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Resumen

El objetivo de este TFM es caracterizar el comportamiento de las
interrupciones sobre SoCs con ntcleo ARM orientado a aplicaciones,
gestionados mediante Linux. Para ello se parte del estudio de todos
los posibles mecanismos hardware disponibles en ARM para gestionar
y disminuir la latencia de interrupcion. Se estudia el tratamiento de
las excepciones en el nucleo de Linux, prestando especial atenciéon a
la influencia de los diferentes modos de expulsion, incluyendo la ex-
pulsién total para tiempo real estricto, en condiciones de carga y sin
carga. Sobre dos placas (Beaglebone y Raspberry Pi) con diferentes
microprocesadores ARM, en ambos casos orientados a aplicacion, se
caracterizan las latencias en diferentes niveles y condiciones, desde la
generacion /retorno de la senal hasta los handlers y rutinas de servicio
de niveles mas altos del niicleo. Se estudian las diferencias en los tiem-
pos de respuesta de las dos placas analizadas en diferentes condicio-
nes. Se muestra que la programacién baremetal sin sistema operativo,
recurriendo a librerias optimizadas por el fabricante, puede ser més
estable pero poco eficiente, proporcionando una latencia de respuesta
en torno a 1.5 ms, en relacion a Linux/ARM que proporciona laten-
cias de respuesta medias en torno a 10 us. Se estudian las variaciones
en la latencia de interrupciéon que aparecen en Linux/ARM y se con-
cluye por exclusién que puede deberse a la gestion de los gpios y el
sistema de entrada/salida de las placas, y no con los controladores de
interrupciones del SoC o con los mecanismos de gestion de Linux.
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1. Introduccién

Los procesadores ARM cubren todo el rango demandado por las aplica-
ciones empotradas, desde el segmento de microcontroladores sencillos, hasta
el de microprocesadores superescalares que soportan memoria virtual, gene-
ralmente incluidos en sistemas on-chip (SoCs) de alta funcionalidad y bajo
consumo. La utilizacién de nucleos Linux sobre arquitecturas ARM ha veni-
do incrementandose de forma espectacular, compitiendo incluso en el terreno
de los sistemas Tiempo Real. A ello esta contribuyendo la multiplicacion de
placas de bajo coste dotadas de SoCs con niicleos ARM, en las que Linux
es bien el sistema operativo por defecto, bien una alternativa facil de por-
tar. Estas placas estan ocupando rapidamente el segmento de los micro-PCs
industriales o los wall-plug systems.

Linux, sin embargo, no deja de ser un sistema de propoésito general lejos
de la simplicidad de sistemas tiempo real especificos como VxWorks, uCOS,
SYS/BIOS etc, que permiten un gran control sobre parametros criticos co-
mo las latencias de interrupcion y planificacion. Esta generalidad de Linux
le convierte en inevitablemnte complejo: el ntucleo monolitico puede confi-
gurarse con modos de expulsion muy diferentes, y para arquitecturas mono
y multiprocesador /multintcleo. La complejidad se multiplica por el amplio
rango de opciones de la familia ARM en sus tres segmentos (microcontrola-
dores, tiempo real y aplicaciones). Ello hace que, en la practica, el desarrollo
sobre plataformas Linux/ARM, aparentemente asequibles, requiera esfuerzos
superiores a lo inicialmente previsto.

El objetivo de este TFM es caracterizar el comportamiento de las inte-
rrupciones sobre SoCs con un ntucleo ARM orientados a aplicaciones, gestio-
nados mediante Linux, considerando sus diferentes modos de expulsion. Se
pretende caracterizar adecuadamente esta latencia desde diferentes niveles
(desde la generacion /devolucion de senal hasta handlers / rutinas de ser-
vicio de niveles méas altos del ntcleo), teniendo en cuenta distintos modos
de expulsion, a fin de estudiar las posibilidades de optimizacién que puedan
extraerse de la arquitectura de sistema ARM.

La memoria se estructura en la siguiente secciones. La Sec. [2 explica las
caracteristicas de la gestion de interrupciones en ARM y Linux, y los modelos
de expulsion del nucleo de Linux. Las Secs. [3| y 4] describen respectivamente
el entorno de trabajo utilizado y la metodologia aplicada. La Sec. [5| expone y
discute los resultados, y la Sec. [f] cierra con las correspondientes conclusiones.
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2. Fundamentos

2.1. Factores que influyen en la latencia de interrupcién
en ARM

En el contexto que nos ocupa, una interrupcion es una excepcion asincrona
en relacion a la ejecucion de las instrucciones de un programa, producida por
un dispositivo externo y atendida por el kernel. La latencia referida en este
trabajo serd la latencia de interrupcién, esto es el tiempo que transcurre
desde que una senal es recibida en el sistema hasta que llega al proceso
que se encarga de gestionarla. La lista de factores que afectan a la latencia
dependera de las caracteristicas de la plataforma hardware (procesador y
periféricos) y de como gestiona estos eventos el sistema operativo utilizado.

2.1.1. Mecanismo basico vectorizado. FIQ y IRQ.

La arquitectura ARM asocia un c6digo a cada excepcion a través de una
tabla, almacenada en memoria principal, conocida como tabla de vectores
de excepcion. La tabla para el caso de Linux puede verse en el codigo
Cada entrada contiene tipicamente una instrucciéon de carga del contador de
programa (pc), bien una instruccion load bien un salto, segin la direccion de
inicio del vector de interrupciones. Las dos tltimas entradas corresponden a
las dos interrupciones soportadas por cualquier sistema ARM, IRQ y FIQ,
respectivamente asociadas a sendas entradas diferenciadas del procesador.
La FIQ (Fast Interrupt Request) tiene siempre mayor prioridad que la IRQ
(Interrupt Request), y al corresponder al tltimo elemento de la tabla del
vector de interrupciones es posible almacenar hasta 4 KB de instrucciones,
en lugar de una tnica instruccién de carga del pc, que se ejecutaran cuando
ocurra la FIQ. En muchos SoCs la FIQ se reserva para usos internos del
sistema y no puede programarse.

Este mecanismo presente en cualquier ARM supone los siguientes pasos:

= Almacenamiento automatico de la palabra de estado, del pc y de los
registros r13 (sp) y r14 (Ir), con cambio a modo protegido, que incluye
la inhibiciéon de la IRQ, y también de la FIQ si se estd tratando esta
altima.

= Bisqueda y ejecucion por parte del procesador de la instruccion de mo-
dificacion del pc asociada a la IRQ/FIQ en el vector de interrupciones

= Ejecucion del codigo al que se transfiere el control en el paso anterior
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.globl __vectors_start
__Vvectors_start:
ARM ( swi SYS_ERRORO )
THUMB ( svc #0 )
THUMB ( nop )
W(b) vector_und + stubs_offset @ Undefined ins.

W(ldr) pc, .LCvswi + stubs_offset @ SWI

W(b) vector_pabt + stubs_offset @ Prefetch abort
W(b) vector_dabt + stubs_offset @ Data abort
W(b) vector_addrexcptn + stubs_offset

W(b) vector_irq + stubs_offset @ IRQ

W(b) vector_fiq + stubs_offset @ FIQ

Codigo 1: Tabla del vector de excepciones

Los dos primeros pasos estan optimizados en implementaciones de ARM
tipicas para que se realicen en 4 6 6 ciclos. Pero en presencia de varios dis-
positivos con capacidad de enviar interrupciones, éstos han de compartir la
unica IRQ existente. Por tanto el codigo asociado a la tnica IRQ ha de en-
cuestar los dispositivos que comparten la linea para averiguar cual de ellos ha
interrumpido, y ejecutar un cédigo especifico en cada caso. Denominaremos
en lo que sigue handler al coédigo inmediatamente asociado a la IRQ/FIQ, y
rutina de servicio a interrupcion (ISR) a la rutina que trata la interrupcion
de un evento especifico. Este procedimiento tiene un coste alto, y por ello
los diferentes segmentos de microprocesadores ARM incluyen optimizaciones
diversas, especialmente controladores de interrupciones, de los que se hablaré
més adelante.

En términos de latencia, la FIQ esta optimizada para evitar una transfe-
rencia de control, estd dotada de mayor prioridad por hardware, y por tanto
responde siempre con una latencia menor. La Fig. [1] expresa graficamente la
diferencia entre la respuesta a una FIQ y una IRQ.

2.1.2. Controladores de interrupciones

La mayoria de sistemas ARM incorporan controladores de interrupciones
vectorizados que facilitan el reconocimiento de la interrupcion, la localizacion
de la ISR y la gestion de prioridades entre interrupciones(ver capitulo de
los Anexos). Los GIC tienen opciones mas avanzadas que los VIC y soportan
procesadores multicore.

2.1.3. Mecanismos hardware relacionados

Como también se puede apreciar en la figural[l] la latencia estara condicio-
nada por las caracteristicas fisicas de los periféricos y procesador. Solamente

11
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Figura 1: Tiempos de respuesta ante una IRQ y FIQ

se podra influir sobre el hardware si estos dispositivos ofrecen mecanismos
para su configuracion. En ARM existen mecanismos configurables que des-
cribimos brevemente.

= Prediccion de saltos. Los microprocesadores ARM orientados a aplica-
ciones, como los Cortex A, disponen de mecanismos de prediccion de
saltos, que suponen la ejecucion especulativa de codigo. En general es-
te mecanismo incrementa notablemente el rendimiento, pero cuando la
prediccién es incorrecta hay que expulsar todas las instrucciones de la
rama equivocada, con un descenso del importante en el rendimiento en
aplicaciones en las que la prediccion tiende a fallar. En sistemas tiempo
real la prediccion de saltos puede llevar a diferencias importantes en la
cota de peor tiempo de ejecucion (WCET) calculado. Los microproce-
sadores ARM con esta capacidad permiten también desconectarla.

» Jerarquia de Memoria. Muchos microprocesadores ARM incorporan
memorias cache, que introducen una gran variabilidad en los tiempos
de ejecucion de tareas y rutinas de servicio a excepcién, en funciéon de
la tasa de fallos en cache y de la lejania en ciclos de la memoria princi-
pal (del orden de cientos de ciclos en general). Estas caches pueden ser

6
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no bloqueantes (lock-up free caches), pudiendo servir nuevas peticiones
que aciertan mientras se atienden fallos pendientes (Hit Under Miss
(HUM)). Los fallos pendientes corresponden a instrucciones anteriores
en orden de programa a las que siguen siendo servidas mientras acier-
ten. Ante una excepcion, es preciso poder recuperar el estado preciso,
reanudando la ejecuciéon a partir de la instruccion coherente con el or-
den de programa. Este mecanismo tiene un cierto coste. En ARM es
posible desactivar tanto las caches presentes como el mecanismo HUM.

= Memoria virtual. El soporte a la gestion de memoria virtual en ntcleos
ARM orientados a aplicaciones esta compuesto por la Memory Ma-
nagement Unit (MMU) y los Translation Lookaside Buffers (TLBs).
Linux mantiene co6digo y datos del nicleo en memoria fisica, y aunque
es posible desde el codigo del nucleo acceder a paginas de procesos de
usuario, esto no esta permitido ni en las rutinas de servicio a excepcion
ni las funciones diferidas activadas desde ellas. Sin embargo, dado que
todas las direcciones lanzadas por el procesador pasan por el mecanismo
de traduccion, los fallos en TLB con intervencion de la MMU pueden
suponer incrementos en las latencias de ejecucion de esas rutinas (ver

Sec. del Anexo).

s Low latency bit o FI bit. Al activar este bit en una plataforma que lo
soporte, el procesador realiza en unos pocos ciclos menos el cambio de
estado y el salto a la instruccion asociada en el vector de interrupcion.
El ligero ahorro en ciclos de este mecanismo proviene de anular caches
o los mecanismos especulativos como la prediccién de saltos o el HUM.
Los mecanismos particulares afectados por el bit dependen de cada
microprocesador, y en general no estan documentados. La anulaciéon de
los mecanismos especulativos permite evitar la gestion de excepciones
precisa, pero tiene como efecto lateral impedir el uso de operaciones
de load/store multiple que no son completamente reiniciables. Esto
supone compilar el sistema operativo de forma que no se generen loads
y stores miltiples. Hemos intentado hacerlo en este trabajo sin éxito,
y no esta claro que pueda llevarse a cabo al menos con la toolchain
utilizada. En definitiva, Aunque provoca una disminucién de la latencia,
el rendimiento del sistema descenderé, sobre todo si se desactivan las
caches.

2.2. Caracteristicas del nicleo de Linux

Linux es un derivado de Unix y su kernel tiene un diseio monolitico:
consta de un tnico binario, aunque con la posibilidad de enlazado dinamico

7
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de modulos, que se ejecuta con el procesador en modo protegido, capaz de lo-
calizar, cargar, ejecutar y controlar otros binarios (procesos) que se ejecutan
con el procesador en modo usuario. El nticleo proporciona un interfaz de ges-
tion de abstracciones tales como ficheros y procesos, y de recursos hardware
como la memoria y los dispositivos de e/s en general. La ejecucion de los
procesos provoca excepciones en el procesador. Pueden hacerlo de forma di-
recta, a veces intencionada y previsible (para solicitar un servicio del nicleo),
a veces no intencionada ni previsible (fallos de pagina, operaciones ilegales).
También puede hacerlo de forma indirecta, como es el caso en interrupciones
asincronas derivadas de operaciones de e/s. Todas estas excepciones suponen
un cambio de estado (a modo protegido) y la ejecucion de codigo del nucleo,
que comienza y acaba —antes de regresar a modo usuario para reanudar el
codigo de un proceso— en una rutina de servicio a excepcion. Esta ejecucion
de codigo de nicleo o kernel activiy y que consta de una cascada de invocacio-
nes a funciones internas del mismo, se suele denominar Kernel Control Path
(KCP). En un nucleo con expulsion parcial, los KCPs se comportan como
corrutinas, entrelazando su ejecucion sea cediéndose el control unos a otros,
sea mediante mecanismos de interrupcién. En un nicleo con expulsion total
los KCPs no se entrelazan sino que se planifican como tareas independientes,
incluidos los iniciados como respuesta a interrupciones, sujetos a prioridades
junto al resto de procesos del sistema.

2.2.1. Gestidén de interrupciones en Linux

La gestion software de una IRQ parte de la rutina de la tabla del vector de
interrupciones (ver codigo 1)) y sigue un fall through que variaré levemente
en las primeras funciones dependiendo de las caracteristicas del hardware

(Codigo [2)):

@@ Secuencia rutinas en ASM
vector_\name

__irq_svc

irg_handler
arch_irq_handler_default

// Secuencia de rutinas en C
asm_do_IRQ

handle_IRQ
generic_handle_irgq
generic_handle_irq_desc
handle_irq_event
handle_irq_event_percpu

ISR

Codigo 2: Secuencia de llamadas del handler de una IRQ

11
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Por el contrario, una FIQ s6lo requiere una rutina en ensamblador (ver
Codigo [3) que deberemos asociar a la entrada correspondiente de la tabla del
vector de interrupciones.

.text
ENTRY(test_fiq_handler)

test_fiq_handler_end:
END(test_fiq_handler)

Codigo 3: Rutina asociada a la entrada del vector de interrupciones de la

FIQ

En sistemas multitarea como Linux, las interrupciones nunca pueden blo-
quearse, es decir, no pueden invocar al planificador y provocar un cambio de
contexto. Esto significa que durante su ejecucién monopolizan el uso del pro-
cesador, por lo que la latencia tiene que ser la menor posible. Los sistemas
operativos cuentan con varios mecanismos (funciones diferidas o callouts)
para evitar estos bloqueos. La Sec. del Anexo resume brevemente las
existentes en Linux

Por este motivo, el retorno de una excepcién es un punto critico en el
nicleo de Linux. La ISR retorna al handler mediante un retorno convencio-
nal de subrutina, pero el handler salta a una secuencia de retorno comin
para todas las interrupciones en la que se comprueba si hay interrupciones
anidadas. Si no las hay, se restaura el contexto y se reanuda la ejecucion in-
terrumpida, mediante la ejecucién de una instrucciéon que restaura el estado
que se almaceno al producirse esa interrupcion. Si por el contrario hay inte-
rrupciones anidadas, se pueden ejecutar las funciones diferidas pendientes, e
incluso invocar al planificador provocando un cambio de contexto.

Conviene puntualizar que recientemente los desarrolladores del kerne]E]
han apostado por no permitir el anidamiento de interrupciones. Por tanto,
durante la ejecucion de un proceso de atenciéon a una IRQ o FIQ, no se
produciran tampoco cambios de contexto de bajo nivel que puedan provocar
un aumento de latencia. La tnica excepcion es una FIQ, que puede expulsar
a una IRQ en ejecucion.

2.2.2. Modos de expulsion del nicleo y gestion de excepciones

El modelo de expulsion del kernel determina como se va a ejecutar un pro-
ceso del sistema incluyendo excepciones y por tanto, interrupciones. Existen
varios modelos:

Ihttp://lwn.net/Articles/380931/
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» Ezpulsion parcial (No forced preeemption - PREEMPT NONE): Una
interrupcion no puede ser expulsada cuando se ejecuta en su top half
a no ser que explicitamente invoque al planificador(ver capitulo del
Anexo).

» Ezpulsion voluntaria (Voluntary Kernel Preemption - PREEMPT  VO-
LUNTARY): Existen varios puntos en la ejecucion del proceso que le
permiten invocar al planificador y ser expulsado

» Nicleo expulsivo (Preemptible kernel - PREEMPT DESKTOP): Un
proceso puede expulsar a otro de menor prioridad que se encuentre en
ejecucion cuando accede aun spin-lock.

» Tiempo real (Complete preemption - PREEMPT RT): Cualquier pro-
ceso en ejecucion puede ser expulsado por el planificador. Las interrup-
ciones son tratadas como threads del kernel y son planificadas como
cualquier otro proceso

Cuando una interrupcion retorna de ejecuciéon pasa a través de un meca-
nismo que, o bien (1) activa una excepcion que estuviese anidada, (2) ejecuta
bottom halfs pendientes o (3) invoca al planificador.

3. Entorno experimental

Se han utilizado dos placas de desarrollo que montan un SoCs con un
nicleo ARM para realizar el estudio, una Raspberry (ver tabla (1)) y una
BeagleBone (ver tabla. Ambas soportadas por distintas versiones del kernel
de Linux. No ha sido posible realizar las pruebas utilizando exactamente la
misma version del kernel, debido en parte al roadmap de desarrollo de los
kernels para esos sistemas y a su grado de estabilidad.

’ Placa Raspberryf ‘

Familia: ARMI11

Arquitectura: ARMv6KZ

Ntcleo: ARM1176JZ(F)-S [l

SOC: BCM2835 [

Version del kernel linux: 3.12.24+

Version del kernel linux RT: | 3.12.24+ con parche PREEMPT _RTPI

Tabla 1: Especificaciones de la placa Raspberry y distribucion Linux utilizada

10
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’ Placa BeagleBond

Familia: Cortex-A

Arquitectura: ARMvT-A

Nucleo: Cortex-A8[]

SOC: AM335x [}

Version del kernel linux: 3.14.23+

Version del kernel linux RT: | 3.14.23+ con parche PREEMPT _RT Pl

Tabla 2: Especificaciones de la placa BeagleBone y distribucién Linux utili-
zada

Para las mediciones de senal se ha hecho uso de un osciloscopio Tektronix
TDS 2002B [

’ Entorno de desarrollo ‘

Sistema Operativo: Ubuntu 12.04.5
Editor de codigo: vim
Toolchain Raspberry: arm-linux-eabi
Toolchain Beaglebone: arm-linux-eabihf
Crosscompiler: gce version 4.71
IDE Sys/BIOS(Prueba Bare-Metal): | CCS 5.5 + StarterWare

Tabla 3: Listado de herramientas utilizadas en el proyecto

4. Metodologia

4.1. Toma de muestras

Para poder caracterizar la latencia de la interrupcion tenemos que utilizar
un sistema preciso de medida de tiempo. Ademas, deberé realizar mediciones
en diferentes puntos del codigo del handler e ISR de la interrupcion.

Existen dos métodos bésicos:

Zhttp://www.raspberrypi.org/
3http://www.arm.com/products/processors/classic/arm11/arm1176.php
4http://www.broadcom.com/products/BCM2835
Shttps://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
Shttp://beagleboard.org/bone
"http://www.arm.com/products/processors/cortex-a/cortex-a8.php
8http://www.ti.com/product/am3358
Yhttps://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
YOhttp://www2.tek.com/cmswpt/psdetails.lotr?cs=psu&ci=13295&1c=ES
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= Fxterno, no invasivo, o de caja negra, utilizando un osciloscopio o un
analizador l6gico, que registre el cambio de nivel de tensiéon producido
en un pin del microprocesador. Por ejemplo puede registrarse la entrada
de una senal por un gpio que se ha asociado a una IRQ), y la salida por el
mismo y otro gpio de una senal generada desde la parte del niicleo hasta
la que queremos realizar la mediciéon. Existe una sobrecarga debida a
la escritura en el gpio de salida, muy dificil de caracterizar.

= Interno, invasivo o de caja blanca, mediante lecturas de un temporiza-
dor alta resolucion, una al comienzo y otra al final de la parte del ntcleo
que queremos temporizar. A la hora de medir latencia de respuesta es
menos precisa, ya no podemos tomar una medida hasta después de
ejecutar un numero significativo de instrucciones del handler asociado,
ya que como minimo hay que guardar parte del estado no salvado por
el hardware pasando a modo svec (Sec. [2[ Codigo . Sin embargo tiene
la ventaja de que puede registrarse un nimero arbitrario de medidas
durante el tratamiento de una interrupcion.

Los puntos de mayor interés seran las entradas y salidas de las secuencia
de funciones que atraviesa una IRQ y una FIQ(ver apartado ya que
nos permiten modelar la latencia con respecto tanto al momento en que se
lanzoé el evento que generaba la interrupcién como a cualquier otro punto de
interés de la secuencia.

4.1.1. Registro de tiempo mediante osciloscopio

Para realizar esta medida generamos una onda cuadrada. El flanco de
subida se envia a través de un pin de la placa en el momento en el que se
inicia la prueba, a cuyo gpio se ha asociado la IRQ y la correspondiente
ISR. El flanco de bajada se envia desde el punto del nucleo de Linux del
que deseamos medir la latencia de respuesta (handler, ISR, funcion diferida
o incluso codigo de usuario en funcion del sistema de que se trate).

4.1.2. Registro de tiempo de alta resolucién

Los dos niicleos ARM poseen un registro llamado Cycle Counter Register
en el coprocesador CP15 de control, que cuenta el niimero de ciclos de reloj
del microprocesador. El modelo que utilizamos utiliza el reloj de frecuencia
de cada procesador [T}

tiempoCicloyqspperry = 1/T00M Hz = 1'428ns (1)

1§ cat /sys/devices/system/cpu/cpul/cpufreq/scaling _cur_freq
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tiempoCiclopeagicbone = 1/T20M Hz = 1'388ns (2)

Para poder leer el registro de alta precision con sobrecarga minima utili-
zamos la directiva volatile, que evita que el compilador realice optimizaciones
mediante planificacion estatica sobre esa instrucciéon o secuencia asm:

static inline unsigned ccnt_read (void)

{
unsigned cc;
asm volatile ("mrcypl5,,0,,%0,,c15,,c12,,1"  "=r" (cc));
return cc;

}

4.1.3. Datos y métricas

A partir de las lecturas obtenidas en varios de los puntos del tratamiento
de la IRQ o de la FIQ podemos averiguar las etapas que presentan una mayor
latencia o variabilidad, que pueden ser mas determinantes en el diseno de un
sistema con restricciones de tiempo real.

Para que las mediciones sean robustas, se lanzan n interrupciones y se
obtienen n lecturas en cada uno de los tests y de las etapas. A partir de los
datos obtenidos se calculan las siguientes métricas:

» Media (Eq. : Evidencia las etapas han generado una mayor latencia.

I ap+az+---+a,
3 n;a - (3)

» Desviacion tipica (Eq. : Nos permite ver el grado de dispersion de las
muestras obtenidas en cada etapa. Gracias a esta informacion podremos
saber que etapas son méas estables en términos temporales.

= Do — a2 ()

» Desviacion tipica relativa(ver : Relaciona la desviacion tipica con
la media y nos da un porcentaje que indica la fiabilidad del calculo
estadistico. Cuanto menor sea el porcentaje, menor desviaciéon existira.

S

%RSD = = x 100 (5)

IS
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Esta informacion la ofreceremos desde dos punto de vista, (1) la latencia
desde el momento en que se lanza la interrupcion hasta que se llega al pun-
to donde tomamos la medida; y (2) la latencia entre puntos de registro de
tiempo.

Por tltimo, existe informacion adicional que podemos extraer de los re-
gistros del procesador ARM que nos ofreceran informacion muy valiosa sobre
algunos de los elementos que influyen en la latencia y que también obtenemos
por cada una de las pruebas realizadas a través del coprocesador CP15 de

ARM™

= Fallos de TLB
s Fallos en la cache de instrucciones
s Fallos en la cache de datos

= Fallos en la predicciéon de saltos

4.1.4. Experimentaciéon con carga y sin carga

Para estudiar la diferente respuesta de los distintos métodos de expulsion
del kernel en sistemas con carga alta de procesos frente a sistemas sin carga,
se han definido y creado las condiciones respectivas de la forma siguiente:

» Sistema sin carga: Se anula la ejecucion en arranque de todos los dae-
mons a nivel de usuario, de modo que las rutinas de servicio a interrup-
cion so6lo compiten por el procesador con los threads de kernel (kswapd,
ksoftirqgdn etc). Estos threads permanecen en general bloqueados y se
ejecutan en su caso bien con muy baja prioridad, bien tnicamente en
circustancias criticas del sistema (muy baja memoria fisica disponible
en el caso de kwapd por ejemplo).

» Sistema con carga: Se lanzaran cuatro procesos adicionales que estaran
ejecutando en todo momento operaciones que hagan un uso intensivo
del procesador, como sqrt, y por tanto estén compitiendo directamente
por ese recurso con cualquier otro proceso que se esté ejecutando en
ese instante.

12 Aunque se le denomina de este modo, CP15 no es un coprocesador como tal sino un
interfaz de acceso a registros de monitorizaciéon incluidos en los microprocesadores ARM,
cuyas funcionalidades varfan segin el modelo
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’ Pruebas realizadas ‘

Normal Medida en un sistema con carga baja

Carga Prueba en un sistema con varios procesos copando
el procesador El

No prediccion de | Rendimiento de la latencia en un procesador con
saltos: la predicciéon de saltos deshabilitada

No caches Tiempo de latencia de interrupcién en un sistema
con las caches deshabilitadas

Tabla 4: Pruebas realizadas para cada uno de los cuatro modos de expulsion
en cada placa

4.1.5. Programaciéon bare-metal

Es dificil si no imposible sincronizar medidas de osciloscopio con las lectu-
ras de tiempo obtenidas de los temporizadores del microprocesador. El tramo
temporal definido entre la entrada de la senal a la placa y la primera lectu-
ra de tiempo escapa a toda posibilidad de medida. Una manera indirecta
de aislar este tramo es la programaciéon bare-metal de la placa Beaglebo-
ne, sin sistema operativo. Para ello se han utilizado las librerias del paquete
Starterware de Texas Instruments, por considerarse que estan especialmente
optimizadas para los productos de la compania. La programacion y genera-
cion del ejecutable de ha realizado mediante Code Composer Studio (CCS)
5.5. El binario se ha generado en modo release a fin de obtener un codigo
optimizado. La carga se ha efectuado desde CCS a través del JTAG presente
en Beaglebone.

5. Resultados

La tabla [4f resume el conjunto de pruebas realizadas de caracterizacion
de la latencia de interrupciéon. Estas pruebas se han realizado en cada uno
de los modelos de expulsiéon del kernel y en cada una de las dos placas. Las
medidas se han tomado en los dos sistemas de medicion, explicados en el
apartado [ para verificar que eran correctas. Por comodidad, las muestras
aqui mostradas son las adquiridas a través del registro de tiempo de alta
resolucion.

La tabla[5|resume las pruebas que no ha sido posible realizar y las razones
correspondientes. Salvo las excepciones indicadas en la tabla, se trata de
pruebas no han podido realizarse ni en BeagleBone ni en Raspberry.
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’ Pruebas que no ha sido posible llevar a cabo ‘

No MMU Aunque desde el menti de configuraciéon del ker-
nel es posible deshabilitar el uso de la memoria
virtual, varios errores durante la compilacion del
kernel reflejan dependencias a funciones del siste-
ma de memoria virtual que no permiten generar
un kernel valido

Low latency in- | Tal y como se describe en el apartado|2.1.3|se debe
terrupt (RB) generar codigo que no haga uso de operaciones de
load y store miultiples. Esto se consigue con un
flag del compilador gce que no fue reconocido por
el crosscompiler de nuestro entorno de trabajo(ver
capitulo [3)

FIQ Cuando se describe este tipo de interrupciéon en el
apartado se menciona que las FIQ se utili-
zada por funciones basicas del sistema y el usuario
no puede hacer uso de ellas (BB). En la RB, ésta
estd dedicada a la gestion del host USB y puede
liberarse. El problema aparece cada vez que es in-
vocada ya que bloquea todo el sistema

Caches (BB) Deshabilitar las caches provoca que la BB sea in-
capaz de ejecutarse, lanzado un kernel panic

Tabla 5: Listado de pruebas no realizadas en el trabajo. BB: Beaglebone;
RB: Raspberry Pi

5.1. Comparativa de latencias de interrupciéon

En la Fig. 2] y con mas detalle en la tabla [0 se muestra el modo de ex-
pulsion por plataforma que ha respondido antes en media a una interrupcion
bajo unas condiciones determinadas (indicadas por A, By C). La barra CC-
S/BB es el tiempo de latencia de respuesta de una ISR, obtenido mediante
programacion de la placa BeagleBone bare-metal (Sec. . Puede obser-
varse que los modos de niicleo expulsivo y voluntaria presentan las menores
latencias.

La Fig. [3| y recoge aquellos modos de expulsion en cada una de las pla-
taformas que han sufrido una menor variacién en sus tiempos de latencia de
respuesta ante diferentes contextos (definidos por A, B y C). Notar que la
variacion de CCS/BB es despreciable, aunque a costa de una latencia muy
alta como se ha visto en la Fig. 2] De nuevo, los modos nucleo expulsivo y
voluntario aparecen entre los que mejor resultados han obtenido.
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’ Linux sin carga con caches y predicciéon ‘

Raspberry (voluntaria) 10117,8ns
BeagleBone(nucleo expulsivo) | 26121,25ns

Linux sin carga y sin caches
Raspberry (voluntaria) 23203,77Tns
BeagleBone (N/A)
Linux sin carga ni predicciéon de saltos
Raspberry (ntucleo expulsivo) 10303,68ns
BeagleBone (ntcleo expulsivo) | 27778,86ns

Tabla 6: Datos de la medias de latencia por prueba

Un resultado que se puede extraer de observar ambas gréaficas es que el
sistema Raspberry tiene una media de latencia de respuesta menor que la
BeagleBone, pero su desviaciéon es mayor. Aunque Raspberry y Beaglebone
utilizan versiones diferentes del ntcleo Linux, el tratamiento de las excepcio-
nes es idéntico salvo en lo relativo al al controlador de interrupciones y a las
caracteristicas fisicas de los gpios. El acceso al controlador de interrupciones
de realiza de la misma forma, pero se trata de un controlador diferente. El
interfaz de gestion de gpios también es similar, pero la implementacion en
cada placa es distinta. En cuanto al comportamiento por modos de expulsion,
ntucleo expulsivo y voluntaria responden con latencias medias menores.

5.2. Influencia del modelo de expulsiéon

La Fig. [4) muestra como se comportan los modos de expulsiéon ante un
procesador ocioso o con mucha carga de trabajo. Los modos no tiempo real
apenas se ven afectados por ese extra de carga, no asi un kernel tiempo real.
Como se ha explicado en el apartado [2.2.2] la interrupcion es tratada como
un thread del kernel, por tanto es el planificador tiempo real el que decide
cuando entra a ejecutarse.

5.3. Analisis de la variabilidad de la latencia

Para analizar el comportamiento de la latencia en todo el proceso de
la gestion de la interrupcion, se han realizado varias tomas de medidas en
distintos puntos del handler de la interrupcion y se han encontrado grandes
variaciones en la latencia al llegar a ciertos puntos. Estas variaciones se han
observado en diferentes pruebas realizadas utilizando diferentes modos de
medida. Esta incertidumbre se anade a la ya producida por varios de los
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Mejor media de latencia

10000000 A Linux sin carga con
caches y prediccion

B:: Limix sin carga sin

1000000 caches
C: Limix sin carga ni
100000 prediccidn de sakos
10000
2
=
2
g 1000
©
z
100
10
1
Raspberry (voluntariz) Raspberry (voluntaria) Raspberry (expulsion total)
CCs/BB BeagleBone(expulsion total) BeagleBone (N/A) BeagleBone (expulsion total)
A B C

Figura 2: Mejores medias de latencia por prueba (Escala logaritmica)

mecanismos descritos en el apartado

Como ejemplo, se tomara la Fig. |5 que muestra los tiempos acumulados
en los puntos de entrada y salida de la cascada de funciones que componen el
handler en cualquiera de los modos de expulsion del kernel. En este caso en
particular se aprecia que la zona azul, etiquetada con el texto vector TRQ),
que se encuentra en la parte inferior, tiene picos de laencia muy altos, apa-
rentemente espireos. Esta zona corresponde al tiempo que se tarda en saltar
a la entrada del vector de interrupciones de la IRQ desde que se genera el
evento que la provoca. Una posibilidad que pudiese explicar la generacion de
estos picos es el interfaz de gpios del sistema, a través de los que se recibe la
senal asociada a la IRQ). En cualquier caso se han detectado picos de este tipo
en otros puntos del proceso y principalmente en Raspberry. Se han incluido
mas ejemplos en el capitulo del Anexo.

6. Conclusiones

» La programacion baremetal con rutinas proporcionadas por el fabri-
cante proporciona mayor estabilidad que Linux/ARM, a costa de un
rendimiento muy bajo (1.5 ms frente a 10 us de latencia media en Li-
nux)
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Menor desviacidn tipica
relativa

Al Linux sin carga con

35 P
caches y prediccion

B:: Linux sin carga sin
20 caches

C: Linux sin carga ni
o5 predircidn de sakios

20

RSO

15

10

5 I l
0 .

Raspberry (RT) Raspberry (nlcleo expulsivo) Raspberry (nlcleo expulsiva)
CCs/BB BeagleBone(voluntaria) BeagleBone (NA) BeagleBone (voluntaria)
A B C

Figura 3: Comparacion de los casos con menor variabilidad en la latencia

Comparativa de carga y no carga

35000
30000
25000

20000 uCarga
u No carga

15000

10000
- . .
0

Expulsién parcial  Voluntaria  Nicleo expulsivo  Tiempo real

Figura 4: Relacion entre pruebas de carga y sin carga (Raspberry)

= La politica de expulsion del kernel apenas afecta a la latencia de la
interrupcion salvo en el modelo de expulsion més agresivo, disponible
inicamente en el patch tiempo real.

= Se han detectado partes de los sistemas del entorno de trabajo que
afectan a la latencia pero sobre los que no se tiene un control directo.
Estas variaciones se han observado en diferentes pruebas realizadas
utilizando diferentes modos de medida. Esta incertidumbre se anade a
la ya producida por varios de los mecanismos descritos en el apartado

Las placas analizadas son representativas de un tipo de producto muy
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All stages
80000
70000
mvector_IRQ (init)
Wasm_do_IRQ (init)
60000 - , ] o ) ; whandie_IRQ (init)
S T Y Y O =~
soo00 |1 : | | : fi. I TP i | i ruﬂe:laud_il;:’?r:lj s
i i L | I Whandle_ing_event irit)
3 . e el IRl o Bl e ARl Mt b e Bl o o 8 14 whandle_ing_event_par_cpu finit)
40000 WISR (SW)
mhandle_irg_event_per_cpu fend)
Whandie_irq_avent (and)
30000 whandle_level_irg (end)
Mgenerc_handle_irg_desc (and)
Wgenerc_handle_irg (and)
handia_IRQ (end)
20000 masm_do_IRQ (end)
10000

21 57 93 120 165 201 237 273 300 345 381 417 453 480 525 561 507 633 660 705 741 777 813 B4D BAS 021 057 003
3 30 75 111 147 1B3 210 255 201 327 363 300 435 471 507 543 570 615 651 G687 723 750 7O5 B31 BET 003 030 9751011

Figura 5: Latencias con carga (1024 muestras, tiempo en ns, Raspberry)

flexible y de bajo coste cada vez mas introducido en el mercado. Acompana-
das de Linux como sistema operativo, estdn resultando una opciéon mas que
atractiva no soélo para pruebas de concepto sino para desarrollo de solucio-
nes. Pero sus caracteristicas y en particular los propios SoCs con ARM que
incorporan, orientados a aplicaciones, requieren un buen estudio de caracteri-
zacion previo, antes de decidir su usabilidad para una soluciéon determinada.
Asi por ejemplo, pueden ser opciones idéneas si el objetivo es implementar
un sistema soft real time con unos tiempos de respuesta situados en el orden
de microsegundos, mientras que si las restricciones son de tiempo real duro,
no se pueden exigir tiempos de respuesta menores del orden de milisegundos.
En todo caso, en funcién de la solucién objetivo, pueden explotarse optimi-
zaciones ad-hoc, rapidas de conseguir si se tiene un conocimiento exahustivo
tanto de las posibilidades de un SoC concreto como de nucleo de Linux.
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7. Anexo

7.1. Top halves versus bottom halves

Una IR(@) handler tiene que ejecutarse lo antes posible ya que no se van a
poder tratar nuevas interrupciones al estar éstas deshabilitadas. Para evitar
que no se atiendan interrupciones, dividiremos el tratamiento de la interrup-
cion entre la "top halfz la "bottom half".

= Top half: Esta parte comienza nada mas recibirse la interrupcion y
ejecuta solamente el trabajo que se ha de realizar en un tiempo critico,
como el reconocimiento de la interrupciéon o el reset de hardware.

= Bottom half: Aqui se ejecutara codigo que pueda ser aplazado. Esta
parte se ejecutaré en un futuro y con las interrupciones habilitadas por
lo que puede ser expulsado mientras se esté ejecutando. Los mecanismos
para poder implementar la bottom half son las softirq, tasklets y las
work queues

Nuestro estudio quiere conocer como se comporta la latencia de una inte-
rrupcion desde el momento en que llega al sistema hasta que el IRQ) handler
comienza a ejecutarse. No obstante, para tener un mayor perspectiva del
comportamiento de la gestiéon de una interrupcién en Linux describiremos
brevemente los tres mecanismos de la bottom half:

= Softirq: Se ejecuta en contexto de interrupcion por lo que no pueden
ser expulsadas del procesador, excepto por una interrupcién que entre.
Pueden correr varias softirgs del mismo tipo (misma prioridad) a la
vez en distintos procesadores, esto implica que el desarrollador debe
incluir mecanismos de control de acceso a recursos compartidos para
evitar posibles deadlocks. Se han de definir en tiempo de compilacion,
el kernel tiene 9 definidas, y el méximo posible es de 32. Estas softirgs
son utilizadas para realizar las tareas més criticas.

= Tasklets: Este mecanismo bottom half esta construido sobre las sof-
tirgs. La diferencia entre ambos es que las tasklets tienen un API més
amigable para el programador y que no se pueden ejecutar dos ins-
tancias de un tasklet del mismo tipo a la vez en varios cores. Es-
to evita problemas de concurrencia sobre recursos compartidos. Hay
dos tipos de tasklets, las HI SOFTIRQ (mayor prioridad) y las TAS-
KLET SOFTIRQ.
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Tasklet Priority | Softirq Description
HI SOFTIRQ 0 High-priority tasklets
TIMER_SOFTIRQ Timers
NET TX SOFTIRQ Send network packets
NET RX SOFTIRQ Receive network packets
BLOCK SOFTIRQ Block devices
TASKLET SOFTIRQ Normal priority tasklets
SCHED SOFTIRQ planificador
HRTIMERS SOFTIRQ High-Resolurion timers
RCU_ SOFTIRQ RCU locking

O I O U i W N =

Tabla 7: Tipos de softirq

» Work queues: Se ejecutan en un thread del kernel en contexto de pro-
ceso, por lo que el planificador las puede expulsar. Son tutiles en caso de
tener codigo que vaya a bloquearse, debido a un spinlock o un mutex, o
que vaya requerir mucho tiempo de ejecucion hasta completarse. Puede
haber diferentes work queues, cuando se crea

Como hemos visto, las softirq y por extension las tasklets, son ejecuta-
das en contexto de interrupcién por lo que no pueden ser expulsadas ex-
cepto por una interrupcién entrante, ni pueden invocar directamente al pla-
nificador (direct invocation) sino que han de activarlo inicializando a 1 la
variable need_resched (invocacion retardada o lazy invocation). El planifi-
cador invocado mediante invocaciéon retardada se activa al testear el valor
de need_resched. Esto se hace en un cédigo que se ejecuta al regreso de
cualquier excepcion, sincrona o asincrona (interrupciones) del sistema. Las
softirq pueden reactivarse a si mismas. Cuando esto se detecta, para evitar
la degradacion en el rendimiento del sistema, el planificador no gestiona sof-
tirgs reactivadas. Cuando existen muchas softirq pendientes de ejecucion, se
despierta un thread de kernel especifico (ksoftirqd), una instancia del mismo
por procesador, que ejecuta las softirqs pendientes. Este thread se ejecuta
con la prioridad méas baja posible a fin de no retrasar la ejecucion del resto
de tareas.

7.2. Controlador de de interrupciones vectorizados

Estos dispositivos proporcionan una forma eficiente de reconocer fuentes
de interrupcion (las Int soource X que aparecen en la imagen @ y asociarlas
a su ISR correspondiente. De esta manera, se evita el proceso de gestion del
handler de la interrupcion.
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FIQ FIQ to CPU

’ID‘I‘_M ° > >| FIQ Logic
Int source 1 l ‘ |

X Interrupt ‘ FIQ status Register |

X Request

' Logic
Int source 32 IRQ IRQ to CPU

e, o p IRQ Priority
> Logic ‘
Vegtored Interrupt 0 ¥
| Vector Address Register |

! ‘ IRQ status register |

Vectored Interrupt 31

Figura 6: Funcionamiento de un controlador de interrupciones vectorizado
(VIC)

El tener diversas entradas de interrupcion permite asociar una por fuente
de interrupcion, evitando que varias la misma entrada tengan que realizar un
proceso de polling en un registro para saber cual de ellas gener6 la interrup-
cion. Ademés pueden llegar a incluir otras funcionalidades como prioridad de
interrupciones o asociacion de una fuente IRQ a la FIQ
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7.3. Medidas que incluyen picos importantes de latencia

All stages
60000
50000
mvector_IRQ (init)
masm_do_|RQ (init)
m handle_IRQ (init)
40000 - . generic_handle_irg (inif)

m generic_handle_irg_desc (init)
handle_level_irg {init)
m handle_irq_event (init)

- [N h‘M M MM» e 'MM W =

m handle_irg_event (end)

m handle_level_irg (end)

m generic_handle_irq_desc (end)

m generic_handle_irq (end)
handle_IRQ (end)

masm_do_IRQ (end)

20000

10000

o 1 e OO M 0 o o

0
R R g A g M U R S

Figura 7: Medidas con picos de latencia (BeagleBone, expulsion total, no
prediccion de saltos
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70000

All stages

20000

10000

T

PEEFIEITE L L L I PP IS PSSP P PSP LS

mvector_IRQ (init)

masm_do_IRQ (init)

m handle_IRQ {init)
generic_handle_irq (inif)

m generic_handle_irg_desc (init)
handle_level_irg {init)

m handle_irq_event (inif)

w handle_irg_event_per_cpu (init)

ISR (SW)

w handle_irq_event_per_cpu (end)

m handle_irg_event (end)

w handle_level_irg (end)

m generic_handle_irq_desc (end)

m generic_handle_irq (end)
handle_IRQ (end)

masm_do_IRQ (end)

Figura 8: Medidas con picos de latencia (Raspberry, voluntaria, no prediccion
de saltos

350000

100000

50000

0

All stages

| .
I A A

AN | i |

PP PSP L L P L LI EF PSSP PSP P TS PSS

mvector_IRQ (inif)

masm_do_[RQ (init)

m handle_IRQ (init)
generic_handle_irq (inif)

W generic_handle_irg_desc (init)

m handle_irq_event (init)
handle_level_irg {init)

w handle_irq_event_per_cpu (inif}

m handle_irq_event_per_cpu (end)

w handle_irg_event (end)

m handle_level_irg (end)

m generic_handle_irg_desc (end)

m generic_handle_irg (end)

m handle_IRQ (end)
asm_do_IRQ (end)

®ISR (SW)

Figura 9: Medidas con picos de latencia (Raspberry, tiempo real, carga
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250000

200000

150000

100000

0

PECILEI TS L L LI P PP IS PP F PO LLES S PSP

All stages

mector_IRQ (inif)

masm_do_[RQ (init)

m handle_IRQ {init}
generic_handle_irq (inif)

m generic_handle_irg_desc (init)
handle_level_irg {init)

m handle_irg_event (inif)
handle_irq_event_per_cpu (init}

mISR (SW)

w handle_irg_event_per_cpu (end)

m handle_irq_event (end)

m handle_level_irg (end)

m generic_handle_irq_desc (end)

m generic_handle_irg (end)
handle_IRQ (end)

masm_do_IRQ (end)

Figura 10: Medidas con picos de latencia (BeagleBone, expulsién parcial,

carga
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