
Trabajo Fin de Máster

Máster en Ingenieŕıa de Sistemas e Informática

Cusro 2013/2014

Estudio y Adaptación de la
Plataforma de Agentes Móviles

SPRINGS para Entornos
Inalámbricos

Néstor Fabio Muñoz Garćıa

Director: Sergio Ilarri Artigas

Departamento de Informática e Ingenieŕıa de Sistemas
Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Noviembre 2014





3

Estudio y Adaptación de la Plataforma de

Agentes Móviles SPRINGS para Entornos

Inalámbricos

RESUMEN

Las plataformas de agentes móviles son sistemas que permiten tener ciertos “pro-
gramas” peculiares. Estos programas se diferencian de los t́ıpicos por ser capaces de
moverse de una máquina a otra de forma autónoma eligiendo en qué maquina llevarán
a cabo su ejecución.

Esto abre un abanico de posibilidades en computación distribuida y entornos móvi-
les, ya que los procesos pueden distribuir su carga de trabajo en función de una o varias
máquinas y decidir qué tarea realizar dependiendo de su posición mientras su entorno
va variando.

A pesar de que existan varias plataformas de agentes móviles, el trabajo se centra
en una única plataforma de agentes móviles, desarrollada por el grupo de trabajo
de la universidad de Zaragoza SID (Sistemas de Información Distribuida), llamada
SPRINGS (Scalable PlatfoRm for movINg Software).

Aunque en un principio esta plataforma sólo se ejecutaba en máquinas virtuales
Java, recientemente el grupo de investigación clonó la plataforma y la modificó para
que se ejecutara en dispositivos Android, manteniendo toda la esencia de la plataforma
pero sin tener en cuenta toda la potencia que este sistema les proporcionaba con las
comunicaciones inalámbricas.

El objetivo de este trabajo es estudiar el posible desarrollo de nuevas funcionalida-
des que permitan utilizar de forma más adecuada los distintos entornos inalámbricos
que pueden estar disponibles (Wifi, 3G, Bluetooth). Para conseguir este objetivo, es
necesario:

Estudiar la plataforma en su estado actual.

Modificar la plataforma para utilizar todos los recursos disponibles de comuni-
cación inalámbrica (WiFi, redes móviles, Bluetooth).

Implementar nuevas funcionalidades como la búsqueda de servicios o el despla-
zamiento de agentes a un área geográfica.

El trabajo realizado representa un primer paso preliminar para el potencial desa-
rrollo futuro de una plataforma de agentes móviles para Android que esté perfec-
tamente adaptada al entorno móvil. El grupo SID pretende seguir progresando su
investigación en este tema.





Índice general

Abstract 3

1. Introducción 7
1.1. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Estructura de la memoria . . . . . . . . . . . . . . . . . . . . . . 8

2. La plataforma de agentes móviles SPRINGS 9
2.1. Análisis de la estructura básica de SPRINGS . . . . . . . . . . . 9
2.2. Conociendo la plataforma . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Ejecución de un servidor RNS . . . . . . . . . . . . . . . . 10
2.2.2. Ejecución de un contexto y conexión con el servidor RNS

anterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3. Ejecución de la plataforma con agentes . . . . . . . . . . . 12

2.3. La plataforma SPRINGS en Android . . . . . . . . . . . . . . . . 12
2.3.1. Estado de la plataforma . . . . . . . . . . . . . . . . . . . 13
2.3.2. Ejecución y problemas con la plataforma . . . . . . . . . . 13

3. Abstracción de las Comunicaciones: Sockets Abstractos 15
3.1. La libreŕıa Sockets abstractos . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Diseño de la libreŕıa . . . . . . . . . . . . . . . . . . . . . 16
3.1.2. Integración de la libreŕıa en SPRINGS . . . . . . . . . . . 18

3.2. Creando una red Mesh . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1. Los nodos de la red: Node . . . . . . . . . . . . . . . . . . 20
3.2.2. Los puertos de la red: Port . . . . . . . . . . . . . . . . . 22

3.3. Diseño de la nueva red Mesh . . . . . . . . . . . . . . . . . . . . 23
3.3.1. Conexiones virtuales . . . . . . . . . . . . . . . . . . . . . 23
3.3.2. El Protocolo de comunicación . . . . . . . . . . . . . . . . 25
3.3.3. La conexión puente . . . . . . . . . . . . . . . . . . . . . . 28

3.4. Implementación de la nueva red Mesh . . . . . . . . . . . . . . . 29
3.4.1. El gestor del nodo: NodeManager . . . . . . . . . . . . . . 29
3.4.2. Implementación del puerto: Port . . . . . . . . . . . . . . 29
3.4.3. Nodo genérico: Node . . . . . . . . . . . . . . . . . . . . . 30
3.4.4. El comprobador de puertos y nodos: PortsChecker . . . . 31

4. Ampliación de Funcionalidades 33
4.1. Comunicación Android-Java . . . . . . . . . . . . . . . . . . . . . 33
4.2. Añadiendo agentes geográficos . . . . . . . . . . . . . . . . . . . . 35

4.2.1. Diseñando los agentes geográficos . . . . . . . . . . . . . . 35

5



6 ÍNDICE GENERAL

4.2.2. Añadiendo la funcionalidad . . . . . . . . . . . . . . . . . 36

5. Conclusiones 39
5.1. Trabajos futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2. Evaluación del proyecto . . . . . . . . . . . . . . . . . . . . . . . 41
5.3. Tiempo dedicado . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Caṕıtulo 1

Introducción

Dada la potencia de los ordenadores, con los que se pueden realizar muchas
tareas, es extraño que los programas estén limitados a ejecutarse con el proce-
sador con el que fueron compilados. Aunque esta barrera ha sido más o menos
superada por los sistemas operativos a bajo nivel y por ciertas libreŕıas a alto
nivel (.Net, Java), la idea de que un programa se pueda mover de un ordenador
a otro para que continúe su ejecución sea por el motivo que sea (necesita ciertos
datos o el ordenador en el que se encontraba se va a apagar) es muy buena.

Los programas que se “mueven” de un ordenador a otro se conocen como
agentes móviles [1] [2]. Los agentes móviles permiten:

Reducir la carga de la red: en lugar de que un cliente esté constantemente
pidiéndole datos a un servidor para realizar su trabajo, éste podŕıa enviarle
un agente al servidor, que realice sus tareas alĺı, pidiéndole todos los datos
que necesite, y regrese al cliente con los resultados.

Realizar ejecuciones aśıncronas y autónomas: en entornos con dispositivos
móviles es muy común que se establezcan conexiones, pero estas cone-
xiones son muy frágiles dependiendo de cada situación. Con los agentes
móviles se le podŕıa encargar a un agente que saliera a la red a realizar
una determinada tarea y, a partir de ah́ı, el agente es independiente del
dispositivo móvil pudiendo quedar desconectado o incluso apagado. Cuan-
do el agente termine su tarea entonces volverá al dispositivo móvil que lo
creó con los resultados obtenidos.

Evitar los fallos que se producen por determinadas condiciones del orde-
nador: si por ejemplo el ordenador se va a apagar y el agente lo detecta,
puede decidir irse a otro ordenador a continuar su ejecución, mientras que
una aplicación t́ıpica se veŕıa afectada por el apagón y lo único que podŕıa
hacer es guardar su estado antes de cerrar forzosamente.

Tener un asistente personal: como los agentes tienen la capacidad de poder
desplazarse a otros ordenadores, también pueden realizar ciertas tareas en
nombre de otros. Por ejemplo la búsqueda y la manipulación de cierta
información en una red personal o privada.

Monitorizar en tiempo real: si estamos esperando a que cierto sensor alcan-
ce cierto nivel para realizar alguna tarea, no es necesario crear un cliente

7



8 CAPÍTULO 1. INTRODUCCIÓN

que esté captando todo el rato el valor actual de ese sensor. Basta con en-
viar un agente al servidor donde se encuentra el sensor y, en cuanto alcance
el nivel que esperábamos, el agente nos avise o actúe él directamente.

Generar un procesamiento en paralelo: En lugar de tener un programa
que genere muchas subtareas, consumiendo notablemente los recursos del
ordenador, podemos crear un agente que se encargue de generar múltiples
clones para realizar la tarea en paralelo y que estos clones se distribuyan
por toda la red. Una red de ordenadores estará menos saturada que un
único ordenador si realizan la misma tarea en paralelo.

Este trabajo es un paso para el futuro desarrollo de una plataforma de agen-
tes móviles para Android que esté perfectamente adaptada al entorno móvil. El
grupo de investigación SID pretende seguir progresando su investigación en este
tema.

1.1. Motivación

A pesar de que las plataformas de agentes móviles [3] [4] [5] (por ejemplo
Concordia [6], MAP [7] o JAMES [8]) llevan existiendo desde hace mucho tiem-
po, una vez visto el gran potencial que pueden aportar [9] [10], podŕıan suponer
una gran herramienta para el futuro de la tecnoloǵıa [11] [12], en especial con
el Internet de las cosas. Por ejemplo, en lugar de tener los electrodomésticos
conectados a la red, tendŕıamos a un agente que realizaŕıa las tareas que le
ordenásemos, en el momento deseado y a nuestro gusto.

Con este trabajo se pretende estudiar y trabajar con una plataforma de
agentes móviles (SPRINGS [13], que se ejecuta en Java [14]) para aprender
cómo funciona [15] y aśı poder manejar agentes móviles. con mis propias manos
una de estas plataformas tan interesantes.

1.2. Estructura de la memoria

A partir de esta introducción, el caṕıtulo 2 trata de explicar qué es SPRINGS,
la plataforma de agentes móviles con la que se ha trabajado en este trabajo y
la plataforma SPRINGS en Android, una modificación del SPRINGS original
para que funcionara en Android.

En el caṕıtulo 3 describe la creación de toda la libreŕıa de este proyecto que
debe usar la plataforma para cumplir con los objetivos (que la plataforma utilice
todos los medios inalámbricos que dispone Android, la comunicación multisalto
entre dispositivos alejados, etc.).

El caṕıtulo 4 trata de cómo ha tenido que ser dividida la libreŕıa para que
pudiera ser utilizada junto a SPRINGS para Android en una máquina virtual
Java que no fuese Android. También describe los pasos que se han dado para
que los agentes puedan ser geográficos.

Finalmente el caṕıtulo 5 describe las conclusiones a las que se ha llegado
con el trabajo, se indican nuevas v́ıas de desarrollo para la plataforma que
han quedado abiertas, se evalúa el estado del proyecto y se describe el tiempo
dedicado al proyecto.



Caṕıtulo 2

La plataforma de agentes
móviles SPRINGS

SPRINGS [13] es una plataforma de agentes móviles creada por el grupo de
investigación SID de la universidad de Zaragoza, centrándose en los problemas de
escalabilidad y en el mantenimiento de la eficiencia de la plataforma durante la
localización de agentes en escenarios dinámicos donde los agentes se encuentran
moviéndose continuamente.

La plataforma está compuesta principalmente por:

Agentes: Son los programas que se ejecutan en la plataforma y los que deciden
moverse o desplazarse de un contexto a otro.

Contextos: son las “zonas” donde se encuentran los agentes. Cada contexto
tiene su nombre propio y tienen toda la información de los agentes que
contienen.

Servidores de Nombres de Región o RNS: (Region Name Server) Son ser-
vidores que registran los contextos conectados en una misma zona. Todos
los contextos de la misma zona se encuentran registrados en un único
RNS. Mantienen también la información actualizada de los agentes de
estos contextos que hayan hecho alguna operación de movimiento o de
comunicación recientemente.

Esta plataforma utiliza RMI (java Remote Method Invocation), es un sistema
que permite llamar a los métodos de las clases que se encuentran remotamente
en otro ordenador, como base para la transmisión de agentes.

2.1. Análisis de la estructura básica de SPRINGS

El contenido del proyecto SPRINGS se encuentra distribuido en varios módu-
los o paquetes. Los que más destacan son:

agent: En este paquete se encuentran programadas las funciones que pueden
realizar los agentes. Por ejemplo, moverse de un contexto a otro, programar
tareas e incluso llamar a otros agentes. En este paquete se encuentra:

9



10 CAPÍTULO 2. LA PLATAFORMA DE AGENTES MÓVILES SPRINGS

SpringAgent: Es la interfaz que incluye todos los métodos que tendrá un
agente.

SpringAgent RMIImpl: Es una implementación de la clase anterior
utilizando el sistema RMI de Java.

context: En este paquete se encuentran descritos los Contextos. Destacan:

ContextAddress: Es una clase que representa la localización de un
Contexto. Contiene la dirección, el puerto, el protocolo y el nombre
del contexto.

Context: Es una interfaz que contiene todos los métodos de un contexto.

Context RMIImpl: Es una implementación de la interfaz anterior uti-
lizando el sistema RMI de Java.

ContextInterfaceForAgents: Es una interfaz diseñada para que los
proxies de los agentes hagan llamadas a un determinado contexto.

ContextLauncher: Es una clase que ejecuta un contexto.

rns: En este paquete se encuentra todo lo relacionado con los Servidores de
Nombres de Región (Region Name Server, RNS). Contiene:

RegionNameServer: Es una clase abstracta que representa a un servi-
dor RNS. Contiene los contextos que se han registrado en él y alguna
funcionalidad interna.

RegionNameServerInterface: Es una interfaz para describir los méto-
dos que se podrán utilizar en el RNS.

RegionNameServer RMIImpl: Es una clase que implementa la clase
y la interfaz anteriores utilizando RMI como sistema de conexión.

RegionNameServerLauncher: Es una clase que ejecuta un RNS.

test: Aqúı se encuentran ciertas clases con pruebas realizadas en la plataforma,
agentes simples y pequeñas pruebas entre agentes.

util: En este paquete se encuentran una serie de funciones para simplificar la
programación de la plataforma y herramientas para comprobar o analizar
el funcionamiento de la misma.

2.2. Conociendo la plataforma

Para intentar ejecutar SPRINGS, primero hay que ejecutar un servidor RNS
y luego ejecutar contextos que se conecten a ese servidor RNS.

Al leer el código fuente, se observa que hay muchos ejecutables para lanzar los
servidores. Los más relevantes son RegionNameServerLauncher y ContextLaun-
cher que se encuentran en los módulos rns y context respectivamente.

2.2.1. Ejecución de un servidor RNS

Para ejecutar el servidor RNS, lo más recomendable es ejecutar el script
RNSLauncher. En el script hay varios valores que hay que modificar para que
se ejecute con tu propio entorno personal:



2.2. CONOCIENDO LA PLATAFORMA 11

classpath: En esta variable hay que especificar dónde está el archivo springs.jar.

path: Indica en qué lugar se encuentran los ejecutables de java. El valor in-
troducido en este caso es: /usr/lib/jvm/jdk1.7.0/bin

instrucción de ejecución: Esta instrucción ejecuta el servidor finalmente.

Pero para poder ejecutarse, es necesario especificar un archivo con instruccio-
nes o poĺıticas de seguridad que se encuentra dentro del propio jar de springs.jar.
Una vez extráıdo el archivo y guardado en un directorio conocido y del que se
disponga permisos, ya se puede ejecutar SPRINGS para tener el servidor RNS.

La instrucción en este caso es:

“java -Djava.security.policy=./security.policy springs.rns.RegionNameServerLauncher
$* ”

Como se puede apreciar, en esta instrucción se indica el main que se va a eje-
cutar (springs.rns.RegionNameServerLauncher) y recoge todos los parámetros
que nos pasen al llamar al script ($*).

Al ejecutar el script sin parámetros, obtenemos el siguiente mensaje:

“-pNN port”

que indica que hace falta especificar un puerto para ejecutar el servidor RNS.

Para terminar y tener finalmente el servidor ejecutando, se añade como
parámetro el puerto deseado (en este caso 54321), por lo que la ejecución del
servidor RNS a través del script RNSLauncher en este caso es:

“./RNSLauncher -p54321”

2.2.2. Ejecución de un contexto y conexión con el servidor
RNS anterior

Para ejecutar este contexto es necesario utilizar el script ContextLauncher,
que a su vez llamará al main de la clase springs.context.ContextLauncher.

Al igual que antes, se debe cambiar la variable classpath y la variable path
por los valores anteriores.

El comando que se ejecuta es similar al del RNS salvo que esta vez se llama
al main de ContextLauncher.

Tras ejecutar el script sin parámetros, éste devuelve como salida los paráme-
tros que faltan. A saber:

-pNN: El puerto en el que va estar escuchando el contexto.

-n: El nombre que va a tener el contexto.

-r: La dirección en la que se encuentra el servidor RNS.

-l: (Opcional) El archivo de log para guardar los sucesos que ocurran durante
la ejecución del contexto.

-cNN: (Opcional) El puerto del servidor de clases. Si se especifica, el contexto
puede ejecutar Agentes aunque no tenga su código.

-s: (Opcional) Si el servidor de clases debe ser ejecutado.



12 CAPÍTULO 2. LA PLATAFORMA DE AGENTES MÓVILES SPRINGS

Si se ejecuta el contexto sin algún parámetro, el propio programa avisa. Por
ejemplo si se ejecuta el contexto introduciéndole sólo el puerto:

“./ContextLauncher -p23456”
SPRINGS nos dice: “Error: you must specify a name for the context!”
Finalmente para ejecutar el contexto C1 en el puerto 50001 y conectándolo

al RNS anterior, se escribe:
“./ContextLauncher -p50001 -n C1 -r rmi://localhost:54321”

2.2.3. Ejecución de la plataforma con agentes

Una vez que ya tenemos en funcionamiento un RNS y un contexto, es la
hora de lanzar un agente.

Para crear un agente es necesario crear una nueva clase que herede de la
clase SpringsAgent RMIImpl (sólo se encuentran implementados los agentes con
RMI).

Cuando un agente es creado, se llama al método main() del propio agente
para empezar su ejecución. Es en ese método donde se tiene que empezar a
programar la tarea que realizará el agente.

Para permitir que un agente se mueva a otro contexto, se utiliza:

moveTo: Para moverse a un determinado contexto, que puede ser especificado
con un ContextAddress o con el propio nombre del contexto pasado como
String. Además se puede añadir la función a llamar una vez que el agente
se haya movido y los parámetros para esa función en el caso de que los
necesite.

moveToURL: Para moverse a un determinado contexto dada una dirección
URL (que contendrá la dirección del contexto y el protocolo que va a
utilizar o el puerto para conectarse). Al igual que antes, también se puede
añadir la función que se desea llamar una vez el agente se haya movido y
los parámetros para esa función (en el caso de que los necesite).

Para crear este agente, simplemente se hace que nada más ser creado muestre
algo por pantalla en el método main(), y luego se mueva al contexto C1 con
el método moveTo(“C1”, “end”) ejecutando finalmente un método end() que
muestre por pantalla que ha llegado al contexto C1 y que va a terminar su
ejecución.

Una vez creada la clase con el código que ejecutará este agente, es necesa-
rio tener un contexto que ejecute el agente. Se crea una clase Test que en su
ejecución main(String [] args) cree un contexto (el nombre es indiferente) que
se conecte al RNS que he ejecutado antes y que cree el agente que se ha pro-
gramado antes. Una vez el agente se haya creado, mostrará por la pantalla el
mensaje de que ha sido creado y en el terminal del contexto C1 mostrará que
va a terminar su ejecución.

Aśı, se comprueba que el agente se ha creado y se ha movido correctamente.

2.3. La plataforma SPRINGS en Android

Una vez probada la plataforma SPRINGS, es momento de estudiar el pro-
yecto modificado de SPRINGS utilizando Android, también desarrollado por el
grupo de investigación SID.



2.3. LA PLATAFORMA SPRINGS EN ANDROID 13

Este proyecto mantiene la esencia de SPRINGS, la misma estructura de
clases desarrollada por el grupo SID, pero no utiliza RMI debido a que, en
Android, esas libreŕıas no se encuentran de forma nativa y son muy pesadas
para incluirlas junto al proyecto de SPRINGS. Además, la máquina virtual
de Android no es igual a la de Java puro de Oracle, por lo que podŕıa haber
problemas si se utiliza el código RMI original.

Aśı, en este proyecto, en sustitución de RMI, se encuentra la libreŕıa lipeRMI,
que viene a ser una libreŕıa con la misma funcionalidad que RMI pero más ligera.

2.3.1. Estado de la plataforma

La parte interna de SRPINGS para Android no cambia prácticamente nada,
exceptuando el cambio de llamadas de RMI a lipeRMI. El cambio más llamativo
es el volcado de código que ha sido llevado de RegionNameServer a RegionNa-
meServer RMIImpl debido a problemas con lipeRMI que no pod́ıa encontrar los
métodos de la clase RegionNameServer en la clase RegionNameServer RMIImpl
si no se encontraban en la clase de RegionNameServer RMIImpl.

En lipeRMI las clases que más destacan son:

Server: Es un simple servidor que espera en un determinado puerto a que un
cliente de lipeRMI se conecte.

Client: Es el cliente de lipeRMI que establece la conexión con el servidor de
lipeRMI y genera un conjunto de conexiones locales para permitir llamar
a distintos métodos de forma remota.

CallHandler: Es una clase que permite realizar llamadas remotas. Conoce la
clase a la cual está conectada y también sus métodos.

2.3.2. Ejecución y problemas con la plataforma

Se intenta poner en marcha SPRINGS para Android creando un servidor
RNS, un par de contextos y un agente que se mueva de un contexto a otro.

Problema: Permission.INTERNET Ha habido un problema que se pro-
duce justo cuando un contexto se intenta conectar al servidor RNS para regis-
trarse. El problema viene con una excepción IOException que indica que no se
ha podido establecer la conexión.

Solución Tras investigar el establecimiento de la conexión en Android,
se encuentra en la documentación de Android que hay que añadir un permiso
llamado INTERNET para poder abrir Sockets.

Una vez añadida la ĺınea:

<uses-permission android:name=“android.permission.INTERNET”/>

en el archivo AndroidManifest.xml (es un archivo que describe cómo se en-
cuentra definido un proyecto Android, en este caso SPRINGS para Android) se
consigue que la plataforma pueda utilizar los Sockets.

Una vez añadido este permiso, la prueba ha sido un éxito.



14 CAPÍTULO 2. LA PLATAFORMA DE AGENTES MÓVILES SPRINGS

Problema: StreamCorruptedException Una vez conseguido registrar un
contexto en un RNS se detecta un nuevo problema: la comunicación entre estas
dos clases.

La excepción viene desde una parte interna del código, la clase Connec-
tionHandler (que es la que se encarga de llamar a los métodos remotos, reci-
bir llamadas de métodos y devolver resultados). La excepción en concreto es:
StreamCorruptedException (que se produce al intentar leer un Objeto cuya
información de descripción del objeto no se puede encontrar o está corrupta).

Solución Durante las pruebas de ejecución y depuración, se detectaron
dos causas.

Primera: Intentar mezclar RMI de SPRINGS con lipeRMI de SPRINGS para
Android. Tras indagar en ambos códigos confirmamos que definitivamente
RMI no era compatible con lipeRMI y, por lo tanto, los agentes, contextos
y servidores de nombres de regiones de RMI no iban a ser compatibles con
sus respectivos de lipeRMI.

Segunda: Utilizar un emulador de Android tanto para crear contextos como
RNS. Los emuladores de Android, aunque ejecutan el sistema operativo
propio de Android, no establecen las conexiones con los módulos de cone-
xión que utilizaŕıa un dispositivo f́ısico, sino que la establecen a través de
un servicio NAT (Network Address Translation). Esto permite al emulador
salir al exterior y conectarse con normalidad, pero no le permite actuar
fácilmente como un servidor y, debido a esto, recibir conexiones nuevas
impidiendo el normal funcionamiento de SPRINGS.

Para solucionar este último problema simplemente hay que utilizar disposi-
tivos f́ısicos (como los terminales o tablets) con Android.

Tras utilizar este tipo de dispositivos, el problema desapareció.



Caṕıtulo 3

Abstracción de las
Comunicaciones: Sockets
Abstractos

Tras las dos pruebas de SPRINGS, se ha comprobado cómo funciona inter-
namente SPRINGS y se procede a diseñar la nueva libreŕıa para la plataforma.

Se pretende conseguir que la plataforma trabaje con los distintos tipos de
conexiones a la vez (WiFi, Bluetooth y 3G) y establezca conexiones entre los
dispositivos móviles distantes de la red para que se puedan comunicar.

3.1. La libreŕıa Sockets abstractos

SPRINGS para Android permite ejecutar la plataforma en un dispositivo
móvil (un terminal), aśı que ya es un entorno móvil (que es lo que se pretend́ıa
en un principio), pero el entorno en el que se ejecuta es solamente WiFi [16] [17]
y los idspositivos deben estar en la misma red para que la plataforma se ejecute.

Para conseguir que el entorno se ejecute en diferentes tipos de red (Bluetooth,
WiFi, redes móviles, etc) el sistema debe recibir, por cada conexión que realiza,
diferentes tipos de conectores (“Sockets”) en función del tipo de conexión que
se realice.

Los tipos de conectores son únicos y esto obliga a los programadores a man-
tener el código con todos los tipos posibles de conectores. Esto es poco escalable
y obliga a la plataforma a que compruebe constantemente los tipos de conecto-
res durante la ejecución. Además, si apareciese un nuevo tipo de conexión, se
tendŕıa que modificar toda la plataforma para agregar este nuevo tipo.

En lugar de añadir y combinar todas las conexiones, la mejor opción es uti-
lizar el patrón Adapter [18] para que, independientemente del tipo de conexión,
la plataforma utilice un socket como haćıa con el socket de java. Entonces todas
las conexiones quedarán encapsuladas siguiendo un mismo patrón (que tenga la
misma interfaz).

15



16CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocket
close(): void
getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

Figura 3.1: Interfaz AbstractSocket

3.1.1. Diseño de la libreŕıa

La clase base es una interfaz con las cabeceras que utiliza SPRINGS de
java.net.socket. La interfaz se llamará AbstractSocket (ver fig: 3.1).

Una vez creada esta interfaz, se crearán los tipos de conexiones que uti-
lizará la plataforma implementando la interfaz anterior (ver imagen: 3.2), en
concreto:

EthernetSocket: que utiliza un host o IP y un puerto para la conexión
TCP/IP.

BluetoothSocket: que utiliza el hardwareAddress y el Identificador único
universal, UUID (Universal Unique Identifier) para establecer una cone-
xión mediante Bluetooth.

AbstractSocket
close(): void
getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

EthernetSocket
socket: java.net.Socket
EthernetSocket(String host, int port)
EthernetSocket(java.net.Socket socket)
EthernetSocket(AbstractSocketParameters asp)

BluetoothSocket
bs: android.bluetooth.BluetoothSocket
BluetoothSocket(BluetoothDevice bd, UUID uuid)
BluetoothSocket(android.bluetooth.BluetoothSocket bs)
BluetoothSocket(AbstractSocketParameters asp)

Figura 3.2: Clases EthernetSocket y BluetoothSocket que implementan la inter-
faz AbstractSocket.

Dentro de sus respectivas clases están los verdaderos sockets y las funciones
de las clases llaman a las funciones del socketque contiene, utilizando para ello
el patrón wrapper [19].



3.1. LA LIBRERÍA SOCKETS ABSTRACTOS 17

También se generará una interfaz para los servidores de Sockets con la mis-
ma interfaz necesaria de java.net.ServerSocket. La interfaz se denomina Abs-
tractServerSocket (ver figura: 3.3).

AbstractServerSocket
accept(): AbstractSocket
close(): void

Figura 3.3: Interfaz AbstractServerSocket

Y, al igual que con los Socket, también se necesitan los respectivos servidores
(ver fig. 3.4):

EthernetServerSocket: Representará un servidor que escuchará a través de
un puerto.

BluetoothServerSocket: Representará a un servidor que escuchará en un
determinado UUID.

AbstractServerSocket
accept(): AbstractSocket
close(): void

EthernetServerSocket
serverSocket: java.net.ServerSocket
EthernetServerSocket(int port)
EthernetServerSocket(AbstractSocketParameters asp)

BluetoothServerSocket
bss: android.bluetooth.BluetoothServerSocket
BluetoothServerSocket(BluetoothAdapter ba, String service, UUID uuid)
BluetoothSocket(AbstractSocketParameters asp)

Figura 3.4: Clases EthernetServerSocket y BluetoothServerSocket que imple-
mentan la funcionalidad de AbstractServerSocket

Aunque aún hay problemas derivados de la plataforma:
Los parámetros necesarios tienen que llegar a su correspondiente Socket o

Servidor y que se inicie de forma adecuada. Por ejemplo no podemos iniciar un
servidor de Bluetooth que escuche en un puerto IP.

Por esto es necesario que, para crear tanto los sockets como los Servidores,
reciban un parámetro común que luego ellos comprobarán si es correcto o no.

Para recibir un parámetro abstracto, es necesario crear una interfaz que
represente eso mismo, parámetros abstractos (ver fig. 3.5):



18CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocketParameters
getRemoteLocation(): String
toString(): String

Figura 3.5: Interfaz AbstractSocketParameters

Ahora, cada tipo de conexión debe moldear una clase que extienda la fun-
cionalidad de AbstractSocketParameters para obtener los parámetros deseados:

En el caso de Ethernet, la clase se denomina EthernetSocketParameters
que tiene un método estático para comprobar si los parámetros abstractos
son del tipo de Ethernet y algunos métodos para obtener la IP o el puerto.

En el caso de Bluetooth, la clase se denomina BluetoothParameters que,
al igual que el anterior, tiene un método para comprobar si los parámetros
abstractos son del tipo de Bluetooth y otros métodos para obtener, por
ejemplo, la dirección hardware del Bluetooth y el UUID.

(Ver fig. 3.6)

AbstractSocketParameters
getRemoteLocation(): String
toString(): String

EthernetParameters
dstName: String
port: int
EthernetParameters(String host, int port)
getDstName(): String
getPort(): int
check(AbstractSocketParameters asp): EthernetParameters

BluetoothParameters
uuid: UUID
hardwareAddress: String
BluetoothSocket(UUID uuid, String hardwareAddress)
getUuid(): UUID
getHardwareAddress(): String
check(AbstractSocketParameters asp): BluetoothParameters

Figura 3.6: Clases EthernetParameters y BluetoothParameters que implementan
la interfaz AbstractSocketParameters

3.1.2. Integración de la libreŕıa en SPRINGS

Para conseguir que SPRINGS para Android siguiera funcionando correcta-
mente (sin cambiar su estructura) con los Sockets de Bluetooth y cualquier otro
tipo de Socket (tanto los que ya existen, como los que pueden existir en un



3.1. LA LIBRERÍA SOCKETS ABSTRACTOS 19

futuro si se crea un nuevo tipo de conexión), es necesario modificar un poco la
plataforma.

En realidad sólo hay que modificar todas las partes donde se usa un Soc-
ket en SPRINGS para Android (la gran mayoŕıa están en LipeRMI) por un
AbstractSocket y, a su vez, hay que cambiar los ServerSocket por AbstractSer-
verSocket y los parámetros (en algunos puntos se usa un IP y un puerto, en
otras solamente un puerto) por AbstractSocketParameters.

Además ya que se está modificando SPRINGS para Android, voy a aprove-
char para poder:

Cerrar un Contexto y un Servidor de Nombres de Región (RNS)
Para cerrar un contexto o un servidor lo único que hace falta es:

Obtener el servidor de lipeRMI que se crea, en la función start() y guar-
darlo.

crear un método close() o stop() en las clases donde se utilice este servidor
de lipeRMI para que, cuando se vayan a cerrar los servidores, también
llamen a la función close() del servidor lipeRMI.

Y también, en el contexto, es recomendable llamar a la función padre stop()
para que termine la ejecución del objeto “ accessService”, a demás de llamar al
servidor RNS al que se encontraba conectado para indicarle que este contexto
no va a estar más tiempo conectado.

Mantener la conexión Para mantener la conexión es necesario que el servi-
dor RNS compruebe cada cierto tiempo si los contextos, a los que está conectado,
siguen operativos. Esto puede resultar demasiada carga para un único servidor
(el que tenga que recibir peticiones de todos los contextos y además comprobar
si se encuentran conectados). Aśı que lo voy a hacer al contrario. Los contextos
serán los que env́ıen una débil señal al servidor, cada cierto tiempo, para indicar
que siguen operativos.

Cuando un servidor se cierre, intentará indicarle a su servidor RNS que se
va a cerrar y es muy recomendable que lo haga sin ningún agente. Si contiene
algún agente, el contexto debe avisar a los agentes que contiene indicando que
el contexto en el que se encuentran se va a cerrar para que realicen la tarea que
tengan programada, o terminen su ejecución.

Para esto he añadido en la interfaz RegionNameServerInterface una función
para que un contexto pueda enviarle una señal al servidor RNS. Una vez reciba
esa señal, lo que hará el servidor RNS es anotar el momento en que lo recibió.

Cuando el servidor RNS vaya a establecer una conexión con el contexto y
no lo consiga, comprobará el último momento en que recibió la última señal del
contexto. Si pasa un determinado tiempo desde la última señal recibida hasta
el momento actual sin haber recibido ninguna señal, entonces el Servidor RNS
decidirá que el contexto está cáıdo y cerrará la conexión con tal contexto.

También se ha añadido un evento (onCloseContext()) a los agentes que se
disparará cuando el contexto en el que se encuentren vaya a ser cerrado.

En ese evento es donde el agente debe decidir si debe moverse a otro contexto
o terminar su ejecución.



20CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

3.2. Creando una red Mesh

Ya están diseñados los distintos tipos de conexión, pero sólo se pueden uti-
lizar si el medio está al alcance, es decir, es como realizar una conexión a una
máquina a la que te puedes comunicar.

En otras palabras, ahora el tipo de comunicación, que realizaŕıa cada uno de
los dispositivos de comunicación, seŕıa directa, del terminal de origen al terminal
de destino (P2P [20] [21] [22] [23]).

El problema viene cuando hay dispositivos a los que no te puedes conectar
directamente debido a que no están al alcance (por ejemplo por Bluetooth,
si los dos dispositivos están a más de 10 metros, cuando el alcance máximo
del Bluetooth es de 10 metros) o que no tienen los mismos dispositivos para
comunicarse (uno utiliza solamente WiFi y otro utiliza únicamente Bluetooth).

En estos casos es necesario utilizar un sistema que implemente una red Mesh
[24] [25] y permita la comunicación entre varios dispositivos que no están conec-
tados directamente.

Para comunicarse todos los dispositivos de la misma red Mesh, lo que debe
hacer cada dispositivo es ir buscando periódicamente a quién se puede conectar.
Esto lo realizará:

Primero directamente a los dispositivos que tenga cerca.

Luego les preguntará a esos dispositivos, cuales son los dispositivos a los
que ellos se pueden conectar.

De esta manera el dispositivo podrá conocer todos los dispositivos de la red y a
cuales se puede conectar indirectamente.

Además, mientras van buscando los dispositivos nuevos, también va actua-
lizando la lista de dispositivos a la cual se puede conectar (los dispositivos que
tiene cerca). De esta manera, si se aleja de un dispositivo cercano, tal vez pueda
alcanzarlo indirectamente mediante otro dispositivo.

La idea principal es utilizar los dispositivos a los que śı se tiene conexión y
utilizarlos como medio de comunicación para establecer un camino y, aśı, llegar
al dispositivo destino. (Ver fig.3.7, el camino rojo que comunica dos nodos que
no están conectados directamente).

Ninguna de las clases creadas con anterioridad, sirve para este propósito, ya
que ambos tipos de conexiones se comunican directamente mediante su medio
(WiFi o Bluetooth). Por lo que es necesario crear un sistema propio de comuni-
cación que utilice las clases anteriores y permita conectar los dispositivos entre
śı mediante las conexiones directas de los dispositivos cercanos.

3.2.1. Los nodos de la red: Node

Cada terminal Android es considerado como un nodo. Un nodo es cada uno
de los puntos de conexión de la red por donde se establecen y se transmiten todas
las comunicaciones de la red. De esta forma, cada vez que en la red se establezca
una conexión, se hará de un nodo a otro y, si fuese necesario, involucrando a otros
nodos para permitir la comunicación entre el nodo emisor y el nodo receptor.

Un nodo (Node) esta compuesto por un conjunto de interfaces de conexión
denominadas Port (puerto). A través de cada nodo se permite la conexión (di-
recta o indirectamente) a otro nodo (siempre que haya conexión) y se permite
también recibir conexiones de otros nodos.



3.2. CREANDO UNA RED MESH 21

Figura 3.7: Ejemplo de una conexión directa (azul) e indirecta (rojo) entre nodos
de una misma red.

Para saber cuál es el mejor camino hacia un nodo determinado, los nodos
pueden preguntar a sus nodos adyacentes para saber a qué nodos puede llegar.
Si recibe distintos caminos para llegar a un nodo, entonces se tendrá que decidir
por el camino más óptimo.

El camino más óptimo se decide en función de algo llamado “coste”, y de la
cantidad de nodos que tiene que pasar la comunicación para poder conectarse
con el nodo final.

Los costes son relativos y dependen de los nodos intermedios. Estos costes
no hacen referencia a ningún coste económico, sino a un coste de esfuerzo del
dispositivo por conectarse. El coste en cada nodo puede ser diferente y depen-
derá de su configuración. El concepto de coste se utiliza para poder tener un
orden de preferencia de puertos (por ejemplo, si se prefiere las conexiones WiFi
a las 3G, entonces el coste del Port WiFi será menor que el 3G, para que tenga
preferencia).

Por definición, el coste para conectarse un nodo a śı mismo es 0.

Por ejemplo: Tenemos cuatro nodos A, B, C, D (Ver fig. 3.8).
Los cuatro se comunican de la siguiente forma: A-B-C-D:

Coste de A:

• Coste por WiFi: 1

Coste de B:

• Coste por WiFi: 1

• Coste por Bluetooth: 7

Coste de C:

• Coste por Bluetooth: 11



22CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

• Coste por WiFi: 5

Coste de D:

• Coste por WiFi: 37

De A a B la comunicación es mediante WiFi.
De B a C la comunicación es mediante Bluetooth.
De C a D la comunicación es mediante WiFi.
Es decir: A <—(WiFi)—> B <—(Bluetooth)—> C <—(WiFi)—> D
Para llegar de A a D el coste es el siguiente:
Coste(A, WiFi) + Coste(B, Bluetooth) + Coste(C, WiFi) = 1 + 7 + 5 =

13
El coste que tendŕıa A para conectarse a D es 13.

Figura 3.8: Ejemplo visual de la conexión entre A y D pasando por los nodos B
y C.

Para mayor seguridad, cada nodo debe habilitar el uso de un determinado
sistema de conexión. Por ejemplo, si en un nodo, aunque tenga habilitado el
sistema WiFi y Bluetooth, sólo debe utilizar el sistema WiFi, entonces el nodo
sólo activará el servicio WiFi. El servicio Bluetooth no lo activará y, por tanto,
no será usado por la plataforma.

También se puede deshabilitar las conexiones que ya no se quieran utilizar.
En estos casos es necesario reorganizar los nodos que hayan sido conocidos el
nodo principal, ya que es posible que el mejor camino para alcanzar un nodo
pasase por la conexión que se acaba de cerrar.

3.2.2. Los puertos de la red: Port

Un puerto es una interfaz que establece conexiones hacia otros nodos (siem-
pre que estén a su alcance, por ejemplo si es un puerto Bluetooh y el nodo
al que se tiene que conectar está a más de 10 metros, entonces no se estable-
cerá la conexión directa con el nodo). Por ejemplo la tarjeta inalámbrica WiFi o
Bluetooth. Aunque parezca que están relacionados con los tipos de conexiones
anteriormente descritos, puede haber más de una interfaz con el mismo tipo de
conexión. Por ejemplo: una tarjeta de red Ethernet y una tarjeta inalámbrica
WiFi utilizan el mismo tipo de conexión (Ethernet).

Estos puertos deben permitir establecer directamente la conexión utilizando
su medio y no se deben ver implicados directamente en el establecimiento de
conexión entre nodos, sino entre dispositivos. Por ejemplo, un puerto WiFi sólo
se debe encargar de conectar con otros dispositivos WiFis en función de los



3.3. DISEÑO DE LA NUEVA RED MESH 23

parámetros que le pasen. Es el nodo el encargado de conectarse con otros nodos,
tanto si la conexión es directa mediante el puerto WiFi o indirecta usando dicho
puerto.

Para permitir recibir conexiones, un puerto que se encuentre habilitado,
siempre tiene que tener un servidor que reciba conexiones a través de dicho
puerto. Además, es recomendable que también tenga todos los parámetros posi-
bles para poder establecer la conexión con otros nodos y poder pedir información
sobre el estado de la red, establecer una conexión con su nodo o incluso pedirles
que establezcan una conexión con un nodo lejano utilizándolo como puente.

Para mejorar la conectividad en redes de tipo Ethernet, donde los nodos
se encuentren en diferentes redes conectados mediante Routers con NAT, Los
puertos que utilicen conexiones Ethernet están obligados a indicar cuál es la IP
que deben preguntar para conectarse a su propio nodo. Por ejemplo: si tenemos
un nodo en Internet con una IP 9.10.11.12 y otro nodo en una Intranet con la IP
192.168.20.5, estos dos nodos no se podrán comunicar directamente debido a que
hay un Router NAT pasarela que comunica ambas redes. Si el nodo de Internet
intenta comunicarse a la IP del nodo de la Intranet, entonces la IP (192.168.20.5)
del nodo de la Intranet será buscada en Internet y nunca se podrá establecer la
conexión. Pero si el nodo de la Intranet indica que la IP para conectarse a él es
la IP pública del Router NAT (la IP de Internet), entonces el nodo de Internet
establecerá la conexión con el Router y luego será el Router el que redirecione
al nodo de Intranet (utilizando la configuración NAT que tenga).

3.3. Diseño de la nueva red Mesh

En la sección anterior se han descrito los componentes que contiene la red
Mesh.

En cambio, en esta sección se describen los componentes lógicos que forman
la red para empezar a darle forma.

3.3.1. Conexiones virtuales

Tras describir el sistema, es necesario generar un nuevo tipo de conexión para
permitir la conexión con dos nodos que no se pueden conectar directamente.

Este nuevo tipo de conexión se denomina Virtual (Ver fig. 3.9).

Una conexión virtual mantendrá una conexión de un nodo durante todo el
tiempo que dure la comunicación, sea del tipo que sea, con otro nodo.

Para crear esta conexión es necesario indicar en los parámetros a qué nodo
se quiere conectar y a qué servicio se debe preguntar. En el caso de que los
parámetros sean para realizar otro tipo de conexión (Ethernet o Bluetooth),
este enlace debe permitir la creación y gestión de esos tipos de enlace, indepen-
dientemente del puerto, en función de la configuración del sistema (en este caso
Android).

Aśı que los parámetros virtuales se deben poder crear a través de un nombre
de un nodo y servicio o con otros parámetros abstractos.

Para los SocketsVirtuales el planteamiento es el mismo, los sockets virtuales
tienen un socket abstracto en su interior y lo único que deben hacer es rellamar
al socket que contenga (ver fig. 3.10).



24CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocketParameters
getRemoteLocation(): String
toString(): String

VirtualParameters
id: String
service: String
asp: AbstractSocketParameters
VirtualParameters(String id, String service)
VirtualParameters(AbstractSocketParameters asp)
getId(): String
getService(): String
getAbstractSocketParameters(): AbstractSocketParameters
check(AbstractSocketParameters asp): VirtualParameters

Figura 3.9: Clase VirtualSocketParameters, que implementa la interfaz Abstrac-
tSocketParameters

AbstractSocket
close(): void
getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

VirtualSocket
as: AbstractSocket
VirtualSocket(AbstractSocket as)
VirtualSocket(AbstractSocketParameters asp)

Figura 3.10: Clase VirtualSocket, que implementa la interfaz AbstractSocket

En el caso de los servidores virtuales el planteamiento es un poco distinto, ya
que puede que quiera recibir conexiones de diferentes nodos, aśı que lo mejor es
que puedan permitir tener varios servidores abstractos bajo el mismo servidor
virtual y cada vez que reciba una nueva conexión, sea del tipo que sea, enviarla
a través del método accept() (ver fig. 3.11).

Al final la situación para establecer una conexión es la misma. Siempre hay
que identificar el “lugar” al que te quieres conectar y la “puerta” por la que
quieres pasar.

Esto se ve claramente con Ethernet, Bluetooth o incluso con el sistema de
conexiones virtuales.



3.3. DISEÑO DE LA NUEVA RED MESH 25

AbstractServerSocket
accept(): AbstractSocket
close(): void

VirtualServerSocket
queueSockets: Queue<AbstractSockets>
servers: Collection<Servers>
service: String
VirtualServerSocket()
VirtualServerSocket(String service)
startAnotherServerSocket(AbstractSocketParameters asp)
startServer(AbstractServerSocket abss)
VirtualServerSocket(AbstractSocketParameters asp)

Figura 3.11: Clase VirtualServerSocket, que implementa la interfaz AbstractSer-
verSocket

Lugar Puerta
Ethernet Host (IP) Puerto
Bluetooth HardwareAddress UUID
Virtual Node Service

3.3.2. El Protocolo de comunicación

Ahora que ya se ha descrito qué es lo que va a haber en la red (nodos) y el
sistema de conexión (puertos y sockets abstractos), es el momento de empezar a
describir cómo se van a comunicar estos nodos, cómo se van a descubrir y cómo
van a establecer la conexión con un nodo lejano.

Para establecer la comunicación simplemente un nodo debe establecer la co-
nexión con otro nodo que se encuentre escuchando, utilizando el mismo sistema
(WiFi o Bluetooth, por ejemplo).

Para descubrir y conectarse con un nodo lejano, primero hay que conectarse
a un nodo cercano y luego es necesario comunicarse a través de un protocolo.

Una vez establecida la conexión con un nodo cercano en un puerto que
sepamos que está escuchando siempre es necesario:

1. El emisor debe que enviar primero, en formato String UTF-8 (Unicode
Transformation Format, 8-bit), el tipo de acción que quiere realizar con
esta conexión. Si es CONNECT TO NODE entonces es que se quiere co-
nectar a un nodo. Si es GET NODES entonces es que quiere obtener in-
formación de todos los nodos a los que puede llegar el receptor en función
de su configuración.

2. Opción CONNECT TO NODE (Ver fig. 3.12)

a) Si el emisor se quiere conectar a un nodo, entonces el emisor tendrá que
enviar, en formato String UTF-8, el nombre del nodo al que se quiere
conectar.



26CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

b) El receptor comprobará si es él el nodo que se está buscando, si es él
entonces enviará un NODE FOUND al emisor y utilizará la conexión
para comunicarse con el nodo emisor. Si no es él entonces intentará es-
tablecer una conexión con el nodo que se está buscando. Si consigue
establecer la conexión entonces enviará al emisor NODE FOUND y
este nodo receptor intermedio empezará a actuar como “puente”. Si
no lo consigue, entonces enviará un NODE NOT FOUND y cerrará la
conexión.

Figura 3.12: Diagrama de secuencia del protocolo que muestra cómo se debe
proceder en el caso de que un nodo emisor se intente comunicar con otro nodo.

3. Opción GET NODES (Ver fig. 3.13)

a) Si el emisor quiere obtener información de los nodos a los que se puede
conectar el receptor, entonces el receptor enviará al emisor toda la
información de los nodos a los que se puede conectar más uno, la
información del propio receptor. La forma de enviar la información
de cada nodo es la siguiente:

1) Primero se env́ıa el nombre del nodo, en formato UTF-8.

2) Luego se env́ıa la configuración de los parámetros para poder
conectarse a ese nodo. Estos parámetros deben ser del mismo
tipo que la conexión que se esté utilizando aunque se almacenen
como AbstractSocketParameters. Por ejemplo si la conexión se
está realizando por Bluetooh, entonces los parámetros recibidos



3.3. DISEÑO DE LA NUEVA RED MESH 27

serán del tipo BluetoohParameters, pero se almmacenarán en el
nodo como AbstractSocketParameters.

3) A continuación se envia el coste para conectarse al nodo.

4) Finalmente la cantidad de saltos o nodos que hay intermedios
para llegar al nodo destino.

b) Una vez enviada toda la información de todos los nodos que conoce el
receptor, el propio receptor indicará con un valor booleano si quiere
la información para conectarse con el emisor.

1) Si el receptor ha enviado un true preguntando por la configura-
ción del emisor entonces el emisor comprobará si puede enviar
información. Si puede enviarla le enviará un valor booleano true
y empezará a enviarle los parámetros al receptor (de la misma
forma que el receptor le hab́ıa enviado todos los parámetros de
todos los nodos que conoćıa). En el caso contrario le enviará un
valor booleano false y cerrará la conexión.

2) Si el receptor ha enviado un false para no preguntar por los
parámetros, entonces se cerrará la conexión.

Figura 3.13: Diagrama de secuencia del protocolo en el caso de solicitar la in-
formación de todos los nodos a los que se puede conectar.

Todos los env́ıos de alguna cadena de tipo String se enviarán en formato UTF-8.
También se puede conectar a un determinado dispositivo que tenga un nodo

sin querer comunicarse con el nodo, simplemente utilizando otro servicio que no
utilice el nodo. Por ejemplo si el nodo escucha con el puerto 9000 del sistema
inalámbrico WiFi, cualquier otra aplicación se puede conectar a ese dispositivo
con el sistema inalámbrico WiFI utilizando un puerto distinto, y de esta forma
no se tiene que acceder al nodo obligatoriamente.



28CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

3.3.3. La conexión puente

Una vez establecida la conexión, los nodos intermedios deben enviar todo
lo que reciban para poder permitir que dos nodos que no se pod́ıan comunicar
directamente en un principio, ahora śı que lo pueden hacer.

Para establecer la conexión, los nodos utilizan la parte del protocolo de
conexión entre nodos(ver fig. 3.14).

Figura 3.14: Ejemplo del uso del protocolo para establecer una conexión entre
A y C usando B como medio. Al final, una vez establecida la conexión, A y C
utilizarán a B como conexión puente.

Para establecer la conexión es necesario que, una vez se tenga claro que
un nodo va a actuar como puente, entonces debe recoger los dos sockets que
mantienen la conexión y enviar la salida de uno a la entrada del otro y viceversa
(ver fig. 3.15).

Figura 3.15: Ejemplo visual con los dos sockets donde el nodo B actúa como
puente, basado en el ejemplo anterior.



3.4. IMPLEMENTACIÓN DE LA NUEVA RED MESH 29

3.4. Implementación de la nueva red Mesh

En la sección anterior se han descrito y diseñado a nivel lógico los compo-
nentes de la nueva red.

En esta sección se describe el diseño e implementación de los distintos ges-
tores y clases principales que tiene la red Mesh para la comunicación indirecta
entre nodos.

Para que la nueva red funcione, es necesario que sólo se permita un nodo
por dispositivo. Para conseguir este objetivo se utiliza el patrón Singleton [26].
La clase que gestione cada nodo de cada dispositivo se denomina NodeManager
(Gestor del nodo).

3.4.1. El gestor del nodo: NodeManager

Un NodeManager debe saber en cada momento el camino más rápido para
llegar a los nodos más cercanos que tenga (tras realizar al menos una búsque-
da), comprobar cada cierto tiempo si sus puertos están operativos y tener la
capacidad de conectarse a cualquier nodo, incluso si no los conoce.

Para realizar una búsqueda, el NodeManager debe estar configurado con
varios parámetros que le indican qué nodos debe conocer. Uno de ellos es la
cantidad de saltos que debe dar para llegar al nodo destino. Si la cantidad de
saltos es mayor, entonces el NodeManager no debe conocer el nodo destino ni
los caminos para llegar a él, aunque se podrá seguir conectando al nodo destino.

El otro parámetro es el tiempo que debe pasar para cada consulta. Cada
cierto tiempo el NodeManager realizará una nueva búsqueda actualizando los
nodos a los que puede acceder, los costes que han podido variar y los saltos
necesarios para llegar a los nodos.

Los puertos también se comprobarán cada cierto tiempo y, si algún puerto se
encuentra deshabilitado en algún momento, entonces se debe cambiar el acceso
que se realizaba antes por ese puerto, a otro puerto distinto. Si no hay otro puerto
para acceder, entonces ya no se podrá acceder a ese nodo. Si, pasado cierto
tiempo, el puerto volviera a estar operativo, entonces volverá a ser habilitado
automáticamente a no ser que se haya especificado expĺıcitamente que debe
quedarse cerrado.

Para conectarse a cualquier nodo, simplemente el NodeManager debe buscar
en los nodos que conoce a ver si se encuentra en esa lista. Si no se encuentra en-
tonces debe utilizar a los nodos que conoce más cercanos y les debe preguntar si
pueden establecer una conexión al nodo deseado. Si alguno lo consigue, entonces
se utiliza la conexión del nodo al que se preguntó como conexión puente y ya se
tendrá la conexión con el nodo deseado. Si ninguno lo consigue entonces se avisa
al nodo que realizó la búsqueda que no se ha podido establecer la conexión.

También deben permitir cerrar manualmente un determinado puerto, al igual
que abrirlo.

Y finalmente permitir establecer, de forma externa, el orden de preferencia
de los puertos.

3.4.2. Implementación del puerto: Port

Los propios puertos (Port) almacenan los resultados de sus últimas búsque-
das de nodos para que, en el caso que sea necesario, volver a consultar los



30CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

resultados para, por ejemplo, obtener acceso a un nodo que ya no se pueda
acceder a él mediante otro puerto. También establecen conexiones con otros
puertos de su mismo tipo (WiFi con WiFi, por ejemplo) de otros nodos, pero
sin utilizar el protocolo. Para el protocolo y la comunicación con otros nodos ya
se encargará el NodeManager del nodo.

Todos los puertos estan identificados para poder acceder a ellos de una forma
más rápida y, si fuese necesario, para establecer el orden de los puertos (ver fig.
3.16).

Port
lastNodes: Map<String, Node>
cost: double
int: typeOfPort
Port(double cost, int typeOfPort)
isEnabled(): boolean
tryToEnable(): boolean
getNodes(Collection<AbstractSocketParameters> nodesToAsk): Map<String, Node>
getLastNodes(): Map<String, Node>
getCost(): double
setCost(double cost): void

Figura 3.16: Clase Port

3.4.3. Nodo genérico: Node

Un nodo, sin más, en el sistema (clase Node) es la forma de representar
cualquier nodo al que podamos llegar desde un NodeManager (es decir, cualquier
dispositivo) y está descrito por un Id que identifica el nombre del nodo, tiene
una referencia al puerto por el que se accede a él, contiene los parámetros para
llegar a ese nodo, y almacena la cantidad de saltos y el coste que cuesta llegar
al nodo destino (ver fig. 3.17).

Node
ID: String
port: Port
asp: AbstractSocketParameters
jumps: int
cost: double
Node(String ID, Port port, AbstractSocketParameters asp, int jumps, double cost)
getID(): String
getPort(): Port
getAbstractSocketParameters(): AbstractSocketParameters
getJumps(): int
getCost(): double

Figura 3.17: Clase Node

Tanto para comprobar los puertos como para realizar búsquedas de nodos es
necesario un hilo que realice esta tarea periódicamente. Al hilo que realiza esta
tarea se denomina PortsChecker (Comprobador de puertos).



3.4. IMPLEMENTACIÓN DE LA NUEVA RED MESH 31

3.4.4. El comprobador de puertos y nodos: PortsChecker

La clase PortsChecker aligera la carga que tiene del NodeManager al con-
probar los puertos y buscar nuevos nodos (ver fig. 3.18).

PortsChecker

PortsChecker(long timeForEachRequest)
requestNodesInAllPorts(): void
addServerToRequest(AbstractSocketParameters asp, int portType): boolean
getAbstractSocketParameters(): AbstractSocketParameters
stop(): void

Figura 3.18: Clase PortsChecker

De esta forma el NodeManager es la principal fuente para conectarse al resto
de los nodos, establecer el orden de prioridad de los puertos, y para habilitar y
deshabilitar puertos (ver fig. 3.19).

NodeManager
id: String
pc: PortsChecker
maxJumps: int
timeForEachRequest: long
NodeManager(String id, int maxJumps, PortsChecker pc)
getNewPortsChecker(long timeForEachRequest): PortsChecker
disablePort(Port port)
createNodeManager(String id): NodeManager
createNodeManager(String id, int maxJumps, long timeForEachRequest): NodeManager
getNodeManager(): NodeManager
setPreferencesPorts(List<String> listPorts): void
getNearNodes(): Set<String>
connectTo(String idNode, String service): AbstractSocket
accept(String service): AbstractSocket
getMaxHopes(): int
stop(): void
addServerToRequest(AbstractSocketParameters asp, int portType): boolean
getAbstractSocketParameters(): AbstractSocketParameters
stop(): void
enableWIFI(WifiManager wm): void
disableWIFI()
enableBluetooth(BluetoothAdapter ba): void
disableBluetooth(): void

Figura 3.19: Clase NodeManager



32CAPÍTULO 3. ABSTRACCIÓN DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS



Caṕıtulo 4

Ampliación de
Funcionalidades

A continuación se presentan todos los cambios que han sido necesarios en
las libreŕıas, tanto en SPRINGS para Android como en la recién creada Sockets
Abstractos, para que se ejecuten en plataformas Java que no sean Android y,
aśı, permitir tener más tipos de dispositivos en la red y en la plataforma aunque
no sean del todo móviles. Además se ha añadido un nuevo tipo de agente.

4.1. Comunicación Android-Java

Una de las metas que se desea alcanzar con la plataforma de agentes móviles
es que los terminales Android puedan enviar agentes a equipos no móviles (como
por ejemplo ordenadores).

Esto no era posible debido a que SPRINGS para Android no es compatible
con el SPRINGS original ya que utiliza LipeRMI y la comunicación entre RMI
y LipeRMI no es compatible.

Para permitir que SPRINGS para Android se pueda ejecutar en un equipo
con Java pero sin Android simplemente es necesario quitar las ĺıneas de código
que hacen referencia a la depuración de Android (funciones: “Log.d()”).

En este punto ya se puede ejecutar SPRINGS con LipeRMI en Java, pero es
necesario modificar la libreŕıa Sockets abstractos ya que los puertos y las cone-
xiones Bluetooth hacen referencia a la libreŕıa de Android “android.bluetooth.*”
y no a la de Java “javax.bluetooth”. Aśı que la libreŕıa de sockets abstractos
queda dividida en dos mitades. Una, la más básica, es la que tiene el código java
que se pueda utilizar tanto en Android como en equipos virtuales Java y la otra
la que contiene el código que sólo se puede ejecutar en Android.

Hay ciertas funciones, especialmente en la clase java.net.NetworkInterface
que aparecen en Android 2.3.1 (Gingerbread), pero esa API se encuentra des-
aconsejada, aśı que la plataforma de SPRINGS para Android tendrá que ser
ejecutada a partir de Android 2.3.3.

El código que se mantiene en la parte Java corresponde a las clases pertene-
cientes a EthernetSocket y VirtualSocket, además del código generado por los
puertos genéricos y los nodos.

33



34 CAPÍTULO 4. AMPLIACIÓN DE FUNCIONALIDADES

Desgraciadamente, el código de Bluetooth hay que dejarlo en Android ya que
no pertenece a la libreŕıa original de Java, sino que se encuentra en el propio
código de Android.

Para poder añadir Bluetooth a la libreŕıa de Java es necesario generar una
nueva libreŕıa que no podrá usar ningún dispositivo Android, pero śı cual-
quier máquina f́ısica. El Bluetooth en Java se encuentra en el paquete “ja-
vax.bluetooth.*”.

Entonces, la nueva organización de las libreŕıas es la siguiente: (ver fig. 4.1):

[1]

AbstractSocket

[3]

AndroidSocket

[2]

JavaXSocket

NewAndroid

JavaXSocket

NewAndroid

[4]

Figura 4.1: Esquema de las libreŕıas

Descripción de la nota:

1: AbstractSocket utiliza únicamente los paquetes java.*.

2: AndroidSocket utiliza la libreŕıa de Android 2.3.3 y, a su vez, la libreŕıa
AbstractSocket.

3: Ejemplo de una supuesta libreŕıa que utilizaŕıa javax.* (u otras) para tener
nuevas funcionalidades en las máquinas Java, de entre ellas, Bluetooth.



4.2. AÑADIENDO AGENTES GEOGRÁFICOS 35

4: Ejemplo de una nueva libreŕıa que utilizaŕıa los nuevos tipos de conexiones
que en un futuro puedieran añadir en Android.

4.2. Añadiendo agentes geográficos

Los agentes no sólo tienen que ser móviles en un entorno de redes, donde
impera la conectividad entre dispositivos, sino que también pueden ser móviles
en el sentido geográfico [27] [28] [29], es decir, que se puedan mover a una
determinada coordenada geográfica (latitud y longitud) del planeta.

Para permitir que los agentes puedan desplazarse en un contexto geográfico,
es necesario indicar en qué posición geográfica se encuentran.

Pero no son los agentes los que realmente se encuentran en un determinado
lugar, sino los contextos, que son los que contienen los agentes, los que realmente
se pueden desplazar f́ısicamente por el mundo si se están ejecutando en un
sistema móvil, como un terminal o un portátil.

Para determinar un lugar f́ısico en la tierra es necesario indicar su latitud y
su longitud, es decir, un punto.

4.2.1. Diseñando los agentes geográficos

Para permitir que los agentes se puedan desplazar y buscar un lugar deter-
minado es necesario implementar un sistema que permita a los agentes decir
dónde quieren ir o a qué zona quieren viajar.

Esta pequeña API forma parte de SPRINGS para Android y es una manera,
más o menos abstracta, de referirse a un lugar, ya que la posición geográfica se
puede obtener de diferentes formas. Por ejemplo, en Android para obtener la
posición se utiliza las funciones del GPS (Global Positioning System), pero es
posible que en otros dispositivos, como un portátil, no tengan el mismo sistema
de geolocalización y obtengan la posición de una manera distinta.

Un lugar determinado, queda descrito como un punto, con su latitud y su
longitud (ver fig. 4.2).

Point
x: double
y: double
Point(double x, doubley)
getX(): double
getY(): double
getDistance(Point another): double

Figura 4.2: Clase Point

Para describir una zona, hay que describir un conjunto de superficies.

Una superficie es un área, y estas áreas se describen en la libreŕıa de forma
abstracta (ver fig. 4.3). Lo más importante de estas áreas es saber si un punto
se encuentra en un área o no:

Para no diseñar todo tipo de áreas, sólo se diseñarán dos tipos (el resto se
tendrán que diseñar en un futuro si fuesen necesarias): (ver fig. 4.4):



36 CAPÍTULO 4. AMPLIACIÓN DE FUNCIONALIDADES

Area
toString(): String
contains(Point p): boolean

Figura 4.3: Clase abstracta Area

Triangulares : Representa un área triangular determinada o por tres puntos
o por tres rectas. Además es necesario un cuarto punto que pertenezca al
área para no confundir con el área complementaria.

Circulares : Representa un área circular determinada por un punto y el radio
de alcance.

Area
toString(): String
contains(Point p): boolean

Line
gradient: double
onePoint: Point
Line(Point a, Point b)
Line(double gradient, Point p)
getGradient(): double
getX(double y): double
getY(double x): double
isParallelTo(Line anotherLine): boolean
getCrossPoint(Line anotherLine): Point

TriangleArea
ab: Line
ac: Line
bc: Line
inner: Point
TriangleArea(Point a, Point b, Point c, Point inner)
TriangleArea(Line ab, Line ac, Line bc, Point inner)

CircularArea
center: Point
radius: double
CircularArea(Point center, double radius)

Figura 4.4: Clases TriangleArea y CircularArea que extienden la clase Area. (La
clase Line simplemente es utilizada por TriangleArea para facilitar la taera de
tratamiento de este tipo de area).

Todas las áreas poligonales pueden ser representadas como un conjunto de
áreas triangulares. El resto de las áreas que tengan una curvatura (ovaladas,
eĺıpticas, etc.) tendrán que ser implementadas cuando sean necesarias.

4.2.2. Añadiendo la funcionalidad

Tras el diseño y la implementación de las clases anteriores que permiten
determinar una zona del planeta, hay que modificar la versión de SPRINGS
para Android para que los agentes puedan acceder a esta nueva funcionalidad.



4.2. AÑADIENDO AGENTES GEOGRÁFICOS 37

En los agentes de SPRINGS se añaden dos nuevas funciones para que puedan
moverse a un contexto que se encuentre en un punto en concreto o en una zona.
Una es moveTo(Point ) y la otra es moveTo(Zone ).

En los contextos se añade una variable para que guarden la última posición
en la que se encuentran (puede ser nula si el contexto no sabe dónde se encuentra,
bien porque el sistema de localización que utilice no funciona o porque no tiene
ningún sistema de geolocalización). También tienen un evento que actualiza la
última posición geográfica del contexto.

Por último, el servidor RNS tiene su interfaz, RegionNameServerInterface,
modificada para poder actualizar la posición de un contexto y para buscar cuál
es el contexto más cercano a un punto o que se encuentre en una determinada
área.



38 CAPÍTULO 4. AMPLIACIÓN DE FUNCIONALIDADES



Caṕıtulo 5

Conclusiones

Con este trabajo, se ha realizado un primer paso para la extensión de la plata-
forma de agentes móviles con funcionalidades de interés para entornos inalámbri-
cos, manteniendo la estructura original de la plataforma, lo cual garantiza una
mejor compatibilidad.

Los objetivos cumplidos han sido:

El desarrollo de nuevas funcionalidades que permiten utilizar de forma
más adecuada los distintos entornos inalámbricos que puedan estar dispo-
nibles (Wifi, 3G, Bluetooth) en la plataforma de SPRINGS para Android.
Todos los sistemas tienen como punto en común, a nivel bajo de código,
que utilizan sockets. Las conexiones Ethernet utilizan “java.net.socket”
y las conexiones Bluetooth utilizan “javax.bluetooth.*” en Java o “an-
droid.bluetooth.*” en Android. El esquema de ambas clases socket es muy
similar (primero establecen la conexión y luego sacan un InputStream y
un OutputStream para el env́ıo de datos). En este proyecto se ha aprove-
chado esta caracteŕıstica de que el esquema de los sockets sea muy similar
para poder crear una clase abstracta Socket (AbstractSocket) y unas en-
volturas (EthernetSocket y BluetoothSocket) para poder utilizar ambos
sockets iniciales de una manera cómoda y fácil.

Crear y utilizar una red para la comunicación entre los contextos y servido-
res de nombre de región de la plataforma. Esta red ha es el punto principal
de todo el proyecto y permite la conexión, tanto directa como indirecta, de
todos los dispositivos que formen la red, la gestión de las comunicaciones,
etcétera, independientemente de su sistema de comunicación.

SPRINGS en Android puede ejecutarse en equipos que no sean Android
siempre que tengan una máquina virtual Java. Este objetivo fue añadido
durante el desarrollo del proyecto, pero aún aśı, se llevó a cabo sin mu-
chas dificultades. Este punto es un poco especial porque es la primera vez
que, en particular, se diseña una libreŕıa que utilice otra libreŕıa creada
personalmente.

La plataforma ahora puede utilizar agentes geográficos. Sólo se ha imple-
mentado una manera de describir lugares para que los agentes puedan

39



40 CAPÍTULO 5. CONCLUSIONES

saltar a esos espacios geográficos, pero es posible que el grupo de traba-
jo de la universidad de Zaragoza SID siga desarrollando estos agentes y
dotándolos de nuevas funcionalidades.

En cuanto a lo personal, principalmente he aprendido mucha ingenieŕıa in-
versa al investigar y poner en marcha a SPRINGS, la plataforma de agentes
móviles, tanto el original, como el port en Android. También he aprendido bas-
tante sobre Android, sus permisos internos y el funcionamiento de este sistema,
especialmente en el desarrollo de esta plataforma.

La gestión del proyecto ha sido desproporcionada, sobretodo al principio,
ya que he perdido mucho tiempo con los problemas que he tenido poniendo en
marcha la plataforma SPRINGS.

Para finalizar, tengo que destacar que el diseño se realiza mejor en grupo,
ya que cada persona aporta su punto de vista sobre una idea y añade o mejora
otras ideas sobre un tema. Quiero destacar esto porque como he estado yo sólo,
he tenido que realizar el diseño de los módulos en solitario. Pero en ciertas
ocasiones les he explicado a mis compañeros cómo iba avanzando mi proyecto
y me han sugerido nuevas ideas o me han aportado una nueva información
que, si hubiésemos estado en un equipo desde el principio, se hubiera tenido en
cuenta desde el principio. Por ejemplo las conexiones virtuales, que hacen que
el programador se despreocupe de la conexión real que se está estableciendo.

5.1. Trabajos futuros

Una vez finalizada la integración de los entornos inalámbricos de Android
en la plataforma SPRINGS, quedan por mencionar unos cuantos problemas que
surgen con los entornos inalámbricos. En concreto:

Desconexión del nodo RNS: Si, durante la conexión, el servidor RNS pier-
de la conexión (por ejemplo está demasiado alejado del punto de conexión)
la plataforma de agentes fallará ya que es la pieza clave.

Posible solución: Una posible solución seŕıa distribuir el propio servi-
dor para asegurar que, al menos, la mayoŕıa de las funcionalidades
no se pierdan y, cuando todos los RNS estén otra vez conectados, se
actualice el servidor por completo con los datos nuevos.

Gestión de las conexiones: Que la plataforma tenga en cuenta las nuevas
conexiones, incluso mientras se comunican los nodos.

Por ejemplo: Si dos nodos establecen una conexión indirecta y, al
cabo de un tiempo, están lo suficientemente cerca como para poder
establecer la conexión directa, entonces no hace falta que cierren la
primera comunicación para abrir la segunda, sino que sea la plata-
forma que lo haga automáticamente.

También es útil si la ĺınea por la que se comunican dos nodos cae. Si
llegase a ocurrir, entonces se encargaŕıa la plataforma de buscar una
ruta alternativa automáticamente, sin que los nodos de la aplicación
tengan que realizar ningún esfuerzo.



5.2. EVALUACIÓN DEL PROYECTO 41

5.2. Evaluación del proyecto

El proyecto se ha podido terminar cumpliendo todos los requisitos propuestos
desde el principio e, incluso, alguno más (que la plataforma SPRINGS para
Android se pueda ejecutar en máquinas virtuales Java que no fuesen Android).

Se ha invertido mucho tiempo (tal vez demasiado), en conseguir que la pla-
taforma de SPRINGS para Android funcionara.

El desarrollo de la libreŕıa no ha ocupado mucho tiempo (la mitad del tiempo
del proyecto más o menos) pero con unos resultados muy satisfactorios como
haber conseguido utilizar varios sistemas de comunicación a la vez o el uso de
una red multisalto para todos los nodos de la red.

Este proyecto puede resultar muy interesante como punto de partida hacia
una plataforma de agentes móviles para Android que esté perfectamente adap-
tada al entorno. El grupo SID pretende seguir progresando su investigación en
este tema.

5.3. Tiempo dedicado

Tras la realización del proyecto, se ha realizado una estimación del tiempo
invertido.

Estudio de la plataforma SPRINGS y pruebas de funcionamiento: 78
horas. El mayor tiempo invertido fue en la búsqueda de información de
agentes móviles y en plataformas de agentes móviles: cómo es su funcio-
namiento, cuál es la base general de los agentes móviles, etc.

Estudio, ejecución, depuración y solución de SPRINGS para Android:
243 horas. Esta parte duró mucho debido a la depuración y la búsqueda
de las soluciones. Aunque parezca sencillo depurar un programa, no es
lo mismo un programa “monohilo” que “multihilo”, donde se producen
condiciones de carrera que afectan a la depuración que se realiza.

Diseño e implementación de Abstract Socket: 118 horas. Mientras se bus-
caban los problemas que hubo en SPRINGS para Android, se pudo obser-
var la estructura de la plataforma a fondo y se obtuvieron muchas ideas
para el desarrollo de esta libreŕıa.

Diseño e implementación de la red Mesh: 161 horas. Esta parte ampĺıa
la libreŕıa Sockets abstractos para que funcione con dispositivos alejados,
creando una red Mesh. Aunque parece un simple concepto, hab́ıa que
desarrollar y diseñar muchas partes para que la red estuviese operativa.

Bifurcación de las libreŕıas: 37 horas. Esta es la parte más corta del pro-
yecto, pero no la mas fácil. La libreŕıa Sockets abstractos se tuvo que
dividir en dos, una para que funcionara en Java y otra que usase la pri-
mera y funcionara en Android. Lo más complicado fue la investigación de
todas las instrucciones para saber cuáles eran compatibles en Java y hasta
qué versión mı́nima pod́ıa alcanzar con Android.

Adaptación de SPRINGS para tener agentes geográficos: 41 horas. Aun-
que no era una parte básica del proyecto, los agentes geográficos en entor-
nos móviles son un aspecto muy interesante. Se invirtió bastante tiempo



42 CAPÍTULO 5. CONCLUSIONES

en estudiar cómo representar un área de forma óptima para la plataforma,
porque el planeta se representa como un plano no euclidiano.

Tiempo en el desarrollo del trabajo: 79 horas. Es el tiempo invertido en
la redacción, puesta en marcha, pruebas con terminales y máquinas vir-
tuales.

En total son 757 horas para el desarrollo de todo el proyecto.



Bibliograf́ıa

[1] D. Chess, C. Harrison, A. Kershenbaum, and T. J. Watson, “Mobile agents:
Are they a good idea?,” Communications of the ACM, 1995.

[2] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”
Communications of the ACM, pp. 88–89, 1999.

[3] T. G. Nguyen and T. T. Dang, “Agent platform evaluation and compa-
rison,” Tech. Rep. Pellucid 5FP IST-200134519, Institute of Informatics,
Slovak Academy of Sciences, June 2002.

[4] Y. Aridor and M. Oshima, “Infrastructure for mobile agents: Requirements
and design,” Second International Workshop of Mobile Agents, pp. 38–49,
1998.

[5] H. Peine and T. Stolpmann, “The architecture of the ara platform for
mobile agents,” First International Workshop of Mobile Agents, pp. 50–61,
1997.

[6] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet, “Con-
cordia: An infrastructure for collaborating mobile agents,” First Interna-
tional Workshop of Mobile Agents, pp. 86–97, 1997.

[7] A. Puliafito, O. Tomarchio, and L. Vita, “Map: Design and implementation
of a mobile agents’ platform,” Journal of Systems Architecture, 2000.

[8] L. M. Silva, P. Simões, G. Soares, P. Martins, V. Batista, C. Renato, L. Al-
meida, and N. Stohr, “James: A platform of mobile agents for the manage-
ment of telecommunication networks,” Intelligent Agents for Telecommu-
nication Applications, pp. 76–95, 1999.

[9] R. Trillo, S. Ilarri, and E. Mena, “Comparison and performance evaluation
of mobile agent platforms,” IEEE Computer Society, 2007.

[10] E. Gómez-Mart́ınez, S. Ilarri, and J. Merseguer, “Performance analysis of
mobile agents tracking,” WOSP ’07 Proceedings of the 6th international
workshop on Software and performance, pp. 181–188, 2007.

[11] O. Urra, S. Ilarri, R. Trillo, and E. Mena, “Mobile agents and mobile devi-
ces: Friendship or difficult relationship?,” Journal of Physical Agents, 2009.

[12] A. Moreno, A. Valls, and A. Viejo, “Using JADE-LEAP to implement
agents in mobile devices,” Research Report 03-008, DEIM, URV, 2005.

43



44 BIBLIOGRAFÍA

[13] S. Ilarri, R. Trillo, and E. Mena, “Springs: A scalable platform for highly
mobile agents in distributed computing environments,” WOWMOM ’06
Proceedings of the 2006 International Symposium on on World of Wireless,
Mobile and Multimedia Networks, pp. 633–637, 2006.

[14] D. B. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents Aglets. Addison-Wesley Longman Publishing Co., Inc., 1998.

[15] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and M. Straßer,
“Communication concepts for mobile agent systems,” First International
Workshop of Mobile Agents, pp. 123–135, 1997.

[16] O. Urra, S. Ilarri, and E. Mena, “Agents jumping in the air: Dream or
reality?,” Springer Berlin Heidelberg, pp. 627–634, 2009.

[17] O. Urra, S. Ilarri, and E. Mena, “Testing mobile agent platforms over the
air,” IEEE Computer Society, pp. 152–159, 2008.

[18] M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler, “A design framework
for highly concurrent systems,” UC Berkeley Tecnical report UCB/CSD-00-
1108, 2000.

[19] C. Kramer and L. Prechelt, “Design recovery by automated search for struc-
tural design patterns in object-oriented software,” Reverse Engineering,
Proceedings of the Third Working Conference, pp. 208–215, 1996.

[20] C. Weckerle and L. Strick, “Mobile agents in a P2P world,” IEEE Computer
Society, pp. 1876–1881, 2004.

[21] D. H. Lee, K. W. Cho, W. S. Jeon, and D. G. Jeong, “Two-stage semi-
distributed resource management for device-to-device communication in
cellular networks,” IEEE Communications Society, pp. 1908–1920, 2014.

[22] G. Moro and G. Monti, “W-grid: a cross-layer infrastructure for multi-
dimensional indexing, querying and routing in wireless ad-hoc and sensor
networks,” IEEE Communications Society, 2006.

[23] J. Park, H. Youn, and E. Lee, “A mobile agent platform for supporting ad-
hoc network environment,” International Journal of Grid and Distributed
Computing, 2008.

[24] A. Raniwala and T. cker Chiueh, “Architecture and algorithms for an ieee
802.11-based multi-channel wireless mesh network,” IEEE Computer So-
ciety, vol. 3, pp. 2223–2234, 2005.

[25] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evalua-
tion of an unplanned 802.11b mesh network,” MobiCom Mobile Computing
and Networking, pp. 31–42, 2005.

[26] K. Stencel and P. Wegrzynowicz, “Implementation variants of the singleton
design pattern,” Springer Berlin Heidelberg, pp. 396–406, 2008.

[27] M. Durresi, A. Durresi, and L. Barolli, “Emergency broadcast protocol for
inter-vehicle communications,” IEEE Computer Society, pp. 402–406, 2005.



BIBLIOGRAFÍA 45

[28] R. Lambiottea, V. D. Blondela, C. de Kerchovea, E. Huensa, C. Prieurc,
Z. Smoredac, and P. V. Doorena, “Geographical dispersal of mobile commu-
nication networks,” Physica A: Statistical Mechanics and its Applications,
2008.

[29] I. C. Department of Geography, The University of Iowa, “Modelling adap-
tive, spatially aware, and mobile agents: Elk migration in yellowstone,”
International Journal of Geographical Information Science, 2005.


