Repositorio de la Universidad de Zaragoza - Zaguan http://zaguan.unizar.es

Modelado de la fisica de objetos blandos en
tiempo real basado en el uso del SDK Bullet.

RESUMEN

El trabajo realizado ha consistido en el estudio de una libreria de
renderizado grafico llamada Ogre3D y una libreria de simulacion fisica
llamada BulletPhysics para su posterior aplicacion al mundo de los
videojuegos.

El resultado final muestra una escena que podria ser de cualquier
videojuego, renderizada en Tiempo Real. En ella se muestran varios
objetos entre los que se encuentran el suelo, el cielo, el personaje
principal y varios objetos con comportamientos fisicos diferentes. Todos
ellos interactuan fisicamente de manera real.

El estudio y posterior desarrollo e implementacion del trabajo ha
estado centrado en crear y gestionar objetos con comportamiento fisico
de objetos blandos.

A mis padres y mi hermano, por hace esto posible

y aguantarme estos cuatro afios.

A Africa, porque me dio el empujon necesario.

Este Trabajo Fin de Grado corresponde al plan de Estudios del Grado de Ingenieria
Informatica de la Universidad de Zaragoza.

El nimero de créditos definidos en el plan de estudios es de 12 créditos.

1.

2.

N o v A

indice

INEFOAUCCION ...ttt s 5
2.1 Ambito de CONOCIMIENTOScvvuveeeiecreriieeceete ettt 5
B ©] o 11=1 Vo SRS 5

Trabajo desarrollado.. ... e 7
3.1 Aplicacion vista desde alto NIVelcc.ueeeieiiii e, 7
3.2 Diagrama de Clases....cceiiuicuiriiiiiie e 9
3.3 BaseAPPlICAtION.....coiei i e 10

3.3.1 Creacion de 12 @SCeNA ...ccueiiierieeieereeeeee e 11
3.4 MYFrameELiStENeT e 12

3.4.1 Eventos cada framecccooiiiiiiiiiiiiiie e 12

3.4.2 Eventos de periféricos de entrada y salida.........cccceecveeeeeiiiieicniiieeens 13

3.4.3 Eventos relacionados con la gestidn de ventanas.........cccccceeeeeiiieeenns 13
3.5 MyCameraController.....o e e 14
. T T od 1Y ol 16
R I A VY1V [o 1 A Te] o N =) { IR 19
TR T VAV Yo 1 = To Yo YU 20
3.9 CRArACTEI i 21
3.10 CharacterController. ... 22
o 20 I N 01 o =1 = Yot =Y o 4 Y2 (ol 23
T A ==L o] | U 26
3.13 OZreBUllEtULIIS vvvveeieeieeiieeeeee e e e 28
3.14 DebugDraw y DynamicLiNEDraWer.........cccoeveeiirrereeeeeeeeiiirrreeeeeeeeeeennneens 28
3.15 Analisis de efiCienCia........ccoecieriiiiieeeceeee e 29

Resultados (salidas graficas)eeeeeeeeicciinireeiee e 30

Conclusiones y trabajo fULUrO......ccccuviiiieiie i 33

Diagrama de tiEMPOS......coeeiciirrieeee ettt e e et e e e e e e esbrrr e e e e e e e e s nnnraes 34

21 oY [ToT=4 &= i £ RO PUUPPRRRPRUPP 35

2. Introduccion

2.1 Ambito de conocimientos

El mundo de los videojuegos esta en constante cambio y evolucion. No es dificil
ver las diferencias entre los videojuegos de hace veinte afos y los actuales. Se puede
decir que el mayor cambio que estos han sufrido esta relacionado con los graficos, y
con la jugabilidad.

El consumidor de videojuegos, ademas de la diversién inherente a un buen disefio
del producto, busca una apariencia cada vez mds real que le proporcione una
experiencia de inmersion en sus horas de juego.

En relacién a ello, es fundamental la simulacién de fenémenos fisicos que haga
creible aquello que vemos en la pantalla. No es extrafio ver en un videojuego caidas de
objetos o choques entre ellos que nos parecen irreales, que no se ajustan a lo que
nuestro cerebro suele procesar en la realidad; esto es, principalmente, porque muchas
veces las fisicas estan hechas por artistas, animadores, y no simuladas teniendo en
cuenta buenos modelos.

Los productos de software que proporcionan simulaciones fisicas en los
videojuegos se denominan motores de fisicas y son los encargados de especificar un
modelo fisico creible del mundo.

Como bien sabemos, el mundo de los videojuegos es Tiempo Real, por ello el
tiempo del que disponemos para calcular cada frame estd muy limitado, y ademas,
gran parte de éste, es consumido por el propio motor gréfico. Por lo tanto, es crucial
una gestion eficiente de los recursos para consumir el menor tiempo posible a la hora
de simular las fisicas.

2.2 Objetivo

El objetivo principal de este trabajo fin de grado consiste en simular cuerpos rigidos
y blandos sometidos a la accidén de fuerzas externas y gravedad.

Para ello, se han elegido dos herramientas de cédigo libre, con las ventajas que
esto supone: su uso es gratuito, existe la posibilidad de modificar el cédigo para cubrir
alguna necesidad, y tienen una comunidad muy activa dispuesta a resolver cualquier
problema que surja.

Para la renderizacién de los gréficos se utiliza Ogre3D’. Ogre3D es una interfaz
orientada a objetos escrita en el lenguaje de programacion C++. Esta interfaz es capaz

de establecer un bucle de renderizacién que mostrara por pantalla con una calidad
suficientemente real objetos que afiadamos a la escena.

Para el andlisis de la herramienta, asi como el aprendizaje de la misma, se ha
consultado la pagina principal (1-Sitio web de Ogre3D), la wiki (2-Wiki de Ogre3D), el
foro (3-Foro de Ogre3D) y la documentacién de la APl (4-APl de Ogre3D) Una
explicacion mas detallada sobre Ogre3D puede ser encontrada en el anexo |.

Para la simulacién de fisicas se ha utilizado BulletPhysics. Esta es, igualmente, una
libreria orientada a objetos escrita en C++. Es capaz, mediante la utilizacién de objetos
virtuales, de simular un el mundo fisico, detectando colisiones entre los objetos, asi
como otras interacciones fisicas con el medio, como friccién o gravedad.

Con el fin de estudiar las posibilidades de la libreria BulletPhysics y aprender a
usarla, asi como consultar errores que han aparecido durante la realizacién del
proyecto, se ha consultado la pagina web de la libreria (5-Sitio web de BulletPhysics), la
wiki (6-Wiki de BulletPhysics), el manual de uso (7-Manual de BulletPhysics) y el foro
(8-Foro de BulletPhysics).

Con todo esto en mente, los objetivos particulares de este proyecto son:

Estudio de la libreria de cédigo abierto para fisica en tiempo real, BulletPhysics.
Estudio de la libreria de cddigo abierto para renderizado de objetos 3D en
tiempo real, Ogre3D.

3. Desarrollo e implementacién de un mdédulo de integracién de BulletPhysics en
Ogre3D.

4. Analisis de sus posibilidades desde el punto de vista de la simulacidon
fenomenoldgica.

5. Estudio e implementacién de la simulacion de cuerpos blandos en videojuegos
usando BulletPhysics + Ogre3D.

6. Analisis de su eficiencia.

3 Trabajo desarrollado

El trabajo ha consistido en el desarrollo e implementacion necesarios para la
presentacion de una escena renderizada en tiempo real en la que se simulan
fendmenos fisicos, cuerpos rigidos y blandos sometidos a fuerzas externas y fuerza
gravedad.

En la figura 1 podemos ver una captura de pantalla tomada de la aplicacién final.
En ella, se pueden apreciar los diferentes tipos de objetos que incluimos en el sistema.
Ademas, podemos comprender que existe una camara desde la que se observa la
escena y una pantalla en la que se renderiza la escena.

Personaje principal Cielo

Cuerpo blando Suelo Cuerpo rigido

Figura 1: Captura de la aplicacidn finalizada

3.1 Aplicacion vista desde alto nivel

Para alcanzar el objetivo del proyecto, se ha programado una aplicacién que se
centra en dos pasos fundamentales.

e Creacion de la escena y adicion de nodos visibles y fisicos a la misma.
e Control del bucle de renderizacion donde se actualizan todas las
informaciones, frame a frame.

Cada una de las clases que se estudiaran mas detalladamente a lo largo de la
memoria se puede agrupar en una de estas dos funciones, o en las dos.

Para entender cudles son los componentes de la aplicacién, obsérvese la figura 2,
en ella se puede ver el proceso que se sigue en cada frame desde que se comienza
hasta que se muestra por pantalla.

Actualizay
Detectar Resolver "M | ;siciones
colisiones colisiones rotaciones

Actualizar

S malla de
cuerpos

blandos

Las clases que se veran a continuacidon implementan este esquema de renderizado,.

Figura 2: Esquema del proceso de renderizacion de un frame.

Bien creando los objetos que se utilizaran, o bien siendo las encargadas de
actualizarlos.

3.2 Diagrama de clases

La arquitectura de la aplicacion desarrollada se puede observar en la figura 3. En
los apartados siguientes se explica de manera detallada cual es la funcién de cada clase
y se ha implementado.

Y

Ogre3D BaseApplication BulletPhysics =

Character MyCameraController Physics

MyFrameListener

Ragdoll MySoftBody
CharacterController ‘ CharacterPhysics MyMotionState

OgreBulletUtils DebugDraw DynamicLineDrawer

Figura 3: Diagrama de clases de la aplicacion

Todas ellas salvo Ogre3D y BulletPhysics han sido implementadas en ultima
instancia por el autor. Los trozos de cddigo que han sido reutilizados de otros usuarios
son debidamente nombrados y enlazados en los comentarios del cédigo.

En el apéndice Il se puede encontrar la estructura completa de la aplicaciéon
desarrollada, asi como la documentacién del cédigo.

3.3 BaseApplication

Character

CharacterControlier

Ogre3D +——

Ja { A\ ¥

MyCameraController MyFrameListener | | | Physics

—*| BulletPhysi

a

i

Ll

Ragdoll MySoftBody

CharacterPhysics MyMotionState

|

l

OgreBulletUtils

DebugDraw HDynam\cheDlawer

Esta es la clase principal del sistema. Se encargar de la inicializacién de los

diferentes componentes, asi como de la creacién de la escena en Ogre3D.

Para que este motor grafico funcione correctamente necesita que se inicialicen y

configuren los siguientes componentes:

e Primero, crear el Ogre::Root, éste es el punto de acceso del sistema. Con ello,

Ogre3D cargarad las configuraciones necesarias. Es el primer objeto que debe ser
creado, y el ultimo que debe ser destruido.

e Segundo, se cargan los recursos (mallas de poligonos, texturas, etc.) mediante el

uso de un objeto Ogre::ResourceGroupManager.

e Tercero, se crea el objeto Ogre::SceneManager, que consiste en el grafo de la

escena. Ver figura 4.

e Cuarto, se crea la cdmara con el objeto Ogre::Camera y el viewport, usando

Ogre::Viewport, que define la parte de la pantalla donde se renderizaran

objetos.

Scene Management

SceneManager

MovableObject |
|

o

SceneNode

Material

Entity |

Camera |

Light |

Figura 4: Grafo de escena de Ogre3D

10

La clase BaseApplication también se encarga de inicializar los demas componentes

principales que ha sido necesario programar para la realizacion de este proyecto y que

seran explicados con detalle posteriormente en la clase que corresponda, estos son:

MyFramelistener: Es la clase encargada de controlar lo que debe de ocurrir en
cada frame.

Physics: Objeto cuya funcién es la de llevar a cabo en cada frame la simulaciéon
fenomenoldgica de la fisica.

MyCameraController: Se encargard de hacer los movimientos necesarios de la
camara de manera que se puedan observar bien lo que ocurre en la escena.
Character: Gestiona la creacién y el movimiento del personaje principal de la
aplicacion.

3.3.1 Creacion de la escena
Ogre3D funciona mediante la creacién de objetos 3D que son afiadidos a una

escena. Posteriormente, en su bucle de renderizacion, el motor recorrera todos los

objetos que existen, decidira cuales son los que se tienen que ver en ese momento y

los mostrara en la pantalla.

Las escenas son creadas y gestionadas mediante el grafo de la escena, al que

Ogre3D nos proporciona acceso utilizando el objeto Ogre::SceneManager.

Ademas, los objetos 3D en Ogre3D estan compuestos de nodos y entidades. Los

nodos son la posicion y la rotacidn en la escena. Las entidades son las encargadas de

darle forma y apariencia concreta a cada nodo.

La escena que se presenta en esta aplicacién consta de los siguientes objetos:

El cielo: Estd creado mediante el uso de una herramienta de Ogre3D llamada
SkyDome a la que se puede asignar una textura y la presenta como una cupula.
En este caso, se ha texturizado con una textura dindmica, de manera que las
nubes parecen estar en movimiento.

El personaje principal: Hablaremos de él mas adelante en la clase que se
encarga de gestionarlo.

El suelo: Este es en principio un objeto Plane de Ogre3D con una textura, pero
de cara a que la textura parezca mas real, se le ha aplicado un BumMapping’.
Esta técnica consiste en utilizar un mapa de normales en la etapa de iluminado
para darle aspecto de rugosidad a la superficie sin necesidad de modificar su
malla poligonal. 3

* Pagina de la Wikipedia de BumpMapping: http://en.wikipedia.org/wiki/Bump_mapping
* Tutorial de implementacion de Bum Mapping:
http://www.ogre3d.org/tikiwiki/Materials#Advanced_Materials

11

e El objeto blando: Es un objeto cuyo comportamiento fenomenoldgico es el de
un cuerpo blando.

e Objetos rigidos: Son objetos cuyo comportamiento fenomenoldgico es el de
cuerpos rigidos.

3.4 MyFramelistener

e

PE AN —7v av

e \ / -\ .\
Character MyCameraController MyFrameListener | | Physics
| — { v 1
o |
- Ragdall MySoftBody
CharacterControlier CharacterPhysics MyMotianState |

OgreBulletUtils DebugDraw H DynamicLineDrawer

Ogre3D tiene un sistema de trabajo que estd basado en eventos. Se producen

eventos cuando un frame va a ser renderizado, cuando estd siendo renderizado,
cuando ha acabado, cuando se pulsa una tecla, cuando se mueve el ratén, etc.

Esta clase es la encargada de recibir todos estos eventos y procesarlos.

Es una clase que hereda de Ogre::Framelistener, Ogre::WindowEventListener,
OIS::KeylListenery OIS::Mouselistener.

0IS* es una libreria orientada a objetos que controla los dispostivos de entrada.

Todo ello asegura que, implementando los métodos predefinidos que se han
seleccionado es posible gestionar los eventos.

3.4.1 Eventos cada frame

Evento de inicio de renderizacién de un frame: Cuando Ogre3D comienza a
renderizar un frame, éste invoca el método frameStarted() indicAndole mediante un
evento cuanto tiempo ha transcurrido desde la renderizacién del ultimo frame. Dentro
de este método se realizan llamadas a las funciones de las clases que controlan los
periféricos de entrada y salida de OIS con objeto de capturar sus cambios.

Evento de renderizacion de un frame: Cuando Ogre3D esta renderizando un frame
envia un evento, éste es recogido en el método frameRenderingQueued(), que
actualiza los siguientes componentes:

* Explicacion de OIS: http://www.ogre3d.org/tikiwiki/tiki-index.php?page=Using+0IS

12

e La actualizacion del personaje principal se realiza mediante la llamada a la
funcién:

Character->updateCharacter(timeSincelLastFrame)

La actualizacidon del mundo fisico se realiza llamando a:
Physics->stepSimulation(timeSincelLastFrame)

e La actualizaciéon de la malla del objeto blando en funciéon de lo que haya
informado el motor de fisicasse realiza llamando a:

Physics->updateSoftBodies()

Evento de finalizacion de renderizado de un frame: Cuando Ogre3D termina de
renderizar un frame, el método frameEnded() es llamado, este caso, Unicamente
utilizamos éste para motivos de debug y mediciones de tiempo.

3.4.2 Eventos de periféricos de entrada y salida
En este proyecto las pulsaciones del teclado pueden se controlan de manera
asincrona utilizando los siguientes métodos:

e keyPressed(): Se llama a este método cuando se pulsa una tecla para detectar
qué tecla es la que ha activado el evento. En esta aplicacién, se utiliza este
evento para:

o Activar el debug de las fisicas pulsando la tecla L.
© Lanzar un cubo pulsando la tecla F.

o Cerrar la aplicacion pulsando la tecla ESC.
© Mandarle el evento a la clase Character que movera el personaje.

e keyReleased(): Se llama a este método cuando se deja de pulsar una tecla que
habia sido pulsada previamente. En este se le manda el evento a la clase
Character para la gestidon del movimiento del personaje.

El ratén se controla mediante la conjuncién de los métodos mousePressed(),
mouseReleased() y mouseMoved(). En este proyecto, se han utilizado para rotar la
camara y hacer zoom. En concreto, se rota la cdmara si al mover el ratén uno de los
dos botones esta pulsado, y se hace zoom cuando se mueve la ruleta.

3.4.3 Eventos relacionados con la gestion de ventanas

El método windowClosed() se utiliza para capturar cuando se ha cerrado la
ventana y asi destruir los objetos necesarios y windowsResized() se utiliza para
recalcular tamafios y posiciones del ratén.

13

3.5 MyCameraController

f
CharacterCantroller

Character
|

‘ Ogre3D -—{ BaseApplication ——= BulletPhysics

SR T

Y
T\

MyCameraController ‘

MyFrameListener ."‘ I"

— Ragdoll | |
e]
CharacterPhysics

l

E

MySaftBody
MotionState

l L]
DebugDraw ‘_> DynamicLineDrawer

Para observar lo que ocurre en la escena, lo mas cémodo es utilizar una cdmara en

‘ OgreBulletUtils ‘

tercera persona que se pueda manejar con el raton.

Esta clase es la encargada de gestionar los movimientos de cdmara. Lo que hace es
establecer tres nodos. El nodo mainNode es el nodo donde estd el personaje, el nodo
sightNode es el nodo hacia donde la camara tiene que mirar y el nodo
desiredCameraNode es el nodo que se establece como objetivo en las traslaciones de

la cAmara.

La cdmara es actualizada en cada frame utilizando el método update() y, en funcidn
del tiempo que haya pasado entre frames, actualiza su posicion para acercarse a la del
nodo desiredCameraNode. Obsérvese en la figura 5 el funcionamiento del movimiento

-
- 7
- ;
I > \

Asincrono Sincrono \

de los tres nodos.

o

‘ sightNode

‘ desiredCameraNode

mainNode

Camara real

» Movimientos

14

Figura 5: Movimiento de camara que sigue al personaje principal

El nodo desiredCameraNode esta emparentado con el nodo sightNode, de manera
que se mueve y mantiene su posicidn relativa siempre que el padre lo hace. Asi, sélo
hay que mover el nodo sightNode cuando el personaje se mueve, para que la cdmara
actualice su posicidn y lo siga en el siguiente frame.

Ademas, los métodos injectMouseMove() y adjustZoom() de la clase se encargan de
gestionar la rotacién en los ejes X e Y y la posicion en el eje Z, respectivamente. Estos
movimientos en X e Y se producirdn cuando se mueva el ratén y actian en girando el
nodo sightNode, mientras que el nodo desiredCameraNode mantiene su posicién
relativa, ver figura 6. El zoom se produce cuando se mueve la ruleta del ratén y lo que
hace es disminuir la distancia entre el nodo desiredCameraNode y el sightNode.
Obsérvese en la figura 6 su funcionamiento.

o » @ =

Asincrono Sincrono

mainNode

sightNode

desiredCameraNode

«ap o

Camara real

» Movimientos

Figura 6: Rotacion de camara

En la figura 7, se muestra una captura de pantalla de la aplicacién, obsérvese cémo
se puede ver el personaje desde cierto angulo gracias al funcionamiento de la camara.

15

Figura 7: Personaje principal visto por delante

16

3.6 Physics

Ogre3d |.7 i I

I = TPR

L] \ ¥ % | -

MyFrameListener | | | Physics

| ~— -| Ragdoll (MySeltBody
CharacterController CharacterPhysics

Character MyCameraController

L] 1

DebugDraw % DynamicLineDrawer

Como ya hemos dicho anteriormente, esta clase serd la encargada de implementar

OgreBulletUtls

el motor de fisicas, para ello hace uso de la libreria BulletPhysics.

La clase se tiene que encargar tanto de anadir objetos al mundo fisico, como de
actualizar su posicion y forma (en caso de que sea blando) tras cada frame.

Lo primero que hace es inicializar y configurar las fisicas. En este momento se
caracteriza el mundo fisico, para ello es necesario decidir lo siguiente:

e El tipo de colisiones que tendra el mundo se genera creando un objeto que
herede de btDefaultCollisionConfiguration de Bullet, para el proyecto se ha
elegido btSoftBodyRigidBodyCollisionConfiguration porque en nuestra escena
habrd objetos sélidos y blandos.

e Para el calculo rdpido de una primera aproximacién de los pares de objetos que
pueden estar colisionando, hay que seleccionar un algoritmo de BroadPhase. La
utilidad de este algoritmo esta explicada mas extensamente en el anexo Il.

e Algoritmo de deteccidn de colisiones (Collision Dispatcher): Este es el algoritmo
que, de los pares que obtiene por parte de la etapa de BroadPhase, calcula
exactamente aquellos pares entre los que se esta produciendo una colisién.

e De cara a resolver las colisiones, necesitamos seleccionar un algoritmo de
Solver.

La clase pone a disposicidon del que la use un serie de métodos que son los que se
encargaran de afadir los objetos al mundo fisico. Los métodos, aunque no todos
utilizados en el producto final del proyecto, son los siguientes.

e addRigidBody: Afade un objeto rigido genérico, especificAndole todos los
parametros que son necesarios. Este método es principalmente usado por el
resto de los que afiaden cuerpos rigidos (suelo, cubo y voliumenes envolventes
del personaje principal).

17

e addStaticPlane: Afiade un plano. Recibe el nodo de Ogre3D al que se quiere
vincular el cuerpo rigido.

e addCube: Afade un cubo. Recibe el nodo de Ogre3D al que se quiere vincular el
cuerpo rigido.

e AddImpulsedCube: Lanza un cubo en la direcciéon que recibe. También recibe el
nodo de Ogre3D al que se quiere vincular el cuerpo rigido.

e AddSoftFromEntity: Afiade un cuerpo blando que tiene la forma de la malla que
se proporciona. Ademads, recibe el nodo de Ogre3D al que se quiere vincular el
cuerpo blando.

e addSoftSphere: Aflade una esfera blanda con presidn interna. Recibe el nodo de
Ogre3D al que se quiere vincular el cuerpo blando.

Como vemos, todos los métodos requieren un objeto nodo de Ogre3D. Esto se
debe a que en cada frame el motor de fisicas debe actualizar también la posicién de
estos nodos para que se el motor de render los muestre por pantalla.

La forma en la que se ha implementado en este proyecto la actualizacion de los
nodos de Ogre3D pasa por crear una clase que hereda de btDefaultMotionState de
BulletPhysics. Esta clase se lama MyMotionState y serd explicada mds adelante.

Sin embargo, actualizar con Motion States sélo funciona para los objetos rigidos,
por lo tanto hay que buscar otra solucidn para los objetos blandos ya que stos
necesitan, ademas de cambiar la posicidn y la rotacién, modificar la malla del objeto
3D para que muestre las deformaciones que ha sufrido. Esta implementacion esta
hecha en la clase MySoftBody que encapsula el objeto blando para poder tratarlo
facilmente y de manera que el motor de fisicas sélo tenga que llamar al método
updateOgreMesh() para que su comportamiento sea el esperado.

18

3.7 MyMotionState

Ogre3D I i }—. ysi }

b L N v
VAN RN ~ = SN T [HIRN

fa ¥ —a

Character MyCameraController Physics

\

MyFrameListener

i
|
|
. |
— |
Ragdoll | MySoftBody
. |

! v
CharacterController CharacterPhysics MyMotionState

l |

DebugDraw | +Dynam|chemeer

OgreBulletUtils

Como se ha indicado anteriormente, ésta es la forma de que los nodos visibles de
Ogre3D se vean actualizados en funcién de lo que les ocurra cuando el mundo fisico
realiza un paso temporal en la simulacion.

MyMotionState hereda de wuna clase de BulletPhysics que se llama
btDefaultMotionState. Los objetos de esta clase se instancian a la vez que los cuerpos
rigidos para que, en cada paso de simulacién, proporcionen la posicién y la rotacién a
los cuerpos rigidos.

Sin embargo, es posible extender dicha funcionalidad, de manera que, ademas de
actualizar su posicién y rotacién en el mundo fisico, se actualicen también la posicién y
la rotacién del nodo de Ogre3D al que estan vinculados.

Esto se hace sobrescribiendo el método al que sabemos que BulletPhysics llama
cuando quiere actualizar un objeto, setWorldTransform, de manera que se y afiade
dicha funcionalidad. Se puede ver un ejemplo en el cédigo siguiente.

void MyMotionState::setWorldTransform(const btTransform & worldTrans)

{
if (mVisibleObj == NULL)

return;

mTransform = worldTrans;

btTransform transform = mTransform * mCOM,;
btQuaternion rot = transform.getRotation();

btVector3 pos = transform.getOrigin();
mVisibleObj->setOrientation(rot.w(), rot.x(), rot.y(), rot.z());
mVisibleObj->setPosition(pos.x(), pos.y(), pos.z());

}

19

En el codigo se ve como se recibe la transformacion y, ademas de actualizarla en el

objeto principal que es mTransform, actualiza con setOrientation() y setPosition() el

nodo de Ogre3D.

Utilizando de esta manera Motion States no es necesario mds que dar un paso mas

en la simulacion consiguiendo de paso que los elementos de la escena también se

actualicen en el motor grafico.

3.8 MySoftBody

Ogre3D =

T

a . ¥

BaseAppiication

> BulletPhysics [+

T

Y

Character MyCameraController

‘ CharacterController

L]
OgreBulletUtils

[O\
MyFrameListener | | | Physics
Ragdoll | | MySoftBady

CharacterPhysics MyMotionState

|

DebugDraw . DynamicLineDrawer

Esta clase encapsula un objeto blando de BulletPhysics y el nodo en Ogre3D al que

esta vinculado.

El unico método que tiene es updateOgreMesh() cuyo funcionamiento no es trivial

y consiste en iterar sobre todos los vértices del cuerpo blando en el mundo fisico y

copiar su informacidn de rotacion y traslacidn al nodo del motor de renderizacion.

La transformacidn que sufren los vértices es relativa a la posicién del cuerpo, por lo

tanto, también hay que actualizar la posicidn y rotacion global del objeto.

20

3.9 Character

‘ Ogre3D ‘—{ BaseApplication }—b{ BulletPhysics }477
Pl R IS
SN " T~ [N

-/ ~ N

I N,
[N

.

L —~ / \) N

Character ." MyCameraController MyFrameListener Physics ‘

" Ragdoll | | MySoftBody
|

~
MyMationState

CharacterControlier CharacterPhysics

l

L]
OgreBulletUtils DebugDraw 44 DynamicLineDrawer

Esta clase es la que se encarga de gestionar todo el movimiento del personaje por
pantalla. Hace uso principalmente de otras dos, que son CharacterController y
CharacterPhysics.

Tiene principalmente dos funciones, la primera es recibir la entrada del teclado y
coordinar el funcionamiento de las dos clases anteriores para mover el personaje y la
segunda es actualizar la posicién y rotacion del personaje en cada frame.

La primera funcién se resuelve mediante los métodos injectKeyUp() e
injectKeyDown(). Estos dos métodos se llaman por la clase MyFramelListener cuando
una tecla es pulsada. Lo que hacen es, en funcién de la tecla que ha sido pulsada,
actualizan los valores de las variables de direccion de movimiento o indican a
CharacterPhysics y CharacterController que el personaje debe saltar, si puede hacerlo.

Con respecto a la segunda, la clase tiene un método llamado updateCharacter()
gue recibe el tiempo entre frame y frame, y se encarga precisamente de actualizar la
posicién y el estado del personaje.

En funcidn de la variable de direccién de movimiento, la velocidad de movimiento y
la direccién a la que mira la camara, establece la posicién final del personaje en el
tiempo transcurrido. Ademas, si el motor de fisicas ha actualizado la posicién del
objeto que simula al personaje y éste ya no se encuentra en el mismo sitio, lo mueve
para que concuerde.

Cuando el personaje esta realizando algun tipo de movimiento, llama a la clase
CharacterController para activar la animacién que corresponda en ese momento.

Con la clase Character, obtenemos el movimiento del personaje controlado por
entrada y salida de teclado y los movimientos fisicos que le afectan, que pueden ser
caidas y saltos.

21

En el proyecto se ha considerado que el personaje no reaccione ante las colisiones
para evitar que el personaje saliese despedido cuando choca contra algo.

3.10 CharacterController

Ogre3D }- BaseApp = B ysics e
P L A [T

L / \ ¥/ - \ [~ .\

Character

MyCameraController MyFrameListener | | ‘ Physics

o [l
Ragdoll | MySoftBody

CharacterController CharacterPhysics MyMotianState

| ;

DebugDraw | +DynamichcDrawcr

‘OgreBulletUtils

Esta clase utilizada por Character es la que se encarga de gestionar el apartado
visual del personaje. Es decir, se encarga de crear el nodo de Ogre3D, asignarle las
texturas, etc.

El modelo, texturizado y animaciones del personaje se han descargado de la web
de Ogre3D5 y se han modificado minimamente para que se adaptasen mejor a este
proyecto.

El principal cometido de esta clase es el de crear la estructura para activar y
desactivar las animaciones del personaje cuando se requiera.

Para ello implementa un conjunto de métodos que se utilizardn para que el
personaje comience o termine una animacion. Los métodos son los siguientes:

e animRunStart() y animRunEnd(): El personaje activa y desactiva la animacién de
correr hacia cualquier direccién.

e animJumpStart(), animJumpEnd() y animJumpLoop(): Se encargaran de empezar
y terminar la animacién de salto, ademas, se tiene la animacién en la que el
personaje esta en el aire.

e animSliceStart() y animSliceEnd(): Son las animaciones de golpear del personaje,
gue se activan cuando la tecla “1” es pulsada.

El otro método principal que esta clase implementa es updateAnimations(). Se
llama cada vez que una animacién tiene que actualizarase, es decir, cada frame. Y
actualiza la animacién en funcion del tiempo que haya pasado y la termina si es

> Sitio web del modelo: http://www.ogre3d.org/tikiwiki/Sinbad+Model

22

necesario; ademds, en caso de tratar con la animacién de salto, cambia a

animJumpLoop si animJumpStart ya ha finalizado.

3.11 CharacterPhysics

EANRE

| Y s

‘ Ogre3D <—{ BaseApplication — BulletPhysics

Character ;' MyCameraController

MyFramelistener f |
[]

Physics ‘

—

|

| |
{ — Ragdoll | |
[|
CharacterController CharacterPhysics

MySaftBody

MyMotionState

]
‘OgreBulleIUtilS ‘ DebugDraw ‘_.Dynam\cLineDrawer

Esta clase utilizada por Character se encargara de simular el comportamiento fisico

del personaje.

El personaje se modela de tres formas diferente. Una, la malla mas precisa, para

renderizar. Otra, para el movimiento y la caida, para lo que el personaje se engloba
una cdpsula aproximadamente de su tamafio. Y la tercera para las colisiones con
objetos, en este caso, el personaje se modela con mas precisién mediante el uso de

varias capsulas.

En la figura 8, las lineas blancas se corresponden con el segundo modelado y las

verdes con el tercero.

23

Figura 8: Personaje principal con modo debug activo

CharacterPhysics es la clase que utiliza la segunda aproximacion geométrica.

Simula el personaje no como un cuerpo rigido normal, sino como un
btPairCachingGhostObject, es decir, un cuerpo fantasma.

Estos cuerpos no reaccionan ante las colisiones y tampoco las provocan de la
manera habitual, por lo tanto no afectaran al mundo, pero utilizando otro tipo de
algoritmos, permiten calcular qué objetos estan colisionando con él.

Para simplificar la programacién del control del personaje, la clase
CharacterPhysics hereda de la clase btCharacterControllerinterface de BulletPhysics,
gue es una interfaz que establece un orden de llamadas a métodos que recibira
cualquier implementaciéon de la misma cuando se afiada a un mundo.

La asignacion de CharacterPhysics como controlador de personaje se ha hecho en
la clase principal de la aplicacién, BaseApplication en la siguiente linea de cddigo:

24

Physics->getDynamicsWorld()->addAction(mCharacterController);

El método al que Bullet Physics llama en cada frame para actualizar
CharacterPhysics es updateAction(), donde se describe y calcula todo lo que va a pasar
en un frame. En este caso, por simplicidad de cddigo, se ha subdividido este método
en los siguientes métodos:

1. preStep():

En este método se comprueba el estado actual del personaje en funcién de lo
gue el motor de fisicas le haya comunicado que ha ocurrido.

2. playerStep()
1. Llamada al método setRBForcelmpulseBasedOnCollision():

Una vez detectado que hay colisiones, lo que se hace en este método es
realizar la reaccién fisica asociada. Los cuerpos que han colisionado con el
personaje se obtienen haciendo uso de una estructura de datos que ha sido
rellenada por BulletPhysics.

2. Se actualiza la velocidad de salto si la clase Character comunica que el
jugador ha pulsado la barra espaciadora o si lo se ha hecho en frames
anteriores y el personaje aun esta en mitad de un salto.

3. Llamada al método stepUp():

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo
encima del personaje que le impida saltar. Si lo hay, no se cambia la posicidn
del nodo verticalmente.

Ademas, se comprueba que el salto no haya terminado en funcién de la
fuerza del salto y el tiempo que el personaje lleva saltando. Si ha terminado, se
cambia de signo para que comience la caida.

4. Llamada al método stepForwardAndStrafe() si y solo si la clase Character()
ha comunicado que el jugador ha pulsado una de las teclas de movimiento y
por lo tanto se han actualizado la velocidad y la direccion del mismo:

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo
delante en la direccién del personaje en la que el personaje tiene que moverse y si
hay algo, no se modifica su posicién.

5. Se actualiza la velocidad de caida si, por un salto o por un movimiento, el
personaje estd cayendo.
6. Llamada al método stepDown():

25

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo
debajo del personaje que indique que ha tocado suelo. Si lo hay, no se cambia la
posicién del nodo verticalmente y se le comunica a la clase Character para que se
actualicen las animaciones; se pone a cero la velocidad vertical.

3.12 Ragdoll

OgreaD } B H BulletPhy I

RS v

a \ ¥’ o [Tt

Character MyFrameListener | | | Physics

E— {
i Ragdoll | MySoftBody
T - L]
CharacterPhysics MyMolionState

MyCameraController

CharacterController

‘ DebugDraw HDynarm:uueDlawer

Esta clase utilizada por CharacterPhysics es la que se encarga del modelado

‘ OgreBulletUtils

geométrico del tercer tipo para poder calcular el comportamiento fisico del personaje
en relaciéon con la colisién con los objetos blandos, de manera que estos se deformen
de forma precisa. El resultado de esta clase se puede ver graficamente en la figura 8,
son las lineas verdes.

Para entender el funcionamiento de esta clase es fundamental conocer la
existencia de los huesos en los modelos 3D. Cuando se crea un personaje en 3D el
primer paso es hacer la forma del mismo, modelarlo moviendo vértices, etc. A
continuacion, se texturiza para que parezca real. Luego, de cara a la animacion, que
seria el Ultimo paso, se realiza el llamado proceso de rigging. Este consiste en la
creacién de un sistema de esqueleto no renderizable, por debajo de la malla del
personaje que ayudara a los animadores a mover las partes de la malla del cuerpo de
manera realista.

26

s ELE tanimation [SHSIRGEY scene [NIRRT
= 3
° User Ortho
ol Bl
(3
© i amature < h F
o

o
o4

5o

5o

o

Figura 9: Rigging del personaje principal

En la figura 9 se puede ver una captura de pantalla de Blender, el software que se
ha utilizado para modificar el personaje principal, donde se pueden observar estos
huesos.

Ogre3D pone a disposiciéon del programador un sistema para acceder a la posicion
de estos huesos.

La clase Ragdoll lo que hace recorrer un subconjunto de los huesos del esqueleto
que se ha considerado que modelarian con suficiente precisién el cuerpo fisico del
personaje y crear objetos rigidos de masa 0 (cdpsulas), para que no se vean afectados
por la gravedad.

El personaje principal estda modelado, en total, por diecisiete objetos rigidos. Uno
en la cabeza, dos en el torso, dos en cada brazo, uno en cada mano, dos en cada
pierna, uno en cada pie y dos en las vainas de la espalda.

De esta manera, las cdpsulas producen movimiento en otros objetos, en concreto,
deformaciones en los cuerpos blandos.

La clase, ademads, se encarga de, en cada frame modificar la posicion y rotacién de
estas capsulas para adaptarlas a la que actualmente tienen los huesos. De esta
manera, con las animaciones de las que ya se ha hablado, también movemos el
exoesqueleto de frprmado por las capsulas.

27

3.13 OgreBulletUtils

Ogread |<—{ BaseApplication | BullelPhy }

A [EA

fa

-
Character Physics

MyCameraController

¥ A /|
MyFrameListener | | |
Ragdoll | | MySoftBody
|

+ | -, !

CharacterContraller CharacterPhysics MyMotionState

| l

OgreBulletUtils DebugDraw ‘ + DynamicLineDrawer

Esta es una de las dos clases auxiliares que tiene el proyecto.

En concreto, esta clase implementa una serie de métodos que hacen mas facil la
comunicacion entre BulletPhysics y Ogre3D.

Principalmente se encarga de la conversion de unidades de Ogre3D a BulletPhysics
y viceversa. En concreto, de los vectores y los cuaterniones.

Ademads, tiene implementados otros métodos de objetos complejos de
BulletPhysics desde una malla de Ogre3D.

3.14 DebugDraw y DynamicLineDrawer
L:_J‘?r‘e.i—Dv_i‘i ‘.h.sﬁAf)?“‘iaVl.‘m ——| EullelPl::sfs R B

S | \ ¥ 4 I —a

MyFrameListener | | | ‘ Physics
[]
Ragacl | MySoftBody

CharacterController CharacterPhysics MyMationState

Character MyCameraController

o

OgreBulletUtils DebugDraw = DynamicLineDrawer

Esta es la otra clase auxiliar presente en el sistema. Es la encargada de dibujar las
lineas que vemos en la figura 5 y que, como veremos en las capturas del final del
proyecto, estan presentes en todos los objetos. Muestra por pantalla, renderizado
graficamente, el mundo fisico de BulletPhysics.

En concreto, DebugDraw hereda del sistema de debug de BulletPhysics vy
DynamicLineDrawer hereda de un objeto renderizable de Ogre3D. De esta manera, en
conjuncidn, es posible renderizar en Ogre3D los objetos de BulletPhysics.

28

3.15 Analisis de eficiencia

Como ya hemos explicado, Ogre3D ofrece acceso al programador a su bucle de
renderizacion mediante los eventos producidos en la clase MyFramelistener, de esta
manera, ha resultado muy simple calcular el tiempo que le cuesta a la aplicacién el
calculo de cada frame, asi como el cdlculo de cada una de sus partes.

Los datos medios para un frame de cada una de las partes, son:

Tiempo total (100%): 6.307 ms.

Tiempo de captura de periféricos de entrada (0,06%): 0.004 ms.
Tiempo de actualizacion de personaje y animaciones (1%): 0,057 ms.
Tiempo de calculo de fisicas (21%): 1.347 ms.

Tiempo de renderizacion grafica (77,1%): 4.863 ms.

Tiempo de frame

M Entrada de perifericos
B Actualizacion del personaje
m Célculo de fisicas

M Render grafico

Figura 10: Grafico del tiempo medio de frame

Estas pruebas han sido ejecutadas sobre una tarjeta grafica integrada de un
procesador Intel modelo i7-4770K

El chipset gréfico tiene las siguientes especificaciones:

Graficos de procesador Intel® HD Graphics 4600
Frecuencia base de los graficos 350 MHz

Frecuencia dinamica maxima de los graficos 1.25 GHz

Memoria maxima de video de los graficos 1.7 GB

29

4. Resultados (salidas graficas)

Figura 12: Interaccion objetos rigidos 2.

30

Figura 13: Deformacion cuerpo blando 1.

Figura 14: Deformacion cuerpo blando 2.

31

Figura 16: Deformacion cuerpo blando 4.

32

5. Conclusiones y trabajo futuro

El objetivo principal de este Trabajo Fin de Grado era simular cuerpos rigidos y
blandos sometidos a la accidn de fuerzas externas y gravedad. (Ver apartado 2).

Para ello se ha hecho una aplicacién completa formada por trece clases disefiadas
por el autor. (Ver apartado 3).

Se han utilizado dos librerias de cédigo libre. Ogre3D y BulletPhysics.

La primera de ellas ofrece un sistema capaz de renderizar objetos 3D en Tiempo
Real, asi como de configurar todos los aspectos que tienen que ver con el motor
grafico de un videojuego.

La segunda de ellas ofrece un motor capaz de simular fisicas en tiempo real, asi
como de configurar todos los aspectos que tienen que ver con el motor de fisicas de un
videojuego.

Como se ha demostrado de forma visual mediante imdgenes estaticas en el
apartado 4, y se vera mediante video o ejecucién en tiempo real el dia de la defensa, el
objetivo propuesto ha sido plenamente cumplido.

Las lineas futuras de trabajo pasar por programar una libreria genérica de uso de
BulletPhysics sobre Ogre3D que se despegue de la programacién de este ejemplo en
concreto. Para ello, sirve la misma estructura de clases que se ha planteado,
Unicamente es necesaria la extension de las mismas.

33

Semana 1

Semana 2

Semana 3

Semana 4

Semana 5

Semana 6

Semana 7

Semana 8

Semana 9

Semana 10 TOTAL

6. Diagrama de tiempos

15h.

Figura 17: Diagrama de tiempos.

34

7. Bibliografia
1 - Sitio web de Ogre3D. http://www.ogre3d.org/

2 - Wiki de Ogre3D. Obtenido de http://www.ogre3d.org/tikiwiki/tiki-index.php
3 - Foro de Ogre3D. http://www.ogre3d.org/forums/

4 - APl de Ogre3D. http://www.ogre3d.org/docs/api/1.9/

5 - Sitio web de BulletPhysics. Obtenido de http://www.bulletphysics.org/

6 - Wiki de BulletPhysics. http://bulletphysics.org/mediawiki-
1.5.8/index.php/Main_Page

7 - BulletPhysics. Bullet 2.82 Physics SDK Manual. Apéndice 11l
8 - Foro de BulletPhysics. http://www.bulletphysics.org/Bullet/phpBB3/

9-Nvidia CcG tutorials.
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

10 - Wikipedia. https://www.wikipedia.org/

35

