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Selección de contenidos basada en reuso para caches 

compartidas en exclusión 

RESUMEN 

En los últimos años, los sistemas multiprocesador con memoria compartida que incluyen varios 

procesadores en un mismo chip o circuito integrado están muy extendidos. Estos sistemas suelen incluir 

una cache compartida de último nivel (SLLC). Recientes estudios revelan que el flujo de referencias 

que llega a la SLLC muestra poca localidad temporal. Sin embargo, muestra localidad de reuso, es decir, 

los bloques reusados (referenciados varias veces) tienen más probabilidad de ser referenciados en un 

futuro. Esto provoca que, si se realiza una gestión convencional, basada en la localidad temporal, el 

uso de la cache es ineficiente, desaprovechándose la mayoría de su contenido. Existe un número 

importante de propuestas que tratan este problema para caches inclusivas, pero pocas que se centran 

en caches exclusivas. Dichas caches se encuentran ya en el mercado, y es previsible que se utilicen 

más en el futuro.    

En este trabajo se propone un nuevo mecanismo de selección de contenidos para caches exclusivas 

que aprovecha la localidad de reuso que presentan los accesos a la SLLC. Consiste en incluir un 

elemento denominado Detector de Reuso entre cada cache L2 y la SLLC, al que se dirigen todos los 

bloques expulsados de la cache L2. Su misión es detectar bloques sin reuso para evitar que sean 

insertados en la SLLC, realizando bypass de los mismos. 

Esta propuesta, junto con otras publicadas recientemente, se implementa en un simulador de sistemas 

completos que modela de forma detallada un sistema con 8 procesadores en chip y su jerarquía de 

memoria. Para evaluar la propuesta y compararla con otras similares, se simulan ciclo a ciclo un 

conjunto de cargas multiprogramadas formadas por programas de prueba reconocidos en la comunidad 

científica. 

Configurado adecuadamente, el Detector de Reuso evita la inserción de bloques poco útiles en la SLLC, 

facilitando que se mantengan los más reusados. Los resultados muestran que ello permite incrementar 

el rendimiento, por encima de otras propuestas recientes como CHAR o la Reuse Cache. Por ejemplo, 

para una configuración del Detector de Reuso balanceada entre coste y prestaciones, se obtiene un 

8,5% de reducción de la tasa de fallos de la SLLC y un incremento del IPC de un 2,5%, frente a un 

sistema base con política de reemplazo TC-AGE. Este incremento de prestaciones se distribuye de forma 

equitativa, ya que aparece en un 90% de las mezclas de programas simuladas y sin perjudicar de forma 

injusta a ningún programa en particular. 
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1 Introducción 

En los últimos años, los sistemas multiprocesador con memoria compartida que incluyen varios 

procesadores en un mismo chip o circuito integrado están muy extendidos. Su presencia es mayoritaria 

en el mercado tanto en servidores de alto rendimiento como en sistemas de sobremesa, dispositivos 

móviles y sistemas embebidos. En ellos, el diseño habitual (ver Figura 1) es el de una jerarquía de 

menoría multinivel, que incluye una cache compartida de último nivel o SLLC (acrónimo de Shared Last 

Level Cache). Ésta es crítica en términos de coste, prestaciones y consumo. En coste, porque suele 

ocupar dentro del chip una superficie comparable a la de varios procesadores. En prestaciones y 

consumo, porque es el último recurso existente antes acceder a la memoria DRAM que, situada fuera 

del chip, es inferior en prestaciones y consume más energía. 

Cache L3 compartida (SLLC)

Cache L1
datos

Cache L1
instrucc.

Procesador 1

Cache L2

Cache L1
datos

Cache L1
instrucc.

Procesador 2

Cache L2

Cache L1
datos

Cache L1
instrucc.

Procesador n

Cache L2

.....

Directorio
 

Figura 1: Esquema de jerarquía de memoria en sistemas multiprocesador on-chip. 

Por desgracia, varios estudios ponen de manifiesto que los diseños tradicionales no resultan eficientes 

en su implementación en SLLCs, ya que desaprovechan una fracción mayoritaria del espacio de 

almacenamiento. Esto es así porque almacenan bloques muertos, es decir, bloques que no van a ser 

accedidos nunca antes de su expulsión. Frecuentemente, los bloques están muertos en cuanto llegan 

a la SLLC [1] [2] [3].  La razón de que esto ocurra es que las caches L1 y L2 aprovechan la mayor parte 

de la localidad temporal, por lo que resulta filtrada antes de llegar a la SLLC [4] [5]. Con el objetivo de 

evitar este efecto, e incrementar la tasa de acierto de la SLLC, se han publicado en los últimos años 

varias propuestas de modificaciones en la política de inserción y reemplazo en la SLLC  (ver sección 4). 

La mayor parte de los trabajos se refieren a caches inclusivas o no inclusivas, y sólo un grupo reducido 

[3] [6] se enfoca en una SLLC exclusiva [7].  

Al contrario que una cache inclusiva tradicional, una SLLCs exclusiva no almacena los datos que ya 

están presentes en los niveles interiores de cache. Ello permite mejorar el rendimiento de la SLLC, ya 

que supone un espacio adicional disponible. Hoy en día, hay ya fabricantes comerciales que incluyen 

una SSLC exclusiva, o parcialmente exclusiva, en su diseño de microprocesador [8]. A medida que el 
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número de procesadores dentro del chip crece, también lo hace la cantidad de cache en los niveles 

interiores y, por lo tanto, la diferencia en rendimiento entre una SLLC exclusiva y una inclusiva. En un 

futuro que se prevé de muchos procesadores (many-core) dentro del chip, cientos o miles, y SLLCs no 

mucho mayores que las existentes hoy en día [9], utilizar una cache inclusiva será más ineficiente aún. 

Por lo tanto, es de esperar que la utilidad de las SLLC exclusivas crezca en un futuro, salvo cambios en 

el diseño básico de la jerarquía de memoria. 

Este trabajo se centra en mejorar la eficiencia y el rendimiento de una SLLC exclusiva en un entorno 

multiprocesador on-chip. En concreto, se presenta un nuevo mecanismo de selección de contenidos 

para caches exclusivas que aprovecha la localidad de reuso que presentan los accesos a la SLLC [10]. 

Dicha localidad consiste en que, cuando se referencia un bloque dos veces (se reusa), es probable que 

dicha dirección se referencie en un futuro cercano. El mecanismo propuesto persigue que sólo se 

encuentren en la SLLC aquellos bloques que tienen reuso en dicho nivel de cache, es decir, aquellos 

bloques que son solicitados más de una vez desde las L2 privadas a la SLLC. Para ello, un elemento 

denominado Detector de Reuso detecta qué bloques expulsados de las L2 no presentan reuso, y evita 

que sean insertados en la SLLC, realizando bypass de los mismos.  

Se evalúa esta propuesta simulando un sistema con 8 procesadores en un chip que ejecuta una serie 

de cargas multiprogramadas. El Detector de Reuso evita la inserción de bloques poco útiles en la SLLC, 

facilitando que se mantengan los más reusados. Ello permite incrementar el rendimiento, por encima 

de otras propuestas recientes. 

El trabajo está estructurado como sigue. La sección 2 muestra evidencia experimental de la presencia 

mayoritaria de bloques muertos en una SLLC exclusiva, y de que la localidad de reuso es una propiedad 

presente en los accesos a la misma. La sección 3 explica en detalle la propuesta del Detector de Reuso. 

La sección 4 analiza los trabajos relacionados, y los compara con esta nueva propuesta. La sección 5 

detalla la metodología empleada, incluyendo el entorno de experimentación y la configuración de los 

sistemas simulados. La sección 6 presenta los experimentos y analiza los resultados, comparándolos 

con dos propuestas actuales, que son CHAR [6] y una versión en exclusión de la Reuse Cache [11]. Por 

último, en la sección 7 se extraen conclusiones.  

Adicionalmente, tras las referencias se han incluido dos anexos. El anexo A es breve repaso del contexto 

en que se realiza este trabajo, y el anexo B detalla el plan de trabajo que se ha seguido, con una 

descripción de sus fases. 

2 Motivación 

En esta sección, se analiza el comportamiento de un conjunto de 100 mezclas multiprogramadas 

creadas combinando de forma aleatoria los 29 de programas de la suite SPEC CPU 2006, ejecutando 

sobre un sistema con 8 procesadores, caches privadas y una SLLC exclusiva de 8 MB (ver detalles del 

entorno en la sección 4). El objetivo es comprobar que el la SLLC es poco eficiente en el 
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aprovechamiento de su espacio, y que una selección de los contenidos basada en el reuso de cada 

bloque puede resultar de utilidad para incrementar su eficiencia. 

La Figura 2 muestra, para las 100 mezclas mencionadas, la fracción de bloques contenidos en la SLLC 

que de media están vivos a lo largo de la ejecución de la mezcla. Se entiende que un bloque presente 

en la SLLC está vivo en un determinado momento si experimentará al menos un acceso antes de ser 

expulsado, por lo cual resulta útil mantenerlo en la cache. Por el contrario, se entiende que un bloque 

está muerto en un determinado momento cuando va a ser expulsado en un futuro sin haber recibido 

ningún acceso, es decir, sin resultar de utilidad adicional. En cada mezcla, se toma información de los 

bloques vivos cada millón de ciclos, y se muestra en el gráfico la media de los valores. 

 

Figura 2: Fracción media de bloques de una SLLC exclusiva de 8 MB que están vivos durante la 
ejecución, para 100 mezclas multiprogramadas de SPEC CPU2006  (ver sección 4). Se muestran 
valores para las políticas de reemplazo NRF y TC-AGE. Las mezclas están ordenadas de mayor a 
menor fracción de bloques vivos con NRF. 

La información se representa para dos políticas de reemplazo diferentes, NRF y TC-AGE. La política NRF 

(acrónimo de Not Recently Filled) es análoga a la NRU (Not Recently Used) en caches inclusivas. NRF 

utiliza un único bit de reemplazo por bloque, y selecciona como víctima a un bloque aleatorio que no 

haya sido recientemente insertado, es decir, no tenga el bit de reemplazo a uno. El bit de reemplazo 

se pone a uno cuando el bloque se inserta en la SLLC, proveniente de una expulsión de una cache L2 

privada. Si todos los bits del conjunto están a 1, se cambian todos a 0 salvo el del bloque recién 

insertado. La política TC-AGE [3] para caches exclusivas es análoga a SRRIP [5] para caches inclusivas, 

y utiliza 2 bits por línea de cache para almacenar la edad asignada al bloque. TC-AGE selecciona como 

víctima un bloque aleatorio de entre aquellos del conjunto que tengan la menor edad. La edad se asigna 

cuando se inserta el bloque en la SLLC. Si el bloque ya ha recibido anteriormente algún acierto en la 

SLLC, se le asigna la edad 3, y si no se le asigna la edad 1. La información de acierto en la SLLC se 

guarda en un bit adicional en la cache L2 privada, y se envía a la SLLC junto con el bloque. Cuando, 

tras un reemplazo, no queda ningún bloque con edad 0 en el conjunto, se resta 1 a la edad de todos 

los bloques. Es decir, TC-AGE asigna mayor edad, y por lo tanto menor probabilidad de reemplazo, a 

los bloques que hayan demostrado ser útiles en la SLLC, ya que han sido reusados.  

Como puede apreciarse en la figura, la fracción de bloques vivos con NRU varía entre un 1% y un 48%, 

en función de la mezcla, siendo la media de un 18%. La política TC-AGE demuestra su efectividad 
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incrementando los bloques vivos en 99 de las 100 mezclas, alcanzando una media del 26%. Estos 

valores demuestran que la SLLC no utiliza eficientemente su espacio de almacenamiento, ya que la 

mayoría de los bloques están muertos incluso usando las mejoras políticas de reemplazo propuestas 

en la literatura. 

La Figura 3a muestra, para cada programa que participa en la carga de trabajo mencionada, la media 

de la distribución de bloques reemplazados de la SLLC, en función del número de accesos que cada 

bloque ha registrado durante su estancia en la cache. Cada bloque se clasifica según haya recibido un 

solo acceso (U), dos accesos (R, reuso), o más de dos accesos (M, múltiple reuso). Como política de 

reemplazo de la SLLC se ha usado TC-AGE. 

 

   

Figura 3: Arriba (a), distribución media de reemplazos de bloques de una SLLC exclusiva de 8 MB 
con TC-AGE, para 100 mezclas multiprogramadas de SPEC CPU2006 (ver sección 4), categorizadas 
según el número de accesos que recibe el bloque en la SLLC antes de su reemplazo: (U) un uso, (R) 
reuso – dos usos, (M) múltiple reuso –  tres o más usos. Abajo (b), distribución media de aciertos 
en la SLLC según las mismas categorías. 

Incluso con la política TC-AGE, la gráfica muestra que, en función del programa, entre un 64% y un 

99% de los bloques reemplazados de la SLLC tienen un único uso antes de su reemplazo, con una 

media del 85%. Este uso es el que les insertó en la cache, por lo que su estancia ha sido inútil. Esto es 

debido a que, en este nivel de la jerarquía de memoria, la localidad temporal de los programas es 

escasa, ya que ha sido filtrada por las caches privadas. Todos estos bloques son buenos candidatos 

para no ser siquiera almacenados en la SLLC, es decir, para hacer bypass cuando son expulsados de la 

cache L2.  

La Figura 3b muestra, para cada programa, la media de la distribución de los aciertos en SLLC, en 

función del tipo de bloque sobre el que se producen (U, R, M). La mayor parte de los aciertos de la 
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SLLC se producen en bloques con múltiple reuso (M), es decir, a nivel de SLLC los programas muestran 

localidad de reuso. En 27 de los 29 programas, entre un 78% y un 99% de los aciertos son en dichos 

bloques, mientras que en zeusmp y GemsFDTD son del 59% y del 33% respectivamente.  

Estos resultados nos indican que una política de selección de contenidos de la SLLC que sólo almacene 

los bloques que han demostrado reuso (al menos dos accesos) conseguiría guardar la pequeña porción 

de bloques con múltiples reusos (M en Figura 3a) que producen la mayoría de los aciertos (M en Figura 

3b). Además, esta política impediría la entrada en SLLC de la gran porción de bloques que no se llegan 

a reusar (U en Figura 3a), lo que disminuiría la probabilidad de que los bloques M fuesen reemplazados. 

3 Diseño e implementación de la propuesta 

3.1 Diseño general 

El diseño de partida es el de una SLLC cuyos contenidos se encuentran en exclusión con los contenidos 

de las caches privadas de cada procesador. Para mantener la coherencia en la jerarquía de memoria, 

existe también un directorio que mantiene, para cada bloque presente en dicha jerarquía, tanto su 

estado como la información precisa de dónde se encuentra, que puede ser uno o varios procesadores 

y/o la SLLC. 

En dicho diseño, los bloques que llegan de memoria se envían directamente a la cache L2 solicitante. 

Eventualmente, el bloque es expulsado de ella y se envía para su almacenaje en la SLLC. Desde ahí, o 

bien el bloque es solicitado de nuevo desde alguna cache L2, siendo entonces enviado y desalojado de 

la SLLC, o bien el bloque es reemplazado por otro que necesita espacio para su inserción. 

Sobre este diseño, la propuesta es incluir un elemento intermedio a la salida de cada cache L2, entre 

cada una de éstas y la SLLC. A este elemento, que llamaremos Detector de Reuso (DR), se dirigen 

todos los bloques expulsados de la cache L2. Al estar el DR situado fuera del camino de petición de 

bloques a la SLLC, el retardo que añade no afecta a los tiempos de acierto o fallo de la SLLC. En cambio, 

afecta al tiempo que necesita un bloque desde su expulsión de la cache L2 a su eventual llegada a la 

SLLC. La Figura 4 muestra un esquema de este diseño. 

Cache L2
Detector de 

Reuso

Bloques 
expulsados SLLC 

exclusiva

Bloques 
seleccionados

 

Figura 4: Esquema del diseño general con Detector de Reuso. 

El DR decide entre enviar el bloque a la SLLC o no hacerlo, es decir, hacer bypass del mismo. La decisión 

se basa en las categorías mostradas en la sección anterior: Si un bloque expulsado se clasifica en la 

categoría U, con un único uso, se hace bypass. Si se clasifica en la categoría R o M, con uno o más 

reusos, no se hace bypass. 
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Ni la SLLC ni el directorio requieren modificaciones estructurales para adaptarse al mecanismo del DR. 

Sí que requieren cambios en su protocolo de coherencia y lógica de control, para tener en cuenta el 

posible bypass. Si bien en este trabajo se utiliza TC-AGE como política de reemplazo en la SLLC, es 

posible implementar el DR con cualquier política de reemplazo. 

3.2 El Detector de Reuso 

El DR está compuesto por un buffer que almacena direcciones de bloques y por su lógica de gestión. 

La misión del buffer es almacenar las direcciones de los bloques que llegan al detector, con el fin de 

identificar si es la primera vez que dicho bloque se expulsa de la cache L2 o si ya ha sido expulsado 

anteriormente. Una primera expulsión implica que no hay reuso por parte de la cache L2, mientras que 

las siguientes implican que sí lo hay.  

El buffer está organizado de forma asociativa por conjuntos, y sus características (tamaño, 

asociatividad, política de reemplazo) son variables de diseño.  De entre ellas, la fundamental es el 

tamaño. Para que el DR sea efectivo, éste ha de ser lo suficientemente grande como para almacenar 

una parte significativa de las direcciones de los bloques entre su uso y su reuso. Se define la cobertura 

de expulsión como el espacio de memoria ocupado en conjunto por los bloques expulsados para los 

que el DR puede hacer seguimiento en un determinado momento. Por ejemplo, si el DR puede hace 

seguimiento de 1024 bloques de memoria, y cada bloque es de 64B, su cobertura de expulsión es de 

64 KB. 

El DR utiliza también, para detectar el reuso, el dato de si el bloque fue enviado a la cache L2 desde 

memoria o proviene de un acierto en la SLLC. La proveniencia de la SLLC indica también reuso. Esta 

información se almacena en la cache L2, en un bit adicional existente en cada línea. Cuando el bloque 

es expulsado de la cache L2, este bit se incluye en el mensaje que se dirige al DR. Esta misma 

información es utilizada por la política de reemplazo TC-AGE, por lo que no comporta necesidades de 

espacio adicionales si el DR se implementa sobre un sistema que ya esté utilizando TC-AGE.  
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3.3 Funcionamiento del Detector de Reuso 

La Figura 5 muestra un esquema del funcionamiento del DR. Sobre esta figura, se detalla a continuación 

las operaciones que realiza. 

Cache L2

SLLC

(1) proviene de acierto previo en SLLC

Buffer DR

(2) proviene de 
memoria DRAM

Búsqueda de 
dirección

(4) Dirección presente

(3) Dirección ausente

Inserción de 
dirección

(5) Excepción, baja 
prioridad

Bypass
 

Figura 5: Esquema de funcionamiento del Detector de Reuso. 

Cuando llega un bloque expulsado de la cache L2 llega al DR, se inspecciona primero el bit que indica 

si el bloque provenía originalmente de la SLLC. Si es así, esto indica que el bloque tiene reuso a ese 

nivel, por lo que se marca para su almacenamiento en la SLLC (1).  

Si el bloque provenía de memoria DRAM (2), se busca su dirección en el buffer. Si la dirección del 

bloque no está presente, esto indica que es la primera vez que se expulsa de la L2, por lo que no 

muestra reuso. El bloque se marca para bypass, y su dirección se inserta en el buffer (3). Si el bloque 

sí está ya presente en el buffer, esto indica que es la segunda o sucesivas veces que ha estado en la 

cache L2, por lo que muestra reuso. Por lo tanto, el bloque se marca para su almacenamiento en la 

SLLC (4). 

La información obtenida de la presencia de la dirección del bloque en el buffer y la obtenida de la 

proveniencia original del bloque son complementarias. El buffer es el responsable de detectar por 

primera vez el reuso, almacenando entonces el bloque en la SLLC. Después, tanto la proveniencia desde 

la SLLC como la presencia en el buffer son indicativos de reuso. En función de la actividad de reemplazo 

del buffer y de la SLLC, se dan los casos de que en sucesivas apariciones del bloque éste proviene de 

la SLLC y además está en el buffer, sólo uno de los dos, o ninguno. En este último caso, la detección 

del reuso está fuera del alcance de la capacidad del buffer y de la SLLC, y el bloque se marca para 

bypass. 

Como excepción, una fracción predeterminada de los bloques marcados para bypass se marca para su 

almacenamiento con baja prioridad en la SLLC, revirtiendo la decisión de hacer bypass (5). Al recibir 

un bloque con esta marca, la SLLC lo almacenará sólo si hay una vía libre en el conjunto 

correspondiente. Se insertará además con la prioridad más baja (probabilidad de reemplazo más alta) 

de la política de reemplazo. Esto se hace así porque, al ser la SLLC exclusiva, se genera un nuevo hueco 
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en un conjunto cada vez que se produce un acierto. Si no hay bypassing, este hueco se rellena con 

relativa rapidez, pero no ocurre así si el nivel de bypass es alto, con lo que se desaprovecha espacio en 

la SLLC. Al rellenar estos huecos con bloques no reusados, ese espacio se utiliza, si bien no de forma 

tan eficiente. Las simulaciones realizadas muestran que es suficiente con transformar uno de cada 32 

bloques marcados para bypass para obtener la mayor parte del beneficio en rendimiento. 

Finalmente, si el bloque está marcado para su almacenamiento en la SLLC, se envía a la misma. Si está 

marcado para bypass, el funcionamiento depende de si el bloque está sucio o no, es decir, si ha sido 

modificado o no durante su estancia en la cache L2. Si está sucio, se envía para su escritura directa en 

memoria y, si está limpio, se envía un mensaje de control para la actualización del directorio. El 

directorio se actualiza también con el resto de mensajes. 

Si se utiliza TC-AGE como política de reemplazo en la SLLC, como es el caso del entorno de simulación 

utilizado en este trabajo, el bit que indica la proveniencia o no del bloque de la SLLC se envía también 

en caso de no realizar bypass. Esta información se utilizará en TC-AGE como en el algoritmo original, 

si bien ahora presenta un significado ligeramente diferente. La primera vez que no se hace bypass está 

a cero, pero el DR ya ha detectado reuso para el bloque, con al menos dos accesos. Cuando en sucesivas 

ocasiones está a uno, el bloque ha recibido ya al menos tres accesos. Por lo tanto, TC-AGE otorgará 

menos probabilidad de reemplazo en la SLLC a bloques con múltiple reuso que a bloques que han sido 

reusados una única vez. 

3.4 Detalles de implementación  

En una primera aproximación, el buffer del DR puede implementarse de forma asociativa por conjuntos, 

conteniendo la etiqueta asociada a la dirección del bloque, un bit de validez, y la información para la 

política de reemplazo. Cada línea de la cache del DR almacenaría una dirección de bloque.  

Aunque esta implementación es sencilla y efectiva, presenta el inconveniente de requerir mucho espacio 

para almacenar poca información. Por ello proponemos utilizar dos técnicas para reducir el espacio 

necesario: Almacenar las etiquetas por dirección de sector en vez de por dirección de bloque y 

comprimir las etiquetas a guardar.  

Se entiende por sector a un conjunto de bloques de memoria consecutivos y alineados al tamaño de 

sector. Almacenar en el DR las etiquetas por dirección de sector permite guardar la información de 

varias direcciones de bloques consecutivos de memoria en cada línea del buffer del DR. Para cada 

bloque es necesario mantener un bit de presencia. Por ejemplo, con un tamaño de sector de 4 bloques, 

una línea se compondrá de una etiqueta (calculada a partir de la dirección del sector), un bit de validez, 

los bits de reemplazo y 4 bits de presencia.  

Cuanto más se incremente el tamaño de sector se podrá hacer seguimiento de más bloques por cada 

línea, y serán necesarias menos líneas para mantener la cobertura requerida. No obstante, se requiere 

que exista suficiente localidad espacial en los programas ejecutados. Si no, algunos de los bloques de 
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cada sector no estarán presentes en el flujo de expulsiones de la cache L2, por lo que ese espacio se 

desaprovecha.  

La compresión de las etiquetas a guardar busca almacenar menos bits para la etiqueta presente en 

cada línea, manteniendo una buena capacidad de discriminación entre sectores. El proceso que se 

realiza es como sigue: si llamamos t al número de bits de la etiqueta completa, y c al número de bits 

de la etiqueta comprimida, se toman los t bits y se separan en varios trozos de tamaño c. El último 

trozo se rellena con bits a “0” hasta ese tamaño. Después, se realiza la operación XOR de todos ellos, 

obteniéndose un único valor de c bits, que es el que se almacena.  

La utilización de etiquetas comprimidas puede provocar falsos positivos, ya que son varios los sectores 

de cache L2 que comparten el mismo valor de etiqueta comprimido. Esto provoca la detección de falsos 

reusos, y el envío de bloques realmente no reusados a la SLLC. Estos bloques no provocan problemas 

funcionales, pero sí pueden llegar a degradar del rendimiento. Para limitar esta degradación es 

necesario mantener un número de bits suficiente. El valor concreto depende del tamaño del buffer y 

de su asociatividad. 

El buffer del DR utiliza FIFO de 1 bit como política de reemplazo. Las simulaciones realizadas indican 

que utilizar FIFO de 1 bit mantiene un rendimiento del DR muy similar a otras que requieren de más 

espacio. La política FIFO implica que la información de antigüedad se actualiza sólo durante la inserción 

de una dirección, y no durante aciertos posteriores. Ello es coherente con la misión prioritaria del buffer, 

que es detectar el primer reuso de un bloque. Para los siguientes reusos, la información de la 

proveniencia del bloque de la SLLC es la fundamental, si bien se utiliza también la presencia en el buffer 

de forma complementaria por si el bloque ha sido expulsado de la SLLC. 

La asociatividad utilizada para el buffer del DR es 16. Las simulaciones realizadas indican que mantiene 

un rendimiento similar a otras asociatividades más altas.  

3.5 Coste de hardware 

En esta sección, se calcula el número total de bits de almacenamiento que es necesario añadir para 

implementar el Detector de Reuso sobre el sistema base descrito en la sección 5.2. Aparte de este 

almacenamiento, el DR requiere también su lógica de gestión. 

La configuración del DR considerada tiene una cobertura de expulsión de 2 MB, con 1.024 conjuntos 

de asociatividad 16, un tamaño de sector de 2 bloques, y utiliza etiquetas de 10 bits. Esta configuración 

es la utilizada en la sección 6 para realizar la comparativa con otras propuestas, tras el trabajo de 

selección de una configuración balanceada considerando prestaciones frente a coste. 

La Tabla 1 detalla el cálculo del coste. Considerando una SLLC de 8 MB como la descrita en la sección 

5.2, el coste total para los 8 procesadores es de un 2,6% del tamaño de la SLLC. 
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Componente Coste 

Validez 1 bit 

Etiqueta de sector 10 bit 

Presencia de bloque en sector 2 bits 

Reemplazo 1 bit 

Total por entrada  14 bits 

Número de entradas 16.384 

Total DR por procesador 28 KB 

Número de procesadores 8 

Total DR multiprocesador  224 KB 

Tabla 1: Coste de almacenamiento adicional del DR  

4 Trabajos relacionados 

La localidad de reuso ha sido estudiada en varias propuestas publicadas. Inicialmente se identifica y 

aprovecha en el ámbito de caches de discos, donde Karedla et al. proponen segmentar la pila de 

reemplazo LRU para separar, en dos listas, los bloques referenciados una vez de los referenciados 

varias veces (reusados). Se protege así a los reusados de ser expulsados por un súbito exceso de flujo 

de los no reusados [12]. Esta misma estrategia se ha aplicado recientemente como política de 

reemplazo para SLLCs. Albericio et al. identifican que el flujo de accesos a la SLLC presenta localidad 

de reuso, y priorizan con su política NRR la expulsión de bloques de la lista de no (recientemente) 

reusados, manteniendo un coste equivalente a NRU [10]. Qureshi et al. limitan con su política LIP el 

tamaño de la lista no referenciada a un único elemento, y proponen un mecanismo de competición 

entre conjuntos con distinta política (set dueling) para decidir si utilizar LIP o LRU [2]. Gao et al. utilizan 

la segmentación de la pila LRU para la división de cada conjunto de la SLLC en dos listas de tamaño 

variable, aplicando otras optimizaciones como la utilización de bypassing si resulta rentable según los 

resultados de la competición entre conjuntos [13]. Este mismo mecanismo es utilizado por Khan et al. 

para limitar de forma dinámica el tamaño de las listas, y opcionalmente realizar bypass de bloques, 

adaptándose al comportamiento reciente de los accesos a la SLLC [14]. Al contrario que en estas 

propuestas, el DR evita la presencia de bloques no reusados en la SLLC, y utiliza un buffer aparte para 

que la detección del reuso no esté limitada por la capacidad de almacenamiento de la SLLC o las 

anteriores decisiones de selección de contenidos realizadas. 

Otras propuestas buscan predecir el comportamiento de reuso de los bloques, y utilizan esta predicción 

para modificar la política de inserción y reemplazo en la SLLC.  Jaleel et al. realizan una predicción del 

intervalo de re-referencia de cada bloque que, en su versión estática (SRRIP), asigna un intervalo 

intermedio a los bloques recién insertados, y un intervalo mínimo a los que son reusados, priorizando 

el reemplazo de los bloques con intervalo más largo. En su versión bimodal (BIP), algunos bloques son 

aleatoriamente insertados con menor intervalo de re-referencia y, en su versión dinámica (DRRIP), se 
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selecciona entre los dos anteriores utilizando competición entre conjuntos [5]. Wu et al. presentan una 

evolución de SRRIP donde se busca mejorar su predicción estática, correlándola con otros valores de 

referencia como el contador de programa (PC), la región de memoria y la reciente secuencia de 

instrucciones ejecutada [15]. Gaur et al. adaptan SRRIP a su uso en caches exclusivas dándole el 

nombre de TC-AGE, y proponen nuevos mecanismos de predicción para dicho tipo de caches basándose 

en el número de veces que un bloque viaja de la SLLC a la cache L2 y en el número de accesos que 

presenta en la cache L2 [3]. El mecanismo del DR es compatible con TC-AGE, siendo de hecho la política 

de reemplazo seleccionada para la SLLC a la hora de mostrar resultados en la sección 6. 

En la misma línea predictiva, Li et al. realizan un seguimiento de los pares de bloques víctima y entrantes 

y, al detectar el primer reuso de los dos, aproximan el comportamiento que tendría un algoritmo de 

bypass óptimo, y predicen que aquellos bloques que se accederán desde el mismo contador de 

programa se comportarán igual, guiando su decisión de bypass [16]. Seshadri et al. hacen un 

seguimiento global a través de un filtro Bloom de las direcciones de los últimos bloques expulsados de 

la SLLC y, si un bloque expulsado es reaccedido pronto, predicen que es un bloque con alta probabilidad 

de reuso, al que se asigna la menor probabilidad de reemplazo [17]. Chaudhuri et al. proponen un 

mecanismo (CHAR) que registra el patrón de acceso que han tenido los bloques en todos los niveles 

de la jerarquía de memoria, y los clasifica en cuatro clases en función del mismo. Para cada clase, se 

observa de forma dinámica si sus bloques muestran reuso o no, y se predice que el comportamiento 

futuro de un bloque será el observado para su clase. Esta decisión guía un mecanismo de bypass [6]. 

Todas estas propuestas son compatibles con el Detector de Reuso, y podrían utilizarse para cambiar la 

decisión fija que hace el DR de realizar bypass de bloques que no han demostrado previamente reuso. 

Argumentando que ninguna de las alternativas existentes resuelve de forma satisfactoria la presencia 

mayoritaria de bloques muertos en la SLLC, Albericio et al. proponen con la Reuse Cache separar en la 

SLLC la matriz de etiquetas de la de datos, y reducir el tamaño de esta última sin perder rendimiento, 

seleccionando como contenido sólo bloques que hayan demostrado reuso en la matriz de etiquetas 

[11]. El Detector de Reuso utiliza este mismo criterio de selección, pero el resto del diseño es diferente. 

En este trabajo se ha seleccionado CHAR y la Reuse Cache como propuestas que representan el estado 

del arte. Hay dos razones para ello: por un lado, ambas presentan en los artículos publicados 

rendimientos superiores a otras de las analizadas; por otro, existe una versión de CHAR para caches 

exclusivas, y es posible la adaptación de la Reuse Cache a su uso en exclusión. El rendimiento del DR 

se compara con ellas en la sección 6, donde también se dan más detalles de su funcionamiento. 

5 Metodología  

Esta sección detalla el entorno de experimentación y la configuración del sistema base que se han 

utilizado para la evaluación de la propuesta y la obtención de los resultados expuestos en la sección 6. 
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5.1 Entorno de experimentación 

Como motor de simulación se utiliza Simics [18], un simulador de ejecución de sistemas completos. 

También se utilizan los plug-ins Ruby y Opal de Multifacet GEMS [19]. Se usa Ruby para modelar la 

jerarquía de memoria con un alto grado de detalle: caches, directorio, protocolo de coherencia, red on-

chip, buffers, contención, etc., añadiendo además un modelo detallado de una DRAM DDR3. Se utiliza 

Opal (también conocido como TFSim) para modelar de forma detallada un procesador superescalar con 

ejecución fuera de orden. 

Se ejecuta sobre Solaris 10 para SPARC una carga de trabajo multiprogramada compuesta por 

aplicaciones de la suite SPEC CPU 2006 [20]. Para localizar el final de la fase de inicialización de cada 

programa, utilizamos contadores hardware en una máquina real, y ejecutamos todos los binarios SPARC 

con las entradas de referencia hasta su finalización. Para nuestro sistema con 8 procesadores hemos 

producido una serie de 100 mezclas, combinaciones aleatorias de 8 programas cada una, tomados de 

entre los 29 programas que componen SPEC CPU 2006. Cada programa aparece entre 18 y 41 veces, 

siendo el número medio de apariciones de 27,6 y la desviación típica de 6,1. En cada mezcla, nos 

aseguramos de que ninguna aplicación está en su fase de inicialización, avanzando la simulación hasta 

que todas las fases de inicialización están terminadas. Comenzando en este punto, en cada simulación 

se ejecutan 300 millones de ciclos de calentamiento del sistema de memoria, y luego recolectamos 

estadísticas para los siguientes 700 millones de ciclos.  

No se han hechos esfuerzos por distinguir las aplicaciones por su tipología ni sus patrones o estadísticas 

de acceso a memoria. Se muestra en la Tabla 2 el número medio de fallos por kilo-instrucción (MPKI) 

de cada aplicación en todas las mezclas donde aparece, en los tres niveles de la jerarquía de memoria, 

cuando las ocho aplicaciones de cada mezcla se ejecutan conjuntamente sobre el sistema base. 

 

Aplicación L1 L2 LLC Aplicación L1 L2 LLC Aplicación L1 L2 LLC 

astar 7,5 1,1 0,7 gromacs 11,7 3 1,2 perlbench 10,2 1,8 0,8 

bwaves 24,5 21,1 20,1 hmmer 3,3 2,4 0,2 povray 11,5 0,2 0,1 

bzip2 8,4 3,9 0,9 h264ref 4,2 1,4 0,7 sjeng 6,9 0,8 0,5 

cactusADM 20,8 11,4 4,9 lbm 65,4 38,6 36,7 soplex 8,9 7,1 3,1 

calculix 8,5 4,3 1,5 leslie3d 40,4 23,2 17,9 sphinx3 18,8 14,3 11,7 

dealII 1,6 0,5 0,3 libquantum 45,8 33,2 32,2 tonto 6,7 1,3 0,5 

gamess 6,7 1 0,6 mcf 64,9 36 18,9 wrf 14,3 8,9 1,5 

gcc 22 6,4 2,1 milc 24,6 23,5 22 xalancbmk 15,1 8,7 2,8 

GemsFDTD 42,7 29,7 22,8 namd 1,7 0,2 0,2 zeusmp 32,3 8,7 7,2 

gobmk 13,2 1,1 0,3 omnetpp 12,6 9,2 2,2     

Tabla 2: MPKI medio para cada nivel de cache del sistema base (SLLC exclusiva de 8 MB con TC-
AGE)  
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5.2 Configuración del sistema base 

Modelamos un sistema base con 8 procesadores superescalares con ejecución especulativa y fuera de 

orden. Cada procesador consta de 4 vías, una segmentación de 18 etapas y 10 unidades funcionales. 

El predictor de saltos es de tipo YAGS [21] con un PHT (Pattern History Table) de 4K entradas. La Tabla 

3 muestra más información del modelo de procesador simulado. 

 

Arquitectura base  SPARC v9 

Procesadores  8, superescalares de 4 vías, 2.66 GHz 

Segmentación  18 etapas: 4 fetch, 4 decode, 4 dispatch/read, 1 (o más) 
execute, 3 memory, 2 commit 

Buffers  Buffer de reordenación de 128 entradas 

Bancos de registros  Enteros: 160 (lógicos) + 128 (renombre) 

Punto flotante: 64 (lógicos) + 128 (renombre) 

Unidades funcionales  4 Enteros, 4 punto flotante, 2 load/store 

Predictor de saltos  Tipo YAGS 

PHT: 4.096 entradas 

Tabla 3: Especificaciones del modelo de procesador  

Cada procesador tiene 2 niveles de cache privados y todos los procesadores comparten la cache 

exclusiva de tercer nivel. La SLLC utiliza TC-AGE como política de reemplazo, y tiene 8 MB de capacidad 

total, con cuatro bancos entrelazados a nivel de línea de cache (64B). Una red de tipo crossbar conecta 

los procesadores y dichos bancos. Hay dos canales de memoria DDR3 que corren a 667 MHz. La Tabla 

4 muestra más información de la jerarquía de memoria simulada. El cálculo de los tiempos de acceso 

de las caches se ha realizado mediante la herramienta CACTI [22], con un nodo tecnológico de 45 nm. 

 

Cache privada L1 I/D  32 KB, 4 vías, reemplazo LRU, tamaño de bloque 64 B, latencia 
de acceso de 3 ciclos 

Cache privada unificada L2  256 KB inclusiva de L1, 8 vías, reemplazo LRU, tamaño de 
bloque 64 B, latencia de acceso de 7 ciclos 

Interconexión  Red tipo crossbar, ancho de bus de 80 bits, latencia de 5 ciclos 

Cache compartida L3 (SLLC)  8 MB exclusiva (4 bancos de 2 MB cada uno), entrelazado por 
bloques, tamaño de bloque 64 B. Cada banco: 16 vías, 
reemplazo TC-AGE de 2 bits, latencia de acceso de 10 ciclos, 32 
MSHR 

DRAM  2 rangos, 8 bancos, 4 KB de tamaño de página, Double Data 
Rate (DDR3 1333 MHz). 92 ciclos de latencia de acceso bruta 

Bus DRAM  2 canales a 667 MHz, cada uno con bus de 8 B, 4 ciclos de 
DRAM por línea, 16 ciclos de procesador  por línea 

Tabla 4: Especificaciones de la jerarquía de memoria 
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6 Resultados 

En esta sección se presenta una evaluación de los resultados obtenidos con el mecanismo propuesto, 

utilizando la metodología expuesta en la sección anterior. Se presentan dos métricas diferentes para 

resumir el rendimiento obtenido: el número de instrucciones por ciclo normalizado al del sistema base 

(IPC normalizado) y la reducción en fallos por instrucción frente al sistema base. Los valores mostrados 

son la media de los resultados obtenidos para cada una de las 100 mezclas. Para cada mezcla, el IPC 

normalizado obtenido para una propuesta “PROP” se calcula como 
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  , donde ���� es el 
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 , donde �� es el número de fallos de SLLC medidos a lo largo de la 

ejecución para el procesador t, e �� es el número de instrucciones ejecutadas para el procesador t. 

Los primeros tres apartados evalúan la influencia en rendimiento y coste de la variación en el DR del 

tamaño del buffer, el tamaño de sector y el tamaño de la etiqueta almacenada. Se obtiene así una 

configuración balanceada entre coste y prestaciones. A continuación, se hace un análisis del 

funcionamiento del DR, explicando de qué manera reduce la tasa de fallos de la SLLC. En los siguientes 

dos apartados, se proporcionan datos más detallados a nivel de mezcla y de aplicación. Por último, se 

realiza una comparativa con otras propuestas publicadas. 

6.1 Influencia del tamaño del buffer del Detector de Reuso  

En esta sección estudiaremos cómo varía los resultados en función del tamaño del buffer del DR. La 

Figura 6 muestra el IPC y la tasa de fallos obtenidos de media en las 100 mezclas descritas en la sección 

4, normalizados respecto del sistema base con TC-AGE, en función la cobertura de expulsión de cada 

DR. El tamaño de sector del DR es de 1 bloque, y se almacenan etiquetas completas. 

   

Figura 6: IPC normalizado (izquierda) y reducción en fallos de SLLC por instrucción (derecha) frente al 
sistema base con TC-AGE, en función de la cobertura de expulsión del DR en cada procesador. 

1

1,01

1,02

1,03

0.5 1 2 4 8

IP
C

 n
o

rm
a

li
za

d
o

Cobertura de expulsión del DR (MB)

0

0,02

0,04

0,06

0,08

0,1

0,12

0.5 1 2 4 8

R
e

d
u

cc
ió

n
 e

n
 f

a
ll
o

s 
p

o
r 

in
st

ru
cc

ió
n

Cobertura de expulsión del DR (MB)



18 

 

A medida que el buffer del DR incrementa su tamaño, mantiene información de más líneas, ampliando 

su cobertura de expulsión. Al seguir una política de reemplazo FIFO, esto implica que se puede hacer 

seguimiento de líneas que han sido expulsadas de la cache L2 hace más tiempo, es decir, detectar 

reusos más lejanos. La configuración óptima del DR se consigue con una cobertura de expulsión de 2 

MB, donde presenta un incremento del IPC de un 2,7%, y una reducción de los fallos por instrucción 

en la SLLC del 9,6%.  

6.2 Influencia del tamaño de sector del Detector de Reuso 

La Figura 7 muestra cómo varía el rendimiento cuando se incrementa el tamaño de sector en el buffer 

del DR. Dentro de una misma cobertura de expulsión del DR, al doblar el tamaño de sector se reduce 

a la mitad el número de conjuntos. 

 

Figura 7: IPC normalizado frente al sistema base con TC-AGE, en función de la cobertura de expulsión 
del DR en cada procesador, y para diferentes tamaños de sector del DR. El tamaño de sector está 
expresado en el número de bloques de memoria que sigue cada línea del DR. 

Dentro de una misma cobertura, al incrementarse el tamaño de sector la capacidad efectiva es menor, 

puesto que en algún caso la falta de localidad espacial hace que alguno de los bloques del sector no 

sean referenciados. Este efecto hace que se detecte menos reuso. Ello produce una degradación del 

rendimiento respecto del óptimo, salvo que ya se estuviera detectando un exceso de reuso, como puede 

verse para la cobertura de 8 MB.  

A cambio, la cantidad de bits de memoria requeridos es menor. La Figura 8 muestra la cantidad de 

memoria requerida por cada DR en función la cobertura de expulsión y del tamaño de sector, utilizando 

una etiqueta de 10 bits. Para una misma cobertura de expulsión, el valor disminuye a medida que 

incrementamos el tamaño de sector. Esto es debido a que el ahorro de espacio por la reducción del 

número de conjuntos es mayor que el incremento por añadir bits de presencia de bloque a la línea. La 

configuración que da el mejor rendimiento, con 2 MB de cobertura, precisa de un buffer de 48 KB en 

cada DR. Otras configuraciones presentan mejores relaciones entre prestaciones y coste, como por 

ejemplo aquella con 2 MB de cobertura y tamaño de sector de 2 bloques, que presenta un rendimiento 
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un 0,02% menor con un buffer de 28 KB, un 42% menor. Esta última es la configuración seleccionada 

para utilizar en adelante para el resto de resultados. 

 

Figura 8: Tamaño del buffer de cada DR en KB, en función de la cobertura de expulsión del mismo, y 
para diferentes tamaños de sector del DR. El tamaño de sector está expresado en el número de bloques 
que sigue cada línea. Los valores están calculados considerando una etiqueta de 10 bits. 

6.3 Influencia del tamaño de la etiqueta del Detector de Reuso 

Para reducir la cantidad de memoria requerida, en el DR pueden almacenarse etiquetas comprimidas, 

como se ha explicado en el apartado 3.4.  La Figura 9 muestra a la izquierda, en función del tamaño 

de la etiqueta almacenada, la tasa media de errores en el chequeo de la etiqueta debidos a esta 

compresión. Estos errores son falsos positivos, en los cuales se detecta un falso reuso porque la etiqueta 

comprimida del sector recibido coincide con la de otro sector diferente, anteriormente registrado.  

   

Figura 9: Izquierda: Tasa media de errores en el chequeo de la etiqueta debidos a la compresión de la 
misma. Centro: IPC normalizado frente al sistema base con TC-AGE. Derecha: Reducción en fallos de 
SLLC por instrucción frente al sistema base con TC-AGE. Incluye la etiqueta sin compresión (“SC”). 

El envío a la SLLC de bloques no reusados reduce la efectividad del mecanismo. La Figura 9 muestra, 

en el centro y a la derecha, el IPC y la tasa de fallos normalizados obtenidos para la configuración de 

2 MB de cobertura y un sector de 2 bloques, en función del tamaño de la etiqueta en el DR. La pérdida 

de rendimiento es muy baja para tamaños de etiqueta como el de 10 bits, donde se empeora un 0,16% 
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el IPC y un 0,34% los fallos frente a la configuración sin compresión de la etiqueta. Ello justifica la 

compresión con el fin de reducir la cantidad de memoria requerida.  

En adelante, salvo indicación de lo contrario, esta configuración con un DR de 2 MB de cobertura de 

expulsión, un tamaño de sector de 2 bloques, y 10 bits de etiqueta es la utilizada en los resultados 

mostrados. 

6.4 Análisis del funcionamiento del Detector de Reuso 

Resulta de interés detenerse a analizar de qué manera consigue el DR reducir la tasa de fallos de la 

SLLC. La Figura 10 muestra, para los programas de una mezcla de ejemplo, la distribución de los 

bloques recibidos desde el punto de vista del DR, en cinco categorías: (U) primer uso, (R) primer reuso, 

(MD) múltiple reuso detectado sólo por el DR, (MC) múltiple reuso detectado sólo por la proveniencia 

el bloque de la SLLC, y (MA) múltiple reuso detectado por ambos mecanismos. Una expulsión 

categorizada como U provoca el bypass del bloque, mientras que el resto envían el bloque para alojarlo 

en la SLLC. Las expulsiones de tipos U, R o MD indican que originalmente el bloque viene de la memoria, 

o sea, provienen de un fallo en la SLLC, mientras que los tipos MC y MA indican un acierto previo en la 

SLLC. El hardware propuesto del DR no puede distinguir entre los casos R y MD, pero se han separado 

en la gráfica para ejemplificar la complementariedad de los mecanismos de detección de reuso. 

 

Figura 10: Fracción de expulsiones de bloques de cada programa de una mezcla ejemplo, categorizadas 
desde el punto de vista del DR según su tipología de reuso en: (U) primer uso, (R) primer reuso, (MD) 
múltiple reuso detectado sólo por el DR, (MC) múltiple reuso detectado sólo por la proveniencia el 
bloque de la SLLC, y (MA) múltiple reuso detectado por ambos mecanismos. 

El nivel de bypass varía de un programa a otro, ajustándose bloque a bloque al patrón de reuso que 

éste muestra. En bwaves y milc, en más del 92% de las expulsiones se ha detectado un solo uso, y no 

se envían a la SLLC. Ello es coherente con las medidas mostradas en la Tabla 2, que indican que la 

SLLC apenas reduce el número de fallos por instrucción de estos programas. En el extremo opuesto, 

en astar, omnetpp y wrf menos del 3% de los bloques expulsados de las caches privadas no muestran 
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reuso, por lo que hay escaso bypass. El resto de programas, dealII, gobmk y soplex, presentan valores 

intermedios, con niveles de bypass del 30%, 8% y 24% respectivamente. 

La cantidad de bloques que se envían a la SLLC tras detectar el primer reuso (tipo R) varía entre un 

0,2% de omnetpp y un 5% de dealII, con una media del 1,5%. Estos pocos bloques que muestran un 

primer reuso son accedidos después múltiples veces (tipos MD, MC y MA), siendo la proporción media 

de 45 detecciones de múltiple reuso por cada primer reuso que se identifica. En ocasiones, el bloque 

ya ha sido reemplazado de la SLLC, y el DR lo inserta de nuevo (MD). Esto ocurre de media en un 4% 

de las veces que se detecta múltiple reuso.          

La eliminación del envío de bloques de poca utilidad en bwaves, milc, dealII y soplex, va a permitir a 

la SLLC conservar mejor los bloques útiles de esos programas, ya que no serán expulsados con tanta 

frecuencia. Más aún, también va a permitir al resto de los programas de la mezcla conservar mejor sus 

bloques. La Figura 11 muestra a la izquierda la fracción de la SLLC ocupada por los bloques de cada 

programa, tanto en el sistema base sin bypass como en el sistema con DR. Tanto bwaves como milc 

ocupan en este último mucho menos espacio en la SLLC, el cual se reparte entre el resto de programas, 

cuyos bloques sufren menos expulsiones. Como puede verse en la Figura 11 a la derecha, la buena 

selección de bloques permite a bwaves y milc mantener una tasa de fallos en la SLLC similar (un 0,4% 

peor en el caso de bwaves) pese a la penalización de segundas búsquedas en memoria de bloques que 

sí muestran reuso. En el resto de programas, a la buena selección de bloques se le une una expulsión 

menos frecuente de los mismos y una mayor cantidad de espacio disponible, por lo que su número de 

fallos por instrucción en la SLLC mejora entre un 4,7% de dealII y un 77,3% de omnetpp. La reducción 

en fallos para toda la mezcla es del 11,8%, siendo el IPC normalizado de 1,030. La mezcla ocupa la 

posición 32 dentro de las 100 si se ordenan de mayor a menor incremento de IPC. 

  

Figura 11: Izquierda: Fracción media del espacio ocupado por los bloques de cada programa de la 
mezcla de ejemplo, en el sistema base y en el sistema con DR. Se toman datos cada millón de ciclos 
de ejecución, y se calcula la media. Derecha: Reducción en fallos por instrucción en el sistema con DR, 
normalizada a la del sistema base con TC-AGE. 
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6.5 Análisis de rendimiento por mezcla   

Con el fin de analizar la variabilidad de los resultados en las distintas mezclas, la Figura 12 muestra 

arriba el IPC para todas las mezclas multiprogramadas, normalizado al sistema base con TC-AGE sin 

bypass. Las mezclas se ordenan en el eje horizontal en función de ese IPC normalizado. Abajo muestra 

el nivel de bypass de cada mezcla.  

 

 

Figura 12: Arriba: IPC para las 100 mezclas, normalizado al sistema base. Abajo: Nivel de bypass de 
cada mezcla, en el mismo orden que arriba. 

Sólo 10 de las 100 mezclas muestran decrementos del IPC frente al sistema base, de las cuales 8 son 

de menos del 1%, y la mayor es del 1,6%. En el otro extremo, 11 mezclas superan el 5% de incremento, 

siendo el mayor del 15,1%. La fracción de bypass en cada mezcla varía entre un 19,2% y un 91,4%, 

siendo la media del 48,2%.  

6.6 Análisis de rendimiento por aplicación   

Como se ha visto en la sección 6.4, el rendimiento obtenido varía en función tanto de la aplicación en 

sí como del resto de aplicaciones que se ejecutan en la mezcla. La Figura 13 muestra la distribución de 

IPC normalizado frente al sistema base con TC-AGE, obtenido para cada aplicación. Se proporcionan 

cinco valores por aplicación, que son el mínimo, el primer cuartil, la mediana, el tercer cuartil y el 

máximo. 

0,9

1

1,1

1,2

0 10 20 30 40 50 60 70 80 90

IP
C

 n
o

rm
a

li
za

d
o

Mezcla

0

0,2

0,4

0,6

0,8

1

0 25 50 75

F
ra

cc
ió

n
 d

e
 b

y
p

a
ss

Mezcla



23 

 

 

Figura 13: IPC normalizado frente a TC-AGE para todas las aplicaciones. 

De las 29 aplicaciones, 6 presentan mejoras en todas mezclas donde participan (astar, bzip2, h264ref, 

hmmer, sjeng y xalancbmk). Otras 10 presentan mejora a partir del primer cuartil (bwaves, gamess, 

gobmk, gromacs, mcf, namd, perlbench, povray, sphinx3 y tonto), aunque en alguna mezcla pierden 

rendimiento. En 7 de ellas (calculix, dealII, gcc, lbm, omnetpp, soplex y wrf), la mediana muestra 

mejoras, pero el primer cuartil pierde rendimiento. Las 6 aplicaciones restantes (cactusADM, leslie3d, 

libquantum, GemsFDTD, milc y zeusmp), presentan empeoramientos en la mediana.  

De estas últimas, destacan por negativas libquantum (0,936 de mediana), GemsFDTD (0,957 de 

mediana) y leslie3d (0,982 de mediana), ya que las mediadas del resto están por encima de 0,995. 

Merece la pena analizar en más detalle estos casos, ya que parecen indicar que el mecanismo del DR 

es injusto con algunas aplicaciones. La Tabla 5 muestra a la izquierda la fracción media del espacio 

ocupado por los bloques de cada uno de estos programas en todas las mezclas donde participan, en el 

sistema base con TC-AGE y en el sistema con DR. En el sistema base, los tres programas ocupan entre 

1,8 y 3,0 veces más espacio que el que les correspondería en promedio (12,5%). En cambio, en el 

sistema con DR se hace bypass de muchos de esos bloques al no mostrar reuso, equilibrándose la 

ocupación a entre 0,8 y 1,6 veces el espacio promedio. Al realizarse esa reducción de espacio, se pierde 

rendimiento en la aplicación concreta, ya que la detección del reuso no es perfecta. Sin embargo, como 

se muestra en la Tabla 5 a la derecha, con el DR las mezclas afectadas mejoran su rendimiento incluso 

por encima de las demás, puesto que el espacio liberado se utiliza para almacenar bloques con más 

aciertos de otras aplicaciones. Puede concluirse que TC-AGE asigna de manera injusta un espacio 

excesivo a estos programas, mientras que con el DR eso no ocurre. Ello lleva a que no alcancen de 

forma individual el rendimiento anterior, pero logra que las mezclas afectadas incrementen su 

rendimiento conjunto, lo cual puede entenderse más justo que la situación original. 
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Programa 

Ocupación 

con TC-AGE 

Ocupación 

con DR 

IPC norm. de mezclas 

donde está presente  

IPC norm. de mezclas 

donde está ausente 

libquantum 38,1% 9,6% 1,036 1,022 

GemsFDTD 24,1% 15,5% 1,030 1,024 

leslie3d 23,2% 19,4% 1,027 1,024 

Tabla 5: Izquierda, fracción media del espacio ocupado por los bloques de cada uno de estos programas 
en todas las mezclas donde está presente. Derecha: Media de IPC normalizado del sistema con DR 
frente a TC-AGE de aquellas mezclas donde el programa está presente/ausente. 

6.7 Comparativa con otras propuestas   

En las secciones anteriores, se ha mostrado el rendimiento en comparación con una SLLC sin bypass 

que utiliza TC-AGE como política de reemplazo. En esta sección se compara también el rendimiento con 

otras dos propuestas recientes de políticas de inserción y reemplazo basadas en bypass. 

Comparación con CHAR: La política CHAR [6] (acrónimo de “cache hierarchy-aware replacement”) 

para SLLC exclusivas es una propuesta de selección de contenidos que basa la decisión de realizar o 

no bypass en el patrón de acceso que han tenido los bloques en todos los niveles de la jerarquía de 

memoria. La decisión se toma sobre los bloques expulsados de las caches L2. Los bloques son 

categorizados en cuatro clases. Para la clase que muestra reuso a nivel de SLLC nunca se realiza bypass. 

Para las otras tres clases, existe una lógica que decide si es provechoso realizar el bypass para el 

conjunto de la clase o no, actuando en consecuencia. Para ello, se monitoriza a través de contadores 

la tasa de acierto de algunos conjuntos de la SLLC para los que se mantiene la política base TC-AGE, y 

se compara con la de otros conjuntos que implementan CHAR.  

La Figura 14 muestra el IPC y la reducción en fallos por instrucción, ambos frente al sistema base con 

TC-AGE, obtenidos para sistemas con DR y CHAR, con 8 MB de SLLC. Como puede apreciarse, el 

mecanismo del DR bate en media a CHAR tanto en reducción de fallos (8,5% frente a 5,3%) como en 

IPC normalizado (2,5% frente a 2,0%). Los resultados en cuanto a reducción de fallos de CHAR son 

coherentes con la publicación original, pero el IPC normalizado es menor que en dicho artículo. Ello 

puede deberse a la diferente metodología, ya que los modelos de procesador y jerarquía de memoria 

utilizados son diferentes en ambos trabajos. 
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Figura 14: IPC normalizado (izquierda) y reducción en fallos de SLLC por instrucción (derecha) frente 
al sistema base con TC-AGE, para un sistema con un DR de 2 MB de cobertura de expulsión y un 
tamaño de sector de 2 bloques, CHAR (en exclusión) y una Reuse Cache exclusiva RC-32/8 con NRR 
en la matriz de etiquetas y TC-AGE en la matriz de datos. El tamaño de datos de la SLLC es de 8 MB. 

Comparación con una Reuse Cache: La Reuse Cache [11] es una SLLC cuyas estructuras de 

etiquetas y datos están desacopladas, y que almacena sólo los datos de las líneas que han mostrado 

reuso. Del resto de líneas se hace bypass. Su intención es reducir el espacio necesario en la SLLC 

eliminando datos de líneas que no están vivas. Para realizar la comparación en igualdad de condiciones, 

se ha desarrollado una versión de la Reuse Cache donde la matriz de datos funciona en exclusión con 

las L2 privadas. Esta versión funciona como sigue: Cualquier bloque enviado a una L2 privada incluye 

un bit adicional que indica si debe ser devuelto a la SLLC al ser expulsado o no (bypass o no bypass). 

En un primer acceso, se envía el bloque desde memoria a la L2 privada con indicación de bypass, y se 

inserta la etiqueta en la matriz de etiquetas de la SLLC, al igual que en el diseño original. Esto permite 

detectar el reuso de la misma forma. En un segundo acceso, con acierto en la matriz de etiquetas de 

la SLLC y fallo en la de datos, se envía el bloque desde memoria a la L2 privada con indicación de no 

bypass, sin almacenarlo en la matriz de datos. La etiqueta se mantiene en la matriz de etiquetas. 

Cuando el bloque se expulsa de la L2 privada, se almacena en la matriz de datos de la SLLC. Posteriores 

accesos, con acierto tanto en la matriz de datos como en la de etiquetas, envían el bloque a la L2 

privada con indicación de no bypass, y lo expulsan de la matriz de datos de la SLLC. 

En este trabajo utilizamos para la comparación una Reuse Cache Exclusiva con 32MB equivalentes de 

etiquetas y 8MB de datos, que puede entenderse como una cache de 32MB donde se ha reducido el 

espacio en datos hasta los 8MB con la técnica de la Reuse Cache. Esta relación entre etiquetas y datos 

es la que mejor rendimiento ofrece de entre las que disponen de 8MB de datos, tanto en el artículo 

original como en simulaciones adicionales que se han realizado. En la matriz de datos se emplea TC-

AGE como política de reemplazo, de forma coherente con el resto de propuestas analizadas. 

Como puede apreciarse en la Figura 14, el mecanismo del DR también bate en media a la Reuse Cache 

Exclusiva tanto en reducción de fallos (8,5% frente a 4,0%) como en IPC normalizado (2,5% frente a 

0,9%). En la publicación original no se muestran datos acerca de los fallos, y el IPC normalizado que 
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se obtiene aquí es menor que en dicho artículo, donde se emplea una cache inclusiva. Ello puede 

deberse a las diferencias entre los resultados con inclusión y con exclusión. También puede deberse a 

la diferencia en los modelos de procesador, ya que el modelo utilizado en el artículo que presenta la 

Reuse Cache es el de un procesador con ejecución en orden, mientras que el empleado en este trabajo 

es superescalar y con ejecución fuera de orden.  

7 Conclusiones 

En un sistema multiprocesador on-chip, el flujo de referencias que llega a la SLLC muestra poca 

localidad temporal. Sin embargo, muestra localidad de reuso, es decir, bloques reusados a dicho nivel 

tienen más probabilidad de ser referenciados en un futuro. Esto provoca que, si se realiza una gestión 

convencional, basada en la localidad temporal, el uso de la cache es ineficiente, desaprovechándose la 

mayoría de su contenido. Existe un número importante de propuestas que tratan este problema para 

caches inclusivas, pero pocas que se centran en caches exclusivas. Dichas caches se encuentran ya en 

el mercado, y es previsible que se utilicen más en el futuro.    

En este trabajo se propone un nuevo mecanismo de selección de contenidos para caches exclusivas 

que aprovecha la localidad de reuso que presentan los accesos a la SLLC. Consiste en incluir un 

elemento denominado Detector de Reuso entre cada cache L2 y la SLLC, que detecta qué bloques 

expulsados de las L2 no han demostrado reuso y evita que sean insertados en la SLLC, realizando 

bypass de los mismos. 

Se evalúa esta propuesta simulando un sistema con 8 procesadores en un chip que ejecuta una serie 

de cargas multiprogramadas. Configurado adecuadamente, el Detector de Reuso evita la inserción de 

bloques poco útiles en la SLLC, facilitando que se mantengan los más reusados. Los resultados 

muestran que ello permite incrementar el rendimiento, por encima de otras propuestas recientes como 

CHAR o la Reuse Cache. Por ejemplo, para una configuración del DR balanceada entre coste y 

prestaciones, se obtiene un 8,5% de reducción de tasa de fallos y un incremento del IPC de un 2,5%, 

ambos frente a un sistema base con TC-AGE. 
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9 Anexo A: Contexto del trabajo 

Este anexo hace un breve repaso del contexto en que se lleva a cabo este trabajo fin de máster. 

9.1 Memorias DRAM y memorias cache 

En los sistemas informáticos modernos, existe una disparidad creciente entre el ritmo al que los 

procesadores necesitan acceder a los datos existentes en memoria y el ritmo al que la memoria puede 

suministrarlos. Un acceso a un dirección de memoria necesita hoy en día típicamente desde decenas 

hasta cientos de ciclos de procesador, y dicha cifra tiende a empeorar, dado que las memorias DRAM 

reducen sus tiempos de acceso a menor ritmo que los procesadores incrementan las peticiones de 

acceso a sus contenidos. Esto ocasiona que existan tiempos muertos en la ejecución de programas por 

parte del microprocesador, donde no es posible continuar realizando operaciones porque no se dispone 

aún de la instrucción siguiente a ejecutar o de algún dato que necesita una operación. El acceso a los 

contenidos en memoria es, por tanto, uno de los cuellos de botella fundamentales que limitan el 

rendimiento de los procesadores actuales. 

Una de las técnicas utilizadas para reducir el tiempo de acceso a los contenidos consiste en utilizar una 

memoria más rápida como almacenamiento intermedio entre el procesador y la memoria DRAM. Esta 

memoria intermedia se denomina memoria cache, o simplemente cache.  

Una cache se implementa con una tecnología microelectrónica de mayor rendimiento que la memoria 

DRAM, por lo general la misma que los microprocesadores, por lo que el acceso a sus contenidos es 

más rápido. Por contra, esta tecnología tiene una densidad de almacenamiento menor y un gasto 

energético mayor, por lo que la capacidad de una cache no puede ser la misma que la de la memoria 

DRAM. En la cache se almacena sólo un subconjunto de los contenidos de la memoria DRAM. Si un 

contenido demandado está presente en la cache, se suministra desde ahí con un tiempo de acceso 

reducido; si no, se suministra desde la memoria DRAM, con tiempos más largos. En el primer caso se 

habla de un acierto en la cache, en el segundo de un fallo en la misma. 

9.2 Localidad y gestión de las caches 

Cuanto más a menudo está el contenido demandado presente en la cache, es decir, cuanto más tasa 

de acierto tenga, mayor será la reducción en el tiempo de acceso medio a los contenidos que 

experimenta el procesador. La gestión de los contenidos de la cache es, por lo tanto, un elemento 

central en la reducción del tiempo de acceso conseguida gracias al añadido de una cache. Dicha 

selección de contenidos no parece trivial, ya que debe realizarse antes de que se produzca el acceso 

por parte del procesador. Es necesario anticipar los contenidos que va a demandarse o referenciarse 

en un futuro próximo para poder tenerlos en la cache, y que ésta cumpla su función. 

Para realizar una gestión de contenidos efectiva se aprovechan dos propiedades observadas en los 

programas: la localidad temporal y la localidad espacial. La localidad temporal consiste en que, cuando 
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se referencia una dirección de memoria, es probable que dicha dirección se referencie en un futuro 

cercano. La localidad espacial consiste en que cuando se referencia una dirección de memoria, es 

probable que direcciones de memoria cercanas se referencien pronto. La existencia de localidad implica 

que hay una distribución no uniforme de los accesos a memoria que realiza un programa, y por lo tanto 

se puede predecir con razonable exactitud qué accesos futuros va a realizar un procesador basándose 

en sus accesos recientes. 

Para aprovechar la localidad temporal, cuando un procesador accede a una dirección de memoria de 

DRAM, el contenido recuperado se almacena en la cache, con la intención de que esté presente para 

un próximo acceso, que se prevé cercano en el tiempo. Para aprovechar la localidad espacial, las caches 

reciben y almacenan no ya bytes o palabras sueltas sino bloques de memoria, que son conjuntos de 

contenidos de direcciones de memoria adyacentes. Estos contenidos cercanos se prevén que serán 

necesitados en un futuro cercano. 

Si bien lo expuesto en el apartado anterior acerca del momento en que se inserta un contenido en una 

cache es un caso habitual, no es la única solución. Además, es necesario tener un mecanismo que 

decida qué bloque se expulsa o reemplaza cuando se inserta un contenido nuevo. Al algoritmo de 

decisión de cuándo y qué contenidos insertar en una cache, y cuáles reemplazar, se conoce como 

política de inserción y reemplazo. Al bloque reemplazado se conoce como bloque víctima. 

9.3 Jerarquía de memoria 

Cuanto mayor es el tamaño de una cache, y por lo tanto más bloques puede almacenar, mejor puede 

aprovechar la localidad presente en un programa, ya que conserva durante más tiempo los bloques 

referenciados recientemente. Esto incrementa su tasa de acierto, y disminuye el tiempo medio de 

acceso a los contenidos que experimenta el procesador. 

La búsqueda de una mayor tasa de acierto lleva al diseño de caches lo mayores posible. Sin embargo, 

debido a la tecnología microelectrónica utilizada, existe una relación inversa entre el tamaño de una 

cache y su tiempo de acceso, y directa entre en tamaño y su consumo. Cuanto mayor es una cache, 

más lento es y más consume el acceso a la misma. Una cache grande acierta más, pero responde más 

lentamente y con mayor gasto energético. En la búsqueda de un compromiso entre tamaño, tiempo de 

acceso y consumo, se implementan varios niveles de cache entre un procesador y la memoria DRAM, 

formando una jerarquía de memoria. 

La Figura 15 muestra un esquema típico con 3 niveles de cache. El primer nivel (L1) es el más pequeño, 

rápido y eficiente. Cuando un acceso falla, se realiza la búsqueda en el segundo nivel (L2), que contiene 

más bloques pero es más lento y consume más. Si también falla, se accede al tercer nivel (L3), aún 

mayor, más lento y menos eficiente, y si éste falla se accede a la memoria DRAM, el nivel más lento y 

que más consume.  
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Procesador Cache L1 Cache L2 Cache L3 Memoria DRAM

 

Figura 15: Esquema de cache multinivel. 

9.4 Relaciones entre contenidos: inclusión y exclusión 

En el esquema original con una única cache, ésta contiene un subconjunto de los contenidos de la 

memoria principal. Al extender el modelo hacia una jerarquía de memoria con múltiples niveles de 

cache, la aproximación inicial es mantener esa relación también entre los diferentes niveles de cache. 

Por ejemplo, en una jerarquía de dos niveles de cache, los contenidos de la cache L1 son un subconjunto 

de los de la cache L2. Esta relación entre los contenidos se denomina inclusión, y caches inclusivas a 

las que la emplean. 

La Figura 16 muestra a la izquierda un esquema simplificado del funcionamiento de una jerarquía de 

memoria de 2 niveles de cache donde la cache L2 es inclusiva de L1. Cuando se accede por primera 

vez a un bloque, éste se recupera de la memoria DRAM, y se envía a los dos niveles de cache (1). 

Cuando un tiempo después, el bloque se expulsa de L1 porque es reemplazado por otros, pasa a estar 

presente sólo en la cache L2 (2). Si el bloque ha sido modificado por una escritura del procesador, es 

necesario enviar el contenido actualizado a la cache L2, para que no se pierda (3). Subsiguientes 

accesos enviarán el contenido de nuevo a la cache L1 sin expulsarlo de la L2 (4), y así sucesivamente. 

Si el bloque se expulsa de la cache L2 cuando aún está en la cache L1, es necesario invalidarlo en ésta, 

lo que se denomina retro-invalidación (5). 
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Figura 16: Esquemas de jerarquías de memoria con dos niveles de cache. 

Cuando la relación entre dos niveles de cache es de inclusión, los contenidos de la cache de menor 

tamaño se almacenan también en la otra, es decir, se encuentran duplicados. Dado que todos los 
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accesos a dichos contenidos van a provocar aciertos en la cache de menor tamaño y nivel, el espacio 

en la otra se encuentra desaprovechado. Se puede liberar ese espacio y utilizarlo para otros contenidos, 

con lo que la cache de mayor nivel gana en tasa de acierto. Cuando un bloque de memoria sólo puede 

estar en uno de los dos niveles de cache, la relación existente se denomina exclusión, y caches 

exclusivas a las que la emplean.  

La Figura 16 muestra a la derecha un esquema similar al anterior, con la diferencia de que la cache L2 

es exclusiva de L1. Cuando se accede por primera vez a un bloque desde la memoria DRAM, éste se 

envía sólo a la cache L1 (1). Cuando un tiempo después, el bloque se expulsa de L1 porque otros 

necesitan espacio, siempre se envía para su almacenamiento en L2 (2). Si más tarde es accedido de 

nuevo, se envía de L2 a L1 y el espacio se libera en L2, dejando un hueco que será aprovechado por 

otros bloques (3). Si el bloque se expulsa de la cache L2 (4), no hay nada que invalidar en L1. 

Una cache exclusiva presente la ventaja de una tasa de acierto mayor y ausencia de retro-

invalidaciones, pero también el inconveniente de que todos los bloques reemplazados en el nivel inferior 

han de enviarse al siguiente cuando se expulsan, mientras que en una cache inclusiva sólo es necesario 

hacerlo si el contenido ha sido modificado. Ello implica una necesidad de mayor ancho de banda en la 

conexión.  

9.5 Jerarquía de memoria en sistemas multiprocesador on-chip 

En los últimos años, los sistemas multiprocesador con memoria compartida que incluyen varios 

procesadores en un mismo chip o circuito integrado están muy extendidos. Su presencia es mayoritaria 

en el mercado tanto en servidores de alto rendimiento como en sistemas de sobremesa, dispositivos 

móviles y sistemas embebidos. En el contexto de este tipo de sistemas se desarrolla el presente trabajo. 
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Figura 17: Esquema de jerarquía de memoria en sistemas multiprocesador on-chip. 

La Figura 1 muestra una jerarquía de memoria típica de estos sistemas, con tres niveles de cache. Los 

dos primeros niveles de cache a los que accede un procesador dado son privados y particulares de 
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dicho procesador, es decir, sólo son utilizados por ese procesador en concreto. Dentro del chip, se 

encuentran localizados muy cerca o incluso entremezclados con los circuitos del procesador, para evitar 

retardos de transferencia de datos. El primer nivel además se encuentra dividido entre accesos a 

instrucciones y accesos a datos. Esto se hace así porque datos e instrucciones son contenidos que se 

acceden desde diferentes estructuras internas del procesador, y al acceder en paralelo a dos caches se 

consigue menor latencia y más ancho de banda. 

El tercer y último nivel de cache se encuentra en cambio compartido entre todos los procesadores, 

denominándose cache compartida de último nivel o SLLC (acrónimo de Shared Last Level Cache). 

Dentro del chip, esta cache compartida se encuentra localizada en su propio espacio dedicado, aparte 

de los procesadores y conectado a ellos a través de una red interna.  

Los tamaños de los diferentes niveles se diseñan intentando minimizar el tiempo y la energía de acceso 

resultante para la jerarquía completa, y atendiendo al coste en cuanto a espacio. Un tamaño típico hoy 

en día para cada cache L1 privada son 32 KB, para cada L2 privada son 256 KB, y para una SLLC son 

8 MB, si bien las cifras varían en función del diseño. 

En un sistema multiprocesador con memoria compartida, aparece la necesidad de gestionar la 

compartición de los contenidos entre los diferentes procesadores. Cuando dos procesadores acceden a 

un mismo bloque de forma concurrente, dicho bloque se encuentra replicado en las caches privadas. A 

partir del momento en que un procesador escribe y modifica el bloque, los demás deben obtener dicho 

valor modificado cuando vuelven a acceder al contenido, de forma que la visión del mismo sea única y 

coherente, como si no hubiera caches intermedias y se accediera a la memoria de forma atómica. Al 

mecanismo que asegura la coherencia de contenidos se denomina protocolo de coherencia. Para ello, 

otorga y anula permisos de acceso a las diferentes caches, replica los cambios producidos, etc. 

Una manera de implementar un protocolo de coherencia consiste en mantener un estado centralizado 

de cada bloque presente en las caches, con información de qué caches contienen el bloque y con qué 

permisos concretos. Si la SLLC es inclusiva, esta información puede mantenerse en la propia cache, ya 

que en ella están presentes todos los bloques de la jerarquía. Si no, esta información centralizada se 

mantiene en una estructura denominada directorio, que puede verse también en la Figura 1. 
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10 Anexo B: Plan de trabajo 

10.1 Cronograma 

Este trabajo fin de master se ha realizado en diferentes fases, a lo largo del curso lectivo 2013-14. La 

Figura 18 muestra un cronograma resumen de las mismas. 

 

Figura 18: Cronograma del trabajo fin de master. 

10.2 Fases del trabajo 

A continuación se describen las fases del trabajo, y las actividades realizadas en cada uno de ellos: 

- Estudio de propuestas publicadas previamente: Se localizan y estudian los artículos publicados 

relativos a la misma problemática. Se realiza un análisis crítico sobre los mismos, y de las fortalezas 

y debilidades de sus propuestas.  

- Diseño de nuevos mecanismos de selección de contenidos: Se diseña la Reuse Cache Exclusiva, 

evolución del diseño de la Reuse Cache inclusiva ya publicada, que se utilizará a la hora de realizar 

comparativas. Se diseña el nuevo mecanismo de bypass basado en el Detector de Reuso. 

- Modelado de nuevos mecanismos de selección de contenidos: Se modela sobre Simics y GEMS la 

Reuse Cache Exclusiva y el mecanismo con Detector de Reuso. 

- Modelado de propuestas publicadas: Se modela sobre Simics y GEMS la SLLC exclusiva que se 

utiliza como base en las comparaciones, así como la propuesta CHAR ya publicada. 

- Puesta a punto de las herramientas de simulación y de los programas de prueba: Se evoluciona el 

simulador, previamente utilizado en otros trabajos del área de Arquitectura de Computadores de la 

Universidad de Zaragoza, pasando de un modelo de procesador en orden a un modelo de 

procesador superescalar fuera de orden. Para ello, se incorpora el módulo Opal de GEMS, y se 

implementa sobre el mismo la simulación de nuevas instrucciones del juego de instrucciones VIS 

de SPARC V9, de inicio no soportadas por el módulo y necesarias para los programas de prueba. 

Se adaptan los programas de prueba de la suite SPARC para su uso con el simulador mejorado. 



35 

 

- Ejecución de programas de simulación sobre un clúster de computación: Se definen los diferentes 

experimentos a realizar y se ejecutan las simulaciones sobre los clústeres hermes y atps.  

- Recopilación y análisis crítico de resultados: Se toman de la salida del simulador las medidas útiles 

y se recopilan para su análisis. Para ello, se modela e implementa una base de datos relacional que 

sirva para almacenar tanto las características de los sistemas modelados como los experimentos, 

sus parámetros y sus resultados. También se crean los programas de carga de valores en la base 

de datos a partir de los ficheros de resultados del simulador, y las consultas SQL de extracción de 

datos. Esta base de datos centraliza toda la información del proyecto, facilita la replicabilidad de 

los experimentos y permite un análisis más rápido de los resultados. Tras la recopilación de 

resultados, se realiza un análisis crítico de los mismos.  

- Ajustes de modelo: A partir del análisis de los resultados, se realiza el ajuste necesario en los 

modelos, como corrección de errores, modificación de parámetros, etc. 

- Redacción de la memoria: Se redacta y revisa la memoria y sus anexos.  

- Depósito de la memoria. 

- Preparación de la defensa ante el tribunal: Se prepara y ensaya la presentación a realizar. 

- Defensa ante el tribunal. 

 


