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Mejora catalítica de biocombustibles líquidos obtenidos a partir de la 
pirólisis de biomasa lignocelulósica 

RESUMEN 

 En este proyecto, se ha estudiado la mejora de las prestaciones de un 
biocombustible líquido procedente de la reacción de pirólisis de biomasa forestal 
lignocelulósica, como una posible solución al problema ambiental del uso de los 
combustibles fósiles, y como un método alternativo de producción de nuevos 
combustibles en fase líquida sustitutivos y/o complementarios a dichos combustibles. 

 El trabajo ha sido desarrollado a partir de un biocombustible inicial y aplicando 
el proceso de craqueo catalítico de sus vapores y su posterior condensación. La 
experimentación se ha llevado a cabo en un reactor de lecho fijo a escala de 
laboratorio, a una temperatura fijada en 450̊ C, alimentando un flujo de líquido de 5 
mL/h y haciendo pasar un flujo de N2 para garantizar la atmósfera inerte. 

 El estudio se ha completado con la utilización de diferentes catalizadores. Se 
han utilizado zeolitas ZSM-5 comerciales microporosas, se han sintetizado en el 
laboratorio zeolitas ZSM-5 jerarquizadas para estudiar el efecto de la creación de 
mesoporos en el producto final y se han impregnado diferentes cationes en su 
estructura (Cu, Mg, Ga, Sn y Ni) para estudiar su comportamiento. 

Para asegurar el éxito de la creación de mesoporos, se ha utilizado una zeolita 
con ratio Si/Al=40. Al reducir el número de átomos de Al por átomos de Si se consigue 
una mayor formación de mesoporos, ya que el Al en la estructura inhibe la extracción 
del Si al aplicar un tratamiento alcalino. Así, la creación de mesoporos en el sólido se 
ha conseguido aplicando un tratamiento alcalino (NaOH 0,2M) para disolver parte del 
Si y extraerlo de la estructura dando lugar a poros de mayor tamaño, seguido de uno 
ácido (HCl 0,1M) para eliminar el Al extraído de la estructura y recuperar el ratio Si/Al, 
y finalmente un intercambio con NH4NO3 para devolverla a su forma ácida. La 
incorporación de los diferentes cationes se ha realizado mediante una impregnación 
húmeda a partir de su nitrato correspondiente para conseguir un 1% de carga. 

 Con el objetivo de valorar qué prestaciones de los catalizadores llevan a una 
mejora de las propiedades de los biocombustibles, se ha realizado una caracterización 
de las propiedades de los productos obtenidos. Las propiedades a determinar y 
evaluar para el producto líquido final han sido el pH, el número de acidez total, el 
contenido de agua, el poder calorífico, la densidad, la viscosidad, su composición 
elemental y su poder calorífico y, se ha realizado un análisis semi-cuantitativo de los 
compuestos principales que lo componen mediante cromatografía de gases/masas. 

Los resultados obtenidos, muestran que la creación de mesoporos en el sólido 
lleva a una mejora en la calidad del líquido, principalmente en términos de menor 
viscosidad, menor contenido de oxígeno y un mayor poder calorífico, y una mayor 
producción de compuestos aromáticos e hidrocarburos. La incorporación de Ga, Ni o 
Sn en la estructura mejora dichas propiedades, llegando a alcanzar mayores 
reducciones de oxígeno y obteniendo una mayor fracción de compuestos aromáticos e 
hidrocarburos. 
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1.INTRODUCCIÓN 
 

 El aumento global de la demanda de energía y el impacto ambiental producido 

por el uso de combustibles fósiles, ha llevado a la comunidad científica a estudiar la 

implementación de fuentes de energía renovables en el sistema energético global. En 

la Unión Europea, se ha establecido una estrategia a largo plazo en el ámbito de las 

energías renovables hasta 2020, donde se fija el objetivo vinculante del 20 % de 

fuentes de energía renovables en el consumo de energía, así como un objetivo 

vinculante del 10 % de biocombustibles en el consumo de combustibles en el 

transporte. Además, el sector transporte, es uno de los campos con mayor consumo 

energético, llegando a ocupar una cuarta parte de todo el sector energético. Por estas 

razones, la investigación con procesos relacionados con materias primas de carácter 

renovable está en aumento. 

 El uso de la energía procedente de la biomasa es una de las alternativas 

estudiadas para cumplir con estos objetivos. Debido a su carácter renovable y su gran 

disponibilidad, se está estudiando su aprovechamiento para la obtención de 

combustibles líquidos y productos químicos, con el objetivo de reemplazar o disminuir 

la demanda de productos derivados del petróleo. A todo esto, hay que sumarle la 

posibilidad de producir unas emisiones de CO2 neutras si se realiza la gestión 

adecuada de la materia prima durante todas las etapas del proceso. Entre todos los 

procesos para valorizar la biomasa, destacan los biológicos y los químicos. Los 

procesos biológicos están referidos a procesos de fermentación y la digestión 

anaerobia y, la combustión, la gasificación y la pirólisis son los tres principales 

procesos químicos que se aplican.  

 Si se centra el objetivo en la obtención de un biocombustible líquido, el proceso 

se basa en la tecnología de pirólisis. La pirólisis consiste en la degradación térmica del 

material a temperaturas moderadas (400-600ºC) en una atmósfera inerte 

obteniéndose tres productos principales. Por una parte, el líquido mencionado, 

también llamado biocombustible. Por otra parte el residuo sólido, también denominado 

char, y finalmente el gas no condensable. El biocombustible líquido obtenido es el que 

mayor salida comercial posee, y el proceso se centra en maximizar esta producción. 

Sin embargo, para que el proceso sea viable económicamente, el uso posterior de los 

restantes productos se hace también necesario. Aunque estos biocombustibles han 
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sido probados en diferentes procesos con motores alternativos [1], presentan varios 

problemas que dificultan su aplicación directa como combustible. Los más importantes 

son su baja estabilidad debido a la gran cantidad de compuestos oxigenados 

presentes, su carácter ácido y su alto contenido en agua unido a su bajo poder 

calorífico, que es aproximadamente la mitad que el de los combustibles 

convencionales [2]. Además, debido a la presencia de compuestos oxigenados y su 

elevado contenido en agua, no son miscibles con los demás combustibles comerciales 

convencionales. Por tanto, es necesario mejorarlos.  

 Hasta la fecha, se han desarrollado diversas técnicas para mejorar este 

biocombustible, con el objetivo principal de reducir su contenido de oxígeno [3]. La 

hidrodeoxigenación, es hasta ahora el proceso más efectivo para eliminar el oxígeno, 

pero los requerimientos de trabajar con hidrógeno a presiones altas (30-140 bar) y su 

alto coste, hacen que este proceso no sea viable a una escala industrial [3]. Por otra 

parte, la pirólisis catalítica y el craqueo catalítico están tomando gran interés debido a 

unas condiciones de operación menos demandantes en términos tanto económicos 

como de seguridad, permitiendo trabajar a presión atmosférica [4]. El objetivo del 

craqueo catalítico es desoxigenar los vapores producidos por la pirólisis pasándolos a 

través de un lecho catalítico (zeolitas, alumino-silicatos o tamices moleculares) que 

opera en un rango de temperaturas entre 350-650ºC [5][6]. 

 El presente trabajo está enfocado en evaluar la mejora de la fase orgánica de 

un biocombustible inicial en un reactor de lecho fijo a partir del craqueo catalítico de 

sus vapores utilizando zeolitas. En concreto, zeolitas microporosas, zeolitas con 

porosidad jerarquizada (o mesoporosas) y zeolitas jerarquizadas cargadas con 

diferentes óxidos metálicos. Para evaluar la calidad del líquido obtenido como 

combustible, se determinan distintas propiedades como el pH, el número de acidez 

total, el contenido de agua, el poder calorífico superior, el análisis elemental, la 

densidad, la viscosidad y se realiza un análisis semi-cuantitativo a través de 

cromatografía de gases/masas. 

 

1.1 Biomasa forestal lignocelulósica 

 

La biomasa se puede definir como el conjunto de materia orgánica renovable de origen 

vegetal, animal o procedente de la transformación natural o artificial de la misma. 
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Existen varios tipos de biomasa, en forma de residuos industriales, forestales y 

agrícolas. 

 Se entiende por residuos forestales, en sentido estricto, los restos del árbol 

(ramas, raberón, hojas y fustes defectuosos) que quedan sobre la superficie del monte 

después del aprovechamiento maderable, claras y clareos, o como consecuencia de la 

construcción de caminos.  

 La acumulación de estos residuos produce efectos indeseables sobre el 

desarrollo del bosque: 

 Perjudican y dificultan la regeneración y reforestación artificial. 

 Impiden el crecimiento del arbolado y rebaja su calidad. 

 Encarecen todas las operaciones silvícolas. 

 Aumentan el peligro de plagas y de incendios. 

 Disminuyen la capacidad del aprovechamiento ganadero. 

 Reducen el hábitat de la fauna silvestre. 

 

 Para la realización de este trabajo, se parte de un biocombustible líquido 

extraído a partir del proceso de pirólisis de biomasa forestal lignocelulósica. La 

biomasa se compone principalmente de tres componentes que son la celulosa, la 

hemicelulosa y la lignina. Por tanto, se  entiende por biomasa lignocelulósica aquella 

en la que predominan las celulosas y la lignina. 

 Celulosa: el constituyente principal de este tipo de biomasa, conforma el marco 

estructural de las células. Es un polímero de glucosa en el que se repite la 

unidad C6H12O6. 

 Hemicelulosa: cadenas más cortas muy ramificadas de azúcares (cinco tipos 

diferentes).  

 Lignina: polímero de elevado peso molecular y estructura no bien definida que 

cementa las fibras de la celulosa y de la hemicelulosa, dándoles consistencia y 

estructura a los tejidos vegetales. 
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1.2 Zeolitas 
 

 Se define como zeolita “cualquier miembro de la familia de los minerales 

formado por aluminosilicatos hidratados que contienen metales alcalinos o alcalinos 

térreos, caracterizados por su capacidad de intercambio iónico y su posibilidad de 

deshidratación reversible”. Existen numerosos tipos de zeolitas en la naturaleza 

aunque sólo 6 son abundantes (analcima, chabazita, cliptlolita, erionita, mordenita, 

phillipsita y ferrierita). Las zeolitas naturales se forman a partir de la precipitación de 

fluidos incluidos en los poros o por alteración de vidrios volcánicos [7].  

 Las zeolitas son sólidos metalosilicatos cristalinos microporosos con 

estructuras bien definidas. Su fórmula empírica general se puede escribir como: 

xM2/nO · xAl2O3 ∙ ySiO2∙zH2O 

 Donde M representa al ión intercambiable que compensa la diferencia de carga 

al sustituir Si por Al, y n es su estado de oxidación o valencia. 

 La red de estos aluminosilicatos está constituida por tetraedros con O2- en los 

vértices y generalmente Si4+ y Al3+ en las posiciones centrales. Los átomos que 

ocupan las posiciones centrales son llamados átomos T.  

 

Propiedades generales: 

 Las propiedades más relevantes de las zeolitas son su estructura microporosa 

y uniforme, su alta superficie específica, su selectividad y acidez intrínsecas, su 

capacidad de adsorción, su capacidad de intercambio iónico y su alta estabilidad 

hidrotérmica [7]. 

 Las propiedades de las zeolitas son controlables según el método de síntesis, 

la temperatura, el tiempo y la composición de la mezcla. Variando su composición 

química se puede conseguir una mayor estabilidad térmica, mayor fuerza ácida 

(implica mayor actividad catalítica), modificar su carácter hidrófobo, su capacidad de 

intercambio iónico y su capacidad de adsorción de moléculas [8].  

 Una de las propiedades más importantes de las zeolitas es su gran capacidad 

de intercambio iónico. En la forma más habitual de las zeolitas, debido a la sustitución 

isomórfica de los átomos de silicio de la estructura cristalina por átomos de aluminio , 
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se crea un desequilibrio en la carga de la zeolita. Para compensar la carga neta 

negativa formada por esta sustitución son necesarios cationes exteriores; éstos son 

intercambiables, de ahí deriva su gran capacidad de intercambio iónico. La relación 

Si4+/Al3+ de cada zeolita determina la carga de su red, cuantas más sustituciones de 

Si4+ por Al3+ se produzcan, mayor será el exceso de carga negativa y más alta será la 

capacidad de intercambio iónico. 

 La estructura microporosa hace que las zeolitas presenten una superficie 

interna muy elevada comparada con la superficie externa. Esta estructura es la 

responsable de muchas de sus propiedades, como sus buenas propiedades 

adsorbentes. Al tener los poros muy pequeños, la superficie interna es muy elevada y 

las superficies que los forman están muy próximas, con lo que aumenta el potencial de 

adsorción. La estructura microporosa bien definida y ordenada posibilita las reacciones 

o transformaciones de una forma selectiva [9]. 

 Aunque las dimensiones moleculares de los microporos, son responsables de 

muchas de las propiedades de las zeolitas, también imponen de manera frecuente 

limitaciones. La microporosidad afecta al transporte, ya que la difusión de los reactivos 

o de los productos desde o hacia los sitios activos es difícil y también, ocasiona 

problemas de selectividad para la reacciones en las que se utilizan [9]. Por tanto, es 

necesario mejorar la accesibilidad y el transporte molecular en las zeolitas para 

aumentar el potencial catalítico. Se puede prever que el acortamiento de la trayectoria 

hasta los microporos dará lugar a una mejora en el transporte y de este modo las 

zeolitas serían catalizadores más eficientes [8]. En este sentido aparecen las zeolitas 

jerarquizadas. Un material jerárquico se caracteriza por tener distintos niveles de 

porosidad. El objetivo principal de las zeolitas jerárquicas es asociar en un mismo 

material las propiedades de los microporos y la mejora del acceso y el transporte 

aportados por los mesoporos.  

 En los últimos años, se ha extendido la aplicación de las zeolitas HZSM-5 

jerarquizadas, usándose frecuentemente en distintos procesos [10][11], mejorando su 

rendimiento en comparación con su estructura microporosa inicial. Esto es debido, a la 

integración en el mismo material de las propiedades catalíticas y de adsorción de los 

microporos (ya existentes) y las facilidades del transporte aportadas por la presencia 

de una red de mesoporos secundaria interconectada. Hoy en día se conocen e 

investigan distintos métodos para sintetizar zeolitas jerarquizadas y de esta manera 

poder ampliar el alcance de las zeolitas a reacciones que implican moléculas de mayor 

tamaño, antes restringidas por la microporosidad de su estructura natural.  
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Aplicaciones: 

 Propiedades como su alta estabilidad térmica, su alta superficie específica, su 

estructura microporosa y uniforme junto con su selectividad y acidez intrínsecas, 

hacen de las zeolitas materiales únicos con numerosas aplicaciones como 

catalizadores, adsorbentes y tamices moleculares en la industria [8][9].  

 Las zeolitas están teniendo un creciente interés por sus numerosas 

aplicaciones como catalizadores en reacciones de isomerización, alquilación, 

aromatización, craqueo o pirólisis [12]. Se les da una gran importancia sobre todo en 

las reacciones de craqueo de hidrocarburos ya que su uso es muy importante en la 

conversión del petróleo hacia combustibles. Han demostrado tener sobre todo buena 

actividad en las reacciones de catálisis ácida, lo que ha abierto grandes oportunidades 

en la producción industrial [13]. En general se atribuye la actividad a los sitios ácidos 

de Brönsted que posee la zeolita, y por esta razón se están realizando hoy en día 

muchos esfuerzos para sintetizar nuevos tipos de materiales zeolíticos utilizando 

distintos métodos de síntesis [14].  

 La aplicación de las zeolitas en este trabajo está enfocada en el craqueo de los 

vapores de biocombustibles de segunda generación en los sitios activos de las zeolitas 

para convertirlos en nuevos biocombustibles de mayor valor añadido. De esta manera 

se espera una fase mayoritariamente acuosa y, otra orgánica de mayor valor que la 

inicial.  

 

1.2.1 Zeolita ZSM-5 
 

 En el trabajo abordado, se emplea la zeolita ZSM-5. La zeolita ZSM-5 

pertenece al grupo pentasílico de zeolitas y es uno de los catalizadores sólido-ácidos 

más versátiles conocido. Su estructura es tridimensional de la forma:  

| Na+
n (H2O)16 | [ Al n Si n 96 O 192 ] - MFI, n <27 

 El tamaño de poro de la silicalita, ZSM-5 (MFI) es de 5,5 Å.  

 Se trata de una estructura tridimensional formada por canales rectos y 

sinusoidales unidos en las intersecciones, donde cada anillo de los que forman los 

canales está compuesto por 10 tetraedros. La red estructural de la zeolita ZSM-5 se 

muestra en la Figura 1. 
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Figura 1. Red estructural de zeolita tipo ZSM-5 [15]. 

 

 La  zeolita H-ZSM-5 tiene un rendimiento catalítico único en términos de 

selectividad de olefinas y de vida útil [16]. Esto es debido principalmente a las 

siguientes características [17][18]: (i) la fuerza del ácido de los sitios catalíticos, (ii) 

microporos con un dimensiones adecuadas para la inhibición de la formación de 

moléculas grandes (mayores que C20), (iii) una muy alta porosidad y conectividad entre 

los poros, que favorecen la difusión de los reactivos, productos y subproductos, y (iv) 

la ausencia de "jaulas" en las intersecciones de los poros.  

 

1.3 Antecedentes y estado de la tecnología 
 

 El proceso de mejora de biocombustibles se ha estado desarrollando durante 

los últimos años por medio de diferentes técnicas [19][20]. Con el paso del tiempo, el 

craqueo catalítico y la pirólisis catalítica están tomando interés debido a las 

posibilidades que ofrece, y a las condiciones más suaves de trabajo en comparación a 

otras tecnologías [3]. Con este objetivo, se han utilizado diferentes materiales para el 

proceso de craqueo catalítico, siendo los más destacados las zeolitas. El craqueo 

mediante zeolitas consiste en eliminar el oxígeno transformándolo en CO2 y H2O, 

siguiendo la siguiente reacción general [3]: 

C1 H1,33 O0,43 + 0,26 O2 0,65 CH1,2 + 0,34 CO2 + 0,27 H2O 

 Generalmente, los biocombustibles procedentes de la biomasa presentan 

mayores rendimientos a liquido cuando se utiliza ZSM-5 [3]. La principal fuente de 
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desactivación catalítica de las zeolitas HZSM-5 durante el craqueo de poliolefinas es la 

formación de depósitos carbonosos, normalmente conocido como coque, que bloquea 

la accesibilidad de los reactivos hacia los sitios ácidos [21][22]. Se pueden diferenciar 

dos tipos diferentes de coque [23]. Por una parte, el que se deposita en la superficie 

de los cristales de la zeolita, que contiene largas cadenas alifáticas. Por otra parte, un 

coque principalmente aromático, estructurado y condensado, depositado tanto en el 

interior como en el exterior de la zeolita.   

 Desde el año 2000, hay varios grupos de investigación trabajando en este 

proceso.  Algunas de los más destacados junto con los diferentes catalizadores 

utilizados, se pueden encontrar en la Tabla 1. 

 

Tabla 1. Organizaciones más destacadas en el proceso de craqueo catalítico para la mejora de 

combustibles [3] 

Organización País Catalizador 

Anadolu University Turquía ZSM-5, H-Y 

Aston University Reino Unido ZSM-5 

Georgia Institute of Technology EEUU Zeolitas H-Y  

CPERI  Grecia MCM-41 

East China University China H-ZSM-5 

U. Leeds Reino Unido ZSM-5 

U. Massachussets EEUU ZSM-5 

Virginia Tech EEUU H-ZSM-5 

U. Pais Vasco España H-ZSM-5, Ni-HZSM-5 

U. Pisa Italia H-ZSM-5 

 

 Hasta el momento, el proceso se encuentra en investigación y en la mayoría de 

los casos a una escala de laboratorio, aunque se está llegando a escalas piloto con 

sistemas de mejora por craqueo catalítico integrados con capacidad de 25 kg/h de 

biomasa [24]. Existen estudios anteriores basados en el uso de zeolitas microporosas 

y el uso de diferentes cationes impregnados, y, aunque existe algún estudio con 

sólidos jerarquizados [25][26] y en éstos se ha observado una mejora en la producción 

de biocombustibles, no se han encontrado estudios que evalúen la influencia que tiene 

la disposición de distintos tipos de cationes impregnados en dichos sólidos. 
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2. OBJETIVOS 
 

 Con este trabajo, se pretende obtener biocombustibles líquidos de alto valor 

añadido a partir de una biomasa lignocelulósica (residuos forestales). La técnica 

utilizada, consiste en el craqueo catalítico de los vapores de un biocombustible 

obtenido mediante pirólisis de biomasa, con el fin de disminuir su acidez, su contenido 

en agua y los compuestos oxigenados y, aumentar su poder calorífico. Para ello, se 

evaluará el uso de diferentes sólidos catalíticos. Primero, se utilizará una zeolita en 

forma ácida microporosa. Segundo, se utilizará una zeolita con porosidad jerarquizada 

sintetizada en el laboratorio. Y por último, se utilizarán zeolitas jerarquizadas 

impregnadas con diferentes cationes. Así, el trabajo tiene dos objetivos principales: 

 Estudiar y analizar cómo afecta la creación de mesoporos en el proceso y en 

la calidad final del producto.  

 Estudiar y analizar cómo afecta a la calidad del líquido, la presencia de 

diferentes óxidos metálicos impregnados en el sólido catalítico.  

 Para su evaluación, se realizará una caracterización de las propiedades de los 

productos obtenidos y del sólido utilizado, con el objetivo de valorar qué prestaciones 

de los catalizadores llevan a una mejora de las propiedades de los biocombustibles. 

Las propiedades a determinar y evaluar para el producto líquido final serán el pH, el 

número de acidez total (TAN), el contenido de agua, el poder calorífico, la densidad, la 

viscosidad, su composición elemental y su poder calorífico y, se realizará un análisis 

semi-cuantitativo de los compuestos principales que lo componen mediante 

cromatografía de gases/masas. 
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3. EXPERIMENTAL 
 

3.1 Materiales 
 

 En el siguiente apartado se describen los materiales utilizados en el trabajo. 

Las características y el proceso de síntesis de los catalizadores y, las características 

de la biomasa y el biocombustible de partida utilizado. 

 

3.1.1 Biomasa y biocombustible de partida 
 

 El líquido de pirólisis de partida usado en los experimentos se obtuvo a partir 

de un reactor tipo auger de 100 kWth de capacidad nominal para biomasa. El 

experimento se llevó a cabo a 450 ºC usando N2 como gas inerte de arrastre. La 

alimentación se fijó en 2 kg/h de biomasa a presión atmosférica. La operación y el 

desarrollo del proceso global se puede encontrar en la literatura [27][28]. El líquido 

obtenido en el proceso se separó en dos fases diferentes mediante el proceso de 

centrifugado (1500 rpm durante una hora), resultando una fase superior o acuosa y 

una fase inferior u orgánica.  La fase orgánica es la más interesante para ser mejorada 

para su uso potencial como combustible debido a sus propiedades. Principalmente, el 

menor contenido en agua y oxígeno, y su mayor poder calorífico respecto de la fase 

acuosa. A partir de este punto, la fase orgánica se denomina líquido de partida o 

inicial. Las propiedades del mismo se encuentran resumidas en la Tabla 2. 

 

Tabla 2. Propiedades del líquido inicial obtenido mediante pirólisis de biomasa forestal. 

 

Contenido de agua (% en peso) 11 
TAN (mg KOH/g) 34 
pH 4,4 
Viscosidad (cP) 86 
Densidad (g/mL) 1,3 
PCS (MJ/kg) 25 

Análisis elemental  
(% en peso) 

C 60 
H 7,4 
N 0,3 
S 0,04 
O 32 
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3.1.2 Catalizadores 
 

 Las zeolita de partida utilizada ha sido suministrada por Zeolyst International. 

Se encuentra en su forma amónica (NH4-ZSM-5). El ratio Si/Al también es fundamental 

cuando se realiza un tratamiento alcalino ya que la presencia del Aluminio en la 

estructura inhibe la extracción del Silicio. De esta manera, si se reduce el número de 

átomos de aluminio por átomos de Silicio se consigue una mayor formación de 

mesoporos. Para estar seguros del éxito en la creación de mesoporosidad, el ratio 

Si/Al utilizado es 40 (CBV 8014). Los sólidos que se han evaluado se pueden 

diferenciar en tres grupos. Por una parte, se utiliza la zeolita ZSM-5 comercial en 

forma ácida. En segundo lugar, se trata ese mismo sólido para conseguir una zeolita 

con porosidad jerarquizada, de manera que se combinen microporos y mesoporos, y 

por último, la zeolita jerarquizada resultante se impregna con diferentes cationes 

metálicos. Los cationes metálicos utilizados para dicho fin son Mg, Cu, Ga, Sn y Ni. El 

proceso seguido para la obtención de los diferentes sólidos se describe a 

continuación.  

 Para el primer paso, se convierte la zeolita ZSM-5 de su forma amónica a su 

forma acida mediante calcinación a 450 ºC durante 6 horas con aire estático (rampa 

de temperatura = 5 ºC/min).  

 Para el segundo caso, y conseguir una porosidad jerarquizada, se realiza un 

tratamiento secuencial. Primero, se realiza un tratamiento alcalino (NaOH 0,2 M). Con 

este tratamiento se consigue disolver parte del silicio y extraerlo de la estructura dando 

lugar a poros de mayor tamaño, los mesoporos. Seguidamente, se realiza un 

tratamiento ácido (HCl 0,1 M). De esta manera se elimina el aluminio extraído de la 

estructura durante el tratamiento alcalino y así se recupera el ratio Si/Al disminuido 

tras la disolución del silicio. Finalmente, se realiza un intercambio iónico con NH4NO3 y 

se calcina a 450 ºC durante 6 horas (rampa de temperatura = 5 ºC/min) para 

devolverla a su forma ácida. Para la última parte, la introducción de los cationes 

metálicos se consigue mediante impregnación húmeda con disoluciones acuosas 

agitadas de los correspondientes nitratos (99% Sigma Aldrich) para conseguir un 1 % 

en peso de carga. Después de secar la muestra en una estufa a 105 °C durante 13 

horas, se calcina en una mufla a 550 °C (1 °C/min  durante 4 horas para eliminar los 

nitratos. El proceso global de la síntesis de los catalizadores se encuentra más 

detallado en el Anexo 1. 
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Las muestras se cifran como H-ZSM-5 para la zeolita en forma ácida, J-H-ZSM-5 para 

la zeolita jerarquizada en forma ácida y J-Metal-ZSM-5 para cada muestra cargada 

con el metal correspondiente. 

 

3.1.3 Instalación experimental de lecho fijo 

 

 Un esquema de la instalación experimental utilizada para el proceso de mejora 

catalítica del líquido de pirólisis se muestra en la Figura 2. La instalación se compone 

de dos entradas principales, una para el gas de arrastre (7 mL/min N2)  y otra para el 

líquido de partida (5 mL/h). Ambas se unen antes de la entrada al reactor. El 

catalizador (0,5 g) se sitúa en un tubo reactor de acero inoxidable sostenido por dos 

lechos de lana de cuarzo (0,5 g cada una) y 4 g de abalorios de cuarzo localizados en 

la parte superior del lecho para mejorar la transferencia de masa. La fracción volátil 

resultante atraviesa un depósito sumergido en un baño de agua y hielo y los gases no 

condensables son almacenados para su posterior análisis. 

 La duración de cada experimento se divide en dos etapas: Los primeros 120 

min se alimenta el líquido y el gas, y en los 30 min siguientes se interrumpe la 

alimentación del líquido y se introduce N2 solamente. 

 Para estudiar el efecto del catalizador se realizó un experimento no catalítico 

en las mismas condiciones experimentales. 
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Figura 2. Esquema de la instalación mejora mediante craqueo catalítico de biocombustibles 

equipada con un reactor de lecho fijo. 

 

 

3.2 Productos obtenidos 
 

 Para comprobar el balance de materia del proceso se agrupan todas las 

fracciones obtenidas, dividiéndose en tres principalmente: líquido mejorado, fracción 

gaseosa y fracción líquida. 

 

 Liquido mejorado: Esta fracción liquida se compone de dos fases inmiscibles 

entre ellas. La fase superior o acuosa y la fase inferior u orgánica. Son separadas 

mediante centrifugación a 1500 r.p.m durante una hora. 

 

 Fracción gaseosa: Se compone de los gases no condensables, en base libre 

de nitrógeno. 
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 Fracción solida: Esta fracción se compone del solido carbonoso o char, la 

fracción más pesada o tar y coque. 

 

 El char es la fracción solida depositada en la parte superior del reactor. 

 El Tar es la fracción soluble en acetona determinada por gravimetría después 

del lavado del interior del reactor y posterior evaporación del solvente. 

 El coque se calcula por diferencia de peso antes y después de calentar el 

catalizador en aire en un horno a 800ºC durante 2h. 

 

 Finalmente, es remarcable destacar que los experimentos con H-ZSM-5 fueron 

realizados tres veces, encontrándose rendimientos similares de líquido, sólido y gas, 

con un error experimental menor que el 5%. 

 

3.3 Caracterización de los productos y materiales 
 

 En este apartado se realiza una descripción de las técnicas utilizadas para la 

caracterización de los sólidos utilizados como catalizadores y los productos obtenidos 

tras la realización de los experimentos. 

 

3.3.1 Caracterización de los catalizadores  

 

 Para la caracterización de los catalizadores se utilizaron diferentes técnicas en 

las que se incluye: Difracción de rayos X (XRD) para caracterizar la estructura de los 

sólidos, fisisorción con N2 para determinar la superficie específica de las partículas que 

forman el sólido y desorción con temperatura programada de amoniaco (TPD-NH3) 

para conocer la acidez de las muestras. La metodología y una descripción más 

detallada de la instrumentación y el proceso seguido se encuentran resumidos en el 

Anexo 2. 
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3.3.2 Caracterización del líquido  
 

 La caracterización del líquido mejorado se lleva a cabo mediante la 

determinación de sus propiedades para su evaluación como combustible potencial. 

Para ello, se determina la composición elemental, el poder calorífico superior, el 

contenido de agua, el pH, el número de acidez total (TAN), la densidad, la viscosidad y 

se realiza un  análisis semi-cuantitativo de su composición mediante cromatografía de 

gases/masas (GC/MS). La instrumentación utilizada y el proceso de caracterización de 

acuerdo a la normativa, se encuentra detallado en el Anexo 3. 

 

3.3.3 Caracterización del gas  

 

 Los gases no condensables se determinan mediante cromatografía de gases 

usando un cromatógrafo Hewwlett Packard 5890 series II. El cromatógrafo se 

compone de dos columnas diferentes y está equipado con un detector de 

conductividad térmica (TCD). Para la medición de H2, O2, N2 y el CO a 60ºC, se utiliza 

una columna de tamiz molecular de 5Å. Para analizar el CO2 y los hidrocarburos 

ligeros a 90 ºC se utiliza con una columna HayeSep Q. El volumen inyectado es de 

100µL.  
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4. RESULTADOS 
 

4.1. Caracterización de los catalizadores 

 

 A continuación se exponen los resultados obtenidos tras la caracterización de 

los sólidos utilizados como catalizadores mediante difracción de rayos X, fisisorción de 

N2 y desorción a temperatura programada de amoniaco. 

 

4.1.1 Difracción de rayos X (XRD) 

 

 La pureza de las fases y la cristalinidad se verifica mediante el análisis XRD. 

Los picos reflejados se corresponden con la estructura MFI (ZSM-5) [29] para cada 

uno de los casos (ver Figura 3). A partir de los resultados obtenidos, se puede concluir 

que, tanto el procedimiento seguido para la generación de mesoporos como el proceso 

posterior de intercambio mediante impregnación del metal correspondiente, no llevan a 

una destrucción de la estructura cristalina. El difractograma correspondiente a las 

zeolitas cargadas con los diferentes metales no muestra picos relevantes relacionados 

con la presencia de los mismos. La ausencia de estos picos no descarta la presencia 

de los diferentes óxidos metálicos en la superficie sólida ya que estas especies 

pueden todavía estar presentes como pequeñas partículas amorfas y/o bien dispersas 

en la superficie externa de la zeolita. Además, es posible que debido a la baja carga 

del metal en las muestras, no se observen diferencias debido una posible 

superposición con los picos de difracción de la matriz H-ZSM-5. 
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Figura 3. Difracción de rayos X de los catalizadores utilizados en el proceso de craqueo  

catalítico para la mejora de biocombustibles. 

 

4.1.2 Isoterma de adsorción-desorción de N2 

 

 A partir de las isotermas de adsorción-desorción de N2 se puede obtener 

información sobre la porosidad de la zeolita. Las isotermas de adsorción-desorción se 

muestran representadas en la Figura 4. A modo de comparación, se representan en un 

mismo grafico la zeolita microporosa H-ZSM-5 y la jerarquizada J-H-ZSM-5. Los 

resultados indican, que en el caso del material microporoso, la isoterma corresponde 

con la isoterma tipo I, característica de este tipo de materiales. Para todos los sólidos 

jerarquizados, las isotermas se asemejan a las de tipo IV, características de los 

materiales mesoporosos. En estas últimas, el aumento del volumen de N2 adsorbido a 

presiones relativas altas (P/P0 > 0,5) indica la creación de los mesoporos. En el Anexo 

4 se encuentran detalladas los tipos de isotermas, sus características y su clasificación 

según el tipo de material. 
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Figura 4. Isotermas de adsorción-desorción de N2 para cada uno de los sólidos catalíticos. 

 

Las áreas superficiales específicas se determinan mediante la ecuación BET [30]. 

Dicha superficie presenta un valor de 434 m2/g para el sólido microporoso H-ZSM-5. 

Para los sólidos con porosidad jerarquizada, los valores de la superficie BET abarcan 

un rango de valores desde 456 para J-Mg-ZSM-5 hasta 528 m2/g para J-H-ZSM-5. Los 

valores individuales para cada sólido se encuentran en la Tabla 3. Como es de 

esperar, la superficie BET aumenta para las muestras jerarquizadas. Este aumento de 

la superficie específica, puede ser atribuido a la disolución de la estructura y a la 
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formación de mesoporos. Para completar este estudio se determina el área de la 

superficie mesoporosa (SMeso) y el volumen de microporos (VMicro) y mesoporos (VMeso). 

El volumen de microporos y el área de la superficie mesoporosa se determina 

aplicando el metodo t-plot [31], y el volumen de mesoporos se estima a partir de : VMeso 

= VP/P0=0.99-VMicro. Ambos valores para cada uno de los sólidos se reflejan en la Tabla 3. 

Los resultados confirman la estimación anterior, ya que durante el proceso de síntesis 

a las condiciones de trabajo, se crean los mesoporos mientras se mantiene la 

estructura cristalina y disminuye el volumen de microporos. Este comportamiento es 

similar al encontrado por otros autores tras el tratamiento alcalino aplicado [32][33]. 

Los mayores valores de VMeso se alcanzan para los sólidos jerarquizados J-H-ZSM-5, 

J-Ni-ZSM-5 y J-Sn-ZSM-5 (0,51-0,54 cm3/g), mientras que para el caso de J-Ga-ZSM-

5 se obtiene el menor valor (0,31 cm3/g). La misma tendencia se aprecia para los 

valores de SMeso, alcanzando el mayor valor para el sólido J-H-ZSM-5 (284 m2/g). 

Estas diferencias pueden ser debidas al tamaño del catión, a la diferente distribución 

de los óxidos metálicos en el sólido o a que los cationes están ocupando las 

posiciones de intercambio de la zeolita. Si bien con las técnicas disponibles no es 

posible determinar la distribución exacta de los cationes, el hecho de que se 

encuentren como óxidos metálicos en las posiciones de intercambio o en la superficie 

del material, podría afectar a la catálisis. Un análisis en profundidad de la disposición 

de estos cationes se realizará próximamente mediante el uso de distintas técnicas de 

caracterización como espectrometría Infrarroja con Transformada de Fourier (FTIR) de 

moléculas sonda pre-adsorbidas, resonancia magnética nuclear (RMN) y microscopía 

electrónica de transmisión de alta resolución (HRTEM).   
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Tabla 3. Valores de superficie BET (m2/g) , Volumen de microporos (VMicro) y volumen de 

mesoporos (VMeso), para los sólidos catalíticos. 

 H- 
ZSM-5 

J-H-
ZSM-5 

J-Mg- 
ZSM-5 

J-Ni- 
ZSM-5 

J-Cu- 
ZSM-5 

J-Ga- 
ZSM-5 

J-Sn- 
ZSM-5 

SBET 

(m2/g) 
469 528 456 500 471 482 518 

SMeso 

(m2/g) 
28 284 132 186 134 140 189 

VMicro 

(cm3/g) 
0,18 0,10 0,14 0,14 0,14 0,15 0,13 

VMeso 

(cm3/g) 
0,10 0,51 0,33 0,54 0,41 0,31 0,53 

 

 

4.1.3 Desorción a temperatura programada (TDP) 

 

 La técnica TPD (desorción a temperatura programada) de NH3 se utiliza para 

caracterizar la fuerza de los sitios ácidos accesibles en los catalizadores (Figura 5). 

Con este ensayo, se determinan los ácidos totales correspondientes a los ácidos de 

Brönsted, los ácidos de Lewis y otros sitios ácidos suficientemente fuertes como para 

adsorber el NH3. A partir de la representación se pueden diferenciar tres zonas. En 

todos los casos, aparece un pico principal a unos 370-380ºC aproximadamente y otro 

de menor tamaño a unos 180 ºC. El tercer pico, aparece a una mayor temperatura 

(500ºC aproximadamente). El primer pico, se asocia con el amoniaco adsorbido en 

centros ácidos débiles producidos por grupos hidroxilo del catalizador y alcanza su 

mayor valor para el sólido J-Ga-ZSM-5. El segundo pico, se relaciona con los centros 

ácidos fuertes de Brönsted y Lewis del catalizador. A medida que se desplaza hacia la 

izquierda, es decir, a menor temperatura, se reduce la fortaleza de los centros ácidos. 

En este sentido, al trabajar con Mg y Cu, la fuerza de los centros ácidos se ve 

reducida. El tercer pico, se debe a los grupos ácidos creados por el intercambio de los 

cationes y resulta más evidente al trabajar con Ni y Cu. Estos sitios ácidos pueden ser 

importantes en procesos catalíticos actuando como ácidos de Lewis aceptando pares 

de electrones [34]. 
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Figura 5.  Resultados obtenidos a partir del análisis por TPD de los sólidos catalíticos. 

Representación gráfica de la intensidad de la señal frente a la temperatura. 

 
 Tras el proceso de creación de mesoporos en los sólidos, se pretende mejorar 

la accesibilidad a los sitios ácidos, y por tanto, debe existir una mayor cantidad de 

sitios disponibles para llevar a cabo la reacción catalítica. La Tabla 4, muestra la 

cantidad de NH3 (mmol NH3/g muestra) desorbida para cada una de las muestras 

calculada a partir de las áreas de los picos observados en la Figura 5. El aumento de 

la cantidad de NH3 desorbida es evidente para los sólidos jerarquizados, excepto para 
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el sólido J-Cu-ZSM-5. El hecho de no aumentar respecto del sólido microporoso, 

podría estar relacionado con el menor aumento del volumen de mesoporos 

encontrado, y por tanto con la distribución de los óxidos metálicos o su 

posicionamiento en las zonas de intercambio. Este hecho, se respalda con los valores 

determinados del área de las superficies mesoporosas mostrados en la Tabla 4. 

 Si atendemos a la cantidad total de mmoles de NH3 desorbidos por gramo de 

muestra, se puede concluir que Ni-ZSM-5 es el sólido con más sitios ácidos accesibles 

seguido por J-Sn-ZSM-5 y J-Ga-ZSM-5 (ver Tabla 4). 

 

Tabla 4.  Cálculo de los mmoles de NH3 adsorbidos por gramo de muestra mediante el cálculo 

de las áreas a partir de la normalización de los resultados obtenidos en el análisis mediante el 

análisis TPD. 

 
H- 

ZSM-5 
J-H- 

ZSM-5 
J-Mg- 
ZSM-5 

J-Ni- 
ZSM-5 

J-Cu- 
ZSM-5 

J-Ga- 
ZSM-5 

J-Sn- 
ZSM-5 

Zona 1 (mmol NH3/g)a 0,02 0,02 0,00 0,00 0,01 0,03 0,00 

Zona 2 (mmol NH3/g)b 0,29 0,34 0,38 0,43 0,24 0,35 0,38 

Zona 3 (mmol NH3/g)c 0,02 0,03 0,02 0,04 0,08 0,01 0,02 

mmol NH3/gd totales 0,33 0,39 0,38 0,47 0,33 0,39 0,40 
a mmol de NH3 desorbidos para el primer pico a 180-190 ºC. 
b mmol de NH3 desorbidos para el segundo pico 370-380 ºC. 
c mmol de NH3 desorbidos para el tercer pico a 500 ºC.  
d mmm de NH3 totales desorbidos 

 

 

4.2 Rendimientos de los productos 
 

 Los resultados obtenidos en los rendimientos del proceso de mejora catalítica 

de biocombustibles se muestran en la Tabla 5. De la misma manera, se muestran los 

resultados para el proceso sin catalizador en las mismas condiciones de operación. 
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Tabla 5. Rendimientos de todos los productos obtenidos tras el proceso de mejora catalítica del 

biocombustible para cada uno de los sólidos catalíticos estudiados. Entre paréntesis se 

representan los porcentajes en peso de fase orgánica del líquido final, y el % de deposición de 

coque individual para cada sólido. 

 

 
No  
cat. 

H- 
ZSM-5 

J-H- 
ZSM-5 

J-Mg- 
ZSM-5 

J-Ni- 
ZSM-5 

J-Cu- 
ZSM-5 

J-Ga- 
ZSM-5 

J-Sn- 
ZSM-5 

Líquido a 

(% peso) 

57 

(68) 

57 

(67) 

57 

(61) 

60 

(68) 

59 

(61) 

60 

(69) 

56 

(67) 

56 

(63) 

Sólido  

(% en 

peso) 

Char 19 18 21 20 22 20 20 19 

Tar  3 2 4 1 3 2 2 2 

Coqueb 
0 

(0) 

2 

(11) 

2 

(15) 

1 

(16) 

2 

(23) 

1 

(15) 

1 

(18) 

2 

(17) 

Gas (% peso) 19 20 21 19 19 19 18 18 

Balance  

de masa 
98 99 104 101 105 101 98 98 

Rendimiento de 

agua totalc 
15 16 16 16 15 14 18 17 

a Rendimiento a líquido total. % en peso de la fase orgánica entre paréntesis. 
b deposición de coque en la superficie de la zeolita (% en peso) entre paréntesis. 
c Rendimiento de agua total (fase acuosa más fase orgánica, % en peso). 

 

 

 

 El rango de valores en el rendimiento a líquido no muestra variaciones 

significativas encontrándose valores entre 56 y 60 % en peso. Esta fracción liquida 

final se separa en dos fases diferentes fácilmente separables. Los valores obtenidos 

para la fase orgánica se encuentran en un rango de 61 a 69 % en peso. Los valores se 

encuentran entre paréntesis en la Tabla 5. El rendimiento total a agua, resultante tanto 

del agua inicial como de las reacciones de deshidratación catalíticas, se determina a 

partir del contenido de agua de cada fase, llegando a un rango de valores desde 14 % 

al trabajar con J-Cu-ZSM-5 y 18 % trabajando con J-Ga-ZSM-5 (ver Tabla 5). 

 El análisis del gas no condensable producido en los diferentes ensayos se 

muestra en la Tabla 6. Como es de esperar, el CO y el CO2 son los compuestos 

predominantes (en torno a 70-76 % en volumen). La producción de CO es mayor que 

la de CO2 a excepción del ensayo con J-Mg-ZSM-5. Por otra parte, el metano es el 
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hidrocarburo producido en mayor cantidad. La presencia del Ni en la estructura de la 

zeolita potencia la producción de hidrógeno, llegando hasta valores del 4 % en 

volumen. Este hecho, concuerda con la utilización del Ni en procesos de producción 

de Hidrógeno [35][36]. 

 

Tabla 6. Composición del gas no condensable (% volumen) en el proceso de mejora catalítica 

y para el ensayo sin catalizador. 

 
No  
Cat. 

H-
ZSM-5 

J-H-
ZSM-5 

J-Mg- 
ZSM-5 

J-Ni- 
ZSM-5 

J-Cu- 
ZSM-5 

J-Ga- 
ZSM-5 

J-Sn- 
ZSM-5 

H2 1,8 1,7 1,5 0,8 4,0 1,6 1,5 2,7 

CH4 20 15 13 12 14 12 13 9,9 

C2H4 5,2 7,1 10 7,3 7,9 7,2 8,6 7,8 

C2H6 6,4 4,2 2,6 3,1 2,6 2,4 2,4 3,1 

C3H8 6,4 2,6 1,9 1,9 1,6 1,5 1,6 2,0 

CO 5,0 34 40 37 42 46 41 42 

CO2 56 35 31 38 28 30 32 32 

CO + CO2 61 70 71 75 70 76 73 75 

CO / CO2 0,1 1,0 1,3 0,9 1,5 1,5 1,3 1,3 

 

 

 Uno de los principales problemas a tener en cuenta es la formación de 

productos indeseables. El principal, es la formación de char en la parte superior del 

lecho catalítico (alrededor de 20 % en peso, ver Tabla 5). De esta manera, se limita la 

operación continua del proceso debido a la pérdida de carga producida. El otro 

problema es la deposición de coque en el catalizador, debido al bloqueo de 

accesibilidad a los sitios activos y, por tanto, hace que disminuya la eficiencia del 

catalizador. Por una parte, el rendimiento a coque es calculado de una manera global 

para comprobar el balance de materia, y luego es determinado para cada uno de los 

catalizadores. La Tabla 5 muestra estos valores entre paréntesis. Como es de esperar, 

el coque depositado en los sólidos jerarquizados es mayor que para el sólido 

microporoso, llegándose a alcanzar un máximo de 23 % al trabajar con J-Ni-ZSM-5. 
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4.3 Propiedades de la fase orgánica del líquido 
 

 Las propiedades de la fracción orgánica del líquido mejorado se muestran en la 

Figura 6. Para todos los casos, el contenido de agua se mantiene en valores bajos (en 

torno al 5-6 % en peso). El TAN se mantiene en los mismos valores que el líquido 

inicial si se hace uso de la zeolita H-ZSM-5 en su forma ácida. Para los demás casos, 

en los que se combina la microporosidad y la mesoporosidad, este valor se ve 

reducido. Se logra llegar a un mínimo de reducción del 18 % para J-Ni-ZSM-5 y un 

máximo de hasta un 37 % para el caso con J-Mg-ZSM-5. Además, conviene 

mencionar la significativa reducción en los valores de la viscosidad. Éstos, se 

aproximan al valor de 10 cP, acercándose a los obtenidos en otros biocombustibles de 

primera generación o combustibles comerciales convencionales. 

 De acuerdo al análisis elemental mostrado en la Tabla 7, el contenido de 

oxígeno se reduce hasta valores del 22 % en peso para la zeolita H-ZSM-5 en forma 

ácida, lo que significa una reducción del 31 % respecto al líquido inicial. La creación de 

mesoporos en el sólido permite alcanzar valores de un 20 % en peso lo que se traduce 

en una bajada del 38 %. Al incorporar los cationes a este sólido, la bajada es 

ligeramente mayor llegando a obtenerse valores hasta el 18 % y llegando a una 

reducción del 44 %. El hecho de que el contenido de agua y de oxigeno disminuya 

provoca un aumento del PCS. En todos los casos se obtienen aumentos similares, 

llegando a alcanzar valores del 33 MJ/kg, lo que se traduce en un aumento del 28 % 

respecto al líquido de partida. Si se comparan estos resultados, con los producidos en 

el test no-catalítico, se observan mejoras en la mayoría de las propiedades del líquido, 

como en el TAN, PCS, y en el contenido de agua y oxígeno. La única propiedad que 

no sufre un aumento, y por tanto una mejora, es el pH. Aunque se logra reducir el 

número de acidez total, los valores de pH del líquido resultante presentan valores 

ligeramente inferiores al líquido inicial. 
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Figura 6. Propiedades del líquido inicial, del líquido procedente del ensayo no catalítico y los 

líquidos resultantes tras el proceso de mejora catalítica. 
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Tabla 7. Análisis elemental (% en peso) de las diferentes fases orgánicas de los líquidos. Por 

una parte el líquido de partida y por otra la el líquido tras el proceso de mejora catalítica. 

 C H N S Oa 
Inicial 60 7,4 0,3 0,0 32 

No Cat. 62 7,9 0,1 0,0 30 

H-ZSM-5 70 7,9 0,2 0,0 22 

J-H-ZSM-5 72 8,1 0,2 0,0 20 

J-Mg-ZSM-5 74 8,1 0,2 0,0 18 

J-Cu-ZSM-5 74 8,1 0,2 0,0 18 

J-Ni-ZSM-5 73 8,1 0,2 0,0 19 

J-Ga-ZSM-5 74 8,1 0,2 0,0 18 

J-Sn-ZSM-5 73 8,0 0,1 0,0 19 
a Calculado por diferencia 

 

 

 

4.4 Análisis por cromatografía gases/masas (GC/MS)  

  
 El análisis mediante cromatografía GC/MS se utiliza para identificar los 

diferentes compuestos de la fase orgánica de la fracción liquida. Se trata de un análisis 

semi-cuantitativo en el que más de 150 diferentes compuestos son identificados y 

detectados (Anexo 4, ver Tabla A.1). El porcentaje relativo de cada área para los 

principales compuestos se muestra en la Tabla 8. Las dos primeras columnas 

muestran los resultados obtenidos para el líquido de partida y el test no catalítico. 
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Tabla 8. Porcentaje relativo de cada área para los principales compuestos del líquido final tras 

la utilización de los catalizadores y en el experimento sin catalizador. 

Familia/ 
Compuesto 

Inicial 
No 
Cat. 

H- 
ZSM-5 

J-H-
ZSM-5 

J-Mg-
ZSM-5 

J-Ni- 
ZSM-5 

J-Cu- 
ZSM-5 

J-Ga- 
ZSM-5 

J-Sn- 
ZSM-5 

Fenoles 51 55 52 44 45 43 45 39 42 

Ácidos 4,5 0,5 0,5 0,3 0,3 0,3 0,4 0,4 0,4 

Otros 0,1 0,1 0,2 1,7 1,2 0,4 1,3 2,8 0,2 

Aldehídos 9.7 14 1,4 0,7 1,4 0,7 0,9 0,8 0,8 

Cetonas  

Lineales 
6,5 2,8 3,6 3,5 1,9 3,5 3,3 2,0 3,4 

Furanos 9,2 2,0 2,2 2,6 2,4 2,5 2,4 2,3 2,2 

Cetonas 

Cíclicas 
4,6 3,6 4,3 3,7 3,9 3,8 3,7 3,3 3,3 

Hidrocarburos 

Cíclicos 
3,5 2,8 3,8 2,7 2,8 2,9 2,8 2,7 3,1 

Levoglucosan 2,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

Aromáticos 0,5 5 11 20 17 21 17,8 24 23 

Poliaromáticos 7,7 14 14 13 15,6 15 16 17 16 

Ésteres 0,2 0,1 6,9 5,7 8,3 6,4 6,8 6,5 6,8 

Hidrocarburos 

totales* 
12 22 29 36 35 40 36 43 41 

*Aromáticos, poliaromáticos e hidrocarburos cíclicos 

 

 

 Los compuestos predominantes en el líquido inicial son los fenoles, aldehídos, 

cetonas cíclicas y lineales, ácidos, aromáticos y furanos. Los fenoles, furanos y en 

general los compuestos que contienen oxígeno, como los ácidos y carbonilos 

(aldehídos y cetonas) son considerados fracciones indeseables para la producción de 

energía, mientras que las fracciones de hidrocarburos son las más deseadas. Si bien 

algunos de estos compuestos, como los fenoles, pueden tener un alto interés como 

fuente de productos químicos. 

 



29 

 Después del proceso de mejora catalítica, la cantidad relativa de ácidos, 

aldehídos, furanos, y algunas de las cetonas lineales y fenoles disminuyen, 

aumentando por otra parte la fracción de compuestos aromáticos. La creación de 

mesoporos ayuda a disminuir la cantidad de fenoles, lo que implica una mayor 

cantidad de aromáticos formados. 

 La reducción de los carbonilos (aldehídos y cetonas) es importante para 

conseguir una mejor estabilidad durante el transporte y el almacenamiento de los 

productos. En general, la tendencia marcada es que los compuestos oxigenados 

disminuyen, lo que incrementa el PCS del líquido resultante. J-Ga-ZSM-5, J-Sn-ZSM-5 

y J-Ni-ZSM-5 muestran las mayores reducciones de fenoles de entre todas las 

muestras probadas. También puede observarse que la reducción de los compuestos 

ácidos disminuye desde 4,5 % hasta valores menores del 0,5 % tanto para el test no 

catalítico como para el catalítico. La reducción de la mayoría de estos ácidos por 

mediación del catalizador se puede relacionar con la formación de esteres [37], tal y 

como se observa a partir del aumento del valor en la Tabla 8. Esta reducción de 

compuestos ácidos, es un factor importante para la calidad del líquido en términos de 

reducción de la corrosividad. Analizando los resultados, se observa también un gran 

aumento del porcentaje de compuestos aromáticos respecto del líquido inicial. Este 

aumento es remarcable para todos los sólidos utilizados, pero se hace más notable 

para la zeolita ácida jerarquizada así como para las zeolitas intercambiadas con Ga, Ni 

y Sn. 
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5. ANÁLISIS DE LOS RESULTADOS 
 

El proceso de craqueo catalítico para la mejora de biocombustibles, está 

enfocado en maximizar la producción de fase orgánica con las mejores prestaciones. 

De esta manera, se espera que se produzca una disminución en la acidez y el 

contenido en oxígeno, y un aumento del PCS en dicha fracción. Tras la caracterización 

del líquido obtenido tras el proceso, se evidencia una mejora en las propiedades 

resultantes para su posible aplicación como biocombustible. Esta tendencia, se 

produce para cada uno de los sólidos si se comparan con el líquido de partida. Así, se 

obtienen mayores valores de PCS y se reducen los valores de TAN y contenido de 

oxígeno. Además, el contenido de agua se mantiene en porcentajes bajos, y el valor 

de la viscosidad disminuye en gran medida. Al reducir el contenido de oxígeno del 

líquido se eliminan ciertos compuestos oxigenados que provocan inestabilidad al 

líquido. Por tanto, se consigue minimizar los problemas asociados a las reacciones de 

polimerización durante el almacenamiento y transporte, obteniéndose un producto más 

estable [38].  La disminución de la viscosidad, está directamente relacionada con la 

reducción de los problemas en el bombeo y atomización que se producen al utilizar los 

biocombustibles típicos procedentes de la pirólisis de biomasa.  

 Por otra parte, la transformación de los ácidos en esteres bajo la presencia de 

los catalizadores implica una disminución en los valores de TAN. El valor del pH es 

ligeramente inferior al del líquido de partida. La complejidad del líquido hace difícil 

relacionar la evolución del pH conforme a los resultados obtenidos. Por tanto, estos 

valores bajos de pH necesitan ser analizados debido a los posibles problemas de 

corrosión que pueden causar en los diferentes dispositivos a utilizar. 

 De acuerdo al análisis GC/MS mostrado, se obtienen reducciones significativas 

de productos indeseados como ácidos, aldehídos, furanos, parte de las cetonas 

lineales y fenoles. Además, los líquidos obtenidos se caracterizan por un mayor 

porcentaje de compuestos aromáticos en comparación al líquido de partida. La 

presencia de estos compuestos aromáticos resulta beneficiosa [39], indicando que la 

presencia de estos compuestos asemeja el líquido obtenido a combustibles 

comerciales convencionales como la gasolina o el diésel. Sin embargo, entre estos 

compuestos se tiene que tener en cuenta la presencia significativa de hidrocarburos 

aromáticos policíclicos debido a su potencial cancerígeno.  
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 Si se analiza el efecto que provoca la creación de mesoporos en el sólido 

catalítico, se pueden extraer diferentes conclusiones. Por una parte, si se comparan  

las propiedades con el líquido obtenido con el sólido microporoso H-ZSM-5, no se ven 

variaciones significativas, salvo la reducción del TAN. Sin embargo, acudiendo al 

análisis semi-cuantitativo obtenido por cromatografía GC/MS, las diferencias son más 

evidentes. La creación de mesoporos hace posible la activación de moléculas de 

mayor tamaño. Además, de esta manera se mejoran sus propiedades catalíticas, ya 

que se facilita el acceso y difusión para los diferentes compuestos del líquido inicial 

para llegar hasta los centros activos situados en los microporos. Este hecho se ve 

reflejado en los resultados, obteniéndose una mayor reducción de fenoles, y un 

aumento notable en la fracción aromática y de hidrocarburos totales. 

 Estos resultados se enfatizan más con la carga de alguno de los cationes a la 

estructura combinada de microporos y mesoporos. De los sólidos catalíticos utilizados, 

las zeolitas J-Ga-ZSM-5, J-Ni-ZSM-5 and J-Sn-ZSM-5 son los sólidos que potencian la 

formación de mayor cantidad de aromáticos, siendo el Ga y el Sn los que favorecen un 

mayor rendimiento a agua en el proceso global. Para el caso de materiales 

microporosos, se han reportado resultados que favorecen la producción de aromáticos 

al trabajar con Ga [40][41] y Ni [42][43] . Para el caso del Sn, no se ha encontrado 

ningún caso en la bibliografía.  

 Hay que destacar, que según los metales cargados en los sólidos existen 

diferentes mecanismos de desoxigenación. Un mayor ratio CO/CO2 implica que las 

transformaciones de fenoles en aromáticos pueden atribuirse a reacciones de 

decarbonilización y oligomerización [40]. El mayor ratio se corresponde con la 

presencia de Cu y Ni, muestras que llevan, sobre todo en el caso del Ni, a unos 

mejores resultados. Este hecho, puede estar relacionado con el aumento de los 

grupos ácidos de Lewis generados al incorporar los cationes (ver Figura 6, análisis 

TPD de NH3). Además, con la incorporación de Ni, se produce H2 in situ (ver análisis 

de gases, Tabla 6), favoreciéndose las reacciones de hidrodeoxigenación [44] que 

pueden llevar a la formación de una mayor cantidad de aromáticos, tal y como se ha 

observado mediante GC/MS. Sin embargo, para este catalizador, también aumenta la 

deposición de coque llegando a alcanzar un máximo de 23 % en peso (ver Tabla 5), lo 

que podría originar graves problemas de estabilidad. Conviene mencionar, que la alta 

formación de coque  también puede relacionarse con la presencia de ácidos de Lewis 

fuertes en la superficie del material, tal y como mostraba el análisis TPD-NH3. 
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 Otro factor importante para determinar los diferentes mecanismos es el 

rendimiento a agua total. De esta manera, se están produciendo reacciones de 

deshidratación a las que hay que unir las anteriormente comentadas. El mayor 

rendimiento a agua total se alcanza al trabajar con J-Sn-HZSN-5 y J-Ga-HZSM-5. En 

ambos casos, se puede concluir que este tipo de reacciones son predominantes y 

permiten maximizar la producción de la fracción aromática tal y como se muestra en el 

análisis GC/MS. 

 Finalmente, para comprobar la escalabilidad del proceso, hay varios factores 

que deben ser considerados junto con los productos indeseados. El principal, es la 

regeneración del lecho catalítico in situ y su comportamiento posterior. Algunos de los 

problemas, como la formación de char en la parte superior del reactor deben ser 

minimizados. Para ello, se pueden usar reactores más avanzados como los reactores 

de goteo de carga continua o también llamados tipo trickle bed. Estos reactores están 

siendo utilizados para este tipo de procesos con buenos resultados y han sido 

estudiados a lo largo de estos últimos años para mejorar el diseño y contar con 

mayores ventajas de operación [45]. La deposición de coque en el catalizador puede 

bloquear los puntos de acceso a los sitios activos, y por tanto, disminuir su eficiencia. 

Así, para poder confirmar la aplicabilidad de esta tecnología para la obtención de 

biocombustibles con mejores prestaciones es necesaria la realización de ciclos de 

regeneración de los catalizadores para confirmar su estabilidad. 

 

 

 

 

 

 

 

 

 

 



33 

6. CONCLUSIONES 
 

 El proceso de craqueo catalítico de los vapores de un biocombustible inicial se 

ha desarrollado en un reactor de lecho fijo, para estudiar el efecto que presenta la 

utilización de zeolitas microporosas, zeolitas jerarquizadas y zeolitas jerarquizadas con 

diferentes óxidos metálicos impregnados en las mismas. Los resultados indican una 

mejora sustancial de las propiedades de los biocombustibles para su posible uso 

potencial como combustible. Estas mejoras se ven reflejadas principalmente en 

términos de menor viscosidad y contenido en oxígeno, y mayor poder calorífico. 

Además, el análisis mediante cromatografía gases/masas muestra una disminución de 

los productos indeseables para aplicaciones energéticas (ácidos y furanos 

especialmente), y un aumento en la fracción deseable de hidrocarburos. La creación 

de mesoporos en el sólido catalítico, mejora considerablemente las propiedades de los 

líquidos, llegándose a alcanzar mayores porcentajes de disminución de oxígeno y 

obteniendo una mayor fracción de compuestos aromáticos e hidrocarburos. La 

inclusión de ciertos metales en el sólido jerarquizado como el Ni, el Sn y el Ga llevan a 

una mejora posterior en los resultados, obteniéndose una mayor cantidad de 

hidrocarburos.  
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7. TRABAJO FUTURO 

 

 Para completar el trabajo realizado y seguir con la línea de investigación 
presente, se plantean diversas rutas de investigación. 

 Por una parte,  es necesario realizar los mencionados ciclos de regeneración y 
posterior análisis de la estabilidad del sólido correspondiente para confirmar la 
aplicación.  

 Por otra parte, tras concluir que la creación de mesoporosos en las zeolitas 

ofrece una mejora en la calidad de los biocombustibles, es de interés estudiar la 

influencia de distintos parámetros tales como  la cantidad de mesoporosidad, el ratio 

Si/Al de los sólidos y la interrelación entre ambas propiedades. También, es importante 

aplicar diferentes técnicas de caracterización (FTIR de moléculas sonda pre-

adsorbidas, RMN y HRTEM) para conocer la disposición de los cationes en los 

diferentes sólidos y concluir cual es la más interesante.   

 Por último, a partir del estudio realizado de los diferentes mecanismos de 

reacción existentes para cada uno de los sólidos, resulta interesante realizar 

destilaciones a vacío del líquido de partida para conseguir distintas fracciones con 

compuestos determinados  y poder aplicar el proceso de mejora catalítica a dichas 

fracciones por separado. 
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ANEXOS 
 

Anexo 1. Procedimiento secuencial de síntesis de zeolitas ZSM-5 
jerarquizadas 
 

1) Tratamiento alcalino con NaOH  

Inicialmente se calcina la zeolita comercial que se encontraba en su forma amónica. 

Las condiciones se fijan en 450°C durante 6 horas y con una rampa de 5 °C·min-1. 

Después, por cada  3,3 g de zeolita comercial, se utilizan 100 mL de NaOH 0,2 M y se 

dispone la muestra a 65ºC. Luego, se mantiene la muestra en reflujo y con agitación 

durante el tiempo y temperatura fijados. Pasado ese tiempo, se introduce la disolución 

mezcla en un baño de hielo durante 10 min, seguidamente se filtra con un filtro de 

celulosa (diámetro de poro 2,5 μm, diámetro del filtro 45 mm) y se lava con agua 

destilada hasta pH neutro. Después de filtrar se introduce el sólido en la estufa a 105 

°C durante 13 horas, obteniendo la zeolita en la forma Na-HZSM-5.  

2) Tratamiento con HCl  

Una vez secada la muestra se considera conveniente realizar un tratamiento ácido con 

HCl que permita eliminar el aluminio extraído de la estructura con el tratamiento 

alcalino que aunque en menor cantidad que el silicio, también es extraído. Este 

tratamiento consiste en la preparación de una disolución 0,1 M de HCl de la que se 

utilizan 100 mL por gramo de zeolita. La disolución se calienta hasta 65 °C y se añade 

la zeolita, manteniéndose con agitación y con reflujo durante 6 horas. Una vez 

terminado se filtra el sólido y se lava con agua destilada hasta pH neutro. Luego, se 

seca en una estufa a 105° C durante 13 horas. 

3) Intercambio iónico con NH4NO3  

Para devolverla a su forma ácida primero se realizan dos intercambios consecutivos 

con NH4NO3 1M; las condiciones de los intercambios son 80 °C y 24 horas. A la 

muestra introducida en un matraz se añadien 12 mL de NH4NO3 por gramo de zeolita ( 

en reflujo y con agitación). Transcurrido el tiempo, la zeolita se deja enfriar 

gradualmente a temperatura ambiente, se filtra con un filtro de celulosa (diámetro de 

poro 2,5 μm, diámetro del filtro 45 mm) y se lava con agua destilada (1L 

aproximadamente) para eliminar el NH4NO3 que no se había intercambiado. Luego se 
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deja secar durante toda la noche (unas 13 h) en una estufa a 80 °C, tras lo cual se 

lleva a cabo el segundo intercambio en las mismas condiciones. Después de los dos 

intercambios, la zeolita se vuelve a encontrar entonces en su forma amónica NH4-

HZSM-5. Para finalizar, una vez seca se introduce en la mufla durante 6 horas a 450°C 

y con una rampa de 5 °C/min. De esta manera se devuelve la zeolita a la forma ácida 

H-ZSM-5.  

 

4) Impregnación de los cationes (Mg, Cu, Ga, Sn y Ni) 

La introducción de los cationes metálicos se consigue mediante impregnación húmeda 

con disoluciones acuosas agitadas de los correspondientes nitratos (99% Sigma 

Aldrich) para conseguir un 1 % en peso de carga. Seguidamente, las muestras fueron 

secadas a 105 ºC durante 13 horas y finalmente calcinadas a 550 ºC durante 4 h 

(rampa de temperatura = 1 ºC/min). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

Anexo 2. Instrumentación, métodos y condiciones seguidas para la 
caracterización de los sólidos catalíticos. 
 

1) Difracción de rayos X 

La difracción de rayos X es fundamentalmente una técnica de caracterización 

estructural de sólidos. La técnica de difracción de rayos X se fundamenta en la 

incidencia, con un determinado ángulo θ, de un haz de rayos X sobre una muestra 

plana. La muestra dispersa los rayos X en direcciones e intensidades determinadas 

dependiendo de los electrones asociados a los átomos presentes en la estructura. 

Esto da lugar a la señal de difracción del sólido que es el reflejo de su estructura 

cristalina y es característica de cada sustancia.  

Una vez realizados los análisis con esta técnica, los resultados se cotejan con la base 

de datos y comparando las informaciones se deduce el compuesto y/o su estructura. 

Estos datos están recogidos en bases de datos del “Joint Committee on Powder 

Difraction Standard”. Los análisis se han realizado en un difractómetro de polvo 

policristalino Bruker D8 Advance Series 2. Este equipo está dotado de una fuente 

rayos X con blanco de cobre y un detector de centelleo. Las condiciones del análisis 

fueron un rango de medida de 2,8 °-39,8 ° con un paso de 0,050 ° cada 3 segundos, 

temperatura del laboratorio 25 °C y una fuente de radiación de Cu-Kα con una longitud 

de onda de 532 nm.  

 

2)  Isotermas de adsorción/desorción 

Para observar los cambios producidos en la porosidad se pueden emplear distintos 

métodos relacionados con la capacidad de adsorción del sólido. La adsorción consiste 

en la acumulación de un material (adsorbato) sobre una superficie (adsorbente). La 

cantidad adsorbida de un gas en un sólido depende de las características del sólido, 

de la presión de equilibrio del gas y la temperatura.  

La adsorción física de gases y vapores en sólidos es una de las técnicas más usadas 

para el estudio de la textura porosa de sólidos de todo tipo. En la caracterización de la 

textura porosa de un sólido los parámetros a determinar son el área superficial (o 

superficie específica) y el volumen y la distribución de tamaño de poros. Para la 

determinación de estos parámetros se puede recurrir, entre otros, a la adsorción de un 

gas (N2, CO2, hidrocarburos, etc...) a temperatura constante (para N2 77K, para CO2 
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273 K, etc...), obteniéndose así la isoterma de adsorción. Dicha isoterma posee una 

forma determinada que permite la clasificación del material según su porosidad de 

acuerdo con la IUPAC (ver Anexo 4). La isoterma puede determinarse 

gravimétricamente (se mide la ganancia de peso experimentada por la muestra, como 

consecuencia de la adsorción, a cada presión relativa de gas) y/o volumétricamente (la 

cantidad adsorbida se calcula mediante la aplicación de una ecuación de estado para 

gases y líquidos a la presión y volumen de adsorbato antes y después de la adsorción. 

El área superficial así como el volumen y distribución de tamaño de poro puede 

obtenerse a partir del adecuado análisis de las isotermas de adsorción, para lo cual se 

han desarrollado diversos métodos. 

la fisisorción de N2 se realizó mediante un analizador de adsorción de gas 

Quantachrome Autosorb. La adsorción se realizó a -196 °C , y antes de las medidas 

de adsorción, las muestras se desgasificaron in situ en condiciones de vacío (4mbar) a 

250ºC durante 4 horas 

En este trabajo se han utilizado el método BET [42], para obtener la superficie 

específica total SBET, el método t-plot [43] para hallar el volumen de microporos 

(VMICRO) y la superficie específica de mesoporos. El volumen de mesoporos (VMESO) se 

ha calculado aplicando la siguiente ecuación: VMESO = Vads a P/P0 = 0,99 – VMICRO. 

 

 

3) Quimisorción de amoniaco y TPD 

La acidez de las muestras puede determinarse mediante un TPD (desorción a 

temperatura programada) de amoníaco NH3. El número de ácidos presentes en la 

estructura determina la cantidad de amoníaco adsorbida. Cuanto mayor sea el número 

de ácidos mayor será la cantidad de NH3 retenida. Según el tiempo al que van 

apareciendo los picos se relacionará con un tipo de ácido más o menos fuerte según 

bibliografía y según la intensidad y amplitud de los mismos se calculará la cantidad.  

El equipo del que se dispone es un analizador AUTOCHEM II 2920. Este analizador 

permite estudiar reacciones catalíticas bajo condiciones reales. Se pueden realizar 

reacciones de quimisorción así como experimentos de desorción a temperatura 

programada (TPD), reducción a temperatura programada (TPR) y oxidación a 

temperatura programada (TPO). El equipo consta de un detector de conductividad 

térmica (TCD) que contiene filamentos de oro-plata. 
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El analizador mide la diferencia de conductividad entre gases que pasan por la 

muestra y por los filamentos de referencia. Cuando la muestra reacciona con el gas, 

se produce un cambio en la composición del gas y, como resultado, cambia la 

conductividad térmica del gas.  El detector registra el cambio en la cantidad de 

electricidad requerida para mantener constante la temperatura del filamento. El 

software del equipo convierte las señales eléctricas a datos físicos significativos tales 

como el volumen adsorbido, volumen loop y concentración del gas. 

Las cantidades de muestra utilizadas durante el ensayo fueron de aproximadamente 

0,2 g. Para eliminar las posibles impurezas superficiales, las muestras se trataron con 

un flujo de Ar a 500 °C durante 6 h, seguido de una saturación a 150 ºC utilizando un 

flujo de NH3 en Ar (30 mL/min), tras lo cual se desorbió el NH3 débilmente adsorbido 

mediante una evacuación de 30 min a la misma temperatura (125°C). Para la 

desorción se purgaron las muestras con un flujo de He de 30 mL/min. Las medidas de 

la desorción a temperatura programada se tomaron cada segundo mientras el reactor  

aumentaba su temperatura hasta los 600 °C con una rampa de 5 °C/min.  
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Anexo 3. Instrumentación y proceso de caracterización de las 
muestras líquidas 
 

1) Análisis elemental  

La materia prima de partida, así como los productos, han sido caracterizados mediante 

análisis elemental en un analizador Carlo Erba modelo EA1108. Esta técnica está 

basada en la completa e instantánea oxidación de la muestra mediante una 

combustión con oxígeno puro a una temperatura de 1000 ºC. Tras la combustión los 

diferentes productos de combustión son transportados mediante un gas portador y 

selectivamente separados en columnas específicas para luego ser desorbidos 

térmicamente. Finalmente los gases pasan de forma separada por un detector de 

conductividad térmica (TCD) que proporciona una señal proporcional a la 

concentración de cada uno de los componentes individuales de la mezcla.  

2) Poder Calorífico  

El poder calorífico de un combustible representa la cantidad de calor generada por la 

combustión completa de una unidad de masa de dicho combustible en un recipiente 

cerrado. Los poderes caloríficos se han determinado en un calorímetro isoperibólico 

IKA C-2000 según la norma ASTM D1989-97.  

3) Contenido de agua. Titración con el método Karl-Fischer (KF)  

La titración es un método para hallar el contenido en agua en una muestra líquida. Se 

utilizó el método Karl-Fischer (Crison Titromatic) de acuerdo a la norma ASTM E203-

96. Ésta técnica se basa en distintas valoraciones analíticas, a partir de las cuales se 

consigue hallar la cantidad de humedad de la muestra. Como disolvente se utiliza 

Aquagent Solvent CM (Scharlau) y como agente valorante una solución de 

HYDRANAL-titrant 5 (Aldrich).  

4) Numero de acidez total  

El número  de acidez total (TAN), es la cantidad de hidróxido de potasio en miligramos 

necesaria para neutralizar los ácidos en un gramo de bio-aceite. Este valor indica los 

problemas de corrosión que puede causar el bio-aceite analizado. El TAN se calcula 

mediante una valoración (Mettler Toledo T50). La muestra se disuelve en 60 ml de 

disolvente (mezcla de etanol y dimetil-eter en relación 1:1) y es titrada con una 

disolución de hidróxido de potasio en etanol. Un electrodo se encuentra sumergido en 
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la disolución y se conecta a un voltímetro. La lectura del medidor (mV) se representa 

frente al volumen de valorante añadido y el valor final se obtiene del punto de 

equivalencia de la curva obtenida.  

5)  pH  

El pH de las muestras se realiza con un electrodo (Mettler Toledo) con electrolito 

líquido (3 mol/L KCl). El electrodo se sumerge en la muestra hasta que se estabiliza el 

valor del pH.  

6) Viscosidad  

Se analiza la viscosidad de las muestras utilizando un viscosímetro Brookfield LVDV-

E. Las pruebas se realizan a 40 ºC y el valor obtenido se mide en cP, tras un mínimo 

tiempo de estabilización de la muestra de 30 minutos.  

7) Densidad  

Se analiza la densidad de las muestras utilizando un densímetro digital Antor-Paar 

DMA35N. La densidad se mide en g/cm3. El aparato lleva una bomba estilo pipeta 

para la toma de muestras y posteriormente se realiza la medición. La capacidad 

mínima de medición es de 2 mL. La medición de la densidad se realiza a temperatura 

ambiente. 

8) Cromatografía gases/masas (GC/MS) 

La composición química de la fase orgánica se analiza mediante cromatografía 

gases/masas utilizando un cromatógrafo de gases Varian CP-3800 conectado a un 

espectrómetro de masas Saturn 2200. Se utiliza una columna capilar CP-Sil 8 CB, low 

bleed: 5% phenyl, 95% dimethylpolysiloxane, (60 m × 0.25 mm d.i. x 0.25 μm espesor 

thickness). La temperatura inicial del horno es de 40 ºC y se mantiene durante 4 

minutos. Luego, se calienta con una rampa de 4ºC/min hasta alcanzar los 300ºC. 

Dicha temperatura se mantiene durante 16 minutos. El flujo de gas de arrastre (Helio) 

se mantiene a un caudal de 1mL/min. Las temperaturas del inyector, el detector y la 

línea de transferencia se fijan en  300 ºC, 220 ºC y300 ºC respectivamente. La 

cantidad de la muestra inyectada corresponde a 1 µL (1:25 % en peso de muestra: 

disolvente, siendo el disolvente una mezcla 1:1 de CH2Cl2:C2H6O).  Dicha muestra se 

inyecta con un retraso del disolvente de 7,5 min. 

 

El espectrómetro de masas opera en modo de ionización de electrones en un rango de 

35-550 m/z. Cada pico se asigna a diferentes compuestos de acuerdo a la relación 
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m/z, la cual está definida previamente en la librería automática NIST 2011. Cada 

muestra se analiza por duplicado y los resultados mostrados son la media resultante. 

Los compuestos identificados se dividen en diferentes clases: feonles, aldehídos, 

cetonas, furanos, hidrocarburos cíclicos, aromáticos, poliaromáticos y ésteres (ver 

Tabla A.1).  

 

 
Tabla A.1. Compuestos identificados en las muestras (m/z: ratio masa/carga; TR: Tiempo de 

retención). 

     

Id Compuesto m/z formula Molecular RT (min) 

1 Acetic acid methyl ester 43 C3H6O2 9,83 

2 Formic acid 46 CH2O2 10,09 

3 1,3-Cyclopentadiene 66 C5H6 10,3 

4 2-Propen-1-ol 57 C3H6O 10,97 

5 Hydroxyacetaldehyde 31 C2H4O2 11,06 

6 Cyclopentene 67 C5H8 11,15 

7 1,2-Dichloroethene 61 C2H2Cl2 11,22 

8 3-Methyl-1-pentene 69 C6H12 11,31 

9 2,3-Butanedione 43 C4H6O2 11.71 

10 2-Methylpentane 43 C6H14 11,78 

11 (E)-4-Methyl-2-pentene 69 C6H12 11,81 

12 2-Methyl-1,4-pentadiene 67 C6H10 11,87 

13 2-Butanone 43 C4H8O 12,27 

14 3-Methylpentane 57 C6H14 12,45 

15 2-Methyl-1-pentene 56 C6H12 12,68 

16 Trichloromethane 83 CHCl3 13,48 

17 (Z)-4-Methyl-2-pentene 69 C6H12 13,72 

18 3-Methylcyclopentene 67 C6H10 14,1 

19 Acetic acid 60 C2H4O2 14,3 

20 3-Hexyne 67 C6H10 14,31 

21 Methyl propionate 57 C4H8O2 14,4 

22 3-Methyl-2-pentene 69 C6H12 14,54 

23 Methylcyclopentane 56 C6H12 15,05 

24 2,4-Dimethylpentane 57 C7H16 15,23 

25 1,3-Hexadiene 67 C6H10 15,35 

26 1,4-Cyclohexadiene 79 C6H8 15,55 
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27 1-Hydroxy-2-propanone 43 C3H6O2 15,63 

28 5-Methyl-1,3-cyclopentadiene 79 C6H8 15,8 

29 2-Methyl-1,3-pentadiene 67 C6H10 16,08 

30 3-Methyl-2-butanone 86 C5H10O 16,1 

31  2,4-Dimethyl-1-pentene 56 C7H14 16,4 

32 2,4-Hexadiene 67 C6H10 16,48 

33 2,2-Dimethoxypropane 73 C5H12O2 16,53 

34 3-Methylcyclopentene 67 C6H10 16,64 

35 Benzene 78 C6H6 16,74 

36 4,4-Dimethyl-2-pentene 55 C7H14 17,01 

37 3-Penten-2-one 69 C5H8O 17,11 

38 2,3-Dimethyl-1-pentene 41 C7H14 17,31 

39 Cyclohexane 56 C6H12 17,49 

40 1,3-Cyclohexadiene 79 C6H8 17,7 

41 4-Methyl-1-hexene 57 C7H14 17,81 

42 4-Methyl-2-hexene 69 C7H14 17,98 

43 2-Pentanone 86 C5H10O 18,12 

44 2-Methyl-3-pentene 57 C6H12O 18,6 

45 Cyclohexene 67 C6H10 18,82 

46 3-Hydroxy-2-butanone 45 C4H8O2 19,43 

47 1,3,-Dimethylcyclopentane 70 C7H14 19,51 

48 2-Methyl-1-hexene 56 C7H14 19,79 

49 4-Methyl-1,4-hexadiene 81 C7H12 19,91 

50 1,2-Dimethylcyclopentane 70 C7H14 20 

51 2,2,3,3,-Tetramethylbutane  57 C8H18 20,12 

52 Propionic acid 74 C3H6O2 20,57 

53 2,4-Dimethyl-1,3-pentadiene 81 C7H12 20,98 

54 2,3-Dimethyl-1,3-pentadiene 81 C7H12 21,18 

55 3-Methyl-2-hexene 69 C7H14 21,27 

56 4,4-Dimethylcyclopentene 81 C7H12 21,75 

57 4-Methyl-2-hexene 69 C7H14 22,01 

58 2,4,4-Trimethyl-1-pentene 57 C8H16 22,14 

59 1-Methyl-2-methylenecyclopentane 81 C7H12 22,59 

60 3-Ethylcyclopentene 67 C7H12 22,84 

61 1,1,3,-Trimethylcyclopentane 55 C8H16 23,43 

62 3,4,4-Trimethyl-2-pentene 97 C8H16 23,8 
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63 Ethylcyclopentane 69 C7H14 24,27 

64 1,3,5-Heptatriene 79 C7H10 24,51 

65 1-Hydroxy-2-butanone 57 C4H8O2 24,73 

66 1-Methyl-1,4-cyclohexadiene 94 C7H10 25,32 

67 3,5-dimethylcyclopentene 81 C7H12 26,18 

68 Toluene 91 C7H8 26,52 

69 Cyclopentanone 55 C5H8O 27,12 

70 1-Ethyl-5-methylcyclopentene 81 C8H14 27,17 

71 2-Methyl-2-heptene 69 C8H16 27,37 

72 1-Methylcyclohexene 81 C7H12 27,67 

73 1,2-Dimethyl-1,3-cyclopentadiene 94 C7H10 27,75 

74 Bicyclo[4,1,0]hept-2-ene 79 C7H10 28,3 

75 2,2,3,3-Tetramethylpentane 57 C9H20 28,41 

76 1,3-Dimethylcyclohexane 97 C8H16 28,87 

77 2,5-Dimethyl-2,4-hexadiene 95 C8H14 29,19 

78 1-Methyl-2-methylenecyclohexane 82 C8H14 30,91 

79 2-Cyclopenten-1-one 82 C5H6O 31,06 

80 Furfural 95 C5H4O2 31,41 

81 1,4-Dimethylcyclohexane 55 C8H16 31,61 

82 3,5-Dimethylcyclohexene 95 C8H14 33,36 

83 1,4-Dimethyl-1-cyclohexene 67 C8H14 33,73 

84 4-Ethenylcyclohexene 54 C8H12 34,05 

85 1-(Acetyloxy)-2-propanone 43 C5H8O3 34,41 

86 1,2-Dimethyl-1,4-cyclohexadiene 91 C8H12 35,25 

87 2-Methoxy-1,3-dioxolane 73 C4H8O3 36,16 

88 Ethylbenzene 91 C8H10 36,31 

89 p-Xylene 91 C8H10 37,12 

90 Tetrahydro-2,5-dimethoxyfuran 101 C6H12O3 37,76 

91 Octa-2,4,6-triene 93 C8H12 38,11 

92  3-Methyl-2-cyclopenten-one 67 C6H8O 38,95 

93 Styrene 104 C8H8 38,97 

94 1,3-Dimethylbenzene 91 C8H10 39,38 

95 1(2-furanyl)Ethanone 95 C6H6O2 39,59 

96 1,2,5,5-Tetramethyl-1,3-cyclopentadiene  107 C9H14 40,55 

97 1,2-Cyclopentanedione 98 C5H6O2 40,65 

98 2,6-Dimethyl-1,3,6-heptatriene 91 C9H14 40,98 
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99 3,4-Dimethyl-2-cyclopenten-1-one 67 C7H10O 42,48 

100 Propanoic acid, ethyl ester 57 C5H10O2 43,73 

101 2-Methyl-2-cyclopenten-1-one 96 C6H8O 44,19 

102 5-Methyl-2-furancarboxaldehyde 109 C6H6O2 44,31 

103 2(5H)-Furanone 111 C7H5ClO2 44,92 

104  5,5-Dimethyl-2-propyl-1,3-cyclopentadiene 107 C10H16 46 

105 1-Ethyl-3-methylbenzene 105 C9H12 46,13 

106 1-Ethyl-4-methylbenzene 105 C9H12 46,28 

107 4-Ethenyl-1,4-dimethylcyclohexene 68 C10H16 46,59 

108 Phenol 94 C6H6O 47,06 

109 1,3,5,5-Tetramethyl-1,3-cyclohexadiene 121 C10H16 48,73 

110 1,2,3-Trimethylbenzene 105 C9H12 49,1 

111 1,6-Octadiene, 2,6-dimethyl-, (Z)- 67 C10H18 49,53 

112 3-methyl-1,2-cyclopentanedione 112 C6H8O2 50,42 

113 2,3-Dimethyl-2-cyclopenten-1-one 67 C7H10O 51,5 

114 1,2,4-Trimethylbenzene 105 C9H12 51,66 

115 1-Methyl-3-(1-methylethyl)benzene 119 C10H14 51,89 

116 p-Cymene 119 C10H14 52 

117 1-Methyl-4-isopropylcyclohexene 95 C10H18 52,49 

118 Limonene 68 C10H16 52,77 

119 2-Methylphenol 108 C7H8O 53,44 

120 2,4,4-Trimethyl-2-pentene 97 C8H16 53,86 

121 Acetophenone 105 C8H8O 53,93 

122 1-Methyl-3-propylbenzene 105 C10H14 54,24 

123 2-Ethyl-1,4-dimethylbenzene 119 C10H14 54,8 

124 4-Methylphenol 107 C7H8O 55,13 

125 Disulfide, bis(1,13,3-tetramethylbutyl) 57 C16H34S2 55,86 

126 2-Methoxyphenol (guaiacol) 124 C7H8O2 56,12 

127 2-Ethyl-1,3-dimethylbenzene 119 C10H14 56,6 

128 1-Methyl-4-(1-methylethyl)benzene 117 C10H14 57,26 

129 1-Methyl-4-(1-methylethylidene)-cyclohexene 93 C10H16 57,53 

130 Maltol 126 C6H6O3 57,54 

131 2,3-Dimethylphenol 107 C8H10O 57,79 

132 3-Ethyl-2-hydroxy-2-cyclopenten-1-one 126 C7H10O2 58,47 

133 1,2,3,4-Tetramethylbenzene 119 C10H14 60,08 

134 2,4-Dimethylphenol 107 C8H10O 61,17 
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135 1,3-Dimethyl-5-(1-methylethyl)benzene 133 C11H16 61,25 

136 2,3-Dihydro-4-methyl-1H-indene 117 C10H12 62,31 

137 Benzoic acid 105 C7H6O2 62,33 

138 2-Methoxy-5-methylphenol 123 C8H10O2 63,64 

139 2-Ethyl-1,3,5-trimethylbenzene 131 C11H16 64,47 

140 2-Methoxy-4-methylphenol 123 C8H10O2 64,64 

141 1,2-Benzenediol 110 C6H6O2 64,78 

142 2,3-Dihydro-1,6-dimethyl-1H-indene 116 C11H14 65,34 

143 5-(Hydroxymethyl)-2-furancarboxaldehyde 126 C6H6O3 65,84 

144 Benzothiazole 135 C7H5NS 66,99 

145 3,4-Dimethoxytoluene 152 C9H12O2 67,51 

146 2-Ethyl-5-methylphenol 121 C9H12O 67,98 

147 4-(2-propenyl)phenol 134 C9H10O 68,93 

148 3-Methyl-1,2-benzenediol 124 C7H8O2 69,4 

149 1,3-Dimethyl-1H-indene 129 C11H12 70,33 

150  1,2-Dihydro-4-methylnaphthalene 129 C11H12 70,74 

151 4-Ethyl-2-methoxyphenol 137 C9H12O2 71,13 

152 4-Methyl-1,2-benzenediol 124 C7H8O2 71,52 

153 Benzocycloheptatriene 142 C11H10 73,1 

154 2-methoxy-4-vinylphenol 150 C9H10O2 73,46 

155 1,2,3,4-Tetrahydro-1-8-dimethylnaphthalene 145 C12H16 75,52 

156 2,3-Dihydro-1,1,5-trimethyl-1H-Indene 145 C12H16 75,64 

157 3-Cyclohexene-1-ylbenzene 104 C12H14 75,87 

158 Eugenol 164 C10H12O2 76,62 

159 2-Methoxy-4-propylphenol  137 C10H14O2 77,4 

160 4-Ethyl-1,3-benzenediol 123 C8H10O2 77,98 

161 4-Hydroxy-3-methoxybenzaldehyde (vanillin) 151 C8H8O3 78,37 

162 Biphenyl 154 C12H10 78,57 

163 1,2,3-Trimethylindene 143 C12H14 78,89 

164 1,1,3-Trimethyl-1H-indene 143 C12H14 79,27 

165 2,5-Dimethylbenzo(b)thiophene 162 C10H10S 79,59 

166 2-Methoxy-4-(1-propenyl)phenol 164 C10H12O2 79,92 

167  1,7-Dimethylnaphtalene 156 C12H12 81,74 

168 2,6-Dimethylnaphthalene 156 C12H12 81,98 

169 2,4-Dimethylquinoline 157 C11H11N 82,64 

170 Levoglucosan 60 C6H10O5 84,09 
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171 
1-(4-Hydroxy-3-methoxyphenyl)ethanone 

(acetovanillone) 151 C9H10O3 84,22 

172 1-(1,5-dimethyl-4-hexenyl)-4-methylbenzene 132 C15H22 84,95 

173 1-(4-Hydroxy-3-methoxyphenyl)-2-propanone 137 C10H12O3 86,45 

174 2,3,6-Trimethylnaphthalene 170 C13H14 88,02 

175 
1-Phenyl-3,4-divinyl-, 

(1R,3trans,4trans)cyclohexane 104 C16H20 91,53 

176 1,1'-(1,3-Propanediyl)bis-benzene  92 C15H16 92,12 

177 Heptadecane 57 C17H36 93,79 

178 1,2,3,4-Tetramethylnaphthalene 169 C14H16 94,53 

179  1-Methyl-7-(1-methylethyl)phenanthrene 219 C18H18 114,91 

180 
N-(1,3-Dimethylbutyl)-N'-phenyl-1,4-

Benzenediamine 211 C18H24N2 121,47 
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Anexo 4. Clasificación de las Isotermas de adsorción 
 

Las isotermas de adsorción observadas experimentalmente pueden clasificarse según 

las directrices de la IUPAC (International Union of Pure Applied Chemistry) en seis 

tipos distintos tal y como se observa en la Figura A.1.  

 

Figura A.1. Clasificación IUPAC (1985) de las isotermas de adsorción. 

- Tipo I: La isoterma es cóncava respecto al eje de la presión relativa (p/p0), aumenta 

rápidamente a baja presión (p/p0<1x10- 3) y posteriormente alcanza un plateau de 

saturación horizontal. Esta clase de isotermas es característica de materiales 

microporosos. La alta energía de adsorción de los microporos produce que el gas se 

adsorba a bajas presiones. Una vez que se ha completado todo el volumen de los 

microporos la isoterma permanece en un valor casi constante sobre un amplio rango 

de presiones, lo que produce el citado plateau.  

- Tipo II: A bajas presiones es cóncava respecto al eje de la presión relativa (p/p0), 

luego aumenta linealmente y finalmente se vuelve convexa. Puede ser interpretada 

como la formación de una capa adsorbida cuyo espesor es incrementado 

progresivamente a medida que aumenta la presión. Si la rodilla de la isoterma es 

pronunciada, se asume que en el punto B (el punto donde comienza la sección 

cuasilineal de la isoterma) se ha completado la formación de la capa monomolecular 
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(monocapa) y empieza la formación de las capas multimoleculares (multicapas). La 

ordenada del punto B nos da una estimación de la cantidad de adsorbato requerido 

para cubrir por unidad de masa, la superficie del sólido con una capa monomolecular. 

(Capacidad de monocapa) . Esta clase de isoterma es característica de sólidos no-

porosos o de adsorbentes macroporosos. La total reversibilidad de la isoterma de 

adsorción-desorción, es decir, la ausencia del lazo de histéresis, es una condición que 

se cumple en este tipo de sistemas. 

- Tipo III: es convexa respecto al eje de la presión relativa (p/p0) en todo el rango de 

presión. Esta característica es indicativa de interacciones débiles entre el adsorbato y 

el adsorbente. En la práctica no es común encontrase con este tipo de isotermas.  

- Tipo IV: a bajas presiones se comporta como la del Tipo II, siendo el rasgo distintivo 

de esta isoterma su lazo de histéresis. Es característica de los sólidos mesoporosos. 

Como veremos más adelante la aparición del ciclo de histéresis se debe a que el 

proceso de llenado de los mesoporos está gobernado por el fenómeno de 

condensación capilar y por las propiedades percolativas del sólido.  

- Tipo V: del mismo modo que las de Tipo III, esta clase de isotermas se obtiene 

cuando las interacciones entre el adsorbato y el adsorbente son débiles. La presencia 

del lazo de histéresis está asociado con el mecanismo de llenado y vaciado de los 

poros. En la práctica es poco usual encontrase con este tipo de isotermas.  

- Tipo VI: o isoterma escalonada es la menos común de todas las isoterma. Se la 

asocia con la adsorción capa por capa sobre superficies que son altamente 

homogéneas respecto del adsorbato. La forma del escalón depende de la temperatura 

y de los detalles del sistema.  

Referencia: J.U. Séller and R. Staudt. Gas Adsorption Equilibra. Experimental Methods 

and Adsorptive Isotherms (2005). 
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