Anexo I: Ogre3D

2/4

Ogre3D, cuyo nombre proviene de Object-Oriented Graphics Rendering Engine es, como es
légico, un motor de renderizado orientado a objetos. Como caracteristica adicional, esta
escrito en el lenguaje de programacion C++.

No es un motor grafico como el resto de paquetes de nombres comerciales, como Unity.
Ogre3D plantea una alternativa done el usuario puede programar su propio motor grafico, éste
sélo pone las herramientas para hacerlo.

Lo mas facil para comprender Ogre3D es ver su arquitectura desde muy alto nivel. La siguiente
figura muestra los objetos mas importantes y sobre los que se construye toda la arquitectura.

—‘)

Scene Management

]

SceneManager k\ Plugin
__\—__‘_‘—‘——_
OdreeSceneManagerl
MovableObject | @l

,a\
| Entity |Camera Plugin
l—

[Light [material |
| I [
L L TCustomeahle |

Resource Management

Rendering

|ResourceGroupManager | Mesh ‘Tenture Renderable | RenderWindow
I [|
[i ‘ E |

GRUBIOgram]] |HardwareBufferM q RendeSust
R M | [= |
L 4 L {
e ‘ ArchiveFactory)

—| |

P

ohin Plugin
CustomArchiveFactory GLTexture | GLRenderSystem

El objeto Root que se ve en la parte superior de la figura es el punto de acceso del sistema.
Aqui es donde se tiende a crear los objetos de mas alto nivel con los que tienes que tratar,
como los scene manager, los sistemas de renderizado o las ventanas de renderizacidn, cargar
plugins, y todas los demds componentes fundamentales.

La mayor parte de las demas clases de Ogre3D pertenece a uno de los siguientes tres roles.

Scene Management

Proporciona informacion sobre el contenido de la escena, de su estructura, de cémo se ve a
través de las cdmaras, etc. Los objetos que siguen este rol son responsables de ofrecer una
interfaz natural para el mundo que estds construyendo. Sirven para no tener que decirle a
Ogre3D ddonde tiene que poner cada poligono, sino que baste con decirle donde quieres el
objeto, con qué materiales y dejarle que se encargue él de lo demas.

Resource Management

Todo el renderizado necesita recursos. La geometria, las texturas, las fuentes, etc. Es
importante gestionar a carga, la reutilizacion y la descarga de los recursos con cuidado. De esto
se encargan las clases que siguen este rol.

Rendering

Finalmente, se muestran las imagenes por pantalla. Se trata del nivel mas bajo del proceso de
renderizado, el sistema especifico de la representacién de objetos de la APIl, como buffers,
estados de renderizado, etc. Las clases del rol de Scene Management utilizan esto para
conseguir la informacidn sobre la escena.

Como vemos, Ogre3D tiene la posibilidad casi infinita de conectar plugins al sistema, de
manera que no ofrece la solucién a un problema determinado, sino que trata de cubrir
cualquier problema que pueda surgir y que requiera un motor de renderizado para su solucion.

Una vez comprendida la arquitectura general del sistema de Ogre3D y sabiendo de la
existencia de los objetos principales que deben der ser construidos, trataremos de mostrar la
utilizacidn basica de Ogre3D como medio ilustrativo para dar a entender qué es. Para empezar
a comprenderlo, lo mejor es ver un ejemplo donde se crea una escena basica con unas cuantas
luces. En el siguiente fragmente de cddigo se expone todo esto comentado de manera que
trata de ser comprensible.

http://www.ogre3d.org/

void BasicTutorial2: :createScene (void)

{

mSceneMgr->setAmbientLight (Ogre: :ColourValue (0.5, 0.5, 0.5));

mSceneMgr->setShadowTechnique (Ogre: : SHADOWTYPE STENCIL ADDITIVE) ;

Ogre: :Entity* entNinja = mSceneMgr->createEntity ("Ninja",
"ninja.mesh") ;

entNinja->setCastShadows (true) ;

mSceneMgr->getRootSceneNode () ->createChildSceneNode () -
>attachObject (entNinja) ;

Ogre: :Plane plane (Ogre: :Vector3::UNIT Y, 0);

Ogre: :MeshManager: :getSingleton () .createPlane ("ground",
Ogre: :ResourceGroupManager: :DEFAULT RESOURCE_GROUP_NAME,
plane, 1500, 1500, 20, 20, true, 1, 5, 5,
Ogre: :Vector3: :UNIT Z);

Ogre: :Entity* entGround = mSceneMgr->createEntity ("GroundEntity",
"ground") ;

mSceneMgr->getRootSceneNode () ->createChildSceneNode () -
>attachObject (entGround) ;

http://www.ogre3d.org/

entGround->setMaterialName ("Examples/Rockwall") ;

entGround->setCastShadows (false) ;

Ogre: :Light* pointLight = mSceneMgr->createlight ("pointLight") ;
pointLight->setType (Ogre: :Light: :LT POINT) ;
pointLight->setPosition (Ogre: :Vector3 (0, 150, 250));

pointLight->setDiffuseColour (1.0, 0.0, 0.0);
pointLight->setSpecularColour (1.0, 0.0, 0.0);

Ogre: :Light* directionallight = mSceneMgr-
>createlight ("directionalLight") ;

directionallLight->setType (Ogre: :Light: :LT DIRECTIONAL) ;

directionallLight->setDiffuseColour (Ogre: :ColourValue (.25, .25,
0));

directionallLight->setSpecularColour (Ogre: :ColourValue (.25, .25,
0));

directionallLight->setDirection (Ogre: :Vector3(0, -1, 1));
Ogre: :Light* spotLight = mSceneMgr->createLight ("spotLight") ;
spotLight->setType (Ogre: :Light: :LT SPOTLIGHT) ;
spotLight->setDiffuseColour (0, 0, 1.0);

spotLight->setSpecularColour (0, 0, 1.0);

spotLight->setDirection (-1, -1, 0);
spotLight->setPosition (Ogre: :Vector3 (300, 300, 0));

spotLight->setSpotlightRange (Ogre: :Degree (35) , Ogre: :Degree (50)) ;

Como vemos, la creacién de escenas en Ogre3D es, gracias a los objetos Scene Manager muy
intuitivo.

Este documento Unicamente ha tenido como finalidad mostrar qué es Ogre3D y cual es la
manera mas bdsica de utilizarlo. Para mayor informacidn, lo mejor es acudir:

e Web de Ogre: http://www.ogre3d.org/

e Manual: http://www.ogre3d.org/docs/manual/
e Wiki: http://www.ogre3d.org/tikiwiki/Home

e Foros: http://www.ogre3d.org/forums/

e API: http://www.ogre3d.org/docs/api/1.9/

http://www.ogre3d.org/
http://www.ogre3d.org/docs/manual/
http://www.ogre3d.org/tikiwiki/Home
http://www.ogre3d.org/forums/

Anexo II: Manual BulletPhysics

3/4

Bullet 2.82 Physics SDK Manual

at
|
n

PHYSICS LIBRARY

Also check out the forums and wiki at bulletphysics.org

© 2013 Erwin Coumans
All Rights Reserved.

http://bulletphysics.org

Table of Contents

BULLET 2.82 PHYSICS SDK MANUALcotiiiiiitiiitiitinienieineisssissnesssnesssnessssssesssessssessssesssssssssssssssessssessssssessses 1

1 Introductionccceceeveeueenn..
Description of the library
Main Features
(0o o1 = Totd=Ta o IS] T« Yo]« OO OO OSSP RPPPPROP

W To T =4 USRS 6
Preparing fOr BUIEE 3.0 AIDNaei ettt et e et e et e et e e s s ee et e e easeeseessseeseeanseesseeenseesnseenseesseeenseeanseesssesnseenssennn 6
NEW IN BUIIET 2.8 ...ttt et e e ettt e e s bt e e e s ab e e e e abeeesabbeeeeabeee e sbeeessbeeeeabteeeassbeesabeeesabeeeessbeeesansaeesnntaaennnne 6
New in Bullet 2.81
New in Bullet 2.80
New in Bullet 2.79
New in Bullet 2.78
New in Bullet 2.76
Maya Dynamica Plugin

B QUICKSTQI ... eeeee e ettt et e et ettt e ettt e ettt e ettt e e et e e te e e se s ets e esaeeats e e st s eatsaeasaseatsaeaseseassaeasaseassaeasssaassaeasessassaensesn
(010177 1 [o - T [P SRUPRSUPSRRPSPRPRN
Building using premake ...
Building using CMakecccceeeveenneene
Building using autotools/automake
Testing demoseeevcvieeeeiieecee e,
Integrating Bullet physics in your application
Integrate only the Collision Detection Library

Use snippets only, like the GJIK Closest Point CalCUIQtiON.oiiiiiiiiiie ettt et e et e e e aa e e e eaba e e eeaeaeeeas 10
4 Library Overview.......................

Introduction........c.cceueen.e.

Software Design

Rigid Body Physics Pipeline..

Integration overview

Basic Data Types and Math Libraryc.cc........

Memory Management, AlIGNMENT, CONTAINEIS.......ccuiiiiiieeiiiee ettt ettt e st eesstee e e sbeeessbeeeesteeessbseesssbaeeasstseesssseeesassessnsseeenns 14

TimMINg and PerformMance ProfiliNgcoee ittt e sab et s e e bt e s bt e sb b e sabeesabeebeesabeenntesabeesnteenseens 15

DIEDUEG DIAWINEG ..uveeittetie ittt ettt et stt et e st e bt e et e b eesab e e bt e e bt e sbtesabeeeae e eabeesas e e beeeaseesbee s abeesaseeabeesabeeabeesabeenbeesab e e beeeabeennbeeaeens 16
5 BUIIET COIlISION DELECLION ...vv.vveevieeeeeteeteeeieee e et s e st e et e et e e et e et e et et et e et e e asaaasa s st aassaseanseensesssaassaseenseesseensesasenaes 17

Collision Detection

Collision Shapes............... -

CONVEX PIIMITIVES ...eeiiiiiieiiiie ettt ettt s eab e s e b et e e s ab et e s ab et e e bb e e e eabe e e s ab et e e bt e e e sabb e e s sabaeeembeeesnbeesenbaeeeannneas

Compound Shapes

(0o Y a10 =g o TU 11 - =3RS 19

(0o Y g 1o 1Y T Y =d L V] =T o1 RSSO 19

CONVEX DECOMPOSITION ..eeiiieiiiiiiiieee ittt et e e ettt e e e s e stb bt e e e e e s s abbteeeee s s assbaaeesesaasbsaeeeeesaasssbaaeeesesassssaseeeesanssnssaeeeeessasnsseaeessnsasrnn 19

HEINT FIEIT ..ttt ettt et s bt et et e et e s bt et e e a e e b e s bt e b e ea s et e e bt e b e ea b et e e st e bt eas e be s st e beeabenbeestenbe et e sbeentennean 20

o] Ay = Lol o o T o TR o =T o 1RSSR 20

SCAlING OF COIlISION SNAPES....eieutieieieetieete ettt ettt et e st e st e e s teesae e e teessee e teeeaseenseesateenseeenseesseeesseesaseenseesnseessseenseesneeenseesnseanne 20

CONlISION IMIAIZIN ..ttt ettt ettt ettt et ettt e st e b e s ab et e s et e e bt e e ab e e sabesabeeeab e e beesa b e e beeease e see s e beenae e e bt e sabeeabeesnbeebeesabeennnesnneesnnes 20

(6o 1T Lo T 1Y 1 o OO OO PO PSP P RO PRRPRPPP 21

Registering custom collision shapes and algONthMSccuiiii e e s te e srteereesneeenaeean 21
6 Collision Filtering (SEIECHIVE COIlISIONS)ccoveeeeeeeeeeeieeeeeeeieeeieeeeteeeteeetteeeteeetseeeeaaesseeeissesaseesssessesesssesresnssenases 22

FIiltering COIlISIONS USING MASKS .. .eiiuvieiieiiiesteesieeete et este st e st e et e s ee e te e et e saeesseeesseeenseesseeenseesnseenseesseeenseesnseeseesnseesnseenseesnseensennn 22

Filtering Collisions Using a Broadphase Filter CallDack..........cc.uiiiiiiiiiiiiiiie ittt et e e s aae e e sbaeesnnaaeaeas 22

Filtering Collisions Using @ CUStOM NEAICAIIDACKcciiiuiiiiiiiie it eeiee et e et et e s ebee e s sbte e e ssbb e e e sabeeessteeessabeeesaseeesnnsneanns 23

Deriving your own class from btColliSioNDISPAtCRENccviieeieeie ettt sttt e s e et e s e e sseesnteesneeeseesneeenseean 23
T RiQI BOAY DYNQIMUCS........occceeeeeeeeeeeeeeeeeeee et e ettt e e ettt e e ettt e e e et aeeataa e e saaaeaatssaeaasssaeaasssaeastseaeaasssssaasssaeasssesananes 24

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

([0 dg'e o [8Tord o] o FHU OO OO O TSR SO P PR PPUPPOPPRROPON
Static, Dynamic and Kinematic Rigid Bodies.
Center of mass World Transform ..
What's a MotionState?..............
Interpolation............ .
SO NOW GO I USE ONEP ...ttt ettt ettt e sttt e st e e bt e st e e bee s e te e bt e eabeesbbesabeesaeeenbaesat e e bt e sabeenaeeeabeesaseenbeeshteenbeesaseenbaesnsaenseeenne
DELAUL EMOE I ON S EA T ittt ettt ettt ettt e e e e e e e e e e e et e aaaaees
=T g g =Y Tl 2 T Yo L= PP PPN
Simulation frames and interpolation frames
B CONSEIQINTS ...ttt et e et ettt et e e et e et e st e e se et e s at e e st e esseass et e eab e e st e e st e te e teeaseeasaeaaeesseareeseeabeensantsenteereen
POINT 0 POINT CONSTIAINTeiiiitiiiiitie ettt ettt ettt e s bt e s et bt e e s ab bt e s ab e e e e bt e e e eab bt e s aabeeeesbeeeebbeeesabbeesannneenas
Hinge Constraint........cc........
Slider Constraint............
Cone Twist Constraint
Generic 6 Dof Constraint
9 Actions: Vehicles & CRAIACLET CONTIOIEEcvveecveeeeeeeceeeeeeecee et ettt ettt e ettt e et e et sestaeeesasestssserasestsaeesssesssseasssees
ACTION INTEITACE ettt ettt ettt e b e st e et e e s et e e sue e e st e e sbtesabeesa st e beesat e e bt e s abeenaeesabeesaseenbeeshteebeesaseenbaesnbaenaseenne
L Yo T AV L] T L= TP OPPPTRPTPN
(0T To d=T g @o T o] | LT TP POTUPRTRRPPPR
TO SOt BOOY DYNAMIUCS......vveceveeieeeeeieetieseeeeeeteesteeetteeteeetsseetaeestsseasae e s asseatsseassseassseassseasss e tsseassseasssansssessssaesssessseessseenes
INtroduction.......cccevveeeneercieeneennne.
Construction from a triangle mesh
(07e] 11T o ol [V 41 3PSO PTROPPP
APPIYING FOrCES 10 @ SOTE DOAY ...couiiiiiiiiee ettt s e e a e s bt e s bt e st e e sas e e beesabe e beesabeesnneenbeenaneeane
R o) il e JoTe VA olo 101 d =11 1 £ F R U PP
11 BUIIET DEMO DESCIIDTION.......c.vvvecveeeeereetieeeieeeeieeeteeetteeeteeeetae et steeeaaeeeaseeetaseatsaeasssesssseasse e ssseasssessseasssesssaasssessseessseees
AlIBUITEEDEMOS ..eeiveetieeiteetie et e sttt et e st esteeeteesaee e beesseeesseesaseesseessteenseeaaseesseeenseesaseenseesateenaeeeaseenseeenseesaseenseesseeenseesnseensaeensaenaseanse
(6(0f I o o1V 2 (o D=1 oo BT USSP PSPPI
28] 2 D=1 4 Lo T OO TP T PP PPPPPROPPPPPP
Vehicle Demo
(o) o Iy A D =T oo TSRO
12 Advanced LOW LEVEI TECHNICA] DEMIOScueeeueeeeeeeerieeeeeeeieeeieeetieeeeeeetteeeeeesttsestesestsessesesseseesessssssssssssssenseeans
(6o 1T Lo YW Ia1 4= u - Tol ¥ = D= 43T RO USSP PR PSPPI
(0fe] 11 Te] o T D11 4 oo TN PSSO RROPPPR
(8T =T g 0] 1] oY a1\ F= e 1 oo R OSPRI
(€T T O T A AT ==Y o B =Y oo SR
CONEINUOUS CONVEX COIIISTON 1.ttt ettt ettt ettt et sab e bt e sa b e e bt e s bt esaee s st e e sae e e bt e sabeeabeesaseenneeenbeenanesaneennnes
)Vt =TT gl D=1 o T B O O PSP P PP PPUPPPPPUPPPOPPPPPPPPPRt
SIMIPIEX DBIMO ... veiiiitie it ettt e ettt e eetee e e ettt e e eetteeeetaeeeasaeeeebaeeeassaeaanssseesasaeeeassaseansssaeassseesansaeaensseeeanseseenseeeanseseeansseesasseeesstneennsnnas
13 AUthoring TOOIS AN SEIIAIIZATIONoccuveeeeeeeeeeeeeeeeteeeeeeeee et te et te e eeeeett e e eae et e eeaseeetssessssestssaesssessssaesssessseensssees
(DAY L0 F= T a1 Tor= TNV N T o 0= 1o RSOSSN
L2111V =T RSSO OPPPRRTRRN
Cinema 4D, Lightwave CORE, HOUGINI ...cuuiiiiiiiieiiie s estee sttt s e e et e st e e ettt e s sabbeessabaeeesbaeesssbeeesssaeeesssaeesnbesesnsseesnnsses
Serialization and the Bullet .bullet binary FOrMat..........ooo ittt e et e e e e et e e e e ata e e e eabeeeeateeeenneeas
COLLADA PhySIiCS fOrMAt @N0 VIEWENeetieeeieeiee st eetee et estee et e st e et esaee s teesaseesseessteesseeanseesseeenseessseeseesseeenseesnseenseesnseenssesnseesnees
T4 GONCIAI TIDS ettt ettt ettt et e ettt ettt e ettt s et e e s e e aa s e ts s e atseets s e aassets s eaasseatsseassaentsaanasseatssansssesasaenssaenes
Avoid very small and very [arge CollISION SNAPEScoiiiiiiiiiee ettt st e st e bt e st e e sae e s beesneeebeesaneeane
Avoid large mass ratios (differences)cocevveeviereeviennenne
Combine multiple static triangle meshes into one..............
Use the default internal fixed timestep........ccceccveveennes
For ragdolls use btConeTwistConstraint....
Don’t set the collision margin to zero
Use less then 100 Vertices inN @ CONVEX MESH......iiuiiiiiiierieeiteete ettt ettt s e sbe e st e e sat e e bt e sabe e bt e sabeessaesateesasesabeesnseenseens
Avoid huge or degenerate triangles in a triangle mesh
The profiling feature btQuickProf bypasses the memory alloCator.........ocuieeiriiecieceeree e 40
Per triangle friction and reStitUTION VAIUEcociiiiiiiie ittt et e st e e st e e e sabb e e e sabeeeesbeeessbbeeesabaeesnssneanns 41
CUSEOM CONSEIAINT SOIVET ...eeiiiitieeitt ettt ettt st ettt e sht e st esat e e bt e shte e be e e bt e sbaessbeesateeabeesbbeeabeesabeennteensaesasesnneennnes 41
(OTU 1Sy g o Tt oY o T, o o 1= U 41

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

15 Parallelism: OpenCL, Compute, SPU, MUILi tRIEAQ.............c..oecuvieeeeeeiieeeeet ettt ee et e ete ettt e e esaseeesessseeseees 42
OpenCL and Direct Compute Cloth SIMUIATIONueiiiiiiiiciee e et e et e e et e e s b e e e sbae e e s ataeeeeabesesbaeeesnsaeas 42
Cell SPU / SPURS optimized versionc..ccue..... .42
Unified multi threadingcccveveeveeeceeeeeee e .42
Win32 Threads, pthreads, sequential thread SUPPOITcooviii it s e e s ate e e seaeas 42

16 Further documentQtion QNG FEFEIEINCEScccueecveeeeiieeieeeieeeite ettt eeteestteeeaeestseesseessssessssessssessssessssaesssessseesssees 43
ONIINE FESOUITES. .. eeiutieuteetee sttt estte st esttesteesuteeteesute e bt esuse e aaesateebeeeabeesaeesabeeaaseenbeesateebeeeaseessaeeabeesaeeenbeesaeeenbeesaseebeesnbeanaeesnseenans 43
FAXU1d o ToT o 1o Ko To] 3PP OPPPR 43
2T o Yo & PP OPPPTRPTPRN 43
(OfeT oY d g1 o 1WNd o o I3 Ta o I eT=ToT o] [T RO RTOPPP 44

Create Bullet Visual Studio projectfiles USiNG CIMAKEc..ueeeecueeeeiiieeeeeiieeeeeeeesiteaeseteeeestaaaesisaaasesiseseessssaenssees 45

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

1 Introduction

Description of the library

Bullet Physics is a professional open source collision detection, rigid body and soft body dynamics
library. The library is free for commercial use under the ZLib license.

Main Features

¢ Open source C++ code under ZIib license and free for any commercial use on all platforms
including PLAYSTATION 3, XBox 360, Wii, PC, Linux, Mac OSX, Android and iPhone

e Discrete and continuous collision detection including ray and convex sweep test. Collision
shapes include concave and convex meshes and all basic primitives

e Fast and stable rigid body dynamics constraint solver, vehicle dynamics, character
controller and slider, hinge, generic 6DOF and cone twist constraint for ragdolls

e Soft Body dynamics for cloth, rope and deformable volumes with two-way interaction with
rigid bodies, including constraint support

e Maya Dynamica plugin, Blender integration, COLLADA physics import/export support

Contact and Support

e Public forum for support and feedback is available at http://bulletphysics.org

e PLAYSTATION 3 licensed developers can download an optimized version for Cell SPU
through Sony PS3 Devnet from https://ps3.scedev.net/projects/spubullet

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bulletphysics.org/
https://ps3.scedev.net/projects/spubullet

http://bulletphysics.org

2 What’s New

Preparing for Bullet 3.0 Alpha

¢ The new Bullet 3.x version is making good progress, and the performance on high-end
GPUs such as AMD 7970 and NVIDIA 680 is good. See the github repository at
https:/ / github.com/erwincoumans/bullet3

New in Bullet 2.81

e Mostly bug fixes, see https:/ /code.google.com/p/bullet/source/list for details.

New in Bullet 2.81

e Rolling friction, so that spheres and other rounded shapes come to a rest, even when on a
sloped surface. See Demos/Rol1ingFrictionDemo

¢ Gear constraint, joint feedback, improved speculative contacts, SIMD and NEON for iOS,
improved premake build system support for Linux and Mac OSX.

New in Bullet 2.80

e GPU rigid body pipeline running 100% on the GPU using OpenCL. This is a preview, Bullet
3.x will use this as a GPU backend. See Bullet/Extras/RigidBodyGpuPipeline.
Requires very recent GPU and drivers (Radeon 5870 or NVIDIA 470 with 290.53 or newer)

e Physics Effects rigid body pipeline, with Android/NEON optimizations. This is a preview,
Bullet 3.x will use this as handheld backend. Sony provides a VITA optimized version.
See Bullet/Extras/PhysicsEffects.

e Option to override the number of constraint solver iterations for individual constraints.
See Bullet/Demos/VoronoiFractureDemo, setOverrideNumSolverIterations

e The open source Dynamica Bullet Maya plugin is now deterministic when restarting the
simulation. Also it has preliminary cloth and convex decomposition (HACD) integration.
See http:/ /dynamica.googlecode.com for source and precompiled downloads.

e Check the issue tracker at http:/ /bullet.googlecode.com for other improvements.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

https://github.com/erwincoumans/bullet3
https://code.google.com/p/bullet/source/list
http://dynamica.googlecode.com/
http://bullet.googlecode.com/

http://bulletphysics.org

New in Bullet 2.79

e Bullet 2.79 is mainly a bugfix release. Speculative contacts are disabled, it introduced too
many artifacts.

e Hierarchical Approximate Convex Decomposition library, thanks to Khaled Mamou.
It can create a convex decomposition from a 3D concave triangle mesh. It replaces John
Ratcliff’s ConvexDecomposition library. See Demos/ConvexDecomposition

e Premake build system to autogenerate Windows Visual Studio project files that can be
redistributed. CMake cannot do this properly. We still keep autotools and CMake support
up-to-date. See Bullet/msvc

New in Bullet 2.78

e Fracture and glueing demo that can break or glue child shapes of a btCompoundShape
when certain impulse thresholds are exceeded.
See Bullet/Demos/FractureDemo

e Breakable constraints, based on an applied impulse threshold.
See Bullet/Demos/ConstraintDemos

e Improved binary .bullet file format with soft body serialization and
See Bullet/Demos/SerializeDemo

e Polyhedral contact clipping and optional separating axis test (SAT) as alternative to
GJK/EPA and incremental contact manifold, for btPolyhedralConvexShape derived shapes
such as btConvexHullShape
See Demos/InternalEdgeDemo

¢ OpenCL and DirectCompute cloth simulation improvements: GPU kernels for capsule
collision detection and OpenCL-OpenGL interop
See Demos/OpenCLClothDemo and Demos,/DX11ClothDemo

e Speculative/ predictive contact constraints as a method to perform continuous collision

response.
See Demos/CcdPhysicsDemo

New in Bullet 2.76

e New binary .bullet file format support, with 32/64bit little/big endian compatibility.
See Bullet/Demos/SerializeDemo

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

e New btCollisionWorld::contactTest and btCollisionWorld::contactPairTest query for
immediate collision queries with a contact point callback.
See Bullet/Demos/CollisionInterfaceDemo

e New btInternalEdgeUtility to avoid unwanted collisions against internal triangle edges.
See Bullet/Demos/InternalEdgeDemo

¢ Improved MiniCL support in preparation for Bullet 3.x OpenCL support.
See Bullet/Demos/MiniCL VectorAdd

e Improved CMake build system support, making Jam and other build systems obsolete.

e Many enhancements and bug fixes, see the issue tracked at bullet.googlecode.com

Maya Dynamica Plugin
e Improved constraint authoring for all constraint types.

e Export to the new .bullet file format.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4603

http://bulletphysics.org

3 Quickstart

Download

Windows developers can download the zipped sources of Bullet from http:/ /bullet.googlecode.com.
Mac OS X, Linux and other developers should download the gzipped tar archive. Bullet should
compile out-of-the-box for all platforms, and includes all dependencies.

Building using premake

You can generate projects for most platforms and compilers using premake. Under Windows, you can
click on build/vs2010.bat to generate Visual Studio projects. Some examples on other platforms
are . /premake osx gmakeor ./premake osx xcode4 or ./premake linux64 codeblocks

Projectfiles for Windows Visual Studio are included in Bullet/msvc/*/BULLET PHYSICS.sln

Building using CMake

CMake adds support for many other build environments and platforms, including Microsoft Visual
Studio, XCode for Mac OSX, KDevelop for Linux and Unix Makefiles. Download and install Cmake
fromhttp://cmake.org and use the CMake cmake-gui tool. See the Appendix for details.

You can also use cmake command-line. Run cmake without arguments to see the list of build system
generators for your platform. For Microsoft Visual Studio 8 2005, use

cmake . -G “Visual Studio 8 2005”7

For example to generate Linux or Mac OSX makefiles run

cmake . -G “Unix Makefiles” or for Mac OSX Xcode4 use cmake . -G Xcode

Building using autotools/automake
Open a shell terminal and go to the Bullet root directory. Then execute
./autogen. sh (this is optional and not needed for downloaded packages)

./configure
make

Testing demos

Try to run and experiment with the Bullet demos in the Bullet/Demos folder.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

http://bullet.googlecode.com/
http://cmake.org/

http://bulletphysics.org

Integrating Bullet physics in your application

Check out CcdPhysicsDemo how to create a btDiscreteDynamicsiWorld, btCollisionShape,
btMotionState and btRigidBody. Each frame call the stepSimulation on the dynamics
world, and synchronize the world transform for your graphics object. Requirements:

e #include “btBulletDynamicsCommon.h” inyour source file

¢ Required include path: Bullet/src folder

¢ Required libraries: BulletDynamics, BulletCollision, LinearMath

The actual name and of the library might be different. For example the Visual Studio compiler adds
the .lib extension, Unix systems usually add a lib prefix and .a extension. When using CMake the
library is usually location in the 1ib folder of the build directory.

See the Appendix with details how to setup a Visual Studio and Mac OSX Xcode project.

Integrate only the Collision Detection Library

Bullet Collision Detection can also be used without the Dynamics/Extras. Check out the low level
demo Collision Interface Demo, in particular the class btCollisionWorld. Requirements:

e #include “btBulletCollisionCommon.h” atthe top of your file
e Add include path: Bullet/src folder

e Add libraries: BulletCollision, LinearMath

Use snippets only, like the GJK Closest Point calculation.

Bullet has been designed in a modular way keeping dependencies to a minimum. The
Demos/ConvexHullDistance demo demonstrates direct use of btGjkPairDetector.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-10 -

http://www.continuousphysics.com/Bullet/BulletFull/classCcdPhysicsEnvironment.html
http://www.continuousphysics.com/Bullet/BulletFull/classCollisionShape.html
http://www.continuousphysics.com/Bullet/BulletFull/classRigidBody.html
http://www.continuousphysics.com/Bullet/BulletFull/classGjkPairDetector.html

http://bulletphysics.org

‘ 4 Library Overview

Introduction

The main task of a physics engine is to perform collision detection, resolve collisions and other
constraints, and provide the updated world transform! for all the objects. This chapter will give a
general overview of the rigid body dynamics pipeline as well as the basic data types and math library

shared by all components.

Software Design

Bullet has been designed to be customizable and modular. The developer can

e use only the collision detection component

e use the rigid body dynamics component without soft body dynamics component

e use only small parts of a the library and extend the library in many ways

e choose to use a single precision or double precision version of the library

e use a custom memory allocator, hook up own performance profiler or debug drawer

The main components are organized as follows:

Soft Body Bullet Extras:
Dynamics Multi Threaded Maya Plugin
hkx2dae
.bsp, .obj,
Rigid Body other tools
Dynamics
Collision
Detection
Linear Math
Memory, Containers

! World transform of the center of mass for rigid bodies, transformed vertices for soft bodies

©Erwin Coumans

-11 -

Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

Rigid Body Physics Pipeline

Before going into detail, the following diagram shows the most important data structures and
computation stages in the Bullet physics pipeline. This pipeline is executed from left to right, starting
by applying gravity, and ending by position integration, updating the world transform.

Collision Data Dynamics Data

ollision Objec! Over- ontac ransform
Shapes AABBs lapping Points Velocity contacts
Pairs , joints
Inertia

‘\“

NIS S ‘\\P

Apply Predict Compute Detect Compute Solve Integrate
Gravity Transforms AABBs Pairs Contacts constraints Position

Forward Broadphase Narrowphase Forward
Dynamics Collision Detection Collision Dynamics
Detection

The entire physics pipeline computation and its data structures are represented in Bullet by a
dynamics world. When performing ‘stepSimulation’ on the dynamics world, all the above stages
are executed. The default dynamics world implementation is the btDiscreteDynamicsiWorld.

Bullet lets the developer choose several parts of the dynamics world explicitly, such as broadphase
collision detection, narrowphase collision detection (dispatcher) and constraint solver.

Integration overview

If you want to use Bullet in your own 3D application, it is best to follow the steps in the HelloWorld
demo, located in Bullet/Demos/HelloWorld. In a nutshell:

e Create a btDiscreteDynamicsWorldor btSoftRigidDynamicsWorld

These classes, derived from btDynamicsWorld, provide a high level interface that manages your
physics objects and constraints. It also implements the update of all objects each frame.

e Create a btRigidBody and add it to the btDynamicsWorld

To construct a btRigidBody or btCollisionObject, you need to provide:

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-12 -

http://bulletphysics.org

e Mass, positive for dynamics moving objects and 0 for static objects
e CollisionShape, like a Box, Sphere, Cone, Convex Hull or Triangle Mesh

e Material properties like friction and restitution

Update the simulation each frame:

e stepSimulation

Call the stepSimulation on the dynamics world. The btDiscreteDynamicsWorld automatically
takes into account variable timestep by performing interpolation instead of simulation for small
timesteps. It uses an internal fixed timestep of 60 Hertz. stepSimulation will perform collision
detection and physics simulation. It updates the world transform for active objecs by calling the
btMotionState’s setWorldTransform.

The next chapters will provide more information about collision detection and rigid body dynamics. A
lot of the details are demonstrated in the Bullet/Demos. If you can’t find certain functionality,
please visit the physics forum on the Bullet website at http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-13 -

http://bulletphysics.com/

http://bulletphysics.org

Basic Data Types and Math Library

The basic data types, memory management and containers are located in Bullet/src/LinearMath.

e btScalar

A btScalaris a posh word for a floating point number. In order to allow to compile the library in
single floating point precision and double precision, we use the btScalar data type throughout the
library. By default, bt Scalaris atypedef to float. It can be double by defining

BT USE DOUBLE PRECISION either in your build system, or at the top of the file
Bullet/src/LinearMath/btScalar. h.

e btVector3

3D positions and vectors can be represented using btVector3. btVector3 has 3 scalar x,y,z components.
It has, however, a 4t unused w component for alignment and SIMD compatibility reasons. Many
operations can be performed on a bt Vector3, such as add subtract and taking the length of a vector.

e btQuaternionand btMatrix3x3

3D orientations and rotations can be represented using either btQuaternion or btMatrix3x3.

e btTransform

btTransformis a combination of a position and an orientation. It can be used to transform points
and vectors from one coordinate space into the other. No scaling or shearing is allowed.

Bullet uses a right-handed coordinate system:

(0,0,0)

Figure 1 Right-handed coordinate system

btTransformUtil, btAabbUtil provide common utility functions for transforms and AABBs.

Memory Management, Alignment, Containers

Often it is important that data is 16-byte aligned, for example when using SIMD or DMA transfers on
Cell SPU. Bullet provides default memory allocators that handle alignment, and developers can
provide their own memory allocator. All memory allocations in Bullet use:

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-14 -

http://bulletphysics.org

e btAlignedAlloc, which allows to specify size and alignment

e btAlignedFree, free the memory allocated by btAlignedAlloc.

To override the default memory allocator, you can choose between:

e btAlignedAllocSetCustomis used when your custom allocator doesn’t support
alignment

e btAlignedAllocSetCustomAligned can be used to set your custom aligned memory
allocator.

To assure that a structure or class will be automatically aligned, you can use this macro:

e ATTRIBUTE ALIGNEDI16 (type) variablename creates a 16-byte aligned variable

Often it is necessary to maintain an array of objects. Originally the Bullet library used a STL std::vector
data structure for arrays, but for portability and compatibility reasons we switched to our own array
class.

e btAlignedObjectArray closely resembles std::vector. It uses the aligned allocator to
guarantee alignment. It has methods to sort the array using quick sort or heap sort.

To enable Microsoft Visual Studio Debugger to visualize btAlignedObjectArray and
btVector3, follow the instructionsin Bullet/msvc/autoexp ext.txt

Name Walue
= (3 this 000398350 {m_constraintSolver=0x02a36250 m_island'
B et OxO0EE25FG const bDiscreteDymamicsWorkd:: vitable'
= g m_colisionObjects [10K0=00393¢70 {m_invInertiaTensorworld={...} m_linearvielocity=[...,...1m_{
@0 000393670 {m_invInertiaTensorwiorld } m_linsarvelocity=[0.00000000,0,

B 9] (x02a240eD {_invInerbiaTensorWarld=1.. } m_linearVelociy=[0,00000000,0.
@ @2 0x00397he0 {m_invInertiaTensarwarld={...} m_linearelocity=[0,00000000,0.
® 93 0%02530640 {rn_invInerkiaTensororld={.. .} m_inearVelocity=[0,00000000,0.
B 94 010223030 {m_invInertiaTensararld={.. } m_inearVelocity=[0,00000000,0.
® @ [5] m_invInertiaTensortiorld linearielocity=[.
INEEAT 0.

lineartfelocity=[0.00000000,0.00000000, 0.

® @ [btRigidBody] {m_nvInertiaTensorork=:

® @ _viptr 0%006b2510 const biRigidBody:: vtable'
® 4 m_warldTransfarm {m_basis=1...} m_origin=[-5,0000000, 15.000000,-5,0000000,0.00000000] }

@ 4% m_interpolationtorld Transform {m_basis="{...} m_origin=[5,000000, 15.000000,-5,0000000,0,00000000] +

® % m_interpolationline srvelodty [0.00000000,0,00000000,0.00000000, 0.00000000]

@ % m_interpolationangularvelocity [0.00000000,0.00000000, 000000000, 0.00000000]

® % m_broadphaseHande 0x02a38bc0 {m_clientObject=0x02a36970 m_collsionFilterGroup=1 m_collsion

Figure 2 MSVC Debug Visualization

Timing and Performance Profiling

In order to locate bottlenecks in performance, Bullet uses macros for hierarchical performance
measurement.

e btClock measures time using microsecond accuracy.

e BT PROFILE (section name) marks the start of a profiling section.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-15 -

http://bulletphysics.org

e CProfileManager: :dumpAll () ; dumps a hierarchical performance output in the
console. Call this after stepping the simulation.

e CProfilelteratorisa class that lets you iterate through the profiling tree.

Note that the profiler doesn’t use the memory allocator, so you might want to disable it when
checking for memory leaks, or when creating a final release build of your software.

The profiling feature can be switched off by defining #define BT NO PROFILE 1in
Bullet/src/LinearMath/btQuickProf.h

Debug Drawing

Visual debugging the simulation data structures can be helpful. For example, this allows you to verify
that the physics simulation data matches the graphics data. Also scaling problems, bad constraint
frames and limits show up.

btIDebugDraw is the interface class used for debug drawing. Derive your own class and implement
the virtual ‘“drawLine”’ and other methods.

Assign your custom debug drawer to the dynamics world using the setDebugDrawer method.
Then you can choose to draw specific debugging features by setting the mode of the debug drawer:
dynamicsWorld->getDebugDrawer () ->setDebugMode (debugMode) ;
Every frame you can call the debug drawing by calling the
world-> debugDrawWorld () ;2
Here are some debug modes
e btIDebugDraw: :DBG DrawWireframe
e btIDebugDraw: :DBG DrawAabb
e btIDebugDraw: :DBG DrawConstraints
e btIDebugDraw::DBG DrawConstraintLimits

By default all objects are visualized for a given debug mode, and when using many objects this can
clutter the display. You can disable debug drawing for specific objects by using
int f = objects->getCollisionFlags();

ob->setCollisionFlags (f|btCollisionObject::CF_DISABLE VISUALIZE_ OBJECT) ;

2 This feature is supported for both btCollisionWorld and btDiscreteDynamicsWorld

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-16 -

http://bulletphysics.org

‘ 9 Bullet Collision Detection

Collision Detection

The collision detection provides algorithms and acceleration structures for closest point (distance and
penetration) queries as well as ray and convex sweep tests. The main data structures are:

e btCollisionObject is the object that has a world transform and a collision shape.

e btCollisionShape describes the collision shape of a collision object, such as box, sphere,
convex hull or triangle mesh. A single collision shape can be shared among multiple
collision objects.

e btGhostObject is aspecial btCollisionObject, useful for fast localized collision
queries.

e ptCollisionWorldstoresall btCollisionObjects and provides an interface to
perform queries.

The broadphase collision detection provides acceleration structure to quickly reject pairs of objects
based on axis aligned bounding box (AABB) overlap. Several different broadphase acceleration
structures are available:

e btDbvtBroadphase uses a fast dynamic bounding volume hierarchy based on AABB tree
e btAxisSweep3 and bt32BitAxisSweep3 implement incremental 3d sweep and prune

e btCudaBroadphase implements a fast uniform grid using GPU graphics hardware

The broadphase adds and removes overlapping pairs from a pair cache. The developer can choose the
type of pair cache.

A collision dispatcher iterates over each pair, searches for a matching collision algorithm based on the
types of objects involved and executes the collision algorithm computing contact points.

e btPersistentManifoldis a contact point cache to store contact points for a given pair of
objects.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-17 -

http://bulletphysics.org

Collision Shapes

Bullet supports a large variety of different collision shapes, and it is possible to add your own. For best
performance and quality it is important to choose the collision shape that suits your purpose. The
following diagram can help making a decision:

Can it be approximated by a single
primitive, such as box, sphere, capsule,
cone, cylinder?

Is is a moving object?

vzi/ \\1‘0

Is it a 2D heightfield?

btBoxShape,
btSphereShape,

Can it be approximated by a
convex hull of a triangle mesh?

btCapsuleShape,
btCylinderShape,
btConeShape

btConvexHullShape

Convex Primitives

Y AN

btCompoundShape

btHeightfield
TerrainShape

Can it be approximated using
multiple primitives, such as
box, sphere etc?

Y N\e

btGimpactTriangleMeshShape

btScaledBvhTriangle
MeshShape

w‘o

Are there shared
scaled instances?

NO

btBvhTriangle
MeshShape

Most primitive shapes are centered around the origin of their local coordinate frame:

btBoxShape : Box defined by the half extents (half length) of its sides

btSphereShape : Sphere defined by its radius

btCapsuleShape: Capsule around the Y axis. Also btCapsuleShapeX/Z

btCylinderShape : Cylinder around the Y axis. Also btCylinderShapeX/Z.

btConeShape : Cone around the Y axis. Also btConeShapeX/Z.

©Erwin Coumans

-18 -

Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

btMultiSphereShape : Convex hull of multiple spheres, that can be used to create a Capsule (by
passing 2 spheres) or other convex shapes.

Compound Shapes

Multiple convex shapes can be combined into a composite or compound shape, using the
btCompoundShape. This is a concave shape made out of convex sub parts, called child shapes. Each
child shape has its own local offset transform, relative to the bt CompoundShape. It is a good idea to
approximate concave shapes using a collection of convex hulls, and store them in a
btCompoundShape. You can adjust the center of mass using a utility method btCompoundShape
::calculatePrincipalAxisTransform.

Convex Hull Shapes

Bullet supports several ways to represent a convex triangle meshes. The easiest way is to create a
btConvexHullShape and pass in an array of vertices. In some cases the graphics mesh contains too
many vertices to be used directly as bt ConvexHullShape. In that case, try to reduce the number of
vertices.

Concave Triangle Meshes

For static world environment, a very efficient way to represent static triangle meshes is to use a
btBvhTriangleMeshShape. This collision shape builds an internal acceleration structure from a
btTriangleMeshor btStridingMeshInterface. Instead of building the tree at run-time, it is
also possible to serialize the binary tree to disc. See Demos/ConcaveDemo how to save and load this
btOptimizedBvh tree acceleration structure. When you have several instances of the same triangle
mesh, but with different scaling, you can instance a bt BvhTriangleMeshShape multiple times
using the bt ScaledBvhTriangleMeshShape. The btBvhTriangleMeshShape can store
multiple mesh parts. It keeps a triangle index and part index in a 32bit structure, reserving 10 bits for
the part Id and the remaining 22 bits for triangle index. If you need more than 2 million triangles,
either split the the triangle mesh into multiple sub meshes, or change the default in #define

MAX NUM_PARTS IN BITS in the file

src\BulletCollision \BroadphaseCollision\btQuantizedBvh.h

Convex Decomposition

Ideally, concave meshes should only be used for static artwork. Otherwise its convex hull should be
used by passing the mesh to bt ConvexHullShape. If a single convex shape is not detailed enough,
multiple convex parts can be combined into a composite object called bt CompoundShape. Convex
decomposition can be used to decompose the concave mesh into several convex parts. See the
Demos/ConvexDecompositionDemo for an automatic way of doing convex decomposition.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-19 -

http://bulletphysics.org

Height field

Bullet provides support for the special case of a flat 2D concave terrain through the
btHeightfieldTerrainShape.See Demos/TerrainDemo or Demos/VehicleDemo for its usage.

btStaticPlaneShape

As the name suggests, the bt StaticPlaneShape can represent an infinite plane or half space. This
shape can only be used for static, non-moving objects. This shape has been introduced mainly for
demo purposes.

Scaling of Collision Shapes

Some collision shapes can have local scaling applied. Use

btCollisionShape: :setScaling(vector3). Non uniform scaling with different scaling values for
each axis, can be used for btBoxShape, btMultiSphereShape, btConvexShape,
btTriangleMeshShape. Uniform scaling, using x value for all axis, can be used for
btSphereShape. Note that a non-uniform scaled sphere can be created by using a
btMultiSphereShape with 1 sphere. As mentioned before, the
btScaledBvhTriangleMeshShape allows to instantiate a btBvhTriangleMeshShape at different
non-uniform scale factors. The btUniformScalingShape allows to instantiate convex shapes at
different scales, reducing the amount of memory.

Collision Margin

Bullet uses a small collision margin for collision shapes, to improve performance and reliability of the
collision detection. It is best not to modify the default collision margin, and if you do use a positive
value: zero margin might introduce problems. By default this collision margin is set to 0.04, which is 4
centimeter if your units are in meters (recommended).

Dependent on which collision shapes, the margin has different meaning. Generally the collision
margin will expand the object. This will create a small gap. To compensate for this, some shapes will
subtract the margin from the actual size. For example, the bt BoxShape subtracts the collision margin
from the half extents. For a bt SphereShape, the entire radius is collision margin so no gap will
occur. Don’t override the collision margin for spheres. For convex hulls, cylinders and cones, the
margin is added to the extents of the object, so a gap will occur, unless you adjust the graphics mesh
or collision size. For convex hull objects, there is a method to remove the gap introduced by the
margin, by shrinking the object. See the Demos/BspDemo for this advanced use.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-20 -

http://bulletphysics.org

Collision Matrix

For each pair of shape types, Bullet will dispatch a certain collision algorithm, by using the dispatcher.
By default, the entire matrix is filled with the following algorithms. Note that Convex represents
convex polyhedron, cylinder, cone and capsule and other GJK compatible primitives. GJK stands for
Gilbert, Johnson and Keerthi, the people behind this convex distance calculation algorithm. It is
combined with EPA for penetration depth calculation. EPA stands for Expanding Polythope
Algorithm by Gino van den Bergen. Bullet has its own free implementation of GJK and EPA.

box sphere convex,cylinder | compound | triangle mesh
cone,capsule

box boxbox spherebox gik compound | concaveconvex
sphere spherebox spheresphere gik compound | concaveconvex
convex, gik gik gjk or SAT compound | concaveconvex
cylinder,
cone,
capsule
compound | compound compound compound compound | compound
triangle concaveconvex | concaveconvex | concaveconvex | compound | gimpact
mesh

Registering custom collision shapes and algorithms

The user can register a custom collision detection algorithm and override any entry in this Collision
Matrix by using the btDispatcher: :registerCollisionAlgorithm. See
Demos/UserCollisionAlgorithmfor an example, that registers a SphereSphere collision

algorithm.

©Erwin Coumans

-21 -

Bullet 2.82 Physics SDK Manual

http://bulletphysics.org

‘ 6 cCollision Filtering (selective collisions)

Bullet provides three easy ways to ensure that only certain objects collide with each other: masks,
broadphase filter callbacks and nearcallbacks. It is worth noting that mask-based collision selection
happens a lot further up the toolchain than the callback do. In short, if masks are sufficient for your
purposes, use them; they perform better and are a lot simpler to use.

Of course, don't try to shoehorn something into a mask-based selection system that clearly doesn't fit
there just because performance may be a little better.

Filtering collisions using masks

Bullet supports bitwise masks as a way of deciding whether or not things should collide with other
things, or receive collisions.

int myGroup = 1;
int collideMask = 4;

world->addCollisionObject (object, myGroup,collideMask) ;

During broadphase collision detection overlapping pairs are added to a pair cache, only when the
mask matches the group of the other objects (in needsBroadphaseCollision)

bool collides = (proxy0O->m collisionFilterGroup & proxyl->m collisionFilterMask) != 0;

collides = collides && (proxyl->m collisionFilterGroup & proxyO->m collisionFilterMask);

If you have more types of objects than the 32 bits available to you in the masks, or some collisions are
enabled or disabled based on other factors, then there are several ways to register callbacks to that
implements custom logic and only passes on collisions that are the ones you want:

Filtering Collisions Using a Broadphase Filter Callback

One efficient way is to register a broadphase filter callback. This callback is called at a very early stage
in the collision pipeline, and prevents collision pairs from being generated.

struct YourOwnFilterCallback : public btOverlapFilterCallback
{
// return true when pairs need collision
virtual bool needBroadphaseCollision (btBroadphaseProxy* proxy0,btBroadphaseProxy* proxyl) const
{
bool collides = (proxy0->m collisionFilterGroup & proxyl->m collisionFilterMask) != 0;

collides = collides && (proxyl->m collisionFilterGroup & proxy0O->m collisionFilterMask) ;

//add some additional logic here that modified 'collides'
return collides;
)
};
And then create an object of this class and register this callback using;:

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-22 -

http://bulletphysics.org

btOverlapFilterCallback * filterCallback = new YourOwnFilterCallback() ;
dynamicsWorld->getPairCache () ->setOverlapFilterCallback (filterCallback) ;

Filtering Collisions Using a Custom NearCallback

Another callback can be registered during the narrowphase, when all pairs are generated by the
broadphase. The btCollisionDispatcher: :dispatchAllCollisionPairs calls this
narrowphase nearcallback for each pair that passes the

'btCollisionDispatcher: :needsCollision' test. You can customize this nearcallback:

void MyNearCallback (btBroadphasePair& collisionPair,
btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo) |

// Do your collision logic here

// Only dispatch the Bullet collision information if you want the physics to continue
dispatcher.defaultNearCallback (collisionPair, dispatcher, dispatchInfo) ;

mDispatcher->setNearCallback (MyNearCallback) ;

Deriving your own class from btCollisionDispatcher

For even more fine grain control over the collision dispatch, you can derive your own class from
btCollisionDispatcher and override one or more of the following methods:

virtual bool needsCollision (btCollisionObject* body0,btCollisionObject* bodyl) ;
virtual bool needsResponse (btCollisionObject* body0,btCollisionObject* bodyl);
virtual void dispatchAllCollisionPairs (btOverlappingPairCache* pairCache,const

btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) ;

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-23 -

http://bulletphysics.org

‘ 1 Rigid Body Dynamics

Introduction

The rigid body dynamics is implemented on top of the collision detection module. It adds forces,
mass, inertia, velocity and constraints.

e btRigidBody is the main rigid body object, moving objects have non-zero mass and
inertia. btRigidBody is derived from btCollisionObject, so it inherits its world transform,
friction and restitution and adds linear and angular velocity.

e btTypedConstraint is the base class for rigid body constraints, including
btHingeConstraint, btPoint2PointConstraint, btConeTwistConstraint,

btSliderConstraint and btGeneric6DOFconstraint.

e btDiscreteDynamicsWorldis derived from btCollisionWorld, and is a container for
rigid bodies and constraints. It provides the stepSimulation to proceed.

Static, Dynamic and Kinematic Rigid Bodies

There are 3 different types of objects in Bullet:
e Dynamic (moving) rigidbodies
® positive mass
® every simulation frame the dynamics will update its world transform
e Static rigidbodies
® zero mass
® cannot move but just collide
e Kinematic rigidbodies
® zero mass

® can be animated by the user, but there will be only one-way interaction: dynamic
objects will be pushed away but there is no influence from dynamics objects

All of them need to be added to the dynamics world. The rigid body can be assigned a collision shape.
This shape can be used to calculate the distribution of mass, also called inertia tensor.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-24 -

http://bulletphysics.org

Center of mass World Transform

The world transform of a rigid body is in Bullet always equal to its center of mass, and its basis also
defines its local frame for inertia. The local inertia tensor depends on the shape, and the
btCollisionShape class provides a method to calculate the local inertia, given a mass.

This world transform has to be a rigid body transform, which means it should contain no scaling,
shear etc. If you want an object to be scaled, you can scale the collision shape. Other transformation,
such as shear, can be applied (baked) into the vertices of a triangle mesh if necessary.

In case the collision shape is not aligned with the center of mass transform, it can be shifted to match.
For this, you can use a bt CompoundShape, and use the child transform to shift the child collision
shape.

What's a MotionState?

MotionStates are a way for Bullet to do all the hard work for you getting the world transform of
objects being simulated into the rendering part of your program.

In most situations, your game loop would iterate through all the objects you're simulating before each
frame rander. For each object, you would update the position of the render object from the physics
body. Bullet uses something called MotionStates to save you this effort.

There are multiple other benefits of MotionStates:

e Computation involved in moving bodies around is only done for bodies that have moved;
no point updating the position of a render object every frame if it isn't moving.

¢ You don't just have to do render stuff in them. They could be effective for notifying
network code that a body has moved and needs to be updated across the network.

e Interpolation is usually only meaningful in the context of something visible on-screen.
Bullet manages body interpolation through MotionStates.

e You can keep track of a shift between graphics object and center of mass transform.

e They're easy

Interpolation

Bullet knows how to interpolate body movement for you. As mentioned, implemention of
interpolation is handled through MotionStates.

If you attempt to ask a body for its position through btCollisionObject: :getWorldTransform
or btRigidBody: :getCenterOfMassTransform, it will return the position at the end of the last

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-25-

http://bulletphysics.org

physics tick. That's useful for many things, but for rendering you will want some interpolation. Bullet
interpolates the transform of the body before passing the value to setWorldTransform.

If you want the non-interpolated position of a body [which will be the position as it was calculated at
the end of the last physics tick], use btRigidBody::getWorldTransform() and query the body directly.

So how do | use one?
MotionStates are used in two places in Bullet.

The first is when the body is first created. Bullet grabs the initial position of the body from the
motionstate when the body enters the simulation

Bullet calls getWor1dTransform with a reference to the variable it wants you to fill with transform
information

Bullet also calls getWorldTransform on kinematic bodies. Please see the section below

After the first update, during simulation Bullet will call the motion state for a body to move that body
around

Bullet calls setWorldTransform with the transform of the body, for you to update your object
appropriately

To implement one, simply inherit btMotionState and override getWorldTransform and
setWorldTransform.

DefaultMotionState

Although recommended, it is not necessary to derive your own motionstate from btMotionState
interface. Bullet provides a default motionstate that you can use for this. Simply construct it with the
default transform of your body:

btDefaultMotionState* ms =new btDefaultMotionState() ,

There is an example for an Ogre3D Motion State in an Appendix.

Kinematic Bodies

If you plan to animate or move static objects, you should flag them as kinematic. Also disable the
sleeping/deactivation for them during the animation. This means Bullet dynamics world will get the
new worldtransform from the btMotionState every simulation frame.

body->setCollisionFlags (body->getCollisionFlags() |
btCollisionObject::CF KINEMATIC OBJECT) ;
body->setActivationState (DISABLE DEACTIVATION) ;

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-26 -

http://bulletphysics.org

If you are using kinematic bodies, then getWorldTransform is called every simulation step. This
means that your kinematic body's motionstate should have a mechanism to push the current position
of the kinematic body into the motionstate.

Simulation frames and interpolation frames

By default, Bullet physics simulation runs at an internal fixed framerate of 60 Hertz (0.01666). The
game or application might have a different or even variable framerate. To decouple the application
framerate from the simulation framerate, an automatic interpolation method is built into
stepSimulation: when the application delta time, is smaller then the internal fixed timestep, Bullet will
interpolate the world transform, and send the interpolated worldtransform to the btMotionState,
without performing physics simulation. If the application timestep is larger then 60 hertz, more then 1
simulation step can be performed during each ‘stepSimulation” call. The user can limit the maximum
number of simulation steps by passing a maximum value as second argument.

When rigidbodies are created, they will retrieve the initial worldtransform from the btMotionState,
using btMotionState: :getWorldTransform When the simulation is running, using
stepSimulation, the new worldtransform is updated for active rigidbodies using the
btMotionState: :setWorldTransform.

Dynamic rigidbodies have a positive mass, and their motion is determined by the simulation. Static
and kinematic rigidbodies have zero mass. Static objects should never be moved by the user.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-27 -

http://bulletphysics.org

‘ 8 Constraints

There are several constraints implemented in Bullet. See Demos/ConstraintDemo for an example of
each of them. All constraints including the btRaycastVehicle are derived from btrypedconstraint.
Constraint act between two rigidbodies, where at least one of them needs to be dynamic.

Point to Point Constraint

Point to point constraint limits the translation so that the local pivot points of 2 rigidbodies match in
worldspace. A chain of rigidbodies can be connected using this constraint.

btPoint2PointConstraint (btRigidBody& rbA,const btVector3& pivotInA);
btPoint2PointConstraint (btRigidBody& rbA,btRigidBodyé& rbB, const btVector3& pivotInA,const btVector3& pivotInB);

Figure 3 Point to point constraint

Hinge Constraint

Hinge constraint, or revolute joint restricts two additional angular degrees of freedom, so the body
can only rotate around one axis, the hinge axis. This can be useful to represent doors or wheels
rotating around one axis. The user can specify limits and motor for the hinge.

btHingeConstraint (btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false);

btHingeConstraint (btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA = false);
btHingeConstraint (btRigidBody& rbA,btRigidBodyé& rbB, const btVector3& pivotInA,const btVector3é&

pivotInB, btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA = false);

btHingeConstraint (btRigidBodyé& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool
useReferenceFrameA = false);

Figure 4 Hinge Constraint

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-28 -

http://bulletphysics.org

Slider Constraint

The slider constraint allows the body to rotate around one axis and translate along this axis.

btSliderConstraint (btRigidBody& rbA, btRigidBodyé& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool
useLinearReferenceFrameA) ;

Figure 5 Slider Constraint

Cone Twist Constraint

To create ragdolls, the conve twist constraint is very useful for limbs like the upper arm. It is a special
point to point constraint that adds cone and twist axis limits. The x-axis serves as twist axis.

btConeTwistConstraint (btRigidBody& rbA,const btTransform& rbAFrame) ;

btConeTwistConstraint (btRigidBody& rbA,btRigidBody& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame) ;

Generic 6 Dof Constraint

This generic constraint can emulate a variety of standard constraints, by configuring each of the 6
degrees of freedom (dof). The first 3 dof axis are linear axis, which represent translation of rigidbodies,
and the latter 3 dof axis represent the angular motion. Each axis can be either locked, free or limited.
On construction of a new btGenericé6DofConstraint, all axis are locked. Afterwards the axis can
be reconfigured. Note that several combinations that include free and/or limited angular degrees of
freedom are undefined.

btGeneric6DofConstraint (btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB
,bool useLinearReferenceFrameA) ;

Following is convention:

btVector3 lowerSliderLimit = btVector3(-10,0,0);
btVector3 hiSliderLimit = btVector3(10,0,0);

btGenericé6éDofConstraint* slider = new btGenericé6DofConstraint (*débody0,*fixedBodyl, frameInA,frameInB) ;
slider->setLinearLowerLimit (lowerSliderLimit) ;
slider->setLinearUpperLimit (hiSliderLimit) ;

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-29-

http://bulletphysics.org

For each axis:

o Lowerlimit == Upperlimit -> axis is locked.
o Lowerlimit > Upperlimit -> axis is free
o Lowerlimit < Upperlimit -> axis it limited in that range

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-30 -

http://bulletphysics.org

‘ 9 Actions: Vehicles & Character Controller

Action Interface

In certain cases it is useful to process some custom physics game code inside the physics pipeline.
Although it is possible to use a tick callback, when there are several objects to be updated, it can be
more convenient to derive your custom class from btActionInterface. And implement the
btActionInterface: :updateAction (btCollisionWorld* world, btScalar
deltaTime) ; There are built-in examples, btRaycastVehicle and
btKinematicCharacterController, thatare usingthis btActionInterace.

Raycast Vehicle

For arcade style vehicle simulations, it is recommended to use the simplified Bullet vehicle model as
provided in btRaycastVehicle. Instead of simulation each wheel and chassis as separate rigid bodies,
connected by constraints, it uses a simplified model. This simplified model has many benefits, and is
widely used in commercial driving games.

The entire vehicle is represented as a single rigidbody, the chassis. The collision detection of the
wheels is approximated by ray casts, and the tire friction is a basic anisotropic friction model.

See src/BulletDynamics/Vehicle and Demos/VehicleDemo for more details, or check the
Bullet forums.

Kester Maddock shared an interesting document about Bullet vehicle simulation here:

http://tinyurl.com/ydfb71lm

Character Controller

A player or NPC character can be constructed using a capsule shape, sphere or other shape. To avoid
rotation, you can set the ‘angular factor’ to zero, which disables the angular rotation effect during
collisions and other constraints. See btRigidBody: : setAngularFactor. Other options (that are
less recommended) include setting the inverse inertia tensor to zero for the up axis, or using a
angular-only hinge constraint.

There is also an experimental® bt KinematicCharacterController as an example a non-physical
character controller. It uses a bt GhostShape to perform collision queries to create a character that
can climb stairs, slide smoothly along walls etc. See src/BulletDynamics/Character and
Demos/CharacterDemo for its usage.

* btKinematicCharacterController has several outstanding issues.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-31-

http://tinyurl.com/ydfb7lm

http://bulletphysics.org

‘ 10 soft Body Dynamics

Preliminary documentation

Introduction

The soft body dynamics provides rope, cloth simulation and volumetric soft bodies, on top of the
existing rigid body dynamics. There is two-way interaction between soft bodies, rigid bodies and
collision objects.

e btSoftBody is the main soft body object. It is derived from btCollisionObject. Unlike
rigid bodies, soft bodies don’t have a single world transform: each node/ vertex is specified
in world coordinate.

e btSoftRigidDynamicsWorldis the container for soft bodies, rigid bodies and collision
objects.

It is best to learn from Demos/SoftBodyDemo how to use soft body simulation.

Here are some basic guidelines in a nutshell:

Construction from a triangle mesh

The btSoftBodyHelpers: :CreateFromTriMesh can automatically create a soft body from a
triangle mesh.

Collision clusters

By default, soft bodies perform collision detection using between vertices (nodes) and triangles (faces).
This requires a dense tessellation, otherwise collisions might be missed. An improved method uses
automatic decomposition into convex deformable clusters. To enable collision clusters, use:

psb->generateClusters (numSubdivisions) ;

//enable cluster collision between soft body and rigid body

psb->m cfg.collisions += btSoftBody::fCollision::CL RS;
//enable cluster collision between soft body and soft body

psb->m_cfg.collisions += btSoftBody::fCollision::CL SS;

The Softbody and AllBulletDemos has a debug option to visualize the convex collision clusters.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-32-

http://bulletphysics.org

Applying forces to a Soft body
There are methods to apply a force to each vertex (node) or at an individual node:
softbody ->addForce (const btVector3& forceVector),

softbody ->addForce (const btVector3& forceVector,int node);

Soft body constraints

It is possible to fix one or more vertices (nodes), making it immovable:

softbody->setMass (node,0.f) ;
or to attach one or more vertices of a soft body to a rigid body:

softbody->appendAnchor (int node,btRigidBody* rigidbody, bool
disableCollisionBetweenLinkedBodies=false) ;

It is also possible to attach two soft bodies using constraints, see Bullet/Demos/SoftBody.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-33-

http://bulletphysics.org

11 Bullet Demo Description

Bullet includes several demos. They are tested on several platforms and use OpenGL graphics and
Glut. Some shared functionality like mouse picking and text rendering is provided in the
Demos/OpenGL support folder. This is implemented in the DemoApplication class. Each demo
derives a class from DemoApplication and implements its own initialization of the physics in the
‘initPhysics’ method.

AllBulletDemos

This is a combination of several demos. It includes demonstrations of a fork lift, ragdolls, cloth and
soft bodies and several performance benchmarks.

CCD Physics Demo

This is a that shows how to setup a physics simulation, add some objects, and step the simulation. It
shows stable stacking, and allows mouse picking and shooting boxes to collapse the wall. The
shooting speed of the box can be changed, and for high velocities, the CCD feature can be enabled to
avoid missing collisions. Try out advanced features using the #defines at the top of
Demos/CcdPhysicsDemo/CcdPhysicsDemo. cpp

BSP Demo

Import a Quake .bsp files and convert the brushes into convex objects. This performs better then using
triangles.

Vehicle Demo

This demo shows the use of the build-in vehicle. The wheels are approximated by ray casts. This
approximation works very well for fast moving vehicles.

Fork Lift Demo

A demo that shows how to use constraints like hinge and slider constraint to build a fork lift vehicle.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-34-

http://bulletphysics.org

‘ 12 Advanced Low Level Technical Demos

Collision Interfacing Demo

This demo shows how to use Bullet collision detection without the dynamics. It uses the
btCollisionWorld class, and fills this will btCollisionObjects. The
performDiscreteCollisionDetection method is called and the demo shows how to gather the
contact points.

Collision Demo

This demo is more low level then previous Collision Interfacing Demo. It directly uses the
btGJKPairDetector to query the closest points between two objects.

User Collision Algorithm

Shows how you can register your own collision detection algorithm that handles the collision
detection for a certain pair of collision types. A simple sphere-sphere case overides the default GJK
detection.

Gjk Convex Cast / Sweep Demo

This demo show how to performs a linear sweep between to collision objects and returns the time of
impact. This can be useful to avoid penetrations in camera and character control.

Continuous Convex Collision

Shows time of impact query using continuous collision detection, between two rotating and
translating objects. It uses Bullet’s implementation of Conservative Advancement.

Raytracer Demo

This shows the use of CCD ray casting on collision shapes. It implements a ray tracer that can
accurately visualize the implicit representation of collision shapes. This includes the collision margin,
convex hulls of implicit objects, minkowski sums and other shapes that are hard to visualize
otherwise.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-35-

http://bulletphysics.org

Simplex Demo

This is a very low level demo testing the inner workings of the GJK sub distance algorithm. This
calculates the distance between a simplex and the origin, which is drawn with a red line. A simplex
contains 1 up to 4 points, the demo shows the 4 point case, a tetrahedron. The Voronoi simplex solver
is used, as described by Christer Ericson in his collision detection book.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-36 -

http://bulletphysics.org

13 Authoring Tools and Serialization

Collision shapes, rigid body and constraints can be created in a 3D authoring tool and exported to a
file format that Bullet can read.

Dynamica Maya Plugin

Walt Disney Animation Studios contributed their in-house Maya plugin to author Bullet collision
shapes and rigid bodies as open source. Dynamica can simulation rigid body dynamica within Maya,
and it can export to Bullet .bullet physics files and COLLADA Physics. The latest version has preliminary
support for cloth/soft body.

There is more information in the Bullet wiki page. You can download a precompiled version of the
Dynamica plugin for Windows or Mac OSX from http://bullet.googlecode.com.
The source code repository of Dynamica is under http://dynamica.googlecode.com

Blender

The open source 3D production suite Blender uses Bullet physics for animations and its internal game
engine. See http://blender.org

Blender has an option to export COLLADA Physics files. There is also a project that can directly read
any information from a Blender .blend file, including collision shape, rigid body and constraint
information. See http://gamekit.googlecode.com

Blender 2.57 and later has an option to export to .bullet files directly from the game engine. This can
be done using the exportBulletFile (“name.bullet”) Python command in the
PhysicsConstraints module.

Cinema 4D, Lightwave CORE, Houdini

Cinema 4D 11.5 uses Bullet for the rigid body simulation, and there is a report that Lightwave CORE
also plans to use Bullet.

For Houdini there is a DOP/plugin, see
http://code.google.com/p/bullet-physics-solver/

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-37 -

http://bullet.googlecode.com/
http://dynamica.googlecode.com/
http://blender.org/
http://gamekit.googlecode.com/
http://code.google.com/p/bullet-physics-solver/

http://bulletphysics.org

Serialization and the Bullet .bullet binary format

Bullet 2.76 onwards has the capability to save the dynamics world to a binary dump. Saving the
objects and shapes into a buffer is built-in, so no additional libraries are necessary. Here is an example
how to save the dynamics world to a binary .bullet file:

btDefaultSerializer* serializer = new btDefaultSerializer();
dynamicsWorld->serialize (serializer);

FILE* file = fopen("testFile.bullet","wb");

fwrite (serializer->getBufferPointer(),serializer->getCurrentBufferSize(),1, file);

fclose (file);

You can press the ‘=" key in most of the Bullet demos to save a “testFile.bullet’. You can read .bullet
files using the btBulletWorldImporter as implemented in the Bullet/Demos/SerializationDemo.

Futher information about .bullet serialization is at the Bullet wiki at

http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet binary serialization

COLLADA Physics format and viewer

COLLADA is rich 3D specification and XML based file format that includes collision and physics
information. Dynamica Maya plugin, Blender and other software can export/import this standard
physics file format.

The Dynamica source repository at http:/ /dynamica.googlecode.com provides example code to load
and save COLLADA Physics files based on the COLLADA-DOM and 1ibxml. See
Dynamica/Demos/ColladaDemo.

The Dynamica/Extras/BulletColladaConverter class can be used as example for other
COLLADA physics integrations.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-38 -

http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_binary_serialization
http://dynamica.googlecode.com/

http://bulletphysics.org

‘ 14 General Tips

Avoid very small and very large collision shapes

The minimum object size for moving objects is about 0.2 units, 20 centimeters for Earth gravity. If
smaller objects or bigger gravity are manipulated, reduce the internal simulation frequency
accordingly, using the third argument of btDiscreteDynamicsWorld: :stepSimulation. By
default it is 60Hz. For instance, simulating a dice throw (1cm-wide box with a gravity of 9.8m/s2)
requires a frequency of at least 300Hz (1./300.). It is recommended to keep the maximum size of
moving objects smaller then about 5 units/ meters.

Avoid large mass ratios (differences)

Simulation becomes unstable when a heavy object is resting on a very light object. It is best to keep the
mass around 1. This means accurate interaction between a tank and a very light object is not realistic.

Combine multiple static triangle meshes into one

Many small btBvhTriangleMeshShape pollute the broadphase. Better combine them.

Use the default internal fixed timestep
Bullet works best with a fixed internal timestep of at least 60 hertz (1/60 second).

For safety and stability, Bullet will automatically subdivide the variable timestep into fixed internal
simulation substeps, up to a maximum number of substeps specified as second argument to
stepSimulation. When the timestep is smaller then the internal substep, Bullet will interpolate the
motion.

This safety mechanism can be disabled by passing 0 as maximum number of substeps (second
argument to stepSimulation): the internal timestep and substeps are disabled, and the actual
timestep is simulated. It is not recommended to disable this safety mechanism.

For ragdolls use btConeTwistConstraint

It is better to build a ragdoll out of btHingeConstraint and/or btConeTwistLimit for knees,
elbows and arms.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-39 -

http://bulletphysics.org

Don’t set the collision margin to zero

Collision detection system needs some margin for performance and stability. If the gap is noticeable,
please compensate the graphics representation.

Use less then 100 vertices in a convex mesh

It is best to keep the number of vertices in a bt ConvexHullShape limited. It is better for
performance, and too many vertices might cause instability. Use the bt ShapeHul1 utility to simplify
convex hulls.

Avoid huge or degenerate triangles in a triangle mesh

Keep the size of triangles reasonable, say below 10 units/ meters. Also degenerate triangles with large
size ratios between each sides or close to zero area can better be avoided.

The profiling feature btQuickProf bypasses the memory allocator

If necessary, disable the profiler when checking for memory leaks, or when creating the final version
of your software release. The profiling feature can be switched off by defining #define
BT NO PROFILE 1inBullet/src/LinearMath/btQuickProf.h

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-40 -

http://bulletphysics.org

Advanced Topics

Per triangle friction and restitution value

By default, there is only one friction value for one rigidbody. You can achieve per shape or per
triangle friction for more detail. See the Demos/ConcaveDemo how to set the friction per triangle.
Basically, add CF_CUSTOM_MATERIAL_CALLBACK to the collision flags or the rigidbody, and
register a global material callback function. To identify the triangle in the mesh, both triangleID and
partld of the mesh is passed to the material callback. This matches the triangleld/partld of the striding
mesh interface.

An easier way is to use the btMultimaterialTriangleMeshShape. See the
Demos/MultiMaterialDemo for usage.

Custom Constraint Solver

Bullet uses its bt SequentialImpulseConstraintSolver by default. You can use a different
constraint solver, by passing it into the constructor of your btDynamicsWorld. For comparison you
can use the Extras/quickstep solver from ODE.

Custom Friction Model

If you want to have a different friction model for certain types of objects, you can register a friction
function in the constraint solver for certain body types. This feature is not compatible with the cache
friendly constraint solver setting.

See #define USER DEFINED FRICTION MODEL in Demos/CcdPhysicsDemo.cpp.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-41 -

http://bulletphysics.org

15 Parallelism: OpenCL, Compute, SPU, multi thread

OpenCL and Direct Compute cloth simulation

Parts of the CPU intensive innerloop of the cloth and soft body library have been implemented using
OpenCL and DirectX 11 DirectCompute kernels. See Demos/OpenCLCIlothDemo and
Demos/DX11ClothDemo for examples.

Cell SPU / SPURS optimized version

Bullet collision detection and physics have been optimized for Cell SPU. This means collision code has
been refactored to run on multiple parallel SPU processors. The collision detection code and data have
been refactored to make it suitable for 256kb local store SPU memory. The user can activate the
parallel optimizations by using a special collision dispatcher
(SpuGatheringCollisionDispatcher) that dispatches the work to SPU. The shared public
implementation is located in Bullet/src/BulletMultiThreaded.

Please contact Sony developer support on PS3 Devnet for a Playstation 3 optimized version of Bullet.

Unified multi threading

Efforts have been made to make it possible to re-use the SPU parallel version in other multi threading
environments, including multi core processors. This allows more effective debugging of SPU code
under Windows, as well as utilizing multi core processors. For non-SPU multi threading, the
implementation performs fake DMA transfers using a memcpy, and each thread gets its own 256kb
‘local store” working memory allocated. See Bullet/ThreadingDemo for an example.

Win32 Threads, pthreads, sequential thread support

Basic Win32 Threads, pthreads and sequential thread support is available to execute the parallel
constraint solver and parallel collision dispatcher. See Demos/BulletMultiThreaded for an
example.

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-42 -

http://bulletphysics.org

16 Further documentation and references

Online resources

Visit the Bullet Physics website at http://bulletphysics.org for a discussion forum, a wiki with
frequently asked questions and tips and download of the most recent version. The Wikipedia page
lists some games and films using Bullet at

http://en.wikipedia.org/wiki/Bullet (software)

Authoring Tools

¢ Dynamica Maya plugin and Bullet COLLADA Physics support at
http://dynamica.googlecode.com

e Blender 3D modeler includes Bullet and COLLADA physics support:
http://www.blender.org

e COLLADA physics standard: http://www.khronos.org/collada

Books

e Realtime Collision Detection, Christer Ericson
http:/ /www.realtimecollisiondetection.net/
Bullet uses the discussed voronoi simplex solver for GJK

e Collision Detection in Interactive 3D Environments, Gino van den Bergen
http:/ /www.dtecta.com also website for Solid collision detection library
Discusses GJK and other algorithms, very useful to understand Bullet

e Physics Based Animation, Kenny Erleben
http:/ /www.diku.dk/~kenny/
Very useful to understand Bullet Dynamics and constraints

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-43-

http://bulletphysics.com/
http://en.wikipedia.org/wiki/Bullet_(software)
http://dynamica.googlecode.com/
http://www.blender.org/
http://www.khronos.org/collada
http://www.realtimecollisiondetection.net/
http://www.dtecta.com/
http://www.diku.dk/~kenny/

http://bulletphysics.org

Contributions and people

The Bullet Physics library is under active development in collaboration with many professional game
developers, movie studios, as well as academia, students and enthusiasts.

Main author and project lead is Erwin Coumans, who started the project at Sony Computer
Entertainment America US R&D and continues doing so full-time at Advanced Micro Devices.

Some people that contributed source code to Bullet:

Roman Ponomarev, SCEA, constraints, CUDA and OpenCL research

John McCutchan, SCEA, ray cast, character control, several improvements

Nathanael Presson, Havok: initial author of Bullet soft body dynamics and EPA

Gino van den Bergen, Dtecta: LinearMath classes, various collision detection ideas
Christer Ericson, SCEA: voronoi simplex solver

Phil Knight, Disney Avalanche Studios: multiplatform compatibility, BVH serialization
Ole Kniemeyer, Maxon: various general patches, btConvexHullComputer

Simon Hobbs, SCEE: 3d axis sweep and prune and parts of btPolyhedralContactClipping
Pierre Terdiman, NVIDIA: various work related to separating axis test, sweep and prune
Dirk Gregorius, Factor 5 : discussion and assistance with constraints

Erin Catto, Blizzard: accumulated impulse in sequential impulse

Francisco Leon : GIMPACT Concave Concave collision

Eric Sunshine: jam + msvcgen buildsystem (replaced by cmake since Bullet 2.76)

Steve Baker: GPU physics and general implementation improvements

Jay Lee, TrionWorld: double precision support

KleMiX, aka Vsevolod Klementjev, managed version, C# port to XNA

Marten Svanfeldt, Starbreeze: parallel constraint solver and other improvements and optimizations
Marcus Hennix, Starbreeze: btConeTwistConstaint etc.

Arthur Shek, Nicola Candussi, Lawrence Chai, Disney Animation: Dynamica Maya Plugin

Many more people have contributed to Bullet, thanks to everyone on the Bullet forums.

(please get in touch if your name should be in this list)

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-44 -

http://bulletphysics.org

Create Bullet Visual Studio projectfiles using CMake

First, download Bullet from http:/ /bullet.cooglecode.com and CMake from http://cmake.org

1. Run CMake-gui

CH
CMake Help

CMake Maodules Help

CMake Properties and Variables Help
& CMake Web Site

cmake-gui Help

CPack Help

CTest Help

A Urinskall

ommands Help

All Programs »

2. Choose the location where you unzipped the Bullet source code, and where you build the
binaries for your own project and press Configure

: CMake 2.8.1-rc2 - C:/develop/tutorial/BulletBuild
Ele Tools ©ptions Help

Where is the source code(c:.l'develnpfbullath.Ts \ | [Erowse §ource...]
)]

‘Where to build the binarie ‘C1,fdE\u'E|DD)'tLItDI’Ia|fBLI||EtBLII|d I v| [Browse Build...]
b
Search: ":“: — [% Add Entry] Remove Entry
Marne
< | >
Press Configure ko update and display new values in red, then press Generate ko generate selected build
files.

Generate Current Genetakor: None :]

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 45 -

http://bullet.googlecode.com/
http://cmake.org/

http://bulletphysics.org

3. Choose the compiler, such as Microsoft Visual Studio 2008

Specify the generator for this project

(®) Use default native compilsts

() specify native compilers
() specify toolchain fle For cross-compiling

() sSpecify options For cross-compiling

< Back L Finish J [Cancel

4. Review the settings and press Configure again

CMake 2.8.1- Jdevelop/tutorial/BulletBi
Elle Iools Options Help

Where is the source code: |C:ﬂdeve\op.ibul\et-2‘76 | [Bruwsa Source.. J
“Where ko build the binaries: |C:IdevelopftutorlalﬂBul\etEul\d Vl [Erowse Build... J
Search: | |5|mp\e Wiew vl [* add Entry’] 3¢ Remave Entry

<]

Press Configure to update and display new walues inred, then press Generate to generate selected build files.

Generate Current Generator: Visual Studio 9 2008

Check for working € compiler: cl

Check for working € compiler: cl -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working CXX compiler: ol

Check for working CXH{ compiler: cl -- works
Detecting CXX compiler AEI info

Detecting CXX compiler ABI info — done
CHMAKE EXE LINEER FLAGE DEEUG=/INCREMENTAL:NO /debug
OFENCL FOUND

gludZopengl3z

Win3Zz using Glut/glutdz.lib

Configuring done

©Erwin Coumans Bullet 2.82 Physics SDK Manual

-46 -

http://bulletphysics.org

5. Make sure the Run-time library is the same as your project (by default it is set to Run-time
library DLL) and press Generate

CMake 2.8.1-rc2 - C:/develop/tutorial/BulletBuild

Elle Tools Options Help

Where is the source code: |Clﬂdevelopfbu\\et—2.76

| [Bmwse Q0urceE, .]

where to buld the binaries: | Ct/developjtutorial/EulletBuid

"l [Browse Build...]

Search:

CMAKE_INSTALL_PREFLX

EXECUTABLE_OUTPUT_PATH

IMSTALL_EXTRA_LIBS

IMSTALL_LIBS

IMTERMAL _ADD_POSTFIX_EXECUTABLE_NAMES
IMTERMAL_CREATE_DISTRIBUTABLE_MSYC_PROJECTFILES
IMTERMAL_CREATE_MSWC_RELATIVE_PATH PROJECTFILES

| ‘Simple Yiew vl [oA Add Entry] Rermncve Entry
Marne Value
BUILD_BULLET _MAYA_DYRAMICA_PLUGIN O
BUILD_DEMOS
BUILD_EXTRAS
CMAKE_BACKWARDS_COMPATIBILITY 2.4

C/Program Files/BULLET _PHYSICS

INTEAL PO S T TORES
CIERARY_OUTPLT_PATH

USE_aLUT
UISE_GRAPHICAL_BENCHMARK
LISE_MSYC_FST_FLOATINGPOINT

USE_M =
SC_RUNTIME_LIERARY _DLL

USE_METE e
USE_MULTITHREADED_BEMCHMARK

0
[
0
O
L)
LI
Cidsve\uD,itutDr\aUBulletBulld,ﬂlb >
¥]
=
v

Press Configure to update and display new values in red, then press Generate o generate selected build Files,
Culivent Generator: Visual Studio 9 2008

OPENGL FOUND

gluzzopengl 3z

Win32 using Glut/gluc32. lib
Configuring done

S ———
CMAaKE_EXE_LINKER_FLACEZ DEBUG=/INCREMENTAL:NO fdebug

6. Optionally, you could open the generated project solution (in our case

C:\develop\tutorial\BulletBuild\BULLET PHYSICS.sln)and build the library and
demos, but this is not necessary

See also the Bullet Wiki on how to create your own project using Visual Studio

http:/ /bulletphysics.org/ mediawiki-1.5.8 /index.php/Creating a_ project from scratch

©Erwin Coumans

Bullet 2.82 Physics SDK Manual

- 47 -

http://bulletphysics.org/mediawiki-1.5.8/index.php/Creating_a_project_from_scratch

Anexo III: Documentacion del codigo

4/4

Ogre3D + BulletPhysics TFG

Generated by Doxygen 1.8.8

Thu Nov 20 2014 18:54:17

Contents

1 Hierarchical Index 1
1.1 Class Hierarchy 1

2 Class Index 3
2.1 ClassList e e 3

3 Class Documentation 5
3.1 BaseApplication Class Reference e 5
3.1.1 Detailed Description 6

3.1.2 Member Data Documentation. 6

3.1.21 mChar e e 6

3.1.22 mFramelistener 6

3.1.2.3 mPhysicsEngine 6

3.1.24 mRoOt 6

3.1.25 myCamera e 6

3.2 CharacterClass Reference e 7
3.2.1 Detailed Description 7

3.2.2 Constructor & Destructor Documentation. 8

3.2.21 Character 8

3.2.3 Member Function Documentation Lo L 9

3.2.3.1 getCController e 9

3.2.3.2 getCPhysics 9

3.233 getMainNode 9

3.2.3.4 injectKeyDown L 9

3.23.5 injectKeyUp 9

3.2.3.6 injectMouseMove L 10

3.2.3.7 setResetSight 10

3.2.3.8 updateCharacter 10

3.24 Member Data Documentation.o 10

3241 mCam e e 10

3.24.2 mCController 10

3.2.4.3 mGoalDirection e e 10

CONTENTS

3244 misFalling 10

3.245 mdumped . .. 10

3.24.6 mKeyDirection 11

3.247 mMainNode 11

3248 mName. 11

3.249 mPhysics 11
3.24.10 mRagdoll 11
3.2.4.11 mSceneMgr e 11
3.2.4.12 mWalkDirection 11
3.24.13 resetSight 11

3.3 CharacterController Class Reference 11
3.3.1 Detailed Description 12
3.3.2 Constructor & Destructor Documentation. 12
3.3.2.1 CharacterController 12

3.3.3 Member Function Documentation oL 12
3.3.3.1 addTime e 12

3.3.3.2 getBodySceneNode 12

3.3.3.3 getPosition 13

3.3.34 setlsMoving 13

3.4 CharacterPhysics Class Reference 13
3.4.1 Detailed Description L 14
3.4.2 Constructor & Destructor Documentation. 14
3.4.2.1 CharacterPhysics 14

3.4.3 Member Function Documentation 15
3.43.1 candump . . .ol e 15

3.4.3.2 getGhostObject 15

3.4.33 getGravity 15

3434 MOVE L e 15

3.43.5 playerStep 15

3436 setFallSpeed 16

3.4.3.7 setGravity 16

3.4.3.8 setdumpSpeed L 16

3.4.3.9 setMaxdumpHeight 16

3.5 MyCameraController Class Reference 16
3.5.1 Detailed Description 17
3.5.2 Constructor & Destructor Documentation. 17
3.5.2.1 MyCameraController 17

3.5.3 Member Function Documentationo L L 18
3.5.3.1 adjustZoom 18

3532 getCamera 18

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

CONTENTS v
3.5.3.3 getCameraNode L 18

3.5.3.4 getDesiredCameraNodeo 18

3.5.35 getMoveCam L 18

3.5.3.6 getSightNode 18

3.5.3.7 injectMouseMove 19

3.5.838 setMoveCam 19

3.53.9 update 19

3.5.4 Member Data Documentation. 19
3541 mCamera e e 19

3542 mCameraNode 19

3.5.43 mCController 19

3.5.44 mDesiredCameraNode 19

3545 mMainNode 19

3546 mName. 19

3.547 mPivotYRot 20

3.5.4.8 mRotationFactor 20

3549 mSceneMgr 20
3.5.4.10 mSightNode 20
3.5.4.11 mZoomFactor 20

3.6 MyFramelListener Class Reference e 20
3.6.1 Detailed Description 21
3.6.2 Constructor & Destructor Documentation 21
3.6.2.1 MyFramelistener 21

3.6.3 Member Function Documentation 21
3.6.3.1 frameEnded 21

3.6.3.2 frameRenderingQueued 21

3.6.3.3 frameStarted L 22

3.6.3.4 keyPressed 22

3.6.35 keyReleased 22

3.6.3.6 mouseMoved L 22

3.6.3.7 mousePressed 22

3.6.3.8 mouseReleased 22

3.6.3.9 setDebugDrawer 23
3.6.3.10 windowClosed L 23
3.6.3.11 windowResized 23

3.7 MyMotionState Class Reference e 23
3.7.1 Detailed Description 24
3.7.2 Constructor & Destructor Documentation. o 24
3.7.21 MyMotionState 24

3.7.22 MyMotionState 24

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

vi CONTENTS
3.7.3 Member Function Documentation 24
3.7.3.1 getWorldTransform 24

3.7.3.2 getWorldTransform 25

3.7.4 Member Data Documentation. 26
3.7.41 mTransform 26

3.742 mVisibleObj 26

3.8 MySoftBody Class Reference e 26
3.8.1 Detailed Description 26
3.8.2 Constructor & Destructor Documentation. 27
3.8.21 MySoftBody 27

3.8.3 Member Data Documentation.o 28
3.8.3.1 mSoftBody 28

3.8.32 mVisibleObj 28

3.9 OgreBulletUtils Class Reference 28
3.9.1 Detailed Description 28
3.9.2 Member Function Documentation Lo 28
3.921 toBullet 28

3.9.22 toBullet e 29

3.9.23 t00gre . . .o e 29

3.9.24 t00gre e 29

3.10 Physics Class Reference o e 29
3.10.1 Detailed Description 31
3.10.2 Member Enumeration Documentation Lo 31
3.10.2.1 collisionTypes e 31

3.10.3 Constructor & Destructor Documentation. 31
3.10.3.1 Physics 31
3.10.3.2 ~Physics 31

3.10.4 Member Function Documentation 31
3.10.4.1 addCollisionShape 31
3.10.4.2 addCube e 31
3.10.4.3 addimpulsedCube 32
3.10.4.4 addMeshFromEntity 32
3.10.4.5 addRigidBody e e 32
3.10.4.6 addSoftFromEntity 32
3.10.4.7 addSoftSphere 33
3.10.4.8 addStaticPlane 33
3.10.4.9 addTrampoline 33
3.10.4.10 getBroadphase 33
3.10.4.11 getCollisionWorld 34
3.10.4.12 getDynamicsWorld 34

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

CONTENTS vii
3.10.5 Member Data Documentation. 34
3.10.5.1 capsuleCollidesWith 34
3.10.5.2 everythingCollidesWith 34
3.10.5.3 mBroadphase 34
3.10.5.4 mCollisionConfiguration 34
3.10.5.5 mCollisionShapes 34
3.10.5.6 mbDispatcher 34
3.10.5.7 mSoftBodies 34
3.10.5.8 mSolver 34
3.10.59 mWorld 35
3.10.5.10 numCollisionObjects 35
3.10.5.11 pjCollidesWith 35
3.10.5.12 softCollidesWith 35

3.11 Ragdoll Class Reference o o e 35
3.11.1 Detailed Description 36
3.11.2 Constructor & Destructor Documentation., 36
3.11.2.1 Ragdoll 36

3.11.3 Member Function Documentation Lo 36
3.11.3.1 localCreateRigidBody 36

3.11.4 Member Data Documentation. 37
3.11.41 m bodies. e e 37
3.11.4.2 m_BodylnitialOrientation 37
3.11.4.3 m_BodylnitialPosition 37
3.11.4.4 m_BonelnitialOrientation 37
3.11.45 m_BonelnitialPosition Lo 37
3.11.46 m_Bones e e 37
3.11.47 m_RagdollOffset 37
3.11.4.8 m_shapes e 37
3.11.49 mEntity 37
3.11.410 mNode e e e 37
3.11.4.11 mSkeleton L 37
31412 mWorld L e e 38

Index 39

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

BaseApplication e e
btCharacterControllerinterface

CharacterPhysiCs e
btDefaultMotionState

MyMotionState L
Character e
CharacterController e e
FrameListener

MyFrameListener L
KeyListener

MyFrameListener L e
MouselListener

MyFrameListener L e
MyCameraController e
MySoftBody e e e
OgreBulletUtils L e
PhySICS . . . o e e e e e e e
Ragdoll e e e
WindowEventListener

MyFrameListener L e

Hierarchical Index

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

Chapter 2

C

2.1

lass Index

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BaseApplication

Main class of the application, thiswillrunit o 0oL, 5
Character

Class in charge of manage all the character stuff, create it, updateit,etc 7
CharacterController

The class that will manage the animations of the main character 11
CharacterPhysics

This class will manage the physical behaviour of the main character 13
MyCameraController

Class that will manage the camera movements and updates 16
MyFramelListener

Class that will be in charge of managing everything that happens every frame. From reading

inputs to update the main character, the camera and the physicalworld 20
MyMotionState

Class that will update automatically every object in the world in every step of the physics simu-
lation. This is done by encapsulating the physical and the visual object into an object that will

receive the information of the transformineachstep 23
MySoftBody
Class that will encapsulate SoftBodies with their associated Ogre3D nodes 26

OgreBulletUtils
Class that will contain every useful function or method that will make communication between

Ogre3D and BulletPhysics much easier 28
Physics

Class in charge of managing the pyshics world by adding new objects and updating them each

frame . . .o 29
Ragdoll

This class will modulate the physic body of the character accurately, creating a bunch of capsules
thatwillwrap hisbody 35

Class Index

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

Chapter 3

Class Documentation

3.1 BaseApplication Class Reference

Main class of the application, this will run it.

#include <BaseApplication.h>

Public Member Functions

» BaseApplication (void)
Empty constructor,.

« virtual ~BaseApplication (void)
Destructor,.

« virtual void go (void)

Launches the application.

Protected Member Functions

- virtual bool setup ()

Initialises main components of the application.
« virtual bool configure (void)

Show the configuration dialog and initialise the system.
« virtual void chooseSceneManager (void)

Create and choose the scene manager.
« virtual void createCamera (void)

Create the camera.
« virtual void createScene (void)

Create the Scene and all the 3D objects in it.
« virtual void destroyScene (void)

Destroy the Scene.
« virtual void createViewports (void)

Create the viewports.
« virtual void setupResources (void)

Setup the resources to be loaded.
« virtual void createResourceListener (void)

Create the listener of the resources when they are loaded.
« virtual void loadResources (void)

Load the external resources such as meshes, images, efc.

6 Class Documentation

Protected Attributes

» Ogre::Root * mRoot

» Ogre::Camera * mCamera

» Ogre::SceneManager * mSceneMgr

» Ogre::RenderWindow * mWindow

» Ogre::String mResourcesCfg

+ Ogre::String mPluginsCfg

» Ogre::OverlaySystem * mOverlaySystem
» OgreBites::InputContext minputContext
» OgreBites::ParamsPanel * mDetailsPanel
* bool mCursorWasVisible

* bool mShutDown

» Ogre::String m_ResourcePath

» Physics * mPhysicsEngine

» MyFramelListener * mFrameListener

+ MyCameraController x myCamera

+ Character * mChar

3.1.1 Detailed Description

Main class of the application, this will run it.

Class based in the lass that appears in the tutorials of Ogre3D. That one can be downloaded looking for "Ogre3D
Tutorial Framework"

3.1.2 Member Data Documentation
3.1.2.1 Characterx BaseApplication::mChar [protected]

Main character object

3.1.22 MyFrameListenerx BaseApplication::mFrameListener [protected]

Frame listener

3.1.2.3 Physicsx BaseApplication::mPhysicsEngine [protected]

Physics engine

3.1.2.4 Ogre::Rootx BaseApplication::mRoot [protected]

Entry point of the system

3.1.25 MyCameraController: BaseApplication::myCamera [protected]

Camera controller

The documentation for this class was generated from the following files:

» BaseApplication.h
+ BaseApplication.cpp

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.2 Character Class Reference 7

3.2 Character Class Reference

Class in charge of manage all the character stuff, create it, update it, etc.

#include <Character.h>

Public Member Functions

» Character (Ogre::String aName, Ogre::SceneManager =xaSceneMgr, MyCameraController xaCam,
CharacterController xaCController, btPairCachingGhostObject xghostObject, btConvexShape xconvex«
Shape, btScalar stepHeight, btSoftRigidDynamicsWorld «xtheWorld, Ogre::Vector3 &origin, int upAxis=1)

Constructor of the class.

« virtual ~Character ()
Destructor of the class.

« virtual void setResetSight (bool boolean)
Setter of the resetSight boolean.

« virtual CharacterController x getCController ()
Getter of the character animation controller.

+ virtual CharacterPhysics * getCPhysics ()
Getter of the physics engine.

« virtual Ogre::SceneNode * getMainNode ()
Getter of the character physics controller.

+ void injectKeyDown (const OIS::KeyEvent &evt)
Method used to receive keyboard push events from the frame listener.

+ void injectKeyUp (const OIS::KeyEvent &evt)

Method used to receive keyboard releases events from the frame listener.

« void injectMouseMove (const OIS::MouseEvent &evt)

Method used to receive mouse movements events from the frame listener.

« void updateCharacter (Ogre::Real dt)

Method used to update the character given an amount of elapsed time.

Protected Attributes

» MyCameraController * mCam

» Ogre::SceneManager * mSceneMgr
+ Ogre::String mName

* bool resetSight

» Ogre::SceneNode * mMainNode

» Ragdoll x mRagdoll

+ CharacterPhysics « mPhysics
 CharacterController * mCController
» Ogre::Vector3 mWalkDirection

» Ogre::Vector3 mGoalDirection

» Ogre::Vector3 mKeyDirection

+ bool misFalling

* bool mJumped

3.2.1 Detailed Description

Class in charge of manage all the character stuff, create it, update it, etc.

| took some ideas from this tutorial (reading strongly recommended): http://codefreax.org/tutorials/view/id/3

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

http://codefreax.org/tutorials/view/id/3

Class Documentation

3.2.2 Constructor & Destructor Documentation

3.2.2.1 Character::Character (Ogre::String aName, Ogre::SceneManager aSceneMgr, MyCameraController x aCam,
CharacterController x aCController, btPairCachingGhostObject ghostObject, btConvexShape x« convexShape,
btScalar stepHeight, btSoftRigidDynamicsWorld x theWorld, Ogre::Vector3 & origin, int upAxis=1)

Constructor of the class.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.2 Character Class Reference

Parameters

aName | the name

aSceneMgr | the scene manager

aCam | the camera controller

aCControler | the character animations controller

ghostObject | the ghost object that will simulate the character physical behaviour

convexShape | the shape of the ghost object

stepHeigth | the height of one step

theWorld | the physics’ world

origin | the initial position of the character

upAxis | the axis that are in the "up” direction

3.2.3 Member Function Documentation
3.2.3.1 virtual CharacterControllerx Character::getCController () [inline], [virtual]

Getter of the character animation controller.

Returns

the character animation controller

3.2.3.2 virtual CharacterPhysicsx Character::getCPhysics () [inline], [virtual]
Getter of the physics engine.

Returns

the physics engine

3.2.3.3 virtual Ogre::SceneNodex Character::getMainNode () [inline], [virtual]
Getter of the character physics controller.

Returns

the character physics controller

3.2.3.4 void Character::injectKeyDown (const OIS::KeyEvent & evt)

Method used to receive keyboard push events from the frame listener.

Parameters

evt | the event

3.2.3.5 void Character::injectKeyUp (const OIS::KeyEvent & evt)

Method used to receive keyboard releases events from the frame listener.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

10 Class Documentation

Parameters

evt | the event

3.2.3.6 void Character::injectMouseMove (const OIS::MouseEvent & evt)

Method used to receive mouse movements events from the frame listener.

Parameters

] evt | the event

3.2.3.7 virtual void Character::setResetSight (bool boolean) [inline], [virtual]

Setter of the resetSight boolean.

Parameters

resetSight | the new resetSight boolean

3.2.3.8 void Character::updateCharacter (Ogre::Real df)

Method used to update the character given an amount of elapsed time.

Parameters

] dt | time elapsed

3.2.4 Member Data Documentation
3.24.1 MyCameraControllerx Character:mCam [protected]

The Camera Controller

3.24.2 CharacterControllerx Character::mCController [protected]

Character animation controller

3.2.4.3 Ogre::Vector3 Character::mGoalDirection [protected]

vector3 standing of the goal position direction

3.24.4 bool Character::misFalling [protected]

boolean used for checking if the main character is falling

3.24.5 bool Character::mJumped [protected]

boolean used for checking if the main character is jumping

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.3 CharacterController Class Reference

11

3.2.4.6 Ogre::Vector3 Character::mKeyDirection [protected]

vector3 standing of the key pushed direction

3.24.7 Ogre::SceneNodex Character::mMainNode [protected]

Node of the Character

3.2.4.8 Ogre::String Character::mName [protected]

A name of the character

3.24.9 CharacterPhysics:+ Character::mPhysics [protected]

Character physics controller

3.24.10 Ragdollx Character::mRagdoll [protected]

RagDoll of the Character

3.2.4.11 Ogre::SceneManager: Character::mSceneMgr [protected]

The scene manager of the app

3.2.4.12 Ogre::Vector3 Character::mWalkDirection [protected]

vector3 standing of the walk direction

3.24.13 bool Character::resetSight [protected]

Boolean used for inner calculations, reset the camera in the next frame when it is true

The documentation for this class was generated from the following files:

» Character.h
» Character.cpp

3.3 CharacterController Class Reference

The class that will manage the animations of the main character.

#include <CharacterController.h>

Public Member Functions

» CharacterController (Ogre::SceneManager xsceneMgr, Ogre::Vector3 &origin)
Constructor of the class.

+ void addTime (Ogre::Real deltaTime)
Method that add time to the current timer.

+ Ogre::SceneNode * getBodySceneNode ()

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

12 Class Documentation

Getter of the main char scene node.
+ Ogre::Vector3 getPosition () const

Getter of the actual main char position.
 void animRunStart ()

Starts the run animation.
« void animRunEnd ()

Finish the run animation.
+ void animJumpStart ()

Starts the jump animation.
« void animJumpLoop ()

Enter in the jump loop animation.
+ void animJumpEnd ()

Finish the jump animation.
* void animSliceStart ()

Starts the slice animation.
+ void animSliceEnd ()

Finish the slice animation.
+ void setlsMoving (bool isMoving)

Setter of the isMoving boolean.
3.3.1 Detailed Description

The class that will manage the animations of the main character.

3.3.2 Constructor & Destructor Documentation
3.3.2.1 CharacterController::CharacterController (Ogre::SceneManager * sceneMgr, Ogre::Vector3 & origin)

Constructor of the class.

Parameters

sceneMgr | the Ogre3D scene manager.

origin | the position in which the caracter starts.

3.3.3 Member Function Documentation
3.3.3.1 void CharacterController::addTime (Ogre::Real deltaTime)

Method that add time to the current timer.

Parameters

deltaTime | the time to be added.

3.3.3.2 Ogre::SceneNode CharacterController::getBodySceneNode ()

Getter of the main char scene node.

Returns

the main char node.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.4 CharacterPhysics Class Reference 13

3.3.3.3 Ogre::Vector3 CharacterController::getPosition () const
Getter of the actual main char position.

Returns

vector with the actual position of the main char.

3.3.3.4 void CharacterController::setlsMoving (bool isMoving)

Setter of the isMoving boolean.

Parameters

isMoving | the new bool isMoving.

The documentation for this class was generated from the following files:

+ CharacterController.h
 CharacterController.cpp

3.4 CharacterPhysics Class Reference

This class will manage the physical behaviour of the main character.
#include <CharacterPhysics.h>

Inheritance diagram for CharacterPhysics:

btCharacterControllerInterface

CharacterPhysics

Public Member Functions

* btPairCachingGhostObject * getGhostObject ()

Getter of the ghost object.
» CharacterPhysics (btPairCachingGhostObject xghostObject, btConvexShape xconvexShape, btScalar step«
Height, btCollisionWorld *collisionWorld, int upAxis=1)
Constructor of the class.
« void setDuckingConvexShape (btConvexShape xshape)
* bool recoverFromPenetration (btCollisionWorld xcollisionWorld)
+ void stepUp (btCollisionWorld *collisionWorld)
+ void setRBForcelmpulseBasedOnCollision ()
+ void updateTargetPositionBasedOnCollision (const btVector3 &hitNormal, btScalar tangentMag=0, bt
Scalar normalMag=1)
+ void stepForwardAndStrafe (btCollisionWorld *xcollisionWorld, const btVector3 &walkMove)
+ void stepDown (btCollisionWorld xcollisionWorld, btScalar dt)
+ void setVelocityForTimelnterval (const btVector3 &velocity, btScalar timelnterval)
Inherited function.
+ void reset (btCollisionWorld *collisionWorld)

Inherited function.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

14 Class Documentation

« void warp (const btVector3 &origin)
Inherited function.
« void preStep (btCollisionWorld xcollisionWorld)
Setup everything in the world to make a main char movement collisionWorld The collision physic world.
+ void playerStep (btCollisionWorld xcollisionWorld, btScalar dt)
Actually makes the character move.
+ void setFallSpeed (btScalar fallSpeed)

Setter of the fall speed.
+ void setJumpSpeed (btScalar jumpSpeed)
Setter of the jump speed.
+ void setMaxJumpHeight (btScalar maxJumpHeight)
Setter of the max jump height.
* bool candump () const
Checks if the main char can jump.
* void jump ()
Makes the character jump.
+ void duck ()
Deprecated. Makes the character duck.
* void stand ()
If the char is standing of the floor, makes it stand.
* bool canStand ()

Check if the character is already on the floor.

+ void move (bool forward, bool backward, bool left, bool right)
Move the char in one or more directions.

+ void setGravity (const btScalar gravity)

Set the gravity value.
* btScalar getGravity () const
Get the gravity value.
+ void setMaxSlope (btScalar slopeRadians)
 btScalar getMaxSlope () const
* bool onGround () const
+ void setWalkDirection (const btVector3 &walkDirection)
« void setWalkDirection (const btScalar x, const btScalar y, const btScalar z)
« void setOrientation (const btQuaternion &orientation)
 btVector3 getWalkDirection () const
» btVector3 getPosition () const
 void debugDraw (btIDebugDraw «debugDrawer)
« void setUpinterpolate (bool value)
+ void updateAction (btCollisionWorld xcollisionWorld, btScalar dt)

3.4.1 Detailed Description

This class will manage the physical behaviour of the main character.
Hardly based in the class that shows how to implement kinematic character controllers in the Bullet Physics demos.

Link: "http://bulletphysics.org/Bullet/BulletFull/classbtKinematicCharacterController.htm!"

3.4.2 Constructor & Destructor Documentation

3.42.1 CharacterPhysics::CharacterPhysics (btPairCachingGhostObject + ghostObject, btConvexShape « convexShape,
btScalar stepHeight, btCollisionWorld * collisionWorld, int upAxis =1)

Constructor of the class.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.4 CharacterPhysics Class Reference

15

Parameters
ghostObject | the ghostObject that will simulate the physical behaviour of the character
convesShape | the shape of the ghostObject
stepHeight | the height of a single step
collisionWorld | the physics collision world
upAxis | the axis that are in the "up" direction

3.4.3 Member Function Documentation

3.4.3.1 Dbool CharacterPhysics::candump () const

Checks if the main char can jump.

Returns

the result of the

check

3.4.3.2 btPairCachingGhostObject x CharacterPhysics::getGhostObject ()

Getter of the ghost object.

Returns

the ghost object

3.4.3.3 btScalar CharacterPhysics::getGravity () const

Get the gravity value.

Returns

the gravity value

3.4.3.4 void CharacterPhysics::move (bool forward, bool backward, bool left, bool right)

Move the char in one or more directions.

Parameters
forward | move the char fowards
backward | move the char backwards
left | move the char to the left
right | move the char to the right

3.4.3.5 void CharacterPhysics::playerStep (btCollisionWorld * collisionWorld, btScalar dt)

Actually makes the character move.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

16

Class Documentation

Parameters

collisionWorld

The collision physic world

dt

Time elapsed

3.4.3.6 void CharacterPhysics::setFallSpeed (btScalar fallSpeed)

Setter of the fall speed.

Parameters

fallSpeed |

the new fall speed

3.4.3.7 void CharacterPhysics::setGravity (const btScalar gravity)

Set the gravity value.

Parameters

gravity

the new gravity value

3.4.3.8 void CharacterPhysics::setJumpSpeed (btScalar jumpSpeed)

Setter of the jump speed.

Parameters

jumpSpeed

the new jump speed

3.4.3.9 void CharacterPhysics::setMaxJumpHeight (btScalar maxJumpHeight)

Setter of the max jump height.

Parameters

| maxJumpHeight

the new jump height

The documentation for this class was generated from the following files:

+ CharacterPhysics.h
» CharacterPhysics.cpp

3.5 MyCameraController Class Reference

Class that will manage the camera movements and updates.

#include <MyCameraController.h>

Public Member Functions

+ MyCameraController (Ogre::Camera xcam=NULL, Ogre::SceneManager xscnMgr=NULL, Ogre::String
name="", CharacterController xaCController=NULL)

Constructor of the class.
« virtual ~MyCameraController ()

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.5 MyCameraController Class Reference 17

Destructor of the class.

« virtual void update (const Ogre::Real &timeSincelLastFrame)
This will update the camera in function of the time elapsed.

« virtual void reset ()

Reset the camera to it’s original position.

« virtual void injectMouseMove (const OIS::MouseEvent &arg, bool moveChar)
Used to receive mouse movements events from the frame listener.

« virtual void adjustZoom (const OIS::MouseEvent &arg)

Used to receive mouse scroll events from the frame listener.
« virtual Ogre::Camera * getCamera ()

Getter of the camera.
« virtual bool getMoveCam ()

Getter of the moveCam bool.
« virtual void setMoveCam (bool move)

setter of the moveCam bool.

« virtual Ogre::SceneNode * getCameraNode ()
Getter of the camera node.

« virtual Ogre::SceneNode * getSightNode ()

Getter of the sight camera node.
« virtual Ogre::SceneNode * getDesiredCameraNode ()

Getter of the desired camera node.

Protected Attributes

» Ogre::Camera * mCamera

» Ogre::SceneNode * mCameraNode
» CharacterController * mCController
» Ogre::SceneNode * mMainNode

» Ogre::SceneNode * mSightNode

» Ogre::SceneNode * mDesiredCameraNode
+ Ogre::Real mPivotYRot

+ Ogre::SceneManager * mSceneMgr
+ Ogre::String mName

» Ogre::Real mZoomFactor

» Ogre::Real mRotationFactor

+ Ogre::Real mTightness

* bool moveCam

3.5.1 Detailed Description

Class that will manage the camera movements and updates.

3.5.2 Constructor & Destructor Documentation

3.5.2.1 MyCameraController::MyCameraController (Ogre::Camera x cam = NULL, Ogre::SceneManager * scnlMgr =NULL,
Ogre::String name =" ", CharacterController x aCController =NULL)

Constructor of the class.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

18 Class Documentation

Parameters

cam | The Ogre3D camera node.

scnMgr | The ogre3D scene manager, for managing purposes.

name | Name for the Camera Controller.

aCControler | A character controller is necessary, for managing purposes.

3.5.3 Member Function Documentation
3.5.3.1 void MyCameraController::adjustZoom (const OIS::MouseEvent & arg) [virtual]

Used to receive mouse scroll events from the frame listener.

Parameters

arg | the mouse event.

3.5.3.2 virtual Ogre::Camera+ MyCameraController::getCamera() [inline], [virtual]

Getter of the camera.
Returns

the Ogre3D camera.

3.5.3.3 virtual Ogre::SceneNodex MyCameraController::getCameraNode () [inline], [virtuall]

Getter of the camera node.

Returns

the Ogre3D node of the camera.

3.5.3.4 virtual Ogre::SceneNodex MyCameraController::getDesiredCameraNode () [inline], [virtual]

Getter of the desired camera node.

Returns

the Ogre3D node of the desired camera.

3.5.3.5 virtual bool MyCameraController::getMoveCam() [inline], [virtual]

Getter of the moveCam bool.
Returns

the moveCam bool.

3.5.3.6 virtual Ogre::SceneNodex MyCameraController::getSightNode () [inline], [virtual]

Getter of the sight camera node.

Returns

the Ogre3D node of the sight camera.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.5 MyCameraController Class Reference

19

3.5.3.7 void MyCameraController::injectMouseMove (const OIS::MouseEvent & arg, bool moveChar) [virtual]

Used to receive mouse movements events from the frame listener.

Parameters

arg | the mouse event.

moveChar | boolean used to check if not only the camera should be rotated but also the character.

3.5.3.8 virtual void MyCameraController::setMoveCam (bool move) [inline], [virtual]

setter of the moveCam bool.

Parameters

move | the new moveCam bool.

3.5.3.9 void MyCameraController::update (const Ogre::Real & timeSinceLastFrame) [virtuall]

This will update the camera in function of the time elapsed.

Parameters

timeSincelLast— | the time elapsed.
Frame

3.5.4 Member Data Documentation
3.5.4.1 Ogre::Camerax MyCameraController::mCamera [protected]

Ogre3D camera

3.5.4.2 Ogre::SceneNode: MyCameraController::mCameraNode [protected]

The camera itself

3.5.4.3 CharacterControllers MyCameraController::mCController [protected]

The Character controller, used to move it if it's necessary

3.5.4.4 Ogre::SceneNode:x MyCameraController::mDesiredCameraNode [protected]

Node where the camera wants to be

3.5.45 Ogre::SceneNodex MyCameraController::mMainNode [protected]

Node where the character is

3.5.4.6 Ogre::String MyCameraController::mName [protected]

The name of the CameraController

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

20 Class Documentation

3.5.4.7 Ogre::Real MyCameraController::mPivotYRot [protected]

Inner calculations for rotation

3.5.4.8 Ogre::Real MyCameraController::mRotationFactor [protected]

Factor the movement of the mouse will be multiplied for to adjust the rotation

3.5.49 Ogre::SceneManager+ MyCameraController::mSceneMgr [protected]

The SceneManager, used to managing purposes

3.5.4.10 Ogre::SceneNodex MyCameraController::mSightNode [protected]

Node where the character is looking at (pivot point)

3.5.4.11 Ogre::Real MyCameraController::mZoomFactor [protected]

Factor the scroll of the mouse will be multiplied for to adjust the zoom

The documentation for this class was generated from the following files:

* MyCameraController.h
+ MyCameraController.cpp

3.6 MyFrameListener Class Reference

Class that will be in charge of managing everything that happens every frame. From reading inputs to update the
main character, the camera and the physical world.

#include <MyFramelListener.h>

Inheritance diagram for MyFrameListener:

FrameListener | |WindowEventListener| | KeyListener | | MouseListener

t i : i f

| MyFrameListener |

Public Member Functions

» MyFramelListener (Ogre::RenderWindow xwin, Ogre::SceneManager xmgr, Physics xpEngine, Character
xaChar, MyCameraController xaCam)
Constructor of the class.
» ~MyFramelListener ()
Destructor of the class.
 bool frameStarted (const Ogre::FrameEvent &evt)
Overwritten method that will be called every time a frame rendering is started.
* bool frameRenderingQueued (const Ogre::FrameEvent &evt)
Overwritten method that will be called every time a frame rendering is beeing done.
* bool frameEnded (const Ogre::FrameEvent &evt)

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.6 MyFramelListener Class Reference 21

Overwritten method that will be called every time a frame rendering is finished.
* bool keyPressed (const OIS::KeyEvent &evt)

Overwritten method that will be called every time a keyboard key is pressed.
* bool mouseMoved (const OIS::MouseEvent &arg)

Overwritten method that will be called every time the mouse is moved.
* bool mousePressed (const OIS::MouseEvent &arg, OIS::MouseButtonID id)

Overwritten method that will be called every time a mouse button is pressed.
* bool mouseReleased (const OIS::MouseEvent &arg, OIS::MouseButtonID id)

Overwritten method that will be called every time a mouse button is released.
* bool keyReleased (const OIS::KeyEvent &arg)

Overwritten method that will be called every time a keyboard key is released.
« void windowResized (Ogre::RenderWindow xrw)

Overwritten method that will be called every time the main rendered window is resized.
+ void windowClosed (Ogre::RenderWindow xrw)

Overwritten method that will be called every time the main rendered window is closed.
+ virtual void setDebugDrawer (CDebugDraw *aD)

Setter of the Debug System.
3.6.1 Detailed Description

Class that will be in charge of managing everything that happens every frame. From reading inputs to update the
main character, the camera and the physical world.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 MyFrameListener::MyFrameListener (Ogre::RenderWindow * win, Ogre::SceneManager x mgr, Physics * pEngine,
Character * aChar, MyCameraController x aCam)

Constructor of the class.

Parameters

win | the render window that will be updated

mgr | the scene manager to update everything that has to be.

pEnging | the physics engine that wants to be updated in each frame.

aChar | the main character that is wanted to be updated in each frame.

aCam | the camera controller that is wanted to be updated in each fram.

3.6.3 Member Function Documentation
3.6.3.1 bool MyFrameListener::frameEnded (const Ogre::FrameEvent & evi)

Overwritten method that will be called every time a frame rendering is finished.

Parameters

] evt | the event that called the method.

3.6.3.2 bool MyFrameListener::frameRenderingQueued (const Ogre::FrameEvent & evi)

Overwritten method that will be called every time a frame rendering is beeing done.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

22 Class Documentation

Parameters

evt | the event that called the method.

3.6.3.3 bool MyFrameListener::frameStarted (const Ogre::FrameEvent & evt)

Overwritten method that will be called every time a frame rendering is started.

Parameters

] evt | the event that called the method.

3.6.3.4 bool MyFrameListener::keyPressed (const OIS::KeyEvent & evt)

Overwritten method that will be called every time a keyboard key is pressed.

Parameters

evt | the event that called the method.

3.6.3.5 bool MyFrameListener::keyReleased (const OIS::KeyEvent & arg)

Overwritten method that will be called every time a keyboard key is released.

Parameters

] arg | the event that called the method.

3.6.3.6 bool MyFrameListener::mouseMoved (const OIS::MouseEvent & arg)

Overwritten method that will be called every time the mouse is moved.

Parameters

arg | the event that called the method.

3.6.3.7 bool MyFrameListener::mousePressed (const OIS::MouseEvent & arg, OIS::MouseButtonID id)

Overwritten method that will be called every time a mouse button is pressed.

Parameters

arg | the event that called the method.

id | the id of the pressed button.

3.6.3.8 bool MyFrameListener::mouseReleased (const OIS::MouseEvent & arg, OIS::MouseButtoniD id)

Overwritten method that will be called every time a mouse button is released.

Parameters

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.7 MyMotionState Class Reference

23

arg | the event that called the method.

id | the id of the pressed button.

3.6.3.9 virtual void MyFrameListener::setDebugDrawer (CDebugDraw «aD) [inline], [virtual]

Setter of the Debug System.

Parameters

aD | the debug system that is wanted to be activated.

3.6.3.10 void MyFrameListener::windowClosed (Ogre::RenderWindow * rw)

Overwritten method that will be called every time the main rendered window is closed.

Parameters

rw | the rendendered window that was closed.

3.6.3.11 void MyFrameListener::windowResized (Ogre::RenderWindow * rw)

Overwritten method that will be called every time the main rendered window is resized.

Parameters

rw | the rendendered window that was resized

The documentation for this class was generated from the following files:

* MyFrameListener.h
» MyFramelListener.cpp

3.7 MyMotionState Class Reference

Class that will update automatically every object in the world in every step of the physics simulation. This is done
by encapsulating the physical and the visual object into an object that will receive the information of the transform

in each step.
#include <Physics.h>

Inheritance diagram for MyMotionState:

‘ btDefaultMotionState ‘

T

‘ MyMotionState ‘

Public Member Functions

» MyMotionState (const btTransform &initialPos, Ogre::SceneNode xnode, const btTransform &offset=bt«

Transform::getldentity())

Constructor of the class.
+ MyMotionState (Ogre::SceneNode *node)

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

24 Class Documentation

Constructor of the class.
» ~MyMotionState ()

Destructor of the class.
+ void setNode (Ogre::SceneNode xnode)

setter of the Ogre3D node variable
+ btTransform getWorldTransform () const

getter of the actual Transformation.
+ void getWorldTransform (btTransform &worldTrans) const

getter of the actual Transformation.
« void setWorldTransform (const btTransform &worldTrans)

setter of the actual Transformation.

Protected Attributes

» Ogre::SceneNode * mVisibleObj

* btTransform mTransform

* btTransform mCOM
3.7.1 Detailed Description
Class that will update automatically every object in the world in every step of the physics simulation. This is done
by encapsulating the physical and the visual object into an object that will receive the information of the transform
in each step.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 MyMotionState::MyMotionState (const btTransform & initialPos, Ogre::SceneNode * node, const btTransform & offset
=pbtTransform: :getIdentity ())

Constructor of the class.

Parameters

initialPos | the initial position of the physical node.

node | the Ogre3D node that wants to be updated every frame.

offset | an offset between the Ogre3D node and the physical node

3.7.2.2 MyMotionState::MyMotionState (Ogre::SceneNode * node)

Constructor of the class.

Parameters

] node \ the Ogre3D node that wants to be updated every frame.

3.7.3 Member Function Documentation
3.7.3.1 DbtTransform MyMotionState::getWorldTransform () const

getter of the actual Transformation.

Returns

the actual transform.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.7 MyMotionState Class Reference

25

3.7.3.2 void MyMotionState::getWorldTransform (btTransform & worldTrans) const

getter of the actual Transformation.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

26 Class Documentation

Parameters

] [OUT] | the actual transform.

3.7.4 Member Data Documentation
3.7.4.1 btTransform MyMotionState::mTransform [protected]

actual Transform of the object

3.7.4.2 Ogre::SceneNode:x MyMotionState::mVisibleObj [protected]

the ogre3D node that is linked to the object

The documentation for this class was generated from the following files:

» Physics.h
» Physics.cpp

3.8 MySoftBody Class Reference

Class that will encapsulate SoftBodies with their associated Ogre3D nodes.

#include <Physics.h>

Public Member Functions

+ MySoftBody (Ogre::SceneNode xnode, btSoftBody *aSoftBody)

Constructor of the class.
* virtual ~MySoftBody ()

Destructor of the class.

« void setNode (Ogre::SceneNode xnode)

setter of the Ogre3D node variable

« int getBulletindex (int idx)

Function used to make some inner calculations (it's not supposed to be called by the user)
+ void updateOgreMesh ()

Method that have to be called whenever the mesh of the Ogre3D node is wanted to be updated with the SoftBody
deformations.

Protected Attributes
» Ogre::SceneNode * mVisibleObj
* btSoftBody * mSoftBody

3.8.1 Detailed Description

Class that will encapsulate SoftBodies with their associated Ogre3D nodes.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.8 MySoftBody Class Reference

27

3.8.2 Constructor & Destructor Documentation
3.8.2.1 MySoftBody::MySoftBody (Ogre::SceneNode x node, btSoftBody + aSoftBody)

Constructor of the class.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

28 Class Documentation

Parameters

node | the Ogre3D node that wants to be updated every frame.

aSoftBody | the softbody that will be updated in the physical simulation.

3.8.3 Member Data Documentation
3.8.3.1 btSoftBody: MySoftBody::mSoftBody [protected]

The SoftBody.

3.8.3.2 Ogre::SceneNodex MySoftBody::mVisibleObj [protected]

The Ogre3D node.
The documentation for this class was generated from the following files:

* Physics.h
» Physics.cpp

3.9 OgreBulletUtils Class Reference

Class that will contain every useful function or method that will make communication between Ogre3D and Bullet«
Physics much easier.

#include <OgreBulletUtils.h>

Static Public Member Functions

« static btQuaternion toBullet (const Ogre::Quaternion &q)

Transform an Ogre3D quaternion into a BulletPhysics quaternion.
« static btVector3 toBullet (const Ogre::Vector3 &v)

Transform an Ogre3D vector into a BulletPhysics vector.
« static Ogre::Quaternion toOgre (const btQuaternion &q)

Transform an BulletPhysics quaternion into a Ogre3D quaternion.
« static Ogre::Vector3 toOgre (const btVector3 &v)

Transform an BulletPhysics vector into a Ogre3D vector.
3.9.1 Detailed Description

Class that will contain every useful function or method that will make communication between Ogre3D and Bullet«
Physics much easier.

3.9.2 Member Function Documentation
3.9.2.1 static btQuaternion OgreBulletUtils::toBullet (const Ogre::Quaternion& q) [inline], [static]

Transform an Ogre3D quaternion into a BulletPhysics quaternion.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.10 Physics Class Reference

29

Parameters

q \ the Ogre3D quaternion to be transformated.

Returns

the BulletPhysics quaternion.

3.9.2.2 static btVector3 OgreBulletUtils::toBullet (const Ogre::Vector3& v) [inline], [static]

Transform an Ogre3D vector into a BulletPhysics vector.

Parameters

v | the Ogre3D vector to be transformated.

Returns

the BulletPhysics vector.

3.9.2.3 static Ogre::Quaternion OgreBulletUtils::toOgre (const btQuaternion& q) [inline], [static]

Transform an BulletPhysics quaternion into a Ogre3D quaternion.

Parameters

q | the BulletPhysics quaternion to be transformated.

Returns

the Ogre3D quaternion.

3.9.2.4 static Ogre::Vector3 OgreBulletUtils::toOgre (constbtVector3& v) [inlinel], [static]

Transform an BulletPhysics vector into a Ogre3D vector.

Parameters
v | the BulletPhysics vector to be transformated.
Returns
the Ogre3D vector.

The documentation for this class was generated from the following file:

» OgreBulletUtils.h

3.10 Physics Class Reference

Class in charge of managing the pyshics world by adding new objects and updating them each frame.

#include <Physics.h>

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

30 Class Documentation

Public Types

« enum collisionTypes {
COL_NOTHING = 0, COL_WORLD = BIT(0), COL_PJ = BIT(1), COL_SOFT = BIT(2),
COL_CAPSULE = BIT(3) }

Enum type of collisions. This will make collision filtering possible.

Public Member Functions

» Physics ()
Empty constructor of the class.

« virtual ~Physics ()
Destructor of the class.

« virtual btRigidBody * addRigidBody (btTransform transform, btCollisionShape *shape, btScalar mass, Ogre«

::SceneNode *node=NULL)

Add a new generic rigid body to the physics world.

« virtual btRigidBody * addStaticPlane (Ogre::SceneNode *node)
Add a static plane to the world. This is done by adding a new plane collision shape.

« virtual btRigidBody * addCube (Ogre::SceneNode *node, float m=10.0f)
Add a physic cube to the world. This is done by adding a new cube collision shape.

« virtual btRigidBody * addMeshFromEntity (Ogre::SceneNode *node, Ogre::Entity xent)
Add a complex mesh rigid body to the world. This is done by transforming the mess into a complex collision shape.
Code of this method is copied and adapted from btOgre.

« virtual btSoftBody * addSoftFromEntity (Ogre::SceneNode xnode, Ogre::Entity xent)
Add a soft body with a complex collision shape obtained by transforming the mesh.

« virtual btSoftBody * addTrampoline (Ogre::SceneNode *node, Ogre::Entity xent, int ResX, int ResY)
Deprecated. Add a soft body with the shape of cloak that will lie as a trampoline.

« virtual btSoftBody * addSoftSphere (Ogre::SceneNode xnode, Ogre::Entity xent)
Add a soft body with a sphere collision shape and some pressure inside.

« virtual void addimpulsedCube (Ogre::SceneNode *xnode, Ogre::Quaternion camPos)
Add an impulsed cube beeing launched from the camera position.

« virtual void addCollisionShape (btCollisionShape *xcolShape)
Add a collision shape to the world.

« virtual btSoftRigidDynamicsWorld * getDynamicsWorld ()
Returns the world.

« virtual btCollisionWorld * getCollisionWorld ()
Returns the collision world.

« virtual btBroadphaselnterface * getBroadphase ()
Returns the broadphase algorithm.

« virtual void updateSoftBodies ()

update all the softbodies’ meshes that are in the world

Public Attributes

» int everythingCollidesWith = COL_PJ | COL_CAPSULE | COL_WORLD | COL_SOFT
« int softCollidesWith = COL_WORLD | COL_PJ

« int pjCollidesWith = COL_WORLD | COL_SOFT

+ int capsuleCollidesWith = COL_WORLD

« btDefaultCollisionConfiguration * mCollisionConfiguration

+ btCollisionDispatcher * mDispatcher

» btBroadphaselnterface * mBroadphase

* btConstraintSolver * mSolver

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.10 Physics Class Reference

31

* btSoftRigidDynamicsWorld « mWorld

« std::vector< btCollisionShape * > mCollisionShapes
« std::vector< MySoftBody * > mSoftBodies

« int numCollisionObjects

3.10.1 Detailed Description

Class in charge of managing the pyshics world by adding new objects and updating them each frame.

3.10.2 Member Enumeration Documentation
3.10.2.1 enum Physics::collisionTypes
Enum type of collisions. This will make collision filtering possible.

Enumerator

COL_NOTHING enum val of things that don’t collide with anything

COL_WORLD enum val of things that collide with non-special things

COL_PJ enum val of things that collide with the RagDoll of the main char

COL_SOFT enum val of things that collide with the SoftBody

COL_CAPSULE enum val of things that collide with main capsule of the character
3.10.3 Constructor & Destructor Documentation

3.10.3.1 Physics::Physics ()

Empty constructor of the class.

3.10.3.2 Physics::~Physics() [virtuall]

Destructor of the class.

3.10.4 Member Function Documentation
3.10.4.1 virtual void Physics::addCollisionShape (btCollisionShape * colShape) [inline], [virtual]

Add a collision shape to the world.

Parameters

colShape \ the shape to be added.

Returns

the soft body added.

3.10.4.2 btRigidBody Physics::addCube (Ogre::SceneNode * node, floatm=10.0f) [virtual]

Add a physic cube to the world. This is done by adding a new cube collision shape.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

32 Class Documentation

Parameters

node | the Ogre3D node that will be linked to the cube.

mass | the mass that the cube will have

Returns

the rigid body added.

3.10.4.3 void Physics::addimpulsedCube (Ogre::SceneNode * node, Ogre::Quaternion camPos) [virtuall]

Add an impulsed cube beeing launched from the camera position.

Parameters

node | the Ogre3D node of the cube.

camPos | the actual camera position.

Returns

the soft body added.

3.10.4.4 btRigidBody * Physics::addMeshFromEntity (Ogre::SceneNode * node, Ogre::Entity x ent) [virtual]

Add a complex mesh rigid body to the world. This is done by transforming the mess into a complex collision shape.
Code of this method is copied and adapted from btOgre.

Parameters

node | the Ogre3D node that will be linked to the mesh.

ent | the entity containing the mesh that it's wanted to be transformed into a rigid body.

Returns

the rigid body added.

3.10.4.5 btRigidBody * Physics::addRigidBody (btTransform transform, btCollisionShape * shape, btScalar mass,
Ogre::SceneNode * node =NULL) [virtual]

Add a new generic rigid body to the physics world.

Parameters

transform | the initial transform of the rigid body.

shape | the shape that must be linked to the rigid body.

mass | the mass that the rigid body will have.

node | the Ogre3D node that will be linked to the rigid body.

3.10.4.6 btSoftBody * Physics::addSoftFromEntity (Ogre::SceneNode * node, Ogre::Entity x ent) [virtual]

Add a soft body with a complex collision shape obtained by transforming the mesh.

Code of this method is copied and adapted from btOgre. Discussion of this in the oficial forum: http://www. «
bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3428

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3428
http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3428

3.10 Physics Class Reference

33

Parameters

node | the Ogre3D node that will be linked to the mesh.

ent | the entity containing the mesh that it's wanted to be transformed into a soft body.

Returns

the rigid body added.

3.10.4.7 btSoftBody * Physics::addSoftSphere (Ogre::SceneNode * node, Ogre::Entity x ent) [virtual]

Add a soft body with a sphere collision shape and some pressure inside.

Parameters

node | the Ogre3D node that will be linked to the mesh.

ent | the entity containing the mesh that it's wanted to be transformed into a soft sphere.

Returns

the soft body added.

3.10.4.8 btRigidBody * Physics::addStaticPlane (Ogre::SceneNode x node) [virtual]

Add a static plane to the world. This is done by adding a new plane collision shape.

Parameters

node \ the Ogre3D node that will be linked to the plane.

Returns

the rigid body added.

3.10.4.9 btSoftBody * Physics::addTrampoline (Ogre::SceneNode * node, Ogre::Entity + ent, int ResX, int ResY)

[virtual]

Deprecated. Add a soft body with the shape of cloak that will lie as a trampoline.

Parameters
node | the Ogre3D node that will be linked to the SoftBody.
ent | the entity containing the mesh that will be transformed into a cloak.
ResX | Resolution in the X-axis of the plane that will be transformed into a cloak.
ResY | Resolution in the Y-axis of the plane that will be transformed into a cloak.
Returns

the soft body added.

3.10.4.10 virtual btBroadphaselnterface: Physics::getBroadphase() [inline], [virtual]

Returns the broadphase algorithm.

Returns

the broadphase algorithm.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

34 Class Documentation

3.10.4.11 virtual btCollisionWorldx Physics::getCollisionWorld() [inline], [virtual]
Returns the collision world.

Returns

the collision world.

3.10.4.12 virtual btSoftRigidDynamicsWorld+ Physics::getDynamicsWorld() [inline], [virtuall]
Returns the world.

Returns

the world.

3.10.5 Member Data Documentation
3.10.5.1 int Physics::capsuleCollidesWith = COL_WORLD

Mask for filtering collisions of the main capsule.

3.10.5.2 int Physics::everythingCollidesWith = COL_PJ | COL_CAPSULE | COL_WORLD | COL_SOFT

Mask for filtering collisions.

3.10.5.3 btBroadphaselnterface: Physics::mBroadphase

BroadPhase algorithm of the world.

3.10.5.4 btDefaultCollisionConfiguration:+ Physics::mCollisionConfiguration

Collision configuration of the world.

3.10.5.5 std::vector<btCollisionShape > Physics::mCollisionShapes

Array to store all the collision shapes that are in the world.

3.10.5.6 btCollisionDispatcher: Physics::mDispatcher

Collision Dispatcher of the world.

3.10.5.7 std::vector<MySoftBody > Physics::mSoftBodies

Array to store all the soft bodies that are in the world.

3.10.5.8 btConstraintSolver: Physics::mSolver

Collision solver of the world.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.11 Ragdoll Class Reference 35

3.10.5.9 btSoftRigidDynamicsWorld: Physics::mWorld

The physics world.

3.10.5.10 int Physics::numCollisionObjects

Quantity of collision objects that are in the world.

3.10.5.11 int Physics::pjCollidesWith = COL_WORLD | COL_SOFT

Mask for filtering collisions of the RagDoll.

3.10.5.12 int Physics::softCollidesWith = COL_WORLD | COL_PJ

Mask for filtering collisions of SoftBodies.

The documentation for this class was generated from the following files:

* Physics.h
* Physics.cpp

3.11 Ragdoll Class Reference

This class will modulate the physic body of the character accurately, creating a bunch of capsules that will wrap his
body.

#include <Ragdoll.h>

Public Types

» enum BonesID {
BODYPART_HIPS =0, BODYPART_SPINE, BODYPART_HEAD, BODYPART_LEFT_UPPER_LEG,
BODYPART_LEFT_LOWER_LEG, BODYPART_LEFT_FOOT, BODYPART_RIGHT_UPPER_LEG, BO«
DYPART_RIGHT_LOWER_LEG,
BODYPART_RIGHT_FOOT, BODYPART_LEFT_UPPER_ARM, BODYPART_LEFT_LOWER_ARM, B«
ODYPART_LEFT_HAND,
BODYPART_RIGHT_UPPER_ARM, BODYPART_RIGHT_LOWER_ARM, BODYPART_RIGHT_HAND,
BODYPART_RIGHT_SHEATH,
BODYPART_LEFT_SHEATH, BODYPART_COUNT }

Enum type of the bones inside the 3D model.

Public Member Functions

+ Ragdoll (Ogre::SceneNode *aNode, Ogre::Entity xanEnt, btSoftRigidDynamicsWorld xaWorld)
Constructor of the class.
« virtual ~Ragdoll ()
Destructor of the class.
« void initRagdoll ()
Function that does everything to initiate the Ragdoll. Create bones, translate them, etc.
* btRigidBody * localCreateRigidBody (btScalar mass, const btTransform &startTransform, btCollisionShape
xshape)

Method of inner use to create rigid bodies.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

36 Class Documentation

« void copyModelStateToRagdoll ()

This function will copy the state of the model to the RagDoll so animations can also move the rigid bodies.

Public Attributes

» Ogre::SceneNode * mNode

+ Ogre::Entity « mEntity

* btSoftRigidDynamicsWorld « mWorld

» Ogre::Skeletonlnstance *« mSkeleton

« btCollisionShape * m_shapes [BODYPART_COUNT]

* btRigidBody * m_bodies [BODYPART_COUNT]

» Ogre::Bone * m_Bones [BODYPART_COUNT]

» Ogre::Quaternion m_BonelnitialOrientation [BODYPART_COUNT]
» Ogre::Vector3 m_BonelnitialPosition [BODYPART_COUNT]

+ Ogre::Vector3 m_BodyinitialPosition [BODYPART_COUNT]

+ Ogre::Quaternion m_BodylnitialOrientation [BODYPART_COUNT]
» Ogre::Vector3 m_RagdollOffset

3.11.1 Detailed Description

This class will modulate the physic body of the character accurately, creating a bunch of capsules that will wrap his
body.

3.11.2 Constructor & Destructor Documentation

3.11.2.1 Ragdoll::Ragdoll (Ogre::SceneNode * aNode, Ogre::Entity « anEnt, btSoftRigidDynamicsWorld « aWorld)

Constructor of the class.

Parameters

aNode | the Ogre3D node of the main character.

ankEnt | the entity of the main character.

aWorld | the physic world in which the character is going to be added.

3.11.3 Member Function Documentation

3.11.3.1 btRigidBody Ragdoll::localCreateRigidBody (btScalar mass, const btTransform & stariTransform, btCollisionShape
x shape)

Method of inner use to create rigid bodies.

Parameters

mass | the mas of the rigid body.

startTransform | the initial transform of the body.

shape | the capsule shape of the body.

Returns

the created body.

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

3.11 Ragdoll Class Reference

3.11.4 Member Data Documentation
3.11.4.1 btRigidBody+ Ragdoll::m_bodies[BODYPART_COUNT]

array of rigid bodies that will wrap the main character body

3.11.4.2 Ogre::Quaternion Ragdoll::m_BodylnitialOrientation[BODYPART_COUNT]

array containing the initial rotation of every rigid body

3.11.4.3 Ogre::Vector3 Ragdoll::m_BodylnitialPosition[BODYPART_COUNT]

array containing the initial position of every rigid body

3.11.4.4 Ogre::Quaternion Ragdoll::m_BonelnitialOrientation[]BODYPART_COUNT]

array containing the initial rotation of every bone

3.11.4.5 Ogre::Vector3 Ragdoll::m_BonelnitialPosition[BODYPART_COUNT]

array containing the initial position of every bone

3.11.4.6 Ogre::Bonex Ragdoll::m_Bones[BODYPART_COUNT]

array of bones that will be used in the RagDoll creation

3.11.4.7 Ogre::Vector3 Ragdoll::m_RagdollOffset

Offset between the ragdoll and the renderized character

3.11.4.8 btCollisionShape: Ragdoll::m_shapes[BODYPART_COUNT]

array of shapes that will wrap the main character body

3.11.4.9 Ogre::Entity+ Ragdoll::mEntity

the Ogre3D entity of the main character

3.11.4.10 Ogre::SceneNode+ Ragdoll::mNode

the Ogre3D node of the main character

3.11.4.11 Ogre::Skeletonlnstancex Ragdoll::mSkeleton

the skeleton obtained from the entity of the main character

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

38 Class Documentation

3.11.4.12 btSoftRigidDynamicsWorldx Ragdoll::mWorld

the physics’ world

The documentation for this class was generated from the following files:

+ Ragdoll.h
» Ragdoll.cpp

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

Index

~Physics
Physics, 31

addCollisionShape
Physics, 31
addCube
Physics, 31
addimpulsedCube
Physics, 32
addMeshFromEntity
Physics, 32
addRigidBody
Physics, 32
addSoftFromEntity
Physics, 32
addSoftSphere
Physics, 33
addStaticPlane
Physics, 33
addTime

CharacterController, 12

addTrampoline

getCPhysics, 9
getMainNode, 9
injectkeyDown, 9
injectkeyUp, 9
injectMouseMove, 10
mCController, 10
mCam, 10
mGoalDirection, 10
misFalling, 10
mJumped, 10
mKeyDirection, 10
mMainNode, 11
mName, 11
mPhysics, 11
mRagdoll, 11
mSceneMgr, 11
mWalkDirection, 11
resetSight, 11
setResetSight, 10
updateCharacter, 10

CharacterController, 11

addTime, 12

Physics, 33
adjustZoom
MyCameraController, 18

CharacterController, 12
getBodySceneNode, 12
getPosition, 12
setlsMoving, 13
CharacterPhysics, 13
candump, 15
CharacterPhysics, 14
getGhostObject, 15

BaseApplication, 5
mChar, 6
mFramelListener, 6
mPhysicsEngine, 6

2582:1;:@, 6 getGravity, 15
move, 15
COL_CAPSULE playerStep, 15
Physics, 31 setFallSpeed, 16
COL NOTHING setGravity, 16
Physics, 31 setJumpSpeed, 16
COL PJ setMaxJumpHeight, 16
Physics, 31 collisionTypes
COL SOFT Physics, 31
Physics, 31
COL_WORLD everythingCollidesWith
Physics, 31 Physics, 34
canJump
CharacterPhysics, 15 frameEnded
capsuleCollidesWith MyFrameListener, 21
Physics, 34 frameRenderingQueued
Character, 7 MyFrameListener, 21
Character, 8 frameStarted

getCController, 9 MyFrameListener, 22

40

INDEX

getBodySceneNode

CharacterController, 12
getBroadphase

Physics, 33
getCController

Character, 9
getCPhysics

Character, 9
getCamera

MyCameraController, 18
getCameraNode

MyCameraController, 18
getCollisionWorld

Physics, 33
getDesiredCameraNode

MyCameraController, 18
getDynamicsWorld

Physics, 34
getGhostObject

CharacterPhysics, 15
getGravity

CharacterPhysics, 15
getMainNode

Character, 9
getMoveCam

MyCameraController, 18
getPosition

CharacterController, 12
getSightNode

MyCameraController, 18
getWorldTransform

MyMotionState, 24

injectkeyDown

Character, 9
injectkeyUp

Character, 9
injectMouseMove

Character, 10

MyCameraController, 18

keyPressed
MyFrameListener, 22

keyReleased
MyFrameListener, 22

localCreateRigidBody
Ragdoll, 36

m_Body/nitialOrientation
Ragdoll, 37
m_Body/nitialPosition
Ragdoll, 37
m_BonelnitialOrientation
Ragdoll, 37
m_BonelnitialPosition
Ragdoll, 37
m_Bones
Ragdoll, 37

m_RagdollOffset

Ragdoll, 37
m_bodies

Ragdoll, 37
m_shapes

Ragdoll, 37
mBroadphase

Physics, 34
mCController

Character, 10

MyCameraController, 19
mCam

Character, 10
mCamera

MyCameraController, 19
mCameraNode

MyCameraController, 19
mChar

BaseApplication, 6
mCollisionConfiguration

Physics, 34
mCollisionShapes

Physics, 34
mDesiredCameraNode

MyCameraController, 19
mDispatcher

Physics, 34
mEntity

Ragdoll, 37
mFramelListener

BaseApplication, 6
mGoalDirection

Character, 10
misFalling

Character, 10
mJumped

Character, 10
mKeyDirection

Character, 10
mMainNode

Character, 11

MyCameraController, 19
mName

Character, 11

MyCameraController, 19
mNode

Ragdoll, 37
mPhysics

Character, 11
mPhysicsEngine

BaseApplication, 6
mPivotYRot

MyCameraController, 19
mRagdoll

Character, 11
mRoot

BaseApplication, 6
mRotationFactor

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

INDEX

41

MyCameraController, 20
mSceneMgr

Character, 11

MyCameraController, 20
mSightNode

MyCameraController, 20
mSkeleton

Ragdoll, 37
mSoftBodies

Physics, 34
mSoftBody

MySoftBody, 28
mSolver

Physics, 34
mTransform

MyMotionState, 26
mVisibleObj

MyMotionState, 26

MySoftBody, 28
mWalkDirection

Character, 11
mWorld

Physics, 34

Ragdoll, 37
mZoomFactor

MyCameraController, 20
mouseMoved

MyFramelListener, 22
mousePressed

MyFramelListener, 22
mouseReleased

MyFramelListener, 22
move

CharacterPhysics, 15
myCamera

BaseApplication, 6
MyCameraController, 16

adjustZoom, 18

getCamera, 18

getCameraNode, 18

getDesiredCameraNode, 18

getMoveCam, 18

getSightNode, 18

injectMouseMove, 18

mCController, 19

mCamera, 19

mCameraNode, 19

mDesiredCameraNode, 19

mMainNode, 19

mName, 19

mPivotYRot, 19

mRotationFactor, 20

mSceneMgr, 20

mSightNode, 20

mZoomFactor, 20

MyCameraController, 17

setMoveCam, 19

update, 19

MyFrameListener, 20
frameEnded, 21
frameRenderingQueued, 21
frameStarted, 22
keyPressed, 22
keyReleased, 22
mouseMoved, 22
mousePressed, 22
mouseReleased, 22
MyFrameListener, 21
setDebugDrawer, 23
windowClosed, 23
windowResized, 23

MyMotionState, 23
getWorldTransform, 24
mTransform, 26
mVisibleObj, 26
MyMotionState, 24

MySoftBody, 26
mSoftBody, 28
mVisibleObj, 28
MySoftBody, 27

numCollisionObjects
Physics, 35

OgreBulletUtils, 28
toBullet, 28, 29
toOgre, 29

Physics, 29
~Physics, 31
addCollisionShape, 31
addCube, 31
addIimpulsedCube, 32
addMeshFromEntity, 32
addRigidBody, 32
addSoftFromEntity, 32
addSoftSphere, 33
addStaticPlane, 33
addTrampoline, 33
COL_CAPSULE, 31
COL_NOTHING, 31
COL_PJ, 31
COL_SOFT, 31
COL_WORLD, 31
capsuleCollidesWith, 34
collisionTypes, 31
everythingCollidesWith, 34
getBroadphase, 33
getCollisionWorld, 33
getDynamicsWorld, 34
mBroadphase, 34
mCollisionConfiguration, 34
mCollisionShapes, 34
mDispatcher, 34
mSoftBodies, 34
mSolver, 34
mWorld, 34

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

42

INDEX

numCollisionObjects, 35
Physics, 31
pjCollidesWith, 35
softCollidesWith, 35
pjCollidesWith
Physics, 35
playerStep
CharacterPhysics, 15

Ragdoll, 35
localCreateRigidBody, 36
m_BodylnitialOrientation, 37
m_BodyInitialPosition, 37
m_BonelnitialOrientation, 37
m_BonelnitialPosition, 37
m_Bones, 37
m_RagdollOffset, 37
m_bodies, 37
m_shapes, 37
mEntity, 37
mNode, 37
mSkeleton, 37
mWorld, 37
Ragdoll, 36

resetSight
Character, 11

setDebugDrawer
MyFrameListener, 23
setFallSpeed
CharacterPhysics, 16
setGravity
CharacterPhysics, 16
setlsMoving
CharacterController, 13
setJumpSpeed
CharacterPhysics, 16
setMaxJumpHeight
CharacterPhysics, 16
setMoveCam
MyCameraController, 19
setResetSight
Character, 10
softCollidesWith
Physics, 35

toBullet

OgreBulletUtils, 28, 29
toOgre

OgreBulletUtils, 29

update

MyCameraController, 19
updateCharacter

Character, 10

windowClosed
MyFrameListener, 23

windowResized
MyFrameListener, 23

Generated on Thu Nov 20 2014 18:54:17 for Ogre3D + BulletPhysics TFG by Doxygen

	1 Hierarchical Index
	1.1 Class Hierarchy

	2 Class Index
	2.1 Class List

	3 Class Documentation
	3.1 BaseApplication Class Reference
	3.1.1 Detailed Description
	3.1.2 Member Data Documentation
	3.1.2.1 mChar
	3.1.2.2 mFrameListener
	3.1.2.3 mPhysicsEngine
	3.1.2.4 mRoot
	3.1.2.5 myCamera

	3.2 Character Class Reference
	3.2.1 Detailed Description
	3.2.2 Constructor & Destructor Documentation
	3.2.2.1 Character

	3.2.3 Member Function Documentation
	3.2.3.1 getCController
	3.2.3.2 getCPhysics
	3.2.3.3 getMainNode
	3.2.3.4 injectKeyDown
	3.2.3.5 injectKeyUp
	3.2.3.6 injectMouseMove
	3.2.3.7 setResetSight
	3.2.3.8 updateCharacter

	3.2.4 Member Data Documentation
	3.2.4.1 mCam
	3.2.4.2 mCController
	3.2.4.3 mGoalDirection
	3.2.4.4 mIsFalling
	3.2.4.5 mJumped
	3.2.4.6 mKeyDirection
	3.2.4.7 mMainNode
	3.2.4.8 mName
	3.2.4.9 mPhysics
	3.2.4.10 mRagdoll
	3.2.4.11 mSceneMgr
	3.2.4.12 mWalkDirection
	3.2.4.13 resetSight

	3.3 CharacterController Class Reference
	3.3.1 Detailed Description
	3.3.2 Constructor & Destructor Documentation
	3.3.2.1 CharacterController

	3.3.3 Member Function Documentation
	3.3.3.1 addTime
	3.3.3.2 getBodySceneNode
	3.3.3.3 getPosition
	3.3.3.4 setIsMoving

	3.4 CharacterPhysics Class Reference
	3.4.1 Detailed Description
	3.4.2 Constructor & Destructor Documentation
	3.4.2.1 CharacterPhysics

	3.4.3 Member Function Documentation
	3.4.3.1 canJump
	3.4.3.2 getGhostObject
	3.4.3.3 getGravity
	3.4.3.4 move
	3.4.3.5 playerStep
	3.4.3.6 setFallSpeed
	3.4.3.7 setGravity
	3.4.3.8 setJumpSpeed
	3.4.3.9 setMaxJumpHeight

	3.5 MyCameraController Class Reference
	3.5.1 Detailed Description
	3.5.2 Constructor & Destructor Documentation
	3.5.2.1 MyCameraController

	3.5.3 Member Function Documentation
	3.5.3.1 adjustZoom
	3.5.3.2 getCamera
	3.5.3.3 getCameraNode
	3.5.3.4 getDesiredCameraNode
	3.5.3.5 getMoveCam
	3.5.3.6 getSightNode
	3.5.3.7 injectMouseMove
	3.5.3.8 setMoveCam
	3.5.3.9 update

	3.5.4 Member Data Documentation
	3.5.4.1 mCamera
	3.5.4.2 mCameraNode
	3.5.4.3 mCController
	3.5.4.4 mDesiredCameraNode
	3.5.4.5 mMainNode
	3.5.4.6 mName
	3.5.4.7 mPivotYRot
	3.5.4.8 mRotationFactor
	3.5.4.9 mSceneMgr
	3.5.4.10 mSightNode
	3.5.4.11 mZoomFactor

	3.6 MyFrameListener Class Reference
	3.6.1 Detailed Description
	3.6.2 Constructor & Destructor Documentation
	3.6.2.1 MyFrameListener

	3.6.3 Member Function Documentation
	3.6.3.1 frameEnded
	3.6.3.2 frameRenderingQueued
	3.6.3.3 frameStarted
	3.6.3.4 keyPressed
	3.6.3.5 keyReleased
	3.6.3.6 mouseMoved
	3.6.3.7 mousePressed
	3.6.3.8 mouseReleased
	3.6.3.9 setDebugDrawer
	3.6.3.10 windowClosed
	3.6.3.11 windowResized

	3.7 MyMotionState Class Reference
	3.7.1 Detailed Description
	3.7.2 Constructor & Destructor Documentation
	3.7.2.1 MyMotionState
	3.7.2.2 MyMotionState

	3.7.3 Member Function Documentation
	3.7.3.1 getWorldTransform
	3.7.3.2 getWorldTransform

	3.7.4 Member Data Documentation
	3.7.4.1 mTransform
	3.7.4.2 mVisibleObj

	3.8 MySoftBody Class Reference
	3.8.1 Detailed Description
	3.8.2 Constructor & Destructor Documentation
	3.8.2.1 MySoftBody

	3.8.3 Member Data Documentation
	3.8.3.1 mSoftBody
	3.8.3.2 mVisibleObj

	3.9 OgreBulletUtils Class Reference
	3.9.1 Detailed Description
	3.9.2 Member Function Documentation
	3.9.2.1 toBullet
	3.9.2.2 toBullet
	3.9.2.3 toOgre
	3.9.2.4 toOgre

	3.10 Physics Class Reference
	3.10.1 Detailed Description
	3.10.2 Member Enumeration Documentation
	3.10.2.1 collisionTypes

	3.10.3 Constructor & Destructor Documentation
	3.10.3.1 Physics
	3.10.3.2 Physics

	3.10.4 Member Function Documentation
	3.10.4.1 addCollisionShape
	3.10.4.2 addCube
	3.10.4.3 addImpulsedCube
	3.10.4.4 addMeshFromEntity
	3.10.4.5 addRigidBody
	3.10.4.6 addSoftFromEntity
	3.10.4.7 addSoftSphere
	3.10.4.8 addStaticPlane
	3.10.4.9 addTrampoline
	3.10.4.10 getBroadphase
	3.10.4.11 getCollisionWorld
	3.10.4.12 getDynamicsWorld

	3.10.5 Member Data Documentation
	3.10.5.1 capsuleCollidesWith
	3.10.5.2 everythingCollidesWith
	3.10.5.3 mBroadphase
	3.10.5.4 mCollisionConfiguration
	3.10.5.5 mCollisionShapes
	3.10.5.6 mDispatcher
	3.10.5.7 mSoftBodies
	3.10.5.8 mSolver
	3.10.5.9 mWorld
	3.10.5.10 numCollisionObjects
	3.10.5.11 pjCollidesWith
	3.10.5.12 softCollidesWith

	3.11 Ragdoll Class Reference
	3.11.1 Detailed Description
	3.11.2 Constructor & Destructor Documentation
	3.11.2.1 Ragdoll

	3.11.3 Member Function Documentation
	3.11.3.1 localCreateRigidBody

	3.11.4 Member Data Documentation
	3.11.4.1 m_bodies
	3.11.4.2 m_BodyInitialOrientation
	3.11.4.3 m_BodyInitialPosition
	3.11.4.4 m_BoneInitialOrientation
	3.11.4.5 m_BoneInitialPosition
	3.11.4.6 m_Bones
	3.11.4.7 m_RagdollOffset
	3.11.4.8 m_shapes
	3.11.4.9 mEntity
	3.11.4.10 mNode
	3.11.4.11 mSkeleton
	3.11.4.12 mWorld

	Index

