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Generación de ductos biliares in vitro en organoides 
hepáticos 3D de bioingeniería 

 
 

RESUMEN 
 
 
Debido a la existencia de escasos modelos in vitro para el estudio de ductos biliares y a 

su reducida representatividad de la fisiología humana, hay una necesidad creciente de 

generar nuevos modelos 3D ex vivo que permitan estudiar la biología y fisiología biliar. 

Así, el objetivo de este proyecto es desarrollar un modelo 3D in vitro que contenga 

alguno de los elementos celulares del hígado humano y que permita la generación de 

ductos biliares in situ.  

Se ha recurrido al uso de las tecnologías de bioingeniería de tejidos y de órganos, 

trabajando con la capacidad de auto-organización de las células que componen el ducto 

biliar una vez sembradas en agregados celulares y usando matriz extracelular 

descelularizada de hígado de rata para generar la tridimensionalidad.  

Para tal fin, sean utilizado colangiocitos adultos y hepatoblastos fetales humanos para 

generar ductos biliares y caracterizar su interacción con otras células no parenquimales 

[endotelio y células madre mesenquimales (MSC)] en la formación de dichos ductos. 

También se ha caracterizado el crecimiento celular de los colangiocitos humanos, 

células endoteliales y MSC. 

A pesar de haber obtenido algunas estructuras celulares prometedoras, no se ha podido 

conseguir generar ductos maduros con estas técnicas y poblaciones celulares empleadas. 

Sin embargo, este proyecto ha podido crear las bases para la creación de estos 

organoides en laboratorio a partir de células exclusivamente humanas. 

 

 

Palabras clave: ingeniería tisular, medicina regenerativa, ductos biliares 

 

 

 

 



3 

 

 

 

ÍNDICE 
 

 

ABREVIATURAS .......................................................................................................... 4 

INTRODUCCIÓN .......................................................................................................... 5 

MATERIAL Y MÉTODOS ......................................................................................... 10 

Obtención de células ................................................................................................... 10 

Generación de matriz extracelular de hígado de rata ................................................. 11 

Siembra de organoides biliares ................................................................................... 12 

Procesado de las muestras .......................................................................................... 16 

RESULTADOS ............................................................................................................. 18 

Análisis del crecimiento celular durante la expansión ............................................... 18 

Generación y análisis de organoides .......................................................................... 20 

En scaffold .............................................................................................................. 20 

En plástico .............................................................................................................. 20 

En sándwiches ........................................................................................................ 21 

Análisis histológico e inmunofluorescencia ............................................................... 21 

DISCUSIÓN .................................................................................................................. 24 

CONCLUSIÓN ............................................................................................................. 25 

BIBLIOGRAFÍA .......................................................................................................... 26 

Anexo I. Medios de cultivo empleados para los distintos tipos celulares ................ 29 

 

 
 
 
 
 
 
 
 
 
 
 
 



4 

 

 

 

ABREVIATURAS 
 

- BSA: bovine serum albumine 

- DMEM: Dulbeco’s modified eagle medium 

- EGF: epidermal growth factor 

- FBS: fetal bovine serum 

- FGF-2: fibroblast growth factor 2 

- IGF1: insulin growth factor 1  

- PBS: phosphate buffered saline 

- P/S: penicillin/streptomycin 

- VEGF: vascular endotelial growth factor 
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INTRODUCCIÓN 

 
 

Según la mitología griega, el titán Prometeo robó el fuego del Monte Olimpo y se lo dio 

a la humanidad. Esto provocó la ira de Zeus, que lo castigó encadenándole a una roca y 

enviando un águila para que se comiera su hígado. Éste crecía cada día, y el águila 

volvía a comérselo cada noche.  

Esta leyenda supone un símbolo apropiado para la medicina regenerativa. Hoy en día, 

investigadores científicos y doctores esperan que el concepto mítico de la regeneración 

pueda ser realidad, desarrollando terapias para regenerar pérdida, daño o envejecimiento 

de células y tejidos del cuerpo humano.  

 

Así, surgen la ingeniería de tejidos y la medicina regenerativa, dos campos bastante 

amplios que combinan moléculas biológicamente activas, células  y scaffolds para crear 

tejidos funcionales, recopilando ideas o teorías que restauren, mantengan o mejoren 

tejidos dañados u órganos completos.
1
  

En los últimos 20 años, muchos órganos y tejidos han sido generados en laboratorio 

utilizando estas técnicas. Tejidos como la vejiga urinaria
2
, uretra

3
, vagina

4
, vasos 

sanguíneos
5
, tráquea

6
, piel

7
, hueso

8
, cartílago

9
, etc., han sido ya trasplantados con éxito 

en pacientes. Muchas terapias similares a éstas ya están en fase de ensayos clínicos, 

procurando dar nuevas soluciones de regeneración y cura de enfermedades 

degenerativas que todavía no cuentan con soluciones médicas efectivas.
 

 

El hígado constituye la glándula de mayor peso del cuerpo, con un peso aproximado de 

1,2-1,5kg en el adulto, ocupando el segundo lugar después de la piel como órgano más 

grande. También constituye uno de los órganos más importantes del cuerpo, debido a 

las múltiples funciones que realiza, tanto metabólicas como hormonales. Entre ellas: 

síntesis de proteínas plasmáticas, producción de bilis (necesaria para la digestión y 

absorción de grasas), función detoxificante, almacén de vitaminas y glucógeno. 

 

Está anatómicamente dividido en ocho segmentos vascularmente independientes entre 

sí, y su unidad morfológica funcional es el lobulillo hepático, de forma hexagonal 
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(según la descripción clásica) y organizada alrededor de la vena central. Su interior está 

constituido por cordones de hepatocitos dispuestos radialmente alrededor de la vena 

central y entre dichos cordones se localizan los sinusoides hepáticos. En los vértices del 

lobulillo se localiza la tríada portal (constituida por una arteria hepática, una vena porta 

y un conducto biliar). Repeticiones de esta unidad funcional constituyen el tejido 

hepático (Fig. 1) 

 

 
Figura 1. Acino hepático (Extraído de Ebrahimkhani MR et al., 2014) 

 
 

Estudios recientes demuestran la importante necesidad de reproducir  la estructura y 

fisiología del hígado observada in vivo, para reproducir de la manera más exacta posible 

todas sus funciones in vitro, intentando representar el microambiente celular en el 

laboratorio. Dicho microambiente (nicho celular) juega un papel muy importante en la 

regulación de la supervivencia, renovación y diferenciación de las células madre, así 

como en el mantenimiento y función de las células adultas que constituyen el tejido 

hepático. Los componentes clave de este nicho que modulan el crecimiento celular 

incluyen los factores de crecimiento (ya sean añadidos al medio de cultivo o secretado 

por las células), el contacto célula-célula y las adhesiones célula-matriz.
10

  

Hoy en día no se tiene muy claro cuál es el nicho celular del hígado. Por un lado, los 

Canales de Hering (Fig.2) donde se van generando hepatocitos continuamente en el área 

portal y van madurando en su camino hacia la vena central. Dichos hepatocitos, junto a 
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linajes biliares, son producto de la diferenciación de células madre presentes en estos 

canales.
11

  

 

 

 

 

 
Figura 2. Modelo del nicho hepático en el canal de Hering. Las células denominadas null cells son aquellas que 

no presentan marcadores hepatobiliares, pero pueden representar células madre extrahepáticas, originadas 

por células madre de médula ósea circulantes, las cuales se ha visto que contribuyen a la regeneración hepática 

(Extraído de Kordes y Häussinger, 2013) 

 

Pero, además de los Canales de Hering, hay otras áreas del hígado que pueden ser 

nichos de células madre de modo pasajero: espacio de Disse (Fig. 3). Aquí habitan las 

células estelares, las cuales parecen poseer características de células madre: expresan 

genes asociados a células madre/progenitoras y tienen el potencial de diferenciarse a 

hepatocitos  in vitro. 
12,13

 A pesar de que hay evidencias experimentales de que estas 

células estelares puedan ser células madre, su contribución en la reparación de tejidos 

permanece en discusión. 
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A pesar de que en los dos nichos se pueden encontrar células madre, hay una diferencia 

fundamental entre ellos: la exposición directa de la célula madre hepática a altas 

concentraciones de ácidos biliares en el canal de Hering, lo que no ocurre en el espacio 

de Disse. Se ha demostrado que los ácidos biliares no sólo actúan como emulgentes de 

lípidos, sino también como moléculas de señalización que permiten la regeneración 

hepática cuando hay elevados niveles, y que la inhiben cuando son bajos.
14, 15

  

 

La matriz extracelular  representa un gran componente de este microambiente celular. 

No sólo proporciona un marco estructural, sino también juega un papel crítico en la 

adhesión y migración y regula la diferenciación, reparo y desarrollo de las células, así 

como el mantenimiento de su fenotipo y función.
16

 Sus propiedades bioquímicas y 

mecánicas transmiten señales que regulan el desarrollo del órgano, el fenotipo y la  

función celular. Por esta razón, el proceso de descelularización juega un papel muy 

importante. Es necesario preservar la matriz lo más intacta posible. Es por ello que en 

este estudio se ha empleado tritón X-100 como detergente e hidróxido de amonio, los 

cuales permiten una rápida y constante eliminación de los componentes celulares de 

dicho tejido, preservando intactos la red vascular y muchos elementos de la matriz 

extracelular, a diferencia de lo que ocurre con otros detergentes más agresivos como el 

SDS.
17-19

 

Figura 3. .Modelo de nicho hepático en el espacio de Disse. Las células estelares son atraídas por  las células 

endoteliales, que liberan al medio CXCL12, y por las células parenquimales, que liberan ligandos como JAG1 y 

WNT. Por su parte, las células estelares liberan HGF, un factor de crecimiento de hepatocitos (Extraído de 

Kordes y Häussinger, 2013) 
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Existe la hipótesis de que las interacciones entre colangiocitos y proteínas de la matriz 

extracelular son importantes para la morfogénesis de ductos biliares.
20 

También se ha 

visto que algunas señales solubles paracrinas liberadas por células no epiteliales (como 

las estelares, endoteliales, células madre mesenquimales, fibroblastos portales y células 

madre hematopoyéticas) han demostrado ser críticas para el mantenimiento y 

diferenciación de células progenitoras en hepatocitos y colangiocitos.
21-23

 Es por esto 

que cuanto mejor se pueda reproducir este nicho in vitro, estableciendo equivalentes 

funcionales, mejores resultados se podrán obtener. Sin embargo, hoy en día se 

desconocen los mecanismos específicos y las rutas implicadas en este proceso de 

maduración hepática.
24

  

 

Hasta hace poco, se contaba con cultivos in vitro bidimensionales (2D) o in vivo en 

modelos animales (roedores, perros, cerdos y monos) para realizar diversos estudios de 

toxicología, trasplante de órganos, estudios con células madre, enfermedades 

infecciosas, metabolismo de drogas, etc.,  con el inconveniente de que no mostraban un 

desarrollo del tejido o del proceso fisiológico que se observa en el cuerpo humano.  

Estas deficiencias llevaron a la creación de modelos hepáticos “humanizados” 

tridimensionales (3D) que pueden reproducir algunas funciones metabólicas o 

interacciones patógeno-hospedador humanas. Estos modelos 3D presentan la ventaja de 

que proporcionan a las células un ambiente en el que pueden organizarse, permitiendo 

el estudio de esta organización y diferenciación celular. Sin embargo, hoy en día los 

modelos que existen tienen una reducida representatividad de la fisiología y biología 

humana; son capaces de mostrar funciones hepáticas robustas
25

 pero no son capaces de 

mostrar un desarrollo completo del tejido hepático (no desarrollan ductos biliares). Es 

por ello que existe una necesidad creciente de generar nuevos modelos 3D que permitan 

estudiar los procesos del desarrollo hepático o la biología asociada a su generación.  

 
 

El objetivo de este proyecto consiste en desarrollar un modelo 3D in vitro que contenga 

los elementos celulares del hígado humano y que permita la generación de ductos 

biliares, comparando el uso de células primarias adultas (colangiocitos) con células 

fetales no diferenciadas (hepatoblastos), los cuales tienen un enorme potencial en 



10 

 

 

 

medicina regenerativa debido a su alta capacidad de expansión y diferenciación a 

hepatocitos y epitelio biliar.
26

 

 

 

MATERIAL Y MÉTODOS 

 

Obtención de células 
 

Para el experimento con células hepáticas adultas, en primer  lugar se han empleado tres 

tipos celulares: células biliares (BEC, recubren los ductos biliares), endoteliales de vena 

de cordón umbilical (hUVEC, recubren los vasos sanguíneos) y mesenquimales (hMSC, 

células madre mesenquimales). 

Las dos primeras fueron obtenidas gracias a la donación de dos investigadores 

colaboradores; las mesenquimales  a partir de grasa humana procedente de lipoaspirados 

de pacientes sometidos a operaciones de cirugía estética (con consentimiento informado 

concedido por el paciente y con el protocolo de investigación clínica aprobado por la 

Comisión Ética de Investigación Científica de Aragón). 

Para el aislamiento de hMSC, se ha digerido la muestra de grasa con Colagenasa tipo I 

(Sigma-Aldrich) a 37ºC durante 30 min en agitación. A continuación se ha centrifugado 

10 minutos a 1200g, se ha resuspendido el pellet en medio de cultivo (DMEM/F12 + 

1%P/S + 10%FBS) (Life technologies) y se ha vuelto a centrifugar 5 min a 400g. 

Una vez aisladas, se ha procedido con la expansión celular hasta conseguir el número 

deseado (12 millones de células). Se han expandido también las hBEC y hUVEC hasta 

conseguir cerca de 12 millones de células de cada tipo.  

Antes de sembrar las células en las placas, es necesario hacer un recubrimiento de las 

mismas con colágeno I (50 mg/L) (Coming) en el caso de las hBEC o de gelatina (al 

0.02%) (Sigma-Aldrich) en el caso de las hUVEC y hMSC, para mejorar su adhesión y 

crecimiento celular. 

 

Para permitir el crecimiento de las células in vitro, se han preparado tres medios de 

cultivo distintos, en función de las características y singularidades de cada tipo celular. 

Las fórmulas de cada medio se recogen en el Anexo I.  
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En el caso del experimento empleando células hepáticas fetales, se han obtenido 

hepatoblastos fetales humanos (y también células endoteliales y de estroma en co-

aislamiento) a partir de la digestión de hígado de 20 semanas procedente de abortos 

terapéuticos (con consentimiento informado firmado por el paciente y con el protocolo 

de investigación clínica aprobado por la Comisión Ética de Investigación Científica de 

Aragón y del Biobanco del Hospital Vall d’Hebron de Barcelona). 

De aquí se han obtenido directamente, en un mismo cultivo, los tres tipos celulares, con 

la diferencia de que esta vez, en lugar de tener colangiocitos diferenciados (hBEC), 

obtenemos hepatoblastos fetales humanos, que son las células progenitoras que dan 

origen a los hepatocitos y colangiocitos del hígado. 

 

Una vez recibido el tejido fetal, se ha troceado previamente y se ha digerido con 

Colagenasa tipo I (Sigma-Aldrich). Se ha dejado en agitación a 350rpm 30 minutos a 

37ºC. A continuación se ha inactivado la actividad enzimática añadiendo medio de 

cultivo (DMEM/F12 + 10%FBS + 1%P/S) (Life Technologies). Posteriormente se han 

hecho 3 lavados (centrifugaciones a 150rpm a 5ºC), se ha filtrado la  muestra 

sucesivamente con tamices celulares de 100 y 40µm  (BD Falcon), se ha resuspendido 

el pellet en el medio de cultivo diseñado para los hepatoblastos y se han sembrado en 

placas de cultivo de 10 cm
2
 con un recubrimiento de colágeno IV (62,5 µg/mL) (Sigma 

Aldrich). 

 

Generación de matriz extracelular de hígado de rata 
 

Para generar matriz extracelular, sobre la que se sembrarán las células, se han usado 

hígados de rata (Sprague-Dawley de 4-9 meses de edad). 

Para ello, se ha extraído dicho órgano y se ha canulado la vena porta con una cánula de 

18-20G, ajustada al diámetro del vaso.  

A continuación se ha procedido con su descelularización, con ayuda de una bomba 

peristáltica, que permite la circulación, en primer lugar, de 2L de agua destilada  a una 

velocidad de 4mL/min a través del órgano. Cuando se ha completado el ciclo, se ha 

cambiado el agua destilada por una solución de detergente (Tabla 1), y se han dejado 

circular 4L a la misma velocidad.  
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Para finalizar el proceso, se ha hecho un lavaje con 8L de agua destilada, para asegurar 

así que todo el detergente ha sido eliminado.  

 
 

Solución de detergente (4L) 

Reactivo Volumen (mL) 
Agua destilada 4000 

Tritón X100 40 (1%) 
Hidróxido de amonio 4 (0.1%) 

Tabla 1. Solución de detergente para descelularización 

 

Una vez descelularizado el hígado, se han cortado los distintos lóbulos y se han 

preparado bloques de OCT (Leica) para cortarlos con un criostato (Leica CM1950). La 

temperatura ideal del criostato para la generación de discos de matriz extracelular 

descelularizada de hígado de rata es de -8ºC. Primero se han hecho cortes longitudinales 

del bloque, y de cada corte se han realizado discos (scaffolds),  con ayuda de un punch 

de biopsias dérmicas (Kai Medical) de 8mm de diámetro.  

Cada scaffold se coloca directamente en una placa multipocillo (48 pocillos). A 

continuación se dejan secar  y se hacen lavados sucesivos con PBS (Hyclone) para 

eliminar todo el OCT. 

Una vez limpios, se han esterilizado exponiendo  la placa multipocillo descubierta en la 

cabina de flujo laminar con luz UV durante 2h. Transcurrido este tiempo, se ha 

rellenado cada pocillo con 500µL de PBS estéril y se ha guardado a 4ºC hasta el día de 

la siembra. 

 

Siembra de organoides biliares 
 

Para el experimento con células hepáticas adultas, una vez obtenido el número necesario 

de cada tipo celular, se han establecido distintas condiciones experimentales. En primer 

lugar se han hecho controles experimentales en placas multipocillo sin scaffold, es 

decir, la siembra se ha hecho directamente sobre el plástico de la placa. Las condiciones 

de ensayo han sido sembrar los tres tipos celulares individualmente, hUVEC,  hMSC y 

hBEC (n=1), y los tres tipos celulares mezclados, hUVEC+hMSC+hBEC (n=2). 
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En la placa que contiene los scaffolds, las condiciones experimentales son similares: se 

han sembrado las células hUVEC,  hMSC y hBEC individualmente (n=1), las 

combinaciones hUVEC+hBEC, hMSC+hBEC y hUVEC+hMSC (n=2) y también la 

combinación  hUVEC+hMSC+hBEC (n=3), como se puede observar en la siguiente 

tabla: 

 
 

Scaffolds Plástico 
hUVEC (x2) 

(1) 
hUVEC+hMSC+hBEC (x2) 

(0.33 + 0.33 + 0.33) 

hMSC (x2) 
(1) 

hMSC (x1) 
(0.8) 

hBEC (x2) 
(0.8) 

hUVEC (x1) 
(0.8) 

hUVEC+hMSC+hBEC (x3) 
(0.33 + 0.33 + 0.33) 

 

hBEC (x1) 
(0.8) 

hUVEC+hBEC (x2) 
(0.4 + 0.4) 

 

hMSC+ hBEC (x2) 
(0.4 + 0.4) 

 

hUVEC+hMSC (x2) 
(0.5 + 0.5) 

 

Tabla 2. Disposición de las células en la placa multipocillo. Los números entre paréntesis son los millones de 

cada tipo celular que se han sembrado. Se ha sembrado BEC p10 y 12, hUVEC p9 y 10 y hMSC p10 

 

 

Ha sido necesario también diseñar un medio de cultivo que sea compatible con los tres 

tipos celulares.  Así, se ha preparado un volumen de 180mL, y sus componentes se 

recogen en la siguiente tabla: 
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Medio de cultivo scaffolds (180mL) 
 

Reactivo Volumen (mL) 
Advanced DMEM F12 171 
Vitamin solution 1.8 (1%) 
MEM-non essential aminoacids 1.8 (1%) 
P/S 1.8 (1%) 
Lipid mixture 1.8 (1%) 
FBS 3.6 (2%) 
 Concentración  
VEGF 10 ng/mL 
IGF1 20 ng/mL  
FGF2 10 ng/mL 
EGF 25 ng/mL  
T3 3,4 µg/mL 

Dexametazone 10-7 M  
Taurocholic acid 50mM 

               Tabla 3. Medio de cultivo común diseñado para los tres tipos celulares 

 

 

Las células se han sembrado en agregados celulares, formando pequeñas 

aglomeraciones que han sido colocadas lo más céntricamente en el scaffold. De esta 

manera se evita que se desparramen por el plástico de la placa y crezcan ahí en lugar de 

dentro del disco. A continuación se ha añadido 1mL de medio de cultivo definido para 

los tres tipos celulares y se ha dejado en la incubadora a 37ºC  con 5% de CO2 durante 7 

y 14 días, cambiándoles el medio cada día. 

Aparte de las placas multipocillo con y sin scaffold, se ha hecho otro experimento en el 

cual se han puesto 3 discos en la superficie de una placa de 10 cm de diámetro 

(separados entre sí) y se ha sembrado cada scaffold con una combinación de los tres 

tipos celulares. A continuación se  ha cubierto con otros discos, a modo de sándwich, 

para ver si hay diferencias en la organización celular con respecto a los scaffolds en 

mono-capa.  

Transcurrida la primera semana, se han extraído las muestras de la mitad de los pocillos 

de cada condición experimental y se han fijado en formaldehído 3,7- 4% tamponado a 

pH 7,4. Se ha repetido la operación transcurridos los 14 días, extrayendo en este tiempo 

los sándwiches.  

Debido a que el cultivo de células progenitoras fetales es más sensible a la 

diferenciación, no se puede estar mucho tiempo en expansión, por lo que es conveniente 

sembrarlas lo antes posible (en pase 0). 
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Se  han sembrado los scaffolds (n=4) con 575.000 células, siguiendo el mismo 

procedimiento al citado anteriormente y se han dejado incubar durante 14 días. 

En este caso, el  medio de cultivo difiere del anterior. (Tabla 4) 
  
 

 

Medio de cultivo scaffolds (500mL) 
 

Reactivo Cantidad  
RPMI 500 mL 
P/S 5 mL 
Free fatty acids 38 µL 
BSA  0.5 gr 
Niacinamide 0.270 gr 
 Concentración  
L-glutamine  2mM 
Insuline 5 µg/mL 
Transferrin  10 µg/mL 
Selenium 52 pg/mL 
Hydrocortisone 8.28·10

-8 
M 

Beta-mercaptoethanol 5·10
-5 

M 
Zinc sulfate heptahidrate 1·10

-10 
M 

EGF 50ng/mL 
IGF-1 20ng/mL 
Thiazovivine 10µM 
CHIR 5·10

-10 
M 

Tabla 4. Medio de cultivo diseñado para scaffolds  con hepatoblastos 

 

Debido a la sensibilidad de los hepatoblastos, a la hora del despegue de las células de la 

superficie de la placa no se ha usado tripsina como en el caso de las células adultas, sino 

una solución que contiene 5mM de EDTA. 

Posteriormente, se ha hecho un recuento de viabilidad celular. 

 

 

 

 

 

 

 

 

 



16 

 

 

 

La siguiente figura recoge de manera esquemática todo el proceso descrito, desde la 

obtención del hígado de rata hasta la siembra de scaffolds.  

 
 
 

 
Figura 4. Proceso de descelularización del hígado y siembra de los scaffolds 

 
 

Procesado de las muestras 
 

Cada muestra ha sido fijada e incluida en moldes de parafina (Tissue-tek Xpress X50 

Sakura). A continuación se hicieron cortes consecutivos de 5µm de grosor. En cada 

portaobjetos se han dejado dos cortes sucesivos. Se han teñido el primer y el décimo 

portaobjetos con hematoxilina y eosina (H&E) y se ha mirado al microscopio óptico 

para determinar si ha habido crecimiento celular y si se han formado estructuras 

celulares relevantes.  

Las muestras sospechosas de contener ductos han sido posteriormente tratadas con 

técnicas de inmunotinción.  

Para ello, primero se han desparafinado para poder marcarlas con anticuerpos. Tras 

desparafinar, en primer lugar, se han dejado las muestras en una solución antigen 
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unmasking a 95ºC durante 20 min. Se ha dejado enfriar a temperatura ambiente y luego 

se ha cambiado por una solución de lavaje durante 5 min. Se han añadido después 

100µL de solución bloqueante y se ha incubado 1h. 

A continuación se han añadido los anticuerpos primarios al control positivo y solución 

de lavado a los controles negativos. Se ha dejado incubar toda la noche a 4ºC. 

Transcurrido este tiempo, se han lavado las muestras tres veces en la solución de lavado 

y se han añadido los anticuerpos secundarios, dejando incubar 1h en oscuridad a 

temperatura ambiente.  

Finalmente, se han lavado las muestras y se han añadido 50 µL de DAPI (5µg/mL) y se 

ha dejado actuar 10 minutos. Finalmente, se han puesto 50 µL de medio de montaje en 

cada muestra, se han cubierto con cubreobjetos y se han sellado. 

Se han recogido los resultados de la inmunotinción con el microscopio invertido 

(Olimpus IX81) y con el software Cell D. 

 

 
 

 
 
 
 
 
 
 

Ac primario Fuente Ac primario Ac secundario 
Vimentina (SP20) Conejo Goat anti-rabbit alexa fluor 488 

CD31/PECAM-1 (JC/70A) Ratón Goat anti-mouse alexa fluor 488 

CK 19 (BA19) Ratón Goat anti-mouse alexa fluor 488 

Tabla 5. Anticuerpos primario y secundario empleados. Vimentina para marcar las células mesenquimales 

(hMSC); CK19 para las células del ducto biliar (hBECs) y CD31 para las endoteliales (hUVEC) 
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RESULTADOS 

 

Análisis del crecimiento celular durante la expansión 
 

Durante la expansión celular se pudo apreciar que las células epiteliales del ducto biliar 

(BECs), a diferencia de los otros dos tipos (hMSC y hUVEC), a partir del pase 7-8 no 

sólo empiezan a disminuir la tasa de crecimiento, sino que también empiezan a sufrir un 

cambio en la morfología (Fig. 5). 

 

 
                       Figura 5. Curva de crecimiento de BEC (NHC-2) 

                        

Estas células en pases bajos son pequeñas, dispuestas formando agregados o colonias y 

de crecimiento activo. A partir del pase 7-8 se empiezan a deformar, presentando 

proyecciones citoplasmáticas. A medida que se van pasando, estas proyecciones se 

vuelven mucho más evidentes, y se pueden detectar células con varios nucléolos, 

células binucleadas y su ritmo de crecimiento es mucho más lento (senescencia celular).  

Los otros dos tipos celulares presentaban una tasa de crecimiento muy activa y sin 

señales de senescencia hasta pases más elevados. (Fig. 6 y 7) 
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Figura 6. Curva de crecimiento de hMSC 

 

 

 

 

 

 

Figura 7. Curva de crecimiento de hUVEC 
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Durante la expansión de hepatoblastos, las células presentaron buen crecimiento y 

morfología: células pequeñas y próximas entre sí, divididas en muchas colonias (Fig. 

8E). Tras despegar las células con 5mM EDTA, el recuento celular fue de un 70%, un 

valor relativamente bajo para estas células fetales, que ha podido indicar un daño celular 

por exposición prolongada al EDTA.  

 

 

Generación y análisis de organoides 

En scaffold 

Transcurridas 24h  tras la siembra de las células adultas se puede apreciar claramente un 

viraje de color del medio de cultivo en determinados pocillos (sobre todo aquellos en 

los que hay dos o tres tipos celulares). En lugar de tener el color rojizo/rosáceo normal 

del medio de cultivo a pH neutro, éste se torna de color anaranjado, incluso amarillento 

debido a la gran actividad metabólica que ocurre, con acidificación del medio, 

provocando el viraje de color. Los que están sembrados solo con hUVEC no presentan 

variación en la coloración y al microscopio óptico se detecta muerte celular. 

Al tercer día ya se detecta un organoide en uno de los pocillos sembrados con los 3 tipos 

celulares. A partir del quinto día se comienza a apreciar que algunos discos empiezan a 

plegarse por alguno de sus bordes, pero no han terminado de formarse organoides 

transcurridos los 14 días. (Fig.8A) 

Durante el transcurso del experimento con hepatoblastos, se puede apreciar muerte 

celular en las afueras del scaffold. Al cabo de dos semanas no se detecta plegamiento, ni 

tampoco formación de organoides.   

 

En plástico 

Los pocillos sembrados con hUVEC también presentan muerte celular. A partir del 

cuarto día aparecen agregados celulares en el resto de pocillos (correspondientes a 

hMSC, hBEC y hUVEC+hMSC+hBEC). En la figura se muestra un agregado de 

células hBEC a simple vista (Fig. 8B) y un detalle de ese agregado a 10x. (Fig. 8C) 
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En sándwiches 

Se aprecia buen crecimiento celular alrededor de los mismos, aunque no es posible 

inferir qué ocurre en su interior. (Fig.8D) 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Análisis histológico e inmunofluorescencia 
 

En el experimento con células hepáticas adultas, de todas las muestras analizadas, sólo 

dos  presentan estructuras sospechosas de ser ductos (Fig. 9A y 9B) sobre las que se 

realizaron posteriormente las pruebas de inmunotinción. Se puede apreciar la existencia 

de un “lumen” delimitado por células.  

 

En el caso del experimento con las células fetales, al observar las tinciones con H&E al 

microscopio óptico se detecta muy poca supervivencia celular en los scaffolds. (Fig. 9C)  

 

 

 

Figura 8. Evolución celular durante el experimento 
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La tinción con anticuerpos ha sido negativa en el caso del experimento con células 

adultas. En las fotos correspondientes a la muestra A (Fig.10.1) se pueden detectar los 

“lúmenes” vistos anteriormente rodeados de células, pero ninguna de ellas es positivo 

para el CD31, por lo que no se trata de un vaso sanguíneo; lo mismo ocurre para la 

CK19, por lo que no se trata tampoco de un ducto biliar. En la muestra B (Fig.10.1) se 

obtienen los mismos resultados negativos con estos dos anticuerpos. La vimentina, en 

cambio, da positivo en los dos casos, indicando que la mayor parte de las células que 

han sobrevivido son estromales.  

 

 

 

 

 

 

 

A B 

C 

Figura 9. A) Agregado hBEC+hUVEC+hMSC sembradas en plástico,  B) hMSC+hBEC sembradas en scaffold. C)  

hepatoblastos sembrados en scaffold; D) Imagen de ductos  biliares (tomado de Baptista PM et al, incluido para mostrar 

una muestra positiva de ducto biliar) 

D 
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No se ha realizado prueba de inmunotinción en los scaffolds sembrados con 

hepatoblastos, debido a la escasez de supervivencia y crecimiento celular que 

presentaron. 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 10.1) Tinción de las dos muestras sospechosas con los distintos anticuerpos (CD31 para las células endoteliales, CK19 para las 

células del epitelio biliar y vimentina para las células mesenquimales). A) Agregado hBEC+hUVEC+hMSC sembradas en plástico; B) 

hMSC+hBEC sembradas en scaffold; 10.2) Inmunotinción de un ducto biliar con CK19 y alpha tubulin (Tomado de Baptista PM el al, 

incluido para mostrar un control positivo de ducto biliar) 
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DISCUSIÓN 

 

 

Tras el análisis de estos experimentos, se observa  que no ha sido posible formar ductos 

biliares in vitro en estas condiciones. Esto puede ser debido, en primer lugar, al 

componente celular. El fenotipo de las hBEC en el momento de la siembra, después de 

una larga expansión, ya  no era el adecuado, ya que se podían observar muchas células 

senescentes y deformes, probablemente debido a un pase muy elevado (p10 y 12). Sin 

embargo, con este experimento  se ha podido determinar su comportamiento en cultivo: 

cuando están en pases  altos empiezan a deformarse y a perder su fenotipo normal, con 

presencia de muchas células de mayor tamaño y multinucleadas por todo el cultivo. Las 

hUVEC por su parte, presentaban muy buen crecimiento celular durante la fase de 

expansión, pero  no fueron capaces de sobrevivir con el medio de cultivo diseñado para 

el co-cultivo con los otros dos tipos celulares (medio de cultivo de las scaffolds). En el 

caso de las hMSC, al igual que las hUVEC, presentaban también una tasa de 

crecimiento muy activa en la expansión, pero tampoco fueron capaces de sobrevivir con 

el medio de scaffolds.  

A pesar de haber llegado al punto de obtener la formación de agregados celulares e 

incluso organoides (una buena señal, ya que indica que las células están interaccionando 

entre sí, reorganizándose y originando una estructura tridimensional), se ha visto con las 

inmunotinciones que ninguno de estos tipos celulares  estaba presente ni en los 

agregados celulares ni en los scaffolds sembrados, sino que se trataría probablemente de 

fibroblastos. Esto indica que hay que rediseñar la fórmula del medio empleado en el co-

cultivo, añadiendo algunos componentes extra (factores de crecimiento y hormonas) que 

sean más específicos para el crecimiento de cada tipo celular.  

En el caso de los hepatoblastos, el principal problema fue el despegue de la placa. Se 

empleó mucho tiempo hasta que pudieron ser efectivamente desprendidas con el EDTA, 

lo que probablemente haya sido suficiente para alterar su constitución iónica. A pesar de 

que la prueba de viabilidad realizada después indicara que un 70% de las células 

estaban vivas, no fueron capaces de sobrevivir en números suficientes ni de crecer tras 

sembrarlas en los discos. 
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Otro factor que puede haber influido es el proceso de obtención de los scaffolds. Tal vez 

el proceso de descelularización empleado no sea el más adecuado. Hay científicos
27

 que 

proponen un protocolo de descelularización de 4 fases, que consigue mantener 

insolubles todos los tipos de colágeno de la matriz. Es por ello que hay que optimizar la 

técnica de descelularización para obtener así una matriz que preserve en mayor medida 

sus componentes bioquímicos, manteniendo su estructura lo mejor posible, para que las 

células se puedan adherir más fácilmente, permitiéndoles sobrevivir y crecer de un 

modo más efectivo. 

 

 

CONCLUSIÓN 
 

La generación de organoides hepáticos que desarrollen ductos biliares es un paso 

importante para la creación de modelos biológicos in vitro con una fisiología más 

similar a la humana. Así, este proyecto ha podido crear las bases para la creación de 

estos organoides en laboratorio a partir de células exclusivamente humanas. Sin 

embargo, hay todavía una gran necesidad de optimizar estos modelos biológicos, 

mejorando el medio de cultivo (que sea realmente adecuado para todos los componentes 

celulares), utilizando células en pases más bajos y matrices extracelulares lo más 

preservadas posible. Una vez conseguido esto, creo que será posible lograr la 

generación de organoides hepáticos.  
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Figura 1.  Ebrahimkhani MR et al. Bioreactor technologies to support liver 

function in vitro. Advanced drug delivery reviews 69-70; 132-157, 2014 

Figuras 2,3. Kordes C, Häussinger D. Hepatic stem cell niches. The Journal of 

Clinical Investigation Vol.123 (5), 2013 
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Anexo I. Medios de cultivo empleados para los distintos tipos 
celulares 
 
 
 
 

Medio de cultivo para hMSC (500mL) 
 

Reactivo 
 

Volumen 

DMEM-F12 + glutamax 445 mL 
P/S 5 mL 
FBS 50 mL 

 
 
 

 
 
 
 
 
 
 
 
 

Medio de cultivo para hBEC (500mL)  
 

Reactivo 
 

Volumen 

DMEM F12 + glutamax 445 mL 
FBS 25 mL 
MEM non essential aminoacids 5 mL 
MEM vitamin soultion 5 mL 
P/S 5 mL 
Lipid mixture chemically defined 500 µL 
 Concentración 
Insuline 0.005 mg/mL  
Transferrine 0.01 mg/mL 
Selenium 2.5 µl/mL  
Bovine pituitary extract 13.4 mg/mL 
Dexamethasone 10-6 M 
T3 34 mg/mL 
EGF  1 mg/mL  
Forskolin  40 mg/mL  
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Medio de cultivo para hUVEC (500mL) 
 

Reactivo Volumen  
 

MCDB 131 480 mL 
FBS 10 mL 
Glutamax 5mL 
P/S 5 mL 
Insuline 250 µL 
Transferrine 100 µL 
 Concentración  
VEGF 25 ng/mL 
FGF-2 20 ng/mL 
EGF 20 ng/mL 
IGF1 20 ng/mL 
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