s1» Universidad Escuclade
ngenieria y Arquitectura
1.1! Za ragoZa Universidad Zaragoza

TrABAJO FIN DE MASTER
MASTER EN INGENIERIA DE SISTEMAS E INFORMATICA
Cusro 2013/2014

Estudio y Adaptacién de la
Plataforma de Agentes Moéviles

SPRINGS para Entornos
Inalambricos

NESTOR FABIO MUNOZ GARCIA

Director: Sergio Ilarri Artigas

Departamento de Informética e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Noviembre 2014

Estudio y Adaptacion de la Plataforma de
Agentes Moviles SPRINGS para Entornos
Inalambricos

RESUMEN

Las plataformas de agentes mdviles son sistemas que permiten tener ciertos “pro-
gramas” peculiares. Estos programas se diferencian de los tipicos por ser capaces de
moverse de una maquina a otra de forma auténoma eligiendo en qué maquina llevaran
a cabo su ejecucion.

Esto abre un abanico de posibilidades en computacion distribuida y entornos mévi-
les, ya que los procesos pueden distribuir su carga de trabajo en funcién de una o varias
maquinas y decidir qué tarea realizar dependiendo de su posiciéon mientras su entorno
va variando.

A pesar de que existan varias plataformas de agentes méviles, el trabajo se centra
en una unica plataforma de agentes méviles, desarrollada por el grupo de trabajo
de la universidad de Zaragoza SID (Sistemas de Informacién Distribuida), llamada
SPRINGS (Scalable PlatfoRm for movINg Software).

Aunque en un principio esta plataforma sélo se ejecutaba en maquinas virtuales
Java, recientemente el grupo de investigacion cloné la plataforma y la modificé para
que se ejecutara en dispositivos Android, manteniendo toda la esencia de la plataforma
pero sin tener en cuenta toda la potencia que este sistema les proporcionaba con las
comunicaciones inaldmbricas.

El objetivo de este trabajo es estudiar el posible desarrollo de nuevas funcionalida-
des que permitan utilizar de forma maéas adecuada los distintos entornos inaldmbricos
que pueden estar disponibles (Wifi, 3G, Bluetooth). Para conseguir este objetivo, es
necesario:

= Estudiar la plataforma en su estado actual.

= Modificar la plataforma para utilizar todos los recursos disponibles de comuni-
cacién inaldmbrica (WiFi, redes méviles, Bluetooth).

= Implementar nuevas funcionalidades como la bisqueda de servicios o el despla-
zamiento de agentes a un area geografica.

El trabajo realizado representa un primer paso preliminar para el potencial desa-
rrollo futuro de una plataforma de agentes moviles para Android que esté perfec-
tamente adaptada al entorno mévil. El grupo SID pretende seguir progresando su
investigacion en este tema.

Indice general

Abstract 3
1. Introduccién 7
1.1. Motivacién e 8
1.2. Estructura de la memoria 8
2. La plataforma de agentes méviles SPRINGS 9
2.1. Analisis de la estructura bésica de SPRINGS 9
2.2. Conociendo la plataforma 10
2.2.1. Ejecucién de un servidor RNS 10

2.2.2. Ejecucién de un contexto y conexién con el servidor RNS
anterioro Lo 11
2.2.3. Ejecucién de la plataforma con agentes. 12
2.3. La plataforma SPRINGS en Android 12
2.3.1. Estado de la plataforma 13
2.3.2. Ejecucién y problemas con la plataforma. 13
3. Abstraccién de las Comunicaciones: Sockets Abstractos 15
3.1. La libreria Sockets abstractos 15
3.1.1. Diseno de la librerfa 16
3.1.2. Integracion de la libreria en SPRINGS 18
3.2. Creandounared Mesh 20
3.2.1. Losnodosdelared: Node 20
3.2.2. Los puertosdelared: Port 22
3.3. Diseno de lanuevared Mesh 23
3.3.1. Conexiones virtuales 23
3.3.2. El Protocolo de comunicaciéon 25
3.3.3. Laconexién puente 28
3.4. Implementacién de la nuevared Mesh 29
3.4.1. El gestor del nodo: NodeManager 29
3.4.2. Implementacion del puerto: Port 29
3.4.3. Nodo genérico: Node, 30
3.4.4. El comprobador de puertos y nodos: PortsChecker 31
4. Ampliacion de Funcionalidades 33
4.1. Comunicacién Android-Java L. 33
4.2. Anadiendo agentes geograficos. L. 35
4.2.1. Disenando los agentes geograficos 35

5

6 INDICE GENERAL

4.2.2. Anadiendo la funcionalidad 36

5. Conclusiones 39
5.1. Trabajos futuros 40
5.2. Evaluacién del proyecto oL 41

5.3. Tiempo dedicado L. 41

Capitulo 1

Introduccion

Dada la potencia de los ordenadores, con los que se pueden realizar muchas
tareas, es extrano que los programas estén limitados a ejecutarse con el proce-
sador con el que fueron compilados. Aunque esta barrera ha sido mds o menos
superada por los sistemas operativos a bajo nivel y por ciertas librerias a alto
nivel (.Net, Java), la idea de que un programa se pueda mover de un ordenador
a otro para que continte su ejecucién sea por el motivo que sea (necesita ciertos
datos o el ordenador en el que se encontraba se va a apagar) es muy buena.

Los programas que se “mueven” de un ordenador a otro se conocen como
agentes moviles [1] [2]. Los agentes méviles permiten:

= Reducir la carga de la red: en lugar de que un cliente esté constantemente
pidiéndole datos a un servidor para realizar su trabajo, éste podria enviarle
un agente al servidor, que realice sus tareas alli, pidiéndole todos los datos
que necesite, y regrese al cliente con los resultados.

= Realizar ejecuciones asincronas y auténomas: en entornos con dispositivos
moviles es muy comun que se establezcan conexiones, pero estas cone-
xiones son muy fragiles dependiendo de cada situacion. Con los agentes
moviles se le podria encargar a un agente que saliera a la red a realizar
una determinada tarea y, a partir de ahi, el agente es independiente del
dispositivo mévil pudiendo quedar desconectado o incluso apagado. Cuan-
do el agente termine su tarea entonces volvera al dispositivo mévil que lo
cre6 con los resultados obtenidos.

= Evitar los fallos que se producen por determinadas condiciones del orde-
nador: si por ejemplo el ordenador se va a apagar y el agente lo detecta,
puede decidir irse a otro ordenador a continuar su ejecucién, mientras que
una aplicacion tipica se veria afectada por el apagén y lo dnico que podria
hacer es guardar su estado antes de cerrar forzosamente.

= Tener un asistente personal: como los agentes tienen la capacidad de poder
desplazarse a otros ordenadores, también pueden realizar ciertas tareas en
nombre de otros. Por ejemplo la biisqueda y la manipulacién de cierta
informacién en una red personal o privada.

= Monitorizar en tiempo real: si estamos esperando a que cierto sensor alcan-
ce cierto nivel para realizar alguna tarea, no es necesario crear un cliente

7

8 CAPITULO 1. INTRODUCCION

que esté captando todo el rato el valor actual de ese sensor. Basta con en-
viar un agente al servidor donde se encuentra el sensor y, en cuanto alcance
el nivel que esperdbamos, el agente nos avise o actiie él directamente.

s Generar un procesamiento en paralelo: En lugar de tener un programa
que genere muchas subtareas, consumiendo notablemente los recursos del
ordenador, podemos crear un agente que se encargue de generar multiples
clones para realizar la tarea en paralelo y que estos clones se distribuyan
por toda la red. Una red de ordenadores estard menos saturada que un
tnico ordenador si realizan la misma tarea en paralelo.

Este trabajo es un paso para el futuro desarrollo de una plataforma de agen-
tes méviles para Android que esté perfectamente adaptada al entorno mévil. El
grupo de investigacién SID pretende seguir progresando su investigacion en este
tema.

1.1. Motivacion

A pesar de que las plataformas de agentes méviles [3] [4] [5] (por ejemplo
Concordia [6], MAP [7] o JAMES [8]) llevan existiendo desde hace mucho tiem-
po, una vez visto el gran potencial que pueden aportar [9] [10], podrian suponer
una gran herramienta para el futuro de la tecnologia [11] [12], en especial con
el Internet de las cosas. Por ejemplo, en lugar de tener los electrodomésticos
conectados a la red, tendriamos a un agente que realizaria las tareas que le
ordenasemos, en el momento deseado y a nuestro gusto.

Con este trabajo se pretende estudiar y trabajar con una plataforma de
agentes moéviles (SPRINGS [13], que se ejecuta en Java [14]) para aprender
cémo funciona [15] y asi poder manejar agentes méviles. con mis propias manos
una de estas plataformas tan interesantes.

1.2. Estructura de la memoria

A partir de esta introduccion, el capitulo 2 trata de explicar qué es SPRINGS,
la plataforma de agentes méviles con la que se ha trabajado en este trabajo y
la plataforma SPRINGS en Android, una modificacién del SPRINGS original
para que funcionara en Android.

En el capitulo 3 describe la creacién de toda la libreria de este proyecto que
debe usar la plataforma para cumplir con los objetivos (que la plataforma utilice
todos los medios inaldmbricos que dispone Android, la comunicacién multisalto
entre dispositivos alejados, etc.).

El capitulo 4 trata de cémo ha tenido que ser dividida la libreria para que
pudiera ser utilizada junto a SPRINGS para Android en una maquina virtual
Java que no fuese Android. También describe los pasos que se han dado para
que los agentes puedan ser geograficos.

Finalmente el capitulo 5 describe las conclusiones a las que se ha llegado
con el trabajo, se indican nuevas vias de desarrollo para la plataforma que
han quedado abiertas, se evalia el estado del proyecto y se describe el tiempo
dedicado al proyecto.

Capitulo 2

La plataforma de agentes
moviles SPRINGS

SPRINGS [13] es una plataforma de agentes méviles creada por el grupo de
investigacion SID de la universidad de Zaragoza, centrandose en los problemas de
escalabilidad y en el mantenimiento de la eficiencia de la plataforma durante la
localizacion de agentes en escenarios dinamicos donde los agentes se encuentran
moviéndose continuamente.

La plataforma estd compuesta principalmente por:

Agentes: Son los programas que se ejecutan en la plataforma y los que deciden
moverse o desplazarse de un contexto a otro.

Contextos: son las “zonas” donde se encuentran los agentes. Cada contexto
tiene su nombre propio y tienen toda la informacién de los agentes que
contienen.

Servidores de Nombres de Regién o RNS: (Region Name Server) Son ser-
vidores que registran los contextos conectados en una misma zona. Todos
los contextos de la misma zona se encuentran registrados en un tnico
RNS. Mantienen también la informacién actualizada de los agentes de
estos contextos que hayan hecho alguna operacién de movimiento o de
comunicacion recientemente.

Esta plataforma utiliza RMI (java Remote Method Invocation), es un sistema
que permite llamar a los métodos de las clases que se encuentran remotamente
en otro ordenador, como base para la transmisién de agentes.

2.1. Andlisis de la estructura basica de SPRINGS

El contenido del proyecto SPRINGS se encuentra distribuido en varios médu-
los o paquetes. Los que més destacan son:

agent: En este paquete se encuentran programadas las funciones que pueden
realizar los agentes. Por ejemplo, moverse de un contexto a otro, programar
tareas e incluso llamar a otros agentes. En este paquete se encuentra:

10 CAPITULO 2. LA PLATAFORMA DE AGENTES MOVILES SPRINGS

SpringAgent: Es la interfaz que incluye todos los métodos que tendra un
agente.

SpringAgent_RMIImpl: Es una implementacién de la clase anterior
utilizando el sistema RMI de Java.

context: En este paquete se encuentran descritos los Contextos. Destacan:

ContextAddress: Es una clase que representa la localizacién de un
Contexto. Contiene la direccién, el puerto, el protocolo y el nombre
del contexto.

Context: Es una interfaz que contiene todos los métodos de un contexto.

Context_RMIImpl: Es una implementacién de la interfaz anterior uti-
lizando el sistema RMI de Java.

ContextInterfaceForAgents: Es una interfaz disenada para que los
proxies de los agentes hagan llamadas a un determinado contexto.

ContextLauncher: Es una clase que ejecuta un contexto.

rns: En este paquete se encuentra todo lo relacionado con los Servidores de
Nombres de Regién (Region Name Server, RNS). Contiene:

RegionNameServer: Es una clase abstracta que representa a un servi-
dor RNS. Contiene los contextos que se han registrado en él y alguna
funcionalidad interna.

RegionNameServerInterface: Es una interfaz para describir los méto-
dos que se podran utilizar en el RNS.

RegionNameServer RMIImpl: Es una clase que implementa la clase
y la interfaz anteriores utilizando RMI como sistema de conexién.

RegionNameServerLauncher: Es una clase que ejecuta un RNS.

test: Aqui se encuentran ciertas clases con pruebas realizadas en la plataforma,
agentes simples y pequenas pruebas entre agentes.

util: En este paquete se encuentran una serie de funciones para simplificar la
programacion de la plataforma y herramientas para comprobar o analizar
el funcionamiento de la misma.

2.2. Conociendo la plataforma

Para intentar ejecutar SPRINGS, primero hay que ejecutar un servidor RNS
v luego ejecutar contextos que se conecten a ese servidor RNS.

Al leer el codigo fuente, se observa que hay muchos ejecutables para lanzar los
servidores. Los mas relevantes son RegionNameServerLauncher y ContextLaun-
cher que se encuentran en los médulos rns y context respectivamente.

2.2.1. Ejecucién de un servidor RNS

Para ejecutar el servidor RNS, lo méas recomendable es ejecutar el script
RNSLauncher. En el script hay varios valores que hay que modificar para que
se ejecute con tu propio entorno personal:

2.2. CONOCIENDO LA PLATAFORMA 11

classpath: En esta variable hay que especificar dénde est4 el archivo springs.jar.

path: Indica en qué lugar se encuentran los ejecutables de java. El valor in-
troducido en este caso es: /usr/lib/jvm/jdk1.7.0/bin

instruccion de ejecucion: Esta instruccion ejecuta el servidor finalmente.

Pero para poder ejecutarse, es necesario especificar un archivo con instruccio-
nes o politicas de seguridad que se encuentra dentro del propio jar de springs.jar.
Una vez extraido el archivo y guardado en un directorio conocido y del que se
disponga permisos, ya se puede ejecutar SPRINGS para tener el servidor RNS.

La instruccion en este caso es:

“java -Djava.security.policy=. /security.policy springs.rns.RegionNameServerLauncher
$* 7

Como se puede apreciar, en esta instruccién se indica el main que se va a eje-
cutar (springs.rns.RegionNameServerLauncher) y recoge todos los pardmetros
que nos pasen al llamar al script ($*).

Al ejecutar el script sin pardmetros, obtenemos el siguiente mensaje:

“-pNN port”

que indica que hace falta especificar un puerto para ejecutar el servidor RNS.

Para terminar y tener finalmente el servidor ejecutando, se anade como
pardmetro el puerto deseado (en este caso 54321), por lo que la ejecucién del
servidor RNS a través del script RNSLauncher en este caso es:

“ /RNSLauncher -p54321”

2.2.2. Ejecucion de un contexto y conexién con el servidor
RNS anterior

Para ejecutar este contexto es necesario utilizar el script ContextLauncher,
que a su vez llamara al main de la clase springs.context.ContextLauncher.

Al igual que antes, se debe cambiar la variable classpath y la variable path
por los valores anteriores.

El comando que se ejecuta es similar al del RNS salvo que esta vez se llama
al main de ContextLauncher.

Tras ejecutar el script sin parametros, éste devuelve como salida los pardame-
tros que faltan. A saber:

-pNN: El puerto en el que va estar escuchando el contexto.
-n: El nombre que va a tener el contexto.
-r: La direccién en la que se encuentra el servidor RNS.

-1: (Opcional) El archivo de log para guardar los sucesos que ocurran durante
la ejecucién del contexto.

-cNN: (Opcional) El puerto del servidor de clases. Si se especifica, el contexto
puede ejecutar Agentes aunque no tenga su codigo.

-s: (Opcional) Si el servidor de clases debe ser ejecutado.

12 CAPITULO 2. LA PLATAFORMA DE AGENTES MOVILES SPRINGS

Si se ejecuta el contexto sin algiin pardmetro, el propio programa avisa. Por
ejemplo si se ejecuta el contexto introduciéndole sélo el puerto:

“./ContextLauncher -p23456”

SPRINGS nos dice: “Error: you must specify a name for the context!”

Finalmente para ejecutar el contexto C1 en el puerto 50001 y conectandolo
al RNS anterior, se escribe:

“./ContextLauncher -p50001 -n C1 -r rmi://localhost:54321”

2.2.3. Ejecucion de la plataforma con agentes

Una vez que ya tenemos en funcionamiento un RNS y un contexto, es la
hora de lanzar un agente.

Para crear un agente es necesario crear una nueva clase que herede de la
clase SpringsAgent_RMITmpl (sélo se encuentran implementados los agentes con
RMI).

Cuando un agente es creado, se llama al método main() del propio agente
para empezar su ejecucién. Es en ese método donde se tiene que empezar a
programar la tarea que realizara el agente.

Para permitir que un agente se mueva a otro contexto, se utiliza:

moveTo: Para moverse a un determinado contexto, que puede ser especificado
con un ContextAddress o con el propio nombre del contexto pasado como
String. Ademds se puede anadir la funcién a llamar una vez que el agente
se haya movido y los pardmetros para esa funcién en el caso de que los
necesite.

moveToURL: Para moverse a un determinado contexto dada una direcciéon
URL (que contendrd la direccién del contexto y el protocolo que va a
utilizar o el puerto para conectarse). Al igual que antes, también se puede
anadir la funcién que se desea llamar una vez el agente se haya movido y
los pardmetros para esa funcién (en el caso de que los necesite).

Para crear este agente, simplemente se hace que nada més ser creado muestre
algo por pantalla en el método main(), y luego se mueva al contexto C1 con
el método moveTo(“C1”, “end”) ejecutando finalmente un método end() que
muestre por pantalla que ha llegado al contexto Cl y que va a terminar su
ejecucién.

Una vez creada la clase con el cédigo que ejecutard este agente, es necesa-
rio tener un contexto que ejecute el agente. Se crea una clase Test que en su
ejecucién main(String [] args) cree un contexto (el nombre es indiferente) que
se conecte al RNS que he ejecutado antes y que cree el agente que se ha pro-
gramado antes. Una vez el agente se haya creado, mostrara por la pantalla el
mensaje de que ha sido creado y en el terminal del contexto C1 mostrara que
va a terminar su ejecucién.

Asi, se comprueba que el agente se ha creado y se ha movido correctamente.

2.3. La plataforma SPRINGS en Android

Una vez probada la plataforma SPRINGS, es momento de estudiar el pro-
yecto modificado de SPRINGS utilizando Android, también desarrollado por el
grupo de investigacién SID.

2.3. LA PLATAFORMA SPRINGS EN ANDROID 13

Este proyecto mantiene la esencia de SPRINGS, la misma estructura de
clases desarrollada por el grupo SID, pero no utiliza RMI debido a que, en
Android, esas librerias no se encuentran de forma nativa y son muy pesadas
para incluirlas junto al proyecto de SPRINGS. Ademds, la maquina virtual
de Android no es igual a la de Java puro de Oracle, por lo que podria haber
problemas si se utiliza el c6digo RMI original.

Asi, en este proyecto, en sustitucién de RMI, se encuentra la libreria lipeRMI,
que viene a ser una libreria con la misma funcionalidad que RMI pero mas ligera.

2.3.1. Estado de la plataforma

La parte interna de SRPINGS para Android no cambia practicamente nada,
exceptuando el cambio de llamadas de RMI a lipeRMI. El cambio mas llamativo
es el volcado de cédigo que ha sido llevado de RegionNameServer a RegionNa-
meServer_RMIImpl debido a problemas con lipeRMI que no podia encontrar los
métodos de la clase RegionNameServer en la clase RegionNameServer RMIImpl
si no se encontraban en la clase de RegionNameServer RMIImpl.

En lipeRMI las clases que mas destacan son:

Server: Es un simple servidor que espera en un determinado puerto a que un
cliente de lipeRMI se conecte.

Client: Es el cliente de lipeRMI que establece la conexién con el servidor de
lipeRMI y genera un conjunto de conexiones locales para permitir llamar
a distintos métodos de forma remota.

CallHandler: Es una clase que permite realizar llamadas remotas. Conoce la
clase a la cual estd conectada y también sus métodos.

2.3.2. Ejecucién y problemas con la plataforma

Se intenta poner en marcha SPRINGS para Android creando un servidor
RNS, un par de contextos y un agente que se mueva de un contexto a otro.

Problema: Permission.INTERNET Ha habido un problema que se pro-
duce justo cuando un contexto se intenta conectar al servidor RNS para regis-
trarse. El problema viene con una excepcién IOException que indica que no se
ha podido establecer la conexion.

Solucién Tras investigar el establecimiento de la conexién en Android,
se encuentra en la documentaciéon de Android que hay que afiadir un permiso
llamado INTERNET para poder abrir Sockets.

Una vez anadida la linea:

<uses-permission android:name= “android.permission. INTERNET” />

en el archivo AndroidManifest.xml (es un archivo que describe cémo se en-
cuentra definido un proyecto Android, en este caso SPRINGS para Android) se
consigue que la plataforma pueda utilizar los Sockets.

Una vez anadido este permiso, la prueba ha sido un éxito.

14 CAPITULO 2. LA PLATAFORMA DE AGENTES MOVILES SPRINGS

Problema: StreamCorruptedException Una vez conseguido registrar un
contexto en un RNS se detecta un nuevo problema: la comunicacion entre estas
dos clases.

La excepcién viene desde una parte interna del codigo, la clase Connec-
tionHandler (que es la que se encarga de llamar a los métodos remotos, reci-
bir llamadas de métodos y devolver resultados). La excepcién en concreto es:
StreamCorruptedException (que se produce al intentar leer un Objeto cuya
informacién de descripcién del objeto no se puede encontrar o estd corrupta).

Solucién Durante las pruebas de ejecucién y depuracién, se detectaron
dos causas.

Primera: Intentar mezclar RMI de SPRINGS con lipeRMI de SPRINGS para
Android. Tras indagar en ambos cédigos confirmamos que definitivamente
RMI no era compatible con lipeRMI y, por lo tanto, los agentes, contextos
v servidores de nombres de regiones de RMI no iban a ser compatibles con
sus respectivos de lipeRMI.

Segunda: Utilizar un emulador de Android tanto para crear contextos como
RNS. Los emuladores de Android, aunque ejecutan el sistema operativo
propio de Android, no establecen las conexiones con los médulos de cone-
xién que utilizaria un dispositivo fisico, sino que la establecen a través de
un servicio NAT (Network Address Translation). Esto permite al emulador
salir al exterior y conectarse con normalidad, pero no le permite actuar
facilmente como un servidor y, debido a esto, recibir conexiones nuevas
impidiendo el normal funcionamiento de SPRINGS.

Para solucionar este ultimo problema simplemente hay que utilizar disposi-
tivos fisicos (como los terminales o tablets) con Android.
Tras utilizar este tipo de dispositivos, el problema desaparecio.

Capitulo 3

Abstraccion de las

Comunicaciones: Sockets
Abstractos

Tras las dos pruebas de SPRINGS, se ha comprobado cémo funciona inter-
namente SPRINGS y se procede a disenar la nueva libreria para la plataforma.

Se pretende conseguir que la plataforma trabaje con los distintos tipos de
conexiones a la vez (WiFi, Bluetooth y 3G) y establezca conexiones entre los
dispositivos méviles distantes de la red para que se puedan comunicar.

3.1. La libreria Sockets abstractos

SPRINGS para Android permite ejecutar la plataforma en un dispositivo
movil (un terminal), asi que ya es un entorno mdévil (que es lo que se pretendia
en un principio), pero el entorno en el que se ejecuta es solamente WiFi [16] [17]
y los idspositivos deben estar en la misma red para que la plataforma se ejecute.

Para conseguir que el entorno se ejecute en diferentes tipos de red (Bluetooth,
WiFi, redes mdviles, etc) el sistema debe recibir, por cada conexién que realiza,
diferentes tipos de conectores (“Sockets”) en funcién del tipo de conexién que
se realice.

Los tipos de conectores son tinicos y esto obliga a los programadores a man-
tener el codigo con todos los tipos posibles de conectores. Esto es poco escalable
y obliga a la plataforma a que compruebe constantemente los tipos de conecto-
res durante la ejecucién. Ademads, si apareciese un nuevo tipo de conexién, se
tendria que modificar toda la plataforma para agregar este nuevo tipo.

En lugar de anadir y combinar todas las conexiones, la mejor opcién es uti-
lizar el patrén Adapter [18] para que, independientemente del tipo de conexién,
la plataforma utilice un socket como hacia con el socket de java. Entonces todas
las conexiones quedardn encapsuladas siguiendo un mismo patrén (que tenga la
misma interfaz).

15

16CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocket

close(): void

getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

Figura 3.1: Interfaz AbstractSocket

3.1.1. Diseno de la libreria

La clase base es una interfaz con las cabeceras que utiliza SPRINGS de
java.net.socket. La interfaz se llamard AbstractSocket (ver fig: 3.1).

Una vez creada esta interfaz, se creardn los tipos de conexiones que uti-
lizard la plataforma implementando la interfaz anterior (ver imagen: 3.2), en
concreto:

EthernetSocket: que utiliza un host o IP y un puerto para la conexion
TCP/IP.

BluetoothSocket: que utiliza el hardwareAddress y el Identificador tnico
universal, UUID (Universal Unique Identifier) para establecer una cone-
xién mediante Bluetooth.

AbstractSocket

close(): void

getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

BluetoothSocket
bs: android.bluetooth.BluetoothSocket

BluetoothSocket(BluetoothDevice bd, UUID uuid)
BluetoothSocket(android.bluetooth.BluetoothSocket bs)
BluetoothSocket(AbstractSocketParameters asp)

[]

11 Db

EthernetSocket
& socket: java.net.Socket
o

& EthernetSocket(String host, int port)
= EthernetSocket(java.net.Socket socket)
= EthernetSocket(AbstractSocketParameters asp)

Figura 3.2: Clases EthernetSocket y BluetoothSocket que implementan la inter-
faz AbstractSocket.

Dentro de sus respectivas clases estan los verdaderos sockets y las funciones
de las clases llaman a las funciones del socketque contiene, utilizando para ello
el patrén wrapper [19)].

3.1. LA LIBRERIA SOCKETS ABSTRACTOS 17

También se generard una interfaz para los servidores de Sockets con la mis-
ma interfaz necesaria de java.net.ServerSocket. La interfaz se denomina Abs-
tractServerSocket (ver figura: 3.3).

AbstractServerSocket

= accept(): AbstractSocket
& close(): void

Figura 3.3: Interfaz AbstractServerSocket

Y, al igual que con los Socket, también se necesitan los respectivos servidores
(ver fig. 3.4):

EthernetServerSocket: Representard un servidor que escuchara a través de
un puerto.

BluetoothServerSocket: Representard a un servidor que escuchard en un
determinado UUID.

AbstractServerSocket

= accept(): AbstractSocket
= close(): void

EthernetServerSocket
serverSocket: java.net.ServerSocket

b

EthernetServerSocket(int port)
EthernetServerSocket(AbstractSocketParameters asp)

1 b

BluetoothServerSocket
& bss: android.bluetooth.BluetoothServerSocket

& BluetoothServerSocket(BluetoothAdapter ba, String service, UUID uuid)
= BluetoothSocket(AbstractSocketParameters asp)

Figura 3.4: Clases EthernetServerSocket y BluetoothServerSocket que imple-
mentan la funcionalidad de AbstractServerSocket

Aunque aun hay problemas derivados de la plataforma:

Los parametros necesarios tienen que llegar a su correspondiente Socket o
Servidor y que se inicie de forma adecuada. Por ejemplo no podemos iniciar un
servidor de Bluetooth que escuche en un puerto IP.

Por esto es necesario que, para crear tanto los sockets como los Servidores,
reciban un pardmetro comun que luego ellos comprobaran si es correcto o no.

Para recibir un parametro abstracto, es necesario crear una interfaz que
represente eso mismo, pardmetros abstractos (ver fig. 3.5):

18CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocketParameters

= getRemoteLocation(): String
= toString(): String

Figura 3.5: Interfaz AbstractSocketParameters

Ahora, cada tipo de conexién debe moldear una clase que extienda la fun-
cionalidad de AbstractSocketParameters para obtener los parametros deseados:

= En el caso de Ethernet, la clase se denomina EthernetSocketParameters
que tiene un método estatico para comprobar si los parametros abstractos
son del tipo de Ethernet y algunos métodos para obtener la IP o el puerto.

= En el caso de Bluetooth, la clase se denomina BluetoothParameters que,
al igual que el anterior, tiene un método para comprobar si los pardmetros
abstractos son del tipo de Bluetooth y otros métodos para obtener, por
ejemplo, la direccién hardware del Bluetooth y el UUID.

(Ver fig. 3.6)

AbstractSocketParameters

= getRemoteLocation(): String
= toString(): String

A

BluetoothParameters

uuid: UUID
hardwareAddress: String

BluetoothSocket(UUID uuid, String hardware Address)
getUuid(): UUID

getHardwareAddress(): String
check(AbstractSocketParameters asp): BluetoothParameters

b b

EthernetParameters

dstName: String

Q
& port: int

= EthernetParameters(String host, int port)

= getDstName(): String

= getPort(): int

= check(AbstractSocketParameters asp): EthernetParameters

Figura 3.6: Clases EthernetParameters y BluetoothParameters que implementan
la interfaz AbstractSocketParameters

3.1.2. Integracién de la libreria en SPRINGS

Para conseguir que SPRINGS para Android siguiera funcionando correcta-
mente (sin cambiar su estructura) con los Sockets de Bluetooth y cualquier otro
tipo de Socket (tanto los que ya existen, como los que pueden existir en un

3.1. LA LIBRERIA SOCKETS ABSTRACTOS 19

futuro si se crea un nuevo tipo de conexién), es necesario modificar un poco la
plataforma.

En realidad sélo hay que modificar todas las partes donde se usa un Soc-
ket en SPRINGS para Android (la gran mayoria estdn en LipeRMI) por un
AbstractSocket y, a su vez, hay que cambiar los ServerSocket por AbstractSer-
verSocket y los pardmetros (en algunos puntos se usa un IP y un puerto, en
otras solamente un puerto) por AbstractSocketParameters.

Ademais ya que se estd modificando SPRINGS para Android, voy a aprove-
char para poder:

Cerrar un Contexto y un Servidor de Nombres de Regién (RNS)
Para cerrar un contexto o un servidor lo tinico que hace falta es:

= Obtener el servidor de lipeRMI que se crea, en la funcién start() y guar-
darlo.

= crear un método close() o stop() en las clases donde se utilice este servidor
de lipeRMI para que, cuando se vayan a cerrar los servidores, también
llamen a la funcién close() del servidor lipeRMI.

Y también, en el contexto, es recomendable llamar a la funcién padre stop()
para que termine la ejecucién del objeto “_accessService”, a demds de llamar al
servidor RNS al que se encontraba conectado para indicarle que este contexto
no va a estar mas tiempo conectado.

Mantener la conexion Para mantener la conexién es necesario que el servi-
dor RNS compruebe cada cierto tiempo si los contextos, a los que esta conectado,
siguen operativos. Esto puede resultar demasiada carga para un inico servidor
(el que tenga que recibir peticiones de todos los contextos y ademds comprobar
si se encuentran conectados). As{ que lo voy a hacer al contrario. Los contextos
seran los que envien una débil senal al servidor, cada cierto tiempo, para indicar
que siguen operativos.

Cuando un servidor se cierre, intentara indicarle a su servidor RNS que se
va a cerrar y es muy recomendable que lo haga sin ningin agente. Si contiene
algin agente, el contexto debe avisar a los agentes que contiene indicando que
el contexto en el que se encuentran se va a cerrar para que realicen la tarea que
tengan programada, o terminen su ejecucién.

Para esto he anadido en la interfaz RegionNameServerInterface una funcién
para que un contexto pueda enviarle una senal al servidor RNS. Una vez reciba
esa senal, lo que hard el servidor RNS es anotar el momento en que lo recibié.

Cuando el servidor RNS vaya a establecer una conexién con el contexto y
no lo consiga, comprobara el tltimo momento en que recibié la dltima senal del
contexto. Si pasa un determinado tiempo desde la iltima senal recibida hasta
el momento actual sin haber recibido ninguna senal, entonces el Servidor RNS
decidira que el contexto esta caido y cerrard la conexién con tal contexto.

También se ha anadido un evento (onCloseContext()) a los agentes que se
disparara cuando el contexto en el que se encuentren vaya a ser cerrado.

En ese evento es donde el agente debe decidir si debe moverse a otro contexto
0 terminar su ejecucién.

20CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

3.2. Creando una red Mesh

Ya estan disenados los distintos tipos de conexién, pero sélo se pueden uti-
lizar si el medio esta al alcance, es decir, es como realizar una conexién a una
maquina a la que te puedes comunicar.

En otras palabras, ahora el tipo de comunicacién, que realizaria cada uno de
los dispositivos de comunicacién, seria directa, del terminal de origen al terminal
de destino (P2P [20] [21] [22] [23]).

El problema viene cuando hay dispositivos a los que no te puedes conectar
directamente debido a que no estdn al alcance (por ejemplo por Bluetooth,
si los dos dispositivos estan a méas de 10 metros, cuando el alcance maximo
del Bluetooth es de 10 metros) o que no tienen los mismos dispositivos para
comunicarse (uno utiliza solamente WiFi y otro utiliza inicamente Bluetooth).

En estos casos es necesario utilizar un sistema que implemente una red Mesh
[24] [25] y permita la comunicacién entre varios dispositivos que no estédn conec-
tados directamente.

Para comunicarse todos los dispositivos de la misma red Mesh, lo que debe
hacer cada dispositivo es ir buscando periédicamente a quién se puede conectar.
Esto lo realizara:

= Primero directamente a los dispositivos que tenga cerca.

= Luego les preguntard a esos dispositivos, cuales son los dispositivos a los
que ellos se pueden conectar.

De esta manera el dispositivo podra conocer todos los dispositivos de la red y a
cuales se puede conectar indirectamente.

Ademsds, mientras van buscando los dispositivos nuevos, también va actua-
lizando la lista de dispositivos a la cual se puede conectar (los dispositivos que
tiene cerca). De esta manera, si se aleja de un dispositivo cercano, tal vez pueda
alcanzarlo indirectamente mediante otro dispositivo.

La idea principal es utilizar los dispositivos a los que si se tiene conexién y
utilizarlos como medio de comunicacién para establecer un camino y, asi, llegar
al dispositivo destino. (Ver fig.3.7, el camino rojo que comunica dos nodos que
no estdn conectados directamente).

Ninguna de las clases creadas con anterioridad, sirve para este propésito, ya
que ambos tipos de conexiones se comunican directamente mediante su medio
(WiFi o Bluetooth). Por lo que es necesario crear un sistema propio de comuni-
cacién que utilice las clases anteriores y permita conectar los dispositivos entre
si mediante las conexiones directas de los dispositivos cercanos.

3.2.1. Los nodos de la red: Node

Cada terminal Android es considerado como un nodo. Un nodo es cada uno
de los puntos de conexién de la red por donde se establecen y se transmiten todas
las comunicaciones de la red. De esta forma, cada vez que en la red se establezca
una conexioén, se hard de un nodo a otro y, si fuese necesario, involucrando a otros
nodos para permitir la comunicacién entre el nodo emisor y el nodo receptor.

Un nodo (Node) esta compuesto por un conjunto de interfaces de conexién
denominadas Port (puerto). A través de cada nodo se permite la conexién (di-
recta o indirectamente) a otro nodo (siempre que haya conexién) y se permite
también recibir conexiones de otros nodos.

3.2. CREANDO UNA RED MESH 21

Figura 3.7: Ejemplo de una conexién directa (azul) e indirecta (rojo) entre nodos
de una misma red.

Para saber cudl es el mejor camino hacia un nodo determinado, los nodos
pueden preguntar a sus nodos adyacentes para saber a qué nodos puede llegar.
Si recibe distintos caminos para llegar a un nodo, entonces se tendra que decidir
por el camino maés 6ptimo.

El camino méas 6ptimo se decide en funcién de algo llamado “coste”, y de la
cantidad de nodos que tiene que pasar la comunicacién para poder conectarse
con el nodo final.

Los costes son relativos y dependen de los nodos intermedios. Estos costes
no hacen referencia a ningin coste econémico, sino a un coste de esfuerzo del
dispositivo por conectarse. El coste en cada nodo puede ser diferente y depen-
dera de su configuracién. El concepto de coste se utiliza para poder tener un
orden de preferencia de puertos (por ejemplo, si se prefiere las conexiones WiFi
a las 3G, entonces el coste del Port WiFi serd menor que el 3G, para que tenga
preferencia).

Por definicion, el coste para conectarse un nodo a si mismo es 0.

Por ejemplo: Tenemos cuatro nodos A, B, C, D (Ver fig. 3.8).
Los cuatro se comunican de la siguiente forma: A-B-C-D:

= Coste de A:
e Coste por WiFi: 1
= Coste de B:

e Coste por WiFi: 1
e Coste por Bluetooth: 7

= Coste de C:

e Coste por Bluetooth: 11

22CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

e Coste por WiFi: 5
= Coste de D:
e Coste por WiFi: 37

De A a B la comunicacién es mediante WiFi.

De B a C la comunicacién es mediante Bluetooth.

De C a D la comunicacién es mediante WiFi.

Es decir: A <—(WiFi)—> B <—(Bluetooth)—> C <—(WiFi)—> D

Para llegar de A a D el coste es el siguiente:

Coste(A, WiFi) + Coste(B, Bluetooth) + Coste(C, WiFi) =1 4+ 7 + 5 =
13

El coste que tendria A para conectarse a D es 13.

Conexidn WiFi 9 Conexion WiFi

Conexidn Bluetooth

Figura 3.8: Ejemplo visual de la conexién entre A y D pasando por los nodos B
y C.

Para mayor seguridad, cada nodo debe habilitar el uso de un determinado
sistema de conexién. Por ejemplo, si en un nodo, aunque tenga habilitado el
sistema WiFi y Bluetooth, s6lo debe utilizar el sistema WiFi, entonces el nodo
sélo activara el servicio WiFi. El servicio Bluetooth no lo activard y, por tanto,
no serd usado por la plataforma.

También se puede deshabilitar las conexiones que ya no se quieran utilizar.
En estos casos es necesario reorganizar los nodos que hayan sido conocidos el
nodo principal, ya que es posible que el mejor camino para alcanzar un nodo
pasase por la conexién que se acaba de cerrar.

3.2.2. Los puertos de la red: Port

Un puerto es una interfaz que establece conexiones hacia otros nodos (siem-
pre que estén a su alcance, por ejemplo si es un puerto Bluetooh y el nodo
al que se tiene que conectar estd a mas de 10 metros, entonces no se estable-
cerd la conexién directa con el nodo). Por ejemplo la tarjeta inaldmbrica WiFi o
Bluetooth. Aunque parezca que estan relacionados con los tipos de conexiones
anteriormente descritos, puede haber més de una interfaz con el mismo tipo de
conexion. Por ejemplo: una tarjeta de red Ethernet y una tarjeta inaldmbrica
WiFi utilizan el mismo tipo de conexién (Ethernet).

Estos puertos deben permitir establecer directamente la conexién utilizando
su medio y no se deben ver implicados directamente en el establecimiento de
conexién entre nodos, sino entre dispositivos. Por ejemplo, un puerto WiFi sélo
se debe encargar de conectar con otros dispositivos WiFis en funcién de los

3.3. DISENO DE LA NUEVA RED MESH 23

parametros que le pasen. Es el nodo el encargado de conectarse con otros nodos,
tanto si la conexién es directa mediante el puerto WiFi o indirecta usando dicho
puerto.

Para permitir recibir conexiones, un puerto que se encuentre habilitado,
siempre tiene que tener un servidor que reciba conexiones a través de dicho
puerto. Ademads, es recomendable que también tenga todos los parametros posi-
bles para poder establecer la conexién con otros nodos y poder pedir informacion
sobre el estado de la red, establecer una conexién con su nodo o incluso pedirles
que establezcan una conexién con un nodo lejano utilizandolo como puente.

Para mejorar la conectividad en redes de tipo Ethernet, donde los nodos
se encuentren en diferentes redes conectados mediante Routers con NAT, Los
puertos que utilicen conexiones Ethernet estan obligados a indicar cudl es la IP
que deben preguntar para conectarse a su propio nodo. Por ejemplo: si tenemos
un nodo en Internet con una IP 9.10.11.12 y otro nodo en una Intranet con la IP
192.168.20.5, estos dos nodos no se podran comunicar directamente debido a que
hay un Router NAT pasarela que comunica ambas redes. Si el nodo de Internet
intenta comunicarse a la IP del nodo de la Intranet, entonces la IP (192.168.20.5)
del nodo de la Intranet serd buscada en Internet y nunca se podra establecer la
conexién. Pero si el nodo de la Intranet indica que la IP para conectarse a él es
la TP publica del Router NAT (la IP de Internet), entonces el nodo de Internet
establecera la conexion con el Router y luego sera el Router el que redirecione
al nodo de Intranet (utilizando la configuracién NAT que tenga).

3.3. Diseno de la nueva red Mesh

En la secciéon anterior se han descrito los componentes que contiene la red
Mesh.

En cambio, en esta seccion se describen los componentes 16gicos que forman
la red para empezar a darle forma.

3.3.1. Conexiones virtuales

Tras describir el sistema, es necesario generar un nuevo tipo de conexién para
permitir la conexién con dos nodos que no se pueden conectar directamente.

Este nuevo tipo de conexién se denomina Virtual (Ver fig. 3.9).

Una conexién virtual mantendrd una conexién de un nodo durante todo el
tiempo que dure la comunicacién, sea del tipo que sea, con otro nodo.

Para crear esta conexion es necesario indicar en los pardmetros a qué nodo
se quiere conectar y a qué servicio se debe preguntar. En el caso de que los
pardmetros sean para realizar otro tipo de conexién (Ethernet o Bluetooth),
este enlace debe permitir la creacién y gestion de esos tipos de enlace, indepen-
dientemente del puerto, en funcién de la configuracién del sistema (en este caso
Android).

Asi que los pardmetros virtuales se deben poder crear a través de un nombre
de un nodo y servicio o con otros parametros abstractos.

Para los SocketsVirtuales el planteamiento es el mismo, los sockets virtuales
tienen un socket abstracto en su interior y lo tinico que deben hacer es rellamar
al socket que contenga (ver fig. 3.10).

24CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

AbstractSocketParameters

= getRemoteLocation(): String
= toString(): String

N

VirtualParameters
& id: String
& service: String
& asp: AbstractSocketParameters

VirtualParameters(String id, String service)
VirtualParameters(AbstractSocketParameters asp)

getld(): String

getService(): String

getAbstractSocketParameters(): AbstractSocketParameters
check(AbstractSocketParameters asp): VirtualParameters

Figura 3.9: Clase VirtualSocketParameters, que implementa la interfaz Abstrac-
tSocketParameters

AbstractSocket

close(): void

getInputStream(): InputStream
getOutputStream(): OutputStream
isConnected(): boolean
getRemoteAddress(): String

2\

VirtualSocket
& as: AbstractSocket

VirtualSocket(AbstractSocket as)
VirtualSocket(AbstractSocketParameters asp)

1 b

Figura 3.10: Clase VirtualSocket, que implementa la interfaz AbstractSocket

En el caso de los servidores virtuales el planteamiento es un poco distinto, ya
que puede que quiera recibir conexiones de diferentes nodos, asi que lo mejor es
que puedan permitir tener varios servidores abstractos bajo el mismo servidor
virtual y cada vez que reciba una nueva conexion, sea del tipo que sea, enviarla
a través del método accept() (ver fig. 3.11).

Al final la situacién para establecer una conexién es la misma. Siempre hay
que identificar el “lugar” al que te quieres conectar y la “puerta” por la que
quieres pasar.

Esto se ve claramente con Ethernet, Bluetooth o incluso con el sistema de
conexiones virtuales.

3.3. DISENO DE LA NUEVA RED MESH 25

AbstractServerSocket

= accept(): AbstractSocket
& close(): void

N

VirtualServerSocket

queueSockets: Queue<AbstractSockets>
servers: Collection<Servers>
service: String

VirtualServerSocket()

VirtualServerSocket(String service)
startAnotherServerSocket(AbstractSocketParameters asp)
startServer(AbstractServerSocket abss)
VirtualServerSocket(AbstractSocketParameters asp)

bbb

L LbLDLD

Figura 3.11: Clase VirtualServerSocket, que implementa la interfaz AbstractSer-
verSocket

Lugar Puerta
Ethernet Host (IP) Puerto
Bluetooth | HardwareAddress UUID
Virtual Node Service

3.3.2. El Protocolo de comunicacion

Ahora que ya se ha descrito qué es lo que va a haber en la red (nodos) y el
sistema de conexién (puertos y sockets abstractos), es el momento de empezar a
describir cémo se van a comunicar estos nodos, cémo se van a descubrir y cémo
van a establecer la conexién con un nodo lejano.

Para establecer la comunicacién simplemente un nodo debe establecer la co-
nexioén con otro nodo que se encuentre escuchando, utilizando el mismo sistema,
(WiFi o Bluetooth, por ejemplo).

Para descubrir y conectarse con un nodo lejano, primero hay que conectarse
a un nodo cercano y luego es necesario comunicarse a través de un protocolo.

Una vez establecida la conexién con un nodo cercano en un puerto que
sepamos que estd escuchando siempre es necesario:

1. El emisor debe que enviar primero, en formato String UTF-8 (Unicode
Transformation Format, 8-bit), el tipo de accién que quiere realizar con
esta conexién. Si es CONNECT_TO_NODE entonces es que se quiere co-
nectar a un nodo. Si es GET_NODES entonces es que quiere obtener in-
formacion de todos los nodos a los que puede llegar el receptor en funcién
de su configuracién.

2. Opcién CONNECT_TO_NODE (Ver fig. 3.12)

a) Siel emisor se quiere conectar a un nodo, entonces el emisor tendra que
enviar, en formato String UTF-8, el nombre del nodo al que se quiere
conectar.

26CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

b) El receptor comprobard si es él el nodo que se estd buscando, si es él
entonces enviard un NODE_FOUND al emisor y utilizard la conexién
para comunicarse con el nodo emisor. Si no es él entonces intentara es-
tablecer una conexién con el nodo que se esta buscando. Si consigue
establecer la conexién entonces enviard al emisor NODE_FOUND y
este nodo receptor intermedio empezara a actuar como “puente”. Si
no lo consigue, entonces enviarda un NODE_NOT_FOUND y cerrari la
conexion.

fModo Emisor /MModo Receptor

COMMECT TO_MNODE

==nombre del nodo gue se guiere conectar el emisor==

MODE_FOUMD
.(: __
S6lo se envia MODE_FOUND =i el nodo Receptor es
el nodo gue estaba buscando el nodo Ermisor o
si el nodo Receptor ha encntrado el nodo que estaba
buscando el nodo Emisor,
NODE_MOT_FOUND
.(': __

Sélo se envia NODE_MOT_FOUND si el nodo Receptor no
es el nodo que estaba buscando el nodo Emisor y
tampoco ha encontrado el nodo Receptor al nodo gue
estaba buscando el nodo Emisor.

Figura 3.12: Diagrama de secuencia del protocolo que muestra cémo se debe
proceder en el caso de que un nodo emisor se intente comunicar con otro nodo.

3. Opcién GET_NODES (Ver fig. 3.13)

a) Siel emisor quiere obtener informacién de los nodos a los que se puede
conectar el receptor, entonces el receptor enviard al emisor toda la
informacién de los nodos a los que se puede conectar méas uno, la
informacién del propio receptor. La forma de enviar la informacion
de cada nodo es la siguiente:

1) Primero se envia el nombre del nodo, en formato UTF-8.

2) Luego se envia la configuracién de los pardmetros para poder
conectarse a ese nodo. Estos parametros deben ser del mismo
tipo que la conexion que se esté utilizando aunque se almacenen
como AbstractSocketParameters. Por ejemplo si la conexién se
estd realizando por Bluetooh, entonces los parametros recibidos

3.3. DISENO DE LA NUEVA RED MESH

27

seran del tipo BluetoohParameters, pero se almmacenaran en el
nodo como AbstractSocketParameters.

3) A continuacion se envia el coste para conectarse al nodo.

4) Finalmente la cantidad de saltos o nodos que hay intermedios

para llegar al nodo destino.

b) Una vez enviada toda la informacién de todos los nodos que conoce el
receptor, el propio receptor indicard con un valor booleano si quiere
la informacién para conectarse con el emisor.

1) Si el receptor ha enviado un true preguntando por la configura-
ciéon del emisor entonces el emisor comprobara si puede enviar
informacién. Si puede enviarla le enviara un valor booleano true
y empezard a enviarle los pardmetros al receptor (de la misma
forma que el receptor le habia enviado todos los parametros de
todos los nodos que conocia). En el caso contrario le enviard un
valor booleano false y cerrard la conexion.

Si el receptor ha enviado un false para no preguntar por los
parametros, entonces se cerrard la conexion.

fModo Emisor

/Modo Receptor

GET_MODES

==Nombre de un nodo=>

Repetir el bicle

por cada uno de

los nodos a los

que se puede
conectar el nodo
Receptor mas uno
(&l mismo Receptor)

El receptor ervia TRUE &
si guiere que el emisor

envie su informacion de
conexion, En el caso de

que no la guiera, el

receptor envia un FALSE

y agui acabaria la conexion,

El emnisor ervia TRUE

si puede enviar su

inform acion de conexion.
Enel caso contrario el
emisor envia FALSE y aqui
acabaria la conexion,

Figura 3.13: Diagrama de secuencia del protocolo en el caso de solicitar la in-
formacion de todos los nodos a los que se puede conectar.

Todos los envios de alguna cadena de tipo String se enviaran en formato UTF-8.

También se puede conectar a un determinado dispositivo que tenga un nodo
sin querer comunicarse con el nodo, simplemente utilizando otro servicio que no
utilice el nodo. Por ejemplo si el nodo escucha con el puerto 9000 del sistema
inalambrico WiFi, cualquier otra aplicacién se puede conectar a ese dispositivo
con el sistema inaldmbrico WiFI utilizando un puerto distinto, y de esta forma
no se tiene que acceder al nodo obligatoriamente.

28 CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

3.3.3. La conexién puente

Una vez establecida la conexién, los nodos intermedios deben enviar todo
lo que reciban para poder permitir que dos nodos que no se podian comunicar
directamente en un principio, ahora si que lo pueden hacer.

Para establecer la conexién, los nodos utilizan la parte del protocolo de
conexion entre nodos(ver fig. 3.14).

Modo A fModo B fModo C

COMMECT _TO_NCDE

©

CONNECT_TO_NCDE

cC

o NODEFOUND
NODE_FOUND

— L L
|
|

A partir de este momento, el nodo B j

actuaria como conexidn pusnte entre & v C.

Figura 3.14: Ejemplo del uso del protocolo para establecer una conexién entre
A y C usando B como medio. Al final, una vez establecida la conexién, A y C
utilizardn a B como conexién puente.

Para establecer la conexién es necesario que, una vez se tenga claro que
un nodo va a actuar como puente, entonces debe recoger los dos sockets que
mantienen la conexién y enviar la salida de uno a la entrada del otro y viceversa

(ver fig. 3.15).

Socketa A Socketa C
“ENTRADA ENTRADA

\)

Figura 3.15: Ejemplo visual con los dos sockets donde el nodo B actia como
puente, basado en el ejemplo anterior.

3.4. IMPLEMENTACION DE LA NUEVA RED MESH 29

3.4. Implementacion de la nueva red Mesh

En la seccién anterior se han descrito y disenado a nivel légico los compo-
nentes de la nueva red.

En esta seccion se describe el disenio e implementacion de los distintos ges-
tores y clases principales que tiene la red Mesh para la comunicacién indirecta
entre nodos.

Para que la nueva red funcione, es necesario que sélo se permita un nodo
por dispositivo. Para conseguir este objetivo se utiliza el patrén Singleton [26].
La clase que gestione cada nodo de cada dispositivo se denomina NodeManager
(Gestor del nodo).

3.4.1. El gestor del nodo: NodeManager

Un NodeManager debe saber en cada momento el camino més rapido para
llegar a los nodos més cercanos que tenga (tras realizar al menos una buisque-
da), comprobar cada cierto tiempo si sus puertos estdn operativos y tener la
capacidad de conectarse a cualquier nodo, incluso si no los conoce.

Para realizar una busqueda, el NodeManager debe estar configurado con
varios pardmetros que le indican qué nodos debe conocer. Uno de ellos es la
cantidad de saltos que debe dar para llegar al nodo destino. Si la cantidad de
saltos es mayor, entonces el NodeManager no debe conocer el nodo destino ni
los caminos para llegar a él, aunque se podra seguir conectando al nodo destino.

El otro parametro es el tiempo que debe pasar para cada consulta. Cada
cierto tiempo el NodeManager realizarda una nueva busqueda actualizando los
nodos a los que puede acceder, los costes que han podido variar y los saltos
necesarios para llegar a los nodos.

Los puertos también se comprobaran cada cierto tiempo y, si algiin puerto se
encuentra deshabilitado en algiin momento, entonces se debe cambiar el acceso
que se realizaba antes por ese puerto, a otro puerto distinto. Si no hay otro puerto
para acceder, entonces ya no se podra acceder a ese nodo. Si, pasado cierto
tiempo, el puerto volviera a estar operativo, entonces volvera a ser habilitado
automdaticamente a no ser que se haya especificado explicitamente que debe
quedarse cerrado.

Para conectarse a cualquier nodo, simplemente el NodeManager debe buscar
en los nodos que conoce a ver si se encuentra en esa lista. Si no se encuentra en-
tonces debe utilizar a los nodos que conoce mas cercanos y les debe preguntar si
pueden establecer una conexion al nodo deseado. Si alguno lo consigue, entonces
se utiliza la conexién del nodo al que se pregunté como conexién puente y ya se
tendra la conexién con el nodo deseado. Si ninguno lo consigue entonces se avisa
al nodo que realiz6 la bisqueda que no se ha podido establecer la conexién.

También deben permitir cerrar manualmente un determinado puerto, al igual
que abrirlo.

Y finalmente permitir establecer, de forma externa, el orden de preferencia
de los puertos.

3.4.2. Implementacion del puerto: Port

Los propios puertos (Port) almacenan los resultados de sus ultimas biisque-
das de nodos para que, en el caso que sea necesario, volver a consultar los

30CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

resultados para, por ejemplo, obtener acceso a un nodo que ya no se pueda
acceder a él mediante otro puerto. También establecen conexiones con otros
puertos de su mismo tipo (WiFi con WiFi, por ejemplo) de otros nodos, pero
sin utilizar el protocolo. Para el protocolo y la comunicacién con otros nodos ya
se encargara el NodeManager del nodo.

Todos los puertos estan identificados para poder acceder a ellos de una forma
mas rdpida y, si fuese necesario, para establecer el orden de los puertos (ver fig.
3.16).

Port

lastNodes: Map<String, Node>

cost: double

int: typeOfPort

Port(double cost, int typeOfPort)

isEnabled(): boolean

tryToEnable(): boolean

getNodes(Collection<AbstractSocketParameters> nodesToAsk): Map<String, Node>
getLastNodes(): Map<String, Node>

getCost(): double

setCost(double cost): void

bbb

Figura 3.16: Clase Port

3.4.3. Nodo genérico: Node

Un nodo, sin més, en el sistema (clase Node) es la forma de representar
cualquier nodo al que podamos llegar desde un NodeManager (es decir, cualquier
dispositivo) y estd descrito por un Id que identifica el nombre del nodo, tiene
una referencia al puerto por el que se accede a él, contiene los pardmetros para
llegar a ese nodo, y almacena la cantidad de saltos y el coste que cuesta llegar
al nodo destino (ver fig. 3.17).

Node

ID: String

port: Port

asp: AbstractSocketParameters
& jumps: int

& cost: double

bbb b

= Node(String ID, Port port, AbstractSocketParameters asp, int jumps, double cost)
= getID(): String

= getPort(): Port

= getAbstractSocketParameters(): AbstractSocketParameters

= getJumps(): int

= getCost(): double

Figura 3.17: Clase Node

Tanto para comprobar los puertos como para realizar biisquedas de nodos es
necesario un hilo que realice esta tarea periddicamente. Al hilo que realiza esta
tarea se denomina PortsChecker (Comprobador de puertos).

3.4. IMPLEMENTACION DE LA NUEVA RED MESH 31

3.4.4. El comprobador de puertos y nodos: PortsChecker

La clase PortsChecker aligera la carga que tiene del NodeManager al con-
probar los puertos y buscar nuevos nodos (ver fig. 3.18).

PortsChecker

= PortsChecker(long timeForEachRequest)

& requestNodesInAllPorts(): void

= addServerToRequest(AbstractSocketParameters asp, int portType): boolean
= getAbstractSocketParameters(): AbstractSocketParameters

= stop(): void

Figura 3.18: Clase PortsChecker

De esta forma el NodeManager es la principal fuente para conectarse al resto
de los nodos, establecer el orden de prioridad de los puertos, y para habilitar y
deshabilitar puertos (ver fig. 3.19).

NodeManager

id: String

pc: PortsChecker
maxJumps: int
timeForEachRequest: long

Dbbb

NodeManager(String id, int maxJumps, PortsChecker pc)
getNewPortsChecker(long timeForEachRequest): PortsChecker
disablePort(Port port)

createNodeManager(String id): NodeManager

createNodeManager(String id, int maxJumps, long timeForEachRequest): NodeManager
getNodeManager(): NodeManager

setPreferencesPorts(List<String> listPorts): void

getNearNodes(): Set<String>

connectTo(String idNode, String service): AbstractSocket

accept(String service): AbstractSocket

getMaxHopes(): int

stop(): void

addServerToRequest(AbstractSocketParameters asp, int portType): boolean
getAbstractSocketParameters(): AbstractSocketParameters

stop(): void

enableWIFI(WifiManager wm): void

disable WIFI()

enableBluetooth(BluetoothAdapter ba): void

disableBluetooth(): void

iR DD

Figura 3.19: Clase NodeManager

32CAPITULO 3. ABSTRACCION DE LAS COMUNICACIONES: SOCKETS ABSTRACTOS

Capitulo 4

Ampliacion de
Funcionalidades

A continuacién se presentan todos los cambios que han sido necesarios en
las librerias, tanto en SPRINGS para Android como en la recién creada Sockets
Abstractos, para que se ejecuten en plataformas Java que no sean Android vy,
asi, permitir tener mas tipos de dispositivos en la red y en la plataforma aunque
no sean del todo méviles. Ademads se ha anadido un nuevo tipo de agente.

4.1. Comunicacién Android-Java

Una de las metas que se desea alcanzar con la plataforma de agentes moéviles
es que los terminales Android puedan enviar agentes a equipos no méviles (como
por ejemplo ordenadores).

Esto no era posible debido a que SPRINGS para Android no es compatible
con el SPRINGS original ya que utiliza LipeRMI y la comunicacién entre RMI
y LipeRMI no es compatible.

Para permitir que SPRINGS para Android se pueda ejecutar en un equipo
con Java pero sin Android simplemente es necesario quitar las lineas de c6digo
que hacen referencia a la depuracién de Android (funciones: “Log.d()”).

En este punto ya se puede ejecutar SPRINGS con LipeRMI en Java, pero es
necesario modificar la libreria Sockets abstractos ya que los puertos y las cone-
xiones Bluetooth hacen referencia a la librerfa de Android “android.bluetooth.*”
y no a la de Java “javax.bluetooth”. Asi que la libreria de sockets abstractos
queda dividida en dos mitades. Una, la méas bésica, es la que tiene el codigo java
que se pueda utilizar tanto en Android como en equipos virtuales Java y la otra
la que contiene el cédigo que sélo se puede ejecutar en Android.

Hay ciertas funciones, especialmente en la clase java.net.NetworkInterface
que aparecen en Android 2.3.1 (Gingerbread), pero esa API se encuentra des-
aconsejada, asi que la plataforma de SPRINGS para Android tendrd que ser
ejecutada a partir de Android 2.3.3.

El cédigo que se mantiene en la parte Java corresponde a las clases pertene-
cientes a EthernetSocket y VirtualSocket, ademas del cédigo generado por los
puertos genéricos y los nodos.

33

34 CAPITULO 4. AMPLIACION DE FUNCIONALIDADES

Desgraciadamente, el cédigo de Bluetooth hay que dejarlo en Android ya que
no pertenece a la libreria original de Java, sino que se encuentra en el propio
c6digo de Android.

Para poder anadir Bluetooth a la libreria de Java es necesario generar una
nueva libreria que no podréd usar ningun dispositivo Android, pero si cual-
quier maquina fisica. El Bluetooth en Java se encuentra en el paquete “ja-
vax.bluetooth.*”.

Entonces, la nueva organizacion de las librerias es la siguiente: (ver fig. 4.1):

LN E1N

1/
AndroidSocket | JavaXSocket |
| b N
T N
|
1 AN
NewAndroid |
// N N R
/ N
/ N N
/ N
/ S
/ AN
/ N

11D [E1S

Figura 4.1: Esquema de las librerias

Descripcién de la nota:
1: AbstractSocket utiliza inicamente los paquetes java.*.

2: AndroidSocket utiliza la libreria de Android 2.3.3 y, a su vez, la libreria
AbstractSocket.

3: Ejemplo de una supuesta libreria que utilizarfa javax.® (u otras) para tener
nuevas funcionalidades en las maquinas Java, de entre ellas, Bluetooth.

4.2. ANADIENDO AGENTES GEOGRAFICOS 35

4: Ejemplo de una nueva libreria que utilizaria los nuevos tipos de conexiones
que en un futuro puedieran anadir en Android.

4.2. Anadiendo agentes geograficos

Los agentes no soélo tienen que ser mdviles en un entorno de redes, donde
impera la conectividad entre dispositivos, sino que también pueden ser méoviles
en el sentido geogrédfico [27] [28] [29], es decir, que se puedan mover a una
determinada coordenada geografica (latitud y longitud) del planeta.

Para permitir que los agentes puedan desplazarse en un contexto geogréafico,
es necesario indicar en qué posicién geogréfica se encuentran.

Pero no son los agentes los que realmente se encuentran en un determinado
lugar, sino los contextos, que son los que contienen los agentes, los que realmente
se pueden desplazar fisicamente por el mundo si se estan ejecutando en un
sistema mévil, como un terminal o un portatil.

Para determinar un lugar fisico en la tierra es necesario indicar su latitud y
su longitud, es decir, un punto.

4.2.1. Disenando los agentes geograficos

Para permitir que los agentes se puedan desplazar y buscar un lugar deter-
minado es necesario implementar un sistema que permita a los agentes decir
donde quieren ir o a qué zona quieren viajar.

Esta pequena API forma parte de SPRINGS para Android y es una manera,
mas o menos abstracta, de referirse a un lugar, ya que la posicién geografica se
puede obtener de diferentes formas. Por ejemplo, en Android para obtener la
posicién se utiliza las funciones del GPS (Global Positioning System), pero es
posible que en otros dispositivos, como un portatil, no tengan el mismo sistema
de geolocalizacion y obtengan la posicion de una manera distinta.

Un lugar determinado, queda descrito como un punto, con su latitud y su
longitud (ver fig. 4.2).

Point

x: double
y: double

Point(double x, doubley)

getX(): double

getY(): double

getDistance(Point another): double

bb

Figura 4.2: Clase Point

Para describir una zona, hay que describir un conjunto de superficies.

Una superficie es un area, y estas areas se describen en la libreria de forma
abstracta (ver fig. 4.3). Lo m&s importante de estas dreas es saber si un punto
se encuentra en un area o no:

Para no disenar todo tipo de dreas, sélo se disenaran dos tipos (el resto se
tendran que disenar en un futuro si fuesen necesarias): (ver fig. 4.4):

36 CAPITULO 4. AMPLIACION DE FUNCIONALIDADES

Area

= toString(): String
= contains(Point p): boolean

Figura 4.3: Clase abstracta Area

Triangulares : Representa un area triangular determinada o por tres puntos
o por tres rectas. Ademaés es necesario un cuarto punto que pertenezca al
area para no confundir con el drea complementaria.

Circulares : Representa un éarea circular determinada por un punto y el radio

de alcance.
Area
= toString(): String
= contains(Point p): boolean
,,,,,,,,,,,,,,,,,,,, b e oo
TriangleArea CircularArea

& ab: Line & center: Point
& ac: Line & radius: double
e
‘n ‘pc. Line . = CircularArea(Point center, double radius)
& inner: Point

= TriangleArea(Point a, Point b, Point ¢, Point inner)
= TriangleArea(Line ab, Line ac, Line bc, Point inner)

Line

gradient: double
onePoint: Point

Line(Point a, Point b)

Line(double gradient, Point p)
getGradient(): double

getX(double y): double

getY(double x): double
isParallelTo(Line anotherLine): boolean
getCrossPoint(Line anotherLine): Point

b b

Figura 4.4: Clases TriangleArea y CircularArea que extienden la clase Area. (La
clase Line simplemente es utilizada por TriangleArea para facilitar la taera de
tratamiento de este tipo de area).

Todas las dreas poligonales pueden ser representadas como un conjunto de
dreas triangulares. El resto de las dreas que tengan una curvatura (ovaladas,
elipticas, etc.) tendrdn que ser implementadas cuando sean necesarias.

4.2.2. Anadiendo la funcionalidad

Tras el diseno y la implementacién de las clases anteriores que permiten
determinar una zona del planeta, hay que modificar la version de SPRINGS
para Android para que los agentes puedan acceder a esta nueva funcionalidad.

4.2. ANADIENDO AGENTES GEOGRAFICOS 37

En los agentes de SPRINGS se anaden dos nuevas funciones para que puedan
moverse a un contexto que se encuentre en un punto en concreto o en una zona.
Una es moveTo(Point) y la otra es moveTo(Zone).

En los contextos se anade una variable para que guarden la ultima posicién
en la que se encuentran (puede ser nula si el contexto no sabe dénde se encuentra,
bien porque el sistema de localizacién que utilice no funciona o porque no tiene
ningin sistema de geolocalizacién). También tienen un evento que actualiza la
ultima posicion geografica del contexto.

Por ultimo, el servidor RNS tiene su interfaz, RegionNameServerInterface,
modificada para poder actualizar la posicién de un contexto y para buscar cudl
es el contexto mas cercano a un punto o que se encuentre en una determinada
area.

38

CAPITULO 4. AMPLIACION DE FUNCIONALIDADES

Capitulo 5

Conclusiones

Con este trabajo, se ha realizado un primer paso para la extensién de la plata-
forma de agentes mdviles con funcionalidades de interés para entornos inalambri-
cos, manteniendo la estructura original de la plataforma, lo cual garantiza una
mejor compatibilidad.

Los objetivos cumplidos han sido:

= El desarrollo de nuevas funcionalidades que permiten utilizar de forma
mas adecuada los distintos entornos inalambricos que puedan estar dispo-
nibles (Wifi, 3G, Bluetooth) en la plataforma de SPRINGS para Android.
Todos los sistemas tienen como punto en comun, a nivel bajo de cddigo,
que utilizan sockets. Las conexiones Ethernet utilizan “java.net.socket”
y las conexiones Bluetooth utilizan “javax.bluetooth.*” en Java o “an-
droid.bluetooth.*” en Android. El esquema de ambas clases socket es muy
similar (primero establecen la conexién y luego sacan un InputStream y
un OutputStream para el envio de datos). En este proyecto se ha aprove-
chado esta caracteristica de que el esquema de los sockets sea muy similar
para poder crear una clase abstracta Socket (AbstractSocket) y unas en-
volturas (EthernetSocket y BluetoothSocket) para poder utilizar ambos
sockets iniciales de una manera cémoda y facil.

= Crear y utilizar una red para la comunicacién entre los contextos y servido-
res de nombre de region de la plataforma. Esta red ha es el punto principal
de todo el proyecto y permite la conexién, tanto directa como indirecta, de
todos los dispositivos que formen la red, la gestion de las comunicaciones,
etcétera, independientemente de su sistema de comunicacién.

= SPRINGS en Android puede ejecutarse en equipos que no sean Android
siempre que tengan una maquina virtual Java. Este objetivo fue anadido
durante el desarrollo del proyecto, pero atin asi, se llevé a cabo sin mu-
chas dificultades. Este punto es un poco especial porque es la primera vez
que, en particular, se disefia una libreria que utilice otra libreria creada
personalmente.

= La plataforma ahora puede utilizar agentes geograficos. Sélo se ha imple-
mentado una manera de describir lugares para que los agentes puedan

39

40 CAPITULO 5. CONCLUSIONES

saltar a esos espacios geograficos, pero es posible que el grupo de traba-
jo de la universidad de Zaragoza SID siga desarrollando estos agentes y
doténdolos de nuevas funcionalidades.

En cuanto a lo personal, principalmente he aprendido mucha ingenieria in-
versa al investigar y poner en marcha a SPRINGS, la plataforma de agentes
moviles, tanto el original, como el port en Android. También he aprendido bas-
tante sobre Android, sus permisos internos y el funcionamiento de este sistema,
especialmente en el desarrollo de esta plataforma.

La gestién del proyecto ha sido desproporcionada, sobretodo al principio,
yva que he perdido mucho tiempo con los problemas que he tenido poniendo en
marcha la plataforma SPRINGS.

Para finalizar, tengo que destacar que el diseno se realiza mejor en grupo,
ya que cada persona aporta su punto de vista sobre una idea y anade o mejora
otras ideas sobre un tema. Quiero destacar esto porque como he estado yo sélo,
he tenido que realizar el diseno de los médulos en solitario. Pero en ciertas
ocasiones les he explicado a mis companeros cémo iba avanzando mi proyecto
y me han sugerido nuevas ideas o me han aportado una nueva informacién
que, si hubiésemos estado en un equipo desde el principio, se hubiera tenido en
cuenta desde el principio. Por ejemplo las conexiones virtuales, que hacen que
el programador se despreocupe de la conexién real que se esta estableciendo.

5.1. Trabajos futuros

Una vez finalizada la integracion de los entornos inaldmbricos de Android
en la plataforma SPRINGS, quedan por mencionar unos cuantos problemas que
surgen con los entornos inalambricos. En concreto:

Desconexion del nodo RNS: Si, durante la conexioén, el servidor RNS pier-
de la conexién (por ejemplo estd demasiado alejado del punto de conexién)
la plataforma de agentes fallard ya que es la pieza clave.

Posible solucién: Una posible solucién seria distribuir el propio servi-
dor para asegurar que, al menos, la mayoria de las funcionalidades
no se pierdan y, cuando todos los RNS estén otra vez conectados, se
actualice el servidor por completo con los datos nuevos.

Gestién de las conexiones: Que la plataforma tenga en cuenta las nuevas
conexiones, incluso mientras se comunican los nodos.

= Por ejemplo: Si dos nodos establecen una conexién indirecta y, al
cabo de un tiempo, estan lo suficientemente cerca como para poder
establecer la conexién directa, entonces no hace falta que cierren la
primera comunicaciéon para abrir la segunda, sino que sea la plata-
forma que lo haga automaticamente.

= También es util si la linea por la que se comunican dos nodos cae. Si
llegase a ocurrir, entonces se encargaria la plataforma de buscar una
ruta alternativa automaticamente, sin que los nodos de la aplicacion
tengan que realizar ningun esfuerzo.

5.2. EVALUACION DEL PROYECTO 41

5.2. Evaluacién del proyecto

El proyecto se ha podido terminar cumpliendo todos los requisitos propuestos
desde el principio e, incluso, alguno més (que la plataforma SPRINGS para
Android se pueda ejecutar en méquinas virtuales Java que no fuesen Android).

Se ha invertido mucho tiempo (tal vez demasiado), en conseguir que la pla-
taforma de SPRINGS para Android funcionara.

El desarrollo de la libreria no ha ocupado mucho tiempo (la mitad del tiempo
del proyecto mds o menos) pero con unos resultados muy satisfactorios como
haber conseguido utilizar varios sistemas de comunicacién a la vez o el uso de
una red multisalto para todos los nodos de la red.

Este proyecto puede resultar muy interesante como punto de partida hacia
una plataforma de agentes mdviles para Android que esté perfectamente adap-
tada al entorno. El grupo SID pretende seguir progresando su investigaciéon en
este tema.

5.3. Tiempo dedicado

Tras la realizacién del proyecto, se ha realizado una estimacion del tiempo
invertido.

Estudio de la plataforma SPRINGS y pruebas de funcionamiento: 78
horas. El mayor tiempo invertido fue en la bisqueda de informacién de
agentes méviles y en plataformas de agentes moviles: como es su funcio-
namiento, cudl es la base general de los agentes méviles, etc.

Estudio, ejecucion, depuracién y solucion de SPRINGS para Android:
243 horas. Esta parte duré mucho debido a la depuracién y la bisqueda
de las soluciones. Aunque parezca sencillo depurar un programa, no es
lo mismo un programa “monohilo” que “multihilo”, donde se producen
condiciones de carrera que afectan a la depuracién que se realiza.

Diseno e implementacién de Abstract Socket: 118 horas. Mientras se bus-
caban los problemas que hubo en SPRINGS para Android, se pudo obser-
var la estructura de la plataforma a fondo y se obtuvieron muchas ideas
para el desarrollo de esta libreria.

Diseno e implementacién de la red Mesh: 161 horas. Esta parte amplia
la libreria Sockets abstractos para que funcione con dispositivos alejados,
creando una red Mesh. Aunque parece un simple concepto, habia que
desarrollar y disenar muchas partes para que la red estuviese operativa.

Bifurcacion de las librerias: 37 horas. Esta es la parte mdas corta del pro-
yecto, pero no la mas facil. La libreria Sockets abstractos se tuvo que
dividir en dos, una para que funcionara en Java y otra que usase la pri-
mera y funcionara en Android. Lo mds complicado fue la investigacién de
todas las instrucciones para saber cudles eran compatibles en Java y hasta
qué version minima podia alcanzar con Android.

Adaptacién de SPRINGS para tener agentes geograficos: 41 horas. Aun-
que no era una parte basica del proyecto, los agentes geograficos en entor-
nos moviles son un aspecto muy interesante. Se invirtié bastante tiempo

42 CAPITULO 5. CONCLUSIONES
en estudiar como representar un area de forma éptima para la plataforma,
porque el planeta se representa como un plano no euclidiano.

Tiempo en el desarrollo del trabajo: 79 horas. Es el tiempo invertido en
la redaccién, puesta en marcha, pruebas con terminales y maquinas vir-
tuales.

En total son 757 horas para el desarrollo de todo el proyecto.

Bibliografia

[1]

D. Chess, C. Harrison, A. Kershenbaum, and T. J. Watson, “Mobile agents:
Are they a good idea?,” Communications of the ACM, 1995.

D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”
Communications of the ACM, pp. 88-89, 1999.

T. G. Nguyen and T. T. Dang, “Agent platform evaluation and compa-
rison,” Tech. Rep. Pellucid 5FP IST-200134519, Institute of Informatics,
Slovak Academy of Sciences, June 2002.

Y. Aridor and M. Oshima, “Infrastructure for mobile agents: Requirements
and design,” Second International Workshop of Mobile Agents, pp. 38—49,
1998.

H. Peine and T. Stolpmann, “The architecture of the ara platform for
mobile agents,” First International Workshop of Mobile Agents, pp. 5061,
1997.

D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet, “Con-
cordia: An infrastructure for collaborating mobile agents,” First Interna-
tional Workshop of Mobile Agents, pp. 86-97, 1997.

A. Puliafito, O. Tomarchio, and L. Vita, “Map: Design and implementation
of a mobile agents’ platform,” Journal of Systems Architecture, 2000.

L. M. Silva, P. Simées, G. Soares, P. Martins, V. Batista, C. Renato, L. Al-
meida, and N. Stohr, “James: A platform of mobile agents for the manage-
ment of telecommunication networks,” Intelligent Agents for Telecommu-
nication Applications, pp. 76-95, 1999.

R. Trillo, S. Ilarri, and E. Mena, “Comparison and performance evaluation
of mobile agent platforms,” IEEE Computer Society, 2007.

E. Gémez-Martinez, S. Ilarri, and J. Merseguer, “Performance analysis of
mobile agents tracking,” WOSP ‘07 Proceedings of the 6th international
workshop on Software and performance, pp. 181-188, 2007.

O. Urra, S. Ilarri, R. Trillo, and E. Mena, “Mobile agents and mobile devi-
ces: Friendship or difficult relationship?,” Journal of Physical Agents, 2009.

A. Moreno, A. Valls, and A. Viejo, “Using JADE-LEAP to implement
agents in mobile devices,” Research Report 03-008, DEIM, URV, 2005.

43

44

[13]

[19]

[20]

[21]

[23]

[24]

[25]

BIBLIOGRAFIA

S. Ilarri, R. Trillo, and E. Mena, “Springs: A scalable platform for highly
mobile agents in distributed computing environments,” WOWMOM 06
Proceedings of the 2006 International Symposium on on World of Wireless,
Mobile and Multimedia Networks, pp. 633-637, 2006.

D. B. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents Aglets. Addison-Wesley Longman Publishing Co., Inc., 1998.

J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and M. Strafer,
“Communication concepts for mobile agent systems,” First International
Workshop of Mobile Agents, pp. 123-135, 1997.

O. Urra, S. Harri, and E. Mena, “Agents jumping in the air: Dream or
reality?,” Springer Berlin Heidelberg, pp. 627-634, 2009.

O. Urra, S. Harri, and E. Mena, “Testing mobile agent platforms over the
air,” IEEE Computer Society, pp. 152-159, 2008.

M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler, “A design framework
for highly concurrent systems,” UC' Berkeley Tecnical report UCB/CSD-00-
1108, 2000.

C. Kramer and L. Prechelt, “Design recovery by automated search for struc-
tural design patterns in object-oriented software,” Reverse Engineering,
Proceedings of the Third Working Conference, pp. 208-215, 1996.

C. Weckerle and L. Strick, “Mobile agents in a P2P world,” IEEE Computer
Society, pp. 1876-1881, 2004.

D. H. Lee, K. W. Cho, W. S. Jeon, and D. G. Jeong, “Two-stage semi-
distributed resource management for device-to-device communication in
cellular networks,” IEEE Communications Society, pp. 1908-1920, 2014.

G. Moro and G. Monti, “W-grid: a cross-layer infrastructure for multi-
dimensional indexing, querying and routing in wireless ad-hoc and sensor
networks,” IEEE Communications Society, 2006.

J. Park, H. Youn, and E. Lee, “A mobile agent platform for supporting ad-
hoc network environment,” International Journal of Grid and Distributed
Computing, 2008.

A. Raniwala and T. cker Chiueh, “Architecture and algorithms for an ieee
802.11-based multi-channel wireless mesh network,” IEEE Computer So-
ciety, vol. 3, pp. 2223-2234, 2005.

J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evalua-
tion of an unplanned 802.11b mesh network,” MobiCom Mobile Computing
and Networking, pp. 31-42, 2005.

K. Stencel and P. Wegrzynowicz, “Implementation variants of the singleton
design pattern,” Springer Berlin Heidelberg, pp. 396—406, 2008.

M. Durresi, A. Durresi, and L. Barolli, “Emergency broadcast protocol for
inter-vehicle communications,” IEEE Computer Society, pp. 402—406, 2005.

BIBLIOGRAFIA 45

[28] R. Lambiottea, V. D. Blondela, C. de Kerchovea, E. Huensa, C. Prieurc,
Z. Smoredac, and P. V. Doorena, “Geographical dispersal of mobile commu-
nication networks,” Physica A: Statistical Mechanics and its Applications,
2008.

[29] 1. C. Department of Geography, The University of Iowa, “Modelling adap-
tive, spatially aware, and mobile agents: Elk migration in yellowstone,”
International Journal of Geographical Information Science, 2005.

