2. Influencia del modelo de expulsión 17
5.3. Análisis de la variabilidad de la latencia 17

6. Conclusiones 18

7. Anexo 22
7.1. Top halves versus bottom halves 22
7.2. Controlador de de interrupciones vectorizados 23
7.3. Medidas que incluyen picos importantes de latencia 25

2

Trabajo Fin de Máster Iván Rodríguez Perales

1. Introducción
Los procesadores ARM cubren todo el rango demandado por las aplica-

ciones empotradas, desde el segmento de microcontroladores sencillos, hasta
el de microprocesadores superescalares que soportan memoria virtual, gene-
ralmente incluidos en sistemas on-chip (SoCs) de alta funcionalidad y bajo
consumo. La utilización de núcleos Linux sobre arquitecturas ARM ha veni-
do incrementándose de forma espectacular, compitiendo incluso en el terreno
de los sistemas Tiempo Real. A ello está contribuyendo la multiplicación de
placas de bajo coste dotadas de SoCs con núcleos ARM, en las que Linux
es bien el sistema operativo por defecto, bien una alternativa fácil de por-
tar. Estas placas están ocupando rápidamente el segmento de los micro-PCs
industriales o los wall-plug systems.

Linux, sin embargo, no deja de ser un sistema de propósito general lejos
de la simplicidad de sistemas tiempo real específicos como VxWorks, uCOS,
SYS/BIOS etc, que permiten un gran control sobre parámetros críticos co-
mo las latencias de interrupción y planificación. Esta generalidad de Linux
le convierte en inevitablemnte complejo: el núcleo monolítico puede confi-
gurarse con modos de expulsión muy diferentes, y para arquitecturas mono
y multiprocesador /multinúcleo. La complejidad se multiplica por el amplio
rango de opciones de la familia ARM en sus tres segmentos (microcontrola-
dores, tiempo real y aplicaciones). Ello hace que, en la práctica, el desarrollo
sobre plataformas Linux/ARM, aparentemente asequibles, requiera esfuerzos
superiores a lo inicialmente previsto.

El objetivo de este TFM es caracterizar el comportamiento de las inte-
rrupciones sobre SoCs con un núcleo ARM orientados a aplicaciones, gestio-
nados mediante Linux, considerando sus diferentes modos de expulsión. Se
pretende caracterizar adecuadamente esta latencia desde diferentes niveles
(desde la generación /devolución de señal hasta handlers / rutinas de ser-
vicio de niveles más altos del núcleo), teniendo en cuenta distintos modos
de expulsión, a fin de estudiar las posibilidades de optimización que puedan
extraerse de la arquitectura de sistema ARM.

La memoria se estructura en la siguiente secciones. La Sec. 2 explica las
características de la gestión de interrupciones en ARM y Linux, y los modelos
de expulsión del núcleo de Linux. Las Secs. 3 y 4 describen respectivamente
el entorno de trabajo utilizado y la metodología aplicada. La Sec. 5 expone y
discute los resultados, y la Sec. 6 cierra con las correspondientes conclusiones.

3

Trabajo Fin de Máster Iván Rodríguez Perales

2. Fundamentos

2.1. Factores que influyen en la latencia de interrupción
en ARM

En el contexto que nos ocupa, una interrupción es una excepción asíncrona
en relación a la ejecución de las instrucciones de un programa, producida por
un dispositivo externo y atendida por el kernel. La latencia referida en este
trabajo será la latencia de interrupción, esto es el tiempo que transcurre
desde que una señal es recibida en el sistema hasta que llega al proceso
que se encarga de gestionarla. La lista de factores que afectan a la latencia
dependerá de las características de la plataforma hardware (procesador y
periféricos) y de cómo gestiona estos eventos el sistema operativo utilizado.

2.1.1. Mecanismo básico vectorizado. FIQ y IRQ.

La arquitectura ARM asocia un código a cada excepción a través de una
tabla, almacenada en memoria principal, conocida como tabla de vectores
de excepción. La tabla para el caso de Linux puede verse en el código 1.
Cada entrada contiene típicamente una instrucción de carga del contador de
programa (pc), bien una instrucción load bien un salto, según la dirección de
inicio del vector de interrupciones. Las dos últimas entradas corresponden a
las dos interrupciones soportadas por cualquier sistema ARM, IRQ y FIQ,
respectivamente asociadas a sendas entradas diferenciadas del procesador.
La FIQ (Fast Interrupt Request) tiene siempre mayor prioridad que la IRQ
(Interrupt Request), y al corresponder al último elemento de la tabla del
vector de interrupciones es posible almacenar hasta 4 KB de instrucciones,
en lugar de una única instrucción de carga del pc, que se ejecutarán cuando
ocurra la FIQ. En muchos SoCs la FIQ se reserva para usos internos del
sistema y no puede programarse.

Este mecanismo presente en cualquier ARM supone los siguientes pasos:

Almacenamiento automático de la palabra de estado, del pc y de los
registros r13 (sp) y r14 (lr), con cambio a modo protegido, que incluye
la inhibición de la IRQ, y también de la FIQ si se está tratando esta
última.

Búsqueda y ejecución por parte del procesador de la instrucción de mo-
dificación del pc asociada a la IRQ/FIQ en el vector de interrupciones

Ejecución del código al que se transfiere el control en el paso anterior

4

Trabajo Fin de Máster Iván Rodríguez Perales

1.globl __vectors_start
__vectors_start:

3ARM(swi SYS_ERROR0)
THUMB(svc #0)

5THUMB(nop)
W(b) vector_und + stubs_offset @ Undefined ins.

7W(ldr) pc , .LCvswi + stubs_offset @ SWI
W(b) vector_pabt + stubs_offset @ Prefetch abort

9W(b) vector_dabt + stubs_offset @ Data abort
W(b) vector_addrexcptn + stubs_offset

11W(b) vector_irq + stubs_offset @ IRQ
W(b) vector_fiq + stubs_offset @ FIQ

Código 1: Tabla del vector de excepciones

Los dos primeros pasos están optimizados en implementaciones de ARM
típicas para que se realicen en 4 ó 6 ciclos. Pero en presencia de varios dis-
positivos con capacidad de enviar interrupciones, éstos han de compartir la
única IRQ existente. Por tanto el código asociado a la única IRQ ha de en-
cuestar los dispositivos que comparten la línea para averiguar cuál de ellos ha
interrumpido, y ejecutar un código específico en cada caso. Denominaremos
en lo que sigue handler al código inmediatamente asociado a la IRQ/FIQ, y
rutina de servicio a interrupción (ISR) a la rutina que trata la interrupción
de un evento específico. Este procedimiento tiene un coste alto, y por ello
los diferentes segmentos de microprocesadores ARM incluyen optimizaciones
diversas, especialmente controladores de interrupciones, de los que se hablará
más adelante.

En términos de latencia, la FIQ está optimizada para evitar una transfe-
rencia de control, está dotada de mayor prioridad por hardware, y por tanto
responde siempre con una latencia menor. La Fig. 1 expresa gráficamente la
diferencia entre la respuesta a una FIQ y una IRQ.

2.1.2. Controladores de interrupciones

La mayoría de sistemas ARM incorporan controladores de interrupciones
vectorizados que facilitan el reconocimiento de la interrupción, la localización
de la ISR y la gestión de prioridades entre interrupciones(ver capítulo 7.2 de
los Anexos). Los GIC tienen opciones más avanzadas que los VIC y soportan
procesadores multicore.

2.1.3. Mecanismos hardware relacionados

Como también se puede apreciar en la figura 1, la latencia estará condicio-
nada por las características físicas de los periféricos y procesador. Solamente

5

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 1: Tiempos de respuesta ante una IRQ y FIQ

se podrá influir sobre el hardware si estos dispositivos ofrecen mecanismos
para su configuración. En ARM existen mecanismos configurables que des-
cribimos brevemente.

Predicción de saltos. Los microprocesadores ARM orientados a aplica-
ciones, como los Cortex A, disponen de mecanismos de predicción de
saltos, que suponen la ejecución especulativa de código. En general es-
te mecanismo incrementa notablemente el rendimiento, pero cuando la
predicción es incorrecta hay que expulsar todas las instrucciones de la
rama equivocada, con un descenso del importante en el rendimiento en
aplicaciones en las que la predicción tiende a fallar. En sistemas tiempo
real la predicción de saltos puede llevar a diferencias importantes en la
cota de peor tiempo de ejecución (WCET) calculado. Los microproce-
sadores ARM con esta capacidad permiten también desconectarla.

Jerarquía de Memoria. Muchos microprocesadores ARM incorporan
memorias cache, que introducen una gran variabilidad en los tiempos
de ejecución de tareas y rutinas de servicio a excepción, en función de
la tasa de fallos en cache y de la lejanía en ciclos de la memoria princi-
pal (del orden de cientos de ciclos en general). Estas caches pueden ser

6

Trabajo Fin de Máster Iván Rodríguez Perales

no bloqueantes (lock-up free caches), pudiendo servir nuevas peticiones
que aciertan mientras se atienden fallos pendientes (Hit Under Miss
(HUM)). Los fallos pendientes corresponden a instrucciones anteriores
en orden de programa a las que siguen siendo servidas mientras acier-
ten. Ante una excepción, es preciso poder recuperar el estado preciso,
reanudando la ejecución a partir de la instrucción coherente con el or-
den de programa. Este mecanismo tiene un cierto coste. En ARM es
posible desactivar tanto las caches presentes como el mecanismo HUM.

Memoria virtual. El soporte a la gestión de memoria virtual en núcleos
ARM orientados a aplicaciones está compuesto por la Memory Ma-
nagement Unit (MMU) y los Translation Lookaside Buffers (TLBs).
Linux mantiene código y datos del núcleo en memoria física, y aunque
es posible desde el código del núcleo acceder a páginas de procesos de
usuario, esto no está permitido ni en las rutinas de servicio a excepción
ni las funciones diferidas activadas desde ellas. Sin embargo, dado que
todas las direcciones lanzadas por el procesador pasan por el mecanismo
de traducción, los fallos en TLB con intervención de la MMU pueden
suponer incrementos en las latencias de ejecución de esas rutinas (ver
Sec. 7.1 del Anexo).

Low latency bit o FI bit. Al activar este bit en una plataforma que lo
soporte, el procesador realiza en unos pocos ciclos menos el cambio de
estado y el salto a la instrucción asociada en el vector de interrupción.
El ligero ahorro en ciclos de este mecanismo proviene de anular caches
o los mecanismos especulativos como la predicción de saltos o el HUM.
Los mecanismos particulares afectados por el bit dependen de cada
microprocesador, y en general no están documentados. La anulación de
los mecanismos especulativos permite evitar la gestión de excepciones
precisa, pero tiene como efecto lateral impedir el uso de operaciones
de load/store múltiple que no son completamente reiniciables. Esto
supone compilar el sistema operativo de forma que no se generen loads
y stores múltiples. Hemos intentado hacerlo en este trabajo sin éxito,
y no está claro que pueda llevarse a cabo al menos con la toolchain
utilizada. En definitiva, Aunque provoca una disminución de la latencia,
el rendimiento del sistema descenderá, sobre todo si se desactivan las
caches.

2.2. Características del núcleo de Linux

Linux es un derivado de Unix y su kernel tiene un diseño monolítico:
consta de un único binario, aunque con la posibilidad de enlazado dinámico

7

Trabajo Fin de Máster Iván Rodríguez Perales

de módulos, que se ejecuta con el procesador en modo protegido, capaz de lo-
calizar, cargar, ejecutar y controlar otros binarios (procesos) que se ejecutan
con el procesador en modo usuario. El núcleo proporciona un interfaz de ges-
tión de abstracciones tales como ficheros y procesos, y de recursos hardware
como la memoria y los dispositivos de e/s en general. La ejecución de los
procesos provoca excepciones en el procesador. Pueden hacerlo de forma di-
recta, a veces intencionada y previsible (para solicitar un servicio del núcleo),
a veces no intencionada ni previsible (fallos de página, operaciones ilegales).
También puede hacerlo de forma indirecta, como es el caso en interrupciones
asíncronas derivadas de operaciones de e/s. Todas estas excepciones suponen
un cambio de estado (a modo protegido) y la ejecución de código del núcleo,
que comienza y acaba —antes de regresar a modo usuario para reanudar el
código de un proceso— en una rutina de servicio a excepción. Esta ejecución
de código de núcleo o kernel activiy y que consta de una cascada de invocacio-
nes a funciones internas del mismo, se suele denominar Kernel Control Path
(KCP). En un núcleo con expulsión parcial, los KCPs se comportan como
corrutinas, entrelazando su ejecución sea cediéndose el control unos a otros,
sea mediante mecanismos de interrupción. En un núcleo con expulsión total
los KCPs no se entrelazan sino que se planifican como tareas independientes,
incluidos los iniciados como respuesta a interrupciones, sujetos a prioridades
junto al resto de procesos del sistema.

2.2.1. Gestión de interrupciones en Linux

La gestión software de una IRQ parte de la rutina de la tabla del vector de
interrupciones (ver código 1) y sigue un fall through que variará levemente
en las primeras funciones dependiendo de las características del hardware
(Código 2):

1@@ Secuencia rutinas en ASM
vector_\name

3__irq_svc
irq_handler

5arch_irq_handler_default

7// Secuencia de rutinas en C
asm_do_IRQ

9handle_IRQ
generic_handle_irq

11generic_handle_irq_desc
handle_irq_event

13handle_irq_event_percpu
ISR

Código 2: Secuencia de llamadas del handler de una IRQ

8

Trabajo Fin de Máster Iván Rodríguez Perales

Por el contrario, una FIQ sólo requiere una rutina en ensamblador (ver
Código 3) que deberemos asociar a la entrada correspondiente de la tabla del
vector de interrupciones.
.text

2

ENTRY(test_fiq_handler)
4...

test_fiq_handler_end:
6END(test_fiq_handler)

Código 3: Rutina asociada a la entrada del vector de interrupciones de la
FIQ

En sistemas multitarea como Linux, las interrupciones nunca pueden blo-
quearse, es decir, no pueden invocar al planificador y provocar un cambio de
contexto. Esto significa que durante su ejecución monopolizan el uso del pro-
cesador, por lo que la latencia tiene que ser la menor posible. Los sistemas
operativos cuentan con varios mecanismos (funciones diferidas o callouts)
para evitar estos bloqueos. La Sec. 7.1 del Anexo resume brevemente las
existentes en Linux

Por este motivo, el retorno de una excepción es un punto crítico en el
núcleo de Linux. La ISR retorna al handler mediante un retorno convencio-
nal de subrutina, pero el handler salta a una secuencia de retorno común
para todas las interrupciones en la que se comprueba si hay interrupciones
anidadas. Si no las hay, se restaura el contexto y se reanuda la ejecución in-
terrumpida, mediante la ejecución de una instrucción que restaura el estado
que se almacenó al producirse esa interrupción. Si por el contrario hay inte-
rrupciones anidadas, se pueden ejecutar las funciones diferidas pendientes, e
incluso invocar al planificador provocando un cambio de contexto.

Conviene puntualizar que recientemente los desarrolladores del kernel1
han apostado por no permitir el anidamiento de interrupciones. Por tanto,
durante la ejecución de un proceso de atención a una IRQ o FIQ, no se
producirán tampoco cambios de contexto de bajo nivel que puedan provocar
un aumento de latencia. La única excepción es una FIQ, que puede expulsar
a una IRQ en ejecución.

2.2.2. Modos de expulsión del núcleo y gestión de excepciones

El modelo de expulsión del kernel determina cómo se va a ejecutar un pro-
ceso del sistema incluyendo excepciones y por tanto, interrupciones. Existen
varios modelos:

1http://lwn.net/Articles/380931/

9

http://lwn.net/Articles/380931/

Trabajo Fin de Máster Iván Rodríguez Perales

Expulsión parcial (No forced preeemption - PREEMPT_NONE): Una
interrupción no puede ser expulsada cuando se ejecuta en su top half
a no ser que explícitamente invoque al planificador(ver capítulo 7.1 del
Anexo).

Expulsión voluntaria (Voluntary Kernel Preemption - PREEMPT_ VO-
LUNTARY): Existen varios puntos en la ejecución del proceso que le
permiten invocar al planificador y ser expulsado

Núcleo expulsivo (Preemptible kernel - PREEMPT_DESKTOP): Un
proceso puede expulsar a otro de menor prioridad que se encuentre en
ejecución cuando accede aun spin-lock.

Tiempo real (Complete preemption - PREEMPT_RT): Cualquier pro-
ceso en ejecución puede ser expulsado por el planificador. Las interrup-
ciones son tratadas como threads del kernel y son planificadas como
cualquier otro proceso

Cuando una interrupción retorna de ejecución pasa a través de un meca-
nismo que, o bien (1) activa una excepción que estuviese anidada, (2) ejecuta
bottom halfs pendientes o (3) invoca al planificador.

3. Entorno experimental
Se han utilizado dos placas de desarrollo que montan un SoCs con un

núcleo ARM para realizar el estudio, una Raspberry (ver tabla 1) y una
BeagleBone (ver tabla 2). Ambas soportadas por distintas versiones del kernel
de Linux. No ha sido posible realizar las pruebas utilizando exactamente la
misma versión del kernel, debido en parte al roadmap de desarrollo de los
kernels para esos sistemas y a su grado de estabilidad.

Placa Raspberry2

Familia: ARM11
Arquitectura: ARMv6KZ
Núcleo: ARM1176JZ(F)-S 3

SOC: BCM2835 4

Versión del kernel linux: 3.12.24+
Versión del kernel linux RT: 3.12.24+ con parche PREEMPT_RT5

Tabla 1: Especificaciones de la placa Raspberry y distribución Linux utilizada

10

Trabajo Fin de Máster Iván Rodríguez Perales

Placa BeagleBone6

Familia: Cortex-A
Arquitectura: ARMv7-A
Núcleo: Cortex-A8 7

SOC: AM335x 8

Versión del kernel linux: 3.14.23+
Versión del kernel linux RT: 3.14.23+ con parche PREEMPT_RT 9

Tabla 2: Especificaciones de la placa BeagleBone y distribución Linux utili-
zada

Para las mediciones de señal se ha hecho uso de un osciloscopio Tektronix
TDS 2002B 10.

Entorno de desarrollo
Sistema Operativo: Ubuntu 12.04.5
Editor de código: vim
Toolchain Raspberry: arm-linux-eabi
Toolchain Beaglebone: arm-linux-eabihf
Crosscompiler: gcc version 4.71
IDE Sys/BIOS(Prueba Bare-Metal): CCS 5.5 + StarterWare

Tabla 3: Listado de herramientas utilizadas en el proyecto

4. Metodología

4.1. Toma de muestras

Para poder caracterizar la latencia de la interrupción tenemos que utilizar
un sistema preciso de medida de tiempo. Además, deberá realizar mediciones
en diferentes puntos del código del handler e ISR de la interrupción.

Existen dos métodos básicos:
2http://www.raspberrypi.org/
3http://www.arm.com/products/processors/classic/arm11/arm1176.php
4http://www.broadcom.com/products/BCM2835
5https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
6http://beagleboard.org/bone
7http://www.arm.com/products/processors/cortex-a/cortex-a8.php
8http://www.ti.com/product/am3358
9https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch

10http://www2.tek.com/cmswpt/psdetails.lotr?cs=psu&ci=13295&lc=ES

11

http://www.raspberrypi.org/
http://www.arm.com/products/processors/classic/arm11/arm1176.php
http://www.broadcom.com/products/BCM2835
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
http://beagleboard.org/bone
http://www.arm.com/products/processors/cortex-a/cortex-a8.php
http://www.ti.com/product/am3358
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
http://www2.tek.com/cmswpt/psdetails.lotr?cs=psu&ci=13295&lc=ES

Trabajo Fin de Máster Iván Rodríguez Perales

Externo, no invasivo, o de caja negra, utilizando un osciloscopio o un
analizador lógico, que registre el cambio de nivel de tensión producido
en un pin del microprocesador. Por ejemplo puede registrarse la entrada
de una señal por un gpio que se ha asociado a una IRQ, y la salida por el
mismo y otro gpio de una señal generada desde la parte del núcleo hasta
la que queremos realizar la medición. Existe una sobrecarga debida a
la escritura en el gpio de salida, muy difícil de caracterizar.

Interno, invasivo o de caja blanca, mediante lecturas de un temporiza-
dor alta resolución, una al comienzo y otra al final de la parte del núcleo
que queremos temporizar. A la hora de medir latencia de respuesta es
menos precisa, ya no podemos tomar una medida hasta después de
ejecutar un número significativo de instrucciones del handler asociado,
ya que como mínimo hay que guardar parte del estado no salvado por
el hardware pasando a modo svc (Sec. 2 Código 2. Sin embargo tiene
la ventaja de que puede registrarse un número arbitrario de medidas
durante el tratamiento de una interrupción.

Los puntos de mayor interés serán las entradas y salidas de las secuencia
de funciones que atraviesa una IRQ y una FIQ(ver apartado 2.2.1) ya que
nos permiten modelar la latencia con respecto tanto al momento en que se
lanzó el evento que generaba la interrupción como a cualquier otro punto de
interés de la secuencia.

4.1.1. Registro de tiempo mediante osciloscopio

Para realizar esta medida generamos una onda cuadrada. El flanco de
subida se envía a través de un pin de la placa en el momento en el que se
inicia la prueba, a cuyo gpio se ha asociado la IRQ y la correspondiente
ISR. El flanco de bajada se envía desde el punto del núcleo de Linux del
que deseamos medir la latencia de respuesta (handler, ISR, función diferida
o incluso código de usuario en función del sistema de que se trate).

4.1.2. Registro de tiempo de alta resolución

Los dos núcleos ARM poseen un registro llamado Cycle Counter Register
en el coprocesador CP15 de control, que cuenta el número de ciclos de reloj
del microprocesador. El modelo que utilizamos utiliza el reloj de frecuencia
de cada procesador 11:

tiempoCicloraspberry = 1/700MHz = 1′428ns (1)
11$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

12

Trabajo Fin de Máster Iván Rodríguez Perales

tiempoCiclobeaglebone = 1/720MHz = 1′388ns (2)

Para poder leer el registro de alta precisión con sobrecarga mínima utili-
zamos la directiva volatile, que evita que el compilador realice optimizaciones
mediante planificación estática sobre esa instrucción o secuencia asm:
static inline unsigned ccnt_read (void)

2{
unsigned cc;

4asm volatile ("mrc␣p15 ,␣0,␣ %0,␣c15 ,␣c12 ,␣1" : "=r" (cc));
return cc;

6}

4.1.3. Datos y métricas

A partir de las lecturas obtenidas en varios de los puntos del tratamiento
de la IRQ o de la FIQ podemos averiguar las etapas que presentan una mayor
latencia o variabilidad, que pueden ser más determinantes en el diseño de un
sistema con restricciones de tiempo real.

Para que las mediciones sean robustas, se lanzan n interrupciones y se
obtienen n lecturas en cada uno de los tests y de las etapas. A partir de los
datos obtenidos se calculan las siguientes métricas:

Media (Eq. 3): Evidencia las etapas han generado una mayor latencia.

x̄ =
1

n

n∑
i=1

ai =
a1 + a2 + · · · + an

n
(3)

Desviación típica (Eq. 4): Nos permite ver el grado de dispersión de las
muestras obtenidas en cada etapa. Gracias a esta información podremos
saber que etapas son más estables en términos temporales.

s =

√√√√ 1

N

n∑
i=1

(xi − x̄)2 (4)

Desviación típica relativa(ver 5): Relaciona la desviación típica con
la media y nos da un porcentaje que indica la fiabilidad del cálculo
estadístico. Cuanto menor sea el porcentaje, menor desviación existirá.

%RSD =
s

x̄
× 100 (5)

13

Trabajo Fin de Máster Iván Rodríguez Perales

Esta información la ofreceremos desde dos punto de vista, (1) la latencia
desde el momento en que se lanza la interrupción hasta que se llega al pun-
to donde tomamos la medida; y (2) la latencia entre puntos de registro de
tiempo.

Por último, existe información adicional que podemos extraer de los re-
gistros del procesador ARM que nos ofrecerán información muy valiosa sobre
algunos de los elementos que influyen en la latencia y que también obtenemos
por cada una de las pruebas realizadas a través del coprocesador CP15 de
ARM12:

Fallos de TLB

Fallos en la cache de instrucciones

Fallos en la cache de datos

Fallos en la predicción de saltos

4.1.4. Experimentación con carga y sin carga

Para estudiar la diferente respuesta de los distintos métodos de expulsión
del kernel en sistemas con carga alta de procesos frente a sistemas sin carga,
se han definido y creado las condiciones respectivas de la forma siguiente:

Sistema sin carga: Se anula la ejecución en arranque de todos los dae-
mons a nivel de usuario, de modo que las rutinas de servicio a interrup-
ción sólo compiten por el procesador con los threads de kernel (kswapd,
ksoftirqdn etc). Estos threads permanecen en general bloqueados y se
ejecutan en su caso bien con muy baja prioridad, bien únicamente en
circustancias críticas del sistema (muy baja memoria física disponible
en el caso de kwapd por ejemplo).

Sistema con carga: Se lanzarán cuatro procesos adicionales que estarán
ejecutando en todo momento operaciones que hagan un uso intensivo
del procesador, como sqrt, y por tanto estén compitiendo directamente
por ese recurso con cualquier otro proceso que se esté ejecutando en
ese instante.

12Aunque se le denomina de este modo, CP15 no es un coprocesador como tal sino un
interfaz de acceso a registros de monitorización incluidos en los microprocesadores ARM,
cuyas funcionalidades varían según el modelo

14

Trabajo Fin de Máster Iván Rodríguez Perales

Pruebas realizadas
Normal Medida en un sistema con carga baja
Carga Prueba en un sistema con varios procesos copando

el procesador 13

No predicción de
saltos:

Rendimiento de la latencia en un procesador con
la predicción de saltos deshabilitada

No caches Tiempo de latencia de interrupción en un sistema
con las caches deshabilitadas

Tabla 4: Pruebas realizadas para cada uno de los cuatro modos de expulsión
en cada placa

4.1.5. Programación bare-metal

Es difícil si no imposible sincronizar medidas de osciloscopio con las lectu-
ras de tiempo obtenidas de los temporizadores del microprocesador. El tramo
temporal definido entre la entrada de la señal a la placa y la primera lectu-
ra de tiempo escapa a toda posibilidad de medida. Una manera indirecta
de aislar este tramo es la programación bare-metal de la placa Beaglebo-
ne, sin sistema operativo. Para ello se han utilizado las librerías del paquete
Starterware de Texas Instruments, por considerarse que están especialmente
optimizadas para los productos de la compañía. La programación y genera-
ción del ejecutable de ha realizado mediante Code Composer Studio (CCS)
5.5. El binario se ha generado en modo release a fin de obtener un código
optimizado. La carga se ha efectuado desde CCS a través del JTAG presente
en Beaglebone.

5. Resultados
La tabla 4 resume el conjunto de pruebas realizadas de caracterización

de la latencia de interrupción. Estas pruebas se han realizado en cada uno
de los modelos de expulsión del kernel y en cada una de las dos placas. Las
medidas se han tomado en los dos sistemas de medición, explicados en el
apartado 4, para verificar que eran correctas. Por comodidad, las muestras
aquí mostradas son las adquiridas a través del registro de tiempo de alta
resolución.

La tabla 5 resume las pruebas que no ha sido posible realizar y las razones
correspondientes. Salvo las excepciones indicadas en la tabla, se trata de
pruebas no han podido realizarse ni en BeagleBone ni en Raspberry.

15

Trabajo Fin de Máster Iván Rodríguez Perales

Pruebas que no ha sido posible llevar a cabo
No MMU Aunque desde el menú de configuración del ker-

nel es posible deshabilitar el uso de la memoria
virtual, varios errores durante la compilación del
kernel reflejan dependencias a funciones del siste-
ma de memoria virtual que no permiten generar
un kernel válido

Low latency in-
terrupt (RB)

Tal y cómo se describe en el apartado 2.1.3 se debe
generar código que no haga uso de operaciones de
load y store múltiples. Esto se consigue con un
flag del compilador gcc que no fue reconocido por
el crosscompiler de nuestro entorno de trabajo(ver
capítulo 3)

FIQ Cuando se describe este tipo de interrupción en el
apartado 2.1.1, se menciona que las FIQ se utili-
zada por funciones básicas del sistema y el usuario
no puede hacer uso de ellas (BB). En la RB, ésta
está dedicada a la gestión del host USB y puede
liberarse. El problema aparece cada vez que es in-
vocada ya que bloquea todo el sistema

Caches (BB) Deshabilitar las caches provoca que la BB sea in-
capaz de ejecutarse, lanzado un kernel panic

Tabla 5: Listado de pruebas no realizadas en el trabajo. BB: Beaglebone;
RB: Raspberry Pi

5.1. Comparativa de latencias de interrupción

En la Fig. 2, y con más detalle en la tabla 6, se muestra el modo de ex-
pulsión por plataforma que ha respondido antes en media a una interrupción
bajo unas condiciones determinadas (indicadas por A, B y C). La barra CC-
S/BB es el tiempo de latencia de respuesta de una ISR, obtenido mediante
programación de la placa BeagleBone bare-metal (Sec. 4.1.5). Puede obser-
varse que los modos de núcleo expulsivo y voluntaria presentan las menores
latencias.

La Fig. 3 y recoge aquellos modos de expulsión en cada una de las pla-
taformas que han sufrido una menor variación en sus tiempos de latencia de
respuesta ante diferentes contextos (definidos por A, B y C). Notar que la
variación de CCS/BB es despreciable, aunque a costa de una latencia muy
alta como se ha visto en la Fig. 2. De nuevo, los modos núcleo expulsivo y
voluntario aparecen entre los que mejor resultados han obtenido.

16

Trabajo Fin de Máster Iván Rodríguez Perales

Linux sin carga con caches y predicción
Raspberry (voluntaria) 10117,8ns
BeagleBone(núcleo expulsivo) 26121,25ns

Linux sin carga y sin caches
Raspberry (voluntaria) 23203,77ns
BeagleBone (N/A)
Linux sin carga ni predicción de saltos
Raspberry (núcleo expulsivo) 10303,68ns
BeagleBone (núcleo expulsivo) 27778,86ns

Tabla 6: Datos de la medias de latencia por prueba

Un resultado que se puede extraer de observar ambas gráficas es que el
sistema Raspberry tiene una media de latencia de respuesta menor que la
BeagleBone, pero su desviación es mayor. Aunque Raspberry y Beaglebone
utilizan versiones diferentes del núcleo Linux, el tratamiento de las excepcio-
nes es idéntico salvo en lo relativo al al controlador de interrupciones y a las
características físicas de los gpios. El acceso al controlador de interrupciones
de realiza de la misma forma, pero se trata de un controlador diferente. El
interfaz de gestión de gpios también es similar, pero la implementación en
cada placa es distinta. En cuanto al comportamiento por modos de expulsión,
núcleo expulsivo y voluntaria responden con latencias medias menores.

5.2. Influencia del modelo de expulsión

La Fig. 4 muestra como se comportan los modos de expulsión ante un
procesador ocioso o con mucha carga de trabajo. Los modos no tiempo real
apenas se ven afectados por ese extra de carga, no así un kernel tiempo real.
Como se ha explicado en el apartado 2.2.2, la interrupción es tratada como
un thread del kernel, por tanto es el planificador tiempo real el que decide
cuando entra a ejecutarse.

5.3. Análisis de la variabilidad de la latencia

Para analizar el comportamiento de la latencia en todo el proceso de
la gestión de la interrupción, se han realizado varias tomas de medidas en
distintos puntos del handler de la interrupción y se han encontrado grandes
variaciones en la latencia al llegar a ciertos puntos. Estas variaciones se han
observado en diferentes pruebas realizadas utilizando diferentes modos de
medida. Esta incertidumbre se añade a la ya producida por varios de los

17

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 2: Mejores medias de latencia por prueba (Escala logarítmica)

mecanismos descritos en el apartado 3.
Como ejemplo, se tomará la Fig. 5 que muestra los tiempos acumulados

en los puntos de entrada y salida de la cascada de funciones que componen el
handler en cualquiera de los modos de expulsión del kernel. En este caso en
particular se aprecia que la zona azul, etiquetada con el texto vector_IRQ,
que se encuentra en la parte inferior, tiene picos de laencia muy altos, apa-
rentemente espúreos. Esta zona corresponde al tiempo que se tarda en saltar
a la entrada del vector de interrupciones de la IRQ desde que se genera el
evento que la provoca. Una posibilidad que pudiese explicar la generación de
estos picos es el interfaz de gpios del sistema, a través de los que se recibe la
señal asociada a la IRQ. En cualquier caso se han detectado picos de este tipo
en otros puntos del proceso y principalmente en Raspberry. Se han incluido
más ejemplos en el capítulo 7.3 del Anexo.

6. Conclusiones
La programación baremetal con rutinas proporcionadas por el fabri-
cante proporciona mayor estabilidad que Linux/ARM, a costa de un
rendimiento muy bajo (1.5 ms frente a 10 us de latencia media en Li-
nux)

18

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 3: Comparación de los casos con menor variabilidad en la latencia

Figura 4: Relación entre pruebas de carga y sin carga (Raspberry)

La política de expulsión del kernel apenas afecta a la latencia de la
interrupción salvo en el modelo de expulsión más agresivo, disponible
únicamente en el patch tiempo real.

Se han detectado partes de los sistemas del entorno de trabajo que
afectan a la latencia pero sobre los que no se tiene un control directo.
Estas variaciones se han observado en diferentes pruebas realizadas
utilizando diferentes modos de medida. Esta incertidumbre se añade a
la ya producida por varios de los mecanismos descritos en el apartado
3.

Las placas analizadas son representativas de un tipo de producto muy

19

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 5: Latencias con carga (1024 muestras, tiempo en ns, Raspberry)

flexible y de bajo coste cada vez más introducido en el mercado. Acompaña-
das de Linux como sistema operativo, están resultando una opción más que
atractiva no sólo para pruebas de concepto sino para desarrollo de solucio-
nes. Pero sus características y en particular los propios SoCs con ARM que
incorporan, orientados a aplicaciones, requieren un buen estudio de caracteri-
zación previo, antes de decidir su usabilidad para una solución determinada.
Así por ejemplo, pueden ser opciones idóneas si el objetivo es implementar
un sistema soft real time con unos tiempos de respuesta situados en el orden
de microsegundos, mientras que si las restricciones son de tiempo real duro,
no se pueden exigir tiempos de respuesta menores del orden de milisegundos.
En todo caso, en función de la solución objetivo, pueden explotarse optimi-
zaciones ad-hoc, rápidas de conseguir si se tiene un conocimiento exahustivo
tanto de las posibilidades de un SoC concreto como de núcleo de Linux.

20

Trabajo Fin de Máster Iván Rodríguez Perales

Referencias
[1] ARM Limited, ARM1176JZF-STM Technical Reference Manual, ARM

Limited, 2004.

[2] ARM Limited, CortexTM-A8, ARM Limited, 2006.

[3] Broadcom, BCM2835 ARM Peripherals, Broadcom Europe Ltd, 2012.

[4] Sloss, Symes y Wright, ARM System Developer’s Guide, primera
edición, Elsevier, 2004.

[5] Texas Instrument, AM335x SitaraTM Processors Technical Reference
Manual, Texas Instrument Incorporated, 2011.

21

Trabajo Fin de Máster Iván Rodríguez Perales

7. Anexo

7.1. Top halves versus bottom halves

Una IRQ handler tiene que ejecutarse lo antes posible ya que no se van a
poder tratar nuevas interrupciones al estar éstas deshabilitadas. Para evitar
que no se atiendan interrupciones, dividiremos el tratamiento de la interrup-
ción entre la "top half 2la "bottom half".

Top half: Esta parte comienza nada más recibirse la interrupción y
ejecuta solamente el trabajo que se ha de realizar en un tiempo crítico,
como el reconocimiento de la interrupción o el reset de hardware.

Bottom half: Aquí se ejecutará código que pueda ser aplazado. Esta
parte se ejecutará en un futuro y con las interrupciones habilitadas por
lo que puede ser expulsado mientras se está ejecutando. Los mecanismos
para poder implementar la bottom half son las softirq, tasklets y las
work queues

Nuestro estudio quiere conocer como se comporta la latencia de una inte-
rrupción desde el momento en que llega al sistema hasta que el IRQ handler
comienza a ejecutarse. No obstante, para tener un mayor perspectiva del
comportamiento de la gestión de una interrupción en Linux describiremos
brevemente los tres mecanismos de la bottom half:

Softirq: Se ejecuta en contexto de interrupción por lo que no pueden
ser expulsadas del procesador, excepto por una interrupción que entre.
Pueden correr varias softirqs del mismo tipo (misma prioridad) a la
vez en distintos procesadores, esto implica que el desarrollador debe
incluir mecanismos de control de acceso a recursos compartidos para
evitar posibles deadlocks. Se han de definir en tiempo de compilación,
el kernel tiene 9 definidas, y el máximo posible es de 32. Estas softirqs
son utilizadas para realizar las tareas más críticas.

Tasklets: Este mecanismo bottom half está construido sobre las sof-
tirqs. La diferencia entre ambos es que las tasklets tienen un API más
amigable para el programador y que no se pueden ejecutar dos ins-
tancias de un tasklet del mismo tipo a la vez en varios cores. Es-
to evita problemas de concurrencia sobre recursos compartidos. Hay
dos tipos de tasklets, las HI_SOFTIRQ (mayor prioridad) y las TAS-
KLET_SOFTIRQ.

22

Trabajo Fin de Máster Iván Rodríguez Perales

Tasklet Priority Softirq Description
HI_SOFTIRQ 0 High-priority tasklets

TIMER_SOFTIRQ 1 Timers
NET_TX_SOFTIRQ 2 Send network packets
NET_RX_SOFTIRQ 3 Receive network packets
BLOCK_SOFTIRQ 4 Block devices

TASKLET_SOFTIRQ 5 Normal priority tasklets
SCHED_SOFTIRQ 6 planificador

HRTIMERS_SOFTIRQ 7 High-Resolurion timers
RCU_SOFTIRQ 8 RCU locking

Tabla 7: Tipos de softirq

Work queues: Se ejecutan en un thread del kernel en contexto de pro-
ceso, por lo que el planificador las puede expulsar. Son útiles en caso de
tener código que vaya a bloquearse, debido a un spinlock o un mutex, o
que vaya requerir mucho tiempo de ejecución hasta completarse. Puede
haber diferentes work queues, cuando se crea

Como hemos visto, las softirq y por extensión las tasklets, son ejecuta-
das en contexto de interrupción por lo que no pueden ser expulsadas ex-
cepto por una interrupción entrante, ni pueden invocar directamente al pla-
nificador (direct invocation) sino que han de activarlo inicializando a 1 la
variable need_resched (invocación retardada o lazy invocation). El planifi-
cador invocado mediante invocación retardada se activa al testear el valor
de need_resched. Esto se hace en un código que se ejecuta al regreso de
cualquier excepción, síncrona o asíncrona (interrupciones) del sistema. Las
softirq pueden reactivarse a sí mismas. Cuando esto se detecta, para evitar
la degradación en el rendimiento del sistema, el planificador no gestiona sof-
tirqs reactivadas. Cuando existen muchas softirq pendientes de ejecución, se
despierta un thread de kernel específico (ksoftirqd), una instancia del mismo
por procesador, que ejecuta las softirqs pendientes. Este thread se ejecuta
con la prioridad más baja posible a fin de no retrasar la ejecución del resto
de tareas.

7.2. Controlador de de interrupciones vectorizados

Estos dispositivos proporcionan una forma eficiente de reconocer fuentes
de interrupción (las Int soource X que aparecen en la imagen 6) y asociarlas
a su ISR correspondiente. De esta manera, se evita el proceso de gestión del
handler de la interrupción.

23

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 6: Funcionamiento de un controlador de interrupciones vectorizado
(VIC)

El tener diversas entradas de interrupción permite asociar una por fuente
de interrupción, evitando que varias la misma entrada tengan que realizar un
proceso de polling en un registro para saber cual de ellas generó la interrup-
ción. Además pueden llegar a incluir otras funcionalidades como prioridad de
interrupciones o asociación de una fuente IRQ a la FIQ

24

Trabajo Fin de Máster Iván Rodríguez Perales

7.3. Medidas que incluyen picos importantes de latencia

Figura 7: Medidas con picos de latencia (BeagleBone, expulsión total, no
predicción de saltos

25

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 8: Medidas con picos de latencia (Raspberry, voluntaria, no predicción
de saltos

Figura 9: Medidas con picos de latencia (Raspberry, tiempo real, carga

26

Trabajo Fin de Máster Iván Rodríguez Perales

Figura 10: Medidas con picos de latencia (BeagleBone, expulsión parcial,
carga

27

	Modelo_caratula_TFM
	TFM_Memoria

