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Resumen

El objetivo de proyecto es realizar una comparación mediante elementos �nitos de las
deformaciones y tensiones producidas en el tejido traqueal al introducir un stent, con el �n
de determinar los daños producidos.

Los stents son dispositivos con forma de muelle; el objetivo de su colocación es abrir
el interior de la tráquea que se ha estrechado, para facilitar el paso de aire por esta.
En concreto los modelos de stents analizados en este proyecto se utilizan también para
problemas cardiovasculares ya que son stents metálicos sin recubrimiento de silicona.

En este estudio compararemos dos modelos de stents de dos empresas distintas. El
primero de ellos es de la empresa Boston Scienti�c. Se trata del stent denominadoWallstent,
el cuál se teje a partir de una malla de �lamentos continuos de una aleación denominada
Elgiloy. El segundo stent es de la empresa Cook Medical. El modelo se denomina Zilver
Flex, se trata de un stent segmentado, compuesto a partir de segmentos de anillo en zigzag
que solo se unen parcialmente mediante un puente en la dirección longitudinal.

En todos los cálculos que se han realizado durante el proyecto se ha simulado una tráquea
de conejo simpli�cada, es decir, asemejamos un tramo de la tráquea por un cilindro en el
que diferenciamos dos materiales, cartílago y músculo. Ambos tienen forma de C y se van
intercalando a lo largo de toda la tráquea, la zona de cartílago mide 3 mm de alto y la de
músculo 2 mm. Para acabar de cerrar el cilindro se dispone de otra zona de músculo que
recorre la tráquea de forma longitudinal con una anchura de 2.5 mm.

En este proyecto se han simulado la expansión del stent y el ciclo de respiración de un
conejo simultáneamente con el �n de no perder información al realizar los cálculos por
separado. Para abrir el stent dentro de la traquea, se han realizado dos modelos, uno en
el que se impone el desplazamiento de todo el stent desde su posición inicial hasta que
el diámetro aumenta en 0.8 mm y otro modelo en el que este desplazamiento se obtiene
mediante la aplicación de una fuerza en la cara interior del stent.

La respiración del conejo se ha simulado mediante un presión y una velocidad senoidal
aplicadas en los extremos del �uido. Todo esto se ha realizado bajo un cálculo FSI (Fluid-
structure interaction).

Una vez que se han realizado todos los cálculos, se realiza una validación del estudio
numérico con imágenes obtenidas experimentalmente: en particular se compararon las
soluciones obtenidas con unas imágenes endoscopicas facilitadas por el hospital veterinario
de la Universidad de Zaragoza.
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Capı́tulo 1
Introducción

1.1. Objetivos y descripción

Son conocidos los problemas existentes en la actualidad para pacientes con estenosis, o
enfermedades obstructivas de las vías respiratorias, para los que la solución adaptada es
la implantación de un stent. En muchas ocasiones el propio stent, al principio remedio, se
convierte después también en parte del problema, no facilitando la secreción de esputo e
impidiendo con esto la correcta circulación del aire a través de la tráquea.

El objeto de este estudio es:

Realizar los modelos 3D de dos stent y simular la colocación de estos en el interior
de una tráquea de conejo para después poder analizar su respiración.

Realizar la comparación entre las distintas geometrías realizadas, observando las
deformaciones y tensiones producidas sobre la pared traqueal.

Validar si los resultados obtenidos con imágenes experimentales, comparando estos
con imágenes medicas endoscopicas de conejos.

1.2. Motivación

La Biomecánica es una disciplina cientí�ca que se dedica a estudiar la actividad de
nuestro cuerpo, en circunstancias y condiciones diferentes, y de analizar las consecuencias
mecánicas que se derivan de nuestra actividad, ya sea en nuestra vida cotidiana, en el
trabajo, cuando hacemos deporte, etc. Para estudiar los efectos de dicha actividad, la
Biomecánica utiliza los conocimientos de la mecánica, la ingeniería, la anatomía, la �siología
y otras disciplinas. A la Biomecánica le interesa el movimiento del cuerpo humano, las
cargas mecánicas y energías que se producen por dicho movimiento.
La proyección industrial de la Biomecánica ha alcanzado a diversos sectores, sirviendo
de base para la concepción y adaptación de numerosos productos: técnicas de diagnóstico,
implantes e instrumental quirúrgico, prótesis, ayudas técnicas a personas con discapacidad,
sistemas de evaluación de nuestras actividades, herramientas y sistemas de seguridad en
automoción, entre otros muchos.
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Según las cifras de la Organización Mundial de la Salud (OMS), la mortalidad por
cáncer de tráquea, bronquios y pulmón en el mundo está entre las 10 causas principales,
alcanzando el tercer puesto en países con altos ingresos económicos.[19]

En muchos tratamientos de enfermedades del sistema respiratorio se precisa de una
intubación del paciente. Si ésta es muy prolongada aumenta el riesgo de padecer estenosis
traqueal, que se presenta como una cicatrización de los tejidos de las paredes de la
tráquea. La estenosis traqueal es la complicación más grave de la reanimación respiratoria
con ventilación endotraqueal, tanto a través de una traqueostomía como por intubación
nasotraqueal [6].

1.2.1. La estenosis traqueal

La estenosis traqueal es un estrechamiento focal o difusa de la tráquea, la causa puede
ser idiopática, congénita o adquirida distinguiendo dentro de estas en benignas y malignas.
Esta es una condición muy rara que ocurre debido a la pérdida de tejido blando y el apoyo
del cartílago. La estenosis congénita puede ocurrir debido a las anomalías congénitas de la
laringe. La estenosis adquirida se produce debido a la intubación endotraqueal prolongada
causando lesiones de la glotis y la subglotis. Estas lesiones pueden ser provocadas por las
siguientes causas [3, 4]:

1. Una presión de aire inadecuada del balón de neumotaponamiento de los respiradores
mecánicos. Por encima de la presión de perfusión capilar de la mucosa traqueal, se
produce isquemia, ulceración y condritis de los cartílagos traqueales.

2. Una mala elección del diámetro del tubo utilizado.

3. La duración de la intubación.

4. El movimiento del propio paciente, que aumenta la presión sobre los tejidos y produce
irritación en la mucosa pueden provocar, a la larga, la estenosis.

En algunos casos, puede ocurrir debido a un cuerpo extraño atascado en la tráquea,
infección, in�amación o irritación química. Incluso ocurre en pacientes con enfermedades
in�amatorias crónicas como la sarcoidosis, granulomatosis de Wegener, policondritis, etc
tumores benignos o cancerosos que están presionando sobre la tráquea, también puede
conducir a estenosis traqueal.

Existen tres tipos de estenosis. La primera será una estenosis in�amatoria o tipo granu-
loma (Figura 1.1(a)), se trata de una lesión localizada. El segundo tipos es el tipo membrana
(Figura 1.1(b)), consiste en una membrana �brótica que crece de forma centrifuga y va
disminuyendo el diámetro de la tráquea, es una lesión muy localizada produciéndose en
pocos anillos. Ambas lesiones no modi�can la estructura de la tráquea. El tercer tipo es
el denominado cuello de botella (Figura 1.1(c)) es un lesión más compleja, se modi�ca
la estructura cartilaginosa de la tráquea, se trata de un estrechamiento en una zona de la
propia pared de la tráquea. Esta última tiene un tratamiento y una evolución más compleja.
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Dentro de los tipos de estenosis existe una graduación dependiendo del porcentaje de
vía obstruida, esta clasi�cación fue creada en 1984 y es la más usada actualmente. Esta
graduación se divide en 4 niveles, grado 1 cuando la obstrucción es menor de 70%, grado
2 si la obstrucción esta entre el 70% y el 90% , grado 3 si estamos por encima de 90% de
obstrucción, esta situación es considerado de extrema gravedad. Y por último el grado 4
cuando la obstrucción es total [5].

((a)) Granuloma ((b)) Membrana ((c)) Cuello de botella

Figura 1.1: Tipos de estenosis traqueal

El abordaje quirúrgico para la reconstrucción de la tráquea constituye un avance
relativamente reciente, pues en décadas pasadas sus lesiones obstructivas sólo tenían como
alternativa la traqueostomía por debajo de la obstrucción si era alta, o a través de ella si
era baja. El tratamiento quirúrgico puede ser una operación con láser, aunque presenta
bastantes complicaciones, además de precisar un equipo especializado y experimentado y
un material caro, o la inserción de un stent.

Algunos problemas cardiovasculares como la estenosis en los vasos sanguíneos pueden
resolverse también mediante la colocación de un stent. Estos problemas son frecuentes en las
arterias coronarias, aortas y en las carotidas. La estenosis ocurre debido al estrechamiento
de las arterias por una acumulación gradual de placa. La placa se forma cuando el colesterol,
la grasa, y otras sustancias cubren las paredes interiores de las arterias y se acumulan con
el tiempo causando una obstrucción.
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1.2.2. El stent

Existen en la actualidad varios tipos de stent según su composición, plásticos o metálicos;
y forma (Tabla 1.1).

Tipos de stent Composición

Dumon Silicona

Hood Silicona

Wallstent Tejido mono�lamento de aleación cromo-cobalto con o sin
recubrimiento de silicona

Poli�ex Malla de poliéster cubierta de silicona

Ultra�ex Filamento de nitinol con o sin recubrimiento de silicona

Zilver�ex Filamento de nitinol sin recubrimiento de silicona

Dynamic Silicona con protuberancias de acero

Tabla 1.1: Tipos de stents traqueales

La ventaja principal de los stents de silicona es que pueden ajustarse y retirarse con
facilidad, y pueden recolocarse y cambiarse tantas veces como sea necesario [17]. Con este
tipo de stents no hay recrecimiento interno ni reacción adversa de la mucosa. Los stents
de silicona tipo Dumon (Fig. 1.2(a)) están diseñados especí�camente para la tráquea.

((a)) Stent tipo Dumon ((b)) Stent tipo Montgomery ((c)) Stent tipo Hood

Figura 1.2: Stents de silicona

Su forma cilíndrica proporciona un efecto abovedado por el cual las fuerzas compresivas
se distribuyen uniformemente. Gracias a su �exibilidad se facilita la colocación y se mejora
la tolerancia y la eliminación de secreciones. Las protuberancias en la super�cie externa del
stent reducen su movimiento y previenen la isquemia de la mucosa limitando el contacto
con las paredes de la tráquea [12]. Las dimensiones de esta clase de stents varían desde 9
hasta 18 mm de diámetro externo y desde 20 hasta 60 mm de longitud.
El tubo de Montgomery en forma de T (�g. 1.2(b)) es, todavía, un stent comúnmente
usado y debería considerarse siempre para pacientes con traqueostomía y laringe sana [13].
Los stents de silicona del tipo Hood (�g. 1.2(c)) tienen casi las mismas características que
los stents Dumon pero sin protuberancias en la super�cie externa.
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Los stents de metal expandibles pueden ser colocados con facilidad usando un bron-
coscopio �exible bajo anestesia local con �uoroscopia. Estos stents son extremadamente
estables y su movimiento una vez situados es prácticamente inexistente [14]. La más re-
ciente generación de stents expandibles (Ultra�ex (Fig. 1.3(a))) se adaptan mucho mejor
a la anatomía de las vías respiratorias. Esta clase de stents pueden o no estar recubiertos
de silicona o poliuretano

Los stents recubiertos deben ser usados en pacientes con casos de estenosis maligna,
donde el tumor tiende a crecer dentro de la vía respiratoria. Este tipo de stents presenta,
por el contrario, algunas desventajas: Su retirada es extremadamente difícil, casi imposible,
lo que les con�ere un carácter permanente; el ajuste no es sencillo; se requiere una
�ouroscopia durante la colocación; y es común la aparición de granulación a nivel de las
capas sin recubrimiento. Los no recubiertos se incorporan directamente sobre la pared de la
tráquea provocando una nueva epitelización y la reanudación de la depuración mucociliar.
Si los stents metálicos sin recubrimiento se usan como refuerzo para estenosis neoplásticas,
pueden erosionar la pared de la vía respiratoria y el tumor puede crecer a través de la
malla. Por último, el coste de los stents metálicos es mucho más elevado que el de los de
silicona.

((a)) Stent tipo Ultra�ex ((b)) Stent tipo Wallstent ((c)) Stent tipo Zilver �ex

Figura 1.3: Stents Metálicos

Los stent metálicos auto-expandibles son colocado con gran facilidad ya que no precisan
ser abiertos mediante un globo. Dentro de este grupo se encuentran el Wallstent (Fig.
1.3(b)) [1] y el Zilver �ex (Fig. 4.3) [2]. El Wallstent se teje a partir de una malla de
�lamentos continuos de una aleación denominada Elgiloy mientras que el Zilver �ex es un
stent cortado por láser a partir de un tubo de nitinol y compuesto a partir de segmentos
de anillo en zigzag que solo se unen parcialmente mediante un puente en la dirección
longitudinal para aumentar la �exibilidad. Las dimensiones de esta clase de stents varían
desde 6 hasta 11 mm de diámetro externo y desde 20 hasta 140 mm de longitud [18].

Los stents expandibles del tipo Poly�ex (�g. 1.4(a)) están fabricados de una malla de
poliéster cubierta de silicona, son auto-expandibles. Esta clase de stents no tienen bordes
sin recubrimiento y sus ventajas y desventajas los sitúan entre los stents metálicos y los
de silicona [16].
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((a)) Stent Poli�ex ((b)) Stent Dynamic

Figura 1.4: Otros tipos de stents

El stent de tipo Dynamic (�g 1.4(b)) muestra la ventaja potencial de tener una pared
de membrana �exible capaz de comprimirse durante los episodios de tos, facilitando la
evacuación de mucosa. La colocación de este stent es más compleja pero existe material
quirúrgico especí�co para su ejecución [11].

Conocidas las características básicas principales de los diferentes tipos de stent y sus
ventajas y desventajas, la elección queda determinada por la anatomía de la lesión y
un estudio de la zona de la vía respiratoria. La experiencia y preferencias del equipo de
cirujanos también son un factor clave en la decisión. Hay algunas con�guraciones en las
que la morfología y posición de la lesión, como estenosis largas y tortuosas o lesiones en
las proximidades de los ori�cios lobulares, que imposibilitan el tratamiento con stents de
silicona, siendo entonces innegociable el uso de stents metálicos expandibles.

En casos de estenosis cardiovascular los stent mas utilizados son lo stents convencionales,
normalmente de acero o cromo-cobalto o los stents farmacológicos proporcionando el mismo
soporte estructural que los stents convencionales, pero además está concebido para que
lentamente libere una dosis de fármaco y, de esta forma, contribuya a prevenir la reestenosis
(la reproducción del estrechamiento de la arteria), ya que la colocación de un stent en una
vaso sanguíneo es permanente.



Capı́tulo 2
Bases Biológicas

2.1. El aparato respiratorio

Generalidades El aparato respiratorio o sistema respiratorio es el encargado de captar
oxígeno (O2) y eliminar el dióxido de carbono(CO2) procedente del anabolismo celular.

Las células requieren continuamente oxígeno para realizar las reacciones metabólicas.
Al mismo tiempo, esas reacciones liberan dióxido de carbono. El exceso de CO2 produce
acidez que puede ser tóxica para las células, por lo cual debe eliminarse de manera rápida
y e�caz. Los dos sistemas que contribuyen al aporte de O2 y la eliminación de CO2 son
el cardiovascular y el aparato respiratorio. Este último realiza un intercambio de gases
(suministro de O2 y excreción de CO2), mientras que por el segundo �uye la sangre, que
transporta gases entre los pulmones y las células de los tejidos. La falla de uno y otro
altera la homeostasis al causar la muerte rápida de las células por falta de oxígeno y la
acumulación de productos de desecho. Además de llevar a cabo el intercambio gaseoso, el
aparato respiratorio participa en la regulación del pH sanguíneo; posee receptores para el
sentido del olfato; �ltra el aire inhalado, produce sonidos y elimina una parte del agua y
calor corporales en el aire exhalado [25].

El proceso de intercambio de gases en el cuerpo, llamado respiración, se compone de tres
partes básicas:

1. La ventilación pulmonar, también llamada simplemente respiración, es el �ujo
mecánico de aire hacia los pulmones (inhalación o inspiración) y su salida de éstos
(espiración o exhalación).

2. La respiración externa consiste en el intercambio de gases entre los alveolos
pulmonares y la sangre, en los capilares de estos órganos. En este proceso, el �ujo
sanguíneo de los capilares recibe O2 y entrega CO2.

3. La respiración interna es el intercambio de gases entre la sangre de los capilares del
resto del cuerpo y las células de los tejidos. En este proceso, la sangre entrega O2 y
recibe CO2. Se llama respiración celular a las reacciones metabólicas, en el interior
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de las células, en las que se consume O2 y se produce CO2 durante la síntesis de
ATP.

2.2. Anatomía del aparato respiratorio

El aparato respiratorio de un conejo esta constituido por:[23]

La nariz, cavidades nasales, senos. Encargadas de facilitar la entrada y salida del
aire, �ltrandolo de polvo y otras partículas extrañas.

La laringe, la cual es un tubo compuesto por diversas piezas móviles que establecen
comunicación entre la tráquea y las fauces. Se encuentra situada debajo de de la
faringe.

La tráquea, que no es mas que la continuación de la laringe y esta constituida por
un tubo largo, con las paredes reforzadas con anillos cartilaginosos en forma de C,
elásticos y rojizos. La tráquea penetra en el tórax donde se enlaza con los bronquios.

Los bronquios, situados a continuación de la tráquea, constituyen el tercer órgano de
la respiración animal. Al �nal de su recorrido, la tráquea se rami�ca en dos partes
llamadas bronquios, las cuales, después de entrar por la base del pulmón, se rami�can
a su vez en una serie de bronquiolos que terminan en la vesícula y en los alvéolos
pulmonares.

Los pulmones, son el último órgano de la respiración y están constituidos por dos
grandes masas de estructura esponjosa. Su misión no es otra cosa que hacer posible
el fenómeno de la respiración y, más concretamente, recoger el oxígeno del aire para
puri�car la sangre venosa que llega al corazón. Los dos pulmones no son iguales: el
derecho está dividido en tres lóbulos o porciones, mientras que el izquierdo sólo tiene
dos. El aire exterior llega a los pulmones a través de los bronquios, tráquea, laringe
y boca. El pulmón no es más que el órgano receptor del oxigeno y la boca, laringe,
tráquea y bronquios, forman el conducto que conduce el aire a los pulmones.

Las pleuras, son unas membranas serosas que cubren los pulmones y sirven de sujeción
a los mismos. Ambas pleuras retienen un líquido seroso, el liquido pleural, cuya
�nalidad es facilitar el movimiento del pulmón.
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Figura 2.1: Aparato respiratorio del conejo [23]

2.3. Ventilación Pulmonar

La ventilación pulmonar, comúnmente llamada respiración, es el proceso mediante el
que se intercambian gases entre la atmósfera y los alvéolos pulmonares. El �ujo de aire
entre los pulmones y la atmósfera se debe a diferencias de presión alternadas que generan
la contracción y relajación de los músculos auxiliares de la respiración. La magnitud del
�ujo de aire y el esfuerzo necesario para la respiración también reciben in�uencia de la
tensión en la super�cie alveolar, distensibilidad de los pulmones y resistencia de las vías
respiratorias.

Cambios de presión durante la ventilación pulmonar

El aire entra a los pulmones cuando la presión dentro de estos órganos es menor que la
presión atmosférica del aire y sale de dichas vísceras si la presión intrapulmonar es mayor
que la atmosférica.

Inspiración

La inspiración o inhalación es la parte de la ventilación pulmonar en que entra aire en los
pulmones. Justo antes de cada inspiración, la presión de aire intrapulmonar es casi igual a
la atmosférica, o sea de unos 760 milímetros de mercurio (mmHg) o 1 atmósfera (atm) a
nivel del mar. A �n de que el aire entre a los pulmones, la presión en los alvéolos debe ser
menor que la atmosférica. Ello se logra con el aumento del volumen pulmonar.
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Espiración

La espiración o exhalación, proceso por el que sale aire por el sistema respiratorio,
también se debe a un gradiente de presión, que en este caso es opuesto: la presión en
los pulmones es mayor que la atmosférica. La espiración normal durante la respiración
tranquila, a diferencia de la inspiración, es un proceso pasivo porque en él no participan
contracciones musculares. En vez de ello, la respiración ocurre por el rebote elástico de
la pared torácica y de los pulmones, que tienden de manera natural a contraerse después
de su estiramiento. La espiración se vuelve activa sólo durante la respiración forzada,
como al interpretar música en un instrumento de viento o durante el ejercicio físico. En
tales circunstancias, se contraen los músculos auxiliares de la respiración (abdominales e
intercostales) lo cual aumenta la presión en el abdomen y tórax.



Capı́tulo 3
Métodos numéricos

Para este proyecto se ha empleado el software ADINA(ADINA RD, Inc.,Watertown,
USA) mas concretamente con su aplicación FSI (Fluidstructure interaction), capaz de
calcular la interacción de una estructura móvil o deformable formulado mediante elementos
�nitos (MEF) con un �ujo de �uido interno o circundante.

El MEF se basa en transformar un cuerpo de naturaleza continua en un modelo discreto
aproximado. El conocimiento de lo que sucede en el interior de este modelo del cuerpo
aproximado, se obtiene mediante la interpolación de los valores conocidos en los nodos
mediante las adecuadas funciones de interpolación ó funciones de forma. La solución del
sistema completo sigue las reglas de los problemas discretos. El sistema completo se forma
por ensamblaje de los elementos. Las incógnitas del problema dejan de ser funciones
matemáticas y pasan a ser el valor de estas funciones en los nodos. Es por tanto una
aproximación de los valores de una función a partir del conocimiento de un número
determinado y �nito de puntos agrupados en una malla.

Esta malla se genera en el preproceso. En este caso se ha realizado un diseño 3D
con un software de modelado (Rhinoceros, Robert McNeel Associates, Seattle, USA),
adecuando la geometría requerida, para después generar la malla con los programas ANSYS
ICEM CFD (ANSYS, Inc, Canonsburg, USA). El proceso de cálculo y resolución, una vez
impuestas las condiciones de contorno y cargas del problema se ha llevado a cabo con
ADINA.

3.1. Introducción al MEF

Para resolver los problemas de análisis de comportamiento lineal -estático y dinámico- de
las estructuras continuas sometidas a acciones diversas con in�nitos grados de libertad, es
necesario estudiar un modelo matemático de estructura dividida en partes pequeñas. A este
proceso se le conoce como discretizar el modelo, y las partes son denominadas elementos
�nitos, que se conectan entre sí solamente a través de los puntos nodales o nodos, para
reproducir la estructura real lo mas ajustadamente posible y pasando de tener in�nitos
grados de libertad a un modelo de un número �nito. Con esto es posible abordar el estudio

16
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del comportamiento de una estructura discretizada por los modelos matriciales conocidos
y mediante el empleo de ordenador.

La discretización responde a una intuición por la que, partiendo de una división de la
estructura real en partes más o menos grandes conectadas por los nodos, que a su vez
pueden ser subdivididas en otras partes más pequeñas que también estarán conectadas por
nodos, y así sucesivamente hasta que el límite, tendiendo el tamaño de estos elementos a
cero, el comportamiento de tal modelo de estructura se asemeje al de la estructura real. En
realidad llegar a tal límite puede no ser necesario en orden a determinar cuantitativamente
tal comportamiento, ya que una aproximación su�ciente a dicho límite puede resolver
satisfactoriamente las necesidades de exactitud de dichos problemas [24].

3.2. Aplicación del método de los elementos �nitos

De�nida geométrica y mecánicamente la estructura, y conocido su estado de solicitación,
se procede al análisis de comportamiento de la misma. Los pasos lógicos a seguir son:

1. Discretización de la estructura.

2. Numeración de nodos, elementos y grados de libertad respecto de los ejes coordenados
con el correspondiente convenio de signos.

3. Establecimiento de funciones de forma y matrices de rigidez elementales.

4. Determinación de las matrices de rigidez globales.

5. Cálculo del vector de cargas nodales equivalentes, incrementado con las cargas
concentradas si las hubiera.

6. Determinación de las reacciones.

7. Determinación de los vectores de tensión σ y deformación ε.

8. De�nición, �nalmente, del estado de tensiones representativo de cada elemento.

3.3. Formulación FSI, interacción �uido estructura

La problemas de interacción �uido estructura son en general muy complejos para obtener
una solución analítica por lo que tienen que ser analizados mediante una simulación
numérica o por medio de experimentos.

Para un modelo FSI cuyo dominio �uido es deformable se usa la formulación estándar
ALE (Arbitrary Lagrangian-Eulerian) y para el caso sólido utiliza una formulación
Lagrangiana. Teniendo en cuenta la velocidad de referencia, la ecuación de Navier-Stokes
se convierte en:

ρF
∂vF
∂t

+ ρ((vF −w) · ∇)vF −∇ · σF = fB
F (3.1)

donde el termino w denota el vector velocidad de movimiento de la malla, vF es el vector
velocidad, fB

F es la fuerza por unidad de volumen y ρF es las densidad del �uido.
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La ecuación que rige el dominio solido el la siguiente ecuación de conservación de
momento:

∇ · σS + fB
S = ρSüS (3.2)

donde ρS es la densidad del solido, σS es el tensor de tensiones solido, fB
S es la fuerza

por unidad de volumen y üS es la aceleración local del solido. Los dominios descritos en
las ecuaciones 3.1 y 3.2 se acoplan a través de las compatibilidad de desplazamientos y y
el equilibrio de tracción con las siguientes ecuaciones:

uS = uF (x, y, z) ∈ ΓF
wall ∩ ΓS

wall (3.3)

σS · nS + σF · nF = 0 (x, y, z) ∈ ΓF
wall ∩ ΓS

wall (3.4)

donde ΓF
wall y ΓS

wall son los limites del �uido y el solido respectivamente. La ecuación 3.4
es una condición de equilibrio entre las tensiones normales actuantes en ambos limites de
dominios ΓF

wall y ΓS
wall [7].

3.4. Formulación FCBI-C

Para la realización de los cálculos que conlleva este trabajo se ha elegido en ADINA
un tipo de formulación FCBI (Flow Condition Based Interpolation). Esta formulación
elemental es especialmente efectiva para resolver problemas de mecánica de �uidos
computacional grandes, incluso con millones de grados de libertad. Algunas de las
características propias de este método son las siguientes:

En la formulación FCBI-C se usa el centro del elemento para la interpolación de la
condición de �ujo. De ahí el apéndice -C (Center) en el nombre de la formulación.

Los elementos FCBI-C sólo se utilizan con el método de segregación de la iteración no
lineal de equilibrio general. Para cada instante se realizan las siguientes iteraciones:

1. Resolución de ecuaciones de continuidad y momentos (VP-MAXIT times);

2. Resolución de ecuación de la energía;

3. Resolución de ecuaciones de régimen turbulento;

4. Repetición de los pasos anteriores, hasta que se ha llevado a cabo un mínimo
de iteraciones y la solución es convergente.

Para cada sistema de ecuaciones es posible usar diferentes solvers, como AMG1,
AMG2, RPBCG o el solver directo SPARSE. En este estudio ha sido éste último el
elegido. Algunos de los parámetros que se han tenido en cuenta son:

1. Factores de relajación para cada variable;

2. Mínimo y máximo número de iteraciones;

3. Criterio de convergencia y de�nición residual;
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4. Número de sub-iteraciones para velocidad y presión (VP-MAXIT);

5. Uso de formulación de segundo orden en el espacio.

El solver SPARSE presenta una considerable ventaja frente a los algoritmos y
estructuras de resolución de matrices de densidad estándar. El proceso para resolver
éstas es lento y consume grandes cantidades de memoria cuando se aplica a grandes
matrices, sin embargo, el solver SPARSE es comprimido por sí mismo, lo que hace
que necesite menos capacidad de almacenamiento, de hecho, es inviable el cálculo de
algunas matrices por métodos estándar por su altísimo consumo de memoria [28].



Capı́tulo 4
Modelos numéricos

Los trabajos realizados en este estudio se centran en analizar el comportamiento de dos
stents diferentes colocados en el interior de una tráquea de conejo.

Para el estudio se generan modelos de elementos �nitos para estudiar la apertura del
stent y la interacción entre el �uido y las tráquea bajo condiciones de respiración normal.
Como ya se a dicho anteriormente para generar estos modelos se ha utilizado un software
de diseño 3D llamado Rhinoceros. Con las geometrías realizadas se han mallado mediante
el programa ANSYS ICEM CFD, el cual nos permite crear y editar mallas a partir de una
geometría previa. Finalmente el calculo de los modelos se ha desarrollado con ADINA.

Las condiciones de respiración normal se han simulado suponiendo unas funciones
senoidales de velocidad y presión aplicadas la primera en la entrada y salida de la tráquea
respectivamente. Los valores de estas funciones fueron facilitados por el hospital veterinario
de la Universidad de Zaragoza. Dadas las reducidas dimensiones de la tráquea, el valor de
presión se puede considerar en la práctica como constante, y dado este valor y el diámetro
de la vía respiratoria, son conocidos los valores de la velocidad. El tiempo medio de un
ciclo de respiración es de un segundo.

4.1. Geometrías del modelo

4.1.1. Geometría de la tráquea

En todos los cálculos que se han realizado durante el proyecto se ha simulado una tráquea
de conejo simpli�cada, es decir, asemejamos un tramo de la tráquea por un cilindro en el
que diferenciamos dos materiales, cartílago y músculo. En la imagen 4.1 podemos apreciar
los dos materiales, el cartílago de color verde que forma anillos incompletos a lo largo de la
tráquea y el músculo de color morado que rellena estos huecos y cierra el círculo, la zona
del cartílago posee una altura de 3 milímetros y la del músculo una altura de 2 milímetros.
La zona de músculo que recorre la tráquea longitudinalmente tiene una anchura de 2.5
milímetros. Se trata de cilindro de 5.5 mm de diámetro con un espesor de pared de 0.8
mm.

20
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Figura 4.1: Geometría

4.1.2. Geometría de los stents

Se han analizado dos modelos de stents diferentes. El primero de ellos es de la empresa
farmacéutica Bostons Scienti�c, se trata del stent denominado Wallstent el cual se teje
a partir de una malla de �lamentos continuos de una aleación denominada Elgiloy. Estos
�lamentos tienen forma circular pero se han modelado con forma cuadrada ya que un
�lamento circular posee un contacto tangencial con la tráquea. Este stent posee un diámetro
nominal de 6.5 mm, una longitud de 40 mm y un diamanto de 0.15 mm. En la �gura 4.2
podemos ver al stent real y el modelo 3D que se a creado para este proyecto.

((a)) Real ((b)) Modelo

Figura 4.2: Wallstent

El segundo de los modelos pertenece a la empresa Cook Medical y se denomina Zilver
�ex. Este stent se fabrica cortándolo por láser a partir de un tubo de nitinol y compuesto a
partir de segmentos de anillo en zigzag que solo se unen parcialmente mediante un puente
en la dirección longitudinal lo que le otorga una gran �exibilidad. Las dimensiones de este
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stent son las mismas que las del Wallstent, un diámetro nominal de 6.5 mm, una longitud
de 40 mm y un diámetro de 0.15 mm. En la �gura 4.3 podemos ver al stent real y el modelo
3D que se a creado para este proyecto.

((a)) Real ((b)) Modelo

Figura 4.3: Zilver

4.2. Materiales

4.2.1. Materiales de las tráquea

Para modelar los materiales de la tráquea se realizaron ensayos sobre muestras de tejido.
Estas muestras fueron montadas en la Instron MicroTester 5548 (Instron Corporation,
Norwood, MA, USA) para realizar una test uniaxiales sobre ellas. Los test realizados
desvelaron que las �bras de colágeno del cartílago se comportan aleatoriamente, por este
motivo se empleó un material isótropo para de�nir el comportamiento de este tejido. Como
las tensiones de tracción sobre la tráquea son pequeñas, el musculo también se modelo
como un material isótropo. Es Una vez que se obtuvieron las curvas de los materiales estas
se ajustaron al modelo existente de material Mooney-Rivlin. Estos experimentos fueron
llevados a cabo por la profesora Estefanía Pena Baquedano [8].

El Mooney-Rivlin es un material hiperelástico modelizable mediante una función
densidad de energía de deformación W que es una combinación lineal de dos invariantes
algebraicos del tensor deformación de Cauchy-Green izquierdo B. El modelo de Mooney-
Rivlin fue propuesto inicialmente por Melvin Mooney en 1940 y fue reformulado en términos
de invariantes algebraicos por Ronald Rivlin en 1948 [20].
La función densidad de energía de deformación para un material de Mooney-Rivlin
incompresible viene dada por:

W = C1 + (Ī1 − 3) + C2(Ī2 − 3) (4.1)
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donde C1 y C2 son constantes que se determinan empíricamente para cada material
concreto y Ī1 y Ī2 son el primer invariante (invariante lineal) y segundo invariante
(invariante cuadrático) del componente unimodular del tensor de Cauchy-Green:

Ī1 = J−2/3 · I1 ; I1 = λ21 + λ22 + λ23 ; J = det(F ) (4.2)

Ī2 = J−4/3 · I2 ; I1 = λ21 · λ22 + λ22 · λ23 + λ23 · λ21 (4.3)

donde F es el gradiente de deformación. Para un material incompresible, J = 1

4.2.2. Materiales de los stents

Durante la realización del proyecto se han analizado dos modelos de stents diferentes. El
primero de ellos se denominado Wallstent y el segundo Zilver �ex. El Wallstent se teje a
partir de una malla de �lamentos continuos de una aleación denominada Elgiloy mientras
que el Zilver �ex es un stent cortado por láser a partir de un tubo de Nitinol y compuesto a
partir de segmentos de anillo en zigzag que solo se unen parcialmente mediante un puente
en la dirección longitudinal para aumentar la �exibilidad.

Elgiloy

El Elgiloy es una aleación de níquel (20%), cobalto (40%), cromo (20%), molibdeno
(7%), manganeso (2%), hierro, carbono y berilio, con una densidad de 8, 30 g/cm3. Esta
aleación viene especi�cada por las normativas ASTM F1058 y la ISO 5832-7. La aleación
se funde en primer lugar utilizando técnicas de fusión por inducción en vacío (VIM).
Posteriormente se realiza una fusión denominada Electro Slag Refusion para eliminar
impurezas y mejorar la homogeneidad global.
El Elgiloy obtiene sus principales propiedades del trabajo en frio y de los tratamientos
térmicos, no se trata de una aleación verdadera de endurecimiento por precipitación ya
que la respuesta al tratamiento térmico es función del grado de trabajo en frio.
Después del trabajo en frio, la resistencia mecánica del cobalto se puede aumentar mediante
el tratamiento de calor. En forma de alambre el Elgiloy se somete a un recocido de entre
2 o 5 horas a una temperatura entre 480 y 540oC. Después del recocido con enfriamiento
rápido, la aleación tiene una estructura cúbica centrada en las caras. Se trata de una
aleación resistente a la corrosión con una alta resistencia y ductilidad, con una buena
vida a fatiga y no magnética. Esta última propiedad es muy importante para poder hacer
después una resistencia magnética sin riesgos para el paciente.
La aleación Elgiloy se ha empleado con éxito en aplicaciones de implantes humanos en
contacto con el tejido blando y el hueso durante más de una década. La experiencia clínica
a largo plazo de la utilización de este material ha demostrado que un nivel aceptable de
respuesta biológica se puede esperar si la aleación se utiliza en aplicaciones apropiadas [21].

Nitinol

El Nitinol es una aleación de níquel y titanio, y es el ejemplo más conocido de las lla-
madas aleaciones con memoria de forma. Las aleaciones con memoria de forma deben sus
propiedades a una transición de fase entre una estructura de tipo austenita y una de tipo
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martensita. Las transiciones de fase en los sólidos pueden producirse por dos mecanismos
muy diferentes. El más común consiste en el desplazamiento de átomos de sus posiciones de
equilibrio, mediante un proceso conocido como difusión, para adoptar una nueva estructura
más estable en las condiciones de presión y temperatura a las que se encuentra el material.
Este tipo de transiciones se produce generalmente de una forma lenta.
Una de las propiedades más importantes de nitinol es la superelasticidad, esta propiedad
ayuda a la creación de stents autoexpandibles.
Esta aleación se funde o bien por medio de la fusión por inducción en vacío (VIM) o bien
por la fusión por arco eléctrico (VAR). El primero de los dos métodos (VIM) posee una
gran precisión en la composición pero pueden aparecer contaminación por carbón del gra-
�to del horno. El segundo método (VAR) no ofrece una gran pureza pero la producción se
realiza en pequeñas cantidades. El control de la composición es muy importante ya que un
1% de variación es la composición puede afectar en 100oC la temperatura de transforma-
ción. Posteriormente se realiza un trabajo en caliente, entre 600 y 800oC para mejorar la
ductilidad y crear la forma. Después de hace una trabajo en frio para mejorar el acabado
y las propiedades mecánicas. Para algunas aplicaciones especiales se realiza un segundo
tratamiento térmico, entre 600 y 800oC [22].

Aunque se trata de un material algo complejo para nuestros cálculos usaremos un
material elástico isotropico con un módulo elástico de 4 · 1010 Pa y un módulo de Poisson
de 0.33.

4.2.3. Material �uido

El �uido, en este caso aire, se asume newtoniano, incompresible con una densidad
ρ = 1,225kg/m3 y una viscosidad µ = 1,83 · 10−5kg/m · s [7].

Un �uido newtoniano es un �uido cuya viscosidad puede considerarse constante en el
tiempo. Los �uidos newtonianos son uno de los �uidos más sencillos de describir. La curva
que muestra la relación entre el esfuerzo o cizalla contra su velocidad de deformación es
lineal. El mejor ejemplo de este tipo de �uidos es el agua en contraposición al pegamento,
la miel o los geles y sangre que son ejemplos de �uido no newtoniano. Un buen número
de �uidos comunes se comportan como �uidos newtonianos bajo condiciones normales de
presión y temperatura: el aire, el agua, la gasolina, el vino y algunos aceites minerales.

Ecuación constitutiva

Matemáticamente, el rozamiento en un �ujo unidimensional de un �uido newtoniano se
puede representar por la relación:

τ = µ
dv

dy
(4.4)

Donde:

τ, es la tensión tangencial ejercida en un punto del �uido o sobre una super�cie sólida en
contacto con el mismo, tiene unidades de tensión o presión Pa, µ es la viscosidad del �uido,



CAPÍTULO 4. MODELOS NUMÉRICOS 25

y para un �uido newtoniano depende sólo de la temperatura, puede medirse en Pa · s o
kp · s/cm2 y dv

dy es el gradiente de velocidad perpendicular a la dirección al plano en el que

estamos calculando la tensión tangencial, s−1.
La ecuación constitutiva que relaciona el tensor tensión , el gradiente de velocidad y la

presión en un �uido newtoniano es simplemente:

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij∇ · v

)
(4.5)

Viscosidad y temperatura

Amedida que aumenta la temperatura de un �uido líquido, disminuye su viscosidad. Esto
quiere decir que la viscosidad es inversamente proporcional al aumento de la temperatura.
La ecuación de Arrhenius predice de manera aproximada la viscosidad mediante la
ecuación:

µ(T ) = µ0 exp

(
E

RT

)
(4.6)

4.3. Mallado del modelo

El mallado a sido realizado con el programa ANSYS ICEM CFD con elementos
tetraédricos ya que el programa nos permite crearlos de forma automática a partir de
las super�cies de la geometría. Debido a la complejidad de la geometría es más sencillo
mallar con este tipo de elemento que con elementos hexaédricos ya que para ello es necesario
crear bloques y posteriormente ajustarlos a las geometría dada.

Todas las mallas se han realizado de manera similar. En los lugares en los que se necesita
una mayor precisión de cálculo o bien donde nos encontramos con alguna singularidad
geométrica la malla tiene una mayor densidad, incrementándola un poco más en las líneas
de división de las diferentes zonas para poder aproximar lo mejor posible la geometría
real e incurrir en menos errores a la hora de realizar los cálculos. Por el contrario en las
zonas menos relevantes para el cálculo, como puedes ser las zonas más alejadas del stent,
la densidad de la malla disminuye para poder agilizar el cálculo.
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Capas creadas para el mallado

Stent

• Interior: Super�cie en contacto con el �uido

• Lateral

• Exterior: Super�cie en contacto con la tráquea

Tráquea

• Tapa

• Interior: Super�cie en contacto con el �uido

• Exterior

◦ Músculo

◦ Cartílago

Fluido

• Inlet: Super�cie de entrada del �ujo de aire

• Outlet: Super�cie de salida del �ujo de aire

En la imagen 4.4 podemos ver algunas de las capas antes descritas. Una vez que la
geometría a sido introducida y programa malla dicha geometría y genera los elementos
volumétricos en su interior. En este caso el programa nos crea 4 grupos nuevos, uno para
el músculo, otro para el cartílago, otro para el stent y por ultimo uno para el �uido.

Figura 4.4: Capas

Inicialmente se intentó mallar la geométrica minimizando el número de elementos para
poder agilizar los cálculos intentando no superar los 2 millones de elementos. Para ello
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se discretearon las capas pertenecientes a la tráquea y al �uido con un tamaño máximo
de elemento de 0.5 mm y las del stent con un tamaño máximo de 0.1 mm. Esta parecía
una buena solución ya que los stents estaban bien representados. El principal problema
que nos hemos encontrado es que, la tráquea al estar dividida por diferentes materiales,
el programa, intentando optimizar la calidad de la malla, puede cambiar de capa alguno
de los elementos de la frontera, lo que hace que a la hora de de�nir la capa de contacto
entre al �uido y la tráquea queden huecos. Esto sucede sobretodo alrededor del stent. Por
ejemplo, las super�cies que forman la capa de contacto con el �uido son las interiores y
la denominada stent lateral, por lo que si el programa me cambia un elemento y lo pasa
a la capa stent exterior para el programa de calculo en ese lugar no habrá elemento, lo
que provocará que el programa no calcule. En la imagen 4.6(a) podemos ver cómo nos han
cambiado unos elementos a la capa rosa, la cual no pertenece a las capas de contacto, así
que para el programa la capa quedaría como se ver en la �gura 4.6(b).

((a)) ((b)) ((c))

Figura 4.5: Problemas capa interior

Otro problema con el que nos podemos encontrar es que nos añada a la capa de contacto
algún elemento que delimite dos materiales sólidos. Este problema se produce sobretodo
en la intersección entre las diferentes líneas del modelo cuando el tamaño del elemento es
muy grande. En la �gura 4.5(c) podemos apreciar unos elementos destacados en rosa, estos
elementos no se encuentran entre los elementos sólidos y los �uidos, sino ente elementos
sólidos. Esto también impedirá que el calculo comience.

Intentaremos llegar a un compromiso entre número de elementos y calidad de la malla,
ya que muchos elementos no pueden di�cultar la detección del problema de los huecos, y
nos aumentaría mucho el tiempo de cálculo. Después de múltiples pruebas las capas han
quedado de la siguiente manera:

Las capas pertenecientes a la tráquea con un tamaño máximo de elemento de 0.5
mm.

Las lineas de las capas pertenecientes a la tráquea con un tamaño máximo de 0.4
mm.

Las capas pertenecientes al stent con un tamaño máximo de 0.08 mm.

Las líneas de las capas pertenecientes al stent con un tamaño máximo de 0.07 mm
para el Wallstent y 0.05 mm para el Zilver �ex, ya que las curvas de este stent tienen
un radio menor.
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Con la reducción en el tamaño de elemento de las líneas, conseguimos minimizar al
máximo el problema del cambio de capa, así como representar mejor la geometría. En la
�gura 4.6 se puede apreciar un cambio signi�cativo en el número de elementos, así como en
la representación de las curvas. Con este mallado más �no, obtenemos una malla de unos
2.9 millones de elementos para el Zilver �ex y 2.7 millones de elementos para el Wallstent,
un número de elementos es bastante elevado pero necesario para no tener problemas en los
cálculos.

((a)) Wallstent

((b)) Zilver �ex

Figura 4.6: Malla �nal



CAPÍTULO 4. MODELOS NUMÉRICOS 29

4.4. Cálculos realizados y condiciones de contorno

Todos los cálculos se van a realizar con un programa llamado ADINA (Automatic
Dynamic Incremental Nonlinear Analisys). Se ha elegido este programa ya que es uno
de los que permiten hacer un calculo �uido-estructura (FSI), es decir, nos permite simular
la interacción de una estructura deformable con un �ujo de �uido circulante por su interior.

El proceso de cálculo que se a seguido durante el proyecto a sido en siguiente. Se ha
simulado a la vez la explicación y el ciclo de respiración de un conejo. Para la expansión
del stent se han realizado dos modelos diferentes, uno en el que se imponía el desplazamiento
que el stent experimenta en la colocación y otro en el que este desplazamiento de consigue
mediante una presión en la cara interior del stent. El ciclo de respiración se ha realizado
imponiendo una presión y una velocidad de �uido en los extremos de la traquea y
sometiendo a esta a la condición de FSI (Interacción �uido-estructura).

4.4.1. Expansión del stent

Para realizar la simulación de expansión se ha modelado el stent en una posición inicial
para después expandirlo junto con la tráquea intentando conseguir un desplazamiento
de 0.4 mm en cada nodo, lo que hace que el stent modi�que su diámetro en 0.8 mm
alcanzando así su posición �nal. En el primer modelo esto es relativamente mas fácil ya
que el desplazamiento viene impuesto como una condición de contorno. Para el segundo
calculo, donde deformamos aplicando una presión, este ha sido algo mas complicado ya que
se han tenido que realizar simulaciones previas en un modelo mas simple hasta obtener la
presión que nos deforma el diámetro del stent 0.8 mm.

En ambos modelos de introducen las condiciones de contorno el de forma lineal
alcanzando el maximo a los 0.1 segundos de empezar la simulación, como se puede apreciar
en la �gura 4.7.

((a)) Desplazamiento (mm) ((b)) Presión (MPa)

Figura 4.7: Función de tiempo

Como condición de contorno se impide el desplazamiento en X, Y y Z de todos los nodos
de los extremos, tanto en el solido como �uido. Para evitar el movimiento como solido
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rígido del stent sobre todo en el modelo con presión impedimos también el desplazamiento
en X de dos �las de nodos en la coordenada Y=0, a otras dos �la de nodos en la coordenada
X=0 se le impide el desplazamiento en Y y por ultimo se impide el desplazamiento vertical
de la linea media del stent. En la �gura 4.8 podemos ver las condiciones impuestas. El
desplazamiento o la presión impuesta se representa por unas �echas de color rosa, se puede
apreciar como estas �echas siguen la geometría de los stents.

((a))

((b))

Figura 4.8: Modelo de cálculo

4.4.2. Ciclo de respiración con condición �uido-estructura

Para realizar esta simulación nos tenemos que asegurar o por lo menos es muy
recomendable que sean nodo coincidentes, así evitamos que algún nodo del �uido penetre
en la tráquea y pueda detener el cálculo. La capa entre ambos debe ser continua, es decir,
sin ori�cios, sin elementos adicionales y evitando picos en las esquinas, tal y como se ha
explicado anteriormente.

Según la imagen 4.9(a) un conejo inspira un caudal de aire de 0.1 l/min, si dividimos
este caudal por la sección de la tráquea obtenemos la velocidad a la que circula el aire por
el interior, para nuestro caso 0.61 m/s. Para la respiración del conejo seguimos usando la
función senoidal (�gura 4.9(b)), introduciendo las condiciones en las capas de entrada
y salida del �uido y en sentidos opuestos. A la entrada del modelo (parte superior)
se han aplicado las condiciones de contorno correspondientes a la velocidad, en sentido
longitudinal. En la parte de salida (parte inferior) han sido aplicadas las condiciones de
presión en sentido contrario (�g. 4.10).
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((a)) Respirador arti�cial ((b)) Ciclo de respiración

Figura 4.9: Ciclo de respiración

Los cálculos se realizan utilizando la condición FSI (Fluid-Solid Interaction) y la
condición de no deslizamiento (No-Slip). Para usar esta aplicación tenemos que crear los
dos archivos por separado, uno para la tráquea y otra para el �uido, y de�nir la capa de
contacto entre ambos. En la �gura 4.10 se puede ver los archivos para el cálculo junto con
las cargas y las condiciones de contorno.

((a)) Tráquea

((b)) Fluido

Figura 4.10: Modelo de cálculo �uido-estructura



Capı́tulo 5
Resultados

En este capitulo vamos a analizar y comparar los resultados obtenidos de los cálculos
antes descritos. Parte de los resultados los obtenemos directamente del programa ADINA
y otros los pasaremos por un programa que gestiona los resultados obtenidos y te permite
suavizar los resultados, para visualizarlos mejor e incluso dibujar las lineas de �ujo.

5.1. Desplazamientos

5.1.1. Expansión del stent

Lo primero que vamos a hacer es comparar el desplazamiento sufrido por cada stent
en cada uno de los modelos. Cuando imponemos el desplazamiento el stent se abre todo
la misma cantidad, en ningún momento pierde su forma cilíndrica. En cambio, cuando
aplicamos la presión el stent tiende a abrirse mas en la parte mas débil, es decir, el los
extremos.

Figura 5.1: Geometría inicial

32
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((a)) Geometría inicial con desplazamiento ((b)) Geometría �nal con presion interna

Figura 5.2: Deformación

En las imágenes 5.2(a) y 5.2(b) se puede apreciar como en al caso en el que aplicamos
la presión interna en el stent este se deforma mas en las puntas, lo cual provocara mayor
tensión en la pared de la traquea. Si obtenemos el desplazamiento que sufre la traquea
durante el proceso de deformación vemos algo interesante. En el caso de la deformación
mediante una presión interna la traquea experimenta mucha mas deformación y tensión
en la parte externa del stent, mientras que si el desplazamiento se obtiene mediante la
imposición de este mismo el desplazamiento es mas uniforme por lo que nos genera una
menor tensión sobre la pared de la traquea.

((a)) Desplazamiento ((b)) Tensión

Figura 5.3: Presión interna
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((a)) Desplazamiento ((b)) Tensión

Figura 5.4: Desplazameito impuesto

5.1.2. Ciclo de respiración

Ahora vamos a ver si existe algún tipo de diferencia entre el ciclo de respiración usando
ambos modelos. Primero analizarnos los desplazamientos de la traquea, omitiendo los
debidos a la apertura del stent, luego analizaremos las velocidad del �ujo y la tensión
de cizalla par ambos casos.
Como se puede ver en las imágenes 5.5(a) y 5.5(b) las diferencia entre los desplazamientos

en la traquea omitiendo los debidos a la apertura del stent son casi inexistente.

((a)) Modelo de desplazamiento

((b)) Modelo de presión

Figura 5.5: Desplazameito impuesto en la traquea
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5.2. Tensiones

Para poder analizar las tensiones de los modelos usaremos el programa EnSight, que
nos permite suavizar estas tensiones para una mejor visualización. Estos cálculos los
compararemos con unas imágenes endoscópicas facilitadas por el hospital veterinario de la
Universidad de Zaragoza.

Primero vamos a ver que tensiones nos aparecen en una tráquea sana en un ciclo
de respiración normal (�g. 5.6). En ella se puede apreciar que las tensiones aparecen
principalmente en el cartílago y en la zona de músculo longitudinal, siendo en los anillos
de músculo casi nula. Estas tensiones son muy pequeñas del orden de los 3000 pascales.
La �gura 5.7 muestra una endoscopia realizada a un conejo sano, donde podemos ver los
diferentes anillos que forman la tráquea y que no hay ningún tipo de in�amación.

Figura 5.6: Tensiones tráquea sana
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Figura 5.7: Endoscopia tráquea sana

Ahora analizaremos las tensiones producidas por ambos modelos y las compararemos
con una imágenes endoscopicas facilitadas por la facultad de veterinaria de la Universidad
de Zaragoza.

El daño principal en la tráquea se produce en el momento de la expansión. Como se
puede ver en la �gura 5.8 aparecen tensiones muy altas en la zona del cartílago cerca del
stent. Estas tensiones acumuladas pueden producir in�amación de los tejidos durante el
ciclo de respiración, lo que puede llegar a ocasionar reepitelización, es decir, el tejido crece,
cubre el stent y aparece el fenómeno de restenosis.

La restoenosis es la reaparición de un estrechamiento o una estenosis después de su co-
rrección, a menudo dentro de un periodo de 6 a 18 meses.

En las imagen 5.8(b) podemos ver unas imágenes endoscópicas, en ellas se puede apreciar
los problemas antes descritos.
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((a)) Tension en el modelo ((b)) Tension en el modelos

Figura 5.8: Comparación de tensiones en modelo de desplazamiento impuesto

Si observamos las tensiones que aparecen en el modelo con la condición de presión in-
terna, vemos como esta tensión aparecen en la zona donde acaba el stent, este modelo de
stent acaba con los �lamentos cortados, sin ningún tipo de recubrimiento. Estos �lamentos
se pueden producir �brosis en los tejidos.

La �brosis es la formación o desarrollo de un exceso de tejido conectivo �broso en un
tejido como consecuencia de un proceso reparativo, se produce por un proceso in�amatorio
crónico. En la imagen 5.9(b) vemos como al �nal del stent se ha producido una �brosos en
la tráquea. El la parte superior de la imagen vemos una zona blanco, estos es in�amación
del tejido y podemos observar como se va comiendo al stent.
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((a)) Fibrosis ((b)) Tension en el modelo

Figura 5.9: Comparación de tensiones en modelo de presión



Capı́tulo 6
Conclusiones

Una vez �nalizado el proyecto se pueden extraer las siguientes conclusiones:

Comparando la expansión de cada modelo, podemos decir que en el modelo en el que se
aplica la condición de presión el desplazamiento no es uniforme en todo el stent, como si lo
es en el modelo en que aplicamos un desplazamiento impuesto. Esto provoca una mayores
tensiones en las zonas extremas del stent.

En cuanto a los desplazamientos y las tensiones producidas por el ciclo de respiración,
en ambos modelos son prácticamente las mismas.

También se observa que los resultados obtenido se corresponden con la realidad, ya que
como se aprecia en las imágenes endoscopicas las in�amaciones aparecen en las mismas
zonas donde tenemos la mayor tensión en los modelos.
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