. Universidad

[]
181 Zaragoza

1 2

23

w
H

Trabajo Fin de Master

Seleccion de contenidos basada en reuso para caches
compartidas en exclusion

Autor

Javier Diaz Maag

Director

Pablo Ibanez Marin

Escuela de Ingenieria y Arquitectura
2014

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Seleccion de contenidos basada en reuso para caches

compartidas en exclusion

RESUMEN

En los Ultimos afios, los sistemas multiprocesador con memoria compartida que incluyen varios
procesadores en un mismo chip o circuito integrado estan muy extendidos. Estos sistemas suelen incluir
una cache compartida de ultimo nivel (SLLC). Recientes estudios revelan que el flujo de referencias
que llega a la SLLC muestra poca localidad temporal. Sin embargo, muestra localidad de reuso, es decir,
los blogues reusados (referenciados varias veces) tienen mas probabilidad de ser referenciados en un
futuro. Esto provoca que, si se realiza una gestion convencional, basada en la localidad temporal, el
uso de la cache es ineficiente, desaprovechandose la mayoria de su contenido. Existe un ndmero
importante de propuestas que tratan este problema para caches inclusivas, pero pocas que se centran
en caches exclusivas. Dichas caches se encuentran ya en el mercado, y es previsible que se utilicen

mas en el futuro.

En este trabajo se propone un nuevo mecanismo de seleccion de contenidos para caches exclusivas
que aprovecha la localidad de reuso que presentan los accesos a la SLLC. Consiste en incluir un
elemento denominado Detector de Reuso entre cada cache L2 y la SLLC, al que se dirigen todos los
bloques expulsados de la cache L2. Su misidon es detectar bloques sin reuso para evitar que sean

insertados en la SLLC, realizando bypass de los mismos.

Esta propuesta, junto con otras publicadas recientemente, se implementa en un simulador de sistemas
completos que modela de forma detallada un sistema con 8 procesadores en chip y su jerarquia de
memoria. Para evaluar la propuesta y compararla con otras similares, se simulan ciclo a ciclo un
conjunto de cargas multiprogramadas formadas por programas de prueba reconocidos en la comunidad

cientifica.

Configurado adecuadamente, el Detector de Reuso evita la insercion de bloques poco Utiles en la SLLC,
facilitando que se mantengan los mas reusados. Los resultados muestran que ello permite incrementar
el rendimiento, por encima de otras propuestas recientes como CHAR o la Reuse Cache. Por ejemplo,
para una configuracion del Detector de Reuso balanceada entre coste y prestaciones, se obtiene un
8,5% de reduccion de la tasa de fallos de la SLLC y un incremento del IPC de un 2,5%, frente a un
sistema base con politica de reemplazo TC-AGE. Este incremento de prestaciones se distribuye de forma
equitativa, ya que aparece en un 90% de las mezclas de programas simuladas y sin perjudicar de forma

injusta a ninglin programa en particular.

Tabla de contenidos

1

2

3

(g1 goTe (U ol o] o PR TPRRP TP 4
1T uV =Yoo FO RSP 5
Disefio e implementacion de 12 ProPUESLAueeeieieriiiiiiiiiiieee e e e e eesrrrrere e e e e e e ssnrreeeeeeeeeeenans 8
3.1 DT aTo R e =] T - 8
3.2 El DEteCtOr A& REUSODuuuuuuunuuunnnninn s s s nnnnnnnnnnns 9
3.3 Funcionamiento del Detector de REUSOuumummrmrmmmiiriiiiiiiii s 10
3.4 Detalles de implemeNntacionueeeeeieeiiiiciiriee e e e e e e e srrrrr e e e e e e s nnr e e e eeea s 11
3.5 (00T o [g = (o V= 1 TR 12
Trabajos relacioNadOSiiiiiri i 13
1 =TeTa (o1 T [- TSP EPPTTPUPPRPRPPPRP 14
5.1 ENtorno de eXperimentacionccccveeeeeeeeiiiiiirrreeeeeessssssnrrereeessessesnsrrseeeeesssesssnssssseeses 15
5.2 Configuracion del SIStEMA DASEevurreeiiiiiiieieirie e nree s 16
RESUILAAOS ... 17
6.1 Influencia del tamafio del buffer del Detector de REUSOccvverereieeeiiiccirieeeee e 17
6.2 Influencia del tamafio de sector del Detector de REUSO.........cuvereriiireeerisiireeessieeeessnneeens 18
6.3 Influencia del tamano de la etiqueta del Detector de REUSOcevvvvrvevreeeieeeeeeeeeeeeeeeeeen 19
6.4 Andlisis del funcionamiento del Detector de REUSOccccvvreieriiieresssirreesssieee e s ssieneee e 20
6.5 Andlisis de rendimiento POr MEZCIA........cccirireiieee i e e ssrrrrrr e e e e s s snrrarereeseeeennns 22
6.6 Analisis de rendimiento por apliCacionccceeeiieiiiiiiieree e e e 22
6.7 Comparativa CON Otras ProPUESTAS.iivuiiiiriiiiriiirrie e e e s s e e s e rn s e ena s 24
00T ol [0 TS0 o= 26
REFEIENCIAS ... 26
Anexo A: CONtEXLO del trabajo uuuuuuuuuun e 29
9.1 Memorias DRAM y MEMOKias CACheccuuriuiiiiiiiiiieeriiiis s ser e e s e rr e s e s eeeens 29
9.2 Localidad y gestion de 13S CAChESuueeeieeiiiiiiiririeiie et e e e s srrrer e e e s e e s snnr e reeeee s 29
9.3 1=] (oW1 I Sl 1 1 =114 To] T PR 30
9.4 Relaciones entre contenidos: INCIUSION Y EXCIUSION.........cccvrreereeeeiiiiirrrrere e e e e ssrrreeeeeees 31
9.5 Jerarquia de memoria en sistemas multiprocesador onN-Chip.......ccccceeeeeeeeiicicciineee e e 32

10 Anexo B: Plan de trabajo.......cciiciiui i e
1008 R O 0] o =3 -
10.2 Fases del trabajo...ccuuciiiiiii i

1 Introduccion

En los Ultimos afios, los sistemas multiprocesador con memoria compartida que incluyen varios
procesadores en un mismo chip o circuito integrado estan muy extendidos. Su presencia es mayoritaria
en el mercado tanto en servidores de alto rendimiento como en sistemas de sobremesa, dispositivos
moviles y sistemas embebidos. En ellos, el disefio habitual (ver Figura 1) es el de una jerarquia de
menoria multinivel, que incluye una cache compartida de ultimo nivel o SLLC (acrénimo de Shared Last
Level Cache). Esta es critica en términos de coste, prestaciones y consumo. En coste, porque suele
ocupar dentro del chip una superficie comparable a la de varios procesadores. En prestaciones y
consumo, porque es el ultimo recurso existente antes acceder a la memoria DRAM que, situada fuera

del chip, es inferior en prestaciones y consume mas energia.

" Procesador 1 " Procesador 2 " Procesador n
iy y UK y ' y
A y A 4 A 4 A A
Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1
datos instrucc. datos instrucc. | i ... datos instrucc.
Cache L2 Cache L2 Cache L2
y A A
A . y
Cache L3 compartida (SLLC) Directorio

Figura 1: Esquema de jerarquia de memoria en sistemas multiprocesador on-chip.

Por desgracia, varios estudios ponen de manifiesto que los disefios tradicionales no resultan eficientes
en su implementacion en SLLCs, ya que desaprovechan una fraccion mayoritaria del espacio de
almacenamiento. Esto es asi porque almacenan blogques muertos, es decir, bloques que no van a ser
accedidos nunca antes de su expulsion. Frecuentemente, los bloques estan muertos en cuanto llegan
alaSLLC[1][2][3]. La razon de que esto ocurra es que las caches L1 y L2 aprovechan la mayor parte
de la localidad temporal, por lo que resulta filirada antes de llegar a la SLLC [4] [5]. Con el objetivo de
evitar este efecto, e incrementar la tasa de acierto de la SLLC, se han publicado en los Ultimos anos
varias propuestas de modificaciones en la politica de insercidn y reemplazo en la SLLC (ver seccion 4).
La mayor parte de los trabajos se refieren a caches inclusivas o no inclusivas, y sélo un grupo reducido

[3] [6] se enfoca en una SLLC exclusiva [7].

Al contrario que una cache inclusiva tradicional, una SLLCs exclusiva no almacena los datos que ya
estan presentes en los niveles interiores de cache. Ello permite mejorar el rendimiento de la SLLC, ya
que supone un espacio adicional disponible. Hoy en dia, hay ya fabricantes comerciales que incluyen

una SSLC exclusiva, o parcialmente exclusiva, en su disefio de microprocesador [8]. A medida que el

numero de procesadores dentro del chip crece, también lo hace la cantidad de cache en los niveles
interiores y, por lo tanto, la diferencia en rendimiento entre una SLLC exclusiva y una inclusiva. En un
futuro que se prevé de muchos procesadores (many-core) dentro del chip, cientos o miles, y SLLCs no
mucho mayores que las existentes hoy en dia [9], utilizar una cache inclusiva sera mas ineficiente adn.
Por lo tanto, es de esperar que la utilidad de las SLLC exclusivas crezca en un futuro, salvo cambios en

el disefio basico de la jerarquia de memoria.

Este trabajo se centra en mejorar la eficiencia y el rendimiento de una SLLC exclusiva en un entorno
multiprocesador on-chip. En concreto, se presenta un nuevo mecanismo de seleccion de contenidos
para caches exclusivas que aprovecha la /ocalidad de reuso que presentan los accesos a la SLLC [10].
Dicha localidad consiste en que, cuando se referencia un bloque dos veces (se reusa), es probable que
dicha direccion se referencie en un futuro cercano. EI mecanismo propuesto persigue que sélo se
encuentren en la SLLC aquellos blogues que tienen reuso en dicho nivel de cache, es decir, aquellos
bloques que son solicitados mas de una vez desde las L2 privadas a la SLLC. Para ello, un elemento
denominado Detector de Reuso detecta qué blogues expulsados de las L2 no presentan reuso, y evita

que sean insertados en la SLLC, realizando bypass de los mismos.

Se evalla esta propuesta simulando un sistema con 8 procesadores en un chip que ejecuta una serie
de cargas multiprogramadas. El Detector de Reuso evita la insercion de bloques poco Utiles en la SLLC,
facilitando que se mantengan los mas reusados. Ello permite incrementar el rendimiento, por encima

de otras propuestas recientes.

El trabajo esta estructurado como sigue. La seccion 2 muestra evidencia experimental de la presencia
mayoritaria de bloques muertos en una SLLC exclusiva, y de que la localidad de reuso es una propiedad
presente en los accesos a la misma. La seccion 3 explica en detalle la propuesta del Detector de Reuso.
La seccion 4 analiza los trabajos relacionados, y los compara con esta nueva propuesta. La seccion 5
detalla la metodologia empleada, incluyendo el entorno de experimentacion y la configuracion de los
sistemas simulados. La seccion 6 presenta los experimentos y analiza los resultados, comparandolos
con dos propuestas actuales, que son CHAR [6] y una version en exclusion de la Reuse Cache [11]. Por

ultimo, en la seccidn 7 se extraen conclusiones.

Adicionalmente, tras las referencias se han incluido dos anexos. El anexo A es breve repaso del contexto
en que se realiza este trabajo, y el anexo B detalla el plan de trabajo que se ha seguido, con una

descripcion de sus fases.

2 Motivacion

En esta seccion, se analiza el comportamiento de un conjunto de 100 mezclas multiprogramadas
creadas combinando de forma aleatoria los 29 de programas de la suite SPEC CPU 2006, ejecutando
sobre un sistema con 8 procesadores, caches privadas y una SLLC exclusiva de 8 MB (ver detalles del

entorno en la seccion 4). El objetivo es comprobar que el la SLLC es poco eficiente en el

aprovechamiento de su espacio, y que una seleccion de los contenidos basada en el reuso de cada

bloque puede resultar de utilidad para incrementar su eficiencia.

La Figura 2 muestra, para las 100 mezclas mencionadas, la fraccion de bloques contenidos en la SLLC
que de media estan vivos a lo largo de la ejecucion de la mezcla. Se entiende que un bloque presente
en la SLLC esta vivo en un determinado momento si experimentara al menos un acceso antes de ser
expulsado, por lo cual resulta Gtil mantenerlo en la cache. Por el contrario, se entiende que un bloque
esta muerto en un determinado momento cuando va a ser expulsado en un futuro sin haber recibido
ningun acceso, es decir, sin resultar de utilidad adicional. En cada mezcla, se toma informacion de los

bloques vivos cada millén de ciclos, y se muestra en el grafico la media de los valores.

20 ettt ettt it Attt ettty ——TCAGE | 7T

Fraccidn debloques vivos

0 10 20 30 40 50 60 70 80 90
Mezcla

Figura 2: Fraccién media de bloques de una SLLC exclusiva de 8 MB que estan vivos durante la
ejecucion, para 100 mezclas multiprogramadas de SPEC CPU2006 (ver seccidon 4). Se muestran
valores para las politicas de reemplazo NRF y TC-AGE. Las mezclas estan ordenadas de mayor a
menor fraccion de bloques vivos con NRF.

La informacion se representa para dos politicas de reemplazo diferentes, NRF y TC-AGE. La politica NRF
(acrénimo de Not Recently Filled) es analoga a la NRU (Not Recently Used) en caches inclusivas. NRF
utiliza un Unico bit de reemplazo por bloque, y selecciona como victima a un bloque aleatorio que no
haya sido recientemente insertado, es decir, no tenga el bit de reemplazo a uno. El bit de reemplazo
se pone a uno cuando el blogue se inserta en la SLLC, proveniente de una expulsion de una cache L2
privada. Si todos los bits del conjunto estan a 1, se cambian todos a 0 salvo el del bloque recién
insertado. La politica TC-AGE [3] para caches exclusivas es analoga a SRRIP [5] para caches inclusivas,
y utiliza 2 bits por linea de cache para almacenar la edad asignada al bloque. TC-AGE selecciona como
victima un bloque aleatorio de entre aquellos del conjunto que tengan la menor edad. La edad se asigna
cuando se inserta el bloque en la SLLC. Si el bloque ya ha recibido anteriormente algin acierto en la
SLLC, se le asigna la edad 3, y si no se le asigna la edad 1. La informacion de acierto en la SLLC se
guarda en un bit adicional en la cache L2 privada, y se envia a la SLLC junto con el bloque. Cuando,
tras un reemplazo, no queda ningun bloque con edad 0 en el conjunto, se resta 1 a la edad de todos
los bloques. Es decir, TC-AGE asigna mayor edad, y por lo tanto menor probabilidad de reemplazo, a

los bloques que hayan demostrado ser Utiles en la SLLC, ya que han sido reusados.

Como puede apreciarse en la figura, la fraccion de bloques vivos con NRU varia entre un 1% y un 48%,

en funcién de la mezcla, siendo la media de un 18%. La politica TC-AGE demuestra su efectividad

incrementando los bloques vivos en 99 de las 100 mezclas, alcanzando una media del 26%. Estos
valores demuestran que la SLLC no utiliza eficientemente su espacio de almacenamiento, ya que la
mayoria de los bloques estan muertos incluso usando las mejoras politicas de reemplazo propuestas

en la literatura.

La Figura 3a muestra, para cada programa que participa en la carga de trabajo mencionada, la media
de la distribucion de bloques reemplazados de la SLLC, en funcidon del nimero de accesos que cada
bloque ha registrado durante su estancia en la cache. Cada bloque se clasifica segun haya recibido un
solo acceso (U), dos accesos (R, reuso), o mas de dos accesos (M, multiple reuso). Como politica de
reemplazo de la SLLC se ha usado TC-AGE.

wv
2
© aM
£
3 ER
<
3
c muU
hel
Q
Q
©
o
w
9
—
7
c
] mM
wv
2
K] ER
Q
@©
g mu
S
‘S
Q
©
o
w) X = w O X v Y4 4 > x 4+ x
mm%‘_E:—muEEuwwEBEU:v%ﬁmngSLEQ‘
2 225835 T 4w ° = S S € £ o = c 3 IS
€ 2 o £ o C 5] c
w T N o 9 O o < QL 5 c o > . o = o o
@ 8 < L F E c 8 £E O ¢ = c P Q 3w o< 8 o 3
] 9 © © v 5% O N v o €S 9 o » o c o
a 3“ 00 £ ;D_C-: Q35 € < 7 @ N
©] o °c g ©
3 o 2 x

Figura 3: Arriba (a), distribucién media de reemplazos de bloques de una SLLC exclusiva de 8 MB
con TC-AGE, para 100 mezclas multiprogramadas de SPEC CPU2006 (ver seccion 4), categorizadas
segun el nimero de accesos que recibe el bloque en la SLLC antes de su reemplazo: (U) un uso, (R)
reuso — dos usos, (M) multiple reuso — tres o mas usos. Abajo (b), distribucidon media de aciertos
en la SLLC segln las mismas categorias.

Incluso con la politica TC-AGE, la grafica muestra que, en funcion del programa, entre un 64% y un
99% de los bloques reemplazados de la SLLC tienen un Unico uso antes de su reemplazo, con una
media del 85%. Este uso es el que les insertd en la cache, por lo que su estancia ha sido inttil. Esto es
debido a que, en este nivel de la jerarquia de memoria, la localidad temporal de los programas es
escasa, ya que ha sido filtrada por las caches privadas. Todos estos bloques son buenos candidatos
para no ser siquiera almacenados en la SLLC, es decir, para hacer bypass cuando son expulsados de la
cache L2.

La Figura 3b muestra, para cada programa, la media de la distribucion de los aciertos en SLLC, en

funcion del tipo de bloque sobre el que se producen (U, R, M). La mayor parte de los aciertos de la

SLLC se producen en bloques con mltiple reuso (M), es decir, a nivel de SLLC los programas muestran
localidad de reuso. En 27 de los 29 programas, entre un 78% y un 99% de los aciertos son en dichos

bloques, mientras que en zeusmpy GemsFDTD son del 59% y del 33% respectivamente.

Estos resultados nos indican que una politica de seleccion de contenidos de la SLLC que sélo almacene
los blogues que han demostrado reuso (al menos dos accesos) conseguiria guardar la pequefia porcion
de bloques con multiples reusos (M en Figura 3a) que producen la mayoria de los aciertos (M en Figura
3b). Ademas, esta politica impediria la entrada en SLLC de la gran porcion de blogues que no se llegan

a reusar (U en Figura 3a), lo que disminuiria la probabilidad de que los bloques M fuesen reemplazados.
3 Diseiio e implementacion de la propuesta

3.1 Diseno general

El disefio de partida es el de una SLLC cuyos contenidos se encuentran en exclusion con los contenidos
de las caches privadas de cada procesador. Para mantener la coherencia en la jerarquia de memoria,
existe también un directorio que mantiene, para cada bloque presente en dicha jerarquia, tanto su
estado como la informacion precisa de donde se encuentra, que puede ser uno o varios procesadores
y/o la SLLC.

En dicho disefio, los bloques que llegan de memoria se envian directamente a la cache L2 solicitante.
Eventualmente, el bloque es expulsado de ella y se envia para su almacenaje en la SLLC. Desde ahi, o
bien el bloque es solicitado de nuevo desde alguna cache L2, siendo entonces enviado y desalojado de

la SLLC, o bien el blogue es reemplazado por otro que necesita espacio para su insercion.

Sobre este disefio, la propuesta es incluir un elemento intermedio a la salida de cada cache L2, entre
cada una de éstas y la SLLC. A este elemento, que llamaremos Detector de Reuso (DR), se dirigen
todos los bloques expulsados de la cache L2. Al estar el DR situado fuera del camino de peticion de
bloques a la SLLC, el retardo que afade no afecta a los tiempos de acierto o fallo de la SLLC. En cambio,
afecta al tiempo que necesita un bloque desde su expulsion de la cache L2 a su eventual llegada a la

SLLC. La Figura 4 muestra un esquema de este disefio.

Bloques

Bloques
Cache L2 expulsados Detector de SLLC

seleccionados)
| Reuso exclusiva

Figura 4: Esquema del disefio general con Detector de Reuso.

El DR decide entre enviar el bloque a la SLLC o no hacerlo, es decir, hacer bypass del mismo. La decision
se basa en las categorias mostradas en la seccidn anterior: Si un bloque expulsado se clasifica en la
categoria U, con un Unico uso, se hace bypass. Si se clasifica en la categoria R 0 M, con uno o mas

reusos, no se hace bypass.

Ni la SLLC ni el directorio requieren modificaciones estructurales para adaptarse al mecanismo del DR.
Si que requieren cambios en su protocolo de coherencia y légica de control, para tener en cuenta el
posible bypass. Si bien en este trabajo se utiliza TC-AGE como politica de reemplazo en la SLLC, es

posible implementar el DR con cualquier politica de reemplazo.

3.2 El Detector de Reuso

El DR esta compuesto por un buffer que almacena direcciones de bloques y por su légica de gestion.
La mision del buffer es almacenar las direcciones de los bloques que llegan al detector, con el fin de
identificar si es la primera vez que dicho bloque se expulsa de la cache L2 o si ya ha sido expulsado
anteriormente. Una primera expulsion implica que no hay reuso por parte de la cache L2, mientras que

las siguientes implican que si lo hay.

El buffer estd organizado de forma asociativa por conjuntos, y sus caracteristicas (tamafio,
asociatividad, politica de reemplazo) son variables de disefio. De entre ellas, la fundamental es el
tamafo. Para que el DR sea efectivo, éste ha de ser lo suficientemente grande como para almacenar
una parte significativa de las direcciones de los bloques entre su uso y su reuso. Se define la cobertura
de expulsion como el espacio de memoria ocupado en conjunto por los bloques expulsados para los
que el DR puede hacer seguimiento en un determinado momento. Por ejemplo, si el DR puede hace
seguimiento de 1024 blogques de memoria, y cada blogue es de 64B, su cobertura de expulsion es de
64 KB.

El DR utiliza también, para detectar el reuso, el dato de si el bloque fue enviado a la cache L2 desde
memoria o proviene de un acierto en la SLLC. La proveniencia de la SLLC indica también reuso. Esta
informacion se almacena en la cache L2, en un bit adicional existente en cada linea. Cuando el bloque
es expulsado de la cache L2, este bit se incluye en el mensaje que se dirige al DR. Esta misma
informacion es utilizada por la politica de reemplazo TC-AGE, por lo que no comporta necesidades de

espacio adicionales si el DR se implementa sobre un sistema que ya esté utilizando TC-AGE.

3.3 Funcionamiento del Detector de Reuso

La Figura 5 muestra un esquema del funcionamiento del DR. Sobre esta figura, se detalla a continuacion

las operaciones que realiza.

(1) proviene de acierto previo en SLLC
Cache L2 >
(2) proviene de (4) Direccion presente
memoria DRAM > SLLC
| P Insercion de
» Buffer DR 1« direccién
Blsqueda de -
direccion ,
(5) Excepcion, baja
prioridad
(3) Direccion ausente Bypass

Figura 5: Esquema de funcionamiento del Detector de Reuso.

Cuando llega un bloque expulsado de la cache L2 llega al DR, se inspecciona primero el bit que indica
si el blogue provenia originalmente de la SLLC. Si es asi, esto indica que el bloque tiene reuso a ese

nivel, por lo que se marca para su almacenamiento en la SLLC (1).

Si el bloque provenia de memoria DRAM (2), se busca su direccion en el buffer. Si la direccion del
bloque no esta presente, esto indica que es la primera vez que se expulsa de la L2, por lo que no
muestra reuso. El bloque se marca para bypass, y su direccion se inserta en el buffer (3). Si el bloque
si estd ya presente en el buffer, esto indica que es la segunda o sucesivas veces que ha estado en la
cache L2, por lo que muestra reuso. Por lo tanto, el bloque se marca para su almacenamiento en la
SLLC (4).

La informacion obtenida de la presencia de la direccion del blogue en el buffer y la obtenida de la
proveniencia original del bloque son complementarias. El buffer es el responsable de detectar por
primera vez el reuso, almacenando entonces el bloque en la SLLC. Después, tanto la proveniencia desde
la SLLC como la presencia en el buffer son indicativos de reuso. En funcion de la actividad de reemplazo
del buffer y de la SLLC, se dan los casos de que en sucesivas apariciones del bloque éste proviene de
la SLLC y ademas esta en el buffer, sélo uno de los dos, o ninguno. En este ultimo caso, la deteccion
del reuso esta fuera del alcance de la capacidad del buffer y de la SLLC, y el bloque se marca para

bypass.

Como excepcion, una fraccion predeterminada de los bloques marcados para bypass se marca para su
almacenamiento con baja prioridad en la SLLC, revirtiendo la decision de hacer bypass (5). Al recibir
un bloque con esta marca, la SLLC lo almacenara solo si hay una via libre en el conjunto
correspondiente. Se insertara ademas con la prioridad mas baja (probabilidad de reemplazo mas alta)

de la politica de reemplazo. Esto se hace asi porque, al ser la SLLC exclusiva, se genera un nuevo hueco

10

en un conjunto cada vez que se produce un acierto. Si no hay bypassing, este hueco se rellena con
relativa rapidez, pero no ocurre asi si el nivel de bypass es alto, con lo que se desaprovecha espacio en
la SLLC. Al rellenar estos huecos con bloques no reusados, ese espacio se utiliza, si bien no de forma
tan eficiente. Las simulaciones realizadas muestran que es suficiente con transformar uno de cada 32

bloques marcados para bypass para obtener la mayor parte del beneficio en rendimiento.

Finalmente, si el bloque estd marcado para su almacenamiento en la SLLC, se envia a la misma. Si esta
marcado para bypass, el funcionamiento depende de si el bloque esta sucio o no, es decir, si ha sido
modificado o no durante su estancia en la cache L2. Si estd sucio, se envia para su escritura directa en
memoria y, si esta limpio, se envia un mensaje de control para la actualizacion del directorio. El

directorio se actualiza también con el resto de mensajes.

Si se utiliza TC-AGE como politica de reemplazo en la SLLC, como es el caso del entorno de simulacion
utilizado en este trabajo, el bit que indica la proveniencia o no del bloque de la SLLC se envia también
en caso de no realizar bypass. Esta informacién se utilizard en TC-AGE como en el algoritmo original,
si bien ahora presenta un significado ligeramente diferente. La primera vez que no se hace bypass esta
a cero, pero el DR ya ha detectado reuso para el bloque, con al menos dos accesos. Cuando en sucesivas
ocasiones esta a uno, el bloque ha recibido ya al menos tres accesos. Por lo tanto, TC-AGE otorgara
menos probabilidad de reemplazo en la SLLC a blogues con muiltiple reuso que a blogues que han sido

reusados una Unica vez.

3.4 Detalles de implementacion

En una primera aproximacion, el buffer del DR puede implementarse de forma asociativa por conjuntos,
conteniendo la etiqueta asociada a la direccion del bloque, un bit de validez, y la informacion para la

politica de reemplazo. Cada linea de la cache del DR almacenaria una direccién de bloque.

Aunque esta implementacion es sencilla y efectiva, presenta el inconveniente de requerir mucho espacio
para almacenar poca informacion. Por ello proponemos utilizar dos técnicas para reducir el espacio
necesario: Almacenar las etiquetas por direccion de sector en vez de por direccion de blogue y

comprimir las etiquetas a guardar.

Se entiende por sector a un conjunto de bloques de memoria consecutivos y alineados al tamafio de
sector. Almacenar en el DR las etiquetas por direccion de sector permite guardar la informacion de
varias direcciones de blogues consecutivos de memoria en cada linea del buffer del DR. Para cada
bloque es necesario mantener un bit de presencia. Por ejemplo, con un tamafio de sector de 4 bloques,
una linea se compondra de una etiqueta (calculada a partir de la direccion del sector), un bit de validez,

los bits de reemplazo y 4 bits de presencia.

Cuanto mas se incremente el tamaio de sector se podra hacer seguimiento de mas bloques por cada
linea, y seran necesarias menos lineas para mantener la cobertura requerida. No obstante, se requiere

que exista suficiente localidad espacial en los programas ejecutados. Si no, algunos de los bloques de

11

cada sector no estaran presentes en el flujo de expulsiones de la cache L2, por lo que ese espacio se

desaprovecha.

La compresion de las etiquetas a guardar busca almacenar menos bits para la etiqueta presente en
cada linea, manteniendo una buena capacidad de discriminacion entre sectores. El proceso que se
realiza es como sigue: si llamamos ¢ al nimero de bits de la etiqueta completa, y cal nimero de bits
de la etiqueta comprimida, se toman los ¢ bits y se separan en varios trozos de tamafio ¢ El dltimo
trozo se rellena con bits a “0” hasta ese tamafio. Después, se realiza la operacion XOR de todos ellos,

obteniéndose un Unico valor de cbits, que es el que se almacena.

La utilizacion de etiquetas comprimidas puede provocar falsos positivos, ya que son varios los sectores
de cache L2 que comparten el mismo valor de etiqueta comprimido. Esto provoca la deteccion de falsos
reusos, y el envio de bloques realmente no reusados a la SLLC. Estos blogues no provocan problemas
funcionales, pero si pueden llegar a degradar del rendimiento. Para limitar esta degradacion es
necesario mantener un nimero de bits suficiente. El valor concreto depende del tamario del buffer y
de su asociatividad.

El buffer del DR utiliza FIFO de 1 bit como politica de reemplazo. Las simulaciones realizadas indican
gue utilizar FIFO de 1 bit mantiene un rendimiento del DR muy similar a otras que requieren de mas
espacio. La politica FIFO implica que la informacion de antigiiedad se actualiza sdlo durante la insercion
de una direccidn, y no durante aciertos posteriores. Ello es coherente con la mision prioritaria del buffer,
que es detectar el primer reuso de un bloque. Para los siguientes reusos, la informacion de la
proveniencia del bloque de la SLLC es la fundamental, si bien se utiliza también la presencia en el buffer

de forma complementaria por si el bloque ha sido expulsado de la SLLC.

La asociatividad utilizada para el buffer del DR es 16. Las simulaciones realizadas indican que mantiene

un rendimiento similar a otras asociatividades mas altas.

3.5 Coste de hardware

En esta seccion, se calcula el nimero total de bits de almacenamiento que es necesario afadir para
implementar el Detector de Reuso sobre el sistema base descrito en la seccion 5.2. Aparte de este

almacenamiento, el DR requiere también su lgica de gestion.

La configuracion del DR considerada tiene una cobertura de expulsion de 2 MB, con 1.024 conjuntos
de asociatividad 16, un tamafio de sector de 2 bloques, y utiliza etiquetas de 10 bits. Esta configuracion
es la utilizada en la seccidon 6 para realizar la comparativa con otras propuestas, tras el trabajo de

seleccion de una configuracion balanceada considerando prestaciones frente a coste.

La Tabla 1 detalla el calculo del coste. Considerando una SLLC de 8 MB como la descrita en la seccion

5.2, el coste total para los 8 procesadores es de un 2,6% del tamaio de la SLLC.

12

Componente Coste

Validez 1 bit
Etiqueta de sector 10 bit
Presencia de bloque en sector 2 bits
Reemplazo 1 bit

Total por entrada | 14 bits

Numero de entradas 16.384

Total DR por procesador | 28 KB

NUmero de procesadores 8
Total DR multiprocesador | 224 KB

Tabla 1: Coste de almacenamiento adicional del DR

4 Trabajos relacionados

La localidad de reuso ha sido estudiada en varias propuestas publicadas. Inicialmente se identifica y
aprovecha en el ambito de caches de discos, donde Karedla et al. proponen segmentar la pila de
reemplazo LRU para separar, en dos listas, los bloques referenciados una vez de los referenciados
varias veces (reusados). Se protege asi a los reusados de ser expulsados por un subito exceso de flujo
de los no reusados [12]. Esta misma estrategia se ha aplicado recientemente como politica de
reemplazo para SLLCs. Albericio et al. identifican que el flujo de accesos a la SLLC presenta localidad
de reuso, y priorizan con su politica NRR la expulsion de bloques de la lista de no (recientemente)
reusados, manteniendo un coste equivalente a NRU [10]. Qureshi et al. limitan con su politica LIP el
tamanio de la lista no referenciada a un Unico elemento, y proponen un mecanismo de competicion
entre conjuntos con distinta politica (set dueling) para decidir si utilizar LIP o LRU [2]. Gao et al. utilizan
la segmentacion de la pila LRU para la division de cada conjunto de la SLLC en dos listas de tamafio
variable, aplicando otras optimizaciones como la utilizacion de bypassing si resulta rentable segin los
resultados de la competicion entre conjuntos [13]. Este mismo mecanismo es utilizado por Khan et al.
para limitar de forma dinamica el tamafio de las listas, y opcionalmente realizar bypass de bloques,
adaptandose al comportamiento reciente de los accesos a la SLLC [14]. Al contrario que en estas
propuestas, el DR evita la presencia de blogues no reusados en la SLLC, y utiliza un buffer aparte para
que la deteccidon del reuso no esté limitada por la capacidad de almacenamiento de la SLLC o las
anteriores decisiones de seleccién de contenidos realizadas.

Otras propuestas buscan predecir el comportamiento de reuso de los blogues, y utilizan esta prediccion
para modificar la politica de insercion y reemplazo en la SLLC. Jaleel et al. realizan una prediccion del
intervalo de re-referencia de cada bloque que, en su version estatica (SRRIP), asigna un intervalo
intermedio a los bloques recién insertados, y un intervalo minimo a los que son reusados, priorizando
el reemplazo de los blogues con intervalo mas largo. En su version bimodal (BIP), algunos bloques son

aleatoriamente insertados con menor intervalo de re-referencia y, en su version dinamica (DRRIP), se

13

selecciona entre los dos anteriores utilizando competicion entre conjuntos [5]. Wu et al. presentan una
evolucion de SRRIP donde se busca mejorar su prediccion estatica, correlandola con otros valores de
referencia como el contador de programa (PC), la region de memoria y la reciente secuencia de
instrucciones ejecutada [15]. Gaur et al. adaptan SRRIP a su uso en caches exclusivas dandole el
nombre de TC-AGE, y proponen nuevos mecanismos de prediccion para dicho tipo de caches basandose
en el nimero de veces que un bloque viaja de la SLLC a la cache L2 y en el niUmero de accesos que
presenta en la cache L2 [3]. El mecanismo del DR es compatible con TC-AGE, siendo de hecho la politica

de reemplazo seleccionada para la SLLC a la hora de mostrar resultados en la seccion 6.

En la misma linea predictiva, Li et al. realizan un seguimiento de los pares de bloques victima y entrantes
y, al detectar el primer reuso de los dos, aproximan el comportamiento que tendria un algoritmo de
bypass optimo, y predicen que aquellos bloques que se accederan desde el mismo contador de
programa se comportaran igual, guiando su decision de bypass [16]. Seshadri et al. hacen un
seguimiento global a través de un filtro Bloom de las direcciones de los ultimos bloques expulsados de
la SLLCy, si un blogue expulsado es reaccedido pronto, predicen que es un bloque con alta probabilidad
de reuso, al que se asigna la menor probabilidad de reemplazo [17]. Chaudhuri et al. proponen un
mecanismo (CHAR) que registra el patron de acceso que han tenido los bloques en todos los niveles
de la jerarquia de memoria, y los clasifica en cuatro clases en funcion del mismo. Para cada clase, se
observa de forma dinamica si sus bloques muestran reuso o no, y se predice que el comportamiento
futuro de un blogue sera el observado para su clase. Esta decision guia un mecanismo de bypass [6].
Todas estas propuestas son compatibles con el Detector de Reuso, y podrian utilizarse para cambiar la

decision fija que hace el DR de realizar bypass de bloques que no han demostrado previamente reuso.

Argumentando que ninguna de las alternativas existentes resuelve de forma satisfactoria la presencia
mayoritaria de bloques muertos en la SLLC, Albericio et al. proponen con la Reuse Cache separar en la
SLLC la matriz de etiquetas de la de datos, y reducir el tamafio de esta Ultima sin perder rendimiento,
seleccionando como contenido sélo bloques que hayan demostrado reuso en la matriz de etiquetas

[11]. El Detector de Reuso utiliza este mismo criterio de seleccion, pero el resto del disefo es diferente.

En este trabajo se ha seleccionado CHAR y la Reuse Cache como propuestas que representan el estado
del arte. Hay dos razones para ello: por un lado, ambas presentan en los articulos publicados
rendimientos superiores a otras de las analizadas; por otro, existe una version de CHAR para caches
exclusivas, y es posible la adaptacion de la Reuse Cache a su uso en exclusion. El rendimiento del DR

se compara con ellas en la seccidn 6, donde también se dan mas detalles de su funcionamiento.

5 Metodologia

Esta seccion detalla el entorno de experimentacion y la configuracion del sistema base que se han

utilizado para la evaluacion de la propuesta y la obtencion de los resultados expuestos en la seccion 6.

14

5.1 Entorno de experimentacion

Como motor de simulacion se utiliza Simics [18], un simulador de ejecucidon de sistemas completos.
También se utilizan los plug-ins Ruby y Opal de Multifacet GEMS [19]. Se usa Ruby para modelar la
jerarquia de memoria con un alto grado de detalle: caches, directorio, protocolo de coherencia, red on-
chip, buffers, contencion, etc., anadiendo ademas un modelo detallado de una DRAM DDR3. Se utiliza
Opal (también conocido como TFSim) para modelar de forma detallada un procesador superescalar con

ejecucion fuera de orden.

Se ejecuta sobre Solaris 10 para SPARC una carga de trabajo multiprogramada compuesta por
aplicaciones de la suite SPEC CPU 2006 [20]. Para localizar el final de la fase de inicializacion de cada
programa, utilizamos contadores hardware en una maquina real, y ejecutamos todos los binarios SPARC
con las entradas de referencia hasta su finalizacion. Para nuestro sistema con 8 procesadores hemos
producido una serie de 100 mezclas, combinaciones aleatorias de 8 programas cada una, tomados de
entre los 29 programas que componen SPEC CPU 2006. Cada programa aparece entre 18 y 41 veces,
siendo el nimero medio de apariciones de 27,6 y la desviacion tipica de 6,1. En cada mezcla, nos
aseguramos de que ninguna aplicacion esta en su fase de inicializacion, avanzando la simulacion hasta
que todas las fases de inicializacion estan terminadas. Comenzando en este punto, en cada simulacion
se ejecutan 300 millones de ciclos de calentamiento del sistema de memoria, y luego recolectamos

estadisticas para los siguientes 700 millones de ciclos.

No se han hechos esfuerzos por distinguir las aplicaciones por su tipologia ni sus patrones o estadisticas
de acceso a memoria. Se muestra en la Tabla 2 el nimero medio de fallos por kilo-instruccién (MPKI)
de cada aplicacion en todas las mezclas donde aparece, en los tres niveles de la jerarquia de memoria,

cuando las ocho aplicaciones de cada mezcla se ejecutan conjuntamente sobre el sistema base.

Aplicacion | L1 L2 LLC | Aplicaciéon | L1 L2 LLC | Aplicacién | L1 L2 LLC
astar 75 11,1 |0,7 | gromacs 11,7 | 3 1,2 | perlbench | 10,218 |0,8
bwaves 24,5 | 21,1 | 20,1 | hmmer 33 |24 |02 | povray 11,5/0,2 (0,1
bzip2 84 |39 |09 | h264ref 42 |14 |0,7 |sjeng 69 |08 |05
cactusADM | 20,8 | 11,4 | 49 | Ibm 65,4 | 38,6 | 36,7 | soplex 89 |71 |31
calculix 85 |43 |15 | leslie3d 40,4 | 23,2 | 17,9 | sphinx3 18,8 | 14,3 | 11,7
dealll 1,6 |05 |03 | libguantum | 45,8 | 33,2 | 32,2 | tonto 6,7 |13 |05
gamess 6,7 |1 0,6 | mcf 64,9 | 36 18,9 | wrf 143189 |1,5
gcc 22 6,4 | 2,1 | milc 24,6 | 23,5 | 22 xalancbmk | 15,1 | 8,7 | 2,8
GemsFDTD | 42,7 | 29,7 | 22,8 | namd 1,7 (0,2 |0,2 | zeusmp 32,3187 |72
gobmk 13,2 1,1 |0,3 | omnetpp 12,6 {9,2 | 2,2

Tabla 2: MPKI medio para cada nivel de cache del sistema base (SLLC exclusiva de 8 MB con TC-
AGE)

15

5.2 Configuracion del sistema base

Modelamos un sistema base con 8 procesadores superescalares con ejecucién especulativa y fuera de
orden. Cada procesador consta de 4 vias, una segmentacion de 18 etapas y 10 unidades funcionales.
El predictor de saltos es de tipo YAGS [21] con un PHT (Pattern History Table) de 4K entradas. La Tabla
3 muestra mas informacion del modelo de procesador simulado.

Arquitectura base SPARC v9

Procesadores 8, superescalares de 4 vias, 2.66 GHz

Segmentacion 18 etapas: 4 fetch, 4 decode, 4 dispatch/read, 1 (0 mas)
execute, 3 memory, 2 commit

Buffers Buffer de reordenacion de 128 entradas

Bancos de registros Enteros: 160 (l6gicos) + 128 (renombre)
Punto flotante: 64 (I6gicos) + 128 (renombre)

Unidades funcionales 4 Enteros, 4 punto flotante, 2 load/store

Predictor de saltos Tipo YAGS

PHT: 4.096 entradas

Tabla 3: Especificaciones del modelo de procesador

Cada procesador tiene 2 niveles de cache privados y todos los procesadores comparten la cache
exclusiva de tercer nivel. La SLLC utiliza TC-AGE como politica de reemplazo, y tiene 8 MB de capacidad
total, con cuatro bancos entrelazados a nivel de linea de cache (64B). Una red de tipo crossbar conecta
los procesadores y dichos bancos. Hay dos canales de memoria DDR3 que corren a 667 MHz. La Tabla
4 muestra mas informacion de la jerarquia de memoria simulada. El calculo de los tiempos de acceso

de las caches se ha realizado mediante la herramienta CACTI [22], con un nodo tecnoldgico de 45 nm.

Cache privada L1 I/D 32 KB, 4 vias, reemplazo LRU, tamaio de bloque 64 B, latencia
de acceso de 3 ciclos

Cache privada unificada L2 256 KB inclusiva de L1, 8 vias, reemplazo LRU, tamafio de
bloque 64 B, latencia de acceso de 7 ciclos

Interconexion Red tipo crossbar, ancho de bus de 80 bits, latencia de 5 ciclos

Cache compartida L3 (SLLC) 8 MB exclusiva (4 bancos de 2 MB cada uno), entrelazado por

bloques, tamano de bloque 64 B. Cada banco: 16 vias,
reemplazo TC-AGE de 2 bits, latencia de acceso de 10 ciclos, 32

MSHR
DRAM 2 rangos, 8 bancos, 4 KB de tamafio de pagina, Double Data
Rate (DDR3 1333 MHz). 92 ciclos de latencia de acceso bruta
Bus DRAM 2 canales a 667 MHz, cada uno con bus de 8 B, 4 ciclos de

DRAM por linea, 16 ciclos de procesador por linea

Tabla 4: Especificaciones de la jerarquia de memoria

16

6 Resultados

En esta seccion se presenta una evaluacion de los resultados obtenidos con el mecanismo propuesto,
utilizando la metodologia expuesta en la seccion anterior. Se presentan dos métricas diferentes para
resumir el rendimiento obtenido: el nimero de instrucciones por ciclo normalizado al del sistema base
(IPC normalizado) y la reduccidn en fallos por instruccion frente al sistema base. Los valores mostrados
son la media de los resultados obtenidos para cada una de las 100 mezclas. Para cada mezcla, el IPC

PROP
S IPCE

normalizado obtenido para una propuesta “"PROP” se calcula como S |pCTC-ACGE ' donde IPC, es el
t t

2
IPC obtenido para el procesador ¢ La reduccion en nimero de fallos por instruccion se calcula como
5 FPROP s [TC—AGE]
1- =l 2ls— , donde Fr es el nimero de fallos de SLLC medidos a lo largo de la
ek Selt

ejecucion para el procesador ¢ e I; es el niUmero de instrucciones ejecutadas para el procesador &

Los primeros tres apartados evaltan la influencia en rendimiento y coste de la variacion en el DR del
tamanio del buffer, el tamafio de sector y el tamafio de la etiqueta almacenada. Se obtiene asi una
configuracion balanceada entre coste y prestaciones. A continuacion, se hace un analisis del
funcionamiento del DR, explicando de qué manera reduce la tasa de fallos de la SLLC. En los siguientes
dos apartados, se proporcionan datos mas detallados a nivel de mezcla y de aplicacidn. Por Ultimo, se

realiza una comparativa con otras propuestas publicadas.

6.1 Influencia del tamano del buffer del Detector de Reuso

En esta seccidn estudiaremos como varia los resultados en funcién del tamafio del buffer del DR. La
Figura 6 muestra el IPC y la tasa de fallos obtenidos de media en las 100 mezclas descritas en la seccion
4, normalizados respecto del sistema base con TC-AGE, en funcion la cobertura de expulsion de cada

DR. El tamaio de sector del DR es de 1 bloque, y se almacenan etiquetas completas.

1,03 0,12

1,02 f-------- - -------
1,00 -4----------1B----
1

0.5 1 2 4 8 0.5 1 2 4 8
Cobertura de expulsion del DR (MB) Cobertura de expulsion del DR (MB)

0,1 fmmmmmmmmmmmmm e
0,08 |----------m-- -

0,06 f------- - ----

IPC normalizado

0,04

0,02

Reduccioén en fallos por instrucciéon

Figura 6: IPC normalizado (izquierda) y reduccion en fallos de SLLC por instruccion (derecha) frente al
sistema base con TC-AGE, en funcion de la cobertura de expulsion del DR en cada procesador.

17

A medida que el buffer del DR incrementa su tamafio, mantiene informacion de mas lineas, ampliando
su cobertura de expulsidn. Al seguir una politica de reemplazo FIFO, esto implica que se puede hacer
seguimiento de lineas que han sido expulsadas de la cache L2 hace mas tiempo, es decir, detectar
reusos mas lejanos. La configuracion dptima del DR se consigue con una cobertura de expulsion de 2
MB, donde presenta un incremento del IPC de un 2,7%, y una reduccion de los fallos por instruccion
en la SLLC del 9,6%.

6.2 Influencia del tamano de sector del Detector de Reuso

La Figura 7 muestra como varia el rendimiento cuando se incrementa el tamafio de sector en el buffer
del DR. Dentro de una misma cobertura de expulsion del DR, al doblar el tamafio de sector se reduce

a la mitad el nimero de conjuntos.

1,04
m 1 blog./sector
2 blog./sector
S R S— R
) ® 4 blog./sector
B
% M 8 blog./sector
£ 1,02 --B--—-------------- - D - < -0 -
<]
c
O
o
1,01 --B - - --------- - -0 - 1 -0 -
1

1 2 4 8
Cobertura de expulsion del DR (MB)

Figura 7: IPC normalizado frente al sistema base con TC-AGE, en funcion de la cobertura de expulsion
del DR en cada procesador, y para diferentes tamafios de sector del DR. El tamafio de sector esta
expresado en el nimero de bloques de memoria que sigue cada linea del DR.

Dentro de una misma cobertura, al incrementarse el tamafo de sector la capacidad efectiva es menor,
puesto que en algln caso la falta de localidad espacial hace que alguno de los bloques del sector no
sean referenciados. Este efecto hace que se detecte menos reuso. Ello produce una degradacion del
rendimiento respecto del 6ptimo, salvo que ya se estuviera detectando un exceso de reuso, como puede

verse para la cobertura de 8 MB.

A cambio, la cantidad de bits de memoria requeridos es menor. La Figura 8 muestra la cantidad de
memoria requerida por cada DR en funcion la cobertura de expulsion y del tamafio de sector, utilizando
una etiqueta de 10 bits. Para una misma cobertura de expulsion, el valor disminuye a medida que
incrementamos el tamario de sector. Esto es debido a que el ahorro de espacio por la reduccion del
numero de conjuntos es mayor que el incremento por afiadir bits de presencia de bloque a la linea. La
configuracion que da el mejor rendimiento, con 2 MB de cobertura, precisa de un buffer de 48 KB en
cada DR. Otras configuraciones presentan mejores relaciones entre prestaciones y coste, como por

ejemplo aquella con 2 MB de cobertura y tamafio de sector de 2 bloques, que presenta un rendimiento

18

un 0,02% menor con un buffer de 28 KB, un 42% menor. Esta ultima es la configuracion seleccionada

para utilizar en adelante para el resto de resultados.

256
128 koo m 1 blg./sec.
= 64 Locooo_ . 2 blg./sec.
b4
;Q'; 32 ® 4 blg./sec. i
— W 8 blg./sec.
3 16 q./sec I
o
S g -
1S
e a4 - N igm-----
2 F--B. O
1

1 2 4 8
Cobertura de expulsidn del DR (MB)

Figura 8: Tamafo del buffer de cada DR en KB, en funcién de la cobertura de expulsién del mismo, y
para diferentes tamafios de sector del DR. El tamafio de sector esta expresado en el nimero de bloques
que sigue cada linea. Los valores estan calculados considerando una etiqueta de 10 bits.

6.3 Influencia del tamano de la etiqueta del Detector de Reuso

Para reducir la cantidad de memoria requerida, en el DR pueden almacenarse etiquetas comprimidas,
como se ha explicado en el apartado 3.4. La Figura 9 muestra a la izquierda, en funcién del tamario
de la etiqueta almacenada, la tasa media de errores en el chequeo de la etiqueta debidos a esta
compresion. Estos errores son falsos positivos, en los cuales se detecta un falso reuso porque la etiqueta

comprimida del sector recibido coincide con la de otro sector diferente, anteriormente registrado.

0,12 1,03 0,1
S
Q
. 0,1 1,025 E0,0S
3008 ---------o-m-o- 8 1,02 =
4 = 8 0,06
S 006 [J--------------- £ 1,015 8
v 2 < 0,04
©004 [H--B----------- g 1,01 2
w» - j
s S
T 002 FR--B-B-ooao-- 1,005 g 0,02
2
0 1 0
8 9 10 11 12 8 9 10 11 12 SC 8 9 10 11 12 SC
Tamafio del tag (bits) Tamafio del tag (bits) Tamafio del tag (bits)

Figura 9: Izquierda: Tasa media de errores en el chequeo de la etiqueta debidos a la compresion de la
misma. Centro: IPC normalizado frente al sistema base con TC-AGE. Derecha: Reduccion en fallos de
SLLC por instruccion frente al sistema base con TC-AGE. Incluye la etiqueta sin compresion (“SC").

El envio a la SLLC de blogues no reusados reduce la efectividad del mecanismo. La Figura 9 muestra,
en el centro y a la derecha, el IPC y la tasa de fallos normalizados obtenidos para la configuracion de
2 MB de cobertura y un sector de 2 bloques, en funcion del tamano de la etiqueta en el DR. La pérdida

de rendimiento es muy baja para tamafios de etiqueta como el de 10 bits, donde se empeora un 0,16%

19

el IPC y un 0,34% los fallos frente a la configuracion sin compresion de la etiqueta. Ello justifica la

compresion con el fin de reducir la cantidad de memoria requerida.

En adelante, salvo indicacion de lo contrario, esta configuracion con un DR de 2 MB de cobertura de
expulsion, un tamano de sector de 2 bloques, y 10 bits de etiqueta es la utilizada en los resultados

mostrados.

6.4 Analisis del funcionamiento del Detector de Reuso

Resulta de interés detenerse a analizar de qué manera consigue el DR reducir la tasa de fallos de la
SLLC. La Figura 10 muestra, para los programas de una mezcla de ejemplo, la distribucion de los
bloques recibidos desde el punto de vista del DR, en cinco categorias: (U) primer uso, (R) primer reuso,
(MD) multiple reuso detectado solo por el DR, (MC) mulltiple reuso detectado sélo por la proveniencia
el bloque de la SLLC, y (MA) mlltiple reuso detectado por ambos mecanismos. Una expulsion
categorizada como U provoca el bypass del bloque, mientras que el resto envian el bloque para alojarlo
en la SLLC. Las expulsiones de tipos U, R o MD indican que originalmente el bloque viene de la memoria,
0 sea, provienen de un fallo en la SLLC, mientras que los tipos MC y MA indican un acierto previo en la
SLLC. El hardware propuesto del DR no puede distinguir entre los casos R y MD, pero se han separado

en la grafica para ejemplificar la complementariedad de los mecanismos de deteccion de reuso.

1
|| ||
09 |- ---- ---- ---- -—-- -——- ---- --= ---< =
0,8 ---- ---- ---- -———- -——- -—= -—= |- —- -4
w 0,7 ---- ---- -—--- -———- -——- --- -—= |- —- -4
g MA
g 0,6 ---- ---- -——-- -———- -——- --- -—= |- —- -4
2 mMC
3 0,5 ---- ---- ---- -—-- -——- --- --= --- -
E m MD
§014 === --== -TT T =TT T T - === - = R
02 |- ---- ---- -—--- -———- -——- -—= --- --- R
0,1 - ---- ---- -—--- -———- -——- -—= --- --- R
0 [] —

astar bwaves dealll gobmk milc omnetpp soplex wrf MIX

Figura 10: Fraccion de expulsiones de bloques de cada programa de una mezcla ejemplo, categorizadas
desde el punto de vista del DR segun su tipologia de reuso en: (U) primer uso, (R) primer reuso, (MD)
multiple reuso detectado sélo por el DR, (MC) muiltiple reuso detectado sélo por la proveniencia el

bloque de la SLLC, y (MA) mdltiple reuso detectado por ambos mecanismos.

El nivel de bypass varia de un programa a otro, ajustandose bloque a blogue al patron de reuso que
éste muestra. En bwavesy milc, en mas del 92% de las expulsiones se ha detectado un solo uso, y no
se envian a la SLLC. Ello es coherente con las medidas mostradas en la Tabla 2, que indican que la
SLLC apenas reduce el nimero de fallos por instruccion de estos programas. En el extremo opuesto,

en astar, omnetppy wrf menos del 3% de los bloques expulsados de las caches privadas no muestran

20

reuso, por lo que hay escaso bypass. El resto de programas, dealll, gobmky soplex, presentan valores

intermedios, con niveles de bypass del 30%, 8% y 24% respectivamente.

La cantidad de bloques que se envian a la SLLC tras detectar el primer reuso (tipo R) varia entre un
0,2% de omnetppy un 5% de dealll, con una media del 1,5%. Estos pocos bloques que muestran un
primer reuso son accedidos después multiples veces (tipos MD, MC y MA), siendo la proporcién media
de 45 detecciones de mdltiple reuso por cada primer reuso que se identifica. En ocasiones, el bloque
ya ha sido reemplazado de la SLLC, y el DR lo inserta de nuevo (MD). Esto ocurre de media en un 4%

de las veces que se detecta mdltiple reuso.

La eliminacion del envio de blogues de poca utilidad en bwaves, milc, deallly soplex, va a permitir a
la SLLC conservar mejor los bloques Utiles de esos programas, ya que no seran expulsados con tanta
frecuencia. Mas aun, también va a permitir al resto de los programas de la mezcla conservar mejor sus
bloques. La Figura 11 muestra a la izquierda la fraccion de la SLLC ocupada por los bloques de cada
programa, tanto en el sistema base sin bypass como en el sistema con DR. Tanto bwaves como miilc
ocupan en este Ultimo mucho menos espacio en la SLLC, el cual se reparte entre el resto de programas,
cuyos bloques sufren menos expulsiones. Como puede verse en la Figura 11 a la derecha, la buena
seleccion de bloques permite a bwavesy milc mantener una tasa de fallos en la SLLC similar (un 0,4%
peor en el caso de hwaves) pese a la penalizacion de segundas blusquedas en memoria de bloques que
si muestran reuso. En el resto de programas, a la buena seleccion de bloques se le une una expulsion
menos frecuente de los mismos y una mayor cantidad de espacio disponible, por lo que su nimero de
fallos por instruccion en la SLLC mejora entre un 4,7% de dealll'y un 77,3% de omnetpp. La reduccion
en fallos para toda la mezcla es del 11,8%, siendo el IPC normalizado de 1,030. La mezcla ocupa la

posicion 32 dentro de las 100 si se ordenan de mayor a menor incremento de IPC.

0,9
0,8 f-======-mmm e
0,7 f---=-------------BR - -+
06 r@--------------jiF---------4
o5 r@--------------j@g---------4
04 rB--------------@F---------4
03 r@-------------- -------1
02 F------- I ----- - =
Base 01 FBF------------ —I— - -
- n 1 o M- m W NN
-0,1
0 0,2 0,4 0,6 0,8 1 & @D

Fraccién de espacio ocupado en la SLLC

M astar W bwaves W dealll mgobmk = milc m omnetpp M soplex lwrl1

Con DR -

Reduccion en fallos por instruccién

Figura 11: Izquierda: Fraccion media del espacio ocupado por los bloques de cada programa de la
mezcla de ejemplo, en el sistema base y en el sistema con DR. Se toman datos cada millén de ciclos
de ejecucion, y se calcula la media. Derecha: Reduccion en fallos por instruccion en el sistema con DR,
normalizada a la del sistema base con TC-AGE.

21

6.5 Analisis de rendimiento por mezcla

Con el fin de analizar la variabilidad de los resultados en las distintas mezclas, la Figura 12 muestra
arriba el IPC para todas las mezclas multiprogramadas, normalizado al sistema base con TC-AGE sin
bypass. Las mezclas se ordenan en el eje horizontal en funcién de ese IPC normalizado. Abajo muestra

el nivel de bypass de cada mezcla.

=
[N)

[N

IPC normalizado
=
=
T

(
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o
©

0 10 20 30 40 50 60 70 80 90
Mezcla

Fraccién de bypass

Mezcla

Figura 12: Arriba: IPC para las 100 mezclas, normalizado al sistema base. Abajo: Nivel de bypass de
cada mezcla, en el mismo orden que arriba.

Séblo 10 de las 100 mezclas muestran decrementos del IPC frente al sistema base, de las cuales 8 son
de menos del 1%, y la mayor es del 1,6%. En el otro extremo, 11 mezclas superan el 5% de incremento,
siendo el mayor del 15,1%. La fraccion de bypass en cada mezcla varia entre un 19,2% y un 91,4%,

siendo la media del 48,2%.

6.6 Analisis de rendimiento por aplicacion

Como se ha visto en la seccion 6.4, el rendimiento obtenido varia en funcién tanto de la aplicacion en
si como del resto de aplicaciones que se ejecutan en la mezcla. La Figura 13 muestra la distribucion de
IPC normalizado frente al sistema base con TC-AGE, obtenido para cada aplicacion. Se proporcionan
cinco valores por aplicacién, que son el minimo, el primer cuartil, la mediana, el tercer cuartil y el

maximo.

22

105 | B3 ;

H
HH
—0—
HIH
HH
—H—
—0—
|_|.|
HIH
HH
—H

0,95
0,9
0,85
038 T
5 § NS X= % 90 ¥ 8% 5 ERELT LT LS 3 P5Q L L2
u>._03fﬂwuo|_Em¥ Q 3 E € c = —:EBEE
w T N o 9 O Q9 g €E 2 o 2 E(U"qj >,2Q._o o o
© o < L2 5 E z 8 £ © = ¥ 5 @ o = 8 o >
=] €] c c o
4 ® < w & O o~ £ g © 2 5 o a c o
Cl 2 © @0 e H < 2 S E 3 a & N
g g g s 8 5
o o = x

Figura 13: IPC normalizado frente a TC-AGE para todas las aplicaciones.

De las 29 aplicaciones, 6 presentan mejoras en todas mezclas donde participan (astar, bzip2, h264ref,
hmmer, sjeng y xalancbmk). Otras 10 presentan mejora a partir del primer cuartil (bwaves, gamess,
gobmk, gromacs, mcf, namd, peribench, povray, sphinx3y tonto), aunque en alguna mezcla pierden
rendimiento. En 7 de ellas (calculix, dealll, gcc, Ibm, omnetpp, soplex'y wrf), la mediana muestra
mejoras, pero el primer cuartil pierde rendimiento. Las 6 aplicaciones restantes (cactusADM, leslie3d,

libguantum, GemsFDTD, milcy zeusmp), presentan empeoramientos en la mediana.

De estas Ultimas, destacan por negativas /ibguantum (0,936 de mediana), GemsFDTD (0,957 de
mediana) y /eslie3d (0,982 de mediana), ya que las mediadas del resto estan por encima de 0,995.
Merece la pena analizar en mas detalle estos casos, ya que parecen indicar que el mecanismo del DR
es injusto con algunas aplicaciones. La Tabla 5 muestra a la izquierda la fraccion media del espacio
ocupado por los bloques de cada uno de estos programas en todas las mezclas donde participan, en el
sistema base con TC-AGE y en el sistema con DR. En el sistema base, los tres programas ocupan entre
1,8 y 3,0 veces mas espacio que el que les corresponderia en promedio (12,5%). En cambio, en el
sistema con DR se hace bypass de muchos de esos bloques al no mostrar reuso, equilibrandose la
ocupacion a entre 0,8 y 1,6 veces el espacio promedio. Al realizarse esa reduccion de espacio, se pierde
rendimiento en la aplicacion concreta, ya que la deteccion del reuso no es perfecta. Sin embargo, como
se muestra en la Tabla 5 a la derecha, con el DR las mezclas afectadas mejoran su rendimiento incluso
por encima de las demas, puesto que el espacio liberado se utiliza para almacenar bloques con mas
aciertos de otras aplicaciones. Puede concluirse que TC-AGE asigna de manera injusta un espacio
excesivo a estos programas, mientras que con el DR eso no ocurre. Ello lleva a que no alcancen de
forma individual el rendimiento anterior, pero logra que las mezclas afectadas incrementen su

rendimiento conjunto, lo cual puede entenderse mas justo que la situacién original.

23

Ocupacion Ocupacion IPC norm. de mezclas IPC norm. de mezclas
Programa con TC-AGE con DR donde esta presente donde esta ausente
libquantum 38,1% 9,6% 1,036 1,022
GemsFDTD 24,1% 15,5% 1,030 1,024
leslie3d 23,2% 19,4% 1,027 1,024

Tabla 5: Izquierda, fraccion media del espacio ocupado por los bloques de cada uno de estos programas
en todas las mezclas donde esta presente. Derecha: Media de IPC normalizado del sistema con DR
frente a TC-AGE de aquellas mezclas donde el programa esta presente/ausente.

6.7 Comparativa con otras propuestas

En las secciones anteriores, se ha mostrado el rendimiento en comparacion con una SLLC sin bypass
que utiliza TC-AGE como politica de reemplazo. En esta seccion se compara también el rendimiento con

otras dos propuestas recientes de politicas de insercion y reemplazo basadas en bypass.

Comparacion con CHAR: La politica CHAR [6] (acronimo de “cache hierarchy-aware replacement”)
para SLLC exclusivas es una propuesta de seleccion de contenidos que basa la decision de realizar o
no bypass en el patron de acceso que han tenido los bloques en todos los niveles de la jerarquia de
memoria. La decision se toma sobre los blogues expulsados de las caches L2. Los bloques son
categorizados en cuatro clases. Para la clase que muestra reuso a nivel de SLLC nunca se realiza bypass.
Para las otras tres clases, existe una logica que decide si es provechoso realizar el bypass para el
conjunto de la clase o no, actuando en consecuencia. Para ello, se monitoriza a través de contadores
la tasa de acierto de algunos conjuntos de la SLLC para los que se mantiene la politica base TC-AGE, y

se compara con la de otros conjuntos que implementan CHAR.

La Figura 14 muestra el IPC y la reduccion en fallos por instruccion, ambos frente al sistema base con
TC-AGE, obtenidos para sistemas con DR y CHAR, con 8 MB de SLLC. Como puede apreciarse, el
mecanismo del DR bate en media a CHAR tanto en reduccion de fallos (8,5% frente a 5,3%) como en
IPC normalizado (2,5% frente a 2,0%). Los resultados en cuanto a reduccion de fallos de CHAR son
coherentes con la publicacion original, pero el IPC normalizado es menor que en dicho articulo. Ello
puede deberse a la diferente metodologia, ya que los modelos de procesador y jerarquia de memoria

utilizados son diferentes en ambos trabajos.

24

1,03 0,09
5008 f-------———-
1,025 f-------------pum-------------+ 3
RV R PR——
8 1,02 f---zoo--—-——-fW] £ 0,06 f-------------
S o
5 2005 (--J------- -]
£ 1015 [--J------ - ------------] 3
5 F004 - B
<
o 5]
€ 1,01 [-- - B] 003 |--f- -8 ___
0
8002 |- -8
1,005 [--S_ - - B . - 3
2001 (-- B ______
1 0
CHAR DR RC exc. CHAR DR RC exc.

Figura 14: IPC normalizado (izquierda) y reduccién en fallos de SLLC por instruccion (derecha) frente
al sistema base con TC-AGE, para un sistema con un DR de 2 MB de cobertura de expulsion y un
tamano de sector de 2 bloques, CHAR (en exclusion) y una Reuse Cache exclusiva RC-32/8 con NRR
en la matriz de etiquetas y TC-AGE en la matriz de datos. El tamafio de datos de la SLLC es de 8 MB.

Comparacion con una Reuse Cache: La Reuse Cache [11] es una SLLC cuyas estructuras de
etiquetas y datos estan desacopladas, y que almacena sdlo los datos de las lineas que han mostrado
reuso. Del resto de lineas se hace bypass. Su intencion es reducir el espacio necesario en la SLLC
eliminando datos de lineas que no estan vivas. Para realizar la comparacion en igualdad de condiciones,
se ha desarrollado una version de la Reuse Cache donde la matriz de datos funciona en exclusion con
las L2 privadas. Esta version funciona como sigue: Cualquier bloque enviado a una L2 privada incluye
un bit adicional que indica si debe ser devuelto a la SLLC al ser expulsado o no (bypass o no bypass).
En un primer acceso, se envia el bloque desde memoria a la L2 privada con indicacion de bypass, y se
inserta la etiqueta en la matriz de etiquetas de la SLLC, al igual que en el disefio original. Esto permite
detectar el reuso de la misma forma. En un segundo acceso, con acierto en la matriz de etiquetas de
la SLLC y fallo en la de datos, se envia el bloque desde memoria a la L2 privada con indicacion de no
bypass, sin almacenarlo en la matriz de datos. La etiqueta se mantiene en la matriz de etiquetas.
Cuando el bloque se expulsa de la L2 privada, se almacena en la matriz de datos de la SLLC. Posteriores
accesos, con acierto tanto en la matriz de datos como en la de etiquetas, envian el bloque a la L2

privada con indicacion de no bypass, y lo expulsan de la matriz de datos de la SLLC.

En este trabajo utilizamos para la comparacion una Reuse Cache Exclusiva con 32MB equivalentes de
etiquetas y 8MB de datos, que puede entenderse como una cache de 32MB donde se ha reducido el
espacio en datos hasta los 8MB con la técnica de la Reuse Cache. Esta relacion entre etiquetas y datos
es la que mejor rendimiento ofrece de entre las que disponen de 8MB de datos, tanto en el articulo
original como en simulaciones adicionales que se han realizado. En la matriz de datos se emplea TC-

AGE como politica de reemplazo, de forma coherente con el resto de propuestas analizadas.

Como puede apreciarse en la Figura 14, el mecanismo del DR también bate en media a la Reuse Cache
Exclusiva tanto en reduccion de fallos (8,5% frente a 4,0%) como en IPC normalizado (2,5% frente a

0,9%). En la publicacion original no se muestran datos acerca de los fallos, y el IPC normalizado que

25

se obtiene aqui es menor que en dicho articulo, donde se emplea una cache inclusiva. Ello puede
deberse a las diferencias entre los resultados con inclusion y con exclusion. También puede deberse a
la diferencia en los modelos de procesador, ya que el modelo utilizado en el articulo que presenta la
Reuse Cache es el de un procesador con ejecucion en orden, mientras que el empleado en este trabajo

es superescalar y con ejecucion fuera de orden.

7 Conclusiones

En un sistema multiprocesador on-chip, el flujo de referencias que llega a la SLLC muestra poca
localidad temporal. Sin embargo, muestra localidad de reuso, es decir, bloques reusados a dicho nivel
tienen mas probabilidad de ser referenciados en un futuro. Esto provoca que, si se realiza una gestion
convencional, basada en la localidad temporal, el uso de la cache es ineficiente, desaprovechandose la
mayoria de su contenido. Existe un nimero importante de propuestas que tratan este problema para
caches inclusivas, pero pocas que se centran en caches exclusivas. Dichas caches se encuentran ya en

el mercado, y es previsible que se utilicen mas en el futuro.

En este trabajo se propone un nuevo mecanismo de seleccion de contenidos para caches exclusivas
que aprovecha la localidad de reuso que presentan los accesos a la SLLC. Consiste en incluir un
elemento denominado Detector de Reuso entre cada cache L2 y la SLLC, que detecta qué bloques
expulsados de las L2 no han demostrado reuso y evita que sean insertados en la SLLC, realizando

bypass de los mismos.

Se evalla esta propuesta simulando un sistema con 8 procesadores en un chip que ejecuta una serie
de cargas multiprogramadas. Configurado adecuadamente, el Detector de Reuso evita la insercidn de
bloques poco Utiles en la SLLC, facilitando que se mantengan los mas reusados. Los resultados
muestran que ello permite incrementar el rendimiento, por encima de otras propuestas recientes como
CHAR o la Reuse Cache. Por ejemplo, para una configuracion del DR balanceada entre coste y
prestaciones, se obtiene un 8,5% de reduccion de tasa de fallos y un incremento del IPC de un 2,5%,

ambos frente a un sistema base con TC-AGE.

8 Referencias

[1] S. Khan, Y. Tian y D. A. Jiménez, «Sampling Dead Block Prediction for Last-Level Caches,»
Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pp.
175-186, 2010.

[2] M. Qureshi, A. Jaleel, Y. Patt, S. Steely y J. Emer, «Adaptive insertion policies for high performance
caching,» Proceedings of the 34th annual International Symposium on Computer Architecture,
pp. 381-391, 2007.

26

[3] J. Gaur, M. Chaudhuri y S. Subramoney, «Bypass and Insertion Algorithms for Exclusive Last-
level Caches,» Proceedings of the 38th International Symposium on Computer Architecture, pp.
81-92, Junio 2011.

[4] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr. y J. Emer, «Achieving Non-Inclusive Cache
Performance with Inclusive Caches. Temporal Locality Aware (TLA) Cache Management Policies,»
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 151-162.

[5] A.Jaleel, K. B. Theobald, S. C. Steely Jr. y J. Emer, «High Performance Cache Replacement Using
Re-Reference Interval Prediction (RRIP),» Proceedings of the 37th International Symposium on

Computer Architecture, pp. 60-71, Junio 2010.

[6] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney y J. Nuzman, «Introducing hierarchy-
awareness in replacement and bypass algorithms for last-level caches,» Proceedings of the 21st

international conference on Parallel architectures and compilation technigues, pp. 293-304, 2012.

[71 N. P. Jouppiy S. J. E. Wilton, «Tradeoffs in Two-Level On-Chip Caching,» Proceedings the 21st

Annual International Symposium on Computer Architecture, pp. 34-45, 1994.

[8] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak y B. Hughes, «Cache hierarchy and
memory subsystem of the AMD Opteron processor,» IEEE micro, n°® 30(2), pp. 16-29, 2010.

[9] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S.
Idguniji, E. Ozer y B. Falsafi, «Scale-Out Processors,» ACM SIGARCH Computer Architecture News,
vol. 40, n° 3, pp. 500-511.

[10] J. Albericio, P. Ibafiez, V. Vifials y J. M. Llaberia, «Exploiting reuse locality on inclusive shared
last-level caches,» ACM Transactions on Architecture and Code Optimization (TACO), vol. 9, n°
4, p. 38, 2013.

[11] J. Albericio, P. Ibafiez, V. Vifials y J. Llaberia, «The reuse cache: downsizing the shared last-level
cache,» Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 310-321, 2013.

[12] R. Karedla, J. Love y B. Wherry, «Caching strategies to improve disk system performance,»
Computer, n° 27(3), pp. 38-46, 1994.

[13] H. Gao y C. Wilkerson, «A dueling segmented LRU replacement algorithm with adaptive
bypassing,» Proc. of the 1st JILP Workshop on Computer Architecture Competitions, 2010.

[14] S. Khan, Z. Wang y D. Jimenez, «Decoupled dynamic cache segmentation,» Proc. IEEE 18th Int.
Symp. High Performance Computer Architecture HPCA, pp. 1-12, 2012.

27

[15] C. J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr y J. Emer, «SHiP: signature-
based hit predictor for high performance caching,» Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 430-441, 2011.

[16] L. Li, D. Tong, Z. Xie, J. Lu y X. Cheng, «Optimal bypass monitor for high performance last-level
caches,» Proceedings of the Z21st international conference on parallel architectures and

compilation technigues, pp. 315-324, 2012.

[17] V. Seshadri, O. Mutlu, M. A. Kozuch y T. C. Mowry, «The evicted-address filter: a unified
mechanism to address both cache pollution and thrashing,» Proceedings of the 21st international

conference on Parallel architectures and compilation technigues, pp. 355-366, 2012.

[18] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt y B. Werner, «Simics: A full system simulation platform,» Computer, n°® 35(2), pp.
50-58, 2002.

[19] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore, M. Hill y D. Wood,
«Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset,» Computer
Architecture News, n°® 33(4), pp. 92-99, 2005.

[20] J. L. Henning, «SPEC CPU2006 benchmark descriptions,» ACM SIGARCH Computer Architecture
News, vol. 34, n® 4, pp. 1-17, 2006.

[21] A. N. Eden y T. Mudge, «The YAGS branch prediction scheme,» Proceedings of the 31st annual
ACM/IEEE international symposium on Microarchitecture, pp. 69-77, 1998.

[22] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman y N. P. Jouppi, «A comprehensive memory
modeling tool and its application to the design and analysis of future memory hierarchies,» 35th

International Symposium on Computer Architecture, pp. 51-62, 2008.

[23] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu y G. Zyner, «The visual instruction set (VIS) in
UltraSPARC,» Computer Conference, IEEE International, pp. 462-462, 1995.

28

9 Anexo A: Contexto del trabajo

Este anexo hace un breve repaso del contexto en que se lleva a cabo este trabajo fin de master.

9.1 Memorias DRAM y memorias cache

En los sistemas informaticos modernos, existe una disparidad creciente entre el ritmo al que los
procesadores necesitan acceder a los datos existentes en memoria y el ritmo al que la memoria puede
suministrarlos. Un acceso a un direccidon de memoria necesita hoy en dia tipicamente desde decenas
hasta cientos de ciclos de procesador, y dicha cifra tiende a empeorar, dado que las memorias DRAM
reducen sus tiempos de acceso a menor ritmo que los procesadores incrementan las peticiones de
acceso a sus contenidos. Esto ocasiona que existan tiempos muertos en la ejecucion de programas por
parte del microprocesador, donde no es posible continuar realizando operaciones porque no se dispone
aun de la instruccion siguiente a ejecutar o de algin dato que necesita una operacion. El acceso a los
contenidos en memoria es, por tanto, uno de los cuellos de botella fundamentales que limitan el

rendimiento de los procesadores actuales.

Una de las técnicas utilizadas para reducir el tiempo de acceso a los contenidos consiste en utilizar una
memoria mas rapida como almacenamiento intermedio entre el procesador y la memoria DRAM. Esta

memoria intermedia se denomina memoria cache, o simplemente cache.

Una cache se implementa con una tecnologia microelectrénica de mayor rendimiento que la memoria
DRAM, por lo general la misma que los microprocesadores, por lo que el acceso a sus contenidos es
mas rapido. Por contra, esta tecnologia tiene una densidad de almacenamiento menor y un gasto
energético mayor, por lo que la capacidad de una cache no puede ser la misma que la de la memoria
DRAM. En la cache se almacena solo un subconjunto de los contenidos de la memoria DRAM. Si un
contenido demandado esta presente en la cache, se suministra desde ahi con un tiempo de acceso
reducido; si no, se suministra desde la memoria DRAM, con tiempos mas largos. En el primer caso se

habla de un acierto en la cache, en el segundo de un fallo en la misma.

9.2 Localidad y gestion de las caches

Cuanto mas a menudo esta el contenido demandado presente en la cache, es decir, cuanto mas tasa
de acierto tenga, mayor sera la reduccién en el tiempo de acceso medio a los contenidos que
experimenta el procesador. La gestion de los contenidos de la cache es, por lo tanto, un elemento
central en la reduccién del tiempo de acceso conseguida gracias al afadido de una cache. Dicha
seleccion de contenidos no parece trivial, ya que debe realizarse antes de que se produzca el acceso
por parte del procesador. Es necesario anticipar los contenidos que va a demandarse o referenciarse

en un futuro proximo para poder tenerlos en la cache, y que ésta cumpla su funcion.

Para realizar una gestién de contenidos efectiva se aprovechan dos propiedades observadas en los

programas: la localidad temporal y la localidad espacial. La localidad temporal consiste en que, cuando

29

se referencia una direccion de memoria, es probable que dicha direccion se referencie en un futuro
cercano. La localidad espacial consiste en que cuando se referencia una direccion de memoria, es
probable que direcciones de memoria cercanas se referencien pronto. La existencia de localidad implica
que hay una distribucién no uniforme de los accesos a memoria que realiza un programa, y por lo tanto
se puede predecir con razonable exactitud qué accesos futuros va a realizar un procesador basandose

€N Sus accesos recientes.

Para aprovechar la localidad temporal, cuando un procesador accede a una direccién de memoria de
DRAM, el contenido recuperado se almacena en la cache, con la intencion de que esté presente para
un préximo acceso, que se prevé cercano en el tiempo. Para aprovechar la localidad espacial, las caches
reciben y almacenan no ya bytes o palabras sueltas sino bloques de memoria, que son conjuntos de
contenidos de direcciones de memoria adyacentes. Estos contenidos cercanos se prevén que seran

necesitados en un futuro cercano.

Si bien lo expuesto en el apartado anterior acerca del momento en que se inserta un contenido en una
cache es un caso habitual, no es la Unica solucion. Ademas, es necesario tener un mecanismo que
decida qué bloque se expulsa o reemplaza cuando se inserta un contenido nuevo. Al algoritmo de
decision de cuando y qué contenidos insertar en una cache, y cudles reemplazar, se conoce como

politica de insercion y reemplazo. Al bloque reemplazado se conoce como bloque victima.

9.3 Jerarquia de memoria

Cuanto mayor es el tamafio de una cache, y por lo tanto mas bloques puede almacenar, mejor puede
aprovechar la localidad presente en un programa, ya que conserva durante mas tiempo los bloques
referenciados recientemente. Esto incrementa su tasa de acierto, y disminuye el tiempo medio de

acceso a los contenidos que experimenta el procesador.

La busqueda de una mayor tasa de acierto lleva al disefio de caches lo mayores posible. Sin embargo,
debido a la tecnologia microelectrdnica utilizada, existe una relacion inversa entre el tamafio de una
cache y su tiempo de acceso, y directa entre en tamafio y su consumo. Cuanto mayor es una cache,
mas lento es y mas consume el acceso a la misma. Una cache grande acierta mas, pero responde mas
lentamente y con mayor gasto energético. En la bisqueda de un compromiso entre tamario, tiempo de
acceso y consumo, se implementan varios niveles de cache entre un procesador y la memoria DRAM,

formando una jerarquia de memoria.

La Figura 15 muestra un esquema tipico con 3 niveles de cache. El primer nivel (L1) es el mas pequefio,
rapido y eficiente. Cuando un acceso falla, se realiza la busqueda en el segundo nivel (L2), que contiene
mas bloques pero es mas lento y consume mas. Si también falla, se accede al tercer nivel (L3), adn
mayor, mas lento y menos eficiente, y si éste falla se accede a la memoria DRAM, el nivel mas lento y

gue mas consume.

30

y
A
y

Cache L2 Cache L3 «—» Memoria DRAM

A

{ Procesador }—» Cache L1

Figura 15: Esquema de cache multinivel.

9.4 Relaciones entre contenidos: inclusion y exclusion

En el esquema original con una Unica cache, ésta contiene un subconjunto de los contenidos de la
memoria principal. Al extender el modelo hacia una jerarquia de memoria con multiples niveles de
cache, la aproximacion inicial es mantener esa relacion también entre los diferentes niveles de cache.
Por ejemplo, en una jerarquia de dos niveles de cache, los contenidos de la cache L1 son un subconjunto
de los de la cache L2. Esta relacion entre los contenidos se denomina inclusion, y caches inclusivas a

las que la emplean.

La Figura 16 muestra a la izquierda un esquema simplificado del funcionamiento de una jerarquia de
memoria de 2 niveles de cache donde la cache L2 es inclusiva de L1. Cuando se accede por primera
vez a un bloque, éste se recupera de la memoria DRAM, y se envia a los dos niveles de cache (1).
Cuando un tiempo después, el bloque se expulsa de L1 porque es reemplazado por otros, pasa a estar
presente sblo en la cache L2 (2). Si el bloque ha sido modificado por una escritura del procesador, es
necesario enviar el contenido actualizado a la cache L2, para que no se pierda (3). Subsiguientes
accesos enviaran el contenido de nuevo a la cache L1 sin expulsarlo de la L2 (4), y asi sucesivamente.
Si el blogue se expulsa de la cache L2 cuando aln esta en la cache L1, es necesario invalidarlo en ésta,

lo que se denomina retro-invalidacion (5).

Procesador Procesador
Cachell [(—» (2)“r\]/1|;ti:1a Cache L1
A
(3) victima retro-
sucia . L
invalidacion it
2 : 2 (3) acierto (2) victima
© (4) acierto | B IS o
= < y expulsién
= —
N A ~ A
Cache L2 Cache L2
(5) victima l (4) victima
Memoria v Memoria
Jerarquia en inclusion Jerarquia en exclusion

Figura 16: Esquemas de jerarquias de memoria con dos niveles de cache.

Cuando la relacion entre dos niveles de cache es de inclusion, los contenidos de la cache de menor

tamanio se almacenan también en la otra, es decir, se encuentran duplicados. Dado que todos los

31

accesos a dichos contenidos van a provocar aciertos en la cache de menor tamano y nivel, el espacio
en la otra se encuentra desaprovechado. Se puede liberar ese espacio y utilizarlo para otros contenidos,
con lo que la cache de mayor nivel gana en tasa de acierto. Cuando un bloque de memoria sélo puede
estar en uno de los dos niveles de cache, la relacion existente se denomina exclusién, y caches

exclusivas a las que la emplean.

La Figura 16 muestra a la derecha un esquema similar al anterior, con la diferencia de que la cache L2
es exclusiva de L1. Cuando se accede por primera vez a un bloque desde la memoria DRAM, éste se
envia solo a la cache L1 (1). Cuando un tiempo después, el bloque se expulsa de L1 porque otros
necesitan espacio, siempre se envia para su almacenamiento en L2 (2). Si mas tarde es accedido de
nuevo, se envia de L2 a L1 y el espacio se libera en L2, dejando un hueco que sera aprovechado por

otros bloques (3). Si el bloque se expulsa de la cache L2 (4), no hay nada que invalidar en L1.

Una cache exclusiva presente la ventaja de una tasa de acierto mayor y ausencia de retro-
invalidaciones, pero también el inconveniente de que todos los bloques reemplazados en el nivel inferior
han de enviarse al siguiente cuando se expulsan, mientras que en una cache inclusiva sélo es necesario
hacerlo si el contenido ha sido modificado. Ello implica una necesidad de mayor ancho de banda en la

conexion.

9.5 Jerarquia de memoria en sistemas multiprocesador on-chip

En los Ultimos afios, los sistemas multiprocesador con memoria compartida que incluyen varios
procesadores en un mismo chip o circuito integrado estan muy extendidos. Su presencia es mayoritaria
en el mercado tanto en servidores de alto rendimiento como en sistemas de sobremesa, dispositivos

moviles y sistemas embebidos. En el contexto de este tipo de sistemas se desarrolla el presente trabajo.

" Procesador 1 " Procesador 2 " Procesador n
iy y UK y ' y
A y A 4 A 4 A A
Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1
datos instrucc. datos instrucc. | i ... datos instrucc.
Cache L2 Cache L2 Cache L2
y A A
A . y
Cache L3 compartida (SLLC) Directorio

Figura 17: Esquema de jerarquia de memoria en sistemas multiprocesador on-chip.

La Figura 1 muestra una jerarquia de memoria tipica de estos sistemas, con tres niveles de cache. Los

dos primeros niveles de cache a los que accede un procesador dado son privados y particulares de

32

dicho procesador, es decir, sdlo son utilizados por ese procesador en concreto. Dentro del chip, se
encuentran localizados muy cerca o incluso entremezclados con los circuitos del procesador, para evitar
retardos de transferencia de datos. El primer nivel ademas se encuentra dividido entre accesos a
instrucciones y accesos a datos. Esto se hace asi porque datos e instrucciones son contenidos que se
acceden desde diferentes estructuras internas del procesador, y al acceder en paralelo a dos caches se

consigue menor latencia y mas ancho de banda.

El tercer y Ultimo nivel de cache se encuentra en cambio compartido entre todos los procesadores,
denominandose cache compartida de ultimo nivel o SLLC (acronimo de Shared Last Level Cache).
Dentro del chip, esta cache compartida se encuentra localizada en su propio espacio dedicado, aparte

de los procesadores y conectado a ellos a través de una red interna.

Los tamanios de los diferentes niveles se disefian intentando minimizar el tiempo y la energia de acceso
resultante para la jerarquia completa, y atendiendo al coste en cuanto a espacio. Un tamafio tipico hoy
en dia para cada cache L1 privada son 32 KB, para cada L2 privada son 256 KB, y para una SLLC son

8 MB, si bien las cifras varian en funcién del disefio.

En un sistema multiprocesador con memoria compartida, aparece la necesidad de gestionar la
comparticion de los contenidos entre los diferentes procesadores. Cuando dos procesadores acceden a
un mismo bloque de forma concurrente, dicho bloque se encuentra replicado en las caches privadas. A
partir del momento en que un procesador escribe y modifica el bloque, los demas deben obtener dicho
valor modificado cuando vuelven a acceder al contenido, de forma que la vision del mismo sea Unica y
coherente, como si no hubiera caches intermedias y se accediera a la memoria de forma atomica. Al
mecanismo que asegura la coherencia de contenidos se denomina protocolo de coherencia. Para ello,

otorga y anula permisos de acceso a las diferentes caches, replica los cambios producidos, etc.

Una manera de implementar un protocolo de coherencia consiste en mantener un estado centralizado
de cada blogue presente en las caches, con informacion de qué caches contienen el bloque y con qué
permisos concretos. Si la SLLC es inclusiva, esta informacion puede mantenerse en la propia cache, ya
que en ella estan presentes todos los bloques de la jerarquia. Si no, esta informacion centralizada se

mantiene en una estructura denominada directorio, que puede verse también en la Figura 1.

33

10 Anexo B: Plan de trabajo

10.1 Cronograma

Este trabajo fin de master se ha realizado en diferentes fases, a lo largo del curso lectivo 2013-14. La

Figura 18 muestra un cronograma resumen de las mismas.

Task Name - [10/13 11713 12/13 01/14 02/14 03/14 04714 05/14 06/14 07/14 08/14 09/14 10/14
Estudio de propuestas previas ' :
Disefio de nuevos mecanismos
Modelado de propuestas previas
Modelado de nuevos mecanismos
Puesta a punto simulador y programas
Ejecucion de simulaciones
Recopilacion y analisis critico de resultados
Ajuste de modelos
Redaccién de la memoria
Depdsito de la memoria

Preparacion de la defensa

Defensa

Figura 18: Cronograma del trabajo fin de master.

10.2 Fases del trabajo

A continuacion se describen las fases del trabajo, y las actividades realizadas en cada uno de ellos:

- Estudio de propuestas publicadas previamente: Se localizan y estudian los articulos publicados
relativos a la misma problematica. Se realiza un analisis critico sobre los mismos, y de las fortalezas

y debilidades de sus propuestas.

- Disefio de nuevos mecanismos de seleccion de contenidos: Se disefia la Reuse Cache Exclusiva,
evolucion del disefio de la Reuse Cache inclusiva ya publicada, que se utilizara a la hora de realizar

comparativas. Se disefia el nuevo mecanismo de bypass basado en el Detector de Reuso.

- Modelado de nuevos mecanismos de seleccion de contenidos: Se modela sobre Simics y GEMS la

Reuse Cache Exclusiva y el mecanismo con Detector de Reuso.

- Modelado de propuestas publicadas: Se modela sobre Simics y GEMS la SLLC exclusiva que se

utiliza como base en las comparaciones, asi como la propuesta CHAR ya publicada.

- Puesta a punto de las herramientas de simulacion y de los programas de prueba: Se evoluciona el
simulador, previamente utilizado en otros trabajos del area de Arquitectura de Computadores de la
Universidad de Zaragoza, pasando de un modelo de procesador en orden a un modelo de
procesador superescalar fuera de orden. Para ello, se incorpora el modulo Opal de GEMS, y se
implementa sobre el mismo la simulacién de nuevas instrucciones del juego de instrucciones VIS
de SPARC V9, de inicio no soportadas por el mddulo y necesarias para los programas de prueba.

Se adaptan los programas de prueba de la suite SPARC para su uso con el simulador mejorado.

34

Ejecucion de programas de simulacion sobre un clister de computacion: Se definen los diferentes

experimentos a realizar y se ejecutan las simulaciones sobre los cllsteres hermesy atps.

Recopilacion y analisis critico de resultados: Se toman de la salida del simulador las medidas Utiles
y se recopilan para su analisis. Para ello, se modela e implementa una base de datos relacional que
sirva para almacenar tanto las caracteristicas de los sistemas modelados como los experimentos,
sus parametros y sus resultados. También se crean los programas de carga de valores en la base
de datos a partir de los ficheros de resultados del simulador, y las consultas SQL de extraccion de
datos. Esta base de datos centraliza toda la informacion del proyecto, facilita la replicabilidad de
los experimentos y permite un analisis mas rapido de los resultados. Tras la recopilacion de

resultados, se realiza un analisis critico de los mismos.

Ajustes de modelo: A partir del andlisis de los resultados, se realiza el ajuste necesario en los

modelos, como correccion de errores, modificacion de parametros, etc.

Redaccién de la memoria: Se redacta y revisa la memoria y sus anexos.

Deposito de la memoria.

Preparacion de la defensa ante el tribunal: Se prepara y ensaya la presentacion a realizar.

Defensa ante el tribunal.

35

