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RESUMEN 

En el contexto de la competición de diseño del congreso ICFPT 2013, la Universidad de 

Zaragoza presentó un diseño de un procesador específico de inteligencia artificial para el juego 

de mesa Blokus Duo. En Diciembre de 2014 la competición vuelve a celebrarse y el objetivo de 

este proyecto es mejorar el diseño de dicho procesador, que se implementa sobre una FPGA 

(circuito integrado programable). 

Para ello en primera instancia se han investigado las técnicas empleadas por las 

inteligencias artificiales más efectivas para este tipo de juego (principalmente el software 

Pentobi), considerando cuáles podrían ser aprovechadas. 

También se ha mejorado el diseño hardware inicial aprovechando al máximo el paralelismo 

a la hora de procesar los tableros. Además se ha actualizado la versión software (que se utilizó 

el año pasado para diseñar y probar el algoritmo de inteligencia artificial) incluyendo algunas 

mejoras de las que solo disponía el hardware hasta ahora. 

Para agilizar la investigación de mejoras del diseño se crearon herramientas para 

automatizar tareas repetitivas, permitiendo enfrentar el diseño contra diferentes versiones de 

si mismo así como contra otros adversarios, y recoger estadísticas de un gran número de 

partidas sin interacción humana. 

Se han desarrollado estrategias para acelerar la búsqueda, implementándolas en la versión 

software para comprobar su efectividad antes de efectuar la implementación (más costosa) en 

el hardware. Estas estrategias fueron sopesadas teniendo en cuenta su idoneidad para el 

diseño hardware, y consiguieron una mejora de velocidad  de más de un orden de magnitud. 

Finalmente se han investigado otras formas de mejorar la inteligencia sin aumentar el 

espacio de búsqueda, adaptando ideas de otras implementaciones a los requisitos específicos 

del diseño hardware (como por ejemplo  las restricciones de memoria y cantidad de tiempo 

fija). Estas mejoras incrementaron la efectividad de la inteligencia artificial significativamente. 

El resultado de todo este trabajo es un diseño que funciona entre 10 y 100 veces más 

rápido que la versión inicial y con algoritmos de inteligencia artificial más potentes que le 

permiten evaluar mejor las situaciones que se dan durante la partida. Este diseño es 

competitivo cuando juega contra las mejores aplicaciones software para este juego incluso 

aunque estas se  ejecuten en plataformas  mucho más rápidas, con muchos más recursos de 

memoria, y con un consumo energético varias veces superior. 

Como resultado adicional cabe destacar que un artículo redactado sobre las mejoras 

hardware del diseño realizado fue seleccionado, tras un proceso de revisión por pares, por el 

congreso ICFPT para la publicación en sus actas. 



  3 

Índice 

1 Introducción .................................................................................................................. 5 

1.1 Competición de diseño ICFPT 2014 ........................................................................... 5 

1.2 Blokus Duo ................................................................................................................. 5 

1.3 FPGAs ........................................................................................................................ 6 

1.3.1 Protocolo de comunicación ............................................................................... 6 

1.3.2 Consumo de energía.......................................................................................... 6 

2 Estado inicial .................................................................................................................. 7 

3 Mejoras de procesamiento ........................................................................................... 8 

4 Referencias y rivales ...................................................................................................... 9 

4.1 Pentobi ...................................................................................................................... 9 

4.2 FPGA Blokus Duo Solver ............................................................................................ 9 

5 Herramientas y automatización .................................................................................. 10 

5.1 Depuración y prevención de errores ....................................................................... 11 

6 Mejoras de poda hardware implementadas en software ........................................... 11 

6.1 Solapamiento .......................................................................................................... 11 

6.2 Ordenación de vértices ........................................................................................... 12 

6.3 Otras optimizaciones de software .......................................................................... 12 

7 Mejoras de poda prototipadas y evaluadas en software ............................................ 12 

7.1 Problemas de la exploración iterativa ..................................................................... 12 

7.2 Ordenación de los nodos ......................................................................................... 13 

7.2.1 Motivación: Poda alfa-beta ............................................................................. 13 

7.2.2 Motivación: Aprovechamiento del último nivel .............................................. 14 

7.2.3 Motivación: Descarte directo de movimientos pobres ................................... 15 

7.2.4 Ordenación completa: dificultades en hardware ............................................ 15 

7.2.5 Ordenaciones parciales ................................................................................... 15 

7.2.6 Tabla hash de podas ........................................................................................ 15 

7.3 Resultados de las mejoras de poda ......................................................................... 18 

7.3.1 Nota sobre la combinación de poda alfa-beta con ordenación ...................... 20 

8 Mejoras de la función de evaluación: playouts ........................................................... 20 

9 Tabla de aperturas ...................................................................................................... 24 

10 Conclusiones ................................................................................................................ 25 

11 Trabajo futuro ............................................................................................................. 25 

12 Planificación ................................................................................................................ 26 

13 Referencias .................................................................................................................. 26 

 Anexo 1 



  4 

Índice de figuras 

Fig. 1: Piezas disponibles en Blokus ......................................................................................... 5 

Fig. 2: Rotaciones posibles para la pieza "t" ............................................................................ 5 

Fig. 3: Ejemplo de partida ........................................................................................................ 6 

Fig. 4: Consumo de potencia eléctrica ..................................................................................... 7 

Fig. 5: Ejemplo de accesibilidad ............................................................................................... 8 

Fig. 6: Situación ilustrativa ..................................................................................................... 10 

Fig. 7: Accesibilidades de ambos jugadores y zona solapada ................................................ 12 

Fig. 8: Situación temprana en una partida ............................................................................. 13 

Fig. 9: Ejemplo de poda alfa-beta con diferentes ordenaciones ........................................... 14 

Fig. 10: Esquema de información a almacenar en tabla hash ............................................... 16 

Fig. 11: Situación de comienzo de partida ............................................................................. 19 

Fig. 12: Dos movimientos con sus respectivos playouts ........................................................ 22 

Fig. 13: Árbol de aperturas (parcial)....................................................................................... 24 

Fig. 14: Apertura fuerte .......................................................................................................... 24 

Fig. 15: Diag. Gantt de planificación de proyecto .................................................................. 26 

 

Índice de tablas 

Tabla 1: Movimientos y valores ............................................................................................. 14 

Tabla 2: Resultado de las mejoras de poda ........................................................................... 19 

Tabla 3: Empeoramiento por poda sucesiva .......................................................................... 20 

Tabla 4: Partidas contra la versión de control de sí mismo ................................................... 21 

Tabla 5: Estrategias de valoración de playouts ...................................................................... 23 

Tabla 6: Resultado de las diferentes estrategias de valoración de playouts ......................... 23 

 

  



  5 

1 Introducción 

1.1 Competición de diseño ICFPT 2014 

El Congreso Internacional sobre Tecnología Programable (ICFPT) organiza anualmente un 

concurso de diseño con la temática de utilizar procesadores hardware específicos para resolver 

determinados problemas, que se implementan sobre un tipo de hardware programable 

denominado FPGA (Field Programmable Gate Array). 

La edición 2013 proponía la creación de un procesador que ejerciese de inteligencia 

artificial para jugar al juego de mesa Blokus en su variante Duo, con un límite de 

procesamiento de un segundo por turno. Los concursantes procederían entonces a jugar entre 

sí en una sesión del congreso para determinar el más efectivo. La universidad de Zaragoza 

presentó un diseño que obtuvo el cuarto puesto de entre un total de veintiún concursantes.I 

La edición 2014 se celebrará a mediados de diciembre y continúa con la misma temática, de 

forma que el objetivo es mejorar el diseño para participar de nuevo en este concurso.II 

1.2 Blokus Duo 

Blokus es un juego de tablero donde cada jugador dispone de 21 piezas (todas las 

combinaciones posibles de tamaños 1, 2, 3, 4 y 5 con conectividad directa – véase Fig. 1), y 

debe intentar colocar la máxima cantidad posible sobre el tablero, de acuerdo con las 

siguientes normas: 

 No se puede colocar sobre espacios ya ocupados. 

 La pieza debe tocar en diagonal a al menos una pieza del mismo jugador. 

 La pieza no puede tocar directamente (por sus lados) a una pieza del mismo jugador. 

 

Fig. 1: Piezas disponibles en Blokus 

Las piezas pueden rotarse libremente y colocarse al revés. Dependiendo de sus simetrías, 

algunas piezas pueden colocarse de ocho formas diferentes (véase Fig. 2). 

 

 

Fig. 2: Rotaciones posibles para la pieza "t" 
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La variante Duo se juega con dos jugadores en un tablero de 14 × 14 casillas (Fig. 3). 

 
Fig. 3: Ejemplo de partida con los movimientos numerados sucesivamente. La partida ha terminado al no 

poder ningún jugador colocar más pieza. Ambos jugadores han colocado 16 de sus 21 piezas, pero el jugador azul 
ha ganado al haber rellenado una casilla más. 

1.3 FPGAs 

Una FPGA (Field Programmable Gate Array) es un circuito integrado compuesto de lógica e 

interconexiones programables, que permite implementar diseños descritos con lenguajes 

como VHDL (el utilizado en este proyecto) o Verilog.III 

Las FPGAs están típicamente compuestas por: 

 Bloques lógicos que implementan funciones (normalmente mediante tablas de 

consulta programables) 

 Bloques de memoria interna 

 Celdas se entrada/salida para comunicación con el exterior 

 Recursos de interconexión, que conectan las salidas de ciertos bloques con las 

entradas de otros, de acuerdo a la programación 

La programación de una FPGA con un diseño preparado es generalmente rápida (del orden 

de segundos), aunque la síntesis del diseño puede ser muy costosa (del orden de minutos u 

horas). 

1.3.1 Protocolo de comunicación 

La FPGA (o ambas FPGAs, en la competición) se comunica con un ordenador personal 

mediante puerto serie (RS-232C o adaptadores compatibles) que coordina la partida utilizando 

un protocolo simple donde esencialmente se transmiten las jugadas codificadas en cuatro 

caracteres ASCII, correspondiendo a ambas coordenadas, el identificador de pieza, y su 

rotación. El diseño hardware debe mantener internamente el estado de la partida.IV 

1.3.2 Consumo de energía 

Un aspecto interesante de los procesadores programables es su bajo consumo, gracias al 

cual están generando interés en sistemas embebidos. 
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La versión hardware no solo es mucho más rápida en términos absolutos (más de un millón 

de tableros procesaos por segundo, contra alrededor de doscientos mil en el caso del 

software), si no que también es mucho más eficiente en términos de consumo energético, ya 

que la FPGA siempre se mantiene por debajo de 10W, mientras que un procesador de 

propósito general moderno puede llegara consumir cerca de 100W (véase Fig. 4). 

 
Fig. 4: Consumo de potencia eléctrica durante el transcurso de una partida entre un ordenador personal de 

sobremesa y una FPGA. La potencia estática de la FPGA es de unos 7W y la dinámica es despreciable, mientras 
que el ordenador requiere 45W constantemente y el doble al realizar cálculos de forma activa. 

2 Estado inicial 

El algoritmo de búsqueda empleado en el diseño es Minimax, donde se exploran los 

diferentes posibles movimientos del jugador y su rival, valorándolos teniendo en cuenta que el 

jugador debe escoger el movimiento que más le convenga (el de mayor puntuación – Max), y 

su oponente puede escoger, en el peor de los casos, el que menos convenga al jugador (el de 

menor puntuación – Min).V Esta búsqueda se acelera mediante una poda alfa-beta.VI 

Al no conocer a priori el tiempo necesario para una exploración con una profundidad dada, 

no queda otro remedio que utilizar una búsqueda en profundidad iterativaVII, es decir, 

comenzar una búsqueda a baja profundidad (en particular, tanto el software como el hardware 

empiezan explorando dos niveles, con un coste que rara vez excede una centésima de 

segundo) e ir aumentando progresivamente la profundidad hasta agotar el tiempo asignado. 

La función de coste utilizada valora tanto las piezas colocadas (la puntuación del juego 

propiamente dicho) como las casillas accesibles por cada jugador (a las que podría llegar con 

alguna de sus fichas – véase Fig. 5). La accesibilidad da una idea de la movilidad de cada 

jugador, y penaliza aquellas situaciones que cortan caminos. 
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Fig. 5: Ejemplo de accesibilidad calculada para el jugador azul. En la función de evaluación, las casillas 

tomadas tienen el doble de peso que las accesibles. 

Esta función es cara en cómputo pero de alta calidad – tomando únicamente las 

puntuaciones de las piezas, solo se verían empates durante el comienzo de la partida, ya que 

ambos jugadores siempre pueden colocar piezas del tamaño máximo durante los primeros 

turnos. 

3 Mejoras de procesamiento 

En comparación con la versión del año pasado, la mayor parte de mejoras de 

procesamiento hardware se centraron en aumentar el paralelismo de la búsqueda, para 

evaluar un vértice por ciclo (antes hacía falta un ciclo para cada posición de cada una de las 

rotaciones de cada una de las piezas en cada uno de los vértices, y además la frecuencia de 

reloj máxima alcanzable era inferior). 

El diseño en general y estas mejoras en particular están descritas en el Anexo 1. A parte de 

replicar unidades funcionales para evaluar varios vértices a la vez, no es fácil extraer más 

rendimiento del hardware. Por lo tanto, el resto del trabajo se centra en intentar obtener 

mejores resultados sin aumentar la velocidad de exploración (el número de nodos visitados, o 

tableros evaluados, por segundo). 

Sin la ayuda de la poda alfa-beta, el algoritmo Minimax requiere expandir el árbol de juego 

completo. Como veremos más adelante, hay formas de realizar la búsqueda de manera más 

eficiente reordenando los nodos a visitar, pudiendo obviar las visitas a la mayor parte de los 

nodos, siendo posible determinar por adelantado que no modificarán el resultado de la 

búsqueda.  Para soportar esta reordenación se requieren nuevos módulos hardware, como la 

memoria de ordenación descrita en la sección G. Node Reordering del Anexo 1. 
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4 Referencias y rivales 

4.1 Pentobi 

PentobiVIII es una implementación de código abierto de diferentes variantes de Blokus, 

incluyendo Duo. Su inteligencia artificial presenta un especial interés ya que es 

extraordinariamente fuerte y razonablemente rápida, así que una de las primeras acciones fue 

averiguar el algoritmo de búsqueda utilizado. 

Se trata de un algoritmo probabilista denominado búsqueda en árbol de Monte CarloIX. Sin 

entrar en detalles, procede de la siguiente manera: 

1. Crear un árbol vacío. 

2. Añadir a su raíz todos los movimientos posibles (opcionalmente valorándolos a priori 

utilizando una función de conocimiento previoX). 

3. Recorrer el árbol desde la raíz eligiendo nodos de forma aleatoria, pero con un sesgo 

proporcional a su valoración. 

4. Al llegar a una hoja, incrementar su contador de visitas. Si el contador de visitas 

alcanza un determinado umbral, expandir el nodo (como en el paso 2). En caso 

contrario, lanzar un playout desde ella – una partida completa con movimientos 

escogidos de forma pseudoaleatoria.  Utilizar el resultado del playout para modificar 

su valoración. 

5. Volver al paso 3, hasta que haya transcurrido una cantidad de tiempo determinada. 

El sesgo hacia los movimientos más prometedores hace que estos se exploren más 

asiduamente, invirtiendo en ellos más tiempo de búsqueda. La aleatoriedad permite seguir 

considerando los movimientos menos prometedores. Además, no hace falta una función de 

evaluación especulativa explícita, ya que se valoran partidas jugadas hasta el final (aunque sí 

que es conveniente disponer de una buena función de conocimiento previo para optimizar el 

proceso). 

La búsqueda en árbol de Monte Carlo presenta bastantes dificultades de cara a una 

implementación en hardware. Es un algoritmo no determinista que depende de la generación 

de números aleatorios, y requiere una gran cantidad de memoria (en el caso de Pentobi, 768 

megabytes – por encima de lo permitido en el concurso, y de lo que tienen muchas FPGAs) a la 

que accede constantemente en patrones poco predecibles.  

Al menos un oponente de la competición de diseño ICFPT 2013 intentó un diseño hardware 

basado en este algoritmo de búsqueda, aunque no alcanzó la última etapa de la competición.XI 

4.2 FPGA Blokus Duo Solver 

El diseño ganador de la competición ICFPT 2013. A juzgar por los datos públicos, este diseño 

utiliza una estrategia de búsqueda Minimax sin particularidades, pero con una velocidad de 

exploración muy elevada.XII 
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5 Herramientas y automatización 

Una de las principales dificultades de desarrollo era la inexistencia de automatización en 

procesos como jugar partidas, tanto en hardware como en software. 

En software estaba guiado completamente por código: para analizar un movimiento 

determinado, había que modificar su código fuente y recompilarlo. Para jugar una partida, 

había que recompilar tras cada movimiento, así como para cambiar cualquier parámetro de 

búsqueda. 

En el caso de hardware, se podía utilizar la interfaz por puerto serie, pero esto requería 

codificar manualmente (utilizando una tabla) los movimientos e introducir su correspondiente 

código, uno por uno. Esta tarea repetitiva podía consumir varios minutos por partida. 

Para solucionar estos problemas, se modificó el software para leer los parámetros de 

entrada desde fichero, y se adaptó el programa de comunicación por puerto serie para 

permitir jugar partidas automáticamente con cualquier combinación posible: 

Software 

vs 

Software 

Hardware Hardware 

Pentobi Pentobi 

 

Esto también requiere conversiones de formato, pues la competición trata fichas enteras y 

Pentobi trabaja con casillas individuales, además de utilizar otro sistema de coordenadas. 

Las partidas automáticas se almacenan en disco para permitir su análisis posterior. Es 

posible hacer jugar a la FPGA cientos partidas de forma automática para probar cambios de 

parámetros, y después ver un sumario de resultados y reproducir partidas individuales. 

Otra ventaja es pode utilizar el análisis de partidas de Pentobi, que valora cada movimiento, 

para poder describir puntos débiles. Véase Fig. 6 para un ejemplo. 

 
Fig. 6: En esta partida, el movimiento 11 ha sido especialmente problemático para el jugador azul. 
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5.1 Depuración y prevención de errores 

Una ventaja fundamental de mantener una versión software que implementa exactamente 

las mismas técnicas que la versión hardware es que resulta tremendamente útil para depurar. 

En ese sentido se realizó un esfuerzo importante para que ambas versiones explorasen las 

mismas situaciones en el mismo orden. Y como se utilizan algoritmos deterministas, ambas 

debían generar las mismas salidas. Depurar un diseño hardware es extremadamente complejo, 

especialmente cuando se procesan millones de tableros en cada movimiento. El desarrollo de 

la versión software ha sido clave para encontrar errores mucho más rápido.    

Se han realizado otros esfuerzos para prevenir errores en el diseño hardware como 

desarrollar pequeños programas que generasen automáticamente secciones de código 

especialmente tediosas, o que comprobasen  si los datos almacenados en las memorias del 

diseño hardware eran correctos. Estas herramientas permitieron encontrar algunos errores 

que se manifestaban con poca asiduidad por lo que no habían sido detectados previamente. 

6 Mejoras de poda hardware implementadas en software 

La versión inicial del software carecía de algunas podas importantes que se implementaron 

tarde en la versión hardware. Para acelerar la experimentación y obtener resultados 

equivalentes a los del hardware, era necesario incorporar las mejoras ya presentes en el 

mismo a la versión de software. 

6.1 Solapamiento 

Una forma de descartar movimientos poco útiles al comienzo de las partidas es requerir su 

colocación en el área accesible por ambos jugadores, que es la que interesa ocupar siempre 

que sea posible (jugar en dirección al oponente). Para ello se calculan las casillas accesibles por 

el oponente y se descartan los movimientos que no ocupen un número suficiente de dichas 

casillas. El umbral disminuye progresivamente durante la partida. 

Por ejemplo, en la situación ilustrada en la Fig. 7, el jugador azul tiene 452 movimientos 

posibles. Añadiendo el requisito de ocupar, al menos, 3 casillas accesibles al jugador verde, el 

número de movimientos a considerar se reduce a 154. 
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Fig. 7: Accesibilidades de ambos jugadores y zona solapada en rosa. La zona solapada también considera 

como accesibles las casillas en contacto directo con el adversario,  aunque éste no puede colocar piezas ahí. 

Esta técnica está descrita en la sección B. Move discard del Anexo 1. 

6.2 Ordenación de vértices 

Por razones que se expondrán más adelante, conviene realizar la exploración comenzando 

por los mejores movimientos. En vez de realizar la exploración de arriba abajo y de izquierda a 

derecha, el hardware comienza en el centro y se expande en forma de rombo hacia los bordes. 

En la mayoría de los casos esta reordenación no acelera la búsqueda más de un 5%, pero su 

implementación no tiene coste en hardware y en algunos casos extremos puede llevar a 

búsquedas un 40% más rápidas. 

6.3 Otras optimizaciones de software 

Al analizar el software utilizando un perfilador se detectaron varios puntos calientes donde 

pequeños cambios (eliminación de saltos condicionales poco predecibles, o reordenación de 

condicionales) resultaron en mejoras de velocidad del 30%. Aunque es irrelevante para el 

diseño hardware, esta aceleración ayuda a agilizar la experimentación con el software lo cual 

es muy importante porque los análisis realizados para evaluar distintas opciones requerían 

varias horas.  

Gracias a la inclusión de todas las técnicas de optimización que sólo estaban inicialmente en 

la versión hardware y a las optimizaciones descritas previamente se consiguió acelerar la 

experimentación con el software aproximadamente dos órdenes de magnitud, permitiendo 

exploraciones con profundidades similares a las alcanzables por la implementación hardware. 

7 Mejoras de poda prototipadas y evaluadas en software 

7.1 Problemas de la exploración iterativa 

La exploración iterativa utilizada en el diseño tiene dos problemas principales: 
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1. El desaprovechamiento de los primeros niveles. Como el número de nodos a visitar 

crece exponencialmente con el nivel, la cantidad de tiempo perdida en los primeros 

niveles es despreciable. Por ejemplo, en la situación ilustrada en la Fig. 8, el jugador 

verde tiene 128 movimientos a considerar, aun considerando solo las piezas de 

tamaño 5 y la poda por accesibilidad descrita anteriormente. Sin otras mejoras, cada 

nivel costaría 128 veces más tiempo que el anterior, y por lo tanto la pérdida total 

sería de ∑
 

    
   
   , donde l es el último nivel explorado. La suma de esta serie 

geométrica es de menos de un 1%. 

Como veremos, gracias a las optimizaciones de búsqueda, el factor de ramificación en 

la práctica es bastante más pequeño, pero rara vez es inferior a 10 (que supondría una 

pérdida total de menos del 12%). 

2. El desaprovechamiento del último nivel. Por el mismo razonamiento, si la búsqueda se 

detiene tras una cantidad de tiempo fija, la mayor parte de este habrá sido empleado 

en un nivel que no se ha conseguido terminar. Normalmente dicho nivel se descarta y 

se procede a utilizar como resultado el obtenido en el anterior. 

 
Fig. 8: Situación temprana en una partida 

Pero también tiene ventajas: una de las más grandes es poder utilizar los datos obtenidos 

en los niveles superiores para acelerar la búsqueda en los más profundos, y a la vez solucionar 

parcialmente el segundo problema. 

7.2 Ordenación de los nodos 

7.2.1 Motivación: Poda alfa-beta 

En general, la complejidad (cantidad de nodos visitados) de una búsqueda en profundidad 

es O(bd) donde d es la profundidad y b es el factor de ramificación. La poda alfa-beta reduce 

esta complejidad, pero su efectividad depende del orden de exploración (véase Fig. 9). 

En el mejor de los casos, cuando la exploración se realiza de mejor a peor sucesor, el 

espacio de estados explorado se ve reducido a O(bd/2) o, equivalentemente, se pueden 

explorar el doble de niveles empleando la misma cantidad de tiempo. 



  14 

 

 

Fig. 9: Ejemplo de poda alfa-beta con diferentes ordenaciones. En el segundo caso se podan un 50% más de 
nodos. El efecto es más extremo con mayores factores de ramificación. 

7.2.2 Motivación: Aprovechamiento del último nivel 

Al interrumpir (por límite de tiempo) una exploración con profundidad n, si se ha explorado 

el mejor nodo resultado de la exploración a profundidad n–1, es posible devolver el mejor 

nodo conocido hasta el momento en vez de descartar el nivel completo, ya que si algún otro 

nodo ha obtenido mejor puntuación significa con certeza que es más valioso.  

Generalizando esta idea, explorar los nodos de mejor a peor según el nivel previo maximiza 

las posibilidades de encontrar el mejor en el nivel actual, en caso de que la búsqueda se 

interrumpida en un momento arbitrario. 

Mov. Nivel 2 Nivel 3 Nivel 4 Nivel 5 

43l0 22 32 18 35 

32l4 21 31 17 33 

c6k5 20 43 16 36 

43p2 15 26 17 36 

33m4 15 26 17 35 

33l7 15 25 9 35 

c6n0 15 42 12 33 

c6p4 14 42 12 34 

33m7 14 24 11 34 

34l3 14 25 15 34 
Tabla 1: Movimientos y valores 

En la Tabla 1 pueden verse los valores de unos movimientos determinados a diferentes 

profundidades (se muestran los 10 primeros de 216). Como puede observarse, el considerado 

mejor a nivel n (marcado en amarillo) está siempre entre los 5 primeros del nivel n–1 

(marcados en naranja). 

Aunque el movimiento mejor no siempre se encuentra tan arriba, normalmente hay una 

correlación muy fuerte entre niveles sucesivos. En cualquier caso el resultado del 

aprovechamiento de un nivel parcial nunca es peor que descartar dicho nivel por completo. 
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7.2.3 Motivación: Descarte directo de movimientos pobres 

Como se ha visto en la sección anterior, una primera exploración puede dar información 

sobre la calidad de los movimientos a priori – permitiendo descartar completamente los de 

menor puntuación. Aunque esto reduce notablemente el factor de ramificación, la poda alfa-

beta hace que la ganancia de velocidad real sea moderada (los mejores movimientos son los 

más costosos de explorar, y los peores son podados rápidamente). Además, descartar 

movimientos a ciegas potencialmente puede alterar los resultados, al contrario que las otras 

técnicas. 

Una variante es ir descartando progresivamente más movimientos conforme la 

profundidad aumenta. 

7.2.4 Ordenación completa: dificultades en hardware 

La solución ideal sería almacenar el árbol completo de búsqueda en memoria y mantenerlo 

ordenado para poder profundizar la búsqueda de forma óptima. Sin embargo, la cantidad de 

memoria requerida crece (como el número de nodos explorado) de forma exponencial, siendo 

intratable por las mismas razones que la búsqueda en árbol de Monte Carlo. 

Además, es conveniente almacenar los datos en las memorias internas de la FPGA: esto 

permite acceder a ellos de forma inmediata, y mantenerlos siempre ordenados (ver Anexo 1 

sección G. Node Reordering), sin pagar la latencia de acceso a una memoria externa. La FPGA 

dispone de una memoria interna del orden de varios millones de bits: más que suficiente para 

almacenar el primer nivel, pero insuficiente para almacenar tres o más niveles salvo en casos 

muy ventajosos. 

Por estas razones es necesario implementar una versión parcial en hardware, así que se 

decidió prototipar en software diferentes implementaciones de complejidad ascendente para 

ver qué mejoras ofrecían y si valía la pena su coste en hardware (tanto en recursos de FPGA 

como en tiempo de implementación). 

7.2.5 Ordenaciones parciales 

Se mejoró el software para poder elegir la cantidad de niveles almacenados con orden, 

además de la posibilidad de almacenar la mejor cadena de movimientos (el movimiento de 

cada nivel que lleva a la puntuación máxima en la raíz) para cada movimiento de primer nivel. 

Los requisitos de memoria aumentan de forma exponencial con el número de niveles, pero 

en el caso de la mejor cadena el aumento es lineal, siendo perfectamente razonable almacenar 

todas las cadenas (con una ramificación de 512 y una profundidad máxima de 8, es necesario 

almacenar 4096 movimientos de 16 bits cada uno). 

En la Tabla 2 al final de la sección pueden verse las mejoras obtenidas gracias a estas 

modificaciones en el orden de exploración. 

7.2.6 Tabla hash de podas  

Ante la impracticabilidad de almacenar todo el árbol de exploración en memoria, una idea 

para aprovechar los recursos limitados de los que dispone la FPGA es almacenar los 

movimientos que han sido útiles para realizar podas – los que producen una poda 

inmediatamente después de su exploración. 
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Para almacenarlos de forma que la información sea útil, se debe utilizar como clave el 

estado actual de la exploración (la cadena de movimientos desde la raíz hasta el de nivel 

inmediatamente inferior), y como dato (o valor) debe almacenarse el movimiento en cuestión 

(véase Fig. 10). 

 

Fig. 10: Esquema de información a almacenar. La clave es el camino marcado en color anaranjado, y el dato es 
el nodo (verde) que ha servido para realizar la poda. Cuando se vuelva a visitar este estado, se comenzará por el 
nodo verde, de forma que tanto el rojo como el marrón serán podados (dos en lugar de uno). 

Además, es deseable poder acceder y actualizar movimientos en tiempo constante (el 

hardware puede expandir un nodo por ciclo), y no es necesario un almacenamiento sin 

pérdidas, ya los datos se utilizan únicamente para acelerar la búsqueda. 

Por lo tanto, una estructura adecuada para el almacenamiento sería una tabla hash 

oportunista, con direcciones dadas por la clave y almacenando únicamente el valor, sin control 

de colisiones. Es decir: una estructura donde, tomando la clave como entrada, se determina 

una posición para almacenar el dato a partir de una función (generalmente no inyectiva) que 

intente repartir uniformemente las colocaciones, sin intentar solucionar el caso en el que dos 

claves acaban correspondiendo a la misma posición. 

Las ventajas de esta estructura son múltiples: todo el espacio de memoria puede ser 

utilizado para almacenar movimientos (y, en este caso, las claves ocuparían más espacio que 

los movimientos en cuestión), y el rendimiento de búsqueda y actualización es excelente. 

Las desventajas son las pérdidas por colisiones y la posibilidad de leer movimientos que no 

corresponden, ya sea por colisión o por edad (es caro limpiar la memoria – los bits de validez – 

entre exploraciones, aunque es posible almacenar un número generacional que se puede 

incrementar para borrar implícitamente la tabla. Con 2 bits por entrada pueden evitarse 

colisiones entre 4 exploraciones sucesivas). 

Ambas pérdidas son asumibles. Si quisiésemos evitarlas almacenando las claves y utilizando 

encadenado, se perdería la mayor parte de la memoria almacenando las claves (por ejemplo, 

en una poda en profundidad 4, la clave necesitaría 48 bits, y el dato 16), llevando a la 

necesidad de emplear una tabla más pequeña que no compensaría el aumento de precisión en 

la búsqueda. Además, el rendimiento de las dos operaciones básicas decaería. 

Sobre la posibilidad de leer movimientos no correspondientes, en la práctica no es un 

problema ya que los movimientos almacenados son valiosos por definición. Si son válidos (cosa 

que hay que comprobar) seguirá siendo ventajoso explorarlos primero. En el peor de los casos 

solo habrá un cambio en el orden de exploración. 
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El hecho de comprobar si son válidos sí que supone una complejidad extra en la 

implementación: hasta ahora teníamos la certeza, por construcción, de que todos los 

movimientos considerados cumplían ciertas condiciones (que su pieza todavía no había sido 

utilizada, y que hacían contacto esquina con esquina). Leyendo movimientos de la tabla hash 

estas garantías ya no existen y hay que comprobarlas explícitamente. 

Llegado este punto, es necesario diseñar la función de hash propiamente dicha y la política 

de remplazo en caso de colisiones. 

Para la función de hash (y el almacenamiento de los datos), podemos representar un 

movimiento en 16 bits como: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

coordenada X coordenada Y pieza rotación 

 

Las probabilidades de algunos de estos bits no son uniformes, pero esto no es muy 

importante gracias a las siguientes transformaciones. 

Para reducir una cadena de movimientos de longitud variable a un hash de tamaño fijo 

uniformemente distribuido se puede emplear la estrategia de combinar cada uno de los 

movimientos al hash utilizando alguna transformación en cada paso. Con esta idea, dos 

funciones de deferente complejidad fueron diseñadas. 

Baja complejidad: 

    hash <= 0 

    para cada [nivel]: 

        hash <= hash ROL 3 

        hash <= hash XOR movimiento[nivel] 

    devolver hash 

 

Media complejidad: 

    hash <= 0 

    para cada [nivel]: 

        hash <= hash * 31 

        hash <= hash XOR movimiento[nivel] 

    devolver hash 

 

Donde hash tiene tantos bits como sea necesario para direccionar la tabla (16 por ejemplo 

para una tabla de 128K con 65.536 entradas). ROL es una rotación a izquierda, y XOR denota 

un Ó exclusivo. 

En el primer caso, la rotación de 3 bits intenta que los bits del resultado que contenían 

menos información (por ejemplo, los más significativos de las coordenadas) se superpongan 

con los que contienen más información. Este valor es el que mejor funciona en la práctica, ya 

que permite una buena distribución con cadenas de tan solo tres movimientos. 
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La segunda función está inspirada en la función hashCode() de la clase 

java.lang.String, que opera sobre cadenas de texto representadas por caracteres de 16 

bits.XIII 

Para evaluar estas funciones se analizó un caso real almacenando la información obtenida 

de analizar un movimiento difícil a profundidad 4. En dicho caso se visitan 915.172 nodos y se 

producen 25.868 podas, que son almacenadas en una tabla de 65.536 entradas. Si la función 

hash las distribuyera uniformemente, cabría esperar 4.495 colisiones, de acuerdo a la fórmula 

   (  (
   

 
)
 

) 

donde n es el número de datos a almacenar y m es el tamaño de la tabla. 

Experimentalmente vemos que la primera función genera 5.391 colisiones, un 20% más de 

lo esperado. La segunda genera 4.530 colisiones, que es prácticamente lo esperado – un 

resultado excelente. 

Ambas son fáciles de implementar en hardware. La multiplicación de la segunda es siempre 

por la misma constante (0x11111) y a pesar de sus definiciones iterativas es fácil computarlas 

en un ciclo para los casos relevantes (cadenas de longitud inferior a 10). 

Sobre la política de remplazo, intuitivamente cabría pensar que es más beneficioso respetar 

a los movimientos introducidos primero, que suelen ser los más valiosos al realizar la 

búsqueda de mejor a peor y de nivel inferior a superior. La otra opción es el remplazo 

incondicional de los movimientos previos. En software es fácil probar las dos estrategias, pero 

en hardware la dificultad del borrado de la tabla (aún con contadores generacionales) favorece 

la segunda.  

Para evaluar la política de remplazo, se midió el número de nodos visitados en una 

búsqueda de profundidad 5 utilizando los datos recopilados a profundidades 3 y 4, 

consistentes en 26.784 podas. El no remplazo (“el primero se queda”) lleva a visitar 26.983.161 

nodos en total. El remplazo incondicional incrementa el número a 26.783.242, confirmando las 

sospechas. Por suerte, el empeoramiento es inferior al 1%, de forma que la política de 

remplazo no tiene un gran efecto en la práctica. 

7.3 Resultados de las mejoras de poda 

Para evaluar las diferentes mejoras, se cuantificó su efecto sobre el número de nodos 

visitados en una búsqueda difícil de una situación de comienzo de partida (Fig. 11). Hay un 

gran aumento en la ramificación a profundidad 5 ya que en este punto se desactiva la poda por 

solapamiento. 
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Fig. 11: Situación de comienzo de partida 

La estrategia empleada consiste en una exploración sin poda a profundidad 2 (rápida, de 

30.073 nodos en todos los casos), seguida por exploraciones podadas con profundidad 

sucesivamente ascendiente. La única diferencia entre los experimentos es la ordenación de los 

nodos, que afecta a la efectividad de la poda alfa-beta. El resultado de las búsquedas a una 

cierta profundidad siempre es el mismo. 

Niveles 
ordenados 

Cadena de 
mejores 

Tabla hash 
de podas 

Coste 
profundidad 3 

Coste 
profundidad 4 

Coste 
profundidad 5 

0 No No 1.010.523 48.832.391 ###.###.### 

0 No Sí 1.010.523 19.676.616 ###.###.### 

1 No No 216.488 11.345.945 ###.###.### 

1 Sí No 80.962 1.334.502 256.517.641 

1 No Sí 216.488 10.583.421 ###.###.### 

1 Sí Sí 80.962 1.231.619 181.486.167 

2 No No 80.859 1.613.885 195.510.471 

2 Sí No 80.859 1.247.743 167.478.383 

2 No Sí 80.859 1.503.307 133.731.790 

2 Sí Sí 80.859 1.224.539 118.295.636 
Tabla 2: Resultado de las mejoras de poda. Nota: las cifras no indicadas son superiores a 109 y se consideran 

impracticables. 

Todas las mejoras ayudan en mayor o menor medida (véase Tabla 2). Las más importantes 

son las ordenaciones de los primeros niveles y las cadenas de mejores, aunque debido a solo 

cubren parte del árbol su efectividad decrece conforme aumenta la profundidad de la 

búsqueda, ya que aceleran una parte proporcionalmente menor. La tabla hash tiene un 

alcance más generalizado y ayuda a más profundidad, aunque su capacidad limitada también 

pone límites.  

La combinación de todas las mejoras acelera la búsqueda entre uno y dos ordenes de 

magnitud, a cambio de aumentar la complejidad de la implementación y su uso de memoria 

(que es el factor limitante en el diseño hardware). 
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Llegado este punto, los beneficios obtenidos a cambio de un determinado esfuerzo 

comienzan a decaer rápidamente: mejoras de decenas de puntos porcentuales parecen 

deseables pero no van a conseguir incrementar la calidad de juego de una manera apreciable. 

Para aumentar la profundidad de exploración hace falta un factor de reducción en coste de 

varios enteros.  

Además, conforme se reduce la distancia a la ordenación óptima, técnicas que serían 

formidables por si solas comienzan a dar resultados pobres. Por poner un ejemplo completo, la 

tabla hash reduce el espacio de búsqueda hasta un 60% aplicándose al vacío, pero junto con 

las otras mejoras su aportación se ve reducida a un 30%. 

7.3.1 Nota sobre la combinación de poda alfa-beta con ordenación 

Un detalle a tener en cuenta al realizar una exploración iterativa en profundidad es que los 

datos obtenidos utilizando el algoritmo de poda alfa-beta son de peor calidad que los 

obtenidos sin poda. La poda alfa-beta garantiza que se obtendrá el mismo nodo de mayor 

valor como resultado de la búsqueda, pero en general las puntuaciones obtenidas para el resto 

de los movimientos pueden ser superiores a sus puntuaciones reales (la búsqueda se detiene 

en cuanto se determina que su puntuación no puede superar a la mejor conocida hasta el 

momento, pero antes de calcularla con exactitud). 

Además, puede ocurrir que algunos nodos a profundidad 2 o superior ni siquiera se visiten, 

necesitando un trato especial de cara a la ordenación. 

Estas imprecisiones hacen que los datos obtenidos, de cara a la ordenación para las 

búsquedas sucesivas, sean de menos calidad. Este efecto es cuantificable, como puede verse 

en la Tabla 3. 

Nivel Poda Tiempo Diferencia Nivel Poda Tiempo 

2 No 0,132 s 0 s 2 No 0,132 s 

3 Sí 0,318 s 57,974 s 3 No 58,292 s 

4 Sí 5,081 s -0,583 s 4 Sí 4,498 s 

5 Sí 778,314 s -10,8 s 5 Sí 767,514 s 
Tabla 3: Empeoramiento por poda sucesiva 

A pesar de que la poda afecta a los niveles posteriores, la pérdida de tiempo a nivel tres no 

compensa las ganancias posteriores. Por lo tanto, la estrategia empleada consiste en realizar 

una exploración sin poda a nivel 2 (para obtener unos datos iniciales de buena calidad en un 

tiempo despreciable) y continuar con siempre con poda a partir de ahí. 

8 Mejoras de la función de evaluación: playouts 

A pesar de las mejoras obtenidas en la poda, que permiten profundizar más en la búsqueda 

Minimax en el mismo periodo de tiempo, el diseño todavía presentaba debilidades en la fase 

inicial-media de la partida, donde raramente puede llegarse a explorar una profundidad de 

más de cuatro a seis movimientos, en contraste con la búsqueda de Monte Carlo que siempre 

profundiza hasta el final de la partida. 
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Una solución para mejorar la eficacia de juego sin aumentar la profundidad de exploración 

es mejorar la calidad de la función de evaluación. Hay algunas heurísticas posibles típicas de 

juego de tablero como por ejemplo la distancia al centro de las piezas. Dentro de la función de 

evaluación actual también hay parámetros modificables como el peso relativo de las piezas 

(entre sí) y de la accesibilidad, así como variantes donde se tiene en cuenta el número de 

piezas diferentes con las que se puede llegar a las posiciones accesibles. 

Desafortunadamente tras experimentar con estos parámetros no se encontró ninguna 

mejora concluyente (véase Tabla 4). 

 
Victorias Empates Derrotas 

Versión de control 44 10 46 

Piezas doble valor 52 4 44 

Piezas cuádruple valor 20 0 80 

Accesibilidad triple valor 53 3 44 

Piezas valor exponencial, accesibilidad alta 23 7 70 

Piezas valor exponencial, accesibilidad media 21 6 73 

Piezas valor exponencial, accesibilidad baja 14 4 82 

Accesibilidad por piezas diferentes 0 0 100 
Tabla 4: Partidas contra la versión de control de sí mismo 

Nótese que variaciones del orden de un 10% pueden considerarse ruido a efectos prácticos 

(habitualmente desaparecen o cambian de sentido al repetir el experimento). 

La falta de profundidad en la búsqueda es uno de los problemas detectado observando el 

comportamiento en partidas reales. La imposibilidad de considerar situaciones futuras 

trasciende en un comportamiento voraz donde se favorecen las ganancias a corto plazo en 

detrimento estrategias superiores pero que tardan más en dar resultados evaluables por la 

función de evaluación.  

Pensando en como mejorar la prognosis de la función de evaluación y teniendo en cuenta 

las ideas aplicadas a la búsqueda de Monte Carlo, se prototipó en software una búsqueda 

basada en playouts, como adición o sustituto a la función de evaluación basada en piezas más 

accesibilidad. El esquema de dicha función es: 

 Mientras que algún jugador pueda poner una pieza: 

  Buscar el mejor movimiento del siguiente jugador que pueda colocar 

  Realizar ese movimiento 

  Evaluar el estado del tablero con un determinado peso 

 

Como ejemplo gráfico ilustrado en la Fig. 12, dada la situación a evaluar ilustrada arriba a la 

izquierda, el playout resultante puede verse a su derecha. Tras utilizarlo para evaluar la 

situación, se repite el procedimiento para el siguiente movimiento a procesar (abajo a la 

izquierda), que tendrá su correspondiente playout (abajo a la derecha). 
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Fig. 12: Dos movimientos con sus respectivos playouts 

Un parámetro configurable es la profundidad de la búsqueda del siguiente movimiento, que 

no tiene por qué ser 1 (una búsqueda a profundidad 2 con las mejoras de poda descritas 

anteriormente es unas diez veces más lenta que la correspondiente búsqueda a profundidad 1). 

Esto permite ajustar el coste global contra la calidad de la prognosis. 

Una vez terminado el proceso y obtenida la valoración, esta partida jugada hasta el final se 

descarta. Como el diseño es determinista, al contrario que en Monte Carlo, solo se dispone de 

una única partida (playout) por situación del tablero a evaluar. 

Hay que decidir que hacer con dicha partida. La solución propuesta consiste en evaluar el 

tablero obtenido cada dos movimientos jugados en el playout y multiplicar esa valoración por 

un factor que varía en función de la profundidad. El ajuste de estos factores no es evidente por 

lo que se diseñaron siete estrategias de ajuste distintas que se muestran en la Tabla 5. 
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Tabla 5: Estrategias de valoración de playouts 

La valoración se hace cada dos movimientos para evitar cambios bruscos (si un jugador ha 

colocado una pieza más que el otro, su puntuación va a ser bastante superior hasta que el 

segundo responda). 

Utilizando dichas tablas, se procedió a simular partidas tanto contra Pentobi (nivel 6) como 

contra una versión del software que no utiliza playouts, con una profundidad de exploración 

equivalente (en software el coste de evaluación se incrementa en un factor inferior a 10 por lo 

que para poder comparar el rendimiento es necesario detener la exploración antes). Los 

resultados pueden consultarse en la Tabla 6. 

 Contra versión sin playouts Contra Pentobi nivel 6 

Victorias Empates Derrotas Victorias Empates Derrotas 

Estrategia 1 28 1 71 14 4 82 

Estrategia 2 62 3 35 35 4 61 

Estrategia 3 80 2 18 36 4 60 

Estrategia 4 59 3 38 47 8 45 

Estrategia 5 72 8 20 48 7 45 

Estrategia 6 83 4 13 51 6 43 

Estrategia 7 78 2 20 52 5 43 
Tabla 6: Resultado de las diferentes estrategias de valoración de playouts 

Analizando estos datos se observan una tendencia clara: es ventajoso dar mayor peso a los 

movimientos más cercanos (no es de extrañar pues son más certeros que los predichos a gran 

distancia). En particular, considerar la situación final (como hace Monte Carlo) no da buenos 

Estrategia 7

Estrategia 6

Estrategia 5

Estrategia 4

Estrategia 3

Estrategia 2
Estrategia 1

0,00

0,10
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0,60

0,70

+2 +4 +6 +8 +10 +12 +14 +16 +18 +20 22 ..
final-1

final

P
e

so
 r

e
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ti
vo

+2 +4 +6 +8 +10 +12 +14 +16 +18 +20
22 ..

final-1
final

Estrategia 7 0,21 0,25 0,17 0,12 0,08 0,07 0,05 0,03 0,02 0,01 0,00 0,00

Estrategia 6 0,29 0,22 0,15 0,12 0,09 0,06 0,03 0,01 0,01 0,01 0,00 0,00

Estrategia 5 0,27 0,22 0,16 0,11 0,05 0,03 0,03 0,03 0,03 0,03 0,03 0,03

Estrategia 4 0,09 0,12 0,17 0,23 0,17 0,12 0,06 0,03 0,01 0,01 0,00 0,00

Estrategia 3 0,16 0,19 0,12 0,09 0,06 0,05 0,04 0,02 0,01 0,01 0,00 0,25

Estrategia 2 0,67 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33

Estrategia 1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00
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resultados. Esto tiene además la ventaja añadida de que es posible interrumpir la evaluación 

del playout de forma prematura (tras, por ejemplo, 8 movimientos con sus respuestas), 

acelerando el proceso de búsqueda (aunque los primeros movimientos son los más caros).  

Las mejores estrategias (6 y 7) consiguen ganar consistentemente contra la versión sin 

playouts, y mejoran los resultados contra Pentobi (que eran 39 – 7 – 54 en este caso). 

9 Tabla de aperturas 

Pentobi, como la mayoría de inteligencias artificiales de juegos de tablero, incluye un árbol 

de aperturas (Fig. 13), que ayuda a tomar mejores decisiones en los cruciales primeros 

momentos del juego, donde además el factor de ramificación es enorme y es difícil realizar 

búsquedas profundas (el diseño hardware no suele llegar a analizar seis movimientos por 

delante durante la fase de apertura).  

 

Fig. 13: Árbol de aperturas (parcial). Los nodos marcados en rojo son no deseables. 

Es fácil observar si los movimientos son sacados de dicho árbol observando la velocidad con 

la que se calculan. El árbol que Pentobi utiliza para Blokus Duo tiene tan solo 91 movimientos, 

lo que posibilita su implementación en hardware codificado directamente como lógica. 

Algunos de estos movimientos están marcados como “no deseables” – la función de los 

mismos es proponer una respuesta ante 

un adversario que los realice. A parte de 

este detalle, Pentobi valora todos los 

movimientos igual y escoge uno al azar. 

Para comprobar si realmente todas las 

opciones son igual de deseables, se 

procedió a simular multitud de partidas al 

máximo nivel posible, y se observó que 

Pentobi nunca perdía (contra sí mismo o 

contra el diseño de FPGA) con un 

determinado primer movimiento (ver Fig. 

14), al que merece dar un peso superior. 

Fig. 14: Apertura fuerte 

Para implementar este comportamiento, el software y hardware necesitan de un generador 

de números aleatorios, el único elemento no determinista del diseño – en contraste con la 

aleatoriedad de Monte Carlo. En nuestro caso, se puede incluso prescindir de un generador de 
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alta calidad y utilizar un simple contador de ciclos, eligiendo como número aleatorio el valor 

que tenga dicho contador cuando llegue la solicitud. 

10 Conclusiones 

A pesar de la complejidad exponencial del problema se ha conseguido duplicar la 

profundidad de exploración efectiva en muchos casos, con la consiguiente mejora de 

resultados en partidas. Parte de la mejora viene de un diseño hardware más rápido y más 

paralelo, pero la mayor parte es consecuencia de mejoras algorítmicas que reducen la cantidad 

de trabajo a realizar sin modificar el resultado de la exploración. 

Además, se han explorado otras opciones para mejorar la inteligencia artificial sin aumentar 

la profundidad de exploración (que sigue estando muy limitada por carácter exponencial del 

problema). A tal efecto se ha desarrollado una estrategia de evaluación de nodos basada en 

una profundización local no exhaustiva de coste lineal, que permite obtener una visión más 

certera del estado de la partida a una velocidad muy superior a la de la búsqueda Minimax 

clásica. 

Gracias al gran paralelismo a nivel de operación en el diseño hardware, éste consigue 

superar con creces el rendimiento del software equivalente a pesar de contar con una 

frecuencia de reloj 60 veces inferior. El consumo energético de la versión hardware también es 

una fracción muy pequeña del  requerido por la versión software. 

Con todo esto, el diseño jugando con un segundo de tiempo tiene aproximadamente la 

misma calidad que el nivel 6 del software Pentobi, una implementación que explota los puntos 

fuertes de las arquitecturas modernas de propósito general, utilizando varios hilos para 

acelerar la ejecución, una gran cantidad de memoria para dirigir la búsqueda cuidadosamente, 

y mucha energía para ocultar las latencias de acceso a la misma. Pentobi tiene dos niveles 

superiores que juegan mejor que el diseño hardware, pero estos niveles necesitan bastante 

más de un segundo para calcular sus movimientos por lo que la comparación no es del todo 

justa. 

11 Trabajo futuro  

El trabajo que se ha presentado no está cerrado. Durante su desarrollo han surgido diversas 

ideas que no se han podido desarrollar por falta de tiempo.  

Una línea interesante es estudiar las nueva familias de plataformas híbridas que incluyen 

procesadores convencionales y FPGAs en el mismo chip. En estas plataformas podríamos 

mezclar módulos software con módulos hardware y tratar de buscar las combinaciones que 

proporcionasen mejor rendimiento y menos consumo. Dado que ya disponemos de un amplio 

conjunto de módulos equivalentes disponibles tanto para hardware como para software la 

mayor complejidad sería decidir dónde ubicar cada módulo y cómo optimizar  las 

comunicaciones. 
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12 Planificación 

 

Fig. 15: Diag. Gantt de planificación de proyecto 

El proyecto ha sido desarrollado desde julio hasta noviembre de 2014, invirtiéndose 

primeras semanas en el estudio de la versión inicial y la familiarización con las técnicas 

empleadas. 

Después se procedió en paralelo a implementar las mejoras hardware  mientas se 

valoraban otras posibles técnicas y se trabajaba en las mejoras de software (tanto 

herramientas como la implementación de la inteligencia artificial equivalente en técnicas al 

hardware). 

Más adelante (y en paralelo con las tareas de hardware), se comenzaron a implementar en 

software las nuevas técnicas de aceleración de la búsqueda, que iban añadiéndose al diseño 

hardware al comprobar los resultados positivos en las simulaciones software. 

Por último, se investigaron las últimas mejoras de la función de evaluación basadas en 

playouts, y se redactó la documentación del proyecto. 
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Abstract— This article presents a hardware design of a 
specific processor for Blokus Duo game. This design is an 
evolution of our previous work presented in the ICFPT’13 Design 
Competition. In order to improve its performance we have 
designed parallel hardware blocks to speed up the most time-
consuming tasks, and included additional techniques to reduce 
the search space. As a consequence we can process a board six 
times faster than in our previous version and we prune the game-
tree much more efficiently. 

Keywords—Blokus Duo; FPGA; min-max; parallelism; 

I.  INTRODUCTION 
Blokus Duo is a variant of Blokus [1] designed for two 

players played on a 14×14 board. Each player has 21 
differently shaped tiles, and can place them with eight 
different rotations. Tiles can be placed only in those squares 
with corner-to-corner contact with a tile of the same color. 
Moreover, a tile cannot have edge-to-edge contact with any 
other tile of the same color. Each player places one tile at one 
time, and the game continues until both players cannot places 
more tiles. The score of each player is obtained taking into 
account the placed tiles and their size. Each placed tile adds as 
many points as the number of squares it occupies (from one to 
five). Hence, the goal is to occupy as many squares as possible 
while trying to reduce as much as possible the number of 
squares that the opponent can occupy.  

This game is becoming popular and has received several 
international awards. It is easy to learn and very addictive. It 
has been selected for the ICFPT’14 Design Competition [2] 
following the success of last edition where 21 teams were 
competing [3].  

However, the fact that its rules are simple does not mean it 
is a simple game. It is, in fact, a very complex game. On the 
one hand, it is difficult to know whether a player is winning or 
not since the score of a game can drastically change on the last 
movements. On the other hand, the game tree to explore is 
huge. For a given vertex, up to 127 different moves can be 
made, and during a game there are many vertices where a 
player can place a tile. 

To evaluate a board state we use an expensive metric that 
takes into account not only the current score but also the 
regions that can be accessed by each player. We say that it is 
expensive because finding the squares that can be accessed by 

each player involves a lot of computations. But we believe that 
a good evaluation function is the key to develop a strong 
player. 

Regarding the complexity of the game tree, in our previous 
design [4] we already identified several techniques to reduce 
the number of movements to explore. In this version we have 
added hardware support to reorder the game-tree nodes in 
order to increase the alpha-beta pruning efficiency, and we 
have also included some specific hardware to identify which 
are the most promising moves and discard the remaining ones. 

Once we have reduced the game tree, our next goal is to 
process it as fast as possible. To this end we have designed 
several modules that take full advantage of the parallelism of 
the different tasks carried out by our design. For instance, all 
the vertices of a board are obtained in parallel in one clock 
cycle, as well as all the legal moves for a given vertex, and the 
squares that can be accessed from a vertex. These modules 
speed up our processor six times in comparison to our 
previous design. 

In the following sections we briefly describe the related 
work, the new techniques, and the main modules of our 
design. Later we present some performance results, and finally 
we provide some conclusions. 

II. RELATED WORK 
Several articles describe hardware implementations of a 

Blokus Duo player. Reference [5] presents a co-design 
approach where the artificial intelligence is executed in a 
processor and the boards are evaluated by a hardware 
accelerator implemented on an FPGA. Reference [6] describes 
an architecture based on Monte-Carlo method that requires 
little resources and operates at 150MHz. References [7] and 
[8] present two approaches based on high-level synthesis. All 
of these are interesting approaches but they are not 
competitive against strong players. In the previous edition of 
the Design Competition all of them exhibit worst results than 
our previous design, which was awarded with the fourth prize. 
The winners described their design in [9]. They implemented 
forty evaluators in parallel leading to a great performance.  
The performance of our previous design was worst, but our 
design used much less resources (27% of a Xilinx Spartan-6 
LX45), and the winners used 93% of an Altera Arria II 
GX125, which is a larger FPGA. In any case, since our current 



design is clearly stronger than our previous one, which was 
already competitive, we believe that we are presenting a state-
of-the-art design. 

III. TECHNIQUES 
Our design generates a game tree in a depth-first fashion 

and searches for the best move following the min-max 
algorithm with alpha-beta pruning. The branching factor is 
very large in this game, so additional pruning techniques are 
required in order to look ahead as much as possible. To this 
end, we have implemented the following techniques: 

A. Node reordering 
The efficiency of alpha-beta pruning strongly depends on 

the order the nodes are explored. The sooner the best nodes 
are explored, the higher the pruning efficiency is. In order to 
take advantage of this property, we first create a small game 
tree that only analyses our movements and the opponent 
responses to those movements, in such a way that we get an 
estimation of which movements are the most promising. This 
game tree is generated without alpha-beta pruning since it 
would degrade the quality of estimations because pruned 
movements are upper bound scored. The outcome of this 
preliminary exploration is stored in a small memory, and in 
deeper explorations we generate the game tree following this 
arrangement. 

B. Move discard 
Players must compete for shared areas. Placing a tile in an 

area where the opponent does not have access is usually a bad 
idea. We propose the following algorithm to decide which 
movements can be discarded. 

ALGORITHM move_discard 
   create_overlapping_map; 
   for each vertex do 
      if vertex in overlapping map then 
         for each movement in vertex do 
            if tile_overlapping ≥ overlapping_threshold then 
               explore_move; 
            end if 
         end for 
      end if 
   end for 
 

The overlapping threshold varies during a game. At the 
beginning the movements are required to be highly 
overlapped, and as the game progresses this requirement is 
progressively relaxed. The overlapping map identifies the 
squares that are accessible by our opponent or that are 
adjacent to its tiles. Fig. 1 depicts the overlapping map at the 
beginning of a game. In this case three of the seven blue 
vertices are discarded since they are not in the relevant area. 

C. Tile size 
Areas in dispute are especially relevant in the first 

movements. Placing big tiles allows the player to reach farther 
areas as soon as possible. Moreover, big tiles are easier to 
place when the board is mostly empty. Hence, early in the 
game only big tiles should be considered. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overlapping map. Movements in vertices marked in red are discarded 

IV. MAIN MODULES 
From an architectural point of view, our design has been 

focused on exploiting board and piece parallelism. This 
enables large speedups in critical tasks like legal-moves search 
or board evaluation. 

A. Board 
We consider interesting not to store only the player who 

occupies each square (Free, Hero, Rival), but also which 
players can place new tiles on them (Free, Forbidden Hero, 
Forbidden Rival, Forbidden Both).  

This idea reduces the number of squares to analyze when 
looking for legal moves or evaluating a board. 

B. Move Writer 
This module is responsible for updating the board after 

each tile is placed. Write operations are done piece by piece, 
with a latency of n cycles where n is the size of the tile to be 
written. Every cycle it writes a piece of tile (marking it as 
forbidden for both players), and it updates its north, south, 
west and east neighbors. 

 

 

 

Fig. 2. Example of move writing placing tile 'f'. 

Fig. 2 illustrates the operation with an example where the 
blue player places the ‘f’ tile. The leftmost board is the initial 
state, and the rightmost four represent its evolution during the 
four cycles required to write the movement. The boards on the 
bottom represent which player can place in each square. A 
blue ‘x’ means that blue player cannot place there; a green ‘x’ 
means that green player cannot place there, and a red ‘x’ 
means that none of them can place there. 



C. Vertices Map 
Every operation on a board is done on a vertex-by-vertex 

basis. We have implemented a module which identifies all the 
valid vertices of a given board. It is a matrix of combinational 
modules, where each module computes a given vertex. To this 
end it analyses its four surrounding squares looking for one of 
the four vertex patterns shown in Fig. 3. This module has been 
replicated to analyze the board in parallel for both players. 

 

 

 

 

 

 

Fig. 3. Vertex detector.  

D. Processing Window 
When we are exploring a vertex, we are interested in every 

potentially reachable square from that vertex. Given the 
shapes of the tiles and the possible rotations, the region of 
interest has a shape such as the one shown in Fig. 4. 
Therefore, we have implemented a module mainly composed 
of multiplexers which provides this information around any 
square. We use it to identify the legal moves and to compute 
the accessibility. As the vertices map, this module is replicated 
in order evaluate the board in parallel for both players. 

         
         
         
         
         
         
         
         
         

Fig. 4. Processing Window shape 

E. Legal Move Finder 
Finding the possible moves of a board is a critical task 

since it has to be performed for every node in the game-tree. 
We have implemented a module that provides one legal move 
per cycle.  

 

 

 

 

 

Fig. 5. Legal Move Finder 

The Vertex Selector (shown in Fig. 5) receives all the 
identified vertices and returns the next vertex to explore. It 
consists of a mask that hides the vertices already explored, and 
a priority encoder that selects the next unexplored one. Once 
this next vertex is selected, the processing window is centered 
on it, and the Move Selector (also shown in Fig. 5) tests all the 
potential moves in parallel. Then we follow the same scheme 
as the Vertex Selector, selecting one move per cycle. Finally, 
the Move Translator decodes the selected move providing the 
needed information (x, y, tile and rotation). 

F. Accessibility Evaluator 
In this game it is desirable to reach as much area as 

possible, and to reduce the area reachable by our opponent. 
Hence to evaluate a board we first analyze the area that can be 
reached by each player. Our accessibility evaluator processes 
all the vertices identified by both Vertices Maps. It integrates a 
Vertex Processor (see Fig. 6), which is a combinational block 
that identifies the reachable squares from a vertex in one clock 
cycle. For each vertex, the Vertex Processor identifies the 
reachable squares taking into account the board status and the 
available tiles, resulting in a 14x14 map indicating which 
squares are accessible. Finally, a Tree Adder returns the 
accessibility value for each player (i.e. the number of squares 
that can be accessed by each player).  

 

 

 

 

 

 

Fig. 6. Accesibility Evaluator 

G. Node Reordering 
This module receives the explored move candidates and 

their score, and sorts them storing the best scoring one in 
position 0. Fig. 7 depicts the data path of this module. It 
consists of a memory that stores the movements sorted by 
their scores (Sort RAM); a register to latch new movements to 
be sorted (New move reg); a counter which points to the first 
empty position (First empty counter); an additional counter to 
carry out the sort process (Sort counter); and a comparator 
which identifies if the position of two movements needs to be 
interchanged. Every time a new movement is evaluated, it is 
latched in the New move register and the address of the last 
movement stored in the Sort RAM is loaded in the Sort 
Counter. Then the scores of the new movement and the 
previously stored are compared; if the new movement is 
better, their positions are interchanged. 

It takes two cycles to complete each interchange, but this 
latency is fully hidden within the tree search. 

The efficiency of this technique strongly depends on the 
game scenario. We have observed situations where it allows 
our processor to reduce the search space by 90%.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Node Reordering 

V. RESULTS 
Our design has been implemented on a Xilinx Virtex-5 

LX110T. It is able to process, on average, about 1.2M boards 
per second. Table I shows the performance results of the most 
relevant tasks to decide a move. The next move to process is 
found in one clock cycle; afterwards, up to five cycles are 
needed to generate the new board; and finally one clock cycle 
per vertex to evaluate the board. Column ‘Time’ is calculated 
for 50 MHz, which is the frequency our design can run in this 
FPGA. 

TABLE I.  TASKS PERFORMANCE 

Task Cycles Time (ns) 

Find next move 1 20 

Generate a new board tile_size tile_size×20 

Evaluate a board #vertices #vertices×20 

 

Our design presented in ICFPT ’13 was able to process 
about 0.2M boards per second. It means that we have achieved 
a speedup of 6. 

In order to test our processor against a strong opponent, we 
played several games against Pentobi [10], which is currently 
the strongest Blokus software. The latest version of Pentobi 
has eight levels and it is able to decide every movement in less 
than one second up to level five. Levels six, seven and eight 
require up to tens of seconds. Our design decides every 
movement in no more than one second. Table II depicts these 
results. We have played ten games in each level, five as blue 
and five as green. The results show that our design deciding 
the move with a one second timeout is as competitive as 
Pentobi in level five. Moreover, in some cases it is able to 
defeat Pentobi in its highest levels. Hence, with the same time 
budget, our design is roughly as strong as Pentobi. 

 

TABLE II.  RESULTS AGAINST PENTOBI 

Level 1 2 3 4 5 6 7 8 

Results 
(Win-Lost) 

10-0 10-0 10-0 8-2 6-4 3-7 1-9 1-9 

 

Table III shows the resource utilization for a design with 
support for a game-tree of up to ten levels. 

TABLE III.  FPGA RESOURCES UTILIZATION 

Slice Registers Slice LUTs BRAMs 

5,959 (8%) 19,413 (28%) 12 (8%) 

VI. CONCLUSIONS 
With our previous design we demonstrated that is was 

possible to develop a competitive hardware design for a 
complex problem in just three months. However, we left many 
optimization opportunities unexplored due to the time 
constraints. In this design we have taken advantage of task 
parallelism. As a result our new design is six times faster. 
Moreover, we have included interesting optimizations to prune 
the game-tree more efficiently. The results demonstrate that 
we are competitive against a strong software application as 
Pentobi. 
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