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ANEXO 1. PROTOCOLO DE KIOTO.

El Protocolo de Kioto sobre el cambio climátic
Marco de las Naciones Unidas sobre el Cambio Climático
internacional que tiene por objetivo reducir las emisiones de seis
invernadero que causan el calentamiento global
y óxido nitroso (N2
fluorados: hidrofluorocarburos
azufre (SF6), en un porcentaje aproximado de al menos un 5
2008 a 2012, en comparación a las emisiones a 1990. Por ejemplo, si las emisiones de estos 
gases en 1990 alcanzaban el 100
95 %. Esto no significa que cada país deba reducir sus emisiones de gases regulados en un 
5 % como mínimo, sino que este es un porcentaje a escala global y, por el contrario, cada país 
obligado por Kioto tiene sus propios porcentajes de emisión que debe disminuir la 
contaminación global. El protocolo fue inicialmente adoptado el 11 de diciembre de
en Kioto, Japón, pero no entró en vigor hasta el 16 de febrero de 2005. En noviembre de 
2009, eran 187 estados los que ratificaron el protocolo.
gases de invernadero mundial,

El instrumento se encuentra dent
Unidas sobre el Cambio Climático
como la Cumbre de la Tierra de
que en ese entonces no pudo hacer la CMNUCC.

Muchas son las fuentes que indican que el protocolo de Kioto no se ha llegado a 
cumplir por parte de algunos países, y los datos climatológicos lo corroboran. La tempera 
media del planeta continua aumentando conforme pasan los años, los glaciares del ártico y de 
la Antártida siguen en continuo proceso deshielo y el consumo de combustibles fósiles no
deja de aumentar. 

En España la producción de CO
incremento del uso de las renovables
industria y eso también se ve reflejado en la producción de gases inv

La siguiente figura ilustra la emisión de gases invernadero de tres países de la Unión 
Europea en los últimos 50 años:

ROTOCOLO DE KIOTO.

Protocolo de Kioto sobre el cambio climático es un protocolo de la
Unidas sobre el Cambio Climático (CMNUCC), y un acuerdo 

internacional que tiene por objetivo reducir las emisiones de seis
calentamiento global: dióxido de carbono (CO2), gas

2O), además de tres gases industriales 
hidrofluorocarburos (HFC), perfluorocarbonos(PFC) y hexafluoruro de 
), en un porcentaje aproximado de al menos un 5 %, dentro del periodo que va de 

comparación a las emisiones a 1990. Por ejemplo, si las emisiones de estos 
gases en 1990 alcanzaban el 100 %, para 2012 deberán de haberse reducido como mínimo al 

%. Esto no significa que cada país deba reducir sus emisiones de gases regulados en un 
como mínimo, sino que este es un porcentaje a escala global y, por el contrario, cada país 

obligado por Kioto tiene sus propios porcentajes de emisión que debe disminuir la 
El protocolo fue inicialmente adoptado el 11 de diciembre de

, pero no entró en vigor hasta el 16 de febrero de 2005. En noviembre de 
estados los que ratificaron el protocolo. Estados Unidos

gases de invernadero mundial, no ha ratificado el protocolo. 

El instrumento se encuentra dentro del marco de la Convención Marco de las Naciones 
as sobre el Cambio Climático (CMNUCC), suscrita en 1992 dentro de lo que se conoció 

de Río de Janeiro. El protocolo vino a dar fuerza vinculante a lo 
que en ese entonces no pudo hacer la CMNUCC. 

Muchas son las fuentes que indican que el protocolo de Kioto no se ha llegado a 
te de algunos países, y los datos climatológicos lo corroboran. La tempera 

media del planeta continua aumentando conforme pasan los años, los glaciares del ártico y de 
la Antártida siguen en continuo proceso deshielo y el consumo de combustibles fósiles no

En España la producción de CO2 ha disminuido en los últimos años gracias al 
incremento del uso de las renovables, además la crisis económica también ha paralizado a la 
industria y eso también se ve reflejado en la producción de gases invernadero.

La siguiente figura ilustra la emisión de gases invernadero de tres países de la Unión 
Europea en los últimos 50 años: 
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ROTOCOLO DE KIOTO.  

es un protocolo de la Convención 
(CMNUCC), y un acuerdo 

internacional que tiene por objetivo reducir las emisiones de seis gases de efecto 
), gas metano (CH4) 

res gases industriales 
hexafluoruro de 

%, dentro del periodo que va de 
comparación a las emisiones a 1990. Por ejemplo, si las emisiones de estos 

%, para 2012 deberán de haberse reducido como mínimo al 
%. Esto no significa que cada país deba reducir sus emisiones de gases regulados en un 

como mínimo, sino que este es un porcentaje a escala global y, por el contrario, cada país 
obligado por Kioto tiene sus propios porcentajes de emisión que debe disminuir la 

El protocolo fue inicialmente adoptado el 11 de diciembre de 1997 
, pero no entró en vigor hasta el 16 de febrero de 2005. En noviembre de 

Estados Unidos, mayor emisor de 

Convención Marco de las Naciones 
(CMNUCC), suscrita en 1992 dentro de lo que se conoció 

. El protocolo vino a dar fuerza vinculante a lo 

Muchas son las fuentes que indican que el protocolo de Kioto no se ha llegado a 
te de algunos países, y los datos climatológicos lo corroboran. La tempera 

media del planeta continua aumentando conforme pasan los años, los glaciares del ártico y de 
la Antártida siguen en continuo proceso deshielo y el consumo de combustibles fósiles no 

ha disminuido en los últimos años gracias al 
, además la crisis económica también ha paralizado a la 

ernadero. 

La siguiente figura ilustra la emisión de gases invernadero de tres países de la Unión 



 

 

Figura 1 

El último año ha habido un endurecimiento
haciendo más difícil la inversión en este sector, que
emisiones de gases invernadero en los próximos años

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 . Evolución de las emisiones en los últimos años. 

l último año ha habido un endurecimiento en la legislación de la fotovoltaica, 
la inversión en este sector, que se verá reflejado en un aumento de las 

emisiones de gases invernadero en los próximos años. 
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ANEXO 2. ENER
ELEMENTOS MÁS UTILIZADOS.

A continuación se va a realizar un estudio acerca de las energías renovables y de los 
elementos más empleados en la actualidad.
los elementos utilizados en el proye

1. Energía solar térmica
 
La energía solar térmica

la energía del sol para producir
producción de agua caliente destinada al consumo de agua doméstico, ya sea
sanitaria, calefacción, o para producción de
eléctrica. Adicionalmente puede emplearse
absorción, que emplea calor en lugar de electricidad p
acondicionar el aire de los locales.

Los colectores de energía solar térmica están clasificados
media y alta temperatura. Los colectores de baja temperatura generalmente son placas planas 
usadas para calentar agua. Los colectores de temperatura media también usualmente son 
placas planas usadas para calentar agua o aire para usos residenciales o comerciales. Los 
colectores de alta temperatura concentran la luz solar usando
son usados para la producción de energía eléctrica. La energía solar térmica es diferente y 
mucho más eficiente que la energía solar fotovoltaica

1.1. Colector solar plano

A continuación se muestra una imagen de la composición de un colector de p
plana y la función de cada uno de ellos:

Figura 

 

 

 

 

ENERGÍAS RENOVABLES Y 
ELEMENTOS MÁS UTILIZADOS.  

A continuación se va a realizar un estudio acerca de las energías renovables y de los 
elementos más empleados en la actualidad. También se va a describir con mayor profundidad 
los elementos utilizados en el proyecto. 

solar térmica 

térmica o energía termosolar consiste en el aprovechamiento de 
para producir calor que puede aprovecharse para cocinar alimentos

producción de agua caliente destinada al consumo de agua doméstico, ya sea
, o para producción de energía mecánica y, a partir de ella, de

puede emplearse para alimentar una máquina de
, que emplea calor en lugar de electricidad para producir frío con el que se puede 

acondicionar el aire de los locales. 
Los colectores de energía solar térmica están clasificados como 

media y alta temperatura. Los colectores de baja temperatura generalmente son placas planas 
s para calentar agua. Los colectores de temperatura media también usualmente son 

placas planas usadas para calentar agua o aire para usos residenciales o comerciales. Los 
colectores de alta temperatura concentran la luz solar usando espejos o lentes
son usados para la producción de energía eléctrica. La energía solar térmica es diferente y 

energía solar fotovoltaica 

Colector solar plano 

A continuación se muestra una imagen de la composición de un colector de p
y la función de cada uno de ellos: 

Figura 2. Composición de un colector de placa plana. 
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GÍAS RENOVABLES Y 

A continuación se va a realizar un estudio acerca de las energías renovables y de los 
También se va a describir con mayor profundidad 

consiste en el aprovechamiento de 
cocinar alimentos o para la 

producción de agua caliente destinada al consumo de agua doméstico, ya sea agua caliente 
y, a partir de ella, de energía 

de refrigeración por 
ara producir frío con el que se puede 

 colectores de baja, 
media y alta temperatura. Los colectores de baja temperatura generalmente son placas planas 

s para calentar agua. Los colectores de temperatura media también usualmente son 
placas planas usadas para calentar agua o aire para usos residenciales o comerciales. Los 

lentes y generalmente 
son usados para la producción de energía eléctrica. La energía solar térmica es diferente y 

A continuación se muestra una imagen de la composición de un colector de placa 

 



 

 

 
• Caja: Su principal función es de proteger y soportar todos los elementos que se 

encuentra formado el captador.
• Cubierta transparente: 

plástico. Al utilizar  una cubierta de vidrio transparente,
convección  sobre el absorbente, procurando el efecto invernadero. Se debe tener
consideración que el material sea bajo en sales de hierro para tener mejor coeficiente 
de trasmisión de la radiación. Uno de los problemas del uso de este
fragilidad en romperse
externo.  

• Muchos colectores fabricados industrialmente vienen con una cubierta
entre ellos están los policarbonatos. Muchos plásticos sufren por el paso de tiempo 
deterioros, lo que provoca un descenso del rendimiento del colector.
sus propiedades mecánicas, tiene mala conductividad térmica, alto coeficiente de 
dilatación, liviano, entre otras.

• Placa Absorbedora: En muchos casos se trata de una
que recibe la radiación
caloportador. Para captadores solares que no realizan efecto invernadero se utilizan 
absorbedores de plásticos.

• Tubo o canalización del fluido
fluido puede estar formado
los conductos de distribución o en su caso
de serpentín. 

• Aislante térmico: Entre el conjunto formado por el absorbedor, el conducto del fluido 
y la carcasa del colector, se dispondrá una
perdidas térmicas en su
vidrio.  

1.2.  Colector de tubo de vacío

Este tipo de colectores más modernos se utilizan en
temperaturas superiores a 45 grados centígrados.
dos superficies cilíndricas, con un eje de simetría común, entre las que se ha hecho el vacío.
El tubo está abierto por un extremo y cerrado por el otro, siendo una pieza única y 
estanca en su interior. 
 

Su principal función es de proteger y soportar todos los elementos que se 
encuentra formado el captador.  

: Los materiales normalmente utilizados son el vidrio y el 
una cubierta de vidrio transparente, reduciríamos

sobre el absorbente, procurando el efecto invernadero. Se debe tener
que el material sea bajo en sales de hierro para tener mejor coeficiente 

de trasmisión de la radiación. Uno de los problemas del uso de este
fragilidad en romperse  por los cambios bruscos de temperatura o por algún agente 

colectores fabricados industrialmente vienen con una cubierta
entre ellos están los policarbonatos. Muchos plásticos sufren por el paso de tiempo 
deterioros, lo que provoca un descenso del rendimiento del colector.

ades mecánicas, tiene mala conductividad térmica, alto coeficiente de 
dilatación, liviano, entre otras.  

En muchos casos se trata de una  plancha metálica de color negro 
que recibe la radiación solar, la transforma en calor y la transmit
caloportador. Para captadores solares que no realizan efecto invernadero se utilizan 
absorbedores de plásticos. 
Tubo o canalización del fluido: El sistema de canalización del 

formado por una parrilla de tubos y dos colectores
los conductos de distribución o en su caso  solamente compuesto por un tubo en forma 

Entre el conjunto formado por el absorbedor, el conducto del fluido 
y la carcasa del colector, se dispondrá una plancha termo-aislante
perdidas térmicas en su parte posterior. Los aislantes más comunes son los de fibra de 

Colector de tubo de vacío 

Este tipo de colectores más modernos se utilizan en instalaciones donde se trabaja con 
eriores a 45 grados centígrados. Se trata de un cilindro de vidrio que

dos superficies cilíndricas, con un eje de simetría común, entre las que se ha hecho el vacío.
abierto por un extremo y cerrado por el otro, siendo una pieza única y 
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Su principal función es de proteger y soportar todos los elementos que se 

Los materiales normalmente utilizados son el vidrio y el 
reduciríamos  las perdidas por 

sobre el absorbente, procurando el efecto invernadero. Se debe tener  en 
que el material sea bajo en sales de hierro para tener mejor coeficiente 

de trasmisión de la radiación. Uno de los problemas del uso de este  material es su 
por los cambios bruscos de temperatura o por algún agente 

colectores fabricados industrialmente vienen con una cubierta  de plásticos, 
entre ellos están los policarbonatos. Muchos plásticos sufren por el paso de tiempo 
deterioros, lo que provoca un descenso del rendimiento del colector.  Considerando 

ades mecánicas, tiene mala conductividad térmica, alto coeficiente de 

plancha metálica de color negro 
solar, la transforma en calor y la transmite al fluido 

caloportador. Para captadores solares que no realizan efecto invernadero se utilizan 

El sistema de canalización del 
por una parrilla de tubos y dos colectores que constituyen 

solamente compuesto por un tubo en forma 

Entre el conjunto formado por el absorbedor, el conducto del fluido 
aislante que minimice las 

posterior. Los aislantes más comunes son los de fibra de 

donde se trabaja con 
Se trata de un cilindro de vidrio que tiene 

dos superficies cilíndricas, con un eje de simetría común, entre las que se ha hecho el vacío. 
abierto por un extremo y cerrado por el otro, siendo una pieza única y totalmente 



 

 

Las ventajas que tiene este tipo de colector son:
• Las pérdidas de calor por convección o conducción desaparecen.

• Las posibles pérdidas por radiación se reducen al rec
interiormente con una capa de aluminio y nitrógeno.

• La geometría cilíndrica del tubo permite, no sólo el mayor aprovechamiento de la 
radiación solar, sino también de la radiación difusa del entorno y de la parte posterior 
de la instalación, así como una mejor captación de la radiación que se recoge a 
primera y última hora de la tarde.

• Alto rendimiento de absorción: Los tubos de vacío por su elevado aislamiento con el 
exterior limitan las pérdidas térmicas. Esto hace que para una misma
sistema de tubos de vacío alcanzará mayores temperaturas que un sistema con 
captadores planos. 

 

Figura 

 
Principalmente existen tres principios de funcionamiento:
 

1. Heat pipe o tubo superconductor de calor
extremos con un alcohol en su interior. Al calentarse este alcohol se evapora 
absorbiendo gran cantidad de energía, y en estado gaseoso asciende
superior. 

 

 
Figura 3. Tubo de vacío. 

 

Las ventajas que tiene este tipo de colector son: 
Las pérdidas de calor por convección o conducción desaparecen. 

Las posibles pérdidas por radiación se reducen al recubrir el tubo de vacío 
interiormente con una capa de aluminio y nitrógeno. 

La geometría cilíndrica del tubo permite, no sólo el mayor aprovechamiento de la 
radiación solar, sino también de la radiación difusa del entorno y de la parte posterior 

lación, así como una mejor captación de la radiación que se recoge a 
de la tarde. 

Alto rendimiento de absorción: Los tubos de vacío por su elevado aislamiento con el 
exterior limitan las pérdidas térmicas. Esto hace que para una misma
sistema de tubos de vacío alcanzará mayores temperaturas que un sistema con 

 
4. Composición de un colector de tubo de vacío. 

Principalmente existen tres principios de funcionamiento: 

o tubo superconductor de calor: Consiste en un tubo cerrado por ambos 
extremos con un alcohol en su interior. Al calentarse este alcohol se evapora 
absorbiendo gran cantidad de energía, y en estado gaseoso asciende
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ubrir el tubo de vacío 

La geometría cilíndrica del tubo permite, no sólo el mayor aprovechamiento de la 
radiación solar, sino también de la radiación difusa del entorno y de la parte posterior 

lación, así como una mejor captación de la radiación que se recoge a 

Alto rendimiento de absorción: Los tubos de vacío por su elevado aislamiento con el 
exterior limitan las pérdidas térmicas. Esto hace que para una misma ubicación, un 
sistema de tubos de vacío alcanzará mayores temperaturas que un sistema con 

onsiste en un tubo cerrado por ambos 
extremos con un alcohol en su interior. Al calentarse este alcohol se evapora 
absorbiendo gran cantidad de energía, y en estado gaseoso asciende hasta el extremo 



 

 

Figura 5

Este extremo tiene contacto
energía absorbida a lo largo del tubo, condensá
tubo para repetir el ciclo. 

Figura 

Los tubos de vacío son dos tubos concéntricos de vidrio de alta resistencia
que hay vacío. Así se evitan las nefastas pérdidas de calor por conducción entre otros efectos 
negativos. 

• Superconductores de calor. El calor captad
superior miles de veces más rápido que en el caso de conducción por cobre.

• Ciclo evaporación/condensación.
• Aislamiento por capa de vacío entre dos de vidrio (borosilicato)

• Unión seca: Tubos de heat pipe
  

2.  Sistemas en U: el fluido caloportador circula por el interior de los cilindros de vidrio 
de sistema de vacío, por unos conductos de cobre en forma de U. El funcionamiento es 
parecido al de una placa plana. Este tipo de sistema tiene las ventajas de poder s
en cualquier posición, ya que no necesita la inclinación del sistema Heat

 
5.Funcionamiento de un tubo de vacío heat pipe. 

 

contacto térmico con el fluido caloportador al que le cede la 
da a lo largo del tubo, condensándose entonces y volviendo a descender por el 

 
Figura 6. Unión tubo de vacío con la carcasa. 

 

vacío son dos tubos concéntricos de vidrio de alta resistencia
que hay vacío. Así se evitan las nefastas pérdidas de calor por conducción entre otros efectos 

Superconductores de calor. El calor captado a lo largo del tubo llega al 
superior miles de veces más rápido que en el caso de conducción por cobre.
Ciclo evaporación/condensación. 
Aislamiento por capa de vacío entre dos de vidrio (borosilicato). 

Unión seca: Tubos de heat pipe en contacto térmico pero no hidráulico.

el fluido caloportador circula por el interior de los cilindros de vidrio 
de sistema de vacío, por unos conductos de cobre en forma de U. El funcionamiento es 
parecido al de una placa plana. Este tipo de sistema tiene las ventajas de poder s
en cualquier posición, ya que no necesita la inclinación del sistema Heat
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caloportador al que le cede la 
entonces y volviendo a descender por el 

vacío son dos tubos concéntricos de vidrio de alta resistencia entre los 
que hay vacío. Así se evitan las nefastas pérdidas de calor por conducción entre otros efectos 

o a lo largo del tubo llega al condensador 
superior miles de veces más rápido que en el caso de conducción por cobre. 

térmico pero no hidráulico. 

el fluido caloportador circula por el interior de los cilindros de vidrio 
de sistema de vacío, por unos conductos de cobre en forma de U. El funcionamiento es 
parecido al de una placa plana. Este tipo de sistema tiene las ventajas de poder situarse 
en cualquier posición, ya que no necesita la inclinación del sistema Heat-pipe debido a 



 

 

que para que se produzca el ciclo de calor (ver la figura anterior) debe haber una cierta 
inclinación. 

 

3. Equipo de termosifón a presión atmosférica
atmosférica es un tipo d

• Captación solar mediante tubos de vacío: El elemento que absorbe la energía
encuentra aislado del exterior mediante una cámara al vacío para li
energéticas. Esto se consigue con un tubo compuesto de dos cilindros coaxiales siendo 
el cilindro interior el que absorbe la irradiación solar y el cilindro exterior siendo el 
que lo aísla del ambiente mediante una cavidad al vacío.

• Circulación del circuito primario mediante termosifón: Una vez el agua del interior de 
los tubos aumenta de temperatura se genera una diferencia de densidad lo que hace 
que el agua más caliente suba hasta llegar al tanque de almacenamiento. Esto provoca 
una circulación natural por diferencia de temperaturas inducida por la irradiación 
solar. 

• Circuito primario a presión atmosférica: El circuito primario, compuesto por el agua 
de los tubos y del tanque de almacenamiento, está en
mediante una válvula de aireación. Esto último hace que el circuito primario esté 
siempre a presión atmosférica y limita los problemas por sobrepresión de los sistemas 
presurizados. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

que para que se produzca el ciclo de calor (ver la figura anterior) debe haber una cierta 

quipo de termosifón a presión atmosférica: un termosifón de tubos de vacío a presión 
tipo de captador cuyas principales características son:

mediante tubos de vacío: El elemento que absorbe la energía
encuentra aislado del exterior mediante una cámara al vacío para li
energéticas. Esto se consigue con un tubo compuesto de dos cilindros coaxiales siendo 
el cilindro interior el que absorbe la irradiación solar y el cilindro exterior siendo el 
que lo aísla del ambiente mediante una cavidad al vacío. 

ulación del circuito primario mediante termosifón: Una vez el agua del interior de 
los tubos aumenta de temperatura se genera una diferencia de densidad lo que hace 
que el agua más caliente suba hasta llegar al tanque de almacenamiento. Esto provoca 

rculación natural por diferencia de temperaturas inducida por la irradiación 

Circuito primario a presión atmosférica: El circuito primario, compuesto por el agua 
de los tubos y del tanque de almacenamiento, está en contacto con el ambiente exterior 
mediante una válvula de aireación. Esto último hace que el circuito primario esté 
siempre a presión atmosférica y limita los problemas por sobrepresión de los sistemas 
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que para que se produzca el ciclo de calor (ver la figura anterior) debe haber una cierta 

n de tubos de vacío a presión 
e captador cuyas principales características son: 

mediante tubos de vacío: El elemento que absorbe la energía solar se 
encuentra aislado del exterior mediante una cámara al vacío para limitar las pérdidas 
energéticas. Esto se consigue con un tubo compuesto de dos cilindros coaxiales siendo 
el cilindro interior el que absorbe la irradiación solar y el cilindro exterior siendo el 

ulación del circuito primario mediante termosifón: Una vez el agua del interior de 
los tubos aumenta de temperatura se genera una diferencia de densidad lo que hace 
que el agua más caliente suba hasta llegar al tanque de almacenamiento. Esto provoca 

rculación natural por diferencia de temperaturas inducida por la irradiación 

Circuito primario a presión atmosférica: El circuito primario, compuesto por el agua 
con el ambiente exterior 

mediante una válvula de aireación. Esto último hace que el circuito primario esté 
siempre a presión atmosférica y limita los problemas por sobrepresión de los sistemas 



 

 

1.3. Otros tipos de colectores solares

2. Energía solar fotovoltaica
La energía solar fotovoltaica

origen renovable, obtenida directamente a partir de la
dispositivo semiconductor denominado
metales sobre un sustrato denominada

Otros tipos de colectores solares 

 

Tabla 1. Otros tipos de colectores. 

Energía solar fotovoltaica 
energía solar fotovoltaica es una fuente de energía que produce

obtenida directamente a partir de la radiación solar
denominado célula fotovoltaica, o bien mediante una deposición de 

metales sobre un sustrato denominada célula solar de película fina. 
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que produce electricidad de 
radiación solar mediante un 

, o bien mediante una deposición de 



 

 

Figura 

 

2.1. Células monocristalinas

Basados en secciones de una barra de silicio perfectamente cristalizado en
pieza. En laboratorio se han alcanzado rendimientos máximos del 24,7% para éste
paneles siendo en los comercializados del 16%.

Figura 

2.2. Módulos de silicio puro policristalino

 Los materiales son semejantes a los del tipo anterior aunque en
cristalización del silicio es diferente. Los paneles policristalinos se basan en secciones de una 
barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. So
visualmente muy reconocibles por presentar su superficie un aspecto granulado. Se obtiene 
con ellos un rendimiento inferior que con los monocristalinos (en laboratorio del 19.8% y en 
los módulos comerciales del 14%) siendo su precio también más bajo.

 
 
 
 

Figura 7. Elementos de un panel fotovoltaico. 

Células monocristalinas. 

Basados en secciones de una barra de silicio perfectamente cristalizado en
boratorio se han alcanzado rendimientos máximos del 24,7% para éste

paneles siendo en los comercializados del 16%. 

 
Figura 8.Módulo fotovoltaico monocristalino. 

Módulos de silicio puro policristalino 

mejantes a los del tipo anterior aunque en este
cristalización del silicio es diferente. Los paneles policristalinos se basan en secciones de una 
barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. So
visualmente muy reconocibles por presentar su superficie un aspecto granulado. Se obtiene 
con ellos un rendimiento inferior que con los monocristalinos (en laboratorio del 19.8% y en 
los módulos comerciales del 14%) siendo su precio también más bajo. 
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Basados en secciones de una barra de silicio perfectamente cristalizado en una sola 
boratorio se han alcanzado rendimientos máximos del 24,7% para éste tipo de 

este caso el proceso de 
cristalización del silicio es diferente. Los paneles policristalinos se basan en secciones de una 
barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. Son 
visualmente muy reconocibles por presentar su superficie un aspecto granulado. Se obtiene 
con ellos un rendimiento inferior que con los monocristalinos (en laboratorio del 19.8% y en 



 

 

Figura 

 Por las características físicas del silicio cristalizado, los paneles 
siguiendo esta tecnología presentan un grosor considerable. Mediante el empleo del silicio 
con otra estructura o de otros materiales semiconductores es posible conseguir paneles más 
finos y versátiles que permiten incluso en algún caso su adapta
Son los denominados paneles de lámina delgada

2.3. Silicio amorfo 

 Basados también en el silicio, pero a diferencia de los dos anteriores, este material no 
sigue aquí estructura cristalina alguna. Paneles de este
pequeños dispositivos electrónicos (
Su rendimiento máximo alcanzado en laboratorio ha sido del 13% siendo el de los módulos 
comerciales del 8%.  

2.4. Otros tipos de módulos

• Teluro de cadmio: Rendimiento en laboratorio 16% y en módulos comerciales 8%

• Arseniuro de Galio: Uno de 

en laboratorio del 25.7% siendo los comerciales del 20%

• Diseleniuro de cobre en

módulos comerciales del 9%

3. Energía eólica
 

La energía eólica es la
cinética generada por efecto de las corrientes de aire, y que es convertida
útiles de energía para las actividades

3.1. El aerogenerador

Un aerogenerador es un
viento (turbina eólica). Sus precedentes directos son los
para la molienda y obtención de harina. En este caso, la
cinética del aire en movimiento, proporciona energía mecánica a un rotor

 

Figura 9. Módulo fotovoltaico policristalino. 

 
Por las características físicas del silicio cristalizado, los paneles 

tecnología presentan un grosor considerable. Mediante el empleo del silicio 
con otra estructura o de otros materiales semiconductores es posible conseguir paneles más 
finos y versátiles que permiten incluso en algún caso su adaptación a superficies irregulares. 
Son los denominados paneles de lámina delgada. 

en el silicio, pero a diferencia de los dos anteriores, este material no 
sigue aquí estructura cristalina alguna. Paneles de este tipo son habitualmente

ños dispositivos electrónicos (Calculadoras, relojes) y en pequeños paneles portátiles. 
Su rendimiento máximo alcanzado en laboratorio ha sido del 13% siendo el de los módulos 

módulos fotovoltaicos 

Rendimiento en laboratorio 16% y en módulos comerciales 8%

Uno de los materiales más eficientes. Presenta

en laboratorio del 25.7% siendo los comerciales del 20%. 

en indio: con rendimientos en laboratorio próximos al 17% y en 

módulos comerciales del 9%. 

 

es la energía obtenida a partir del viento, es decir, la
generada por efecto de las corrientes de aire, y que es convertida

actividades humanas a través de aerogeneradores

El aerogenerador 

es un generador eléctrico movido por una turbina accionada por el 
). Sus precedentes directos son los molinos de viento que se

para la molienda y obtención de harina. En este caso, la energía eólica, en realidad la
del aire en movimiento, proporciona energía mecánica a un rotor 
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Por las características físicas del silicio cristalizado, los paneles fabricados 
tecnología presentan un grosor considerable. Mediante el empleo del silicio 

con otra estructura o de otros materiales semiconductores es posible conseguir paneles más 
ción a superficies irregulares. 

en el silicio, pero a diferencia de los dos anteriores, este material no 
almente empleados para 

Calculadoras, relojes) y en pequeños paneles portátiles. 
Su rendimiento máximo alcanzado en laboratorio ha sido del 13% siendo el de los módulos 

Rendimiento en laboratorio 16% y en módulos comerciales 8%. 

resenta unos rendimientos 

con rendimientos en laboratorio próximos al 17% y en 

, es decir, la energía 
generada por efecto de las corrientes de aire, y que es convertida en otras formas 

humanas a través de aerogeneradores. 

movido por una turbina accionada por el 
de viento que se empleaban 

, en realidad la energía 
 hélice que, a través 



 

 

de un sistema de transmisión mecánico, hace girar el rotor de un generador, normalmente 
un alternador trifásico, que convierte la energía mecánica rotacional en

 

Figura 

 

3.2. Tipos de aerogeneradores 

Existen dos tipos de aerogeneradores en la actualidad que se explican a continuación

3.2.1. Aerogenerador de eje vertical
 
Los aerogeneradores de eje vertical

generador eléctrico puede  ir al suelo. Pero
aerogenerador convencional de la misma potencia y se han de motorizar para facilitar su 
puesta en marcha. Hay tres tipos
horizontalmente a una determinada distancia, a través de la cual se desplaza el aire (desarrolla 
poca potencia), el Giromill, conjunto de palas verticales unidas con dos barras en el eje 
vertical (10-20 Kw), y los Darrieus
vertical por la parte inferior y superior, permite aprovechar el viento dentro de una banda 
ancha de velocidades, el inconveniente es que no se encienden 
Savonius una motorización (fiscal los 500 Kw).

 
 

de un sistema de transmisión mecánico, hace girar el rotor de un generador, normalmente 
, que convierte la energía mecánica rotacional en energía eléctrica

Figura 10. El aerogenerador y sus componentes. 

Tipos de aerogeneradores  

Existen dos tipos de aerogeneradores en la actualidad que se explican a continuación

Aerogenerador de eje vertical 

Los aerogeneradores de eje vertical no necesitan mecanismo de orientación
ir al suelo. Pero su producción energética es menor

aerogenerador convencional de la misma potencia y se han de motorizar para facilitar su 
tipos: el Savonius, está formado por dos semicírculos desplazados 

horizontalmente a una determinada distancia, a través de la cual se desplaza el aire (desarrolla 
, conjunto de palas verticales unidas con dos barras en el eje 
Darrieus, está formado por dos o tres palas biconvexas unidas al eje 

vertical por la parte inferior y superior, permite aprovechar el viento dentro de una banda 
ancha de velocidades, el inconveniente es que no se encienden  solos y necesitan un rotor 

avonius una motorización (fiscal los 500 Kw). 
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de un sistema de transmisión mecánico, hace girar el rotor de un generador, normalmente 
energía eléctrica. 

 

Existen dos tipos de aerogeneradores en la actualidad que se explican a continuación. 

orientación y el 
menor, respecto a un 

aerogenerador convencional de la misma potencia y se han de motorizar para facilitar su 
formado por dos semicírculos desplazados 

horizontalmente a una determinada distancia, a través de la cual se desplaza el aire (desarrolla 
, conjunto de palas verticales unidas con dos barras en el eje 

, está formado por dos o tres palas biconvexas unidas al eje 
vertical por la parte inferior y superior, permite aprovechar el viento dentro de una banda 

solos y necesitan un rotor 



 

 

 

Tabla 2. Savonius, Giromill y Darrieus respectivamente.

 

3.2.2. Aerogenerador de eje horizontal
 

Los de eje horizontal son los más utilizados y permiten cubrir desde aplicaciones 
aisladas de pequeña potencia (de aproximadamente 1 Kw)
parques eólicos, donde se puede
de potencia. 

Un aerogenerador de eje horizontal es, básicamente, una
movimiento de la cual es producido por la energía cinética del viento,
un rotor que normalmente dispone de tres palas. El
transmitido y multiplicado mediante un multiplicador de velocidad, hasta 
produce la energía eléctrica. Todos estos componentes se instalan sobre una
sitúa arriba de una torre de apoyo
controla y regula las sus variables de puesta en marcha, fu
toda esta información a la central de control de la instalación. Igualmente, cada aerogenerador 
incorpora, en la base de la torre, un armario con todos los componentes eléctricos 
(interruptores automáticos, transformadore
Previos al transporte de la energía eléctrica generada hasta la conexión con la red o los puntos 
de consumo. La energía obtenida por un aerogenerador determinado depende básicamente de 
la potencia del viento atravesando el rotor y es directamente proporcional a la densidad del 
aire, la superficie barrida por sus palas y la velocidad del viento.
El funcionamiento de un aerogenerador está caracterizado por su
el rango de velocidades de viento en las que puede operar y la potencia que puede alcanzar en 
cada caso. 

3.3. Microeólica 

Son aerogeneradores que se utilizan para uso
W hasta unos pocos kW. La configuración ideal de un aerogenerador es sob
necesidad de cables de anclaje y en un lugar expuesto al viento. Muchos de los diseños 
convencionales de turbinas eólicas no se recomiendan para su montaje en edificios. Sin 
embargo, si el único sitio disponible es el tejado de un edificio
eólico puede ser factible si está

  
. Savonius, Giromill y Darrieus respectivamente. 

Aerogenerador de eje horizontal 

Los de eje horizontal son los más utilizados y permiten cubrir desde aplicaciones 
das de pequeña potencia (de aproximadamente 1 Kw) hasta instalaciones en grandes 

puede llegar a utilizar aerogeneradores por 

Un aerogenerador de eje horizontal es, básicamente, una máquina
movimiento de la cual es producido por la energía cinética del viento, cuando
un rotor que normalmente dispone de tres palas. El movimiento rotacional
transmitido y multiplicado mediante un multiplicador de velocidad, hasta 
produce la energía eléctrica. Todos estos componentes se instalan sobre una

apoyo. Cada aerogenerador dispone de un microprocesador
controla y regula las sus variables de puesta en marcha, funcionamiento y paro, transmitiendo 
toda esta información a la central de control de la instalación. Igualmente, cada aerogenerador 
incorpora, en la base de la torre, un armario con todos los componentes eléctricos 
(interruptores automáticos, transformadores de intensidad, protectores de sobre tensión, etc.), 
Previos al transporte de la energía eléctrica generada hasta la conexión con la red o los puntos 

La energía obtenida por un aerogenerador determinado depende básicamente de 
atravesando el rotor y es directamente proporcional a la densidad del 

aire, la superficie barrida por sus palas y la velocidad del viento.
El funcionamiento de un aerogenerador está caracterizado por su curva de 

dades de viento en las que puede operar y la potencia que puede alcanzar en 

Son aerogeneradores que se utilizan para uso personal. Los hay que producen desde 50 
La configuración ideal de un aerogenerador es sob

necesidad de cables de anclaje y en un lugar expuesto al viento. Muchos de los diseños 
convencionales de turbinas eólicas no se recomiendan para su montaje en edificios. Sin 
embargo, si el único sitio disponible es el tejado de un edificio, instalar un pequeño sistema 

está lo suficientemente alto como para minimizar la turbulencia, o 
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Los de eje horizontal son los más utilizados y permiten cubrir desde aplicaciones 
instalaciones en grandes 

encima de 1 MW 

máquina rotacional, el 
cuando éste actúa sobre 
rotacional producido es 

transmitido y multiplicado mediante un multiplicador de velocidad, hasta un generador que 
produce la energía eléctrica. Todos estos componentes se instalan sobre una góndola que se 

microprocesador que 
ncionamiento y paro, transmitiendo 

toda esta información a la central de control de la instalación. Igualmente, cada aerogenerador 
incorpora, en la base de la torre, un armario con todos los componentes eléctricos 

s de intensidad, protectores de sobre tensión, etc.), 
Previos al transporte de la energía eléctrica generada hasta la conexión con la red o los puntos 

La energía obtenida por un aerogenerador determinado depende básicamente de 
atravesando el rotor y es directamente proporcional a la densidad del 

aire, la superficie barrida por sus palas y la velocidad del viento. 
 potencia que indica 

dades de viento en las que puede operar y la potencia que puede alcanzar en 

Los hay que producen desde 50 
La configuración ideal de un aerogenerador es sobre un mástil sin 

necesidad de cables de anclaje y en un lugar expuesto al viento. Muchos de los diseños 
convencionales de turbinas eólicas no se recomiendan para su montaje en edificios. Sin 

, instalar un pequeño sistema 
lo suficientemente alto como para minimizar la turbulencia, o 



 

 

si el régimen del viento en ese emplazamiento en particular es favorable.
sistemas de energía eólica 
funcionamiento. Muchos fabricantes ofrecen servicio de mantenimiento para las turbinas 
eólicas que ellos instalan. El 
detallada acerca de los procedimientos de mantenimiento.
Junto con los costes de inversión, se debe llevar a cabo una evaluación económica que incluya 
los siguientes aspectos: 
• Reducción de los costes anuales de electricidad como resultado de la producción de la 

misma por el sistema de energía eólica. Debe tener en cuenta expectativas futuras 
del precio de la electricidad

• Posibles programas de apoyo por parte del Gobierno, por ejemplo, subvencion
incentivos fiscales para fomentar el uso de los sistemas de energía eólica.

• Costes asociados a la emisión de CO
Además de las ventajas propias de la energía eólica, la microeólica es más eficiente si s

genera la electricidad cerca del lugar donde se consume, puesto que se minimizan las pérdidas 
en el transporte. También es posible, en estos casos, almacenar la energía en baterías para su 
uso en ausencia de viento. 

3.4. Minieólica 

No existe una frontera defi
puede considerar que la microeólica comprende un único aerogenerador, mientras que la 
frontera superior de la minieólica se define por potencia, y no debe superar los 100 kW.
denominan también aerogeneradores domésticos o de pequeña potencia.
son: 

• Zonas aisladas: los miniaerogeneradores se utilizan en zonas aisladas donde existe un 
gran coste o dificultad para llevar la energía de la red eléctrica. Aquí estarían no sólo las 
viviendas o cabañas aisladas, también granjas, torres de telecomunicación, bombeo de 
agua, etc. En estos casos el aerogenerador suele ir acompañado de paneles solares 
fotovoltaicos que garantizan el óptimo funcionamiento del sistema.

• Instalaciones con un alto 
infraestructuras que consumen una gran cantidad de energía
instalación de aerogeneradores

• Conexión a la red: Los particulares y empresas que dispongan de un aerogenerador de 
minieólica pueden consumir la energía que necesitan y vender el sobrante a la red.

4. Energía de la biomasa
 
La bioenergía o energía de

aprovechamiento de la materia orgánica e industrial
mecánico, generalmente es sacada de los residuos de las sustancias que constituyen los seres 
vivos (plantas, ser humano, animales, entre otros), o sus restos y residuos. El 
aprovechamiento de la energía de la biomasa se hace directamente (por ejemplo, por 

si el régimen del viento en ese emplazamiento en particular es favorable. 
 disponibles necesitan la intervención del dueño durante el 

funcionamiento. Muchos fabricantes ofrecen servicio de mantenimiento para las turbinas 
 fabricante debe, en cualquier caso, proporcionar información 

detallada acerca de los procedimientos de mantenimiento. 
Junto con los costes de inversión, se debe llevar a cabo una evaluación económica que incluya 

ostes anuales de electricidad como resultado de la producción de la 
misma por el sistema de energía eólica. Debe tener en cuenta expectativas futuras 

precio de la electricidad. 
Posibles programas de apoyo por parte del Gobierno, por ejemplo, subvencion
incentivos fiscales para fomentar el uso de los sistemas de energía eólica.
Costes asociados a la emisión de CO2 (materias primas, construcción y mantenimiento).
Además de las ventajas propias de la energía eólica, la microeólica es más eficiente si s

genera la electricidad cerca del lugar donde se consume, puesto que se minimizan las pérdidas 
en el transporte. También es posible, en estos casos, almacenar la energía en baterías para su 

No existe una frontera definida entre la microeólica y la minieólica. Generalmente, se 
puede considerar que la microeólica comprende un único aerogenerador, mientras que la 
frontera superior de la minieólica se define por potencia, y no debe superar los 100 kW.

aerogeneradores domésticos o de pequeña potencia.

Zonas aisladas: los miniaerogeneradores se utilizan en zonas aisladas donde existe un 
gran coste o dificultad para llevar la energía de la red eléctrica. Aquí estarían no sólo las 

endas o cabañas aisladas, también granjas, torres de telecomunicación, bombeo de 
agua, etc. En estos casos el aerogenerador suele ir acompañado de paneles solares 
fotovoltaicos que garantizan el óptimo funcionamiento del sistema. 
Instalaciones con un alto índice de consumo eléctrico: fábricas, desalinizadoras y otras 
infraestructuras que consumen una gran cantidad de energía pueden

radores para reducir el consumo eléctrico de la red.
Conexión a la red: Los particulares y empresas que dispongan de un aerogenerador de 

consumir la energía que necesitan y vender el sobrante a la red.

Energía de la biomasa 

energía de biomasa es un tipo de energía renovable
nto de la materia orgánica e industrial formada en algún proceso biológico o 

mecánico, generalmente es sacada de los residuos de las sustancias que constituyen los seres 
vivos (plantas, ser humano, animales, entre otros), o sus restos y residuos. El 

chamiento de la energía de la biomasa se hace directamente (por ejemplo, por 
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  La mayoría de los 
s necesitan la intervención del dueño durante el 

funcionamiento. Muchos fabricantes ofrecen servicio de mantenimiento para las turbinas 
fabricante debe, en cualquier caso, proporcionar información 

Junto con los costes de inversión, se debe llevar a cabo una evaluación económica que incluya 

ostes anuales de electricidad como resultado de la producción de la 
misma por el sistema de energía eólica. Debe tener en cuenta expectativas futuras 

Posibles programas de apoyo por parte del Gobierno, por ejemplo, subvenciones o 
incentivos fiscales para fomentar el uso de los sistemas de energía eólica. 

(materias primas, construcción y mantenimiento). 
Además de las ventajas propias de la energía eólica, la microeólica es más eficiente si se 

genera la electricidad cerca del lugar donde se consume, puesto que se minimizan las pérdidas 
en el transporte. También es posible, en estos casos, almacenar la energía en baterías para su 

nida entre la microeólica y la minieólica. Generalmente, se 
puede considerar que la microeólica comprende un único aerogenerador, mientras que la 
frontera superior de la minieólica se define por potencia, y no debe superar los 100 kW. Se 

aerogeneradores domésticos o de pequeña potencia. Las aplicaciones 

Zonas aisladas: los miniaerogeneradores se utilizan en zonas aisladas donde existe un 
gran coste o dificultad para llevar la energía de la red eléctrica. Aquí estarían no sólo las 

endas o cabañas aisladas, también granjas, torres de telecomunicación, bombeo de 
agua, etc. En estos casos el aerogenerador suele ir acompañado de paneles solares 

índice de consumo eléctrico: fábricas, desalinizadoras y otras 
pueden recurrir a la 

reducir el consumo eléctrico de la red. 
Conexión a la red: Los particulares y empresas que dispongan de un aerogenerador de 

consumir la energía que necesitan y vender el sobrante a la red. 

energía renovable procedente del 
en algún proceso biológico o 

mecánico, generalmente es sacada de los residuos de las sustancias que constituyen los seres 
vivos (plantas, ser humano, animales, entre otros), o sus restos y residuos. El 

chamiento de la energía de la biomasa se hace directamente (por ejemplo, por 



 

 

combustión), o por transformación en otras sustancias que pueden ser aprovechadas más 
tarde como combustibles o alimentos.

4.1. Caldera de pellets

La caldera de pellets suele ser el 
vivienda, o también como generador de ACS y calefacción.
componentes de una caldera típica de biomasa.

 El combustible (pellet) se recoge del depósito (A) y, a través de un sinfín (B) movido 
por un motorreductor (C), se transporta a un segundo sinfín (D). Este es activado por otro 
motorreductor (E). El pellet as
 
 
 

combustión), o por transformación en otras sustancias que pueden ser aprovechadas más 
combustibles o alimentos.  

Figura 11. Tipos de biomasa. 

Caldera de pellets 

caldera de pellets suele ser el elemento utilizado para la producción de calor en una 
como generador de ACS y calefacción. La siguiente figura muestra los 

componentes de una caldera típica de biomasa. 

 
Figura 12. Caldera de pellets. 

El combustible (pellet) se recoge del depósito (A) y, a través de un sinfín (B) movido 
por un motorreductor (C), se transporta a un segundo sinfín (D). Este es activado por otro 
motorreductor (E). El pellet así transportado llega hasta el quemador (F). 
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combustión), o por transformación en otras sustancias que pueden ser aprovechadas más 

 

elemento utilizado para la producción de calor en una 
La siguiente figura muestra los 

El combustible (pellet) se recoge del depósito (A) y, a través de un sinfín (B) movido 
por un motorreductor (C), se transporta a un segundo sinfín (D). Este es activado por otro 



 

 

 

4.2. Comparación de biomasa con combustibles fósiles y precios

Tabla 3. Características de los biocombustibles y del gasóleo.

 
La tabla número 3 expone datos físico
buena comparación en cuanto a precios de kWh producidos por cada tipo de recurso. Producir 
electricidad a partir de gasóleo o gases licuados del petróleo es tres veces más caro que 
usando biomasa, además de emitir CO
neutro siempre y cuando la biomasa utilizad

Comparación de biomasa con combustibles fósiles y precios

. Características de los biocombustibles y del gasóleo. 

La tabla número 3 expone datos físico-químicos de varios tipos de biomasa y gasóleo. Es una 
buena comparación en cuanto a precios de kWh producidos por cada tipo de recurso. Producir 
electricidad a partir de gasóleo o gases licuados del petróleo es tres veces más caro que 
usando biomasa, además de emitir CO2. Las emisiones de CO2 por parte de la biomasa es 
neutro siempre y cuando la biomasa utilizada no sea superior a le generada.
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Comparación de biomasa con combustibles fósiles y precios 

 

os de biomasa y gasóleo. Es una 
buena comparación en cuanto a precios de kWh producidos por cada tipo de recurso. Producir 
electricidad a partir de gasóleo o gases licuados del petróleo es tres veces más caro que 

por parte de la biomasa es 
.  
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Anexo 3: ACS 

El sistema de suministro de ACS se compondrá de una caldera de biomasa y de uno 
varios colectores solares, que proporcionarán la energía necesaria para cubrir la demanda total 
de la vivienda. Por un lado se hará un estudio de la energía aportada por colectores solares y 
por el otro, la caldera de pellets que se utilizará.

1. Datos relativos al consumo
 

Nº de 
dormitorios 1 

Nº de personas 1,5 

T

 
La vivienda tiene 3 dormitorios, entonces se supone que van a vivir 4 personas. 
 
 

Cada persona tiene una demanda a 30 litros de ACS a 60ºC.
Por lo tanto�4 personas * 30 litros de ACS 60ºC/persona = 120 litros ASC a 60ºC
supone que la ocupación en Diciembre se baja por vacaciones:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

El sistema de suministro de ACS se compondrá de una caldera de biomasa y de uno 
varios colectores solares, que proporcionarán la energía necesaria para cubrir la demanda total 

Por un lado se hará un estudio de la energía aportada por colectores solares y 
por el otro, la caldera de pellets que se utilizará. 

tivos al consumo 

2 3 4 5 

3 4 6 7 

Tabla 4.  Relación dormitorios/nº personas 

La vivienda tiene 3 dormitorios, entonces se supone que van a vivir 4 personas. 

Tabla 5. Demanda de agua a 60ºC. 

 
Cada persona tiene una demanda a 30 litros de ACS a 60ºC. 

4 personas * 30 litros de ACS 60ºC/persona = 120 litros ASC a 60ºC
supone que la ocupación en Diciembre se baja por vacaciones: 
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El sistema de suministro de ACS se compondrá de una caldera de biomasa y de uno o 
varios colectores solares, que proporcionarán la energía necesaria para cubrir la demanda total 

Por un lado se hará un estudio de la energía aportada por colectores solares y 

6 7 

8 9 

La vivienda tiene 3 dormitorios, entonces se supone que van a vivir 4 personas.  

 

4 personas * 30 litros de ACS 60ºC/persona = 120 litros ASC a 60ºC.  Se 



 

 

 
 

  
Días del 

mes 
Ocupación 

% 

Enero 31 100 

Febrero 28 100 

Marzo 31 100 

Abril 30 100 

Mayo 31 100 

Junio 30 100 

Julio 31 100 

Agosto 31 100 

Septiembre 30 100 

Octubre 31 100 

Noviembre 30 100 

Diciembre 31 90 

    
Media 
anual 

    99,17 
T

 

Dimensionado de  la superficie de colectores solares

  
Necesidades/mes 

Enero 

Febrero 

Marzo  

Abril 

Mayo 

Junio 

Julio  

Agosto 

Septiembre 

Octubre 

Noviembre 

Diciembre 
Tabla 

 

La tabla 3 muestra las necesidades energéticas para el suministro de ACS a 60ºC,
usando 1,6 m2 de superficie colectora (calculado posteriormente) y los datos de radiación a 

Consumo 
mensual 

(m3) 
Tª de red 

(ºC) 

Salto 
térmico 

(ºC) 
Necesidades/Mes 

(Mcal)

3,72 4 56 208,32

3,36 5 55 184,8

3,72 7 53 197,16

3,6 9 51 183,6

3,72 10 50 186

3,6 11 49 176,4

3,72 11 49 182,28

3,72 11 49 182,28

3,6 9 51 183,6

3,72 9 51 189,72

3,6 7 53 190,8

3,35 4 56 187,49

Total anual Tª media   Anual

43,43 8,08   2252,45
Tabla 6. Necesidades del sistema de ACS. 

la superficie de colectores solares 

Necesidades/mes 
KWh 

Radiación 
incl. 45º 
KWh/m2*mes 

Demanda 
cubierta 
KWh 

Exceso 
KWh 

241,88 3,41 119,75 

214,57 4,27 135,44 

228,92 5,56 195,25 

213,18 5,82 197,79 

215,97 5,96 209,3 

204,82 6,27 213,08 8,26

211,65 6,65 233,53 21,88

211,65 6,51 228,61 16,96

213,18 6,17 209,68 

220,29 4,98 174,88 

221,54 3,79 128,8 

217,69 3,34 117,29 
abla 7. Demanda cubierta con colectores solares. 

muestra las necesidades energéticas para el suministro de ACS a 60ºC,
de superficie colectora (calculado posteriormente) y los datos de radiación a 
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Necesidades/Mes 
(Mcal) 

Necesidades/mes 
KWh 

208,32 241,88 

184,8 214,57 

197,16 228,92 

183,6 213,18 

186 215,97 

176,4 204,82 

182,28 211,65 

182,28 211,65 

183,6 213,18 

189,72 220,29 

190,8 221,54 

187,49 217,69 

Anual Anual 

2252,45 2615,34 

Exceso 
 

0 

0 

0 

0 

0 

8,26 

21,88 

16,96 

0 

0 

0 

0 

muestra las necesidades energéticas para el suministro de ACS a 60ºC, 
de superficie colectora (calculado posteriormente) y los datos de radiación a 



 

 

45º de inclinación se obtiene la d
producido. 
 

 

El dimensionado de la instalación se realizará teniendo en cuenta que en ningún mes 
del año la energía producida por la insta
energética y en no más de tres meses el 100% y a estos efectos no se tomarán en 
consideración aquellos periodos de tiempo en los cuales la demanda energética se sitúe un 
50% por debajo de la media correspondiente 
protección. Ya que en los 3 meses de verano se produce más del 110% de la demanda 
energética se realizará el proceso de tapado parcial de aproximadamente un 10
superficie de absorción. 

2. Calculo de superficie 
 

1) Calculo de la demanda según CTE HS4

43,43
�3

�ñ�
*	Tª	caldera

43,43
�3

�ñ�
∗ 	60 � 8,08� ∗

3600

Del valor que se obtiene de demanda, el 

código técnico) y el restante a través de biomasa.

                                              

                                               1570,83 WKh de solar térmica

 La demanda será: 

                                               1047,22 KWh de biomasa

2) Calculo de la energía solar aportada Ep

Ep = 0,9 * ƞCaptador * Rad media anual

      Ep = 0,9 * 0,705 * 5,24 
��

�2∗���

      Siendo: 0,9 factor de pérdidas del circuito de la instalación (tuberías, etc)
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Necesidades y ahorros

45º de inclinación se obtiene la demanda que el colector cubre, así como también el exceso 

Figura 13. Necesidades y ahorros. 

El dimensionado de la instalación se realizará teniendo en cuenta que en ningún mes 
del año la energía producida por la instalación podrá superar el 110% de la demanda 
energética y en no más de tres meses el 100% y a estos efectos no se tomarán en 
consideración aquellos periodos de tiempo en los cuales la demanda energética se sitúe un 
50% por debajo de la media correspondiente al resto del año, tomándose medidas de 

Ya que en los 3 meses de verano se produce más del 110% de la demanda 
energética se realizará el proceso de tapado parcial de aproximadamente un 10

Calculo de superficie colectora 

Calculo de la demanda según CTE HS4 

Tª	caldera-Tª	media	anual�*	4,14	
&'

&(�)
∗ 1000

&(�)
*(�)

3600
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Del valor que se obtiene de demanda, el 60% será a través de energía solar térmica (según el 

código técnico) y el restante a través de biomasa. 

1570,83 WKh de solar térmica. 

1047,22 KWh de biomasa. 

Calculo de la energía solar aportada Ep 

* Rad media anual 
��0

���
	* 365 días = 1218,7 

��0

�2
 

Siendo: 0,9 factor de pérdidas del circuito de la instalación (tuberías, etc)
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emanda que el colector cubre, así como también el exceso 

 

El dimensionado de la instalación se realizará teniendo en cuenta que en ningún mes 
lación podrá superar el 110% de la demanda 

energética y en no más de tres meses el 100% y a estos efectos no se tomarán en 
consideración aquellos periodos de tiempo en los cuales la demanda energética se sitúe un 

al resto del año, tomándose medidas de 
Ya que en los 3 meses de verano se produce más del 110% de la demanda 

energética se realizará el proceso de tapado parcial de aproximadamente un 10-20% de la 

&(�)
*(�)

 

 

60% será a través de energía solar térmica (según el 

Siendo: 0,9 factor de pérdidas del circuito de la instalación (tuberías, etc) 

Excedentes



 

 

3) Calculo de la superficie necesaria de colectores sol

 

Superficie = 
12��3��	456�7

83279í�	�;57<���

Superficie = 
=>?@,AB	CDE

=F=A,?	
GHI

JK

 = 1,28 m

 

3. Cálculos técnicos y justificación
En este apartado se van a seleccionar los equipos de la instalación, justificándolo co

algún cálculo si es necesario. 

3.1.  Colectores 

Se ha comparado entre distintos colectores  y el colector seleccionado tiene la mejor 
relación precio-rendimiento que los otros.
AKU 16 de Salvador Escoda. El 
rendimiento se debe a que el espacio en la cubierta del edificio está limitado se ahorra en  el 
equipo, como en soportes y tuberías. Con esto se consigue  ahorrar en metros de tubería, y por 
tanto se producirá una menor perdida de carga  y se requerirá una bomba de menor potencia. 
Las características de este colector son:

• L*A*H  [mm]: 1352*1930*150

• Superficie total: 2,6 m2

• Superficie de absorción: 1,6 m
• Eficiencia: 70.8 % 

• Coeficiente global de pérdida:
 

Figura 14. Colector d

3.2. Volumen del acumulador

El volumen óptimo de acumulación es de 70 litros por cada m
entonces el volumen total de acumulac

VAcumulador =   1,6 m2 * 70 
L

	MF	

    

Calculo de la superficie necesaria de colectores solares 

456�7

�;57<���
 

= 1,28 m
2  

Cálculos técnicos y justificación 
En este apartado se van a seleccionar los equipos de la instalación, justificándolo co

 

Se ha comparado entre distintos colectores  y el colector seleccionado tiene la mejor 
rendimiento que los otros. Se ha elegido 1 colector  de tubo de vacío “U” pipe 

AKU 16 de Salvador Escoda. El motivo de la elección de unos colectores con tan alto 
rendimiento se debe a que el espacio en la cubierta del edificio está limitado se ahorra en  el 
equipo, como en soportes y tuberías. Con esto se consigue  ahorrar en metros de tubería, y por 

oducirá una menor perdida de carga  y se requerirá una bomba de menor potencia. 
Las características de este colector son: 

L*A*H  [mm]: 1352*1930*150 
2 

Superficie de absorción: 1,6 m2 

Coeficiente global de pérdida: 2,84 W/m2* K 

. Colector de tubos de vacío seleccionado y características.

Volumen del acumulador 

El volumen óptimo de acumulación es de 70 litros por cada m2 de colector instalado, 
entonces el volumen total de acumulación será el siguiente: 

   = 112 L                    
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En este apartado se van a seleccionar los equipos de la instalación, justificándolo con 

Se ha comparado entre distintos colectores  y el colector seleccionado tiene la mejor 
de tubo de vacío “U” pipe 

motivo de la elección de unos colectores con tan alto 
rendimiento se debe a que el espacio en la cubierta del edificio está limitado se ahorra en  el 
equipo, como en soportes y tuberías. Con esto se consigue  ahorrar en metros de tubería, y por 

oducirá una menor perdida de carga  y se requerirá una bomba de menor potencia.  

 
e tubos de vacío seleccionado y características. 

de colector instalado, 



 

 

Se instalará un interacumulador de 200 L de capacidad, con doble serpentín de 
intercambio, el superior será para la caldera de biomasa y el inferior para el sistema 
también se instalara un intercambiador de placas y un acumula
técnico prohíbe un sistema con caldera de biomasa sin acumulador de inercia. 

• Superficie de intercambio superior es de 0,7 m
• Superficie de intercambi

 

Figura 15

3.3. Selección de la configuración básica del proyecto

• Circulación forzada por medio de dos electrocirculadores.
• Sistema que constará de dos acumuladore

• El primero acumulará energía procedente de los colectores.
• El segundo, alimentado por el primero ubicado en la caldera central de la casa, es en el 

que se aplica la energía procedente de la biomasa

3.4. Metros de tubería de cobre y diámetro

Para calcular el diámetro Se utiliza la expresión
D = J*C0,35    siendo: 
D = Diametro en cm 
C = Caudal en m3/h 
J = 2,2 para tuberías metálicas
0,15m3/H 
Se obtiene un valor de 11,33mm 
metros para el sistema primario

Utilizando la hoja de Excel  de pérdidas de carga e introduciendo los metros de tubería 
se ha optimizado su diámetro. La siguiente tabla muestra los resultados obtenidos:

Diámetro 

(mm) 

12 

Tabla 

Se instalará un interacumulador de 200 L de capacidad, con doble serpentín de 
intercambio, el superior será para la caldera de biomasa y el inferior para el sistema 
también se instalara un intercambiador de placas y un acumulador de inercia, ya que el código
técnico prohíbe un sistema con caldera de biomasa sin acumulador de inercia. 

Superficie de intercambio superior es de 0,7 m2  
Superficie de intercambio inferior es de 0,9 m2 

 
15. Interacumulador de 200 L con doble serpentín. 

Selección de la configuración básica del proyecto

Circulación forzada por medio de dos electrocirculadores. 
Sistema que constará de dos acumuladores. 

El primero acumulará energía procedente de los colectores. 
El segundo, alimentado por el primero ubicado en la caldera central de la casa, es en el 
que se aplica la energía procedente de la biomasa 

Metros de tubería de cobre y diámetro 

diámetro Se utiliza la expresión 

J = 2,2 para tuberías metálicas 

11,33mm � se utilizará tubería de cobre de 12 mm normalizado. 10  
metros para el sistema primario. 

Utilizando la hoja de Excel  de pérdidas de carga e introduciendo los metros de tubería 
se ha optimizado su diámetro. La siguiente tabla muestra los resultados obtenidos:

 Longitud normativa 

(m)  

10 Cumple CTE 
abla 8. Metros de tubería y diámetro optimizados. 
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Se instalará un interacumulador de 200 L de capacidad, con doble serpentín de 
intercambio, el superior será para la caldera de biomasa y el inferior para el sistema solar. Así 

dor de inercia, ya que el código 
técnico prohíbe un sistema con caldera de biomasa sin acumulador de inercia.  

Selección de la configuración básica del proyecto 

El segundo, alimentado por el primero ubicado en la caldera central de la casa, es en el 

se utilizará tubería de cobre de 12 mm normalizado. 10  

Utilizando la hoja de Excel  de pérdidas de carga e introduciendo los metros de tubería 
se ha optimizado su diámetro. La siguiente tabla muestra los resultados obtenidos: 



 

 

 

Estos valores se han optimizado atendiendo a la cantidad de racorería empleada, el 
número de captadores a los que abastece y las válvulas de  retención y esfera, 
cumplimentando las especificaciones del códi
Se han elegido diámetros limitantes a la normativa, ya que tiene los mejores costes 
económicos. 

3.5. Vaso de expansión

Con los siguientes resultados se llega a la obtención del vaso de expansión óptimo 
para la instalación: 

1) Calculo Volumen fluido pri
1 Captador � 2,4 l 
Tubería de cobre de 12 mm de Diámetro tiene una capacidad de 0,0785
10m * 0,0785 = 0,785 L 
Volumen de intercambiador 

       Volumen total = 2,4+3+0,785= 6,185
2) Volumen dilatado 

Tomando el coeficiente de dilatación de 0,085
Vdilatado= 6,185 *0,085=0,543L

3) Calculo de la reserva  
Vreserva =  6,185 * 0,029 = 0,18 L pero tomaremos un mínimo de 1L

4) Vvaporizado 
Considerando el volumen de captadores de 2,4 L, el volumen vaporizado será:
Vvaporizado=    2,4*1,10=2,64 L

5) Calculo del volumen útil del vaso
Vutil=0,543+1+2,64= 4,18L

6) Calculo de presiones  
7) Calculo de coeficientes de presión 

Cp= Pmax/(Pmas-Pmin)=3,05 
8) Volumen vaso de expansión.

Volumen del vaso de expansión
 

Se obtiene un volumen resultante de vaso de expansión 
seleccionara un vaso de expansión que se adecúe a estas especificaciones.

3.6. Fluido caloportador

Como la temperatura mínima histórica de Zaragoza es 
cumplir temperaturas hasta -19ºC
 

Estos valores se han optimizado atendiendo a la cantidad de racorería empleada, el 
número de captadores a los que abastece y las válvulas de  retención y esfera, 
cumplimentando las especificaciones del código técnico. 
Se han elegido diámetros limitantes a la normativa, ya que tiene los mejores costes 

Vaso de expansión 

Con los siguientes resultados se llega a la obtención del vaso de expansión óptimo 

Calculo Volumen fluido primario 

Tubería de cobre de 12 mm de Diámetro tiene una capacidad de 0,0785

Volumen de intercambiador � 3L 
= 2,4+3+0,785= 6,185 L 

Tomando el coeficiente de dilatación de 0,085 
= 6,185 *0,085=0,543L 

=  6,185 * 0,029 = 0,18 L pero tomaremos un mínimo de 1L 

Considerando el volumen de captadores de 2,4 L, el volumen vaporizado será:
=    2,4*1,10=2,64 L 

n útil del vaso 
=0,543+1+2,64= 4,18L 

Calculo de coeficientes de presión  
 

de expansión. 
Volumen del vaso de expansión�4,18*3,05=12,749L 

Se obtiene un volumen resultante de vaso de expansión de 12,75 L.
seleccionara un vaso de expansión que se adecúe a estas especificaciones. 

Fluido caloportador 

Como la temperatura mínima histórica de Zaragoza es -14ºC el fluido tiene que 
19ºC 
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Estos valores se han optimizado atendiendo a la cantidad de racorería empleada, el 
número de captadores a los que abastece y las válvulas de  retención y esfera, 

Se han elegido diámetros limitantes a la normativa, ya que tiene los mejores costes 

Con los siguientes resultados se llega a la obtención del vaso de expansión óptimo 

Tubería de cobre de 12 mm de Diámetro tiene una capacidad de 0,0785 

Considerando el volumen de captadores de 2,4 L, el volumen vaporizado será: 

de 12,75 L. Por lo tanto se 
 

14ºC el fluido tiene que 



 

 

Figura 16. Proporción en % volumen de caloportador respecto a la Tª de congelación

Observando esta grafica se obtiene que para 
corresponde un 40% de polipropileno.
Volumen de Fluido en el sistema = 6,2 L
Volumen de Caloportador necesario = 6,2 * 0,4 = 2,48 L requeridos.

3.7. Dimensionado de las bombas

Para el dimensionado de bombas se ha de tener en cuenta dos factores, que son el 
caudal que circula y la pérdida de carga.
Para una superficie de captación de 100 m
2 L/s. La superficie de este proyecto 

3.8.  Aislamiento de tuberías

Las  tuberías de cobre de Salvador Escoda vienen provistas de una aislante  de caucho 
sintético, con una pérdida de calor equivalente dos tuberías aisladas con 25 mm de espesor.

3.9. Regulador 

Para la elección de un sistema de regulación se ha tenido en cuenta que se requiere de 
un regulador con 2 sondas y 2 relés, ya que tenemos dos puntos de e
colectores y acumulador) y dos puntos de salida (grupo de bombeo primario y secundario). Se 
ha intentado elegir el que mejor se adapte al sistema y con un coste considerable.

  

3.10. Caldera de biomasa
 
Se utilizará una caldera de pellets

Generalmente el uso de una caldera de 12 kW es suficiente para el suministro de ACS de una 
vivienda, por lo tanto, se ha optado por este tipo de caldera, debido a que solo se necesita 
cubrir un 40% de las necesidade
de agua caliente este tipo de caldera lo podrá soportar.

 

Proporción en % volumen de caloportador respecto a la Tª de congelación

 
Observando esta grafica se obtiene que para la temperatura mínima histórica 

corresponde un 40% de polipropileno. Entonces: 
Volumen de Fluido en el sistema = 6,2 L 

umen de Caloportador necesario = 6,2 * 0,4 = 2,48 L requeridos. 

Dimensionado de las bombas 

Para el dimensionado de bombas se ha de tener en cuenta dos factores, que son el 
caudal que circula y la pérdida de carga. 

uperficie de captación de 100 m2 el caudal optimo debe de estar en el intervalo 1,2
2 L/s. La superficie de este proyecto es de 1,6 m2, así que el caudal elegido es 0,12 m

Aislamiento de tuberías 

Las  tuberías de cobre de Salvador Escoda vienen provistas de una aislante  de caucho 
sintético, con una pérdida de calor equivalente dos tuberías aisladas con 25 mm de espesor.

Para la elección de un sistema de regulación se ha tenido en cuenta que se requiere de 
un regulador con 2 sondas y 2 relés, ya que tenemos dos puntos de e
colectores y acumulador) y dos puntos de salida (grupo de bombeo primario y secundario). Se 
ha intentado elegir el que mejor se adapte al sistema y con un coste considerable.

Caldera de biomasa 

utilizará una caldera de pellets de 9 kW marca bioclass (ver anexo
Generalmente el uso de una caldera de 12 kW es suficiente para el suministro de ACS de una 
vivienda, por lo tanto, se ha optado por este tipo de caldera, debido a que solo se necesita 
cubrir un 40% de las necesidades de la vivienda. Si se produce un incremento en la demanda 
de agua caliente este tipo de caldera lo podrá soportar. 
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Proporción en % volumen de caloportador respecto a la Tª de congelación. 

la temperatura mínima histórica 

Para el dimensionado de bombas se ha de tener en cuenta dos factores, que son el 

el caudal optimo debe de estar en el intervalo 1,2-
, así que el caudal elegido es 0,12 m3/h.  

Las  tuberías de cobre de Salvador Escoda vienen provistas de una aislante  de caucho 
sintético, con una pérdida de calor equivalente dos tuberías aisladas con 25 mm de espesor. 

Para la elección de un sistema de regulación se ha tenido en cuenta que se requiere de 
un regulador con 2 sondas y 2 relés, ya que tenemos dos puntos de entrada (salida de 
colectores y acumulador) y dos puntos de salida (grupo de bombeo primario y secundario). Se 
ha intentado elegir el que mejor se adapte al sistema y con un coste considerable. 

kW marca bioclass (ver anexo 6 punto 5). 
Generalmente el uso de una caldera de 12 kW es suficiente para el suministro de ACS de una 
vivienda, por lo tanto, se ha optado por este tipo de caldera, debido a que solo se necesita 

s de la vivienda. Si se produce un incremento en la demanda 



 

 

4. Esquema de la instalación

La figura mostrada a continuación es un esquema básico de cómo será la instalación 
de ACS. La energía del sol ca
fluido caloportador por todo el sistema. El sistema de control se encargará de activar los 
electrocirculadores y/o la caldera auxiliar (que en este caso será de biomasa), para que así  
consiga tener el sistema la temperatura deseada.

 

Esquema de la instalación 
 

La figura mostrada a continuación es un esquema básico de cómo será la instalación 
de ACS. La energía del sol calentará los captadores, y estos a su vez irán recirculando el 
fluido caloportador por todo el sistema. El sistema de control se encargará de activar los 
electrocirculadores y/o la caldera auxiliar (que en este caso será de biomasa), para que así  

ener el sistema la temperatura deseada. 

 

Figura 17. Esquema de la instalación. 
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La figura mostrada a continuación es un esquema básico de cómo será la instalación 
lentará los captadores, y estos a su vez irán recirculando el 

fluido caloportador por todo el sistema. El sistema de control se encargará de activar los 
electrocirculadores y/o la caldera auxiliar (que en este caso será de biomasa), para que así  

 



 

 

 

  

 

 
 

 

 

 

 

 

 

26 



 

 

Anexo 4: Proyecto

1. Objetivos 
 

En el presente proyecto se pretende cubrir las necesidades e
aislada de la red eléctrica. La vivienda se encuentra situada en el parque natural de las 
Bardenas de Navarra, cerca de la localidad de Fustiñana. 
aerogenerador eólico combinado con módulos fotovoltaico
demandada a lo largo del año en la vivienda. Se realizará una comparación entre varias 
configuraciones.  

 Esta instalación tendrá un apoyo de un sistema auxiliar, un generador diesel. La 
energía producida de los paneles fotovol
un bus de  corriente continua, llevada a un inversor y  se transformará en corriente alterna. 
Existirán unas pérdidas por conversión, pero esto es preferible,  ya que en el mercado de hoy 
en día es difícil encontrar aparatos que funcionen con corriente continúa.

Esta zona del medio Ebro posee gran cantidad de recursos energéticos, así son el 
viento en invierno y el abundante sol en verano. A partir de los recursos disponibles en la 
zona se va a dimensionar un sistema que pueda autoabastecer energéticamente las necesidades 
de esta vivienda. Se optimizará la superficie fotovoltaica a instalar, así como el número de 
baterías colocadas. El esquema correspondiente a la instalación será el siguiente:
 

Figura 18

 
El generador diesel es el que se conecta a la salida del inversor.

apartados se intensificará más acerca de los 
 
 

Anexo 4: Proyecto de postgrado 

En el presente proyecto se pretende cubrir las necesidades energéticas de una vivienda 
aislada de la red eléctrica. La vivienda se encuentra situada en el parque natural de las 

ca de la localidad de Fustiñana. Se quiere instalar un mini 
aerogenerador eólico combinado con módulos fotovoltaicos para satisfacer la energía 
demandada a lo largo del año en la vivienda. Se realizará una comparación entre varias 

Esta instalación tendrá un apoyo de un sistema auxiliar, un generador diesel. La 
energía producida de los paneles fotovoltaicos y el aerogenerador será  conducida mediante 
un bus de  corriente continua, llevada a un inversor y  se transformará en corriente alterna. 
Existirán unas pérdidas por conversión, pero esto es preferible,  ya que en el mercado de hoy 

encontrar aparatos que funcionen con corriente continúa. 
Esta zona del medio Ebro posee gran cantidad de recursos energéticos, así son el 

viento en invierno y el abundante sol en verano. A partir de los recursos disponibles en la 
un sistema que pueda autoabastecer energéticamente las necesidades 

de esta vivienda. Se optimizará la superficie fotovoltaica a instalar, así como el número de 
baterías colocadas. El esquema correspondiente a la instalación será el siguiente:

18. Esquema de la instalación eólica-fotovoltaica. 

El generador diesel es el que se conecta a la salida del inversor.
apartados se intensificará más acerca de los recursos disponibles de la zona.
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nergéticas de una vivienda 
aislada de la red eléctrica. La vivienda se encuentra situada en el parque natural de las 

Se quiere instalar un mini 
s para satisfacer la energía 

demandada a lo largo del año en la vivienda. Se realizará una comparación entre varias 

Esta instalación tendrá un apoyo de un sistema auxiliar, un generador diesel. La 
taicos y el aerogenerador será  conducida mediante 

un bus de  corriente continua, llevada a un inversor y  se transformará en corriente alterna. 
Existirán unas pérdidas por conversión, pero esto es preferible,  ya que en el mercado de hoy 

Esta zona del medio Ebro posee gran cantidad de recursos energéticos, así son el 
viento en invierno y el abundante sol en verano. A partir de los recursos disponibles en la 

un sistema que pueda autoabastecer energéticamente las necesidades 
de esta vivienda. Se optimizará la superficie fotovoltaica a instalar, así como el número de 
baterías colocadas. El esquema correspondiente a la instalación será el siguiente: 

 

El generador diesel es el que se conecta a la salida del inversor. En los siguientes 
recursos disponibles de la zona. 



 

 

 
Principio de permacultura: 
 

Permacultura podría definirse literalmente como "agri
concepto fue desarrollado en los setenta por dos australianos, David Holmgren y Bill 
Mollison. El mismo consiste en el diseño y mantenimiento de pequeños ecosistemas 
productivos, junto con la integración armónica del entorno, las personas y sus viviendas, 
proporcionando respuestas a sus necesidades de una manera sostenible. 
El sistema está basado en la idea de que los humanos somos "administradores" de la tierra, 
por lo que debemos planear soluciones a largo plazo para alimentar a la población, pero sin 
crear daños al planeta. El principio básico de la permacultura es el de trabajar con... y no 
contra la naturaleza. Los sistemas "permaculturales" son construidos para d
sea posible, con un mínimo de mantenimiento. Los sistemas son típicamente energizados por 
el sol, el viento y/o el agua, produciendo lo suficiente para su propia necesidad, como para la 
de los humanos que lo crean o controlan. De esta maner

En un sistema permacultural debe existir la mayor diversidad posible de plantas. Esto 
asegura que una plaga nunca alcance proporciones epidémicas, como sucede con los sistemas 
monoculturales. Cuando sea posible, es conveniente
región. Los seguidores de la permacultura no solo toman recursos del medioambiente, ellos 
también le devuelven, mediante una interacción positiva con la naturaleza. La permacultura 
cuida la tierra y a las personas, 
esta instalación va a ser la superficie útil de panel fotovoltaico y del aerogenerador, y el 
consumo de combustibles fósiles se va a minimizar, haciendo uso de energías limpias como el 
sol y el aire, para evitar un mayor daño al medio ambiente. Por ello se cumplirá con el 
principio de permacultura, ya que trabajaremos con la naturalez
  

2. Determinación de los consumos a satisfacer, 
características de la energía demandad
 

Se ha elaborado un estudio de los posibles consumos que va a disponer esta vivienda, 
así como también las horas de uso y su potencia.
disponibles en la vivienda. 
 
 
 

 

 

 

 

Permacultura podría definirse literalmente como "agri-cultura permanente". El 
concepto fue desarrollado en los setenta por dos australianos, David Holmgren y Bill 
Mollison. El mismo consiste en el diseño y mantenimiento de pequeños ecosistemas 
productivos, junto con la integración armónica del entorno, las personas y sus viviendas, 
proporcionando respuestas a sus necesidades de una manera sostenible.  
El sistema está basado en la idea de que los humanos somos "administradores" de la tierra, 

lo que debemos planear soluciones a largo plazo para alimentar a la población, pero sin 
crear daños al planeta. El principio básico de la permacultura es el de trabajar con... y no 
contra la naturaleza. Los sistemas "permaculturales" son construidos para d
sea posible, con un mínimo de mantenimiento. Los sistemas son típicamente energizados por 
el sol, el viento y/o el agua, produciendo lo suficiente para su propia necesidad, como para la 
de los humanos que lo crean o controlan. De esta manera, el sistema es sostenible. 

En un sistema permacultural debe existir la mayor diversidad posible de plantas. Esto 
asegura que una plaga nunca alcance proporciones epidémicas, como sucede con los sistemas 
monoculturales. Cuando sea posible, es conveniente mantener la diversidad de plantas de la 
región. Los seguidores de la permacultura no solo toman recursos del medioambiente, ellos 
también le devuelven, mediante una interacción positiva con la naturaleza. La permacultura 
cuida la tierra y a las personas, y limita el consumismo. La superficie de tierra utilizada en 
esta instalación va a ser la superficie útil de panel fotovoltaico y del aerogenerador, y el 
consumo de combustibles fósiles se va a minimizar, haciendo uso de energías limpias como el 

ire, para evitar un mayor daño al medio ambiente. Por ello se cumplirá con el 
principio de permacultura, ya que trabajaremos con la naturaleza, en vez de perjudicarla.  

Determinación de los consumos a satisfacer, 
características de la energía demandada. 

Se ha elaborado un estudio de los posibles consumos que va a disponer esta vivienda, 
así como también las horas de uso y su potencia. La siguiente tabla muestra los consumos 
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cultura permanente". El 
concepto fue desarrollado en los setenta por dos australianos, David Holmgren y Bill 
Mollison. El mismo consiste en el diseño y mantenimiento de pequeños ecosistemas 
productivos, junto con la integración armónica del entorno, las personas y sus viviendas, 

El sistema está basado en la idea de que los humanos somos "administradores" de la tierra, 
lo que debemos planear soluciones a largo plazo para alimentar a la población, pero sin 

crear daños al planeta. El principio básico de la permacultura es el de trabajar con... y no 
contra la naturaleza. Los sistemas "permaculturales" son construidos para durar tanto como 
sea posible, con un mínimo de mantenimiento. Los sistemas son típicamente energizados por 
el sol, el viento y/o el agua, produciendo lo suficiente para su propia necesidad, como para la 

a, el sistema es sostenible.  
En un sistema permacultural debe existir la mayor diversidad posible de plantas. Esto 

asegura que una plaga nunca alcance proporciones epidémicas, como sucede con los sistemas 
mantener la diversidad de plantas de la 

región. Los seguidores de la permacultura no solo toman recursos del medioambiente, ellos 
también le devuelven, mediante una interacción positiva con la naturaleza. La permacultura 

La superficie de tierra utilizada en 
esta instalación va a ser la superficie útil de panel fotovoltaico y del aerogenerador, y el 
consumo de combustibles fósiles se va a minimizar, haciendo uso de energías limpias como el 

ire, para evitar un mayor daño al medio ambiente. Por ello se cumplirá con el 
a, en vez de perjudicarla.  

Determinación de los consumos a satisfacer, 

Se ha elaborado un estudio de los posibles consumos que va a disponer esta vivienda, 
La siguiente tabla muestra los consumos 



 

 

 

Tabla 

 

Se excluyen de los consumos a satisfacer aquel
exclusivamente en forma de calor (calentamiento de agua para la lavadora, horno, ACS y 
calefacción), que deberán conseguirse por otros medios, dado que su obtención a partir de 
energía eléctrica presenta un rendimiento 
recomendable su conexión en instalaciones eléctricas aisladas.
en las siguientes tablas van a funcionar a través de energía en corriente alterna. En esta otra 
tabla se especifica con mayor profundidad la cantidad de equipos que se posee de dichos 
consumos, su potencia, las horas de uso aproximadas al día y el consumo en Wh en un día:
 

 

 

 

 

 

 

 

 

 

Consumo 
Televisión 
Ordenador 

Lavadora (sin calentar 
agua) 

Lavavajillas 

Minicadena 
Dvd 

Microondas 

Otros aparatos 
Iluminación de 
habitaciones 

Luz salón 
Luz cocina 

Nevera 
abla 9. Consumos a satisfacer en la vivienda. 

Se excluyen de los consumos a satisfacer aquellas demandas de energía consistentes 
exclusivamente en forma de calor (calentamiento de agua para la lavadora, horno, ACS y 
calefacción), que deberán conseguirse por otros medios, dado que su obtención a partir de 
energía eléctrica presenta un rendimiento bastante bajo por lo que no es especialmente 
recomendable su conexión en instalaciones eléctricas aisladas. Los consumos que se indican 
en las siguientes tablas van a funcionar a través de energía en corriente alterna. En esta otra 

mayor profundidad la cantidad de equipos que se posee de dichos 
consumos, su potencia, las horas de uso aproximadas al día y el consumo en Wh en un día:
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las demandas de energía consistentes 
exclusivamente en forma de calor (calentamiento de agua para la lavadora, horno, ACS y 
calefacción), que deberán conseguirse por otros medios, dado que su obtención a partir de 

bastante bajo por lo que no es especialmente 
Los consumos que se indican 

en las siguientes tablas van a funcionar a través de energía en corriente alterna. En esta otra 
mayor profundidad la cantidad de equipos que se posee de dichos 

consumos, su potencia, las horas de uso aproximadas al día y el consumo en Wh en un día: 



 

 

 

Aparato 
Iluminación de 
habitaciones 

Luz salón 

Luz cocina 

Frigorífico 

Televisión 

ordenador 

lavadora (sin calentar 
agua) 

lavavajillas 

minicadena 

dvd 

microondas 

otros aparatos 

Consumo ca

Margen de seguridad

Eficiencia inversor

Consumo ac real,incl. margen

Energía total requerida e
Tabla 10.Cantidad diaria de energía necesaria para suministrar a los consumos.

 
Como se observa la mayor carga en todo el día la tiene el frigorífico, y la mayor carga 

puntual el lavavajillas. El frigorífico necesita
horas aproximadamente. Se desea sobredimensionar un sistema, que tenga un exceso de 
energía producida. Esto se debe a que se ha realizado una estimación aproximada de los 
consumos, y también para tener la po
tabla muestra una estimación de cómo se reparten las cargas en cada hora del día. La mayor 
demanda energética se produce al anochecer, y la menor en la madrugada. Se ha hecho una 
clasificación de 5 tipos de demandas que se pueden tener en las 24 horas del día, 
representadas por colores y referenciados en una leyenda.

 
 
 
 
 

Nº de 
equipos 

Potencia 
unitaria 

(W) 

Tiempo 
funcionamiento 

(h/día) 

5 20 1,5 

1 40 3 

1 20 3 

1 

200 12 (noche) 

220 12 (día) 

1 250 3 

2 120 2 

lavadora (sin calentar 
1 500 1 

1 1000 0,5 

1 75 0,25 

1 25 0,5 

1 700 0,5 

1 10 24 

Consumo ca 

Margen de seguridad 15% 

Eficiencia inversor 85% 

Consumo ac real,incl. margen 

Energía total requerida en cc 
Cantidad diaria de energía necesaria para suministrar a los consumos.

Como se observa la mayor carga en todo el día la tiene el frigorífico, y la mayor carga 
puntual el lavavajillas. El frigorífico necesitará más energía en las horas de uso, que serán 24 

Se desea sobredimensionar un sistema, que tenga un exceso de 
energía producida. Esto se debe a que se ha realizado una estimación aproximada de los 
consumos, y también para tener la posibilidad de conectar nuevos consumos.
tabla muestra una estimación de cómo se reparten las cargas en cada hora del día. La mayor 
demanda energética se produce al anochecer, y la menor en la madrugada. Se ha hecho una 

de demandas que se pueden tener en las 24 horas del día, 
representadas por colores y referenciados en una leyenda. 
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Energía 

demandada 
(Wh/día) 

150 

120 

60 

2400 

2640 

750 

480 

500 

500 

18,75 

12,5 

350 

240 

8221,25 

9454,44 

11122,87 
Cantidad diaria de energía necesaria para suministrar a los consumos. 

Como se observa la mayor carga en todo el día la tiene el frigorífico, y la mayor carga 
rá más energía en las horas de uso, que serán 24 

Se desea sobredimensionar un sistema, que tenga un exceso de 
energía producida. Esto se debe a que se ha realizado una estimación aproximada de los 

sibilidad de conectar nuevos consumos. La siguiente 
tabla muestra una estimación de cómo se reparten las cargas en cada hora del día. La mayor 
demanda energética se produce al anochecer, y la menor en la madrugada. Se ha hecho una 

de demandas que se pueden tener en las 24 horas del día, 



 

 

Tabla 11. Cargas repartidas durante todo el día. 
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3. Recurso fotovoltaico y dimensionamiento de 
la instalaci

 
No es necesario un análisis muy riguroso de la realidad de nuestro planeta para darse 

cuenta que los niveles de consumo que actualmente se mantienen en los países denominados 
desarrollados nos llevan a grandes contradicciones.
nos lanzamos a sistemas productivos que inciden sobre nuestro planeta y por ende sobre los 
seres humanos que lo habitan. El uso irracional de la energía es otra forma de consumo 
desmedido que nos lleva a la "sobreexplotación” de  los recursos 
planeta. Este tipo de reconversión energética hacia energías más limpias aunque supone un 
desembolso inicial que no todas las economías pueden asimilar, supone un importante paso 
para poder romper la dependencia económica de los prov
un desarrollo sostenible planetario (sin entrar en si realmente existe voluntad política de 
hacerlo o si los promotores de la tra
multinacionales que controlan el oligopol

El uso de las energías renovables posibilita la creación de nuevas alternativas de vida, 
que apuestan por un mayor respeto al medio ambiente.
instrumento para cambiar el futuro de nuestro planeta pero es
inútil si no hacemos un análisis mucho más crítico de la realidad económica y política que nos 
ha llevado a no saber coexistir en armonía con todos los seres vivos de la Tierra
realización del presente proyecto s
medioambientales que son los siguientes:

1) En primer lugar, y el más importante, gracias a proyectos de este tipo se puede 
conseguir una gran disminución de los gases que se emiten por parte del uso de 
combustibles fósiles. 

2) Al principio, la inversión requerida es muy alta. Pero en poco tiempo esta inversión es 
rentabilizada, incluso es posible obtener beneficios, ya que el precio de los paneles 
fotovoltaicos está bajando considerablemente y eso contribuye a u
coste de una instalación

3) Usando energías renovables se toma conciencia

aún en un sistema aislado del exterior. Por lo tanto, se hace un uso de energía más 

racional. 

Se desea electrificar una vivienda
Navarra. En la tabla número 11
horas de utilización en corriente alterna.
La latitud del emplazamiento es de 42º Norte 1º 30’ Oeste.
El 25% de la energía que se suministre va a ser 
restante será eólico.  
 
 
 

Recurso fotovoltaico y dimensionamiento de 
la instalación 

No es necesario un análisis muy riguroso de la realidad de nuestro planeta para darse 
cuenta que los niveles de consumo que actualmente se mantienen en los países denominados 
desarrollados nos llevan a grandes contradicciones. Con el ánimo de crecer ec
nos lanzamos a sistemas productivos que inciden sobre nuestro planeta y por ende sobre los 
seres humanos que lo habitan. El uso irracional de la energía es otra forma de consumo 
desmedido que nos lleva a la "sobreexplotación” de  los recursos que nos ofrece nuestro 

Este tipo de reconversión energética hacia energías más limpias aunque supone un 
desembolso inicial que no todas las economías pueden asimilar, supone un importante paso 
para poder romper la dependencia económica de los proveedores de combustible y apostar por 
un desarrollo sostenible planetario (sin entrar en si realmente existe voluntad política de 
hacerlo o si los promotores de la transferencia tecnológica serán las mismas empresas 
multinacionales que controlan el oligopolio del petróleo) 

El uso de las energías renovables posibilita la creación de nuevas alternativas de vida, 
que apuestan por un mayor respeto al medio ambiente. Las energías renovables son un gran 
instrumento para cambiar el futuro de nuestro planeta pero esta revolución tecnológica será 
inútil si no hacemos un análisis mucho más crítico de la realidad económica y política que nos 
ha llevado a no saber coexistir en armonía con todos los seres vivos de la Tierra
realización del presente proyecto se pretende mejorar bastantes aspectos económicos y 
medioambientales que son los siguientes: 

En primer lugar, y el más importante, gracias a proyectos de este tipo se puede 
conseguir una gran disminución de los gases que se emiten por parte del uso de 

Al principio, la inversión requerida es muy alta. Pero en poco tiempo esta inversión es 
rentabilizada, incluso es posible obtener beneficios, ya que el precio de los paneles 
fotovoltaicos está bajando considerablemente y eso contribuye a u
coste de una instalación 

ergías renovables se toma conciencia de lo escasa que es la energía, y más 

aún en un sistema aislado del exterior. Por lo tanto, se hace un uso de energía más 

Se desea electrificar una vivienda unifamiliar situada en las Bardenas Reales de 
rra. En la tabla número 11 se muestra los valores de los equipos y la estimación de las 

horas de utilización en corriente alterna. 
La latitud del emplazamiento es de 42º Norte 1º 30’ Oeste. 

ergía que se suministre va a ser de origen fotovoltaic0, mientras que el 75% 
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Recurso fotovoltaico y dimensionamiento de 

No es necesario un análisis muy riguroso de la realidad de nuestro planeta para darse 
cuenta que los niveles de consumo que actualmente se mantienen en los países denominados 

Con el ánimo de crecer económicamente 
nos lanzamos a sistemas productivos que inciden sobre nuestro planeta y por ende sobre los 
seres humanos que lo habitan. El uso irracional de la energía es otra forma de consumo 

que nos ofrece nuestro 
Este tipo de reconversión energética hacia energías más limpias aunque supone un 

desembolso inicial que no todas las economías pueden asimilar, supone un importante paso 
eedores de combustible y apostar por 

un desarrollo sostenible planetario (sin entrar en si realmente existe voluntad política de 
sferencia tecnológica serán las mismas empresas 

El uso de las energías renovables posibilita la creación de nuevas alternativas de vida, 
Las energías renovables son un gran 

ta revolución tecnológica será 
inútil si no hacemos un análisis mucho más crítico de la realidad económica y política que nos 
ha llevado a no saber coexistir en armonía con todos los seres vivos de la Tierra. Así, con la 

e pretende mejorar bastantes aspectos económicos y 

En primer lugar, y el más importante, gracias a proyectos de este tipo se puede 
conseguir una gran disminución de los gases que se emiten por parte del uso de 

Al principio, la inversión requerida es muy alta. Pero en poco tiempo esta inversión es 
rentabilizada, incluso es posible obtener beneficios, ya que el precio de los paneles 
fotovoltaicos está bajando considerablemente y eso contribuye a una disminución del 

de lo escasa que es la energía, y más 

aún en un sistema aislado del exterior. Por lo tanto, se hace un uso de energía más 

unifamiliar situada en las Bardenas Reales de 
se muestra los valores de los equipos y la estimación de las 

, mientras que el 75% 



 

 

Elección de la inclinación de los paneles

Se va a realizar un estudio con dos métodos. El primero consiste en la optimización 
mediante el mes peor, y el segundo,  má
paneles en el cual se pueda ajustar la inclinación en dos posiciones para poder favorecer la 
captación en los meses de verano y en los de invierno. 

3.1.  Usando el método del mes peor:

Como se quiere optimizar para el mes peor, que será un mes de invierno, la inclinación 
óptima será aproximadamente la latitud más diez
repetir el ejercicio con otros valores de inclinación hasta encontrar el óptimo, es deci
exige menor potencia instalada (Wp). Elegimos en nuestro caso un valor de 52 grados de 
inclinación (Orientación Sur). 

3.1.1.  Evaluación del recurso disponible: 
 

Buscamos en la tabla de radiación 
de k para la latitud e inclinación elegidas. Multiplicando este factor k (para cada mes) por la 
radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 
la superficie de los paneles. 
Todo ello se muestra en la siguiente tab
 
Localización: 42°3'14" Norte, 1°30'58" Oeste, Elevación: 314 m a.s.l.

Mes 

Enero 

Febrero 

Marzo 

Abril 

Mayo 

Junio 

Julio 

Agosto 

Septiembre 

Octubre 

Noviembre 

Diciembre 

  

Promedio 

anual 

Total en un 

año 
Tabla 12. Datos de radiación solar para las coordenadas de la instalación.

Elección de la inclinación de los paneles: 

Se va a realizar un estudio con dos métodos. El primero consiste en la optimización 
segundo,  más eficaz, mediante la utilización de un soporte para los 

paneles en el cual se pueda ajustar la inclinación en dos posiciones para poder favorecer la 
captación en los meses de verano y en los de invierno.  

Usando el método del mes peor: 

se quiere optimizar para el mes peor, que será un mes de invierno, la inclinación 
óptima será aproximadamente la latitud más diez grados. Para mejor resultado se puede 
repetir el ejercicio con otros valores de inclinación hasta encontrar el óptimo, es deci
exige menor potencia instalada (Wp). Elegimos en nuestro caso un valor de 52 grados de 

 

Evaluación del recurso disponible:  

tabla de radiación  los valores. Posteriormente buscamos los valores 
ara la latitud e inclinación elegidas. Multiplicando este factor k (para cada mes) por la 

radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 

Todo ello se muestra en la siguiente tabla: 

Localización: 42°3'14" Norte, 1°30'58" Oeste, Elevación: 314 m a.s.l. 

Ed Em Hd Hm 

1,21 37,4 1,66 51,5 

1,77 49,4 2,39 66,8 

2,86 88,8 3,82 118 

3,48 104 4,61 138 

4,3 133 5,68 176 

4,81 144 6,34 190 

4,83 150 6,38 198 

4,23 131 5,59 173 

3,39 102 4,5 135 

2,23 69,2 3 92,9 

1,38 41,4 1,88 56,5 

1,03 31,8 1,42 44,1 

2,97 90,2 3,95 120 

1080 1440 
Datos de radiación solar para las coordenadas de la instalación.

33 

Se va a realizar un estudio con dos métodos. El primero consiste en la optimización 
s eficaz, mediante la utilización de un soporte para los 

paneles en el cual se pueda ajustar la inclinación en dos posiciones para poder favorecer la 

se quiere optimizar para el mes peor, que será un mes de invierno, la inclinación 
. Para mejor resultado se puede 

repetir el ejercicio con otros valores de inclinación hasta encontrar el óptimo, es decir, el que 
exige menor potencia instalada (Wp). Elegimos en nuestro caso un valor de 52 grados de 

Posteriormente buscamos los valores 
ara la latitud e inclinación elegidas. Multiplicando este factor k (para cada mes) por la 

radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Datos de radiación solar para las coordenadas de la instalación. 



 

 

Ed: Producción promedio diaria de energía eléctrica
Em: Producción promedio mensual de electricidad
Hd: Suma promedio diario de irradiación glo
módulos del sistema dado (kWh/m
Hm: Cantidad media de irradiación global
sistema dado en un mes (kWh/m

La siguiente tabla muestra la radiación incidente 
ángulo de inclinación de los paneles:

Mes

Enero

Febrero

Marzo

Abril

Mayo

Junio

Julio

Agosto

Septiembre

Octubre

Noviembre

Diciembre

Tabla 13.Radiación incidente con el factor de corrección k para 52º de i

Figura 19
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mensual de electricidad del sistema dado (kWh) 

irradiación global por metro cuadrado, recibidos por
(kWh/m2) 

de irradiación global por metro cuadrado, recibidos por
sistema dado en un mes (kWh/m2)       

La siguiente tabla muestra la radiación incidente con el factor de corrección k para el 
ángulo de inclinación de los paneles: 

Mes H horiz 

K (42º Lat 

y 52º incl) 

Radiación 

incidente 

(kWh/m
2
 

día) 

Enero 1,66 1,44 2,39 

Febrero 2,39 1,31 3,13 

Marzo 3,81 1,16 4,42 

Abril 4,6 1 4,6 

Mayo 5,68 0,89 5,05 

Junio 6,33 0,86 5,45 

Julio 6,39 0,9 5,75 

Agosto 5,58 1,02 5,69 

Septiembre 4,5 1,21 5,45 

Octubre 3 1,44 4,32 

Noviembre 1,88 1,59 2,99 

Diciembre 1,42 1,56 2,22 

Radiación incidente con el factor de corrección k para 52º de inclinación.

 
 

19. Representación gráfica  de la radiación del lugar. 

Radiación incidente (kWh/m2/día)
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kWh) 
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recibidos por los módulos del 
  

con el factor de corrección k para el 

nclinación. 
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3.1.2.  Dimensionamiento del campo de captación: 
 

Consiste en buscar el valor máximo de la relación Consumos / radiación, que aparece 
en la siguiente tabla: 
 
 

Mes 

Radiación 

incidente 

(kWh/m

Enero 

Febrero 

Marzo 

Abril 

Mayo 

Junio 

Julio 

Agosto 

Septiembre 

Octubre 

Noviembre 

Diciembre 

Tabla 14. Relación consumos y radiación para el método del mes

El valor máximo de relación consumos/radiación es de 1252,57, correspondiente al 
mes de diciembre (mes peor). 
captación (en condiciones STC para el sistema).
 
Condiciones estándar de medid

El comportamiento eléctrico de una célula fotovoltaica cambia según las condiciones 
de iluminación y temperatura. Para permitir la comparación entre células se han establecido 
unas condiciones estándares de medida (Standard Test Conditions, STC), de
definidas como sigue: 

• Irradiancia  : 100 mW/cm
• Distribución espectral  : AM 1,5

• Incidencia normal 
• Temperatura de la célula  :25ºC

Respecto a la distribución espectral, ha de considerarse que los rayos de sol, al 
atravesar la atmósfera, sufren una modificación, de modo que parte, la radiación, se refleja y 
parte es transmitida. Las capas de aire hacen que parte de la radiación se disperse y otra se 
absorba. De este modo, no solo llega menor cantidad de energía a la superficie de 

Dimensionamiento del campo de captación:  

Consiste en buscar el valor máximo de la relación Consumos / radiación, que aparece 

Radiación 

incidente 

(kWh/m
2
 

dia) Consumo(Wh/dia) 

Consumo(kWh/m

radiación inc.(Wh/día)

2,39 2780,7 1163,47 

3,13 2780,7 888,4 

4,42 2780,7 629,12 

4,6 2780,7 604,5 

5,05 2780,7 550,63 

5,45 2780,7 510,22 

5,75 2780,7 483,6 

5,69 2780,7 488,7 

5,45 2780,7 510,22 

4,32 2780,7 643,68 

2,99 2780,7 930 

2,22 2780,7 1252,57 

Relación consumos y radiación para el método del mes peor.

El valor máximo de relación consumos/radiación es de 1252,57, correspondiente al 
. Este valor numérico es coincidente con la potencia mínima de 

captación (en condiciones STC para el sistema). 

Condiciones estándar de medida, STC 

El comportamiento eléctrico de una célula fotovoltaica cambia según las condiciones 
de iluminación y temperatura. Para permitir la comparación entre células se han establecido 
unas condiciones estándares de medida (Standard Test Conditions, STC), de

Irradiancia  : 100 mW/cm2 (1000W/m2) 
Distribución espectral  : AM 1,5 

Temperatura de la célula  :25ºC 
Respecto a la distribución espectral, ha de considerarse que los rayos de sol, al 

mósfera, sufren una modificación, de modo que parte, la radiación, se refleja y 
parte es transmitida. Las capas de aire hacen que parte de la radiación se disperse y otra se 
absorba. De este modo, no solo llega menor cantidad de energía a la superficie de 
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Consiste en buscar el valor máximo de la relación Consumos / radiación, que aparece 

Consumo(kWh/m
2
día)/ 

radiación inc.(Wh/día) 

peor. 

El valor máximo de relación consumos/radiación es de 1252,57, correspondiente al 
Este valor numérico es coincidente con la potencia mínima de 

El comportamiento eléctrico de una célula fotovoltaica cambia según las condiciones 
de iluminación y temperatura. Para permitir la comparación entre células se han establecido 
unas condiciones estándares de medida (Standard Test Conditions, STC), de uso universal y 

Respecto a la distribución espectral, ha de considerarse que los rayos de sol, al 
mósfera, sufren una modificación, de modo que parte, la radiación, se refleja y 

parte es transmitida. Las capas de aire hacen que parte de la radiación se disperse y otra se 
absorba. De este modo, no solo llega menor cantidad de energía a la superficie de la tierra 



 

 

respecto de la que llega al exterior de la atmósfera, sino que también cambia su distribución 
espectral. Se denomina Air Mass (AM) a la longitud de trayectoria a través de la atmósfera 
terrestre atravesada por el rayo de sol directo, expresado co
recorrida hasta un punto a nivel del mar con el sol directam
tanto se requiere, al menos, una potencia (en condiciones STC) de 1252,57 Wp.

3.1.3.  Número mínimo de paneles a conectar: 
 

En este momento se escoge el panel del fabricante o distribuidor.
Se dispone de un panel fotovoltaico de 180Wp tecnología saturno de la marca BP solar.
El número de paneles necesarios será:
(1,1 *  1252) / 180 ≈  8 
La configuración de las placas será l

Figura 20

 
 

3.1.4.  Elección de la tensión de trabajo: 
 
Debido a que el aerogenerador va a producir electricidad a 24 V  y a que es preferible 

este voltaje frente a 12 V para minimizar pérdidas
producirán mayores pérdidas de tensión y el grosor de los cables será mayor. 
conectarán a un inversor cuya salida será 230

3.1.5. Regulador:  
 

El regulador viene determinado eléctricamente por su tensión nominal y la intensidad 
de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V.

La cantidad máxima que provendrá de los paneles en este caso es de 180 W
y son necesarios 8 paneles como mínimo. La corriente de cortocircuito de estos paneles es de 
5,4 A y una tensión en circuito abierto de 44,8 V. La colocación de los paneles será en 

respecto de la que llega al exterior de la atmósfera, sino que también cambia su distribución 
Se denomina Air Mass (AM) a la longitud de trayectoria a través de la atmósfera 

terrestre atravesada por el rayo de sol directo, expresado como múltiplo de la trayectoria 
recorrida hasta un punto a nivel del mar con el sol directamente encima (adimensional).
tanto se requiere, al menos, una potencia (en condiciones STC) de 1252,57 Wp.

Número mínimo de paneles a conectar:  

se escoge el panel del fabricante o distribuidor. 
Se dispone de un panel fotovoltaico de 180Wp tecnología saturno de la marca BP solar.
El número de paneles necesarios será: 

La configuración de las placas será la siguiente: 

20. Configuración placas fotovoltaicas en paralelo. 

Elección de la tensión de trabajo:  

Debido a que el aerogenerador va a producir electricidad a 24 V  y a que es preferible 
a minimizar pérdidas, se va a trabajar a 24 V,  ya que a 12 V se 

producirán mayores pérdidas de tensión y el grosor de los cables será mayor. 
conectarán a un inversor cuya salida será 230 V de corriente alterna. 

 

ne determinado eléctricamente por su tensión nominal y la intensidad 
de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V.

ma que provendrá de los paneles en este caso es de 180 W
y son necesarios 8 paneles como mínimo. La corriente de cortocircuito de estos paneles es de 
5,4 A y una tensión en circuito abierto de 44,8 V. La colocación de los paneles será en 
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respecto de la que llega al exterior de la atmósfera, sino que también cambia su distribución 
Se denomina Air Mass (AM) a la longitud de trayectoria a través de la atmósfera 

mo múltiplo de la trayectoria 
ente encima (adimensional). Por 

tanto se requiere, al menos, una potencia (en condiciones STC) de 1252,57 Wp. 

Se dispone de un panel fotovoltaico de 180Wp tecnología saturno de la marca BP solar. 

 

Debido a que el aerogenerador va a producir electricidad a 24 V  y a que es preferible 
, se va a trabajar a 24 V,  ya que a 12 V se 

producirán mayores pérdidas de tensión y el grosor de los cables será mayor. Los equipos se 

ne determinado eléctricamente por su tensión nominal y la intensidad 
de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V. 

ma que provendrá de los paneles en este caso es de 180 W cada uno, 
y son necesarios 8 paneles como mínimo. La corriente de cortocircuito de estos paneles es de 
5,4 A y una tensión en circuito abierto de 44,8 V. La colocación de los paneles será en 



 

 

paralelo, para tener la tensión de trabajo adecuada. Cada panel tiene una corriente de 
cortocircuito de 5,4 A, por lo tanto la máxima corriente que llegara al regulador es de:
Corriente máxima regulador �

Con esta intensidad máxima y dejando un ci
de 24V  y 60 A. Del mismo modo se actuará con el lado del consumo. Hay que calcular los 
amperios que en un momento dado debe gestionar el regulador. Se supone, que en un 
momento dado, la potencia de todos los equipos
W. Traducido a corriente, 1355W / 24 V = 56,56 A.
regulador de corriente nominal 60 A
Xantrex modelo C60. 

3.1.6. Características del i
 

En este caso se requiere un inversor cuya tensión de entrada sea de 24 V en continua, y 
la salida en 230 V en alterna, monofásico. Para la elección  de la potencia, se escoge la 
máxima carga que exige el sistema, que es de 1355 W.
La suma de las potencias que ha de alimentar el inversor es, por tanto, 1,355 kW, por lo que 
podríamos escoger un inversor de 2kW. 

3.2.  Usando el método con dos inclinaciones:

En este caso se va a utilizar un soport
de las posiciones será la inclinación óptima para los meses de verano y la otra para favorecer 
la absorción de radiación en los meses menos favorables.
La primera disposición de las placas va a ser la latit
latitud – 10º para los meses más favorables.
marzo y con más radiación de abril

3.2.1.  Evaluación del recurso disponible: 
 

Buscamos en la tabla de radiación los valo
k para la latitud e inclinación elegidas
radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 
la superficie de los paneles. 
inclinación de 52º, mientras que para los más favorables 32º.
valores de recurso para las dos inclinaciones:
 
 
 
 
 
 
 
 

, para tener la tensión de trabajo adecuada. Cada panel tiene una corriente de 
cortocircuito de 5,4 A, por lo tanto la máxima corriente que llegara al regulador es de:

�8 x 5,4 = 43,2 A. 
Con esta intensidad máxima y dejando un cierto margen será necesario

mismo modo se actuará con el lado del consumo. Hay que calcular los 
amperios que en un momento dado debe gestionar el regulador. Se supone, que en un 
momento dado, la potencia de todos los equipos que funcionan simultáneamente es de 1355 
W. Traducido a corriente, 1355W / 24 V = 56,56 A. Los resultados demuestran que un 
regulador de corriente nominal 60 A es adecuado. El regulador seleccionado es de la marca 

Características del inversor requerido:  

En este caso se requiere un inversor cuya tensión de entrada sea de 24 V en continua, y 
la salida en 230 V en alterna, monofásico. Para la elección  de la potencia, se escoge la 
máxima carga que exige el sistema, que es de 1355 W. 

uma de las potencias que ha de alimentar el inversor es, por tanto, 1,355 kW, por lo que 
podríamos escoger un inversor de 2kW. El inversor elegido es un Ingecon sun de 2,5 kW

Usando el método con dos inclinaciones: 

En este caso se va a utilizar un soporte para las placas solares con dos posiciones. Una 
de las posiciones será la inclinación óptima para los meses de verano y la otra para favorecer 
la absorción de radiación en los meses menos favorables. 
La primera disposición de las placas va a ser la latitud + 10º para los meses desfavorables y 

para los meses más favorables. Los meses de menos radiación son de octubre
marzo y con más radiación de abril-septiembre. 

Evaluación del recurso disponible:  

Buscamos en la tabla de radiación los valores. Posteriormente buscamos los valores de 
titud e inclinación elegidas. Multiplicando este factor k (para cada mes) por la 

radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 
 Para los meses desfavorables el factor k  corresponde a una 

inclinación de 52º, mientras que para los más favorables 32º. La siguiente tabla muestra los 
valores de recurso para las dos inclinaciones: 
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, para tener la tensión de trabajo adecuada. Cada panel tiene una corriente de 
cortocircuito de 5,4 A, por lo tanto la máxima corriente que llegara al regulador es de: 

necesario un regulador 
mismo modo se actuará con el lado del consumo. Hay que calcular los 

amperios que en un momento dado debe gestionar el regulador. Se supone, que en un 
que funcionan simultáneamente es de 1355 

Los resultados demuestran que un 
El regulador seleccionado es de la marca 

En este caso se requiere un inversor cuya tensión de entrada sea de 24 V en continua, y 
la salida en 230 V en alterna, monofásico. Para la elección  de la potencia, se escoge la 

uma de las potencias que ha de alimentar el inversor es, por tanto, 1,355 kW, por lo que 
El inversor elegido es un Ingecon sun de 2,5 kW. 

e para las placas solares con dos posiciones. Una 
de las posiciones será la inclinación óptima para los meses de verano y la otra para favorecer 

ud + 10º para los meses desfavorables y 
Los meses de menos radiación son de octubre-

res. Posteriormente buscamos los valores de 
este factor k (para cada mes) por la 

radiación sobre superficie horizontal, hallamos el valor de la radiación global incidente sobre 
Para los meses desfavorables el factor k  corresponde a una 

La siguiente tabla muestra los 



 

 

 
 

Mes 

Enero 

Febrero 

Marzo 

Abril 

Mayo 

Junio 

Julio 

Agosto 

Septiembre 

Octubre 

Noviembre 

Diciembre 

Tabla 15.Radiación incidente para el método de dos inclinaciones.

3.2.2.  Dimensionamiento del campo de captación: 
 

Consiste en buscar el valor máximo de la relación Consumos/ radiación
 

Mes 

Radiación 
incidente 

(kWh/m2/día)
Enero 2,39

Febrero 3,13

Marzo 4,42

Abril 5,01

Mayo 5,79

Junio 6,33

Julio 6,52

Agosto 6,14

Septiembre 5,54

Octubre 4,32

Noviembre 2,99

Diciembre 2,22
Tabla 16.Relación consumos radiación para el método de dos

 

H horiz. 

K (42º Lat, 32º y 

52º incl) 

Radiación 

incidente 

(kWh/m

1,66 1,44 2,39

2,39 1,31 3,13

3,81 1,16 4,42

4,6 1,09 5,01

5,68 1,02 5,79

6,33 1 6,33

6,39 1,02 6,52

5,58 1,1 6,14

4,5 1,23 5,54

3 1,44 4,32

1,88 1,59 2,99

1,42 1,56 2,22

Radiación incidente para el método de dos inclinaciones.

Dimensionamiento del campo de captación:  

Consiste en buscar el valor máximo de la relación Consumos/ radiación

Radiación 
incidente 

(kWh/m2/día) Consumo(Wh/día) 
Consumo(kWh/m
radiación inc.(Wh/día)

2,39 2780,7 1163,47

3,13 2780,7 888,40

4,42 2780,7 629,12

5,01 2780,7 555,03

5,79 2780,7 480,26

6,33 2780,7 439,29

6,52 2780,7 426,49

6,14 2780,7 452,88

5,54 2780,7 501,93

4,32 2780,7 643,68

2,99 2780,7 930,00

2,22 2780,7 1252,57
Relación consumos radiación para el método de dos inclinaciones
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Radiación 

incidente 

(kWh/m
2
 día) 

2,39 

3,13 

4,42 

5,01 

5,79 

6,33 

6,52 

6,14 

5,54 

4,32 

2,99 

2,22 

Radiación incidente para el método de dos inclinaciones. 

Consiste en buscar el valor máximo de la relación Consumos/ radiación. 

Consumo(kWh/m2día)/ 
radiación inc.(Wh/día) 

1163,47 

0 

629,12 

555,03 

480,26 

439,29 

426,49 

452,88 

501,93 

643,68 

,00 

1252,57 
inclinaciones. 



 

 

 

 

3.2.3.  Número mínimo de paneles a conectar: 
 

En este momento se escoge el panel del fabricante o distribuidor.
Se dispone de un panel fotovoltaico de 180Wp t
El número de paneles necesarios será:
(1,1 *  1252) / 180 ≈  8 

La tensión de trabajo, el regulador y el inversor será el mismo que en apartado 
anterior. Aunque el número de paneles obtenidos y las características de la instalación 
eléctrica necesaria son las mismas que en el caso 
solución a la anterior ya que el sistema será más eficiente, consiguiéndose un mayor 
aprovechamiento del recurso disponible.

3.3.  Selección de la opción más ventajosa:

Cualquiera de las dos opciones puede satisfacer l
se desea es maximizar la producción siempre es conveniente utilizar un soporte con varias 
inclinaciones para aprovechar mejor la radiación incidente.

4.  Recurso eólico y dimensionamiento de la 
instalación 

Para el estudio del recurso eólico se han obtenido datos de velocidad de
base de datos, y se ha calculado la velocidad media en cada mes y en cada año. 
Introduciendo los valores promedio de velocidad mensual en un programa de simulación 
llamado “Homer”, el aerogenerador más conveniente para la instalación es “Whisper 500”, 
que trabaja a 24 V de corriente continua y tiene una potencia nominal de 3 kW.

4.1.  Distribución de viento del emplazamiento

La siguiente tabla representa las repeticiones que se producen en l
velocidad en 4 años de estudio de viento, así como su frecuencia en tanto por 1 y en %.

 

 

 

 

 

 

Número mínimo de paneles a conectar:  

En este momento se escoge el panel del fabricante o distribuidor. 
Se dispone de un panel fotovoltaico de 180Wp tecnología saturno de la marca BP
El número de paneles necesarios será: 

La tensión de trabajo, el regulador y el inversor será el mismo que en apartado 
Aunque el número de paneles obtenidos y las características de la instalación 

eléctrica necesaria son las mismas que en el caso de una sola inclinación, se preferirá esta 
solución a la anterior ya que el sistema será más eficiente, consiguiéndose un mayor 
aprovechamiento del recurso disponible. 

Selección de la opción más ventajosa: 

Cualquiera de las dos opciones puede satisfacer la demanda energética, pero si lo que 
se desea es maximizar la producción siempre es conveniente utilizar un soporte con varias 
inclinaciones para aprovechar mejor la radiación incidente. 

Recurso eólico y dimensionamiento de la 

del recurso eólico se han obtenido datos de velocidad de
, y se ha calculado la velocidad media en cada mes y en cada año. 

Introduciendo los valores promedio de velocidad mensual en un programa de simulación 
aerogenerador más conveniente para la instalación es “Whisper 500”, 

que trabaja a 24 V de corriente continua y tiene una potencia nominal de 3 kW.

Distribución de viento del emplazamiento 

La siguiente tabla representa las repeticiones que se producen en l
velocidad en 4 años de estudio de viento, así como su frecuencia en tanto por 1 y en %.
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ecnología saturno de la marca BP solar. 

La tensión de trabajo, el regulador y el inversor será el mismo que en apartado 
Aunque el número de paneles obtenidos y las características de la instalación 

de una sola inclinación, se preferirá esta 
solución a la anterior ya que el sistema será más eficiente, consiguiéndose un mayor 

a demanda energética, pero si lo que 
se desea es maximizar la producción siempre es conveniente utilizar un soporte con varias 

Recurso eólico y dimensionamiento de la 

del recurso eólico se han obtenido datos de velocidad de viento en una 
, y se ha calculado la velocidad media en cada mes y en cada año.  

Introduciendo los valores promedio de velocidad mensual en un programa de simulación 
aerogenerador más conveniente para la instalación es “Whisper 500”, 

que trabaja a 24 V de corriente continua y tiene una potencia nominal de 3 kW. 

La siguiente tabla representa las repeticiones que se producen en los bienes de 
velocidad en 4 años de estudio de viento, así como su frecuencia en tanto por 1 y en %. 



 

 

 

 

 

v 
(m/s) 

0 

1 

2 

3 

4 

5 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Tabla 17. Repeticiones para cada

Las siguientes figuras muestran la repartición por bines de velocidad y la distribución de 

viento: 

Datos de 2006-2009 

Repeticiones Frecuencia 
Frecuencia 

% 
15 0,01 1,04 

221 0,15 15,25 

310 0,21 21,39 

285 0,2 19,67 

238 0,16 16,43 

173 0,12 11,94 

103 0,07 7,11 

58 0,04 4 

34 0,02 2,35 

11 0,01 0,76 

1 0 0,07 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Repeticiones para cada velocidad comprendido entre 2006 y 2009

Las siguientes figuras muestran la repartición por bines de velocidad y la distribución de 
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velocidad comprendido entre 2006 y 2009. 

Las siguientes figuras muestran la repartición por bines de velocidad y la distribución de 



 

 

Figura 

4.2.  Distribución de Weibull

A partir de las siguientes ecuaciones se han determinado los valores de A y k de la 

distribución de Weibull: 

U

A
568.0



=

Repartición por bines de velocidad 2006-2009

0,00
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15,00

20,00

25,00

1 2 3 4

%

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5

%

Figura 21. Repartición por bines de velocidad. 

Figura 22.Distribución de viento. 

Distribución de Weibull 

A partir de las siguientes ecuaciones se han determinado los valores de A y k de la 

k

k

1
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Repartición por bines de velocidad 2006-2009

5 6 7 8 9 10 11 12 13 14 15 16 17

v (m/s)

Distribución de viento 2006-2009

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

v (m/s)
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A partir de las siguientes ecuaciones se han determinado los valores de A y k de la 

086

 

17 18 19 20 21
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Los valores obtenidos para los datos de los cuatr

 
Vel media 

2006 

2007 

2008 

2009 

2006-2009 

 

Los datos de la curva de potencia y la representación gráfica del mini aerogenerador 
“Whisper 500” son los siguientes: 
 
 

Velocidad de 
viento (m/s)

Tabla 

Los valores obtenidos para los datos de los cuatro años estudiados son: 

Vel media 
(m/s) 

Desv 
media 
(m/s) k A (m/s)

3,94 1,51 2,83 4,42

3,79 1,58 2,59 4,26

3,86 1,47 2,86 4,33

4 1,56 2,78 4,49

3,9 1,53 2,76 4,38
Tabla 18. Parámetros de Weibull. 

Los datos de la curva de potencia y la representación gráfica del mini aerogenerador 
“Whisper 500” son los siguientes:  

Velocidad de 
viento (m/s) 

Potencia de salida 
(kW) 

0 0 

1 0 

2 0 

3 0 

4 0,27 

5 0,55 

6 0,88 

7 1,26 

8 1,7 

9 2,18 

10 2,67 

11 3,07 

12 3,28 

13 3,33 

14 3,26 

15 3,13 

16 2,96 

17 2,77 

18 2,56 

19 2,33 

20 2,08 
abla 19.Datos de la curva de potencia Whisper 500. 
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A (m/s) 
4,42 

4,26 

4,33 

4,49 

4,38 

Los datos de la curva de potencia y la representación gráfica del mini aerogenerador 



 

 

Figura 

4.3.  Regulador eólico

 
El regulador viene determinado eléctricamente por su tensión nominal y la intensidad 

de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V.
máxima de intensidad que provendrá del aerogenerador en este caso será la potencia máxima 
entre la tensión:  
3330 W / 24 V = 138,75 A Con esta intensidad máxima y dejando un cierto margen será útil 
un regulador de 24 V y 150 A.
 

4.4.  Producción 

A partir de los datos de la curva de potencia del aerogenerador y de las frecuencias de 
velocidad de viento se ha calculado  la producción de energía en cada año y también una 
media entre los 4 años de estudio. Se ha tenido en cuenta un 3 % de pérdidas eléctricas.
Las siguientes tablas muestran los cálculos realizados:
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Figura 23.Curva de potencia Whisper 500. 

Regulador eólico 

dor viene determinado eléctricamente por su tensión nominal y la intensidad 
de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V.
máxima de intensidad que provendrá del aerogenerador en este caso será la potencia máxima 

3330 W / 24 V = 138,75 A Con esta intensidad máxima y dejando un cierto margen será útil 
un regulador de 24 V y 150 A. 

 

los datos de la curva de potencia del aerogenerador y de las frecuencias de 
velocidad de viento se ha calculado  la producción de energía en cada año y también una 
media entre los 4 años de estudio. Se ha tenido en cuenta un 3 % de pérdidas eléctricas.

siguientes tablas muestran los cálculos realizados:

Curva de potencia Whisper 500

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

v (m/s)
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dor viene determinado eléctricamente por su tensión nominal y la intensidad 
de corriente que es capaz de gestionar desde los paneles y hacia la carga En este caso se debe 
elegir un regulador cuya tensión nominal sea la del banco de baterías, 24V. La cantidad 
máxima de intensidad que provendrá del aerogenerador en este caso será la potencia máxima 

3330 W / 24 V = 138,75 A Con esta intensidad máxima y dejando un cierto margen será útil 

los datos de la curva de potencia del aerogenerador y de las frecuencias de 
velocidad de viento se ha calculado  la producción de energía en cada año y también una 
media entre los 4 años de estudio. Se ha tenido en cuenta un 3 % de pérdidas eléctricas. 

19 20 21



 

 

Velocidad 
de viento 

(m/s) 
Potencia de 
salida (kW) 

Distrib. de 
viento 2006 

[h/año] 
0 0 0 

1 0 96 

2 0 1176 

3 0 1824 

4 0,27 2040 

5 0,55 1296 

6 0,88 1104 

7 1,26 432 

8 1,7 384 

9 2,18 264 

10 2,67 96 

11 3,07 0 

12 3,28 0 

13 3,33 0 

14 3,26 0 

15 3,13 0 

16 2,96 0 

17 2,77 0 

18 2,56 0 

19 2,33 0 

20 2,08 0 

Energía producida (kWh)

Energía útil (contando pérdidas del 3 %)

Distrib. de 
viento 2007 

[h/año] 

Distrib. de 
viento 2008 

[h/año] 

Distrib. de 
viento 2009 

[h/año] 
KWh/año 

2006 
KWh/año 

2007 
0 0 0 0 0 

72 144 0 0 0 

1488 1056 1080 0 0 

1800 1560 1872 0 0 

1344 1752 1296 550,80 362,88 

1104 1392 1584 712,80 607,20 

1128 1056 816 971,52 992,64 

648 672 696 544,32 816,48 

336 168 480 652,80 571,20 

120 216 192 575,52 261,60 

48 48 48 256,32 128,16 

24 0 0 0 73,68 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

ergía producida (kWh) 4264,08 3813,84 

Energía útil (contando pérdidas del 3 %) 4136,16 3699,42 
Tabla 20. Producción para cada año estudiado.
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KWh/año 
2008 

KWh/año 
2009 

0 0 

0 0 

0 0 

0 0 

473,04 349,92 

765,60 871,20 

929,28 718,08 

846,72 876,96 

285,60 816,00 

470,88 418,56 

128,16 128,16 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

3899,28 4178,88 

3782,30 4053,51 
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Energía producida (kWh)

Energía útil (cont

Ahora, con los datos de producción, se puede comprobar si el aerogenerador elegido 
es el adecuado y si va a satisfacer las necesidades energéticas propuestas.
Al principio del proyecto se menciona que un 75 % de la energía que se va a suministrar va a 
ser eólica: 
11122,87 Wh diarios totales * 0,75 = 8342,15 Wh de energía eólica necesarios.
2390,12 kWh/año * 1000 Wh/ kWh * 1 año/365 días = 6548,27 Wh diarios producidos.
En principio se observa que la energía que produce el aerogenerador no llega al mínimo 
requerido,  pero observando el dimensionado del sistema se pueden sacar conclusiones para 
explicar que la instalación está sobredimensionada:
- En el estudio de las velocidades de viento, los valores que se han obtenido de la base de 
datos meteo Navarra, que corresponden a velocidades medias diarias, cuando lo más exacto es 
la toma de valores medios en intervalos de 10 a 15 minutos. En este caso los resultados 
teóricos obtenidos posiblemente serían mayores, y se llegaría a abastecer el 75 % de la 

Producción media en 2006-2009 

Potencia de 
salida (kW) Frecuencia 

Potencia 
(W) x frec 

Energía 
(kWh/año)

0 0,01 0 

0 0,15 0 

0 0,21 0 

0 0,20 0 

0,27 0,16 44,35 388,49

0,55 0,12 65,67 575,23

0,88 0,07 62,55 547,97

1,26 0,04 50,43 441,81

1,70 0,02 39,89 349,

2,18 0,01 16,55 144,97

2,67 0,00 1,84 16,14

3,07 0 0 

3,28 0 0 

3,33 0 0 

3,26 0 0 

3,13 0 0 

2,96 0 0 

2,77 0 0 

2,56 0 0 

2,33 0 0 

2,08 0 0 
Energía producida (kWh) 2464,04

Energía útil (contando un 3% en pérdidas) 2390,12
Tabla 21.Producción media anual. 

con los datos de producción, se puede comprobar si el aerogenerador elegido 
es el adecuado y si va a satisfacer las necesidades energéticas propuestas. 

cipio del proyecto se menciona que un 75 % de la energía que se va a suministrar va a 

11122,87 Wh diarios totales * 0,75 = 8342,15 Wh de energía eólica necesarios.
2390,12 kWh/año * 1000 Wh/ kWh * 1 año/365 días = 6548,27 Wh diarios producidos.
En principio se observa que la energía que produce el aerogenerador no llega al mínimo 
requerido,  pero observando el dimensionado del sistema se pueden sacar conclusiones para 
explicar que la instalación está sobredimensionada: 

ocidades de viento, los valores que se han obtenido de la base de 
datos meteo Navarra, que corresponden a velocidades medias diarias, cuando lo más exacto es 
la toma de valores medios en intervalos de 10 a 15 minutos. En este caso los resultados 

btenidos posiblemente serían mayores, y se llegaría a abastecer el 75 % de la 
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Energía 
(kWh/año) 

0 

0 

0 

0 

388,49 

575,23 

547,97 

441,81 

349,43 

144,97 

16,14 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
2464,04 

2390,12 

con los datos de producción, se puede comprobar si el aerogenerador elegido 

cipio del proyecto se menciona que un 75 % de la energía que se va a suministrar va a 

11122,87 Wh diarios totales * 0,75 = 8342,15 Wh de energía eólica necesarios. 
2390,12 kWh/año * 1000 Wh/ kWh * 1 año/365 días = 6548,27 Wh diarios producidos. 
En principio se observa que la energía que produce el aerogenerador no llega al mínimo 
requerido,  pero observando el dimensionado del sistema se pueden sacar conclusiones para 

ocidades de viento, los valores que se han obtenido de la base de 
datos meteo Navarra, que corresponden a velocidades medias diarias, cuando lo más exacto es 
la toma de valores medios en intervalos de 10 a 15 minutos. En este caso los resultados 

btenidos posiblemente serían mayores, y se llegaría a abastecer el 75 % de la 



 

 

energía necesaria. Por otra parte, con el grupo electrógeno se conseguirá que el suministro de 
energía esté garantizado en caso necesario. Así mismo será conveniente disponer de 
limitadores del consumo en el caso de que no se alcance el mínimo de generación eléctrica 
estimado. 

5. Otras fuentes de energía: diesel u otras
 

El sistema eólico-fotovoltaico va a necesitar un sistema de apoyo energético, en este 
caso va a ser un generador diesel de 1kW, para evitar profundas descargas en el sistema de 
almacenamiento, que pueden ser causadas por una alta demanda de energía puntual o por falta 
de radiación solar y viento. El generador seleccionado es de 1000W de potencia, de la marca 
Taigüer. 

6. Almacenamiento energético
 

Este sistema va a utilizar baterías plomo
modelo de las baterías es Clasic Opzs solar 2350. 
pero simplificando, cada una de 
Dado que se va a trabajar con una tensión de 24 V,  la disposición  de las baterías va a ser 
agrupación de 12 baterías en serie.
número de días de autonomía y la profundidad máxima de descarga a la que deseamos 
someter. Supongamos en este caso 3 días y una profundidad del 70%.

 Q = 110* 11122,86 Wh * 3 días
 Como disponemos de baterías de 
      Nº baterías = 2184,85/ 2350 = 

trabajo. 
En la siguiente figura se muestra cómo quedará la configuración:

Figura 24

7. Posibilidad de conexión a red
 

En principio, puede caber la posibilidad de conectar 
para obtener beneficios, pero luego aparecen abundantes 
distancia a la que puede encontrarse la instalación de 
necesarios cientos o miles de metros de cable, que ocasionarán un gran incremento del coste 
de la instalación, aparte de las pérdidas de tensión ocasionadas. Por otra parte, 
hacer más proyectos, tener un perm
conexión a red, que incrementará considerablemente los costes y hará dudosa su viabilidad y 
rentabilidad económica. 

 

energía necesaria. Por otra parte, con el grupo electrógeno se conseguirá que el suministro de 
energía esté garantizado en caso necesario. Así mismo será conveniente disponer de 
limitadores del consumo en el caso de que no se alcance el mínimo de generación eléctrica 

Otras fuentes de energía: diesel u otras 

fotovoltaico va a necesitar un sistema de apoyo energético, en este 
nerador diesel de 1kW, para evitar profundas descargas en el sistema de 

almacenamiento, que pueden ser causadas por una alta demanda de energía puntual o por falta 
El generador seleccionado es de 1000W de potencia, de la marca 

Almacenamiento energético 

Este sistema va a utilizar baterías plomo-ácido para almacenar la energía generada. 
modelo de las baterías es Clasic Opzs solar 2350. Las características aparecen en

cada una de ellas tiene una tensión de 2V y una capacidad de 2350
se va a trabajar con una tensión de 24 V,  la disposición  de las baterías va a ser 

agrupación de 12 baterías en serie. Para la determinación de la capacidad debe decidirse el 
autonomía y la profundidad máxima de descarga a la que deseamos 

someter. Supongamos en este caso 3 días y una profundidad del 70%. 
días /(24 V * 70)= 2184,85 Ah 

Como disponemos de baterías de 2350 Ah de capacidad: 
= 1  batería, conectando 12 en serie para obtener el voltaje de 

En la siguiente figura se muestra cómo quedará la configuración: 

24. Configuración en serie-paralelo de las baterías. 

de conexión a red 

En principio, puede caber la posibilidad de conectar la instalación a una línea eléctrica 
para obtener beneficios, pero luego aparecen abundantes condicionantes. Uno de ellos, es la 
distancia a la que puede encontrarse la instalación de una línea eléctrica, y para ello será 
necesarios cientos o miles de metros de cable, que ocasionarán un gran incremento del coste 
de la instalación, aparte de las pérdidas de tensión ocasionadas. Por otra parte, 

tener un permiso de conexión y será necesario un complejo equipo de 
conexión a red, que incrementará considerablemente los costes y hará dudosa su viabilidad y 
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energía necesaria. Por otra parte, con el grupo electrógeno se conseguirá que el suministro de 
energía esté garantizado en caso necesario. Así mismo será conveniente disponer de sistemas 
limitadores del consumo en el caso de que no se alcance el mínimo de generación eléctrica 

 

fotovoltaico va a necesitar un sistema de apoyo energético, en este 
nerador diesel de 1kW, para evitar profundas descargas en el sistema de 

almacenamiento, que pueden ser causadas por una alta demanda de energía puntual o por falta 
El generador seleccionado es de 1000W de potencia, de la marca 

ácido para almacenar la energía generada. El 
aparecen en el anexo, 

ne una tensión de 2V y una capacidad de 2350 Ah. 
se va a trabajar con una tensión de 24 V,  la disposición  de las baterías va a ser una 

Para la determinación de la capacidad debe decidirse el 
autonomía y la profundidad máxima de descarga a la que deseamos 

batería, conectando 12 en serie para obtener el voltaje de 

 

a una línea eléctrica 
. Uno de ellos, es la 

una línea eléctrica, y para ello será 
necesarios cientos o miles de metros de cable, que ocasionarán un gran incremento del coste 
de la instalación, aparte de las pérdidas de tensión ocasionadas. Por otra parte, habrá que 

un complejo equipo de 
conexión a red, que incrementará considerablemente los costes y hará dudosa su viabilidad y 



 

 

8. Conclusiones 
 

El resultado de la optimización de la superficie fotovoltaica es el mi
casos estudiados, ya que en ambos se obtiene el mes de diciembre como el más desfavorable, 
y a través de él se calculan los paneles necesarios. Usando el método de dos inclinaciones  
será más ventajoso, debido a que se captará  más cantida
resultados obtenidos son inferiores a los esperados. Esto se debe a que es preferible realizar el 
estudio con datos de 10 minutos en vez de con medias diarias, ya que no se aprecian los picos 
máximos de velocidad, y e
rendimiento. Como no había datos de intervalos de 10 minutos, se utilizaron los datos medios 
diarios. Si lo que se desea es una mayor precisión en el dimensionamiento, podrían adquirirse 
datos de viento en una base diezminutal, a través de la Agencia Estatal de Meteorología 
(AEMet) u otra entidad similar
Por último, es conveniente incluir un sistema de control en el equipo, cuya función se 
desconectar alguna carga si hay poca generación.
 
  

 

El resultado de la optimización de la superficie fotovoltaica es el mi
casos estudiados, ya que en ambos se obtiene el mes de diciembre como el más desfavorable, 
y a través de él se calculan los paneles necesarios. Usando el método de dos inclinaciones  
será más ventajoso, debido a que se captará  más cantidad de radiación. En la parte eólica los 
resultados obtenidos son inferiores a los esperados. Esto se debe a que es preferible realizar el 
estudio con datos de 10 minutos en vez de con medias diarias, ya que no se aprecian los picos 
máximos de velocidad, y en esos picos es donde el aerogenerador tiene un mayor 
rendimiento. Como no había datos de intervalos de 10 minutos, se utilizaron los datos medios 
diarios. Si lo que se desea es una mayor precisión en el dimensionamiento, podrían adquirirse 

en una base diezminutal, a través de la Agencia Estatal de Meteorología 
(AEMet) u otra entidad similar 
Por último, es conveniente incluir un sistema de control en el equipo, cuya función se 
desconectar alguna carga si hay poca generación. 
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El resultado de la optimización de la superficie fotovoltaica es el mismo para los dos 
casos estudiados, ya que en ambos se obtiene el mes de diciembre como el más desfavorable, 
y a través de él se calculan los paneles necesarios. Usando el método de dos inclinaciones  

. En la parte eólica los 
resultados obtenidos son inferiores a los esperados. Esto se debe a que es preferible realizar el 
estudio con datos de 10 minutos en vez de con medias diarias, ya que no se aprecian los picos 

n esos picos es donde el aerogenerador tiene un mayor 
rendimiento. Como no había datos de intervalos de 10 minutos, se utilizaron los datos medios 
diarios. Si lo que se desea es una mayor precisión en el dimensionamiento, podrían adquirirse 

en una base diezminutal, a través de la Agencia Estatal de Meteorología 

Por último, es conveniente incluir un sistema de control en el equipo, cuya función se 
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Anexo 5: resultados simulaciones

 En el siguiente anexo aparecen todas las simulaciones realizadas en el proyecto, en las 
que se define brevemente como es el sistema, y unas conclusiones al final de cada una
indicando los aspectos positivos y algún posible inconveniente si se lleva a la 

 

Figura 25. Entrada de valores fotovoltaicos.
aparece la curva de costes. 

Figura 26. Entrada del convertidor.

: resultados simulaciones 

En el siguiente anexo aparecen todas las simulaciones realizadas en el proyecto, en las 
que se define brevemente como es el sistema, y unas conclusiones al final de cada una
indicando los aspectos positivos y algún posible inconveniente si se lleva a la 

 
. Entrada de valores fotovoltaicos. Valores de potencia de entrada en un rango de 4

 

 
. Entrada del convertidor. Se introducen varias potencias para una simulación más completa.
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En el siguiente anexo aparecen todas las simulaciones realizadas en el proyecto, en las 
que se define brevemente como es el sistema, y unas conclusiones al final de cada una 
indicando los aspectos positivos y algún posible inconveniente si se lleva a la práctica. 

Valores de potencia de entrada en un rango de 4-6 kW. A la derecha 

Se introducen varias potencias para una simulación más completa. 



 

 

Caso 1: Sistema aislado solo con fotovoltaica para 
alimentar una carga eléctrica

En el primer caso estudiado solamente se utilizan módulos fotovoltaicos para producir 
la electricidad necesaria que alimente a la carga eléctrica.
Tras observar los resultados de las figuras se obtienen los siguientes resultados:

• Coste del kWh del sistema más óptimo: 0,552$/kWh
• Potencia fotovoltaica empleada: 4,00 kW
• Potencia eólica empleada: 0
• Potencia de generador empleada: 0
• Número de baterías: 32

 
Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía so
necesario un grupo electrógeno de apoyo. El número de baterías usado es elevado para el 
perfil del tipo de carga de la vivienda y sufrirán profundas descargas.
 
 
 

 
Figura 27. Entrada de las baterías. 

 

: Sistema aislado solo con fotovoltaica para 
una carga eléctrica. 

En el primer caso estudiado solamente se utilizan módulos fotovoltaicos para producir 
la electricidad necesaria que alimente a la carga eléctrica. 
Tras observar los resultados de las figuras se obtienen los siguientes resultados:

e del kWh del sistema más óptimo: 0,552$/kWh 
Potencia fotovoltaica empleada: 4,00 kW 
Potencia eólica empleada: 0 kW 
Potencia de generador empleada: 0 kW 
Número de baterías: 32 

Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía so
necesario un grupo electrógeno de apoyo. El número de baterías usado es elevado para el 
perfil del tipo de carga de la vivienda y sufrirán profundas descargas. 
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: Sistema aislado solo con fotovoltaica para 

En el primer caso estudiado solamente se utilizan módulos fotovoltaicos para producir 

Tras observar los resultados de las figuras se obtienen los siguientes resultados: 

Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía solar, sería 
necesario un grupo electrógeno de apoyo. El número de baterías usado es elevado para el 



 

 

Figura 28. Resultados de simulación 1.
creciente respecto al precio del kWh

Figura 29. Resumen de costes simulación 1.

 

Figura 30. Datos eléctricos del sistema 1.
otoño. Esto se debe a que en estas épocas la temperatura del ambiente es óptima para los módulos fotovoltaicos 
(20-25ºC). 

 

sultados de simulación 1. Aparece una gran variedad de resultados que se ordenan de forma 
creciente respecto al precio del kWh 

 
. Resumen de costes simulación 1. El precio de las baterías supone más del 60% del coste total.

 
Datos eléctricos del sistema 1. Mayores valores de producción eléctrica para los meses de primavera y 

otoño. Esto se debe a que en estas épocas la temperatura del ambiente es óptima para los módulos fotovoltaicos 
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n variedad de resultados que se ordenan de forma 

 
El precio de las baterías supone más del 60% del coste total. 

Mayores valores de producción eléctrica para los meses de primavera y 
otoño. Esto se debe a que en estas épocas la temperatura del ambiente es óptima para los módulos fotovoltaicos 



 

 

Figura 

 

 

Caso 2: Sistema híbrido de fotovoltaica
electrógeno para carga eléctrica.

 
Simulación a partir de módulos fotovoltaicos de 250 Wp y 

electrógeno. Tras observar los resultados de las figuras se obtienen los siguientes resultados:

• Coste del kWh del sistema más óptimo: 0,554$/kWh
• Potencia fotovoltaica empleada: 4,00 kW
• Potencia eólica empleada: 0 kW
• Potencia de generador 
• Número de baterías: 16

 

Conclusión: Sistema ligeramente más económico que el anterior, además tiene una mejora de 
optimización (apoyo de grupo electrógeno), que reduce el uso de baterías. El inconveniente es 

Figura 31. Datos de salida fotovoltaica caso 1. 

 
Figura 32. Estado de las baterías caso 1. 

Sistema híbrido de fotovoltaica
electrógeno para carga eléctrica. 

a partir de módulos fotovoltaicos de 250 Wp y con apoyo de grupo 
ógeno. Tras observar los resultados de las figuras se obtienen los siguientes resultados:

Coste del kWh del sistema más óptimo: 0,554$/kWh 
Potencia fotovoltaica empleada: 4,00 kW 
Potencia eólica empleada: 0 kW 

 empleada: 1 kW 
Número de baterías: 16 

Conclusión: Sistema ligeramente más económico que el anterior, además tiene una mejora de 
optimización (apoyo de grupo electrógeno), que reduce el uso de baterías. El inconveniente es 
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Sistema híbrido de fotovoltaica y grupo 

con apoyo de grupo 
ógeno. Tras observar los resultados de las figuras se obtienen los siguientes resultados: 

Conclusión: Sistema ligeramente más económico que el anterior, además tiene una mejora de 
optimización (apoyo de grupo electrógeno), que reduce el uso de baterías. El inconveniente es 



 

 

que todavía se siguen produciend
el caso anterior. 

Figura 33.Entrada del generador caso 2.
encuentre el más óptimo. 

Figura 34.Resultados de simulación 2.
generalmente incrementa los costes. Esto se debe a que la utilización de grupo electrógeno de apoyo
la dependencia del sistema de acumulación, lo que conlleva a un menor gasto.

que todavía se siguen produciendo  descargas de las baterías, aunque no tan profundas como 

 
.Entrada del generador caso 2. Se introducen varios valores de potencia de entrada para que el software 

.Resultados de simulación 2. El sistema con grupo electrógeno resulta más económico pese a que 
generalmente incrementa los costes. Esto se debe a que la utilización de grupo electrógeno de apoyo

acumulación, lo que conlleva a un menor gasto. 
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o  descargas de las baterías, aunque no tan profundas como 

Se introducen varios valores de potencia de entrada para que el software 

 
El sistema con grupo electrógeno resulta más económico pese a que 

generalmente incrementa los costes. Esto se debe a que la utilización de grupo electrógeno de apoyo disminuye 



 

 

Figura 35. Resumen de costes simulación 2.

Figura 36. Datos eléctricos caso 2. Mayor util
invierno. 

Figura 37. Estado de las baterías caso 2.
tanto no es muy recomendable este sistema.

 
. Resumen de costes simulación 2. En este caso las baterías suponen un 50% del precio del sistema.

Mayor utilización del grupo electrógeno en verano y algunos meses de 

 
 

. Estado de las baterías caso 2. Se observa que las baterías sufren descargas de hasta el 70%, por lo 
tanto no es muy recomendable este sistema. 
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En este caso las baterías suponen un 50% del precio del sistema. 

 
ización del grupo electrógeno en verano y algunos meses de 

 
Se observa que las baterías sufren descargas de hasta el 70%, por lo 



 

 

 

Caso 3: Sistema híbrido de aero
generador para carga eléctrica.
 Simulación a partir de un aerogenerador de 3kW de potencia nominal apoyado de un 
generador eléctrico. A continuación se muestra

• Coste del kWh del sistema más óptimo: 0,819$/kWh
• Potencia fotovoltaica empleada: 0 kW
• Potencia eólica empleada: 3 kW
• Potencia de generador empleada: 1 kW
• Número de baterías: 16

Conclusión: Sistema inviable económicamente, pero e
de casos anteriores. 

 

 

 

Figura 38. Emisiones caso 2. 

Caso 3: Sistema híbrido de aerogenerador y 
generador para carga eléctrica. 

Simulación a partir de un aerogenerador de 3kW de potencia nominal apoyado de un 
generador eléctrico. A continuación se muestran los resultados obtenidos. 

Coste del kWh del sistema más óptimo: 0,819$/kWh 
Potencia fotovoltaica empleada: 0 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 1 kW 
Número de baterías: 16 

Conclusión: Sistema inviable económicamente, pero el sistema de baterías será mejor que el 
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generador y 

Simulación a partir de un aerogenerador de 3kW de potencia nominal apoyado de un 

l sistema de baterías será mejor que el 



 

 

Figura 39. Entrada aerogenerador. A la derecha aparece la curva de potencia del aerogenerador y debajo la curva 
de costes. 
 

Figura 40. Resultados simulación 3. 
electrógeno y el último un híbrido eólico
debido especialmente a que es más estable y por lo t
energía menor. 

 
A la derecha aparece la curva de potencia del aerogenerador y debajo la curva 

 Se presentan 3 sistemas, uno con solo aerogenerador, otro solo con grupo 
electrógeno y el último un híbrido eólico-generador. Este último tiene un coste más económico que los otros, 
debido especialmente a que es más estable y por lo tanto se necesita una capacidad de almacenamiento de 
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A la derecha aparece la curva de potencia del aerogenerador y debajo la curva 

 
Se presentan 3 sistemas, uno con solo aerogenerador, otro solo con grupo 

generador. Este último tiene un coste más económico que los otros, 
anto se necesita una capacidad de almacenamiento de 



 

 

Figura 41. Resumen de costes simulación 3.

Figura 42. Datos eléctricos caso 3. Mayor uso de grupo electrógeno en los meses de marzo, septiembre y 
octubre. 

Figura 43. Datos de salida eólica caso 3.
zonas coloreadas de color rojo son los picos de máxima potencia de salida, mientras que el negro es el de menor 
potencia. 

 

 
. Resumen de costes simulación 3. El aerogenerador será el elemento más costoso en este caso.

 
Mayor uso de grupo electrógeno en los meses de marzo, septiembre y 

. Datos de salida eólica caso 3. Representación gráfica de la potencia de salida  del aerogenerador. Las 
los picos de máxima potencia de salida, mientras que el negro es el de menor 
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El aerogenerador será el elemento más costoso en este caso. 

 
Mayor uso de grupo electrógeno en los meses de marzo, septiembre y 

 
Representación gráfica de la potencia de salida  del aerogenerador. Las 

los picos de máxima potencia de salida, mientras que el negro es el de menor 



 

 

Figura 44. Datos de salida generador caso 3.

 

Figura 45. Estado de las baterías caso 3.
baterías. 

. Datos de salida generador caso 3. El color rojo indica picos de máxima potencia de salida.

Estado de las baterías caso 3. Sistema más estable con menor cantidad de profundas descargas de las 

Figura 46. Emisiones caso 3. 
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El color rojo indica picos de máxima potencia de salida. 

 
Sistema más estable con menor cantidad de profundas descargas de las 

 



 

 

Caso 4: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga
eléctrica. 
 Este sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
aerogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas de la 
vivienda. 

• Coste del kWh del sistema más óptimo: 0,504$/kWh
• Potencia fotovoltaica e
• Potencia eólica empleada: 3 kW
• Potencia de generador empleada: 1 kW
• Número de baterías: 16

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
dispone la zona, por lo tanto este tipo de instalación será una 
deban de elegir. Muy buena respuesta de las baterías al producirse electricidad durante todo el 
día procedente de fuente renovable.

 
 

Figura 47. Resultados simulación 4. 
sistema con apoyo. 

 
 

: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga

sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
aerogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas de la 

Coste del kWh del sistema más óptimo: 0,504$/kWh 
Potencia fotovoltaica empleada: 2,25 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 1 kW 
Número de baterías: 16 

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
, por lo tanto este tipo de instalación será una de las mejores opciones que se 

deban de elegir. Muy buena respuesta de las baterías al producirse electricidad durante todo el 
día procedente de fuente renovable. 

 El sistema sin electrógeno resulta más económico, pero es mejor utilizar un 
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: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga 

sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
aerogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas de la 

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
de las mejores opciones que se 

deban de elegir. Muy buena respuesta de las baterías al producirse electricidad durante todo el 

 
esulta más económico, pero es mejor utilizar un 



 

 

Figura 48. Resumen costes simulación 4.

 

Figura 49. Datos eléctricos caso 4. Se observa un pico de producción eléctrica en febrero. El mes de febrero 
produce el doble de electricidad que en octubre.

 

Figura 50. Estado de las baterías caso 4.

 

 
. Resumen costes simulación 4. El 75% del coste de la instalación es del aerogenerador y las baterías.

Se observa un pico de producción eléctrica en febrero. El mes de febrero 
produce el doble de electricidad que en octubre. 

. Estado de las baterías caso 4. Como se puede ver, el estado de carga de las bater
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El 75% del coste de la instalación es del aerogenerador y las baterías. 

 
Se observa un pico de producción eléctrica en febrero. El mes de febrero 

 
Como se puede ver, el estado de carga de las baterías es muy estable. 



 

 

 

Caso 5: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga eléctrica 
y ACS. 
 Este sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
aerogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas y ACS 
de la vivienda. Se presentan dos casos para estudiar su efecto.
Caso A: Sin grupo electrógeno

• Coste del kWh del sistema más óp
• Potencia fotovoltaica empl
• Potencia eólica empleada: 3 kW
• Potencia de generador empleada:
• Número de baterías: 32
•  

Caso B: Con grupo electrógeno

• Coste del kWh del sistema más óptimo: 0,467$/kWh
• Potencia fotovoltaica empleada: 3.50 kW
• Potencia eólica empleada: 3 kW
• Potencia de generador empleada: 1 kW
• Número de baterías: 32

 

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
dispone la zona, por lo tanto este tipo de instalación será una de las mejores opciones que se 
deban de elegir. El caso A es ligeramente más económico al B, gracias a la ausencia de 
generador, pero la respuesta de las baterías es notablemente mejor en el caso B, que dispone 
de generador y evita profundas descargas de las baterías. La cantidad de baterías es elevada
pero es necesario debido a que ahora trabajamos con dos cargas eléctricas.

Figura 51. Emisiones caso 4. 

: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga eléctrica 

sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
rogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas y ACS 

de la vivienda. Se presentan dos casos para estudiar su efecto. 
trógeno 

Coste del kWh del sistema más óptimo: 0,454$/kWh 
Potencia fotovoltaica empleada: 3.25 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 0 kW 

32 

Caso B: Con grupo electrógeno 

Coste del kWh del sistema más óptimo: 0,467$/kWh 
Potencia fotovoltaica empleada: 3.50 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 1 kW 
Número de baterías: 32 

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
dispone la zona, por lo tanto este tipo de instalación será una de las mejores opciones que se 

El caso A es ligeramente más económico al B, gracias a la ausencia de 
generador, pero la respuesta de las baterías es notablemente mejor en el caso B, que dispone 
de generador y evita profundas descargas de las baterías. La cantidad de baterías es elevada
pero es necesario debido a que ahora trabajamos con dos cargas eléctricas. 
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: Sistema híbrido de aerogenerador, 
fotovoltaica y grupo electrógeno para carga eléctrica 

sistema simula una instalación de módulos fotovoltaicos de 250 Wp, 
rogenerador de 3kW y grupo electrógeno para alimentar las necesidades eléctricas y ACS 

Conclusión: Sistema económicamente viable, además dispone de todos los recursos que 
dispone la zona, por lo tanto este tipo de instalación será una de las mejores opciones que se 

El caso A es ligeramente más económico al B, gracias a la ausencia de 
generador, pero la respuesta de las baterías es notablemente mejor en el caso B, que dispone 
de generador y evita profundas descargas de las baterías. La cantidad de baterías es elevada 

 



 

 

 

Figura 53. Resumen costes de simulación 
frente a los otros elementos. 

 

Figura 52. Resultados simulación caso 5.  

. Resumen costes de simulación caso 5 sin electrógeno. El coste de las baterías es el predominante 
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erías es el predominante 



 

 

Figura 54. Datos eléctricos caso 5

 

Figura 55. Estado baterías caso 5 sin 
baterías de más del 60%. 

 

Figura 

. Datos eléctricos caso 5 sin electrógeno. Se observa un pico de producción eléctrica en febrero.

. Estado baterías caso 5 sin electrógeno. Se aprecia una ligera probabilidad de una descarga de las 

Figura 56. Emisiones caso 5 sin electrógeno. 
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Se observa un pico de producción eléctrica en febrero. 

 
Se aprecia una ligera probabilidad de una descarga de las 

 



 

 

 
 

Con grupo electrógeno: 

 

 

Figura 57. Resumen costes caso 5.  

Figura 58. Datos eléctricos caso 5. 
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Figura 59. Estado de las baterías caso 5.

 

Figura 61. Introducción de carga de ACS.
día, en el centro, una representación gráfica de las cargas repartidas.

. Estado de las baterías caso 5. Al incluir grupo electrógeno, las baterías apenas se descargarán un 30%.

Figura 60. Emisiones caso 5. 

 

. Introducción de carga de ACS. A la izquierda aparece una distribución de las cargas en cada hora del 
día, en el centro, una representación gráfica de las cargas repartidas. 
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Al incluir grupo electrógeno, las baterías apenas se descargarán un 30%. 

 

 
A la izquierda aparece una distribución de las cargas en cada hora del 



 

 

Caso 6: Sistema fotovoltaico para ca
ACS. 

Sistema similar al caso 1, pero esta vez se aplica a dos cargas. Tras observar los 
resultados de las figuras se obtienen los siguientes resultados:

• Coste del kWh del sistema más óptimo: 0,446$/kWh
• Potencia fotovoltaica empleada: 5,25 k
• Potencia eólica empleada: 0 kW
• Potencia de generador empleada: 0 kW
• Número de baterías: 32

 
Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía solar, sería 
necesario un grupo electrógeno de apoyo. El banco de baterías va a sufri
y la vida útil se verá afectada. 
 

Figura 62. Resumen costes caso 6.

 

Sistema fotovoltaico para carga eléctrica y 

Sistema similar al caso 1, pero esta vez se aplica a dos cargas. Tras observar los 
resultados de las figuras se obtienen los siguientes resultados: 

Coste del kWh del sistema más óptimo: 0,446$/kWh 
Potencia fotovoltaica empleada: 5,25 kW 
Potencia eólica empleada: 0 kW 
Potencia de generador empleada: 0 kW 
Número de baterías: 32 

Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía solar, sería 
necesario un grupo electrógeno de apoyo. El banco de baterías va a sufrir profundas descargas 

 

 
. Resumen costes caso 6. Coste de las baterías de aproximadamente un 80% del total.

Figura 63. Datos eléctricos caso 6. 
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rga eléctrica y 

Sistema similar al caso 1, pero esta vez se aplica a dos cargas. Tras observar los 

Conclusión: Sistema no viable, debido a una fuerte dependencia de la energía solar, sería 
r profundas descargas 

 
Coste de las baterías de aproximadamente un 80% del total. 

 



 

 

 

Figura 64. Estado de las baterías caso 6.
aconsejable. 

 
 

Caso 7: Sistema eólico y generador para carga 
eléctrica y ACS. 

Híbrido de aerogenerador y grupo electrógeno. Se utilizara
cubrir la demanda energética. 

• Coste del kWh del sistema más óptimo: 0,619
• Potencia fotovoltaica empleada:
• Potencia eólica empleada:
• Potencia de generador empleada:
• Número de baterías: 32
 

Conclusión: Sistema poco rentable por el elevado coste del kWh.

 

. Estado de las baterías caso 6. Se dan situaciones en las que se descargan las baterías más de lo 

Sistema eólico y generador para carga 
 

Híbrido de aerogenerador y grupo electrógeno. Se utilizaran 3 aerogeneradores para 
 

Wh del sistema más óptimo: 0,619$/kWh 
Potencia fotovoltaica empleada: 0 kW 
Potencia eólica empleada: 9 kW 
Potencia de generador empleada: 1 kW 
Número de baterías: 32 

o rentable por el elevado coste del kWh. 
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Se dan situaciones en las que se descargan las baterías más de lo 

Sistema eólico y generador para carga 

n 3 aerogeneradores para 



 

 

Figura 65. Resultados simulación caso 7

Figura 66. Resumen costes caso 7.

 

. Resultados simulación caso 7 muestra tres sistemas, siendo el eólico con generador el más rentable.

. Resumen costes caso 7. Los costes del aerogenerador son superiores que el de las baterías.

Figura 67. Datos eléctricos caso 7. 
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ra tres sistemas, siendo el eólico con generador el más rentable. 

 
aerogenerador son superiores que el de las baterías. 

 



 

 

 

 

 

 

Caso 8: Sistema c
eléctrica y ACS. 

Sistema únicamente compuesto por generador eléctrico de gasóleo para cubrir la 
demanda eléctrica y de ACS 

• Coste del kWh del sistema más óptimo: 1,738
• Potencia fotovoltaica empleada: 0 kW
• Potencia eólica empleada: 0
• Potencia de generador empleada: 2
• Número de baterías: 32
 

 
Figura 68. Estado de las baterías caso 7. 

Figura 69. Emisiones. 

Sistema con grupo electrógeno para carga 
 

Sistema únicamente compuesto por generador eléctrico de gasóleo para cubrir la 

Wh del sistema más óptimo: 1,738$/kWh 
Potencia fotovoltaica empleada: 0 kW 

empleada: 0 kW 
otencia de generador empleada: 2 kW 

Número de baterías: 32 
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para carga 

Sistema únicamente compuesto por generador eléctrico de gasóleo para cubrir la 



 

 

Conclusión: Es el peor sistema de todas las simulaciones. Tiene un coste elevado, emite 
una elevada cantidad de CO
cuando es recomendable que la carga esté en un rango de 70

Figura 

 

Figura 71. Resumen de costes caso 8.

Es el peor sistema de todas las simulaciones. Tiene un coste elevado, emite 
una elevada cantidad de CO2 y las baterías siempre están por debajo del 80% de carga, 

o es recomendable que la carga esté en un rango de 70-100%. 

Figura 70. Resultados de simulación caso 8. 

. Resumen de costes caso 8. El coste del generador supone un 80% de la inversión total.

 

70 

Es el peor sistema de todas las simulaciones. Tiene un coste elevado, emite 
y las baterías siempre están por debajo del 80% de carga, 

 

 
El coste del generador supone un 80% de la inversión total. 



 

 

 

Figura 73. Estado de las baterías caso 8.
debajo del 80% de la carga total. 

 

 
Figura 72. Datos eléctricos caso 8. 

 
. Estado de las baterías caso 8. En la grafica se observa que la carga de las baterías siempre está por 

Figura 74. Emisiones caso 8.  
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En la grafica se observa que la carga de las baterías siempre está por 

 



 

 

 

Caso 9: Sistema fotovoltaico para ACS.
 Es el mismo caso que en las simulaciones 1 y 6 
estudiar un sistema que se utilice para el uso de ACS.

• Coste del kWh del sistema más óptimo:
• Potencia fotovoltaica empleada: 1,25 kW
• Potencia eólica empleada: 0 kW
• Potencia de generador empleada: 0 kW
• Número de baterías: 32
 

Conclusión: Sistema poco rentable por el elevado coste del kWh, y como en casos 
anteriores es necesario el uso d

 

Figura 

Figura 76. Resumen costes caso 9. El precio de las baterías es muy superior que el de los módulos fotovoltaicos. 
(25.000$ frente a 2200$). 

Sistema fotovoltaico para ACS. 
Es el mismo caso que en las simulaciones 1 y 6 pero esta vez únicamente se quiere 

estudiar un sistema que se utilice para el uso de ACS. 

Coste del kWh del sistema más óptimo: 0,740$/kWh 
Potencia fotovoltaica empleada: 1,25 kW 
Potencia eólica empleada: 0 kW 
Potencia de generador empleada: 0 kW 
Número de baterías: 32 

Conclusión: Sistema poco rentable por el elevado coste del kWh, y como en casos 
anteriores es necesario el uso de un grupo electrógeno de apoyo. 

Figura 75. Resultados de simulación caso 9. 

El precio de las baterías es muy superior que el de los módulos fotovoltaicos. 
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pero esta vez únicamente se quiere 

Conclusión: Sistema poco rentable por el elevado coste del kWh, y como en casos 

 

 
El precio de las baterías es muy superior que el de los módulos fotovoltaicos. 



 

 

Caso 10: Sistema eólico y fotovoltaico para ACS.
Híbrido de aerogenerador y módulos fotovoltaicos para cubri

• Coste del kWh del sistema más óptimo: 0,996$/kWh
• Potencia fotovoltaica empleada: 0,25 kW
• Potencia eólica empleada: 3 kW
• Potencia de generador empleada: 0 kW
• Número de baterías: 32
 

Conclusión: Sistema poco rentable por el elevado coste 

 

Figura 77. Datos eléctricos caso 9. 

Figura 78. Estado de las baterías caso 9. 

Caso 10: Sistema eólico y fotovoltaico para ACS.
Híbrido de aerogenerador y módulos fotovoltaicos para cubrir la demanda de ACS
Coste del kWh del sistema más óptimo: 0,996$/kWh 
Potencia fotovoltaica empleada: 0,25 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 0 kW 
Número de baterías: 32 

Conclusión: Sistema poco rentable por el elevado coste del kWh. 

73 

 

 

Caso 10: Sistema eólico y fotovoltaico para ACS. 
r la demanda de ACS 



 

 

Figura 

 

Figura 79. Resultados de la simulación 10. 

Figura 80. Resumen costes caso 10. 

 

Figura 81. Datos eléctricos caso 10. 
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Figura 82. Estado de las baterías caso 10.
indica que es probable que se produzcan sobrecargas.

Caso 11: Sistema eólico, fotovoltaica y generador 
para ACS. 

Híbrido de aerogenerador, módulos fotovoltaico
• Coste del kWh del sistema más óptimo: 1,10
• Potencia fotovoltaica empleada: 0
• Potencia eólica empleada:
• Potencia de generador empleada: 1 kW
• Número de baterías: 32
 

Conclusión: Sistema poco rentable por el elevado cos

 

las baterías caso 10. El estado de las baterías la mayor parte del tiempo será del 100%. Esto 
indica que es probable que se produzcan sobrecargas. 

 
 
 

Sistema eólico, fotovoltaica y generador 

Híbrido de aerogenerador, módulos fotovoltaicos y grupo electrógeno. 
Wh del sistema más óptimo: 1,10$/kWh 

Potencia fotovoltaica empleada: 0,25 kW 
Potencia eólica empleada: 3 kW 
Potencia de generador empleada: 1 kW 
Número de baterías: 32 

Conclusión: Sistema poco rentable por el elevado coste del kWh. 
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El estado de las baterías la mayor parte del tiempo será del 100%. Esto 

Sistema eólico, fotovoltaica y generador 

grupo electrógeno.  



 

 

Figura Figura 83.Resultados simulación caso 11. 

 

Figura 84. Resumen costes caso 11. 
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Figura 86. Estado de las baterías caso 11.
sobrecarga debido a que hay superproducción de electricidad.

 

Limitaciones 

• Aerogenerador: Siempre y cuando 
media, un sistema hibrido con miniaerogenerador será muy eficaz.

• Paneles fotovoltaicos: La temperatura en la instalación puede ser un problema en la 
producción eléctrica de los paneles fotovoltaicos (generalmente las altas temperaturas 
están relacionadas con una a
tensión en los módulos y una disminución del rendimiento en estos.

Figura 85. Datos eléctricos caso 11. 

 
 

ado de las baterías caso 11. Sucede lo mismo que el caso anterior. Las baterías sufrirán una 
sobrecarga debido a que hay superproducción de electricidad. 

: Siempre y cuando la velocidad del viento no supere los 20 m/s de 
n sistema hibrido con miniaerogenerador será muy eficaz. 

Paneles fotovoltaicos: La temperatura en la instalación puede ser un problema en la 
producción eléctrica de los paneles fotovoltaicos (generalmente las altas temperaturas 
están relacionadas con una alta radiación). Una alta temperatura provoca caídas de 
tensión en los módulos y una disminución del rendimiento en estos.
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Sucede lo mismo que el caso anterior. Las baterías sufrirán una 

la velocidad del viento no supere los 20 m/s de 
 

Paneles fotovoltaicos: La temperatura en la instalación puede ser un problema en la 
producción eléctrica de los paneles fotovoltaicos (generalmente las altas temperaturas 

lta radiación). Una alta temperatura provoca caídas de 
tensión en los módulos y una disminución del rendimiento en estos. 



 

 

• Aireación: El generador de apoyo debe de colocarse en un lugar bien aireado. La falta 
de oxigeno puede provocar una mala combustión, y
rendimiento del equipo y a un aumento de producción de CO (gas muy peligroso).

• Baterías: Debido a que es el elemento más costoso de la instalación, se tiene que 
prestar especial atención, eligiendo un número de baterías 
instalación. Un sistema con déficit de producción eléctrica, o un exceso de demanda 
puede perjudicar seriamente a la vida de las baterías. Por lo tanto, es conveniente 
sobredimensionar el sistema y disponer de varios recursos. A su v
superproducción eléctrica también será perjudicial para el estado de salud de las 
baterías. 

• Precio del combustible: Debido a la incertidumbre de los precios de los combustibles 
fósiles, as aconsejable no depender fuertemente de ellos, pe
mínimo apoyo al sistema.

Ventajas e inconvenientes de algunos sistemas

• Sistema híbrido Fotovoltaico
más simples que el que se ha elegido en el proyecto, y esto conlleva a una
dependencia del usuario con respecto a la instalación. El problema se encuentra en qué 
dependen de un único recurso renovable. La energía eólica y fotovoltaica  se 
caracteriza principalmente por ser recursos que no se disponen justamente en el 
momento que se requieren, por lo tanto se necesita un grupo electrógeno de mayor 
tamaño. 

• Sistema híbrido Fotovoltaico
sistema aislado. Este híbrido es más recomendado que los anteriores. El sistema ya no 
depende tanto de los combustibles fósiles y además se evitan profundas descargas en 
el banco de baterías. Se hace más constante la entrada de electricidad y así se alarga la 
vida útil del sistema. 

• Sistema fotovoltaico sin apoyo de grupo electrógeno:

fuerte dependencia de la energía solar, sería necesario un grupo electrógeno de apoyo. 

El número de baterías usado es elevado para el perfil del tipo de carga de la vivienda y 

sufrirán profundas descargas.

• Sistema basado en grupo electrógeno

Tiene un coste elevado, emite una elevada cantidad de CO

están por debajo del 80% de carga, cuando es recomendable que la carga esté en un 

rango de 70-100%. 

 

 

 

Aireación: El generador de apoyo debe de colocarse en un lugar bien aireado. La falta 
de oxigeno puede provocar una mala combustión, y esto conlleva a la disminución del 
rendimiento del equipo y a un aumento de producción de CO (gas muy peligroso).

Baterías: Debido a que es el elemento más costoso de la instalación, se tiene que 
prestar especial atención, eligiendo un número de baterías acorde al tamaño de la 
instalación. Un sistema con déficit de producción eléctrica, o un exceso de demanda 
puede perjudicar seriamente a la vida de las baterías. Por lo tanto, es conveniente 
sobredimensionar el sistema y disponer de varios recursos. A su v
superproducción eléctrica también será perjudicial para el estado de salud de las 

Precio del combustible: Debido a la incertidumbre de los precios de los combustibles 
fósiles, as aconsejable no depender fuertemente de ellos, pero hay que disponer de un 
mínimo apoyo al sistema. 

tes de algunos sistemas: 

Sistema híbrido Fotovoltaico-electrógeno y eólico-Electrógeno: Se trata de sistemas 
más simples que el que se ha elegido en el proyecto, y esto conlleva a una
dependencia del usuario con respecto a la instalación. El problema se encuentra en qué 
dependen de un único recurso renovable. La energía eólica y fotovoltaica  se 
caracteriza principalmente por ser recursos que no se disponen justamente en el 

to que se requieren, por lo tanto se necesita un grupo electrógeno de mayor 

Sistema híbrido Fotovoltaico-eólico-electrógeno: Sistema por excelencia para un 
sistema aislado. Este híbrido es más recomendado que los anteriores. El sistema ya no 

e tanto de los combustibles fósiles y además se evitan profundas descargas en 
el banco de baterías. Se hace más constante la entrada de electricidad y así se alarga la 

Sistema fotovoltaico sin apoyo de grupo electrógeno: Sistema no viable, debido a una 

fuerte dependencia de la energía solar, sería necesario un grupo electrógeno de apoyo. 

El número de baterías usado es elevado para el perfil del tipo de carga de la vivienda y 

sufrirán profundas descargas. 

grupo electrógeno: Es el peor sistema de todas las simulaciones. 

Tiene un coste elevado, emite una elevada cantidad de CO2 y las baterías siempre 

están por debajo del 80% de carga, cuando es recomendable que la carga esté en un 
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Aireación: El generador de apoyo debe de colocarse en un lugar bien aireado. La falta 
esto conlleva a la disminución del 

rendimiento del equipo y a un aumento de producción de CO (gas muy peligroso). 

Baterías: Debido a que es el elemento más costoso de la instalación, se tiene que 
acorde al tamaño de la 

instalación. Un sistema con déficit de producción eléctrica, o un exceso de demanda 
puede perjudicar seriamente a la vida de las baterías. Por lo tanto, es conveniente 
sobredimensionar el sistema y disponer de varios recursos. A su vez, un sistema con 
superproducción eléctrica también será perjudicial para el estado de salud de las 

Precio del combustible: Debido a la incertidumbre de los precios de los combustibles 
ro hay que disponer de un 

Se trata de sistemas 
más simples que el que se ha elegido en el proyecto, y esto conlleva a una menor 
dependencia del usuario con respecto a la instalación. El problema se encuentra en qué 
dependen de un único recurso renovable. La energía eólica y fotovoltaica  se 
caracteriza principalmente por ser recursos que no se disponen justamente en el 

to que se requieren, por lo tanto se necesita un grupo electrógeno de mayor 

electrógeno: Sistema por excelencia para un 
sistema aislado. Este híbrido es más recomendado que los anteriores. El sistema ya no 

e tanto de los combustibles fósiles y además se evitan profundas descargas en 
el banco de baterías. Se hace más constante la entrada de electricidad y así se alarga la 

Sistema no viable, debido a una 

fuerte dependencia de la energía solar, sería necesario un grupo electrógeno de apoyo. 

El número de baterías usado es elevado para el perfil del tipo de carga de la vivienda y 

: Es el peor sistema de todas las simulaciones. 

y las baterías siempre 

están por debajo del 80% de carga, cuando es recomendable que la carga esté en un 
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Anexo 6: Fichas técnicas 

En el presente anexo se adjuntan las fichas técnicas de los elementos de mayor relevancia 
utilizados en el proyecto. 

1. Aerogenerador Whisper 500

Fichas técnicas  

En el presente anexo se adjuntan las fichas técnicas de los elementos de mayor relevancia 

Aerogenerador Whisper 500 
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En el presente anexo se adjuntan las fichas técnicas de los elementos de mayor relevancia 

 



 

 

 

2. Batería Trojan L16P

 

 

Batería Trojan L16P 
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3. Colector solar de tubos de vacio U PIPE.Colector solar de tubos de vacio U PIPE.
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Colector solar de tubos de vacio U PIPE. 

 



 

 

 

4. Módulo fotovoltaico de 250 Wp.
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5. Caldera de biomasa bioclass 9 kW.
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Caldera de biomasa bioclass 9 kW. 

 


