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RESUMEN

Este trabajo fin de Máster tiene como objetivo establecer sinergias entre el Instituto de Nano-

ciencia de Aragón (INA) y la Escuela de Ingenierı́a y Arquitectura en el ámbito de la tomografı́a de

nanopartı́culas mediante microscopı́a de electrones.

El estilo de redacción tiene un enfoque didáctico con el fin de ser un texto de introducción

acelerada en la materia a aquellos titulados en Ciencias o Ingenierı́a interesados en el tratamiento

de imágenes de microscopı́a de electrones.

En este trabajo se establece la modelización matemática de la tomografı́a y su relación con la

transformada de Radon. Además, se analizan las particularidades de la tomografı́a en microscopı́a

de electrones debidas a la limitación en la adquisición de datos (problemas de ángulo limitado).

Finalmente se realiza el estudio de software existente, y generación de software propio, de recons-

trucción de imágenes.

Se ha establecido contacto con los investigadores del LMA, D. Raul Arenal y D. Alfonso Ibarra,

a quienes quiero agradecer el favor y disponibilidad que han tenido en prestar todo el material

y cuanta información se les ha solicitado con respecto a instalaciones, software y proyectos que

desarrollan.

También se ha establecido un primer contacto con los investigadores del KTH Royal Institute

of Technology in Stockholm, D. Holger Kohr y D. Ozam Öktem, en el marco del Workshop Na-

noMath2014 celebrado en Zaragoza. En este encuentro han mostrado su favorable disposición a

participar en un proyecto común que suponga la mejora del software de reconstrucción del LMA.
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1
Introducción

El origen de la tomografı́a aparece en el campo de la Astronomı́a, si bien su verdadero auge co-

mienza tras la invención del escáner de Hounsfield en 1972, el cuál permitió obtener imágenes de

diferentes estructuras del cuerpo humano impensables hasta entonces. La aplicación de la tomo-

grafı́a a la Medicina hace que surjan numerosos estudios y que evolucione este campo a pasos de

gigante.

Además, las Ciencias Biológicas, con su demanda en la observación de micro-estructuras de

virus, bacterias y nanofármacos, y la investigación en nuevos materiales, que requieren el conoci-

miento de su estructura a escala nanométrica, impulsan la mejora de las técnicas de microscopı́a

existentes.

En este trabajo se introduce la técnica tomográfica y su aplicación a la reconstrucción de imáge-

nes en diferentes campos como son la Medicina, la Biologı́a, Nanociencia, Nanotecnologı́a y la

Ingenierı́a de la Ciencia de los Materiales.

El avance en la instrumentación microscópica ha conseguido llegar a unas resoluciones impen-

sables no hace siquiera 100 años, sobre todo con la aparición, y su continua mejorı́a, de los equipos

de microscopı́a con haz de electrones, que han revolucionado y agrandado el conocimiento que se

posee sobre organismos y materiales.
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1. INTRODUCCIÓN

Este trabajo se desglosa en los siguientes apartados:

- se introduce la Transformada de Radon y sus propiedades más importantes de las que se hace

uso en este trabajo. Se analizan diferentes algoritmos de reconstrucción de imágenes y se

comentan diferentes problemas que aparecen cuando no se disponen de todos los datos o hay

un fallo en algún elemento de captación de datos;

- se continúa con la descripción de la técnica tomográfica y su aplicación a la microscopı́a de

electrones;

- se menciona las caracterı́stica del software de reconstrucción tomográfica que se usa en el

Laboratorio de Microscopı́a Avanzada (LMA) del INA y sus contactos en el tema a nivel

europeo;

- finalmente, se introduce una técnica de reconstrucción recientemente diseñada con notables

mejoras respecto a las actualmente en uso. Esta técnica incorpora el modelo de dispersión

de electrones y la óptica del microscopio; a pesar de ello, este método está escasamente

difundido ya que requiere más conocimientos que la tomografı́a de rayos.
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2
La Transformada de Radon

En este capı́tulo se introducen la transformada de Radon y su dual. Son las herramientas que permi-

ten obtener la imagen a partir de sus proyecciones. Se estudian los conceptos básicos de proyección

e integral de lı́nea. Se demuestra el teorema de la rebanada de Fourier, pieza fundamental en todo

el desarrollo de la teorı́a de recuperación del objeto a partir de sus proyecciones. Se desarrollan

algunos algoritmos del problema inverso, como son el método directo de Fourier y el de retro-

proyección filtrada. Se ponen ejemplos de simulación con el fantasma de Shepp-Logan, mediante

la aplicación del algoritmo directo de Fourier y de retro-proyección filtrada, que permiten ver entre

otras cosas los artefactos debidos a falta de datos por ángulo limitado o por fallo en un sensor de

captación de datos.

2.1 La Transformada de Radon

La transformada de Radon “calcula proyecciones de objetos”. Un objeto está representado por una

función f(x) con x ∈ R
2 que asocia una propiedad a cada punto del plano. Una proyección paralela

en la dirección (cos θ, sen θ) está caracterizada por las integrales de lı́nea (figura 2.1) sobre todas las

rectas perpendiculares a la recta que pasa por el origen de coordenadas y de dirección (cos θ, sen θ)

(figura 2.2).
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2. LA TRANSFORMADA DE RADON

Figura 2.1: Integral de lı́nea de un objeto para una dirección dada.

Figura 2.2: Proyección paralela para dos direcciones distintas.
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2.1 La Transformada de Radon

Ejemplo. En R
2, una proyección viene dada por la expresión

Pθ(t) =

∫

L

f(x, y)ds, (2.1)

con el dominio de integración definido como

L = {(x, y) ∈ R
2 : x cos(θ) + y sen(θ) = t}; (2.2)

para el objeto circular

f(x) =

{
1 si x2 + y2 ≤ 1,
0 en otro caso,

(2.3)

en la figura 2.3 se representa la gráfica de su proyección para un ángulo de θ = 0◦ .

Figura 2.3: Gráfica de la proyección paralela de la función 2.3 a 0o.

Definición. Sean s ∈ R, w ∈ Sn−1 y f ∈ S(Rn), donde S(Rn) es la clase de funciones de

Schwartz. La Transformada de Radon de f es

Rf(w, s) =

∫

x·w=s

f(x)dx. (2.4)

La Transformada de Radon integra el objeto f en hiperplanos definidos por el vector dirección

w. En el caso particular del plano se tiene w = (cos θ, sen θ). El valor de s expresa la distancia

respecto del origen de coordenadas, sobre la lı́nea recta cuya dirección es w. El conjunto sobre el

que se integra es el formado por todos los puntos del espacio que se proyectan en el punto de la
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2. LA TRANSFORMADA DE RADON

recta de dirección w que está a distancia s del origen. Otra manera de expresar la integral viene dad

por

Rf(w, s) =

∫

w⊥
f(s · w + y)dy, (2.5)

donde w⊥ = {y ∈ R
n : y · w = 0}.

La expresión 2.5 refleja la idea de que para llegar a un punto del espacio podemos movernos

primero en la dirección de la recta una distancia s y, posteriormente, ir en perpendicular a ella; es

decir, x = s · w + y. Obsérvese que se satisface la identidad s = x · w.

La representación gráfica de la transformada de Radon de un objeto se denomina sinograma.

El eje horizontal se etiqueta con el ángulo de las distintas direcciones medidas y el vertical con las

distancias dadas por el valor de s. Cada punto cuyas coordenadas son (θ, s) se marca de un color (o

un nivel de gris) según el valor de la transformada de Radon.

Ejemplo. En la figura 2.4 se muestran un objeto y su sinograma obtenido al realizar la Trans-

formada de Radon. El objeto viene definido por una elipse de densidad ρ = 1 caracterizada por la

función

f(x) =

{
1 si x2

0,52 + y2

0,82 ≤ 1,

0 en otro caso.
(2.6)

La expresión analı́tica de la transformada de Radon de f(x) es

Rf(w, s) =

{ 0,8
a(θ)2

√
a(θ)2 − s2 si |s| ≤ a(θ),

0 en otro caso,
(2.7)

con a(θ)2 = 0,25 cos(θ)2 + 0,64 sen(θ)2.

Figura 2.4: Objeto definido por una elipse y su sinograma.
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2.1 La Transformada de Radon

En simulación numérica es frecuente realizar las pruebas con el modelo de fantasma de Shepp-

Logan, con transformada de Radon conocida, cuyo imagen y su correspondiente sinograma se mues-

tran en la figura 2.5.

Figura 2.5: Fantasma de Shepp-Logan para simulación y su correspondiente sinograma

A partir de la definición se obtiene inmediatamente que la transformada de Radon posee simetrı́a

par, es decir, Rf(−w,−s) = Rf(w, s).

En los algoritmos de reconstrucción tomográfica desempeñan un papel crucial las transformadas

duales de Radon.

Definición. Se definen la Transformada dual de Radon de g(x) en dirección w como

R♯
wg(x) = g(x · w). (2.8)

y la Transformada dual de Radon de g(x) como

R♯g(x) =

∫

Sn−1

g(w, x · w)dw. (2.9)

Es importante darse cuenta de que la transformada dual integra sobre todos los hiperplanos que

pasan por el punto x.

Ejemplo. Sea g(s) = s y w = (cos θ, sen θ). Es claro que la transformada dual de Radon en

dirección w es R♯
wg(x, y) = x cos θ+ y sen θ. Y es fácil calcular su transformada dual, que en este

caso es R♯g(x, y) = 0.

11



2. LA TRANSFORMADA DE RADON

La transformada dual tiene una estrecha relación con la transformada de Radon, pues es fácil

comprobar que ∫

R

Rwf(s)g(s)ds =

∫

Rn

f(x)R♯
wg(x)dx. (2.10)

Si se integra 2.10 en todo Sn−1 se obtiene

∫

Sn−1

∫

R

Rwf(w, s)g(w, s)dsdw =

∫

Rn

f(x)R♯g(x)dx. (2.11)

Se destacan dos resultados muy importantes cuya demostración puede verse en [9].

Teorema. Para funciones f y g en la clase de funciones de Schwartz se tiene

(R♯g) ∗ f = R♯(g ∗Rf). (2.12)

Teorema. Para g en la clase de funciones de Schwartz, se cumple

(R♯g)∧(ξ) = (2π)(n−1)/2|ξ|1−n

(
ĝ(

ξ

|ξ|
, |ξ|) + ĝ(−

ξ

|ξ|
,−|ξ|)

)
, (2.13)

donde ∧ representa la transformada de Fourier. Además, si la función (R♯g)∧ es radial y ĝ es par, la

fórmula anterior se simplifica a

ĝ(ρ) =
1

2
(2π)(1−n)/2|ρ|n−1(R♯g)∧(ρ). (2.14)

2.2 Teorema de la Rebanada de Fourier

Existe una conexión importante entre la transformada de Radon y la transformada de Fourier en R
n

([3] y apéndice A). Haciendo unos sencillos cálculos se obtiene

(Rwf)
∧(ξ) = (2π)−1/2

∫

R

Rwf(s)e
−iξsds = (2π)−1/2

∫

R

∫

w⊥
f(s · w + y)e−iξsdyds. (2.15)

Realizando el cambio de variable x = s · w + y y recordando que s = x · w se llega a la expresión

(Rwf)
∧(ξ) = (2π)−1/2

∫

Rn

f(x)e−iξx·wdx = (2π)
n−1

2 f̂(ξw), (2.16)

en la que se relaciona la transformada de Fourier de f(x) en la dirección definida por el vector w

con la transformada de Fourier de la proyección del objeto f en esa misma dirección (Teorema de

la rebanada).

Teorema de la rebanada de Fourier. Dada una función f(x) con x ∈ R
n, perteneciente a la

clase de funciones de Schwartz, se cumple para ξ ∈ R

(Rwf)
∧(ξ) = (2π)(n−1)/2f̂(ξw). (2.17)
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2.3 Algoritmo de Retroproyección Filtrada

Este resultado resuelve, al menos teóricamente, el problema de la obtención de un objeto f(x)

a partir de sus proyecciones. Según el teorema de la Rebanada de Fourier el método directo a seguir

serı́a el siguiente:

1. Obtener las proyecciones paralelas para todas las direcciones.

2. Hallar la transformada de Fourier de las proyecciones obtenidas para cada dirección. Se ob-

tiene el valor de la transformada en direcciones radiales en el dominio de Fourier.

3. Escribir la transformada de Fourier de f(x) en R
n a partir del paso anterior.

4. Realizar la transformada inversa de Fourier para recuperar f(x).

Para hacer una simulación en el plano y comprobar los resultados se precisa tener en cuenta las

siguientes observaciones:

• En la práctica real no se puede medir en todas las direcciones del plano. Se eligen un número

determinado de direcciones w para obtener las proyecciones.

• No se pueden medir todas las integrales de lı́nea para una dirección dada. Ası́ pues, se elige

un número determinado de rayos en cada dirección.

• La transformada de Fourier en R
2 es conocida en puntos radiales del dominio de Fourier.

Se debe aplicar algún método para conocer los valores en una malla rectangular y realizar la

inversión correctamente.

Los resultados que se han obtenido implementando el procedimiento anterior (cuyos programas

están incluidos en el apéndice) no son satisfactorios. Esto se observa claramente en las imágenes

de la figura 2.6 reconstruidas con el algoritmo anterior interpolando al vecino más próximo para

calcular el valor de la transformada de Fourier en una malla rectangular a partir de la malla radial.

2.3 Algoritmo de Retroproyección Filtrada

Quedó patente que la implementación para recuperar un objeto a partir de sus proyecciones median-

te la aplicación directa del teorema de la rebanada de Fourier no proporciona imágenes adecuadas.

El algoritmo de retroproyección filtrada produce una mejora sustancial y, mediante la aplicación de

diferentes filtros, tal vez sea una de las mejores técnicas utilizadas hoy dı́a. Su deducción al caso

plano es sencilla [5]. Para una comprensión más profunda véase B.
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2. LA TRANSFORMADA DE RADON

Figura 2.6: Fantasma reconstruido con el algoritmo directo de Fourier a partir de 128 proyecciones y

128 rayos por proyección (A), y con 256 proyecciones y 256 rayos por proyección (B).

Sea f(x, y) el objeto a reconstruir. Denotemos g = Rf(w, s) con w = (cos θ, sen θ) los datos

medidos por proyección paralela del objeto. Escribamos f(x, y) como transformada de Fourier

inversa de la siguiente manera:

f(x, y) =

∫

R2

F (u, v)ei2π(ux+vy)dudv. (2.18)

Realizando el cambio de coordenadas rectangulares (u, v) a coordenadas polares (ρ, θ) habitual

f(x, y) =

∫ 2π

0

∫ ∞

0

F (ρ, θ)ei2πρ(x cos θ+y sen θ)ρdρdθ. (2.19)

Teniendo en cuenta que se cumple F (ρ, θ + π) = F (−ρ, θ), la expresión anterior se puede escribir

como

f(x, y) =

∫ π

0

(∫ ∞

−∞

F (ρ, θ)|ρ|ei2πρsdρ

)
dθ, (2.20)

siendo s = x cos θ + y sen θ. Aplicando ahora el teorema de la rebanada de Fourier sabemos que

F (ρ, θ) = (Rfθ)
∧(ρ).Por lo tanto,

f(x, y) =

∫ π

o

(∫ ∞

−∞

Gθ(ρ)|ρ|e
i2πρsdρ

)
dθ, (2.21)

siendo Gθ(ρ) la trasformada de Fourier de g = Rf(w, s).

La fórmula indica claramente los pasos a realizar para recuperar el objeto.

Primero. Calcular la transformada de Fourier de los datos de proyección g.

Segundo. Filtrar los datos. El factor ρ que multiplica a G en el dominio de Fourier se interpreta con un

filtrado de la señal.

Tercero. Calcular la transformada inversa de Fourier de los datos filtrados. Se obtiene la proyección

filtrada de los datos.
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2.3 Algoritmo de Retroproyección Filtrada

Cuarto. Calcular f(x, y) retroproyectando cada proyección filtrada.

Se debe tener en cuenta que ρ tiene significado de frecuencia y, puesto que las señales suelen

tener la mayor parte de su energı́a hasta una frecuencia de corte determinada, se puede suponer

que la señal a reconstruir es de banda limitada. Ası́, deberemos conocer esa frecuencia de corte

para poder realizar el muestreo de forma correcta, ajustando la velocidad de muestreo para que se

cumplan las condiciones del teorema del muestreo.

La implementación del método queda de la siguiente manera:

Inicio. B es la frecuencia de corte. La velocidad de muestreo debe ser al menos el doble de ese valor

es decir, τ = 1
2B .

Los datos medidos en las direcciones wi = (cos θi, sen θi) con i = 1, . . . ,M son gθi(jτ)

para j = −N/2, . . . , N/2− 1. Siendo M el número de proyecciones y N de gran valor.

Primero. Aproximar la transformada de Fourier de una proyección como

Gθi(ρ) ≈ Gθi(k ·
1

Nτ
) = τ

N/2−1∑

j=−N/2

gθi(jτ)e
−i2πjk/N . (2.22)

Segundo. Filtrar la Señal. Debido a la existencia de ruido puede ser interesante usar un filtro de Ham-

ming, coseno o el que se estime pertinente.

Gfiltθi(ρ) ≈ Gfiltθi(k ·
1

Nτ
) = Gθi(k ·

1

Nτ
) · |k ·

1

Nτ
| ·H(k ·

1

Nτ
). (2.23)

Tercero. Calcular la transformada inversa de Fourier.

Qθi(s) ≈ Qθi(jτ) =
1

Nτ

N/2∑

k=−N/2

Gfiltθi(k ·
1

Nτ
)ei2πjk/N (2.24)

Cuarto. Calcular la aproximación f(x, y). Siendo M el número de proyecciones,

f(x, y) ≈
π

M

M∑

i=1

Qθi(x cos(θi) + y sen(θi)). (2.25)

En esta etapa se requiere hacer algún tipo de interpolación de los puntos de una malla radial

a una malla rectangular.

A continuación se puede apreciar como actúa la retroproyección en una elipse para los casos de

1 proyección (figura 2.7 (A)), 4 proyecciones (figura 2.7 (B)), 8 proyecciones (figura 2.7 (C)) y 32

proyecciones (figura 2.7 (D)). Todas ellas a 128 rayos por proyección.
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2. LA TRANSFORMADA DE RADON

Figura 2.7: Retroproyecciones de una elipse con diferente número de proyecciones.

Se pueden conseguir mejores algoritmos si se parte de la fórmula introducida anteriormente

f(x) ≈ R♯(w ∗Rf), (2.26)

siendo w una función filtro cuya transformada de Fourier es

ŵ(ρ) =
1

2
(2π)1/2−n|ρ|n−1Φ̂(|ρ|/B), (2.27)

con B la frecuencia de corte y 0 ≤ Φ̂(σ) ≤ 1 si σ ≤ 1 y Φ̂(σ) = 0 si σ > 1.

Filtros muy utilizados en la práctica son el de Ramachandran y Lakshminarayanan

Φ̂(σ) =

{
1 si σ ≤ 1,
0 si σ > 1

(2.28)

y el de Shepp-Logan

Φ̂(σ) =

{
sinc(σπ/2) si σ ≤ 1,
0 si σ > 1.

(2.29)

El algoritmo de reconstrucción aplicado al caso de proyección paralela en el plano, siguiendo a

[10], se implenta del siguiente modo:

Inicio. Se toman los datos de proyección g = Rf para las direcciones dj = (cos θj , sen θj) con

θj = (j − 1)π/p donde p es el número de proyecciones.
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2.3 Algoritmo de Retroproyección Filtrada

sl = l · h, siendo h = 1/q con l = −q, . . . , q los rayos en cada dirección.

Se realiza interpolación lineal y como regla de cuadratura de trapecios de p nodos.

Paso 1o. ∀j = 1, . . . , p, hacer las convoluciones

vj,k = h ·

q∑

l=−q

wB(sk − sl)g(dj , sl) para k = −q, . . . , q. (2.30)

Para wB se elige el fltro de Ramachandran y Lakshminarayanan (filtro RamLak). Luego, para

B = π/h

wB(sl) =
B2

2π2
·





1/4 si l = 0
0 si l 6= 0 y par

− 1
π2l2 si l impar.

(2.31)

Paso 2o. ∀x donde reconstruir el objeto f , calcular la retroproyección discreta:

fFBI(x) =
2π

p

p∑

j=1

[(1− u) · vj,k + u · vj,k+1], (2.32)

donde para cada x y j se obtienen k, u calculando s = dj ·x , k ≤ s/h < k+1 y u = s/h−k.

La simulación con el fantasma de Shepp-Logan proporciona los resultados que se muestran en

las figuras 2.8 (A), (B) y (C) con diferente número de proyecciones y rayos por proyección.

Figura 2.8: Fantasma recuperado a (32 proyecciones y 32 rayos en (A), 64 proyecciones y 64 rayos en

(B), 256 proyecciones y 256 rayos en (C).

Es interesante saber cómo responde el algoritmo ante un error en uno de los sensores. Se ha

simulado para el caso de una elipse, dando el valor nulo al valor recogido por el sensor. El resultado

obtenido con 128 proyecciones y 64 rayos por proyección se muestra en la figura 2.9.

En las figuras 2.10 (A) y (B) se ha simulado el caso en el que no se pueda realizar la toma de

datos en los 180 grados. Se puede ver que para un valor bajo del ángulo los resultados son totalmente
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2. LA TRANSFORMADA DE RADON

Figura 2.9: Objeto recuperado con un sensor defectuoso (128 proyecciones, 64 rayos.)

insatisfactorios. Este ejemplo introduce el problema importante de la recuperación de imágenes en

microscopı́a electrónica cual es el problema de datos limitados en ángulo.

Figura 2.10: Fantasma recuperado con 128 proyecciones, 128 rayos, 100o en (A) y con 170o en (B).
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3
Tomografı́a matemática

La tomografı́a es la representación de un objeto mediante secciones transversales a partir de datos

recogidos tras la interacción del objeto con algo que ilumine dicho objeto. Ese algo pueden ser

rayos-X, ondas de ultrasonido, isótopos radiactivos, un haz de electrones, etc. En el año 1979 reci-

ben el Premio Nobel el ingeniero de la empresa discográfica EMI, N. Hounsfield (por la invención

del escáner tomográfico computado de rayos-X) y el fı́sico A. Cormack (quien desarrolló los algo-

ritmos que hacen posible la reconstrucción de la imagen del objeto a partir de sus muestras). Con

la invención del escáner se hace realidad práctica los resultados teóricos del matemático Radon en

1917, quién sentó las bases matemáticas de la tomografı́a al demostrar que un objeto f(x) se podı́a

recuperar a partir de sus integrales de lı́nea.

En este capı́tulo se introducen los aspectos básicos de la tomografı́a computerizada y su apli-

cación a la microscopı́a de electrones. Se describe el caso de datos limitados por ángulo y su mal-

planteo. Finalmente se describe un método actual de reconstrucción de imágenes mucho mejor que

los algoritmos usados en el Laboratorio de Microscopı́a Avanzada.
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3. TOMOGRAFÍA MATEMÁTICA

3.1 Orı́gen de la Tomografı́a

La técnica empleada en el LMA para reconstruir un objeto a partir de los datos obtenidos en el

microscopio electrónico se basa en la tomografı́a de rayos-X. Aunque su uso no es ciertamente co-

rrecto, pues supone que se ilumina con una fuente de fotones y no se tiene en cuenta la existencia de

fenómenos de dispersión, es de fácil aplicación comparada con la técnica que estamos desarrollando

y que sı́ considera la difracción del haz de electrones - que son las partı́culas realmente empleadas

en el microscopio - cuando interacciona con la materia.

La primera aplicación práctica de la tomografı́a se produjo en el campo de la Astronomı́a, cuan-

do Bracewell propuso un método para la reconstrucción de un mapa bi-dimensional de la emisión

de microondas solares a partir de una serie de datos uni-dimensionales de haz de abanico medidos

por un radio-telescopio.

La técnica tomográfica consiste en radiar el objeto con una fuente de energı́a y recoger, con el

detector adecuado, la señal después de atravesar el objeto. Esta señal no será la misma que la emitida

por la fuente, sino que habrá sufrido algún cambio. Deberá haber siempre algún tipo de interacción

entre la señal emitida y el objeto que se desea ver; en otro caso, el objeto serı́a totalmente transparen-

te y no podrı́a ser representado. El tipo de información que se recoge deberá tener una dependencia

con algún parámetro de la muestra. Serı́a deseable que fuera una dependencia monótona; por ejem-

plo, la energı́a absorbida por una muestra cuando es atravesada por una radiación caracterizada por

su coeficiente de atenuación en función del espesor de la muestra.

En la figura 3.1 una fuente de rayos-X emite una radiación cuyo número de fotones es N0 y

que atraviesa el objeto de espesor x. En la transmisión de esta radiación pueden ocurrir dos efectos

importantes:

- La absorción fotoeléctrica. El fotón de rayos-X cede su energı́a a los electrones internos de

los átomos de la muestra.

- La dispersión por efecto Compton. El fotón interacciona con los electrones de la muestra

cambiando su dirección de transmisión y perdiendo energı́a. Aunque las interacciones son de

tipo inelástico, se pueden suponer elásticas cuando la pérdida de energı́a es despreciable.

En el caso de que todos los N fotones tengan la misma energı́a - radiación monocromática -

podemos escribir

∆N

N
·

1

∆x
= −τ − σ, (3.1)
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3.1 Orı́gen de la Tomografı́a

Figura 3.1: Esquema de iluminación de una muestra homogénea. La fuente y el detector se colocan en

lados opuestos de la muestra.

donde los parámetros τ y σ representan las razones de pérdida del fotón por unidad de distancia

debidas al efecto fotoeléctrico y el efecto Compton respectivamente. Es habitual reunirlos en un

mismo parámetro µ, denominado coeficiente de atenuación del material, simplificando la ecuación

como

∆N

N
·

1

∆x
= −µ. (3.2)

Haciendo infinitesimal el espesor de la muestra es correcto escribir

1

N
dN = −µdx. (3.3)

Considerando el caso que el coeficiente de atenuación sea constante se puede integrar 3.3 y obtener

como resultado

N(x) = N0e
−µx. (3.4)

Supongamos que el coeficiente de atenuación depende de las coordenadas espaciales x, y. Si la

fuente de rayos-X emite en una dirección determinada por el ángulo θ un haz de anchura τ (figura

3.2) y suponiendo que todos los fotones son mono-energéticos, la expresión que proporciona el

número Nd de fotones a la salida de la muestra viene dada por

Nd = N0e
−

∫
rayo

µ(x,y)ds, (3.5)
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3. TOMOGRAFÍA MATEMÁTICA

o, equivalentemente ∫

rayo

µ(x, y)ds = ln
N0

Nd
. (3.6)

La ecuación 3.6 es muy importante porque relaciona el valor de una integral de lı́nea a partir de

los valores medidos a la entrada y a la salida de la muestra. Puesto que las integrales de lı́nea se

expresan por la transformada de Radon puede recuperarse el valor de la atenuación en cada punto

del objeto mediante la inversión de ésta última.

Figura 3.2: Propagación de un haz a través de una sección transversal de una muestra.

En el caso de que la fuente no emita fotones mono-energéticos debe obtenerse la distribución

de fotones con respecto de la energı́a que poseen. Conocida la distribución S0(E) de energı́a de

los fotones emitidos, la distribución de energı́a de los fotones que salen de la muestra y que son

detectados viene dada por

Ssal(E) = S0(E)e−
∫
µ(x,y)ds. (3.7)

El número de fotones a la salida será

Nd =

∫
Ssal(E)dE. (3.8)

Con el policromatismo surge un nuevo inconveniente; el endurecimiento del haz. Es consecuen-

cia de que el coeficiente de atenuación del material depende del valor de la energı́a que posee el

fotón. Esto supone un sesgo en la medida del conteo de los fotones a la salida y que es causa de
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3.2 Tomografı́a electrónica

artefactos en las imágenes reconstruidas. Los fotones menos energéticos son absorbidos con mayor

facilidad que los altamente energéticos. Una manera posible de abordar el problema es proponer un

modelo adecuado para el coeficiente de atenuación.

Por sencillez en la explicación, supongamos que se trabaja con fotones mono-energéticos. Ya

sabemos cómo medir la integral de lı́nea del coeficiente de atenuación del material mediante la

ecuación 3.6. El paso siguiente es registrar todas las medidas necesarias para aplicar la teorı́a de

Radon y obtener el objeto. Las distintas formas de iluminar la muestra se han clasificado por gene-

raciones. Las razones para el cambio de una a otra han sido la consecución de una mayor velocidad

en la obtención de la imagen y un menor tiempo de exposición a la fuente radiante. En tejidos vivos

es prioritario que la dosis de radiación no supere unos valores establecidos como seguros. El coste

computacional, dada la ingente cantidad de cálculos involucrados, debe hacer viable el uso de la

técnica tomográfica.

3.2 Tomografı́a electrónica

En la actualidad es necesario conocer la estructura tridimensional de muchas nanoestructuras tanto

en el campo de las Ciencias de la Vida (virus, bacterias, macromoléculas, nanofármacos,...) como

en el campo de la Ciencia y Tecnologı́a de los materiales.

Con la Microscopı́a de luz hay un lı́mite en la resolución que es posible alcanzar y que es

insuficiente para esos fines perseguidos. Aunque es posible disponer de la Microscopı́a de Fuerza

Atómica (AFM), el número de átomos involucrados hace de este instrumento una herramienta nada

práctica para trabajar a una escala nanométrica. Un punto intermedio se consigue con las técnicas

de Microscopı́a Electrónica de Transmisión (TEM). Con este instrumento pueden obtenerse tanto

patrones de difracción como imágenes de la muestra que se analiza [13].

La técnica de la Tomografı́a de electrones [7] va a permitir tener una serie de imágenes 2D

para diferentes orientaciones del ángulo de inclinación del eje del porta-herramientas; imágenes

dispuestas en planos ortogonales a este eje. Variando la inclinación del eje en incrementos de 1o

ó 2o, por ejemplo, se obtienen diferentes proyecciones de las secciones de la muestra. Una vez se

ha realizado la adquisición de los datos se realiza la unión de las diferentes imágenes para obtener

la representación 3D de la muestra (Figura 3.3).

Para que la reconstrucción del objeto sea correcta es necesario conseguir datos completos para

todos los ángulos de inclinación. Pero esto no es posible por la propia construcción del instrumento;

en concreto, del porta-muestras. Ası́, puede conseguirse un rango de inclinación de -60o a 60o, y
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3. TOMOGRAFÍA MATEMÁTICA

Figura 3.3: Etapas en la reconstrucción 3D de un objeto mediante tomografı́a electrónica. Imagen obte-

nida de [2]

mediante una construcción esmerada, se pueden obtener mayor inclinaciones. En la figura 3.4 se

observa un porta-muestras de ángulo único estándar Philips CM300 (a), el cual permite una incli-

nación máxima de 42o. Una mayor inclinación provocarı́a que la herramienta golpease las piezas

polares de las lentes objetivo. Para mejorar este lı́mite el porta-muestras Philips EM400 (b) presenta

una anchura de 4 mm que le permite girar completamente dentro del hueco de las lentes objetivo

sin que haya colisión alguna. Aun ası́, el máximo ángulo de inclinación es de 60o; a partir de este

valor, la propia herramienta intercepta el haz incidente y produce sombra.

Por lo dicho, el problema tomográfico es el de la recuperación de un objeto a partir de sus

proyecciones con datos de ángulo limitado. Se sabe que es un problema severamente mal-planteado

en sentido de Hadamard. Hay una carencia de datos (figura 3.5) de toda una cuña que no puede ser

muestreada con el haz de electrones. Y no sólo es el propio diseño de la herramienta la que limita el

ángulo máximo de adquisición de datos. El espesor de la muestra también lo limita debido al hecho

de que a mayor inclinación de la muestra mayor será el espesor del objeto que debe atravesar el haz,

con la consiguiente pérdida de resolución que ello conlleva.

Por otra parte, es imprescindible asumir unas hipótesis de partida. Una de ellas es el requisito
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3.2 Tomografı́a electrónica

Figura 3.4: El porta-muestras (a) permite una inclinación máxima de 42o. La modificación del porta-

muestras (b) mejora este valor hasta los 60o. Imagen obtenida de [8]

Figura 3.5: La cuña corresponde a la zona del objeto que no ha sido muestreada.
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3. TOMOGRAFÍA MATEMÁTICA

de proyección [8] que exige haya una cierta función que varı́e monótonamente respecto de alguna

propiedad fı́sica del objeto. Ası́, la tomografı́a de campo-claro, se basa en la asunción de que el

contraste masa-espesor debido a la dispersión atómica elástica es la dominante. Las imágenes de

microscopı́a electrónica de transmisión de campo-claro (BF-TEM) de muestras biológicas presentan

contraste masa-espesor y cumplen el requisito de proyección.

Muy diferente es el caso de muestras cristalinas para las cuales el contraste de campo-claro

(BF) depende de las condiciones difractantes del propio cristal y que hacen que desaparezca la

dependencia monótona con el espesor de la muestra por la que pasa el haz. Por lo cual, fracasa el

requisito de proyección, y ya no serı́a aplicable la técnica tomográfica.

Obtenidas las diferentes imágenes de las secciones correspondientes a cada inclinación debe

realizarse la alineación de éstas de manera adecuada. Para ello es importante tener localizado el

eje de inclinación en cada momento. Pueden usarse marcadores fiduciales - con partı́culas de oro -

para rastrear el movimiento en la serie de imágenes inclinadas; o bien, mediante correlación cruzada

determinar los cambios producidos en las imágenes cuando no es posible el uso de esos marcadores.

En el caso que se produjera un des-alineamiento del eje de inclinación en la serie de micrografı́as

tomadas, aparecerı́an artefactos en forma de arcos que emborronarı́an la imagen.

Por último, mencionar que si se considera el caso de eje único de inclinación y suponiendo ali-

neamiento del eje perfecto para toda la serie de proyecciones obtenidas, la resolución en la dirección

paralela al eje de inclinación (dx) coincide con la resolución de las proyecciones. Mas no ocurre

ası́ en las otras dos direcciones, perpendiculares a ella. Ahora depende del número de proyecciones

tomadas N y del diámetro D del volumen del objeto a reconstruir. Las resoluciones valen ahora

dy =
πD

N
, (3.9)

dz = dy · eyz, (3.10)

donde eyz se denomina elongación, y su valor teórico es

eyz =

√
α+ sen(α) cos(α)

α− sen(α) cos(α)
. (3.11)

Esta anisotropı́a viene dada por la limitación en el ángulo que puede inclinarse la muestra con el

porta-muestras y que produce la perdida de datos en forma de cuña vista anteriormente.

Además de lo dicho, uno de los mayores problemas que ha de resolverse en tomografı́a de

electrones es la dosis a la que se exponen los especı́menes biológicos. Deben usarse dosis bajas para

evitar la ionización causada por las colisiones inelásticas y que llegan a producir calentamiento de
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3.3 Métodos actuales de representación

las muestras, descomposición radio-quı́mica (radiólisis) y rotura de enlaces quı́micos. Ello motiva

reducir la temperatura considerablemente (crio-preparación) y que el tiempo de exposición al haz

de electrones sea menor de lo que serı́a deseable. Todo esto repercute para que la razón señal-ruido

conseguida sea baja y limite la resolución que se obtiene al recuperar la imagen.

Descritos los aspectos básicos de la tomografı́a de electrones, queda dar un modelo del TEM

que permita definir y resolver dos problemas: el problema directo y el problema inverso.

Un modelo ampliamente usado en tomografı́a de electrones viene dado en [4]. En la figura 3.6, el

eje óptico está definido por la dirección ω. Perpendicular al mismo se sitúan los planos objeto, focal

e imagen, y el plano de las lentes. Las aperturas correspondientes son los sub-dominios Σ. Se supone

que la distancia focal f es positiva y que r > f , con r la coordenada del plano imagen. Se asume

que el sistema verifica la ecuación de Abbe 1
r+

1
q = 1

f . Básicamente, el problema directo resuelve la

señal de intensidad de una onda que ha sido dispersada por la muestra, caracterizada por un potencial

de dispersión complejo y obtenida en los pı́xeles de las correspondientes micrografı́as cuando se ha

emitido una onda incidente monocromática conocida. El sistema del TEM está caracterizado a su

vez por un operador que engloba todos los efectos del sistema óptico y tiene en cuenta, además, la

adición del ruido que producen los propios elementos de detección del TEM, y parámetros propios

del aparato que son valorados mediante un proceso de calibración.

El problema inverso corresponde a la búsqueda de ese potencial de dispersión de la muestra,

conocidas las muestras recogidas en las micrografı́as, afectadas por ruido y para un conjunto de

direcciones limitado de haz de electrones incidentes (problema de datos limitados por ángulo).

Como en el problema directo, se supone conocido el operador de trasmisión de la onda incidente a

la onda de salida en el captador y que modela el esquema dado en la figura 3.6. (Véase el apéndice

C para un análisis en más profundidad del cálculo de la onda dispersada por un medio difractante.)

3.3 Métodos actuales de representación

En la actualidad son tres los tipos de métodos de reconstrucción de imágenes implementados en los

paquetes de software. En el primer tipo, se escribe la función incógnita como expansión de funciones

básicas más sencillas de analizar tanto numéricamente como analı́ticamente. Se obtiene un sistema

de ecuaciones de grandes dimensiones y de tipo sparse que puede resolverse por el método clásico

de Kaczmarz; el ART (Técnica de Reconstrucción Algebraica, el SIRT y el SART pertenecen a

este grupo. Otro tipo de métodos se basan en maximizar la probabilidad de cierto funcional que

dependa del modelo propuesto y que tenga en cuenta las caracterı́sticas de ruido que se producen
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3. TOMOGRAFÍA MATEMÁTICA

Figura 3.6: Modelo utilizado para simular el TEM.

en la imagen. El tercer tipo se basa en la obtención de una fórmula aproximada de inversión (caso

de retro-proyección filtrada).

Uno de los mejores métodos de reconstrucción en tomografı́a de electrones corresponde al mo-

delo cuyo esquema se representa en la figura 3.6. Para unos datos de medida gω la ecuación que

modela este esquema es

gω = D
M
CσPωf. (3.12)

Esta ecuación tiene en cuenta la dispersión debida a la interacción de los electrones con el

espécimen, las caracterı́sticas del sistema óptico del microscopio y el aumento de la imagen pro-

yectada.

El objeto se define por una función f que depende del coeficiente de refracción del espécimen.

Siendo n el coeficiente de refracción en cada punto de la muestra, f es la parte real de 1 − n2.

Puesto que el medio en el que está la muestra tiene indice de refracción unidad, podemos suponer

que el soporte de la función f está contenido en cierta bola de radio ρ alrededor del origen.

Cuando una onda plana monocromática de ecuación Ψ(x) = eik(ω·x) incide en la muestra, los

fenómenos de difracción que se producen dependen del valor de f según la transformada de rayos-X

definida como

Pωf(η) =

∫

R

f(tω + η)dt, η ∈ ω⊥. (3.13)

Se puede considerar como una proyección plana del objeto donde cada punto actúa como fuente

secundaria emisora de ondas circulares de acuerdo al Principio de Huygens.
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3.3 Métodos actuales de representación

La influencia del sistema óptico del TEM se define mediante convolución de un núcleo Kσ con

la correspondiente señal u(η) = Pωf(η). Concretamente,

Cσu(η) =

∫

ω⊥
Kσ(η − ξ)u(ξ)dξ. (3.14)

El núcleo se define a partir de su transformada de Fourier Tσ por

K̂σ(ξ) = Tσ(ξ) = σT re(ξ) + T im(ξ), (3.15)

donde T re y T im son la parte real e imaginaria de la llamada función de transferencia de contraste

(CTF) definida como

T (ξ) = (2π)−1T̃ (|ξ|2), (3.16)

T̃ (s) = ℵ(s)a(s)−1eiq(a(s)−k+ s
2k

)eiγp(s)e−γe(s), (3.17)

siendo a(s) = (k2 − s)1/2, ℵ la función caracterı́stica de un intervalo dependiente del radio de

apertura, q es la distancia entre los planos de las lentes y el objeto. γp y γe son polinomios que

definen un factor de fase y un factor envolvente. El valor del parámetro σ depende del espécimen y

debe ser estimado. Este valor, además, ha de ser positivo.

El último operador, que tiene en cuenta el aumento de la imagen, es una dilatación isótropa

definida como

D
Mu(η) = M−1u(M−1η). (3.18)

Debido a las peculiaridades propias del porta-especı́menes, el ángulo de rotación θ con el que

se ilumina la muestra está limitado a un rango inferior a 180o. Debido a ello, los valores de ω

pertenecen al conjunto S20 = {(0, sen θ, cos θ)|θ ∈ [−θ0, θ0]}, con θ0 < 90o.

El dominio de todas las medidas se define mediante el conjunto

F := {(ω, η)|ω ∈ S
2
0, η ∈ ω⊥}. (3.19)

Con los conjuntos y operadores introducidos, el problema directo en tomografı́a de electrones

tiene como objetivo hallar el valor de los datos gω a partir de f y del operador directo definido por

Aσ := D
M
CσPω, (3.20)

con dominio en L2(Bρ) y rango en L2(F).

Por el contrario, el problema inverso de la tomografı́a de electrones se propone recuperar f(x),

con |x| < ρ, a partir de los datos g(ω, η) = Aσf(ω, η)∀(ω, η) ∈ F.
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Este problema es muy difı́cil de resolver debido al mal-planteo del problema en sentido de

Hadamard debido a datos limitados por ángulo, el fuerte ruido en los datos obtenidos, los problemas

de des-alineamiento del eje de las diferentes imágenes (que precisan un pre-procesado) y el alto

coste computacional requerido.

Un método novedoso propuesto en [6] se basa en la técnica de la inversa aproximada. Se pre-

calcula un núcleo Ψγ de reconstrucción como solución al problema adjunto con un suavizador Eγ

elegido. La aplicación de Ψγ a los datos medidos da lugar a una versión suave de la solución del

problema original. Además, el suavizador se conoce de forma exacta y está libre de errores en los

datos por lo que el núcleo de reconstrucción se determina de manera estable. Esta propiedad y otras

de invarianza permiten una implementación rápida del algoritmo.

Definiciones. Sea A : X → Y un operador lineal acotado entre X = L2(R) y un espacio de

Hilbert Y . Sea f solución de la ecuación

Af = g para un elemento dado g ∈ Y . (3.21)

Una función Eγ : R3 × R
3 → C cumpliendo Eγ(x, ·) ∈ X para todo x ∈ R

3 se llama suavizador

si aproxima la distribución δ en el sentido que para una función f ∈ X cualquiera verifica

ĺım
γ→0

< f,Eγ(x, ·) >X= f(x) c.t.p., (3.22)

∫

R3

Eγ(x, y)dy = 1 ∀γ. (3.23)

Se define solución aproximada de la ecuación Af = g a

fγ(x) :=< f,Eγ(x, ·) >X , (3.24)

que converge a la solución exacta f para γ → 0. Supongamos que Ψγ : R3 → Y resuelve la familia

de ecuaciones adjuntas

A
∗[Ψγ(x)] = Eγ(x, ·) (3.25)

entonces se cumple

fγ(x) =< f,A∗[Ψγ(x)] >X=< Af,Ψγ(x) >Y =< g,Ψγ(x) >Y . (3.26)

Por lo tanto, el cálculo de fγ se reduce a los cálculos del producto escalar entre Ψγ y los datos g.

Definición. La función Ψγ : R3 → Y que resuelve la ecuación 3.25 para cada x ∈ R
3 se llama

Núcleo de reconstrucción para la inversión del operador A. El operador lineal Sγ : Y → X definido

por

Sγg(x) =< g,Ψγ(x) >Y (3.27)
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3.3 Métodos actuales de representación

se llama inverso aproximado del operador A.

Para evitar resolver una ecuación adjunta para cada punto x se usan suavizadores de tipo con-

volución dependientes sólo de la diferencia de los argumentos,

Eγ(x, y) = T
xeγ(y) = eγ(x− y). (3.28)

Con esta simplificación la solución aproximada viene expresada como

fγ(x) =

∫

R3

eγ(x− y)f(y)dy. (3.29)

Es fácil probar que si Tx
1 : X → X y Tx

2 : Y → Y son dos operadores que cumplen la propiedad

de invarianza

T
x
1A

∗ = A
∗
T
x
2 (3.30)

y, además, si para eγ ∈ X la función φγ ∈ Y resuelve la ecuación

A
∗φγ = eγ (3.31)

entonces una solución de la ecuación A∗[Ψγ(x)] = Tx
1 eγ viene dada por

Ψγ(x) = T
x
2φγ . (3.32)

En [6] se aplica esta teorı́a al caso del operador de tomografı́a de electrones Aσ := DMCσPω ,

cuyo operador adjunto A∗σ := P∗ωCσD
1/M tiene retroproyección

P
∗g(y) =

∫

S2

0

g(ω, Pω⊥y)dω, Pω⊥ = y− < y, ω > ω (3.33)

y el núcleo de reconstrucción asociado al suavizador eγ se obtiene resolviendo el problema adjunto

P
∗

ωCσD
1/Mφγ = eγ . (3.34)

El resultado que se obtiene para la aproximación fγ(x) es

fγ(x) = Sγg(x) =

∫

S0

(g ∗ φγ)(ω,MPω⊥x)dω. (3.35)

Esta fórmula es de tipo retroproyección filtrada y pueden aplicarse técnicas FFT eficientes en su

implementación.
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4
Metodologı́a del LMA

El Laboratorio de Microscopı́a Avanzada (LMA) representa una iniciativa única a nivel nacional e

internacional. Su objetivo es proporcionar a la comunidad cientı́fica el equipo más avanzado exis-

tente y las infraestructuras de sonda local y microscopı́a electrónica para la observación, caracteri-

zación, nano-estampación y la manipulación de materiales a escala atómica, ası́ como una amplia

gama de herramientas cientı́ficas dedicadas a la caracterización, procedimientos de procesamiento

y manejo en la escala nanométrica.

El Laboratorio de Microscopia Avanzada depende administrativamente de la Universidad de Za-

ragoza a través del Instituto de Nanociencia de Aragón. El director del INA es también el director

del LMA. Un comité cientı́fico internacional evalúa periódicamente las actividades del LMA y ofre-

ce servicios de evaluación para la mejora. Las actividades cientı́ficas del LMA son administradas

por tres supervisores de área, coordinados por el coordinador del LMA. Cada supervisor de área es

responsable de los equipos y del personal técnico asignado a su área y, en general, para todas las

cuestiones organizativas de la zona.

El mayor reto que se propone el LMA es convertirse en un laboratorio de referencia interna-

cional para promover y establecer nuevos puentes entre los cientı́ficos y las empresas a través de

la formación de alto nivel basada en las infraestructuras de primer nivel y la amplia experiencia en
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Microscopia Avanzada.

Un Comité Cientı́fico se encarga de proporcionar apoyo cientı́fico y asesora al Consejo de Ad-

ministración. Se compone de cientı́ficos de reconocido prestigio internacional en el campo de Mi-

croscopı́a Avanzada, con destacada trayectoria profesional y cientı́fica en lı́nea con los objetivos de

LMA.

El LMA colabora con el grupo EMAT de la Universidad de Antwerp (Bélgica), el cual posee

uno de los laboratorios más importantes del mundo en este campo, y ambas ofrecen la experiencia

de sus investigadores y personal técnico a aquellas empresas privadas que le piden su ayuda para

resolver sus problemas de producción y mejora de productos en programas de I+D.

Entre los proyectos que realiza el grupo EMAT en Antwerp, con quien el LMA mantiene con-

tactos, destacan los de la Dra. Sara Bals y el del Dr. Gustaff Van Tendeloo.

El objetivo del primero de ellos, llamado Colouratoms [1], es proporcionar una caracterización

completa 3D del complejo hetero-nanosistemas a escala atómica. La combinación de aberración

corregida en microscopı́a electrónica avanzada y nuevos algoritmos de reconstrucción 3D se concibe

como un nuevo enfoque innovador para cuantificar la posición y el color (naturaleza quı́mica y

unión) de cada átomo individual en 3D para cualquier nanomaterial determinado. El resultado del

proyecto permitirá entender el comportamiento fı́sico a nivel de mecánica cuántica. Una vez que se

entienda la conexión entre la estructura atómica y las propiedades fı́sicas se podrán diseñar nuevas

estructuras de nanopartı́culas.

El segundo de ellos, llamado Countatoms [12], permitirá obtener información - a una resolu-

ción de 50 pm y una energı́a de resolución de 100 meV - sobre el comportamiento de materiales

cerámicos multicapa y poder realizar el conteo del número de átomos de una columna atómica.

Para llevar a cabo todos estos ambiciosos proyectos el LMA dispone de los mejores equipos de

microscopı́a del mundo (figura 4.2). Pero es muy importante contar con un paquete de software que

permita reconstruir las imágenes de todos los objetos que se analizan. Usan el software Inspect-3D

de FEI para el tratamiento y la reconstrucción de imágenes y el software Amira para el tratamiento

posterior del objeto reconstruido. Los algoritmos de reconstrucción que utilizan no son actualmente

los mejores, pues hacen uso de la aproximación por rayos-X sin tener en cuenta los fenómenos de

dispersión electrónica como estamos haciendo nosotros.

El procedimiento que llevan a cabo una vez obtenida la serie de micrografı́as con el equipo de

TEM es el siguiente [11]:

1. Preparación de los datos. Antes de aplicar un algoritmo de reconstrucción puede ser con-

veniente eliminar datos adquiridos, establecer el tamaño en pı́xeles y, por supuesto, realizar
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la alineación del eje de todas las micrografı́as. Este paso es demasiado importante y requiere

práctica en el uso del software para llevarlo a cabo adecuadamente; en algunos casos puede

ser necesario realizar el ajuste del eje manualmente. Hay que intentar que tanto la posición

del eje de inclinación, como su ángulo sean los adecuados. De no ser ası́, aparecen objetos en

forma de plátano - en el caso de posicionamiento incorrecto del eje - y cambios en la orienta-

ción de esas marcas según varı́a la serie de imágenes - en el caso de mal ajuste del ángulo del

eje - (figura 4.1).

Figura 4.1: Defecto en forma de plátano debido a un posicionamiento incorrecto en las imágenes. Imagen

obtenida de [11].

2. Reconstrucción de los datos. Se selecciona el volumen a reconstruir y se aplica el método

deseado de reconstrucción. En esta fase se puede elegir entre métodos algebraicos tipo ART,

SIRT y de retroproyección. Pero hay que destacar que todos ellos se basan en la aproxima-

ción de rayos-X y de ninguna manera se tiene en cuenta los fenómenos de difracción en las

ecuaciones. Este punto es el que debe ser mejorado y es en el que se está trabajando con es-

pecialistas del KTH-Royal Institute of Technology de Estocolmo para implementarlo en los

nuevos algoritmos.

3. Post-procesado. Una vez se ha reconstruido el objeto se utilizan el software inspector-3D y

el software Amira para colorear, modificar el tamaño o realizar cualquier tipo de filtrado que

se desee para mejorar su visualización.
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Figura 4.2: Microscopio TITAN STEM instalado en el LMA. Permite la exploración tomográfica de

muestras con +/- 70o de inclinación del eje.
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5
Conclusiones

A lo largo de este TFM se han programado algoritmos de reconstrucción tomográfica empleando el

teorema de la rebanada. Se ha constatado que la aplicación directa del teorema no produce la nitidez

deseada. Se ha mejorado el algoritmo de reconstrucción tomográfica mediante la programación

del “backscattering filtrado” en el que se aplican fórmulas de cuadratura teniendo en cuenta el

cambio de variable de una malla en polares a una malla en rectangular. Estos algoritmos se basan

en considerar que los datos son atenuaciones de rayos al atravesar el objeto y son los tipos de

algoritmos empleados en el LMA mediante programas como Inspect3D. Esta interpretación de las

proyecciones no es muy realista en el caso de tomografı́a de electrones para nanopartı́culas, ya

que los fenómenos de difracción son importantes. Se ha expuesto un método de reconstrucción

tomográfica que tiene en cuenta los efectos de difracción, se basa en una aproximación a la solución

de la ecuación de Schrödinger mediante la primera aproximación de Born.

Como conclusión final consideramos que la calidad de las reconstrucciones tomográficas de

nanopartı́culas en el LMA mejorarı́a con el empleo de software que tenga en cuenta los efectos

difractivos.
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