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Métodos de reconstruccion de imagenes en
microscopia de electrones

RESUMEN

Este trabajo fin de Master tiene como objetivo establecer sinergias entre el Instituto de Nano-
ciencia de Aragén (INA) y la Escuela de Ingenieria y Arquitectura en el &mbito de la tomografia de
nanoparticulas mediante microscopia de electrones.

El estilo de redaccion tiene un enfoque didéctico con el fin de ser un texto de introduccién
acelerada en la materia a aquellos titulados en Ciencias o Ingenieria interesados en el tratamiento
de imédgenes de microscopia de electrones.

En este trabajo se establece la modelizacién matemdtica de la tomografia y su relacién con la
transformada de Radon. Ademads, se analizan las particularidades de la tomografia en microscopia
de electrones debidas a la limitacién en la adquisicién de datos (problemas de dngulo limitado).
Finalmente se realiza el estudio de software existente, y generacioén de software propio, de recons-
truccién de imégenes.

Se ha establecido contacto con los investigadores del LMA, D. Raul Arenal y D. Alfonso Ibarra,
a quienes quiero agradecer el favor y disponibilidad que han tenido en prestar todo el material
y cuanta informacion se les ha solicitado con respecto a instalaciones, software y proyectos que
desarrollan.

También se ha establecido un primer contacto con los investigadores del KTH Royal Institute
of Technology in Stockholm, D. Holger Kohr y D. Ozam Oktem, en el marco del Workshop Na-
noMath2014 celebrado en Zaragoza. En este encuentro han mostrado su favorable disposicién a

participar en un proyecto comun que suponga la mejora del software de reconstruccién del LMA.
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Introduccion

El origen de la tomografia aparece en el campo de la Astronomia, si bien su verdadero auge co-
mienza tras la invencién del escaner de Hounsfield en 1972, el cudl permitié obtener imédgenes de
diferentes estructuras del cuerpo humano impensables hasta entonces. La aplicacién de la tomo-
grafia a la Medicina hace que surjan numerosos estudios y que evolucione este campo a pasos de
gigante.

Ademas, las Ciencias Bioldgicas, con su demanda en la observacién de micro-estructuras de
virus, bacterias y nanofarmacos, y la investigacién en nuevos materiales, que requieren el conoci-
miento de su estructura a escala nanométrica, impulsan la mejora de las técnicas de microscopia
existentes.

En este trabajo se introduce la técnica tomografica y su aplicacién a la reconstruccidn de image-
nes en diferentes campos como son la Medicina, la Biologia, Nanociencia, Nanotecnologia y la
Ingenieria de la Ciencia de los Materiales.

El avance en la instrumentacién microscépica ha conseguido llegar a unas resoluciones impen-
sables no hace siquiera 100 afios, sobre todo con la aparicién, y su continua mejoria, de los equipos
de microscopia con haz de electrones, que han revolucionado y agrandado el conocimiento que se

posee sobre organismos y materiales.



1. INTRODUCCION

Este trabajo se desglosa en los siguientes apartados:

- se introduce la Transformada de Radon y sus propiedades mas importantes de las que se hace
uso en este trabajo. Se analizan diferentes algoritmos de reconstrucciéon de iméigenes y se
comentan diferentes problemas que aparecen cuando no se disponen de todos los datos o hay

un fallo en algin elemento de captacién de datos;

- se continda con la descripcion de la técnica tomografica y su aplicacién a la microscopia de

electrones;

- se menciona las caracteristica del software de reconstruccion tomogréfica que se usa en el
Laboratorio de Microscopia Avanzada (LMA) del INA y sus contactos en el tema a nivel

€uropeo;

- finalmente, se introduce una técnica de reconstruccion recientemente disefiada con notables
mejoras respecto a las actualmente en uso. Esta técnica incorpora el modelo de dispersion
de electrones y la 6ptica del microscopio; a pesar de ello, este método estd escasamente

difundido ya que requiere mas conocimientos que la tomografia de rayos.



LLa Transformada de Radon

En este capitulo se introducen la transformada de Radon y su dual. Son las herramientas que permi-
ten obtener la imagen a partir de sus proyecciones. Se estudian los conceptos basicos de proyeccién
e integral de linea. Se demuestra el teorema de la rebanada de Fourier, pieza fundamental en todo
el desarrollo de la teoria de recuperacién del objeto a partir de sus proyecciones. Se desarrollan
algunos algoritmos del problema inverso, como son el método directo de Fourier y el de retro-
proyeccién filtrada. Se ponen ejemplos de simulacién con el fantasma de Shepp-Logan, mediante
la aplicacién del algoritmo directo de Fourier y de retro-proyeccion filtrada, que permiten ver entre
otras cosas los artefactos debidos a falta de datos por dngulo limitado o por fallo en un sensor de

captacion de datos.

2.1 La Transformada de Radon

La transformada de Radon “calcula proyecciones de objetos”. Un objeto estd representado por una
funcién f(x) con x € R? que asocia una propiedad a cada punto del plano. Una proyeccién paralela
en la direccién (cos 6, sen ) esté caracterizada por las integrales de linea (figura 2.1) sobre todas las
rectas perpendiculares a la recta que pasa por el origen de coordenadas y de direccién (cos 6, sen 6)

(figura 2.2).



2. LA TRANSFORMADA DE RADON

Figura 2.1: Integral de linea de un objeto para una direccién dada.

direccion-1 _—
direccion-2

Figura 2.2: Proyeccion paralela para dos direcciones distintas.



2.1 La Transformada de Radon

Ejemplo. En R?, una proyeccién viene dada por la expresién

Py(t) = / f(y)ds,

con el dominio de integracién definido como

L= {(x,y) € R*: zcos(f) +ysen(d) = t};

para el objeto circular

en la figura 2.3 se representa la grafica de su proyeccion para un dngulo de § = 0° .

1 siz?4+¢y2<1,
f(x)={ v <

0 en otro caso,

Proyeccion

de f(x)

-08 0B -04 -0.2 0 02 04 06 08

t

Figura 2.3: Grifica de la proyeccion paralela de la funcién 2.3 a 0°.

@2.1)

(2.2)

(2.3)

Definicion. Sean s € R, w € S"~1y f € §(R"), donde §(R™) es la clase de funciones de

Schwartz. La Transformada de Radon de f es

Rfws) = [ flad.

(2.4)

La Transformada de Radon integra el objeto f en hiperplanos definidos por el vector direccién

w. En el caso particular del plano se tiene w = (cos @, sen@). El valor de s expresa la distancia

respecto del origen de coordenadas, sobre la linea recta cuya direccién es w. El conjunto sobre el

que se integra es el formado por todos los puntos del espacio que se proyectan en el punto de la



2. LA TRANSFORMADA DE RADON

recta de direccién w que estd a distancia s del origen. Otra manera de expresar la integral viene dad
por

Rf(wvs):/ f(s-w+y)dy, (2.5)

Juwt
donde wt = {y e R" : y - w = 0}.

La expresion 2.5 refleja la idea de que para llegar a un punto del espacio podemos movernos
primero en la direccién de la recta una distancia s y, posteriormente, ir en perpendicular a ella; es
decir, x = s - w + y. Obsérvese que se satisface la identidad s = = - w.

La representacién grafica de la transformada de Radon de un objeto se denomina sinograma.
El eje horizontal se etiqueta con el dngulo de las distintas direcciones medidas y el vertical con las
distancias dadas por el valor de s. Cada punto cuyas coordenadas son (6, s) se marca de un color (o
un nivel de gris) segin el valor de la transformada de Radon.

Ejemplo. En la figura 2.4 se muestran un objeto y su sinograma obtenido al realizar la Trans-
formada de Radon. El objeto viene definido por una elipse de densidad p = 1 caracterizada por la

funcion
1 osi 2+ ¥ <1
flz) = 0,52 7 0,8 = (2.6)
0 en otro caso.

La expresion analitica de la transformada de Radon de f(x) es

0,8 — .
Rf(w7s):{ it a(0)? =52 sils| < a(0), o

en otro caso,

con a(6)? = 0,25 cos(#)? + 0,64 sen(0)?.

0 20 40 60 80 00 1200 140 180
8 (grados)

Figura 2.4: Objeto definido por una elipse y su sinograma.
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2.1 La Transformada de Radon

En simulacién numérica es frecuente realizar las pruebas con el modelo de fantasma de Shepp-
Logan, con transformada de Radon conocida, cuyo imagen y su correspondiente sinograma se mues-

tran en la figura 2.5.

0 50 100 180
8 (grados)

Figura 2.5: Fantasma de Shepp-Logan para simulacién y su correspondiente sinograma

A partir de la definicidn se obtiene inmediatamente que la transformada de Radon posee simetria
par, es decir, Rf(—w, —s) = Rf(w, s).
En los algoritmos de reconstruccién tomografica desempeiian un papel crucial las transformadas

duales de Radon.

Definicion. Se definen la Transformada dual de Radon de g(x) en direccién w como
Riyg(x) = g(x - w). 2.8)
y la Transformada dual de Radon de g(x) como
Rig(x) = /Sni1 g(w, z - w)dw. (2.9)

Es importante darse cuenta de que la transformada dual integra sobre todos los hiperplanos que
pasan por el punto z.

Ejemplo. Sea g(s) = sy w = (cos6,sen ). Es claro que la transformada dual de Radon en
direccién w es RE g(x,y) = wcos + ysen . Y es ficil calcular su transformada dual, que en este

caso es Rfg(z,y) = 0.

11



2. LA TRANSFORMADA DE RADON

La transformada dual tiene una estrecha relacién con la transformada de Radon, pues es facil

comprobar que

/ Ry, f(s)g(s)ds = f(z)R? g(z)dz. (2.10)
R R®
Si se integra 2.10 en todo S™~! se obtiene
/ / Ry f(w, s)g(w, s)dsdw = f(x)RFg(z)dz. (2.11)
Sn—1 R R™

Se destacan dos resultados muy importantes cuya demostracion puede verse en [9].

Teorema. Para funciones f y ¢ en la clase de funciones de Schwartz se tiene
(R*g) * f = R*(g * Rf). (2.12)

Teorema. Para g en la clase de funciones de Schwartz, se cumple

(Rig)(€) = (2m)("~ /2] (g(é, €+ 90— —|§>) , 2.13)

donde " representa la transformada de Fourier. Ademds, si la funcién (R*g)” es radial y § es par, la

férmula anterior se simplifica a

1
i(p) = 5 m) 2o () (). (2.14)

2.2 Teorema de la Rebanada de Fourier

Existe una conexién importante entre la transformada de Radon y la transformada de Fourier en R™

([3] y apéndice A). Haciendo unos sencillos cdlculos se obtiene

(Ruf)NE) = (277)*1/2/Rwa(S)67i55d3 = (271')71/2/]R A f(s-w+y)e “dyds. (2.15)

Realizando el cambio de variable x = s - w + y y recordando que s = = - w se llega a la expresioén

(R f)N(€) = (2m) 12 . (x)e~ @ v dz = (21)"F f(cw), (2.16)

en la que se relaciona la transformada de Fourier de f(z) en la direccién definida por el vector w
con la transformada de Fourier de la proyeccion del objeto f en esa misma direccion (Teorema de
la rebanada).

Teorema de la rebanada de Fourier. Dada una funcién f(z) con x € R", perteneciente a la

clase de funciones de Schwartz, se cumple para £ € R

(Ruf)N(E) = (2m) V2 f(cw). (2.17)

12



2.3 Algoritmo de Retroproyeccion Filtrada

Este resultado resuelve, al menos tedéricamente, el problema de la obtencién de un objeto f(x)
a partir de sus proyecciones. Segtn el teorema de la Rebanada de Fourier el método directo a seguir

seria el siguiente:
1. Obtener las proyecciones paralelas para todas las direcciones.

2. Hallar la transformada de Fourier de las proyecciones obtenidas para cada direccion. Se ob-

tiene el valor de la transformada en direcciones radiales en el dominio de Fourier.
3. Escribir la transformada de Fourier de f(z) en R™ a partir del paso anterior.
4. Realizar la transformada inversa de Fourier para recuperar f(x).

Para hacer una simulacién en el plano y comprobar los resultados se precisa tener en cuenta las

siguientes observaciones:

e En la prictica real no se puede medir en todas las direcciones del plano. Se eligen un nimero

determinado de direcciones w para obtener las proyecciones.

e No se pueden medir todas las integrales de linea para una direccion dada. Asi pues, se elige

un numero determinado de rayos en cada direccién.

e La transformada de Fourier en R? es conocida en puntos radiales del dominio de Fourier.
Se debe aplicar algin método para conocer los valores en una malla rectangular y realizar la

inversion correctamente.

Los resultados que se han obtenido implementando el procedimiento anterior (cuyos programas
estdn incluidos en el apéndice) no son satisfactorios. Esto se observa claramente en las imagenes
de la figura 2.6 reconstruidas con el algoritmo anterior interpolando al vecino mds préximo para

calcular el valor de la transformada de Fourier en una malla rectangular a partir de la malla radial.

2.3 Algoritmo de Retroproyeccion Filtrada

Quedé patente que la implementacién para recuperar un objeto a partir de sus proyecciones median-
te la aplicacién directa del teorema de la rebanada de Fourier no proporciona imagenes adecuadas.
El algoritmo de retroproyeccion filtrada produce una mejora sustancial y, mediante la aplicacién de
diferentes filtros, tal vez sea una de las mejores técnicas utilizadas hoy dia. Su deduccién al caso

plano es sencilla [5]. Para una comprensién mas profunda véase B.

13



2. LA TRANSFORMADA DE RADON

Figura 2.6: Fantasma reconstruido con el algoritmo directo de Fourier a partir de 128 proyecciones y

128 rayos por proyeccién (A), y con 256 proyecciones y 256 rayos por proyeccion (B).

Sea f(x,y) el objeto a reconstruir. Denotemos g = Rf(w, s) con w = (cos #, sen §) los datos
medidos por proyeccién paralela del objeto. Escribamos f(x,y) como transformada de Fourier

inversa de la siguiente manera:
flzy) = / F(u, )™ o0 dydy. (2.18)
RZ

Realizando el cambio de coordenadas rectangulares (u,v) a coordenadas polares (p, #) habitual

27 oo
f(z,y) = / / F(p,§)ei?mp(@cosbrysentd) 50, (2.19)
0 0

Teniendo en cuenta que se cumple F(p, 6 + m) = F(—p, 6), la expresion anterior se puede escribir

como

flz,y) = /0 < / F(p,e)lple”””dp> do, (2.20)

— 00

siendo s = x cosf + ysenf. Aplicando ahora el teorema de la rebanada de Fourier sabemos que

F(p,0) = (Rfy)"(p).Por lo tanto,

fa) = [ ( / Ge<p>|p|ei2mdp) . @21

siendo Gy(p) la trasformada de Fourier de ¢ = Rf (w, s).

La férmula indica claramente los pasos a realizar para recuperar el objeto.

Primero. Calcular la transformada de Fourier de los datos de proyeccién g.

Segundo. Filtrar los datos. El factor p que multiplica a G en el dominio de Fourier se interpreta con un

filtrado de la sefial.

Tercero. Calcular la transformada inversa de Fourier de los datos filtrados. Se obtiene la proyeccién

filtrada de los datos.

14



2.3 Algoritmo de Retroproyeccion Filtrada

Cuarto.

Calcular f(x,y) retroproyectando cada proyeccion filtrada.

Se debe tener en cuenta que p tiene significado de frecuencia y, puesto que las sefiales suelen

tener la mayor parte de su energia hasta una frecuencia de corte determinada, se puede suponer

que la sefial a reconstruir es de banda limitada. Asi, deberemos conocer esa frecuencia de corte

para poder realizar el muestreo de forma correcta, ajustando la velocidad de muestreo para que se

cumplan las condiciones del teorema del muestreo.

La implementacion del método queda de la siguiente manera:

Inicio.

Primero.

Segundo.

Tercero.

Cuarto.

B es la frecuencia de corte. La velocidad de muestreo debe ser al menos el doble de ese valor

i — L
es decir, 7 = 55
Los datos medidos en las direcciones w; = (cos;,sen6;) coni = 1,..., M son gy, (jT)

paraj = —N/2,...,N/2 — 1. Siendo M el niimero de proyecciones y N de gran valor.

Aproximar la transformada de Fourier de una proyeccién como

1 N/2—-1
Go.(p) ~ Go (k- ) =7 ijm go, (Fr)e” 2T, (222)
P

Filtrar la Sefial. Debido a la existencia de ruido puede ser interesante usar un filtro de Ham-

ming, coseno o el que se estime pertinente.

1 1 1 1
Gfilty,(p) = Gfiltg,(k- —) =Go, (k- —) - |k —| - H(k- —). 2.23
filto;(p) = Gfilte, (k- =) = Go, (k- =) k- |- H(k - ) (2.23)
Calcular la transformada inversa de Fourier.
1 X 1
~ N : Lt N i2mik/N
Qo,(5) = Qo,(i7) = 5= D Glilte (k- 5-)e (224)
k=—N/2
Calcular la aproximacién f(x,y). Siendo M el nimero de proyecciones,
oM
flz,y) ~ i ; Qo, (x cos(6;) + ysen(h;)). (2.25)

En esta etapa se requiere hacer algin tipo de interpolacién de los puntos de una malla radial

a una malla rectangular.

A continuacion se puede apreciar como actda la retroproyeccion en una elipse para los casos de

1 proyeccién (figura 2.7 (A)), 4 proyecciones (figura 2.7 (B)), 8 proyecciones (figura 2.7 (C)) y 32

proyecciones (figura 2.7 (D)). Todas ellas a 128 rayos por proyeccion.

15



2. LA TRANSFORMADA DE RADON

A _
‘
D, L
D

Figura 2.7: Retroproyecciones de una elipse con diferente nimero de proyecciones.

Se pueden conseguir mejores algoritmos si se parte de la formula introducida anteriormente
f(x) ~ R*(w = Rf), (2.26)

siendo w una funcién filtro cuya transformada de Fourier es

1 N
w(p) = 5 (2m)1 2" p|" " (|l / B), (227)

con B la frecuencia de corte y 0 < ®(0) < 1sioc < 1y ®(o) =0sio > 1.

Filtros muy utilizados en la practica son el de Ramachandran y Lakshminarayanan

- 1 sioc <1,
(o) = { 0 sioc>1 (2.28)
y el de Shepp-Logan

{ sinc(om/2) sio <1, (2.29)

0 sioc > 1.
El algoritmo de reconstruccion aplicado al caso de proyeccion paralela en el plano, siguiendo a

[10], se implenta del siguiente modo:

Inicio. Se toman los datos de proyeccién ¢ = Rf para las direcciones d; = (cosf;,senf;) con

6; = (j — 1)m/p donde p es el nimero de proyecciones.

16



2.3 Algoritmo de Retroproyeccion Filtrada

sp=1-h,siendoh =1/gconl = —gq,...,qlos rayos en cada direccién.

Se realiza interpolacion lineal y como regla de cuadratura de trapecios de p nodos.

Paso 1°. Vj = 1,..., p, hacer las convoluciones
q
vig=nh- Z wp(sk — s1)g(d;,s;) parak = —q,...,q. (2.30)
l=—gq

Para wp se elige el fltro de Ramachandran y Lakshminarayanan (filtro RamLak). Luego, para

B=mx/h
540 sil # 0y par (2.31)
27 1 s 7.

——pz S [ impar.

U)B(Sl) =

Paso 2°. Vx donde reconstruir el objeto f, calcular la retroproyeccion discreta:

21 &
- STI = w) vjp + ue v, (2.32)
j=1

frer(z) =

donde para cada z y j se obtienen k, u calculando s = d; -z, k < s/h < k+1yu=s/h—k.

La simulacién con el fantasma de Shepp-Logan proporciona los resultados que se muestran en

las figuras 2.8 (A), (B) y (C) con diferente nimero de proyecciones y rayos por proyeccion.

B C

Figura 2.8: Fantasma recuperado a (32 proyecciones y 32 rayos en (A), 64 proyecciones y 64 rayos en
(B), 256 proyecciones y 256 rayos en (C).

Es interesante saber cémo responde el algoritmo ante un error en uno de los sensores. Se ha
simulado para el caso de una elipse, dando el valor nulo al valor recogido por el sensor. El resultado
obtenido con 128 proyecciones y 64 rayos por proyeccion se muestra en la figura 2.9.

En las figuras 2.10 (A) y (B) se ha simulado el caso en el que no se pueda realizar la toma de

datos en los 180 grados. Se puede ver que para un valor bajo del dngulo los resultados son totalmente

17



2. LA TRANSFORMADA DE RADON

Figura 2.9: Objeto recuperado con un sensor defectuoso (128 proyecciones, 64 rayos.)

insatisfactorios. Este ejemplo introduce el problema importante de la recuperaciéon de imédgenes en

microscopia electrénica cual es el problema de datos limitados en dngulo.

Figura 2.10: Fantasma recuperado con 128 proyecciones, 128 rayos, 100° en (A) y con 170° en (B).




Tomografia matematica

La tomografia es la representacion de un objeto mediante secciones transversales a partir de datos
recogidos tras la interaccién del objeto con algo que ilumine dicho objeto. Ese algo pueden ser
rayos-X, ondas de ultrasonido, isétopos radiactivos, un haz de electrones, etc. En el afio 1979 reci-
ben el Premio Nobel el ingeniero de la empresa discografica EMI, N. Hounsfield (por la invencién
del escaner tomografico computado de rayos-X) y el fisico A. Cormack (quien desarroll6 los algo-
ritmos que hacen posible la reconstruccién de la imagen del objeto a partir de sus muestras). Con
la invencion del escaner se hace realidad practica los resultados tedricos del matematico Radon en
1917, quién sent6 las bases matematicas de la tomografia al demostrar que un objeto f(x) se podia

recuperar a partir de sus integrales de linea.

En este capitulo se introducen los aspectos bdsicos de la tomografia computerizada y su apli-
cacidén a la microscopia de electrones. Se describe el caso de datos limitados por dngulo y su mal-
planteo. Finalmente se describe un método actual de reconstruccién de imagenes mucho mejor que

los algoritmos usados en el Laboratorio de Microscopia Avanzada.
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3. TOMOGRAFIA MATEMATICA

3.1 Origen de la Tomografia

La técnica empleada en el LMA para reconstruir un objeto a partir de los datos obtenidos en el
microscopio electrénico se basa en la tomografia de rayos-X. Aunque su uso no es ciertamente co-
rrecto, pues supone que se ilumina con una fuente de fotones y no se tiene en cuenta la existencia de
fendmenos de dispersion, es de ficil aplicacion comparada con la técnica que estamos desarrollando
y que si considera la difraccién del haz de electrones - que son las particulas realmente empleadas
en el microscopio - cuando interacciona con la materia.

La primera aplicacion practica de la tomografia se produjo en el campo de la Astronomia, cuan-
do Bracewell propuso un método para la reconstrucciéon de un mapa bi-dimensional de la emisién
de microondas solares a partir de una serie de datos uni-dimensionales de haz de abanico medidos
por un radio-telescopio.

La técnica tomografica consiste en radiar el objeto con una fuente de energia y recoger, con el
detector adecuado, la sefial después de atravesar el objeto. Esta sefial no serd la misma que la emitida
por la fuente, sino que habrd sufrido algtiin cambio. Debera haber siempre algtin tipo de interaccién
entre la sefial emitida y el objeto que se desea ver; en otro caso, el objeto seria totalmente transparen-
te y no podria ser representado. El tipo de informacidn que se recoge debera tener una dependencia
con algun pardmetro de la muestra. Serfa deseable que fuera una dependencia monétona; por ejem-
plo, la energia absorbida por una muestra cuando es atravesada por una radiacion caracterizada por
su coeficiente de atenuacion en funcién del espesor de la muestra.

En la figura 3.1 una fuente de rayos-X emite una radiacién cuyo nimero de fotones es Ny y
que atraviesa el objeto de espesor x. En la transmision de esta radiacion pueden ocurrir dos efectos

importantes:

- La absorcion fotoeléctrica. El fotén de rayos-X cede su energia a los electrones internos de

los atomos de la muestra.

- La dispersion por efecto Compton. El fot6n interacciona con los electrones de la muestra
cambiando su direccion de transmisién y perdiendo energia. Aunque las interacciones son de

tipo ineldstico, se pueden suponer eldsticas cuando la pérdida de energia es despreciable.

En el caso de que todos los IV fotones tengan la misma energia - radiacién monocromaética -
podemos escribir

— — =—-T—o0, (3.1)
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3.1 Origen de la Tomografia

Detector de
rayos-X

espesor— e

Fuente de
rayos-X

Figura 3.1: Esquema de iluminacién de una muestra homogénea. La fuente y el detector se colocan en
lados opuestos de la muestra.

donde los pardmetros 7 y o representan las razones de pérdida del fotén por unidad de distancia
debidas al efecto fotoeléctrico y el efecto Compton respectivamente. Es habitual reunirlos en un
mismo pardmetro u, denominado coeficiente de atenuacion del material, simplificando la ecuacién

como
AN 1

N AT M (3-2)

Haciendo infinitesimal el espesor de la muestra es correcto escribir
1 dN d (3.3)
_— = — €Z. .
N Iz

Considerando el caso que el coeficiente de atenuacion sea constante se puede integrar 3.3 y obtener

como resultado

N(z) = Noe™H*. 3.4

Supongamos que el coeficiente de atenuacién depende de las coordenadas espaciales z, y. Si la
fuente de rayos-X emite en una direccién determinada por el dngulo # un haz de anchura 7 (figura
3.2) y suponiendo que todos los fotones son mono-energéticos, la expresiéon que proporciona el

nimero Ny de fotones a la salida de la muestra viene dada por

Ny = Noe™ Jrayo t@v)ds, (3.5)
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3. TOMOGRAFIA MATEMATICA

0, equivalentemente

/ p(z,y)ds = In &. (3.6)
rayo Ny

La ecuacién 3.6 es muy importante porque relaciona el valor de una integral de linea a partir de
los valores medidos a la entrada y a la salida de la muestra. Puesto que las integrales de linea se
expresan por la transformada de Radon puede recuperarse el valor de la atenuacién en cada punto

del objeto mediante la inversién de ésta tltima.

Figura 3.2: Propagacién de un haz a través de una seccién transversal de una muestra.

En el caso de que la fuente no emita fotones mono-energéticos debe obtenerse la distribucion
de fotones con respecto de la energia que poseen. Conocida la distribucién Sy(E) de energia de
los fotones emitidos, la distribucién de energia de los fotones que salen de la muestra y que son
detectados viene dada por

Seat(E) = So(E)e~ J #@v)ds, (3.7)
El ndmero de fotones a la salida sera
Ny = /Ssal(E)dE. (3.8)

Con el policromatismo surge un nuevo inconveniente; el endurecimiento del haz. Es consecuen-
cia de que el coeficiente de atenuacién del material depende del valor de la energia que posee el

fotén. Esto supone un sesgo en la medida del conteo de los fotones a la salida y que es causa de
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3.2 Tomografia electronica

artefactos en las imagenes reconstruidas. Los fotones menos energéticos son absorbidos con mayor
facilidad que los altamente energéticos. Una manera posible de abordar el problema es proponer un
modelo adecuado para el coeficiente de atenuacion.

Por sencillez en la explicacién, supongamos que se trabaja con fotones mono-energéticos. Ya
sabemos cémo medir la integral de linea del coeficiente de atenuacién del material mediante la
ecuacion 3.6. El paso siguiente es registrar todas las medidas necesarias para aplicar la teoria de
Radon y obtener el objeto. Las distintas formas de iluminar la muestra se han clasificado por gene-
raciones. Las razones para el cambio de una a otra han sido la consecucién de una mayor velocidad
en la obtencién de la imagen y un menor tiempo de exposicién a la fuente radiante. En tejidos vivos
es prioritario que la dosis de radiacién no supere unos valores establecidos como seguros. El coste
computacional, dada la ingente cantidad de célculos involucrados, debe hacer viable el uso de la

técnica tomogréfica.

3.2 Tomografia electronica

En la actualidad es necesario conocer la estructura tridimensional de muchas nanoestructuras tanto
en el campo de las Ciencias de la Vida (virus, bacterias, macromoléculas, nanofarmacos,...) como
en el campo de la Ciencia y Tecnologia de los materiales.

Con la Microscopia de luz hay un limite en la resolucién que es posible alcanzar y que es
insuficiente para esos fines perseguidos. Aunque es posible disponer de la Microscopia de Fuerza
Atémica (AFM), el nimero de atomos involucrados hace de este instrumento una herramienta nada
préctica para trabajar a una escala nanométrica. Un punto intermedio se consigue con las técnicas
de Microscopia Electronica de Transmision (TEM). Con este instrumento pueden obtenerse tanto
patrones de difraccién como imédgenes de la muestra que se analiza [13].

La técnica de la Tomografia de electrones [7] va a permitir tener una serie de imdgenes 2D
para diferentes orientaciones del dngulo de inclinacién del eje del porta-herramientas; imagenes
dispuestas en planos ortogonales a este eje. Variando la inclinacién del eje en incrementos de 1°
6 2°, por ejemplo, se obtienen diferentes proyecciones de las secciones de la muestra. Una vez se
ha realizado la adquisicién de los datos se realiza la unién de las diferentes imagenes para obtener
la representacion 3D de la muestra (Figura 3.3).

Para que la reconstruccion del objeto sea correcta es necesario conseguir datos completos para
todos los dngulos de inclinacion. Pero esto no es posible por la propia construccion del instrumento;

en concreto, del porta-muestras. Asi, puede conseguirse un rango de inclinacién de -60° a 60°, y
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3. TOMOGRAFIA MATEMATICA

Electron heam
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Figura 3.3: Etapas en la reconstruccién 3D de un objeto mediante tomografia electrénica. Imagen obte-
nida de [2]

mediante una construccién esmerada, se pueden obtener mayor inclinaciones. En la figura 3.4 se
observa un porta-muestras de dngulo tnico estdndar Philips CM300 (a), el cual permite una incli-
naciéon maxima de 42°. Una mayor inclinacién provocaria que la herramienta golpease las piezas
polares de las lentes objetivo. Para mejorar este limite el porta-muestras Philips EM400 (b) presenta
una anchura de 4 mm que le permite girar completamente dentro del hueco de las lentes objetivo
sin que haya colisién alguna. Aun asi, el maximo dngulo de inclinacién es de 60°; a partir de este
valor, la propia herramienta intercepta el haz incidente y produce sombra.

Por lo dicho, el problema tomografico es el de la recuperacidon de un objeto a partir de sus
proyecciones con datos de dngulo limitado. Se sabe que es un problema severamente mal-planteado
en sentido de Hadamard. Hay una carencia de datos (figura 3.5) de toda una cufia que no puede ser
muestreada con el haz de electrones. Y no sélo es el propio disefio de la herramienta la que limita el
dngulo maximo de adquisicién de datos. El espesor de la muestra también lo limita debido al hecho
de que a mayor inclinacién de la muestra mayor serd el espesor del objeto que debe atravesar el haz,
con la consiguiente pérdida de resolucion que ello conlleva.

Por otra parte, es imprescindible asumir unas hipétesis de partida. Una de ellas es el requisito
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3.2 Tomografia electrénica

Figura 3.4: El porta-muestras (a) permite una inclinacion maxima de 42°. La modificacion del porta-

muestras (b) mejora este valor hasta los 60°. Imagen obtenida de [8]

Haz Haz

Espesor e
Espesore’ =e

Figura 3.5: La cuiia corresponde a la zona del objeto que no ha sido muestreada.
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3. TOMOGRAFIA MATEMATICA

de proyeccion [8] que exige haya una cierta funcién que varie monétonamente respecto de alguna
propiedad fisica del objeto. Asi, la tomografia de campo-claro, se basa en la asuncién de que el
contraste masa-espesor debido a la dispersién atomica eldstica es la dominante. Las imdgenes de
microscopia electrénica de transmisién de campo-claro (BF-TEM) de muestras biolégicas presentan
contraste masa-espesor y cumplen el requisito de proyeccion.

Muy diferente es el caso de muestras cristalinas para las cuales el contraste de campo-claro
(BF) depende de las condiciones difractantes del propio cristal y que hacen que desaparezca la
dependencia mondétona con el espesor de la muestra por la que pasa el haz. Por lo cual, fracasa el
requisito de proyeccion, y ya no seria aplicable la técnica tomografica.

Obtenidas las diferentes imdgenes de las secciones correspondientes a cada inclinacién debe
realizarse la alineacién de éstas de manera adecuada. Para ello es importante tener localizado el
eje de inclinacién en cada momento. Pueden usarse marcadores fiduciales - con particulas de oro -
para rastrear el movimiento en la serie de imagenes inclinadas; o bien, mediante correlacién cruzada
determinar los cambios producidos en las imdgenes cuando no es posible el uso de esos marcadores.
En el caso que se produjera un des-alineamiento del eje de inclinacién en la serie de micrografias
tomadas, aparecerian artefactos en forma de arcos que emborronarian la imagen.

Por tltimo, mencionar que si se considera el caso de eje tinico de inclinacién y suponiendo ali-
neamiento del eje perfecto para toda la serie de proyecciones obtenidas, la resolucién en la direccién
paralela al eje de inclinacién (d,) coincide con la resolucién de las proyecciones. Mas no ocurre
asi en las otras dos direcciones, perpendiculares a ella. Ahora depende del nimero de proyecciones

tomadas NN y del didmetro D del volumen del objeto a reconstruir. Las resoluciones valen ahora

D
d. =dy-e,., (3.10)

donde ¢, , se denomina elongacion, y su valor tedrico es

_ [a+sen(a) cos(a)
2=\ az sen(a) cos(a)’ G-11)

Esta anisotropia viene dada por la limitacion en el dangulo que puede inclinarse la muestra con el
porta-muestras y que produce la perdida de datos en forma de cuiia vista anteriormente.

Ademads de lo dicho, uno de los mayores problemas que ha de resolverse en tomografia de
electrones es la dosis a la que se exponen los especimenes bioldgicos. Deben usarse dosis bajas para

evitar la ionizacidn causada por las colisiones inelasticas y que llegan a producir calentamiento de
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3.3 Métodos actuales de representacion

las muestras, descomposicion radio-quimica (radidlisis) y rotura de enlaces quimicos. Ello motiva
reducir la temperatura considerablemente (crio-preparacién) y que el tiempo de exposicion al haz
de electrones sea menor de lo que seria deseable. Todo esto repercute para que la razén sefial-ruido
conseguida sea baja y limite la resolucién que se obtiene al recuperar la imagen.

Descritos los aspectos basicos de la tomografia de electrones, queda dar un modelo del TEM
que permita definir y resolver dos problemas: el problema directo y el problema inverso.

Un modelo ampliamente usado en tomografia de electrones viene dado en [4]. En la figura 3.6, el
eje optico estd definido por la direccion w. Perpendicular al mismo se sitdan los planos objeto, focal
e imagen, y el plano de las lentes. Las aperturas correspondientes son los sub-dominios . Se supone
que la distancia focal f es positiva y que > f, con r la coordenada del plano imagen. Se asume
que el sistema verifica la ecuacién de Abbe % + % = % Baésicamente, el problema directo resuelve la
sefal de intensidad de una onda que ha sido dispersada por la muestra, caracterizada por un potencial
de dispersién complejo y obtenida en los pixeles de las correspondientes micrografias cuando se ha
emitido una onda incidente monocromaética conocida. El sistema del TEM esta caracterizado a su
vez por un operador que engloba todos los efectos del sistema ptico y tiene en cuenta, ademads, la
adicioén del ruido que producen los propios elementos de deteccion del TEM, y pardmetros propios
del aparato que son valorados mediante un proceso de calibracién.

El problema inverso corresponde a la bisqueda de ese potencial de dispersion de la muestra,
conocidas las muestras recogidas en las micrografias, afectadas por ruido y para un conjunto de
direcciones limitado de haz de electrones incidentes (problema de datos limitados por dngulo).
Como en el problema directo, se supone conocido el operador de trasmision de la onda incidente a
la onda de salida en el captador y que modela el esquema dado en la figura 3.6. (Véase el apéndice

C para un andlisis en mas profundidad del calculo de la onda dispersada por un medio difractante.)

3.3 Métodos actuales de representacion

En la actualidad son tres los tipos de métodos de reconstruccion de imdgenes implementados en los
paquetes de software. En el primer tipo, se escribe la funcién incégnita como expansién de funciones
basicas mds sencillas de analizar tanto numéricamente como analiticamente. Se obtiene un sistema
de ecuaciones de grandes dimensiones y de tipo sparse que puede resolverse por el método clésico
de Kaczmarz; el ART (Técnica de Reconstruccion Algebraica, el SIRT y el SART pertenecen a
este grupo. Otro tipo de métodos se basan en maximizar la probabilidad de cierto funcional que

dependa del modelo propuesto y que tenga en cuenta las caracteristicas de ruido que se producen
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Figura 3.6: Modelo utilizado para simular el TEM.

en la imagen. El tercer tipo se basa en la obtencién de una férmula aproximada de inversién (caso
de retro-proyeccion filtrada).

Uno de los mejores métodos de reconstruccidon en tomografia de electrones corresponde al mo-
delo cuyo esquema se representa en la figura 3.6. Para unos datos de medida g,, la ecuaciéon que

modela este esquema es

9o = DV C,P, f. (3.12)

Esta ecuacion tiene en cuenta la dispersion debida a la interaccién de los electrones con el
espécimen, las caracteristicas del sistema Optico del microscopio y el aumento de la imagen pro-
yectada.

El objeto se define por una funcién f que depende del coeficiente de refraccion del espécimen.
Siendo n el coeficiente de refraccién en cada punto de la muestra, f es la parte real de 1 — n?.
Puesto que el medio en el que estd la muestra tiene indice de refraccién unidad, podemos suponer
que el soporte de la funcién f estd contenido en cierta bola de radio p alrededor del origen.

Cuando una onda plana monocromdtica de ecuacién ¥(z) = e**(“"#) incide en la muestra, los

fenémenos de difraccion que se producen dependen del valor de f segin la transformada de rayos-X

definida como

Pof(n) = [ S(t-+nit, et (3.13)

Se puede considerar como una proyeccion plana del objeto donde cada punto actiia como fuente

secundaria emisora de ondas circulares de acuerdo al Principio de Huygens.
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3.3 Métodos actuales de representacion

La influencia del sistema 6ptico del TEM se define mediante convolucién de un niicleo K, con

la correspondiente sefial u(n) = P, f(n). Concretamente,

Coul) = [ | Kaly— u€)ds (.14

El nicleo se define a partir de su transformada de Fourier T, por

Ko (&) =T, (&) = aT"(§) + T™ (&), (3.15)

donde T7° y T™ son la parte real e imaginaria de la llamada funcion de transferencia de contraste

(CTF) definida como
T(€) = (2m) "' T(l¢), (3.16)

T(s) = N(s)a(s) " tei(@(®)=k+35) girn(s) g =7e(s) (3.17)

siendo a(s) = (k? — s)/2, X la funcién caracteristica de un intervalo dependiente del radio de
apertura, g es la distancia entre los planos de las lentes y el objeto. 7y, y 7. son polinomios que
definen un factor de fase y un factor envolvente. El valor del parametro ¢ depende del espécimen y
debe ser estimado. Este valor, ademads, ha de ser positivo.

El dltimo operador, que tiene en cuenta el aumento de la imagen, es una dilatacién isétropa
definida como

DMu(n) = M~ u(M~1n). (3.18)

Debido a las peculiaridades propias del porta-especimenes, el dngulo de rotacién 6 con el que
se ilumina la muestra estd limitado a un rango inferior a 180°. Debido a ello, los valores de w
pertenecen al conjunto 8% = {(0,sen 6, cos 0)|0 € [—0q, 6]}, con Oy < 90°.

El dominio de todas las medidas se define mediante el conjunto
Fi={(w,n)lw € 8,n € w}. (3.19)

Con los conjuntos y operadores introducidos, el problema directo en tomografia de electrones

tiene como objetivo hallar el valor de los datos g,, a partir de f y del operador directo definido por
Az == DYE,P,, (3.20)

con dominio en L?(B,) y rango en L*(F).
Por el contrario, el problema inverso de la tomografia de electrones se propone recuperar f(x),

con |z| < p, a partir de los datos g(w,n) = A, f(w,n)V(w,n) € F.
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3. TOMOGRAFIA MATEMATICA

Este problema es muy dificil de resolver debido al mal-planteo del problema en sentido de
Hadamard debido a datos limitados por dngulo, el fuerte ruido en los datos obtenidos, los problemas
de des-alineamiento del eje de las diferentes imdgenes (que precisan un pre-procesado) y el alto
coste computacional requerido.

Un método novedoso propuesto en [6] se basa en la técnica de la inversa aproximada. Se pre-
calcula un nticleo ¥, de reconstruccién como solucién al problema adjunto con un suavizador E,,
elegido. La aplicacién de ¥, a los datos medidos da lugar a una version suave de la solucién del
problema original. Ademads, el suavizador se conoce de forma exacta y esta libre de errores en los
datos por lo que el nicleo de reconstruccién se determina de manera estable. Esta propiedad y otras
de invarianza permiten una implementacion répida del algoritmo.

Definiciones. Sea A : X — Y un operador lineal acotado entre X = L?(IR) y un espacio de

Hilbert Y. Sea f solucién de la ecuacion
Af = g para un elemento dado g € Y. (3.21)

Una funcién E, : R? x R? — C cumpliendo E, (z,-) € X para todo z € R? se llama suavizador

si aproxima la distribucién § en el sentido que para una funcién f € X cualquiera verifica

lim < f, E,(z,-) >x= f(z) ctp., (3.22)
y—

/ E\(z,y)dy =1 V~. (3.23)
R3
Se define solucion aproximada de la ecuacion Af = g a

fy(x) =< f, Ey(z,-) >x, (3.24)

que converge a la solucién exacta f paray — 0. Supongamos que ¥, : R? — Y resuelve la familia
de ecuaciones adjuntas

AU, (2)] = Ey(z,-) (3.25)
entonces se cumple
fy(x) =< fLA" [T, (2)] >x=< Af, ¥, (2) >y=< g,V (x) >y . (3.26)

Por lo tanto, el cdlculo de f, se reduce a los calculos del producto escalar entre W, y los datos g.

Definicion. La funcién ¥, : R® — Y que resuelve la ecuacion 3.25 para cada z € R se llama
Niicleo de reconstruccion para la inversién del operador A. El operador lineal 8, : Y — X definido
por

819(x) =< g,¥, () >y (3.27)
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3.3 Métodos actuales de representacion

se llama inverso aproximado del operador A.
Para evitar resolver una ecuacién adjunta para cada punto x se usan suavizadores de tipo con-

volucién dependientes sélo de la diferencia de los argumentos,

E (z,y) =T (y) = ey(z — y). (3.28)

Con esta simplificacion la solucién aproximada viene expresada como

fy(z) = /]Rs ey(x —y) f(y)dy. (3.29)

Es facil probar que si J¥ : X —+ X y 75 : Y — Y son dos operadores que cumplen la propiedad
de invarianza

TTA* = A*T3 (3.30)
y, ademds, si para e, € X la funcién ¢, € Y resuelve la ecuacion
A dy = ey (3.31)
entonces una solucién de la ecuacién A*[V, (z)] = T{e,, viene dada por
U, () =T50,. (3.32)

En [6] se aplica esta teoria al caso del operador de tomografia de electrones A, := DME P,

cuyo operador adjunto A* := P* C,D'/M tiene retroproyeccién
Prg(y) = /82 9w, P,1y)dw, P, =y—<y,w>w (3.33)
0
y el nicleo de reconstruccion asociado al suavizador e, se obtiene resolviendo el problema adjunto
P, DYMp =e,. (3.34)
El resultado que se obtiene para la aproximacion f.,(z) es

(@) = 8,9(0) = [ (9% ;)0 MP ) (3.35)

Esta formula es de tipo retroproyeccion filtrada y pueden aplicarse técnicas FFT eficientes en su

implementacion.
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El Laboratorio de Microscopia Avanzada (LMA) representa una iniciativa tnica a nivel nacional e
internacional. Su objetivo es proporcionar a la comunidad cientifica el equipo mds avanzado exis-
tente y las infraestructuras de sonda local y microscopia electrénica para la observacion, caracteri-
zacion, nano-estampacion y la manipulacion de materiales a escala atdmica, asi como una amplia
gama de herramientas cientificas dedicadas a la caracterizacién, procedimientos de procesamiento
y manejo en la escala nanométrica.

El Laboratorio de Microscopia Avanzada depende administrativamente de la Universidad de Za-
ragoza a través del Instituto de Nanociencia de Aragén. El director del INA es también el director
del LMA. Un comité cientifico internacional evalia periédicamente las actividades del LMA y ofre-
ce servicios de evaluacion para la mejora. Las actividades cientificas del LMA son administradas
por tres supervisores de 4rea, coordinados por el coordinador del LMA. Cada supervisor de drea es
responsable de los equipos y del personal técnico asignado a su drea y, en general, para todas las
cuestiones organizativas de la zona.

El mayor reto que se propone el LMA es convertirse en un laboratorio de referencia interna-
cional para promover y establecer nuevos puentes entre los cientificos y las empresas a través de

la formacidn de alto nivel basada en las infraestructuras de primer nivel y la amplia experiencia en
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Microscopia Avanzada.

Un Comité Cientifico se encarga de proporcionar apoyo cientifico y asesora al Consejo de Ad-
ministracion. Se compone de cientificos de reconocido prestigio internacional en el campo de Mi-
croscopia Avanzada, con destacada trayectoria profesional y cientifica en linea con los objetivos de
LMA.

El LMA colabora con el grupo EMAT de la Universidad de Antwerp (Bélgica), el cual posee
uno de los laboratorios mas importantes del mundo en este campo, y ambas ofrecen la experiencia
de sus investigadores y personal técnico a aquellas empresas privadas que le piden su ayuda para
resolver sus problemas de produccién y mejora de productos en programas de 1+D.

Entre los proyectos que realiza el grupo EMAT en Antwerp, con quien el LMA mantiene con-
tactos, destacan los de la Dra. Sara Bals y el del Dr. Gustaff Van Tendeloo.

El objetivo del primero de ellos, llamado Colouratoms [1], es proporcionar una caracterizacion
completa 3D del complejo hetero-nanosistemas a escala atdmica. La combinacién de aberracién
corregida en microscopia electrénica avanzada y nuevos algoritmos de reconstruccién 3D se concibe
como un nuevo enfoque innovador para cuantificar la posicién y el color (naturaleza quimica y
unién) de cada dtomo individual en 3D para cualquier nanomaterial determinado. El resultado del
proyecto permitird entender el comportamiento fisico a nivel de mecénica cuantica. Una vez que se
entienda la conexidn entre la estructura atémica y las propiedades fisicas se podran disefiar nuevas
estructuras de nanoparticulas.

El segundo de ellos, llamado Countatoms [12], permitird obtener informacién - a una resolu-
cién de 50 pm y una energia de resolucion de 100 meV - sobre el comportamiento de materiales
cerdmicos multicapa y poder realizar el conteo del nimero de dtomos de una columna atémica.

Para llevar a cabo todos estos ambiciosos proyectos el LMA dispone de los mejores equipos de
microscopia del mundo (figura 4.2). Pero es muy importante contar con un paquete de software que
permita reconstruir las imagenes de todos los objetos que se analizan. Usan el software Inspect-3D
de FEI para el tratamiento y la reconstruccién de imagenes y el software Amira para el tratamiento
posterior del objeto reconstruido. Los algoritmos de reconstruccion que utilizan no son actualmente
los mejores, pues hacen uso de la aproximacién por rayos-X sin tener en cuenta los fendmenos de
dispersion electrénica como estamos haciendo nosotros.

El procedimiento que llevan a cabo una vez obtenida la serie de micrografias con el equipo de

TEM es el siguiente [11]:

1. Preparacion de los datos. Antes de aplicar un algoritmo de reconstruccién puede ser con-

veniente eliminar datos adquiridos, establecer el tamafio en pixeles y, por supuesto, realizar
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la alineacidn del eje de todas las micrografias. Este paso es demasiado importante y requiere
préctica en el uso del software para llevarlo a cabo adecuadamente; en algunos casos puede
ser necesario realizar el ajuste del eje manualmente. Hay que intentar que tanto la posicién
del eje de inclinacién, como su dngulo sean los adecuados. De no ser asi, aparecen objetos en
forma de platano - en el caso de posicionamiento incorrecto del eje - y cambios en la orienta-
cién de esas marcas segun varia la serie de imdgenes - en el caso de mal ajuste del dngulo del

eje - (figura 4.1).

Figura 4.1: Defecto en forma de platano debido a un posicionamiento incorrecto en las imagenes. Imagen
obtenida de [11].

2. Reconstruccion de los datos. Se selecciona el volumen a reconstruir y se aplica el método
deseado de reconstruccion. En esta fase se puede elegir entre métodos algebraicos tipo ART,
SIRT y de retroproyeccion. Pero hay que destacar que todos ellos se basan en la aproxima-
cion de rayos-X y de ninguna manera se tiene en cuenta los fenémenos de difraccién en las
ecuaciones. Este punto es el que debe ser mejorado y es en el que se estd trabajando con es-
pecialistas del KTH-Royal Institute of Technology de Estocolmo para implementarlo en los

nuevos algoritmos.

3. Post-procesado. Una vez se ha reconstruido el objeto se utilizan el software inspector-3D 'y
el software Amira para colorear, modificar el tamafio o realizar cualquier tipo de filtrado que

se desee para mejorar su visualizacion.
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Figura 4.2: Microscopio TITAN STEM instalado en el LMA. Permite la exploracién tomogréfica de
muestras con +/- 70° de inclinacién del eje.
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Conclusiones

A lo largo de este TFM se han programado algoritmos de reconstruccién tomografica empleando el
teorema de la rebanada. Se ha constatado que la aplicacién directa del teorema no produce la nitidez
deseada. Se ha mejorado el algoritmo de reconstruccién tomogrifica mediante la programacion
del “backscattering filtrado” en el que se aplican férmulas de cuadratura teniendo en cuenta el
cambio de variable de una malla en polares a una malla en rectangular. Estos algoritmos se basan
en considerar que los datos son atenuaciones de rayos al atravesar el objeto y son los tipos de
algoritmos empleados en el LMA mediante programas como Inspect3D. Esta interpretacion de las
proyecciones no es muy realista en el caso de tomografia de electrones para nanoparticulas, ya
que los fenémenos de difraccién son importantes. Se ha expuesto un método de reconstruccién
tomogréfica que tiene en cuenta los efectos de difraccion, se basa en una aproximacion a la solucién
de la ecuacién de Schrédinger mediante la primera aproximacién de Born.

Como conclusién final consideramos que la calidad de las reconstrucciones tomograficas de
nanoparticulas en el LMA mejoraria con el empleo de software que tenga en cuenta los efectos

difractivos.
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