Trabajo Fin de Grado

Diseno e Implementacién de un Procesador
Hardware Especifico para el Juego Blokus Duo

Autor

Alberto Delmas Lascorz

Director

Javier Resano Ezcaray

Escuela de
Ingenieria y Arquitectura

UniversidadZaragoza

Escuela de Ingenieria y Arquitectura
2014

Disefo e Implementaciéon de un Procesador
Hardware Especifico para el Juego Blokus Duo

RESUMEN

En el contexto de la competicion de disefio del congreso ICFPT 2013, la Universidad de
Zaragoza presenté un disefo de un procesador especifico de inteligencia artificial para el juego
de mesa Blokus Duo. En Diciembre de 2014 la competicion vuelve a celebrarse y el objetivo de
este proyecto es mejorar el disefio de dicho procesador, que se implementa sobre una FPGA
(circuito integrado programable).

Para ello en primera instancia se han investigado las técnicas empleadas por las
inteligencias artificiales mas efectivas para este tipo de juego (principalmente el software
Pentobi), considerando cudles podrian ser aprovechadas.

También se ha mejorado el disefio hardware inicial aprovechando al maximo el paralelismo
a la hora de procesar los tableros. Ademas se ha actualizado la versidn software (que se utilizd
el afio pasado para disefiar y probar el algoritmo de inteligencia artificial) incluyendo algunas
mejoras de las que solo disponia el hardware hasta ahora.

Para agilizar la investigacién de mejoras del disefio se crearon herramientas para
automatizar tareas repetitivas, permitiendo enfrentar el disefio contra diferentes versiones de
si mismo asi como contra otros adversarios, y recoger estadisticas de un gran numero de
partidas sin interaccion humana.

Se han desarrollado estrategias para acelerar la busqueda, implementandolas en la versién
software para comprobar su efectividad antes de efectuar la implementacidén (mas costosa) en
el hardware. Estas estrategias fueron sopesadas teniendo en cuenta su idoneidad para el
disefo hardware, y consiguieron una mejora de velocidad de mdas de un orden de magnitud.

Finalmente se han investigado otras formas de mejorar la inteligencia sin aumentar el
espacio de busqueda, adaptando ideas de otras implementaciones a los requisitos especificos
del disefio hardware (como por ejemplo las restricciones de memoria y cantidad de tiempo
fija). Estas mejoras incrementaron la efectividad de la inteligencia artificial significativamente.

El resultado de todo este trabajo es un disefo que funciona entre 10 y 100 veces mas
rapido que la versién inicial y con algoritmos de inteligencia artificial mas potentes que le
permiten evaluar mejor las situaciones que se dan durante la partida. Este disefio es
competitivo cuando juega contra las mejores aplicaciones software para este juego incluso
aunque estas se ejecuten en plataformas mucho mas rapidas, con muchos mas recursos de
memoria, y con un consumo energético varias veces superior.

Como resultado adicional cabe destacar que un articulo redactado sobre las mejoras
hardware del disefio realizado fue seleccionado, tras un proceso de revisién por pares, por el
congreso ICFPT para la publicacion en sus actas.

indice

1

2
3
4

7

10
11
12
13

o] d oo [T ool o] o SRRt 5
1.1 Competicion de disefio ICFPT 2014cuviiciiieieiiiee e eeieee e see e eree e e iree e s aaee e e 5
1.2 BlOKUS DUOD..c.uiieiieiieieeee ettt st sttt ettt e n e nnees 5
1.3 FPGAS ittt ettt et r e reenrees 6
13.1 Protocolo de comuniCaCioN.......c.cuiiiiiiriieiiiieeee e 6
13.2 (000 o1V g g Vol [l =Y o 1T = - PP 6
EStadO iNICIAL c..eeeeeiee et s s nee e 7
Mejoras de ProCeSaMIENTO ...cceiiiieciieieee e et e e e e e e e e e e e e e e e e e snrrraeeeeeeeeas 8
REfEreNCIas Y FIVAIES e e e e e e e e e e snr e e e e e e e eeean 9
A1 PeNTODI ceeeeiiiiecee e e s e e s s nee e 9
4.2 FPGA BIOKUS DUO SOIVET ..ottt s 9
Herramientas y automatizacionccueiiieciiie et 10
5.1 Depuracion y prevencion d@ EITOIES......cueeeccveeeeeiieeeeeiireeeerreeeeecreeeesssaseeessaseeeens 11
Mejoras de poda hardware implementadas en software..........ccccceevciveeinciieeeccnnenn, 11
T R Yo - T o =10 01 =] | o 1R 11
6.2 Ordenacion de VEIICESceeveerierieiieeie ettt s s 12
6.3 Otras optimizaciones de SOFtWATIEceeeiieieiiriiieieee e e e 12
Mejoras de poda prototipadas y evaluadas en software.........ccccccvvveeeeeeeciccinrieeeeeenn, 12
7.1 Problemas de la exploracidn iterativa.......cccecvieiieciiee e 12
7.2 Ordenacion de 105 NOTOS.ciiuiiiriiieiie ettt ettt e e s it 13
7.2.1 Motivacion: Poda alfa-beta.......c.cceeeieieiiiiee e 13
7.2.2 Motivacidn: Aprovechamiento del GItimo nivel........cccooccviiveeeeiiiccciieeeee, 14
7.2.3 Motivacidn: Descarte directo de movimientos pobres........ccccceeeecciiieeeenennnn. 15
7.24 Ordenacidon completa: dificultades en hardware.........cccceeeecieeicciiieeeccneee. 15
7.2.5 Ordenaciones ParCialescccuvivieeeie i e 15
7.2.6 Tabla hash de POdas..........uvivieiiiiiice e e e 15
7.3 Resultados de las mejoras de POda.....ccccceeieecciiiiieeee e 18
7.3.1 Nota sobre la combinacidn de poda alfa-beta con ordenacion...................... 20
Mejoras de la funcidn de evaluacion: playouts..........ccceeeeccuieeecciiieeeciiiee e 20
B o] e (oI Y o= o (U = PR 24
CONCIUSIONES. ..ceitiietieeiee ettt ettt ettt et e st e et e st e e s bt e e sabeessateesabeesabeeesabeeenneeenns 25
Trab@jo FULUIO coeeiieee e et e s s b e e e e s aba e e e sneaeaean 25
[T a1 o= T To T TP 26
RETEIENCIAS ..ottt et e e b e e s e sbe e e sareesree s 26
Anexo 1

Indice de figuras

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1: Piezas disponibles €N BIOKUScccuiiiiiiiiieiiiee ettt e esree e e e e e saree e s 5
2: Rotaciones posibles para la pieza "t" ... s 5
3 EJempPlo de Partida ..cueee e et e e s eares 6
4: Consumo de PoteNCia ElECIIICAuiiiiiiiiee ettt e e rae e e e 7
5: Ejemplo de accesibDilidadoeeie oo 8
6: SItUACION TTUSTIAtIVA ..vveiiiiiie e e st e e s ba e e seaeeeeeeaes 10
7: Accesibilidades de ambos jugadores y zona solapadacccoccveeeieiiieeeciieee e 12
8: Situacidn temprana en UNa Partida........cccccveeeeeciiie e e 13
9: Ejemplo de poda alfa-beta con diferentes ordenacionescccccoeeccivveeeeeceecccnvinennn. 14
10: Esquema de informacién a almacenar en tabla hashcccceeeiiieiiciec e, 16
11: Situacion de comienzo de Partidacceeeeciieeeeciiee e e e 19
12: Dos movimientos con sus respectivos Playoutsccccceeeveceeeiecciee s 22
13: Arbol de aperturas (PArcial)........cceeveeeeieieeeeeeeeeeeeee ettt 24
R AN o 1T U] = TR 1] (SRR 24
15: Diag. Gantt de planificacion de proyectoccccccceeeiiciieeicciiee e 26

indice de tablas

Tabla 1: MOVIMIENTOS Y VAIOIESveeeiiiieeeciieeeeeteee ettt ee e e et e e e e aree e e s sasa e e e e saaaeeeennaeeean 14
Tabla 2: Resultado de las mejoras de podacc.uuvveeieiiiiiiiiiiieee e e 19
Tabla 3: Empeoramiento por POda SUCESIVA.....ececcuriieeiiiieeeiieeeeeiieeeescireeeessrreeessaareeessnnneeeas 20
Tabla 4: Partidas contra la version de control de Si miSmOccoceeveereenienienieeneeneeee 21
Tabla 5: Estrategias de valoracion de playouts............cccueeeeciieeecciiiee e 23
Tabla 6: Resultado de las diferentes estrategias de valoracion de playouts............cccuu...... 23

1 Introduccion

1.1 Competicion de disefio ICFPT 2014

El Congreso Internacional sobre Tecnologia Programable (ICFPT) organiza anualmente un
concurso de disefio con la tematica de utilizar procesadores hardware especificos para resolver
determinados problemas, que se implementan sobre un tipo de hardware programable
denominado FPGA (Field Programmable Gate Array).

La edicién 2013 proponia la creacién de un procesador que ejerciese de inteligencia
artificial para jugar al juego de mesa Blokus en su variante Duo, con un limite de
procesamiento de un segundo por turno. Los concursantes procederian entonces a jugar entre
si en una sesién del congreso para determinar el mds efectivo. La universidad de Zaragoza
presenté un disefio que obtuvo el cuarto puesto de entre un total de veintitn concursantes.’

La edicién 2014 se celebrara a mediados de diciembre y continda con la misma tematica, de
forma que el objetivo es mejorar el disefio para participar de nuevo en este concurso."

1.2 Blokus Duo

Blokus es un juego de tablero donde cada jugador dispone de 21 piezas (todas las
combinaciones posibles de tamafios 1, 2, 3, 4 y 5 con conectividad directa — véase Fig. 1), y
debe intentar colocar la maxima cantidad posible sobre el tablero, de acuerdo con las
siguientes normas:

e No se puede colocar sobre espacios ya ocupados.
e La pieza debe tocar en diagonal a al menos una pieza del mismo jugador.
e La pieza no puede tocar directamente (por sus lados) a una pieza del mismo jugador.

Monomino: Dornino: Trominoes: Tetrominodes:

T T e FTaEmEE

Pentominoes:

;) . m.E@ n.@ o - e [] &[] r.|—||: S.H - t_I— | u_| —
| [] j L] L] L]

Fig. 1: Piezas disponibles en Blokus

Las piezas pueden rotarse libremente y colocarse al revés. Dependiendo de sus simetrias,
algunas piezas pueden colocarse de ocho formas diferentes (véase Fig. 2).

k] 1] 2 [T =[] &[] 5[] B %
\JIIILI_H H_IIIJIII H_\!—H

Fig. 2: Rotaciones posibles para la pieza "t"

La variante Duo se juega con dos jugadores en un tablero de 14 x 14 casillas (Fig. 3).

Fig. 3: Ejemplo de partida con los movimientos numerados sucesivamente. La partida ha terminado al no
poder ningln jugador colocar mas pieza. Ambos jugadores han colocado 16 de sus 21 piezas, pero el jugador azul
ha ganado al haber rellenado una casilla mas.

1.3 FPGAs

Una FPGA (Field Programmable Gate Array) es un circuito integrado compuesto de légica e
interconexiones programables, que permite implementar disefios descritos con lenguajes
como VHDL (el utilizado en este proyecto) o Verilog."

Las FPGAs estdn tipicamente compuestas por:

e Bloques légicos que implementan funciones (normalmente mediante tablas de
consulta programables)

e Bloques de memoria interna

e Celdas se entrada/salida para comunicacién con el exterior

e Recursos de interconexidén, que conectan las salidas de ciertos bloques con las
entradas de otros, de acuerdo a la programacién

La programacion de una FPGA con un disefio preparado es generalmente rdpida (del orden
de segundos), aunque la sintesis del disefio puede ser muy costosa (del orden de minutos u
horas).

1.3.1 Protocolo de comunicacién

La FPGA (o ambas FPGAs, en la competicién) se comunica con un ordenador personal
mediante puerto serie (RS-232C o adaptadores compatibles) que coordina la partida utilizando
un protocolo simple donde esencialmente se transmiten las jugadas codificadas en cuatro
caracteres ASCII, correspondiendo a ambas coordenadas, el identificador de pieza, y su
rotacion. El disefio hardware debe mantener internamente el estado de la partida."

1.3.2 Consumo de energia
Un aspecto interesante de los procesadores programables es su bajo consumo, gracias al
cual estan generando interés en sistemas embebidos.

La version hardware no solo es mucho mas rapida en términos absolutos (mas de un millén
de tableros procesaos por segundo, contra alrededor de doscientos mil en el caso del
software), si no que también es mucho mas eficiente en términos de consumo energético, ya
que la FPGA siempre se mantiene por debajo de 10W, mientras que un procesador de
propodsito general moderno puede llegara consumir cerca de 100W (véase Fig. 4).

100

90

80 i

i A

50 - '

= Software

Potencia (W)

40

= Hardware

30

20

10

0 LS L L L L L L L N |

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Tiempo (S)

Fig. 4: Consumo de potencia eléctrica durante el transcurso de una partida entre un ordenador personal de
sobremesa y una FPGA. La potencia estatica de la FPGA es de unos 7W y la dinamica es despreciable, mientras
que el ordenador requiere 45W constantemente y el doble al realizar calculos de forma activa.

2 Estado inicial

El algoritmo de busqueda empleado en el disefio es Minimax, donde se exploran los
diferentes posibles movimientos del jugador y su rival, valorandolos teniendo en cuenta que el
jugador debe escoger el movimiento que mas le convenga (el de mayor puntuaciéon — Max), y
su oponente puede escoger, en el peor de los casos, el que menos convenga al jugador (el de
menor puntuacién — Min)." Esta busqueda se acelera mediante una poda alfa-beta.”

Al no conocer a priori el tiempo necesario para una exploracién con una profundidad dada,
no queda otro remedio que utilizar una busqueda en profundidad iterativa?, es decir,
comenzar una busqueda a baja profundidad (en particular, tanto el software como el hardware
empiezan explorando dos niveles, con un coste que rara vez excede una centésima de
segundo) e ir aumentando progresivamente la profundidad hasta agotar el tiempo asignado.

La funcién de coste utilizada valora tanto las piezas colocadas (la puntuacién del juego
propiamente dicho) como las casillas accesibles por cada jugador (a las que podria llegar con
alguna de sus fichas — véase Fig. 5). La accesibilidad da una idea de la movilidad de cada
jugador, y penaliza aquellas situaciones que cortan caminos.

5 5
1
0 5
J0 O
N JJJJJJJﬂ

NN NS
T R

10 O I
EEEEEEE
- EEEEE L
BN e
1 o
1 e o o

Fig. 5: Ejemplo de accesibilidad calculada para el jugador azul. En la funcion de evaluacion, las casillas
tomadas tienen el doble de peso que las accesibles.

Esta funcién es cara en cOdmputo pero de alta calidad — tomando Unicamente las
puntuaciones de las piezas, solo se verian empates durante el comienzo de la partida, ya que
ambos jugadores siempre pueden colocar piezas del tamafio maximo durante los primeros
turnos.

3 Mejoras de procesamiento

En comparacion con la version del afo pasado, la mayor parte de mejoras de
procesamiento hardware se centraron en aumentar el paralelismo de la busqueda, para
evaluar un vértice por ciclo (antes hacia falta un ciclo para cada posiciéon de cada una de las
rotaciones de cada una de las piezas en cada uno de los vértices, y ademas la frecuencia de
reloj maxima alcanzable era inferior).

El disefio en general y estas mejoras en particular estan descritas en el Anexo 1. A parte de
replicar unidades funcionales para evaluar varios vértices a la vez, no es facil extraer mas
rendimiento del hardware. Por lo tanto, el resto del trabajo se centra en intentar obtener
mejores resultados sin aumentar la velocidad de exploracién (el nimero de nodos visitados, o
tableros evaluados, por segundo).

Sin la ayuda de la poda alfa-beta, el algoritmo Minimax requiere expandir el arbol de juego
completo. Como veremos mds adelante, hay formas de realizar la busqueda de manera mas
eficiente reordenando los nodos a visitar, pudiendo obviar las visitas a la mayor parte de los
nodos, siendo posible determinar por adelantado que no modificaran el resultado de la
busqueda. Para soportar esta reordenacion se requieren nuevos mddulos hardware, como la
memoria de ordenacién descrita en la seccidon G. Node Reordering del Anexo 1.

4 Referencias y rivales

4.1 Pentobi

Pentobi"

incluyendo Duo. Su inteligencia artificial presenta un especial interés ya que es

es una implementacién de cddigo abierto de diferentes variantes de Blokus,

extraordinariamente fuerte y razonablemente répida, asi que una de las primeras acciones fue
averiguar el algoritmo de busqueda utilizado.

Se trata de un algoritmo probabilista denominado busqueda en arbol de Monte Carlo™. Sin
entrar en detalles, procede de la siguiente manera:

1. Crear un arbol vacio.

2. Afadir a su raiz todos los movimientos posibles (opcionalmente valorandolos a priori
utilizando una funcién de conocimiento previo*).

3. Recorrer el arbol desde la raiz eligiendo nodos de forma aleatoria, pero con un sesgo
proporcional a su valoracién.

4. Al llegar a una hoja, incrementar su contador de visitas. Si el contador de visitas
alcanza un determinado umbral, expandir el nodo (como en el paso 2). En caso
contrario, lanzar un playout desde ella — una partida completa con movimientos
escogidos de forma pseudoaleatoria. Utilizar el resultado del playout para modificar
su valoracién.

5. Volver al paso 3, hasta que haya transcurrido una cantidad de tiempo determinada.

El sesgo hacia los movimientos mas prometedores hace que estos se exploren mads
asiduamente, invirtiendo en ellos mds tiempo de busqueda. La aleatoriedad permite seguir
considerando los movimientos menos prometedores. Ademas, no hace falta una funcién de
evaluacion especulativa explicita, ya que se valoran partidas jugadas hasta el final (aunque si
que es conveniente disponer de una buena funcién de conocimiento previo para optimizar el
proceso).

La busqueda en darbol de Monte Carlo presenta bastantes dificultades de cara a una
implementacién en hardware. Es un algoritmo no determinista que depende de la generacién
de numeros aleatorios, y requiere una gran cantidad de memoria (en el caso de Pentobi, 768
megabytes — por encima de lo permitido en el concurso, y de lo que tienen muchas FPGAs) a la
que accede constantemente en patrones poco predecibles.

Al menos un oponente de la competicién de disefio ICFPT 2013 intentd un disefio hardware
basado en este algoritmo de busqueda, aunque no alcanzé la ltima etapa de la competicién.”

4.2 FPGA Blokus Duo Solver

El disefo ganador de la competicion ICFPT 2013. A juzgar por los datos publicos, este disefio

utiliza una estrategia de busqueda Minimax sin particularidades, pero con una velocidad de

exploracién muy elevada.”"

5 Herramientas y automatizacion

Una de las principales dificultades de desarrollo era la inexistencia de automatizacion en

procesos como jugar partidas, tanto en hardware como en software.

En software estaba guiado completamente por cdodigo: para analizar un movimiento

determinado, habia que modificar su cddigo fuente y recompilarlo. Para jugar una partida,

habia que recompilar tras cada movimiento, asi como para cambiar cualquier parametro de

busqueda.

En el caso de hardware, se podia utilizar la interfaz por puerto serie, pero esto requeria

codificar manualmente (utilizando una tabla) los movimientos e introducir su correspondiente

cddigo, uno por uno. Esta tarea repetitiva podia consumir varios minutos por partida.

Para solucionar estos problemas, se modificd el software para leer los parametros de

entrada desde fichero, y se adaptd el programa de comunicacién por puerto serie para

permitir jugar partidas automdticamente con cualquier combinacién posible:

Software

Hardware

Pentobi

'S

Software

Hardware

Pentobi

Esto también requiere conversiones de formato, pues la competicidn trata fichas enteras y

Pentobi trabaja con casillas individuales, ademas de utilizar otro sistema de coordenadas.

Las partidas automaticas se almacenan en disco para permitir su analisis posterior. Es

posible hacer jugar a la FPGA cientos partidas de forma automatica para probar cambios de

parametros, y después ver un sumario de resultados y reproducir partidas individuales.

Otra ventaja es pode utilizar el analisis de partidas de Pentobi, que valora cada movimiento,

para poder describir puntos débiles. Véase Fig. 6 para un ejemplo.

] N N
H ENEEN B B
N B B B BN

Fig. 6: En esta partida, el movimiento 11 ha sido especialmente problematico para el jugador azul.

Win ...oonnn

10

5.1 Depuraciony prevencion de errores

Una ventaja fundamental de mantener una version software que implementa exactamente
las mismas técnicas que la version hardware es que resulta tremendamente atil para depurar.
En ese sentido se realizd un esfuerzo importante para que ambas versiones explorasen las
mismas situaciones en el mismo orden. Y como se utilizan algoritmos deterministas, ambas
debian generar las mismas salidas. Depurar un disefio hardware es extremadamente complejo,
especialmente cuando se procesan millones de tableros en cada movimiento. El desarrollo de
la versidn software ha sido clave para encontrar errores mucho mas rapido.

Se han realizado otros esfuerzos para prevenir errores en el disefio hardware como
desarrollar pequefios programas que generasen automdticamente secciones de cdodigo
especialmente tediosas, o que comprobasen si los datos almacenados en las memorias del
disefio hardware eran correctos. Estas herramientas permitieron encontrar algunos errores
que se manifestaban con poca asiduidad por lo que no habian sido detectados previamente.

6 Mejoras de poda hardware implementadas en software

La version inicial del software carecia de algunas podas importantes que se implementaron
tarde en la version hardware. Para acelerar la experimentacién y obtener resultados
equivalentes a los del hardware, era necesario incorporar las mejoras ya presentes en el
mismo a la version de software.

6.1 Solapamiento

Una forma de descartar movimientos poco utiles al comienzo de las partidas es requerir su
colocacién en el area accesible por ambos jugadores, que es la que interesa ocupar siempre
que sea posible (jugar en direccion al oponente). Para ello se calculan las casillas accesibles por
el oponente y se descartan los movimientos que no ocupen un numero suficiente de dichas
casillas. El umbral disminuye progresivamente durante la partida.

Por ejemplo, en la situacion ilustrada en la Fig. 7, el jugador azul tiene 452 movimientos
posibles. Ailadiendo el requisito de ocupar, al menos, 3 casillas accesibles al jugador verde, el
numero de movimientos a considerar se reduce a 154.

11

5 5
1
0 5
0 O
N JJJJJJJﬂ

NN EEEEEN
meEEe [

L e
HE TN EEEe
CEEEC T _ e
NN EEEE
R LT
EEEEE LI

Fig. 7: Accesibilidades de ambos jugadores y zona solapada en rosa. La zona solapada también considera
como accesibles las casillas en contacto directo con el adversario, aunque éste no puede colocar piezas ahi.

Esta técnica esta descrita en la seccidén B. Move discard del Anexo 1.

6.2 Ordenacion de vértices

Por razones que se expondran mas adelante, conviene realizar la exploracién comenzando
por los mejores movimientos. En vez de realizar la exploracién de arriba abajo y de izquierda a
derecha, el hardware comienza en el centro y se expande en forma de rombo hacia los bordes.

En la mayoria de los casos esta reordenacion no acelera la busqueda mas de un 5%, pero su
implementacion no tiene coste en hardware y en algunos casos extremos puede llevar a
bldsquedas un 40% mas rapidas.

6.3 Otras optimizaciones de software

Al analizar el software utilizando un perfilador se detectaron varios puntos calientes donde
pequefios cambios (eliminacidén de saltos condicionales poco predecibles, o reordenacion de
condicionales) resultaron en mejoras de velocidad del 30%. Aunque es irrelevante para el
disefio hardware, esta aceleracion ayuda a agilizar la experimentacion con el software lo cual
es muy importante porque los andlisis realizados para evaluar distintas opciones requerian
varias horas.

Gracias a la inclusion de todas las técnicas de optimizacidn que sélo estaban inicialmente en
la version hardware y a las optimizaciones descritas previamente se consiguid acelerar la
experimentacion con el software aproximadamente dos érdenes de magnitud, permitiendo
exploraciones con profundidades similares a las alcanzables por la implementacién hardware.

7 Mejoras de poda prototipadas y evaluadas en software

7.1 Problemas de la exploracion iterativa

La exploracion iterativa utilizada en el disefio tiene dos problemas principales:

12

1. El desaprovechamiento de los primeros niveles. Como el nimero de nodos a visitar
crece exponencialmente con el nivel, la cantidad de tiempo perdida en los primeros
niveles es despreciable. Por ejemplo, en la situacién ilustrada en la Fig. 8, el jugador
verde tiene 128 movimientos a considerar, aun considerando solo las piezas de
tamafio 5 y la poda por accesibilidad descrita anteriormente. Sin otras mejoras, cada
nivel costaria 128 veces mas tiempo que el anterior, y por lo tanto la pérdida total

, 1 1 - . .
seria de Y21 ——, donde | es el ultimo nivel explorado. La suma de esta serie
n=11,gn

geométrica es de menos de un 1%.

Como veremos, gracias a las optimizaciones de busqueda, el factor de ramificacién en
la practica es bastante mas pequefio, pero rara vez es inferior a 10 (que supondria una
pérdida total de menos del 12%).

2. El desaprovechamiento del ultimo nivel. Por el mismo razonamiento, si la busqueda se
detiene tras una cantidad de tiempo fija, la mayor parte de este habra sido empleado
en un nivel que no se ha conseguido terminar. Normalmente dicho nivel se descarta y
se procede a utilizar como resultado el obtenido en el anterior.

0 R
0 A
0 A
I o v v

=
=
=
=
=
il

NN N NN
T v v

I v v

Fig. 8: Situacion temprana en una partida

[S N

L
-
-
-
-
-
-
-
-
-

Pero también tiene ventajas: una de las mas grandes es poder utilizar los datos obtenidos
en los niveles superiores para acelerar la busqueda en los mas profundos, y a la vez solucionar
parcialmente el segundo problema.

7.2 Ordenacion de los nodos

7.2.1 Motivacion: Poda alfa-beta

En general, la complejidad (cantidad de nodos visitados) de una busqueda en profundidad
es O(b“) donde d es la profundidad y b es el factor de ramificacién. La poda alfa-beta reduce
esta complejidad, pero su efectividad depende del orden de exploracién (véase Fig. 9).

En el mejor de los casos, cuando la exploracién se realiza de mejor a peor sucesor, el
espacio de estados explorado se ve reducido a O(b%?) o, equivalentemente, se pueden
explorar el doble de niveles empleando la misma cantidad de tiempo.

13

n

B
1

T
1

-
~
H

MAX [6 |
MIN
——
w o]
— [—_— [1 —_—
we K B R
1] 1 —_ t J 1 1 ey 1
we (I EEBEEBEEREBEESBEERDEDEBRERDR

Fig. 9: Ejemplo de poda alfa-beta con diferentes ordenaciones. En el segundo caso se podan un 50% mas de
nodos. El efecto es mas extremo con mayores factores de ramificacion.

7.2.2 Motivacion: Aprovechamiento del Gltimo nivel

Al interrumpir (por limite de tiempo) una exploracién con profundidad n, si se ha explorado
el mejor nodo resultado de la exploracién a profundidad n—-1, es posible devolver el mejor
nodo conocido hasta el momento en vez de descartar el nivel completo, ya que si algun otro
nodo ha obtenido mejor puntuacién significa con certeza que es mas valioso.

Generalizando esta idea, explorar los nodos de mejor a peor segun el nivel previo maximiza
las posibilidades de encontrar el mejor en el nivel actual, en caso de que la busqueda se
interrumpida en un momento arbitrario.

Mov. Nivel 2 Nivel 3 Nivel 4 Nivel 5
4310 22 32 18 35
3214 21 31 17 33
c6k5 20 43 16 36
43p2 15 26 17 36
33m4 15 26 17 35
3317 15 25 9 35
c6n0 15 42 12 33
c6p4 14 42 12 34
33m7 14 24 11 34
3413 14 25 15 34

Tabla 1: Movimientos y valores

En la Tabla 1 pueden verse los valores de unos movimientos determinados a diferentes
profundidades (se muestran los 10 primeros de 216). Como puede observarse, el considerado
mejor a nivel n (marcado en amarillo) estd siempre entre los 5 primeros del nivel n-1
(marcados en naranja).

Aunque el movimiento mejor no siempre se encuentra tan arriba, normalmente hay una
correlacién muy fuerte entre niveles sucesivos. En cualquier caso el resultado del
aprovechamiento de un nivel parcial nunca es peor que descartar dicho nivel por completo.

14

7.2.3 Motivacion: Descarte directo de movimientos pobres

Como se ha visto en la seccién anterior, una primera exploraciéon puede dar informacion
sobre la calidad de los movimientos a priori — permitiendo descartar completamente los de
menor puntuacién. Aunque esto reduce notablemente el factor de ramificacion, la poda alfa-
beta hace que la ganancia de velocidad real sea moderada (los mejores movimientos son los
mas costosos de explorar, y los peores son podados rapidamente). Ademas, descartar
movimientos a ciegas potencialmente puede alterar los resultados, al contrario que las otras
técnicas.

Una variante es ir descartando progresivamente mds movimientos conforme la
profundidad aumenta.

7.2.4 Ordenacion completa: dificultades en hardware

La solucidn ideal seria almacenar el arbol completo de bldsqueda en memoria y mantenerlo
ordenado para poder profundizar la busqueda de forma dptima. Sin embargo, la cantidad de
memoria requerida crece (como el nimero de nodos explorado) de forma exponencial, siendo
intratable por las mismas razones que la busqueda en arbol de Monte Carlo.

Ademas, es conveniente almacenar los datos en las memorias internas de la FPGA: esto
permite acceder a ellos de forma inmediata, y mantenerlos siempre ordenados (ver Anexo 1
seccion G. Node Reordering), sin pagar la latencia de acceso a una memoria externa. La FPGA
dispone de una memoria interna del orden de varios millones de bits: mas que suficiente para
almacenar el primer nivel, pero insuficiente para almacenar tres o mas niveles salvo en casos
muy ventajosos.

Por estas razones es necesario implementar una versién parcial en hardware, asi que se
decidié prototipar en software diferentes implementaciones de complejidad ascendente para
ver qué mejoras ofrecian y si valia la pena su coste en hardware (tanto en recursos de FPGA
como en tiempo de implementacion).

7.2.5 Ordenaciones parciales

Se mejoré el software para poder elegir la cantidad de niveles almacenados con orden,
ademads de la posibilidad de almacenar la mejor cadena de movimientos (el movimiento de
cada nivel que lleva a la puntuaciéon maxima en la raiz) para cada movimiento de primer nivel.

Los requisitos de memoria aumentan de forma exponencial con el nimero de niveles, pero
en el caso de la mejor cadena el aumento es lineal, siendo perfectamente razonable almacenar
todas las cadenas (con una ramificacién de 512 y una profundidad maxima de 8, es necesario
almacenar 4096 movimientos de 16 bits cada uno).

En la Tabla 2 al final de la seccién pueden verse las mejoras obtenidas gracias a estas
modificaciones en el orden de exploracién.

7.2.6 Tabla hash de podas

Ante la impracticabilidad de almacenar todo el arbol de exploracién en memoria, una idea
para aprovechar los recursos limitados de los que dispone la FPGA es almacenar los
movimientos que han sido uatiles para realizar podas — los que producen una poda
inmediatamente después de su exploracién.

15

Para almacenarlos de forma que la informacién sea util, se debe utilizar como clave el
estado actual de la exploracion (la cadena de movimientos desde la raiz hasta el de nivel
inmediatamente inferior), y como dato (o valor) debe almacenarse el movimiento en cuestion
(véase Fig. 10).

MAX

K
l_l_l [! 1

w [K1 A £ BN

Fig. 10: Esquema de informacion a almacenar. La clave es el camino marcado en color anaranjado, y el dato es
el nodo (verde) que ha servido para realizar la poda. Cuando se vuelva a visitar este estado, se comenzara por el
nodo verde, de forma que tanto el rojo como el marrén seran podados (dos en lugar de uno).

Ademas, es deseable poder acceder y actualizar movimientos en tiempo constante (el
hardware puede expandir un nodo por ciclo), y no es necesario un almacenamiento sin
pérdidas, ya los datos se utilizan Unicamente para acelerar la busqueda.

Por lo tanto, una estructura adecuada para el almacenamiento seria una tabla hash
oportunista, con direcciones dadas por la clave y almacenando Unicamente el valor, sin control
de colisiones. Es decir: una estructura donde, tomando la clave como entrada, se determina
una posicién para almacenar el dato a partir de una funcidn (generalmente no inyectiva) que
intente repartir uniformemente las colocaciones, sin intentar solucionar el caso en el que dos
claves acaban correspondiendo a la misma posicion.

Las ventajas de esta estructura son multiples: todo el espacio de memoria puede ser
utilizado para almacenar movimientos (y, en este caso, las claves ocuparian mas espacio que
los movimientos en cuestion), y el rendimiento de busqueda y actualizacidén es excelente.

Las desventajas son las pérdidas por colisiones y la posibilidad de leer movimientos que no
corresponden, ya sea por colisién o por edad (es caro limpiar la memoria — los bits de validez —
entre exploraciones, aunque es posible almacenar un nimero generacional que se puede
incrementar para borrar implicitamente la tabla. Con 2 bits por entrada pueden evitarse
colisiones entre 4 exploraciones sucesivas).

Ambas pérdidas son asumibles. Si quisiésemos evitarlas almacenando las claves y utilizando
encadenado, se perderia la mayor parte de la memoria almacenando las claves (por ejemplo,
en una poda en profundidad 4, la clave necesitaria 48 bits, y el dato 16), llevando a la
necesidad de emplear una tabla mas pequefa que no compensaria el aumento de precisién en
la busqueda. Ademas, el rendimiento de las dos operaciones bdsicas decaeria.

Sobre la posibilidad de leer movimientos no correspondientes, en la practica no es un
problema ya que los movimientos almacenados son valiosos por definiciéon. Si son validos (cosa
qgue hay que comprobar) seguira siendo ventajoso explorarlos primero. En el peor de los casos
solo habra un cambio en el orden de exploracion.

16

El hecho de comprobar si son validos si que supone una complejidad extra en la
implementacion: hasta ahora teniamos la certeza, por construccidon, de que todos los
movimientos considerados cumplian ciertas condiciones (que su pieza todavia no habia sido
utilizada, y que hacian contacto esquina con esquina). Leyendo movimientos de la tabla hash
estas garantias ya no existen y hay que comprobarlas explicitamente.

Llegado este punto, es necesario diseiar la funcién de hash propiamente dicha y la politica
de remplazo en caso de colisiones.

Para la funcidon de hash (y el almacenamiento de los datos), podemos representar un
movimiento en 16 bits como:

1]2[3]a|s]e|7]8]9]1wo]1a][12]13]14]15]16
coordenada X coordenada Y pieza rotacion

Las probabilidades de algunos de estos bits no son uniformes, pero esto no es muy
importante gracias a las siguientes transformaciones.

Para reducir una cadena de movimientos de longitud variable a un hash de tamafio fijo
uniformemente distribuido se puede emplear la estrategia de combinar cada uno de los
movimientos al hash utilizando alguna transformacién en cada paso. Con esta idea, dos
funciones de deferente complejidad fueron disefiadas.

Baja complejidad:

hash <= 0
para cada [nivel]:

hash <= hash ROL 3

hash <= hash XOR movimiento[nivel]
devolver hash

Media complejidad:

hash <= 0
para cada [nivel]:

hash <= hash * 31

hash <= hash XOR movimiento[nivel]
devolver hash

Donde hash tiene tantos bits como sea necesario para direccionar la tabla (16 por ejemplo
para una tabla de 128K con 65.536 entradas). ROL es una rotacion a izquierda, y XOR denota
un O exclusivo.

En el primer caso, la rotacién de 3 bits intenta que los bits del resultado que contenian
menos informacién (por ejemplo, los mas significativos de las coordenadas) se superpongan
con los que contienen mas informacion. Este valor es el que mejor funciona en la practica, ya
gue permite una buena distribucién con cadenas de tan solo tres movimientos.

17

La segunda funcién estd inspirada en la funcién hashCode() de la clase
java.lang.String, que opera sobre cadenas de texto representadas por caracteres de 16
bits. X"

Para evaluar estas funciones se analizé un caso real almacenando la informacién obtenida
de analizar un movimiento dificil a profundidad 4. En dicho caso se visitan 915.172 nodos y se
producen 25.868 podas, que son almacenadas en una tabla de 65.536 entradas. Si la funcién
hash las distribuyera uniformemente, cabria esperar 4.495 colisiones, de acuerdo a la férmula

m—1\"
n—-m({l- (—)
m
donde n es el nimero de datos a almacenar y m es el tamafio de la tabla.

Experimentalmente vemos que la primera funcién genera 5.391 colisiones, un 20% mas de
lo esperado. La segunda genera 4.530 colisiones, que es practicamente lo esperado — un
resultado excelente.

Ambas son faciles de implementar en hardware. La multiplicacion de la segunda es siempre
por la misma constante (0x11111) y a pesar de sus definiciones iterativas es facil computarlas
en un ciclo para los casos relevantes (cadenas de longitud inferior a 10).

Sobre la politica de remplazo, intuitivamente cabria pensar que es mas beneficioso respetar
a los movimientos introducidos primero, que suelen ser los mas valiosos al realizar la
busqueda de mejor a peor y de nivel inferior a superior. La otra opcidn es el remplazo
incondicional de los movimientos previos. En software es facil probar las dos estrategias, pero
en hardware la dificultad del borrado de la tabla (auin con contadores generacionales) favorece
la segunda.

Para evaluar la politica de remplazo, se midid6 el nimero de nodos visitados en una
busqueda de profundidad 5 utilizando los datos recopilados a profundidades 3 vy 4,
consistentes en 26.784 podas. El no remplazo (“el primero se queda”) lleva a visitar 26.983.161
nodos en total. El remplazo incondicional incrementa el nUmero a 26.783.242, confirmando las
sospechas. Por suerte, el empeoramiento es inferior al 1%, de forma que la politica de
remplazo no tiene un gran efecto en la préctica.

7.3 Resultados de las mejoras de poda

Para evaluar las diferentes mejoras, se cuantificd su efecto sobre el numero de nodos
visitados en una busqueda dificil de una situacidon de comienzo de partida (Fig. 11). Hay un
gran aumento en la ramificacién a profundidad 5 ya que en este punto se desactiva la poda por
solapamiento.

18

0 A
0 A
0 A
0 A
D] A
0 [+ A
0 e o
0 e o o
NN N
0

NN =
N e
I v v

Fig. 11: Situacion de comienzo de partida

N
]
]
]
]

La estrategia empleada consiste en una exploracién sin poda a profundidad 2 (rapida, de
30.073 nodos en todos los casos), seguida por exploraciones podadas con profundidad
sucesivamente ascendiente. La Unica diferencia entre los experimentos es la ordenacion de los
nodos, que afecta a la efectividad de la poda alfa-beta. El resultado de las busquedas a una
cierta profundidad siempre es el mismo.

Niveles | Cadena de | Tabla hash Coste Coste Coste
ordenados | mejores de podas profundidad 3 | profundidad 4 | profundidad 5
0 | No No 1.010.523 48.832.391 Hith HH HHH

0 | No Si 1.010.523 19.676.616 Hitt HitH HH

1| No No 216.488 11.345.945 Hith HH HHH

1|Si No 80.962 1.334.502 256.517.641

1| No Si 216.488 10.583.421 Hit Hit HEH

1|Si Si 80.962 1.231.619 181.486.167

2 | No No 80.859 1.613.885 195.510.471

2 |Si No 80.859 1.247.743 167.478.383

2 | No Si 80.859 1.503.307 133.731.790

2 |Si Si 80.859 1.224.539 118.295.636

Tabla 2: Resultado de las mejoras de poda. Nota: las cifras no indicadas son superiores a 10° y se consideran
impracticables.

Todas las mejoras ayudan en mayor o menor medida (véase Tabla 2). Las mas importantes
son las ordenaciones de los primeros niveles y las cadenas de mejores, aunque debido a solo
cubren parte del arbol su efectividad decrece conforme aumenta la profundidad de la
busqueda, ya que aceleran una parte proporcionalmente menor. La tabla hash tiene un
alcance mas generalizado y ayuda a mas profundidad, aunque su capacidad limitada también
pone limites.

La combinacién de todas las mejoras acelera la busqueda entre uno y dos ordenes de
magnitud, a cambio de aumentar la complejidad de la implementacion y su uso de memoria
(que es el factor limitante en el disefio hardware).

19

Llegado este punto, los beneficios obtenidos a cambio de un determinado esfuerzo
comienzan a decaer rdpidamente: mejoras de decenas de puntos porcentuales parecen
deseables pero no van a conseguir incrementar la calidad de juego de una manera apreciable.
Para aumentar la profundidad de exploracion hace falta un factor de reduccién en coste de
varios enteros.

Ademds, conforme se reduce la distancia a la ordenacién déptima, técnicas que serian
formidables por si solas comienzan a dar resultados pobres. Por poner un ejemplo completo, la
tabla hash reduce el espacio de busqueda hasta un 60% aplicandose al vacio, pero junto con
las otras mejoras su aportacion se ve reducida a un 30%.

7.3.1 Nota sobre la combinacién de poda alfa-beta con ordenacion

Un detalle a tener en cuenta al realizar una exploracién iterativa en profundidad es que los
datos obtenidos utilizando el algoritmo de poda alfa-beta son de peor calidad que los
obtenidos sin poda. La poda alfa-beta garantiza que se obtendra el mismo nodo de mayor
valor como resultado de la busqueda, pero en general las puntuaciones obtenidas para el resto
de los movimientos pueden ser superiores a sus puntuaciones reales (la busqueda se detiene
en cuanto se determina que su puntuacion no puede superar a la mejor conocida hasta el
momento, pero antes de calcularla con exactitud).

Ademds, puede ocurrir que algunos nodos a profundidad 2 o superior ni siquiera se visiten,
necesitando un trato especial de cara a la ordenacion.

Estas imprecisiones hacen que los datos obtenidos, de cara a la ordenacién para las
busquedas sucesivas, sean de menos calidad. Este efecto es cuantificable, como puede verse

en la Tabla 3.
Nivel Poda Tiempo | Diferencia | Nivel Poda Tiempo
2 No 0,132s 2 No 0,132 s
3 Si 0,318 s 3 No 58,292 s
4 Si 5,081 s 4 Si 4,498 s
5 Si 778,314 s 5 Si 767,514 s

Tabla 3: Empeoramiento por poda sucesiva

A pesar de que la poda afecta a los niveles posteriores, la pérdida de tiempo a nivel tres no
compensa las ganancias posteriores. Por lo tanto, la estrategia empleada consiste en realizar
una exploracidn sin poda a nivel 2 (para obtener unos datos iniciales de buena calidad en un
tiempo despreciable) y continuar con siempre con poda a partir de ahi.

8 Mejoras de la funcion de evaluacion: playouts

A pesar de las mejoras obtenidas en la poda, que permiten profundizar mas en la busqueda
Minimax en el mismo periodo de tiempo, el disefio todavia presentaba debilidades en la fase
inicial-media de la partida, donde raramente puede llegarse a explorar una profundidad de
mas de cuatro a seis movimientos, en contraste con la busqueda de Monte Carlo que siempre
profundiza hasta el final de la partida.

20

Una solucidn para mejorar la eficacia de juego sin aumentar la profundidad de exploracién
es mejorar la calidad de la funcion de evaluacién. Hay algunas heuristicas posibles tipicas de
juego de tablero como por ejemplo la distancia al centro de las piezas. Dentro de la funcidn de
evaluacion actual también hay parametros modificables como el peso relativo de las piezas
(entre si) y de la accesibilidad, asi como variantes donde se tiene en cuenta el nimero de
piezas diferentes con las que se puede llegar a las posiciones accesibles.

Desafortunadamente tras experimentar con estos parametros no se encontré ninguna
mejora concluyente (véase Tabla 4).

Victorias Empates Derrotas
Versién de control 44 10 46
Piezas doble valor 52 4 44
Piezas cuadruple valor 20 0 80
Accesibilidad triple valor 53 3 44
Piezas valor exponencial, accesibilidad alta 23 7 70
Piezas valor exponencial, accesibilidad media 21 6 73
Piezas valor exponencial, accesibilidad baja 14 4 82
Accesibilidad por piezas diferentes 0 0 100

Tabla 4: Partidas contra la version de control de si mismo

Notese que variaciones del orden de un 10% pueden considerarse ruido a efectos practicos
(habitualmente desaparecen o cambian de sentido al repetir el experimento).

La falta de profundidad en la busqueda es uno de los problemas detectado observando el
comportamiento en partidas reales. La imposibilidad de considerar situaciones futuras
trasciende en un comportamiento voraz donde se favorecen las ganancias a corto plazo en
detrimento estrategias superiores pero que tardan mds en dar resultados evaluables por la
funcién de evaluacién.

Pensando en como mejorar la prognosis de la funcion de evaluacién y teniendo en cuenta
las ideas aplicadas a la busqueda de Monte Carlo, se prototipd en software una busqueda
basada en playouts, como adicion o sustituto a la funcidn de evaluacién basada en piezas mas
accesibilidad. El esquema de dicha funcion es:

Mientras que algun jugador pueda poner una pieza:
Buscar el mejor movimiento del siguiente jugador que pueda colocar
Realizar ese movimiento
Evaluar el estado del tablero con un determinado peso

Como ejemplo grafico ilustrado en la Fig. 12, dada la situacién a evaluar ilustrada arriba a la
izquierda, el playout resultante puede verse a su derecha. Tras utilizarlo para evaluar la
situacidn, se repite el procedimiento para el siguiente movimiento a procesar (abajo a la
izquierda), que tendra su correspondiente playout (abajo a la derecha).

21

0 A
0 A
0 A
0 A
I

HENN - EENNaN

HENNNN B N
PR

N e

Fig. 12: Dos movimientos con sus respectivos playouts

Un pardmetro configurable es la profundidad de la busqueda del siguiente movimiento, que
no tiene por qué ser 1 (una busqueda a profundidad 2 con las mejoras de poda descritas
anteriormente es unas diez veces mas lenta que la correspondiente busqueda a profundidad 1).
Esto permite ajustar el coste global contra la calidad de la prognosis.

Una vez terminado el proceso y obtenida la valoracion, esta partida jugada hasta el final se
descarta. Como el disefio es determinista, al contrario que en Monte Carlo, solo se dispone de
una Unica partida (playout) por situacion del tablero a evaluar.

Hay que decidir que hacer con dicha partida. La solucidon propuesta consiste en evaluar el
tablero obtenido cada dos movimientos jugados en el playout y multiplicar esa valoracién por
un factor que varia en funcidn de la profundidad. El ajuste de estos factores no es evidente por
lo que se diseiaron siete estrategias de ajuste distintas que se muestran en la Tabla 5.

22

0,70 \ l
0,60 \ I 4
\ |/

g 1/

B 040 - '~ \— . ___- d Estrategi

o 4 == gia 1

g \ Estrategia 2

§ 0,30 Estrategia 3

Estrategia 4
0,20 .
Estrategia 5
0,10 Estrategia 6
Estrategia 7
0,00 ' ' ' ' ' ' ' ' ' ' ; ;
+2 +4 +6 +8 +10 +12 +14 +16 +18 +20 22.. final
final-1
22.. X
+2 +4 +6 +8 +10 +12 +14 +16 +18 +20 final-1 final

Estrategia 7 0,21 0,25 0,17 0,12 0,08 0,07 0,05 0,03 0,02 0,01 0,00 0,00
W Estrategia6| 0,29 0,22 0,15 0,12 0,09 0,06 0,03 0,01 0,01 0,01 0,00 0,00
M Estrategia5| 0,27 0,22 0,16 0,11 0,05 0,03 0,03 0,03 0,03 0,03 0,03 0,03
M Estrategia4| 0,09 0,12 0,17 0,23 0,17 0,12 0,06 0,03 0,01 0,01 0,00 0,00
M Estrategia 3 0,16 0,19 0,12 0,09 0,06 0,05 0,04 0,02 0,01 0,01 0,00 0,25
M Estrategia2| 0,67 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33
M Estrategial| 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00

Tabla 5: Estrategias de valoracion de playouts

La valoracién se hace cada dos movimientos para evitar cambios bruscos (si un jugador ha
colocado una pieza mas que el otro, su puntuacién va a ser bastante superior hasta que el
segundo responda).

Utilizando dichas tablas, se procedié a simular partidas tanto contra Pentobi (nivel 6) como
contra una version del software que no utiliza playouts, con una profundidad de exploracién
equivalente (en software el coste de evaluacidén se incrementa en un factor inferior a 10 por lo
que para poder comparar el rendimiento es necesario detener la exploraciéon antes). Los
resultados pueden consultarse en la Tabla 6.

Contra version sin playouts Contra Pentobi nivel 6

Victorias Empates Derrotas Victorias Empates Derrotas
Estrategia 1 1 71 4 82
Estrategia 2 62 3 35 35 4 61
Estrategia 3 80 2 18 36 4 60
Estrategia 4 59 3 38 47 8 45
Estrategia 5 8 20 48 7 45
Estrategia 6 4 13 51 6 43
Estrategia 7 2 20 - 5 43

Tabla 6: Resultado de las diferentes estrategias de valoracién de playouts

Analizando estos datos se observan una tendencia clara: es ventajoso dar mayor peso a los
movimientos mas cercanos (no es de extrafiar pues son mas certeros que los predichos a gran
distancia). En particular, considerar la situaciéon final (como hace Monte Carlo) no da buenos

23

resultados. Esto tiene ademas la ventaja afiadida de que es posible interrumpir la evaluacién
del playout de forma prematura (tras, por ejemplo, 8 movimientos con sus respuestas),
acelerando el proceso de busqueda (aunque los primeros movimientos son los mas caros).

Las mejores estrategias (6 y 7) consiguen ganar consistentemente contra la version sin
playouts, y mejoran los resultados contra Pentobi (que eran 39 — 7 — 54 en este caso).

9 Tabla de aperturas

Pentobi, como la mayoria de inteligencias artificiales de juegos de tablero, incluye un arbol
de aperturas (Fig. 13), que ayuda a tomar mejores decisiones en los cruciales primeros
momentos del juego, donde ademas el factor de ramificacién es enorme y es dificil realizar
busquedas profundas (el disefio hardware no suele llegar a analizar seis movimientos por
delante durante la fase de apertura).

66t0 56t3 56t7 56t4
I Il

a9to

BB

i:3: 8]

r T T 1 T 1 I_I_I I
(D@ N 0 O B B &

—— ——]
£ 0 CB 0O 63

9812

2600 k7 S5 I 7co0 o

m

c8n0

Fig. 13: Arbol de aperturas (parcial). Los nodos marcados en rojo son no deseables.

Es facil observar si los movimientos son sacados de dicho arbol observando la velocidad con
la que se calculan. El arbol que Pentobi utiliza para Blokus Duo tiene tan solo 91 movimientos,
lo que posibilita su implementacién en hardware codificado directamente como ldgica.
Algunos de estos movimientos estan marcados como “no deseables” — la funcién de los

0 o o v v mis”:fs e esp:es‘ta a”;e
||_|_|_|_|_|_|_|JJJJ un adversario que los realice. A parte de

este detalle, Pentobi valora todos los
movimientos igual y escoge uno al azar.
Para comprobar si realmente todas las
opciones son igual de deseables, se
procedid a simular multitud de partidas al
maximo nivel posible, y se observd que
Pentobi nunca perdia (contra si mismo o
contra el disefio de FPGA) con un
determinado primer movimiento (ver Fig.

||_|_|_|_|_|_|_|_|_|_|_| 14), al que merece dar un peso superior.

Fig. 14: Apertura fuerte

Para implementar este comportamiento, el software y hardware necesitan de un generador
de nUmeros aleatorios, el Unico elemento no determinista del disefio — en contraste con la
aleatoriedad de Monte Carlo. En nuestro caso, se puede incluso prescindir de un generador de

24

alta calidad y utilizar un simple contador de ciclos, eligiendo como nimero aleatorio el valor
gue tenga dicho contador cuando llegue la solicitud.

10 Conclusiones

A pesar de la complejidad exponencial del problema se ha conseguido duplicar la
profundidad de exploracién efectiva en muchos casos, con la consiguiente mejora de
resultados en partidas. Parte de la mejora viene de un disefio hardware mas rapido y mas
paralelo, pero la mayor parte es consecuencia de mejoras algoritmicas que reducen la cantidad
de trabajo a realizar sin modificar el resultado de la exploracion.

Ademas, se han explorado otras opciones para mejorar la inteligencia artificial sin aumentar
la profundidad de exploracion (que sigue estando muy limitada por caracter exponencial del
problema). A tal efecto se ha desarrollado una estrategia de evaluacién de nodos basada en
una profundizacion local no exhaustiva de coste lineal, que permite obtener una vision mds
certera del estado de la partida a una velocidad muy superior a la de la busqueda Minimax
clasica.

Gracias al gran paralelismo a nivel de operacién en el disefio hardware, éste consigue
superar con creces el rendimiento del software equivalente a pesar de contar con una
frecuencia de reloj 60 veces inferior. El consumo energético de la versidon hardware también es
una fraccidn muy pequefia del requerido por la version software.

Con todo esto, el disefio jugando con un segundo de tiempo tiene aproximadamente la
misma calidad que el nivel 6 del software Pentobi, una implementacién que explota los puntos
fuertes de las arquitecturas modernas de propdsito general, utilizando varios hilos para
acelerar la ejecucidn, una gran cantidad de memoria para dirigir la busqueda cuidadosamente,
y mucha energia para ocultar las latencias de acceso a la misma. Pentobi tiene dos niveles
superiores que juegan mejor que el disefio hardware, pero estos niveles necesitan bastante
mas de un segundo para calcular sus movimientos por lo que la comparacidn no es del todo
justa.

11 Trabajo futuro

El trabajo que se ha presentado no esta cerrado. Durante su desarrollo han surgido diversas
ideas que no se han podido desarrollar por falta de tiempo.

Una linea interesante es estudiar las nueva familias de plataformas hibridas que incluyen
procesadores convencionales y FPGAs en el mismo chip. En estas plataformas podriamos
mezclar mddulos software con médulos hardware y tratar de buscar las combinaciones que
proporcionasen mejor rendimiento y menos consumo. Dado que ya disponemos de un amplio
conjunto de médulos equivalentes disponibles tanto para hardware como para software la
mayor complejidad seria decidir dénde ubicar cada mddulo y cédmo optimizar las
comunicaciones.

25

12 Planificacion

2014
|

Nombre TG TET T julio ‘agosto Iseptiembre Ioctubre noviembre
@ Estudio de la versidn inicial 30106114 18107114 | —
@ Mejoras paralelismo hardware 2110714 19/09M14 [1
@ Hardware: depuracién y pruebas 220914 71114
@ Herramientas software (intermitente) 4/08M14 21014 1
@ Actualizacién de la version software 2510814 12109114 | E—
o Software: ordenaciones (<L1) 1510914 26/09/14 —/
@ Software: tabla hash 29/0914 1011014 | —
@ Software: ordenaciones (=L1) 13M0M4 17H0M4 |
@ Ordenacién de bisqueda hardware 20/09/14 24110114 | I—
o Software: playouts 114 181114 | I—
@ Documentacién del proyecto 101114 211114 —

Fig. 15: Diag. Gantt de planificacion de proyecto

El proyecto ha sido desarrollado desde julio hasta noviembre de 2014, invirtiéndose
primeras semanas en el estudio de la version inicial y la familiarizacion con las técnicas
empleadas.

Después se procedié en paralelo a implementar las mejoras hardware mientas se
valoraban otras posibles técnicas y se trabajaba en las mejoras de software (tanto
herramientas como la implementacion de la inteligencia artificial equivalente en técnicas al
hardware).

Mds adelante (y en paralelo con las tareas de hardware), se comenzaron a implementar en
software las nuevas técnicas de aceleracién de la busqueda, que iban afadiéndose al disefio
hardware al comprobar los resultados positivos en las simulaciones software.

Por ultimo, se investigaron las Ultimas mejoras de la funcidon de evaluacidn basadas en
playouts, y se redactd la documentacion del proyecto.

13 Referencias

ICFPT 2013 Design Competition.
http://lut.eee.u-ryukyu.ac.jp/dc13/

CFPT 2014 Design Contest.
http://www.icfpt2014.org/Info.asp?call=1E4F09D550631DDE725F71F2CFCB0495

https://en.wikipedia.org/wiki/Field Programmable Gate Array

http://lut.eee.u-ryukyu.ac.jp/dc13/rules.html

Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.),
Upper Saddle River, New Jersey: Prentice Hall, pp. 163-171, ISBN 0-13-790395-2

V' https://en.wikipedia.org/wiki/Alpha%E2%80%93beta pruning

V' https://en.wikipedia.org/wiki/Iterative_deepening depth-first search

V' http://pentobi.sourceforge.net/

https://en.wikipedia.org/wiki/Monte Carlo tree search

26

http://lut.eee.u-ryukyu.ac.jp/dc13/
http://www.icfpt2014.org/Info.asp?call=1E4F09D550631DDE725F71F2CFCB0495
https://en.wikipedia.org/wiki/Field_Programmable_Gate_Array
http://lut.eee.u-ryukyu.ac.jp/dc13/rules.html
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
http://pentobi.sourceforge.net/
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Xl

Xl

Xi

Combining Online and Offline Knowledge in UCT. S. Gelly, D. Silver. Proceedings of the 24th
international conference on Machine learning, pp. 273-280, 2007.
http://www.machinelearning.org/proceedings/icmI|2007/papers/387.pdf

Liu, C., "Implementation of a highly scalable blokus duo solver on FPGA," Field-Programmable
Technology (FPT), 2013 International Conference on, vol., no., pp.482,485, 9-11 Dec. 2013.
https://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6718423

Yoza, T.; Moriwaki, R.; Torigai, Y.; Kamikubo, Y.; Kubota, T.; Watanabe, T.; Fujimori, T.; Ito, H.;
Seo, M.; Akagi, K.; Yamaji, Y.; Watanabe, M., "FPGA Blokus Duo Solver using a massively parallel
architecture," Field-Programmable Technology (FPT), 2013 International Conference on, vol.,
no., pp.494,497, 9-11 Dec. 2013.

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6718426

https://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#hashCode%28%29

27

http://www.machinelearning.org/proceedings/icml2007/papers/387.pdf
https://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6718423
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6718426
https://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#hashCode%28%29

An improved FPGA-based specific processor for
Blokus Duo

Javier Olivito, Alberto Delmas, Javier Resano
gaZ group, DIIS-I3A
University of Zaragoza
Zaragoza, Spain
jolivito@unizar.es, adelmas@gmail.com, jresano@unizar.es

Abstract— This article presents a hardware design of a
specific processor for Blokus Duo game. This design is an
evolution of our previous work presented in the ICFPT 13 Design
Competition. In order to improve its performance we have
designed parallel hardware blocks to speed up the most time-
consuming tasks, and included additional techniques to reduce
the search space. As a consequence we can process a board six
times faster than in our previous version and we prune the game-
tree much more efficiently.

Keywords—Blokus Duo; FPGA; min-max; parallelism;

L INTRODUCTION

Blokus Duo is a variant of Blokus [1] designed for two
players played on a 14x14 board. Each player has 21
differently shaped tiles, and can place them with eight
different rotations. Tiles can be placed only in those squares
with corner-to-corner contact with a tile of the same color.
Moreover, a tile cannot have edge-to-edge contact with any
other tile of the same color. Each player places one tile at one
time, and the game continues until both players cannot places
more tiles. The score of each player is obtained taking into
account the placed tiles and their size. Each placed tile adds as
many points as the number of squares it occupies (from one to
five). Hence, the goal is to occupy as many squares as possible
while trying to reduce as much as possible the number of
squares that the opponent can occupy.

This game is becoming popular and has received several
international awards. It is easy to learn and very addictive. It
has been selected for the ICFPT 14 Design Competition [2]
following the success of last edition where 21 teams were
competing [3].

However, the fact that its rules are simple does not mean it
is a simple game. It is, in fact, a very complex game. On the
one hand, it is difficult to know whether a player is winning or
not since the score of a game can drastically change on the last
movements. On the other hand, the game tree to explore is
huge. For a given vertex, up to 127 different moves can be
made, and during a game there are many vertices where a
player can place a tile.

To evaluate a board state we use an expensive metric that
takes into account not only the current score but also the
regions that can be accessed by each player. We say that it is
expensive because finding the squares that can be accessed by

each player involves a lot of computations. But we believe that
a good evaluation function is the key to develop a strong
player.

Regarding the complexity of the game tree, in our previous
design [4] we already identified several techniques to reduce
the number of movements to explore. In this version we have
added hardware support to reorder the game-tree nodes in
order to increase the alpha-beta pruning efficiency, and we
have also included some specific hardware to identify which
are the most promising moves and discard the remaining ones.

Once we have reduced the game tree, our next goal is to
process it as fast as possible. To this end we have designed
several modules that take full advantage of the parallelism of
the different tasks carried out by our design. For instance, all
the vertices of a board are obtained in parallel in one clock
cycle, as well as all the legal moves for a given vertex, and the
squares that can be accessed from a vertex. These modules
speed up our processor six times in comparison to our
previous design.

In the following sections we briefly describe the related
work, the new techniques, and the main modules of our
design. Later we present some performance results, and finally
we provide some conclusions.

II. RELATED WORK

Several articles describe hardware implementations of a
Blokus Duo player. Reference [5] presents a co-design
approach where the artificial intelligence is executed in a
processor and the boards are evaluated by a hardware
accelerator implemented on an FPGA. Reference [6] describes
an architecture based on Monte-Carlo method that requires
little resources and operates at 150MHz. References [7] and
[8] present two approaches based on high-level synthesis. All
of these are interesting approaches but they are not
competitive against strong players. In the previous edition of
the Design Competition all of them exhibit worst results than
our previous design, which was awarded with the fourth prize.
The winners described their design in [9]. They implemented
forty evaluators in parallel leading to a great performance.
The performance of our previous design was worst, but our
design used much less resources (27% of a Xilinx Spartan-6
LX45), and the winners used 93% of an Altera Arria II
GX125, which is a larger FPGA. In any case, since our current

design is clearly stronger than our previous one, which was
already competitive, we believe that we are presenting a state-
of-the-art design.

III. TECHNIQUES

Our design generates a game tree in a depth-first fashion
and searches for the best move following the min-max
algorithm with alpha-beta pruning. The branching factor is
very large in this game, so additional pruning techniques are
required in order to look ahead as much as possible. To this
end, we have implemented the following techniques:

A. Node reordering

The efficiency of alpha-beta pruning strongly depends on
the order the nodes are explored. The sooner the best nodes
are explored, the higher the pruning efficiency is. In order to
take advantage of this property, we first create a small game
tree that only analyses our movements and the opponent
responses to those movements, in such a way that we get an
estimation of which movements are the most promising. This
game tree is generated without alpha-beta pruning since it
would degrade the quality of estimations because pruned
movements are upper bound scored. The outcome of this
preliminary exploration is stored in a small memory, and in
deeper explorations we generate the game tree following this
arrangement.

B. Move discard

Players must compete for shared areas. Placing a tile in an
area where the opponent does not have access is usually a bad
idea. We propose the following algorithm to decide which
movements can be discarded.

ALGORITHM move_discard
create_overlapping_map;
for each vertex do
if vertex in overlapping map then
for each movement in vertex do
if tile_overlapping = overlapping_threshold then
explore_move;
end if
end for
end if
end for

The overlapping threshold varies during a game. At the
beginning the movements are required to be highly
overlapped, and as the game progresses this requirement is
progressively relaxed. The overlapping map identifies the
squares that are accessible by our opponent or that are
adjacent to its tiles. Fig. 1 depicts the overlapping map at the
beginning of a game. In this case three of the seven blue
vertices are discarded since they are not in the relevant area.

C. Tile size

Areas in dispute are especially relevant in the first
movements. Placing big tiles allows the player to reach farther
areas as soon as possible. Moreover, big tiles are easier to
place when the board is mostly empty. Hence, early in the
game only big tiles should be considered.

Fig. 1. Overlapping map. Movements in vertices marked in red are discarded

IV. MAIN MODULES

From an architectural point of view, our design has been
focused on exploiting board and piece parallelism. This
enables large speedups in critical tasks like legal-moves search
or board evaluation.

A. Board

We consider interesting not to store only the player who
occupies each square (Free, Hero, Rival), but also which
players can place new tiles on them (Free, Forbidden Hero,
Forbidden Rival, Forbidden Both).

This idea reduces the number of squares to analyze when
looking for legal moves or evaluating a board.

B. Move Writer

This module is responsible for updating the board after
each tile is placed. Write operations are done piece by piece,
with a latency of n cycles where # is the size of the tile to be
written. Every cycle it writes a piece of tile (marking it as
forbidden for both players), and it updates its north, south,
west and east neighbors.

T o e

XX AR X|X|x X XXX
X X X | X XX | A XXX
X X X|[x XIX[X]X XX XX N EIRIES
KX X KIx|x X|X|X]|x RIX| 2|55 KYX| x| x|x

Fig. 2. Example of move writing placing tile 'f".

Fig. 2 illustrates the operation with an example where the
blue player places the ‘f* tile. The leftmost board is the initial
state, and the rightmost four represent its evolution during the
four cycles required to write the movement. The boards on the
bottom represent which player can place in each square. A
blue ‘x’ means that blue player cannot place there; a green ‘x’
means that green player cannot place there, and a red ‘x’
means that none of them can place there.

C. Vertices Map

Every operation on a board is done on a vertex-by-vertex
basis. We have implemented a module which identifies all the
valid vertices of a given board. It is a matrix of combinational
modules, where each module computes a given vertex. To this
end it analyses its four surrounding squares looking for one of
the four vertex patterns shown in Fig. 3. This module has been
replicated to analyze the board in parallel for both players.

A|B
C|D
Agcaie AND Dppppor =

B pvatapte AND Gy — o= verlex
D AND Ay, . — o found
ct\r“l! AND Bphyer —

Fig. 3. Vertex detector.

D. Processing Window

When we are exploring a vertex, we are interested in every
potentially reachable square from that vertex. Given the
shapes of the tiles and the possible rotations, the region of
interest has a shape such as the one shown in Fig. 4.
Therefore, we have implemented a module mainly composed
of multiplexers which provides this information around any
square. We use it to identify the legal moves and to compute
the accessibility. As the vertices map, this module is replicated
in order evaluate the board in parallel for both players.

Fig. 4. Processing Window shape

E. Legal Move Finder

Finding the possible moves of a board is a critical task
since it has to be performed for every node in the game-tree.
We have implemented a module that provides one legal move
per cycle.

a 1
-
4 12 —x
vertices Vertex |2 {_2‘ Move Bmove Move ——y
i Selector Selector Translator > e
—L Ll
=] I Tt
werbe VG
e~ Status ot
vertex mave

Fig. 5. Legal Move Finder

The Vertex Selector (shown in Fig. 5) receives all the
identified vertices and returns the next vertex to explore. It
consists of a mask that hides the vertices already explored, and
a priority encoder that selects the next unexplored one. Once
this next vertex is selected, the processing window is centered
on it, and the Move Selector (also shown in Fig. 5) tests all the
potential moves in parallel. Then we follow the same scheme
as the Vertex Selector, selecting one move per cycle. Finally,
the Move Translator decodes the selected move providing the
needed information (x, y, tile and rotation).

F. Accessibility Evaluator

In this game it is desirable to reach as much area as
possible, and to reduce the area reachable by our opponent.
Hence to evaluate a board we first analyze the area that can be
reached by each player. Our accessibility evaluator processes
all the vertices identified by both Vertices Maps. It integrates a
Vertex Processor (see Fig. 6), which is a combinational block
that identifies the reachable squares from a vertex in one clock
cycle. For each vertex, the Vertex Processor identifies the
reachable squares taking into account the board status and the
available tiles, resulting in a 14x14 map indicating which
squares are accessible. Finally, a Tree Adder returns the
accessibility value for each player (i.e. the number of squares
that can be accessed by each player).

I
v IE
gl 12 Accessible
vertices Vertex 2} 12| Vertex positions | AcC map
map = =1 .
selector processor register
Accessibility
last map
vertex
Tree accessibility
s Status ——
vertex adder

Fig. 6. Accesibility Evaluator

G. Node Reordering

This module receives the explored move candidates and
their score, and sorts them storing the best scoring one in
position 0. Fig. 7 depicts the data path of this module. It
consists of a memory that stores the movements sorted by
their scores (Sort RAM); a register to latch new movements to
be sorted (New move reg); a counter which points to the first
empty position (First empty counter); an additional counter to
carry out the sort process (Sort counter); and a comparator
which identifies if the position of two movements needs to be
interchanged. Every time a new movement is evaluated, it is
latched in the New move register and the address of the last
movement stored in the Sort RAM is loaded in the Sort
Counter. Then the scores of the new movement and the
previously stored are compared; if the new movement is
better, their positions are interchanged.

It takes two cycles to complete each interchange, but this
latency is fully hidden within the tree search.

The efficiency of this technique strongly depends on the
game scenario. We have observed situations where it allows
our processor to reduce the search space by 90%.

15 Empty
Counter
l
-1
l
Sort §
Counter | — 5 ¢
1 = e Sort
DOUT p— o
+1 = C— o RAM = —* Interchange
g L, bin ’_A v

Hew | New Move
mave Register

Fig. 7. Node Reordering

V. RESULTS

Our design has been implemented on a Xilinx Virtex-5
LX110T. It is able to process, on average, about 1.2M boards
per second. Table I shows the performance results of the most
relevant tasks to decide a move. The next move to process is
found in one clock cycle; afterwards, up to five cycles are
needed to generate the new board; and finally one clock cycle
per vertex to evaluate the board. Column ‘Time’ is calculated
for 50 MHz, which is the frequency our design can run in this
FPGA.

TABLE 1. TASKS PERFORMANCE
Task Cycles Time (ns)
Find next move 1 20
Generate a new board tile_size tile_sizeX20
Evaluate a board #vertices #verticesX20

Our design presented in ICFPT ’13 was able to process
about 0.2M boards per second. It means that we have achieved
a speedup of 6.

In order to test our processor against a strong opponent, we
played several games against Pentobi [10], which is currently
the strongest Blokus software. The latest version of Pentobi
has eight levels and it is able to decide every movement in less
than one second up to level five. Levels six, seven and eight
require up to tens of seconds. Our design decides every
movement in no more than one second. Table II depicts these
results. We have played ten games in each level, five as blue
and five as green. The results show that our design deciding
the move with a one second timeout is as competitive as
Pentobi in level five. Moreover, in some cases it is able to
defeat Pentobi in its highest levels. Hence, with the same time
budget, our design is roughly as strong as Pentobi.

TABLE II. RESULTS AGAINST PENTOBI
Level 1 2 3 4 5 6 7 8
Results
(Win-Lost) 10-0 | 10-0 | 10-0 | 82 | 6-4 | 3-7 | 1-9 | 1-9

Table III shows the resource utilization for a design with
support for a game-tree of up to ten levels.

TABLE III. FPGA RESOURCES UTILIZATION
Slice Registers Slice LUTs BRAMs
5,959 (8%) 19,413 (28%) 12 (8%)

VI. CONCLUSIONS

With our previous design we demonstrated that is was
possible to develop a competitive hardware design for a
complex problem in just three months. However, we left many
optimization opportunities unexplored due to the time
constraints. In this design we have taken advantage of task
parallelism. As a result our new design is six times faster.
Moreover, we have included interesting optimizations to prune
the game-tree more efficiently. The results demonstrate that
we are competitive against a strong software application as
Pentobi.

Acknowledgment

This work was supported in part by grants TIN2010-
21291-C02-01 (Spanish Gov. and European ERDF), gaZ: T48
research group (Aragon Gov. and European ESF), and
HiPEAC-3 NoE (European FET FP7/ICT 287759).

References

[1] Blokus. http://en.wikipedia.org/wiki/Blokus

[2] International Conference on Field-Programmable Technology 2014
http://www.icfpt2014.org

[3] International Conference on Field-Programmable Technology 2013
http://www.fpt2013.0rg

[4] J. Olivito, C. Gonzalez, and J. Resano, “An FPGA-based specific
processor for Blokus Duo”, International Conference on Field-
Programmable Technology 2013. Kyoto, Japan. pp. 502-505.

[5] Kojima, A, "An implementation of Blokus Duo player on FPGA,"
International Conference on Field-Programmable Technology 2013.
Kyoto, Japan. pp.506-509.

[6] Liu, C., "Implementation of a highly scalable blokus duo solver on
FPGA," International Conference on Field-Programmable Technology
2013. Kyoto, Japan. pp.482-485.

[7] Sugimoto, N.; Miyajima, T.; Kuhara, T.; Katuta, Y.; Mitsuichi, T.;
Amano, H., "Artificial intelligence of Blokus Duo on FPGA using Cyber
Work Bench," International Conference on Field-Programmable
Technology 2013. Kyoto, Japan. pp.498-501.

[8] Jiu Cheng Cai, et al., "From C to Blokus Duo with LegUp high-level
synthesis," International Conference on Field-Programmable
Technology 2013. Kyoto, Japan. pp.486-489.

[91 T. Yoza, et al. “FPGA Blokus Duo Solver using a massively parallel
architecture”, International Conference on Field-Programmable
Technology 2013. Kyoto, Japan. pp. 494-497.

[10] Pentobi webpage. http://pentobi.sourceforge.net/

