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Resumen

La reciente crisis bursatil que sufre y ha sufrido Espana desde el 2007-2008 ha
impulsado la creacién de nuevos métodos, tanto en el &mbito econdémico como en
el matematico, que puedan predecir grandes cambios en la economia de un pais o
region.

El objetivo de este trabajo ha sido la obtencion de cuantificadores que permitan
prever estos cambios a partir de indices bursatiles que sean representativos del
mercado.

En concreto, se han usado técnicas del analisis de Fourier, la interpolacién y la
teoria fractal para obtener las curvas de aproximacion de los indices estudiados.
Después, se han cuantificado dichos registros usando los parametros de Hjorth y
se ha comprobado si existe alguna relacién entre estos y la crisis.

Por tltimo, se ha intentado inferir una posible estructura fractal de los registros
burséatiles, en concreto si admiten una representacién por ruidos coloreados o
mediante el exponente de Hurst. Se ha encontrado que este tltimo es un parametro
muy robusto que previé la actual crisis y que, por lo tanto, podria ser usado en
un futuro como predictor econémico.
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1. Introduccion

1.1. Indices internacionales

Un indice bursatil es una ponderacién matematica de determinados valores que
cotizan en el mismo mercado bursatil. Desde la creacion del primero en 1884, los indi-
ces bursatiles han servido como medida de la actividad econémica y financiera de un
determinado sector econdémico o de un pais.

Los precursores del establecimiento de los indices bursatiles fueron Charles Henry
Dow (1851-1902) y Edward David Jones (1856-1920) quienes, en 1884, crearon la pri-
mera media de valores bursétiles dentro del diario econémico The Wall Street Journal
con el propodsito de medir la salud econémica de los Estados Unidos de América. Pos-
teriormente, en 1887, se crea el Dow Jones Industrial Average (DJIA), compuesto por
empresas industriales, y el Dow Jones Railroad Average, formado por companias de fe-
rrocarriles y que después pasaria a llamarse Dow Jones Transportation Average (DJTA),
agrupando valores del sector transportes ([32]).

En el presente trabajo se han analizado cinco indices bursatiles, de los cuales tres
de ellos son estadounidenses (Dow Jones Industrial Average, Standard & Poor’s 500 y
Nasdaq 100), uno japonés (Nikkei 225) y uno espanol (IBEX 35). Esta eleccion permite
corroborar una relacion numeérica entre diferentes paises y economias. Por ello, se han
escogido valores de un mismo pais, esperando una alta correlacion entre ellos, ademas
de los indices mas representativos de los mercados espanol y japonés a fin de ver las
diferencias que puedan presentar respecto de los primeros.

Dow Jones Industrial Average Dentro de la denominacién Dow Jones, existen
130.000 indices bursatiles, sin embargo, se suele denominar indice Dow Jones al més
importante de ellos, el Dow Jones Industrial Average (DJIA).

Aunque originalmente todos los valores que agrupaba este indice eran del sector in-
dustrial, en la actualidad esta formado por 30 de las empresas mas grandes de América,
sin importar el sector al que pertenecen ([1]).

Inicialmente su calculo se realizaba mediante un promedio simple y posteriormente
se sustituyo por el ponderado, pasando cada compania a tener un valor dentro del indice
relativo a su cotizacion. Asi, los valores de las empresas con mayor importancia tienen
desde entonces méas peso dentro del indice bursatil. Actualmente, las companias con
mayor peso dentro del indice son Visa, IBM y Goldman Sachs con méas de un 21 % de
la ponderacion del indice ([14]).



Standard & Poor’s 500 También conocido como S&P 500, es un indice basado en la
capitalizacion bursatil de 500 grandes empresas del NYSE (New York Stock Exchange) y
NASDAQ (National Association of Securities Dealers Automated Quotation). El indice
S&P 500 es mantenido por “S&P Dow Jones Indices”, quien también regula las empresas
que cotizan en este indice asi como su ponderacion.

Aunque originalmente se determinaba la ponderacion de cada empresa en base a su
capitalizacion bursatil (capitalization-weighted), desde 2005 se realizo la transicién a un
sistema de ponderacion en base al capital flotante (float-weighted), es decir, se pondera
segun el precio Gnicamente de las acciones que son susceptibles de ser negociadas en
bolsa obviando las pertenecientes al propio grupo controlante, gobierno, inversores a
largos plazo, etc (|30]). En el método de ponderacion y en sus componentes es donde
difiere de otros grandes indices norteamericanos como el Dow Jones Industrial Average
o el indice Nasdaq.

Es considerado el indice bursatil mas representativo de la situacion del mercado
estadounidense ([27]), de hecho se considera representativo de, aproximadamente, el
70 % del mismo.

Nasdaq 100 El Nasdaq 100 recoge los 101 valores de las 100 companias no financieras
més importantes del NASDAQ!, es decir, contiene también empresas internacionales. Se
diferencia del DJIA y S&P 500 en no contener compafias financieras, y en especial del
DJIA al tener valores tanto de empresas estadounidenses como de cualquier otra parte
del mundo. En este indice la burbuja dot-com? del periodo 1997-2001 fue mucho mas
acusada que en otros registros bursatiles al contener principalmente activos de empresas
tecnologicas y por ello la crisis financiera de 2008 se not6é menos en este indice.

La ponderacion de este indice estda basada en la capitalizacion bursatil de cada
empresa que lo forma ademas de ciertas reglas anadidas para evitar que pocas companias
acaparen la mayor parte de este registro.

Nikkei 225 Usualmente denominado indice Nikkei es el mas usado dentro del mercado
japonés y estd compuesto por los 225 valores més liquidos de la Bolsa de Tokio. Es
similar al Dow Jones Industrial Average aunque refleja la totalidad del mercado, sin
centrarse en ningin sector. Una de las caracteristicas propias del indice Nikkei 225 es
que sus valores se ponderan por precios y no por capitalizacion.

IEsta aparente contradiccién se debe a que, desde abril de 2014, Google dividié sus activos en los
llamados de clase A y de clase C, por lo que el Nasdaq tiene, desde entonces, 101 valores listados.

2Este término se refiere a un periodo de crecimiento que tuvo lugar entre 1997 y 2001 en el que las
empresas vinculadas a Internet tuvieron su mayor auge.



IBEX 35 Creado en 1992, esta formado por las 35 empresas con més liquidez que
cotizan en las cuatro Bolsas espaniolas (Madrid, Barcelona, Bilbao y Valencia). La pon-
deracion del IBEX 35 es por capitalizacion bursatil de las empresas que lo forman,
siendo actualmente las que tienen mayor peso el Banco Santander, Telefénica, BBVA e
Inditex, que suman maés del 50 % del indice.

Evoluciéon de los indices en el periodo 2000-2013 En las figuras que aparecen
a continuacion se muestra la cotizacion de cada uno de los indices bursatiles analizados
desde el 1 de enero del 2000 hasta el 31 de diciembre del 2013:
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Figura 5. Evolucién de la cotizacion del IBEX 35 desde el anio 2000 al 2013.

Se ha observado que casi todos los indices, y especialmente el Nasdaq 100 y el
Nikkei 225, parten en el ano 2000 (comienzo del estudio) de valores altos. Esto se
debe a la llamada burbuja dot-com. El estallido de esta burbuja estda marcado por
el gran descenso del Nasdaq 100, ya que es el indice con mayor cantidad de empresas
tecnologicas, dentro de las cuales se engloban las empresas dot-com, y marco el comienzo
de una lenta recesion en las naciones occidentales.



El crecimiento generalizado de los cinco indices a partir de 2003 es el efecto del
boom inmobiliario (mas acusado en Espana) y, sobre todo, el efecto de las hipotecas
subprime®que aumento las cotizaciones en los principales indices hasta detonar la crisis
financiera de 2008. La posterior caida es menos apreciable en el indice Nasdaq porque
no contiene activos financieros. Se puede observar como en los afos siguientes los indices
norteamericanos comenzaron de nuevo su crecimiento, sin embargo, Espana sufrié en
2010 la llamada crisis del Euro debida en su mayor parte al aumento de la deuda
soberana, lo que hizo crear una desconfianza entre los inversores a la vez que las agencias
de rating rebajaban la calificacion de los bonos de la eurozona.

Por su parte, Japén entré en recesion econdémica después de la crisis financiera
de 2008. Actualmente, cambios en las politicas financieras del gobierno japonés han
provocado un repunte en la cotizacion del indice Nikkei y por ende de toda la economia
japonesa.

1.2. Breve historia de la matematica financiera

El devenir de la matematica aplicada a la economia ha estado desde el principio
vinculado al concepto de movimiento browniano.

El movimiento browniano fue descrito por primera vez en 1827 por el bidlogo y boté-
nico escocés Robert Brown, del que recibe su nombre. Este naturalista habia observado
en el microscopio el movimiento de las motas de polen de la planta Clarkia pulchella
suspendidas en agua, viendo que se trataba de un movimiento aleatorio continuo pero
con constantes cambios de direccion. En la actualidad el término movimiento browniano
hace referencia al modelo matematico usado para describir movimientos aleatorios de
este tipo ([23]).

El 29 de marzo de 1900, fecha en la cual el francés Louis Bachelier (1870-1946)
presenta su tesis Teoria de la Especulacion, es considerado el origen de la matematica
financiera. En su memoria, el autor discute el uso del movimiento browniano para
evaluar los precios de las opciones financieras, por ello es considerado el pionero en el
campo de las matematicas aplicadas a las finanzas.

El movimiento browniano, también denominado proceso de Wiener, fue descrito
matematicamente casi simultdneamente por Albert Einstein y Marian Smoluchowski
en 1905 y 1906 respectivamente. El desarrollo teérico que proporciond Einstein serviria
para la posterior verificaciéon experimental de la existencia de atomos y moléculas por
Jean Perrin en 1908.

3Se conoce por créditos subprime (|2]) a aquellos créditos, principalmente en el mercado financiero
estadounidense, con un riesgo de impago muy superior a la media. En general, la mayor parte de estos
créditos son de tipo hipotecario.



En 1975, el matemético Benoit Mandelbrot propuso el término “fractal” para obje-
tos geométricos cuya estructura se repite a diferentes escalas. Una de las aplicaciones
de la geometria fractal es la de proporcionar la primera y sistematica aproximacion
cuantitativa del estudio de la complejidad (tanto espacial como temporal) en el &mbito
de las matematicas y en el del mundo real. Los fractales han sido usados en el estu-
dio de fenémenos fisicos como la turbulencia, rugosidad de materiales, distribuciéon de
galaxias, y un largo etc.

Su libro The Fractal Geometry of Nature ([11]) es considerado un manifiesto en
favor del estudio cientifico de la irregularidad a través de los fractales, utilizando con-
ceptos matemaéticos como la dimensién fractal, el exponente de Hurst o el movimiento
browniano fraccional.

Asi, B. Mandelbrot fue el primero en estudiar la estructura de los registros financie-
ros desde este punto de vista, superando el modelo de movimiento browniano propuesto
por Louis Bachelier. Algunas de sus contribuciones pueden encontrarse en su libro Frac-
tals and Scaling in Finance: Discontinuity, Concentration, Risk ([12]). En este texto,
Mandelbrot asevera que los cambios en los precios gozan de una interdependencia que
se extiende en periodos asintéticos de tiempo y no son simplemente un “ruido de base”.

Posteriormente se han publicado otros trabajos sobre el tema como el realizado por
los fisicos R. N. Mantegna y H. E. Stanley ([31]).

1.3. Objetivos del proyecto

El objetivo de este trabajo es el estudio numérico en el periodo 2000-2013 de los
indices internacionales anteriormente descritos: Dow Jones Industrial Average, S&P
500, Nasdaq 100, Nikkei 225 e IBEX 35 (en lo sucesivo, se denominaran Dow Jones,
S&P, Nasdaq, Nikkei e IBEX respectivamente). Para ello, se hace énfasis en los patro-
nes numéricos que presentan, desde un punto de vista espectral y fractal, y se omite
deliberadamente cualquier tipo de argumento econémico y casual.

Tradicionalmente, la descripcién de una variable experimental en el dominio de la
frecuencia se ha realizado mediante el algoritmo de la transformada rapida de Fourier
(FFT). Sin embargo, el desarrollo de herramientras computacionales avanzadas permite
ahora también el uso de procedimientos de caracter analitico. Los nuevos softwares
de célculo como Mathematica, Maple, Maxima, Matlab, etc. proporcionan capacidades
algebraicas y graficas que exceden los resultados meramente numeéricos de los algoritmos
antiguos. En el presente proyecto se han realizado los célculos utilizando el manipulador
simbolico Mathematica 9.

En este trabajo se pretende obtener curvas de aproximacion para los distintos regis-
tros mediante procedimientos propios del analisis de Fourier, la interpolacion y la teoria



fractal. Las frecuencias y amplitudes calculadas describiran el contenido espectral de
los distintos indices.

Ademas, se va a implementar una cuantificaciéon de los registros bursatiles mediante
parametros de Hjorth, o descriptores normalizados de pendiente, que describen la senal
en el dominio del tiempo y/o de la frecuencia para cada uno de los indices a partir de
sus curvas de aproximacion. Se pretende estudiar si alguno de estos descriptores, puede
ser indicador de crisis econémica y, en general, de fuertes variaciones en los precios de
cierre. Con estos cuantificadores, se va a analizar una posible relacion entre las senales
de distintos indices para encontrar correlaciones en los periodos pre-crisis y crisis.

Se desea indagar también acerca del tipo de aleatoriedad en el movimiento de los
indices a través de dos tests distintos. Con el test de movimiento browniano sencillo
se determinara si dichos indices admiten una representacion por ruidos coloreados.
Mediante el exponente de Hurst, se va a calcular la dimension fractal por ano para
cada uno de los indices, que da una medida de si los datos siguen un camino aleatorio
puro (dimension igual a 2) o tienen tendencias subyacentes fuertes (dimension proxima a
1). Asi mismo, la idoneidad de este parametro indicara si las series temporales descritas
admiten un modelo de movimiento browniano fraccional ([13]).

La crisis financiera del perfodo 2008-2014 ha afectado con crudeza a los paises del
sur de Europa y, particularmente, a Espana. El planteamiento del estudio a largo plazo
es el de indagar si de algiin modo esta crisis podria haberse previsto, mediante métodos
analiticos y numéricos. En particular seria importante conocer si el IBEX posee alguna
caracteristica diferenciadora respecto a otros indices internacionales, y si existe algin
parametro cuantificador que anticipe los periodos criticos. Para ello, el primer objetivo
del proyecto es el de complementar y mejorar los osciladores empleados actualmente
mediante procedimientos de tipo interpolatorio y de aproximacion, pero también es de
nuestro interés la comparacion de la evolucion del IBEX con respecto a otros indices
internacionales como el Dow Jones, Nikkei, etc. De este modo, aparte del desarrollo y de
la computacion de procedimientos cuantificadores, el objetivo es analizar la evoluciéon
temporal de la complejidad de distintos indicadores transnacionales antes y durante la
crisis actual.



2. Analisis espectral

2.1. Curvas de aproximacion
2.1.1. Pruebas de interpolaciéon

Para obtener los coeficientes de Fourier necesarios en el posterior calculo de los
parametros numéricos se ha partido de una curva aproximada a la senal original, es
decir, a los pares de datos discretos (t;, z;) donde x; es la cotizacion al cierre del dia ¢;
de cada indice. Las curvas de aproximacion y los descriptores han sido calculados por
anos para tener una serie suficiente de muestras para poder realizar analisis estadisticos
y de correlacion adecuados.

El objetivo ha sido buscar el aproximante que mejor se ajuste al registro. La inter-
polaciéon polinémica se descarté porque producia errores muy grandes. Los otros dos
procedimientos han sido lineal y spline. Por ello, se han ensayado estos dos tipos de
interpolantes para cada uno de los anos. Se ha obtenido la interpolaciéon para los datos
impares y se ha cotejado con los datos pares con objeto de hallar el error relativo de la
aproximacion.

A continuaciéon se expone un breve resumen de ambos tipos de interpolantes.

Se considera una particion del intervalo I = [a,b] C R tal que:

A:a=ty<t1 <...<ty=V0. (1)

Al realizar la interpolacion lineal sobre una serie de puntos {(t;, z;) }~,, en el presente
trabajo {(dia, cotizacién al cierre)}, se obtiene una curva continua de clase C° definida
en el subintervalo [t;_1, ;] segin la ecuacion:

Ty — Tji—1

ti —lie1
Como es una funcion definida a trozos, puede expresarse mediante la funciéon caracte-
ristica:

0 = > 10 xnn (=4t et g
QOA - o 1 X(tifl,tz‘] ) X(tl',l,ti} - 0 Sia’] ¢ (ti_l’ti]

La interpolacion por splines ctbicos se define a continuaciéon. Dado un intervalo
[a,b] C R, se considera de nuevo la particion (1) del mismo.

Se define un spline cubico ([3]) Sa en I como una funcion real Sa : [a,b] — R tal
que :



a) Sa € C?[a,b], es decir, admite segunda derivada continua.
b) En cada subintervalo [t;_1,;], Sa es un polinomio de grado tres y verifica:

Para obtener la inexactitud en ambos casos se calcula la raiz cuadrética del error
sobre los datos no considerados en la interpolacion, definido como:

o \/ZM @) -m)" "
M

donde f(t;) es el valor del interpolante usado en el punto ¢; y M es el ntmero total
de muestras no consideradas, es decir, la mitad de los datos anuales. En algunos casos
el namero de datos anuales era impar, es decir, no habia la misma cantidad de datos
pares, usados para la interpolaciéon, y de datos impares, necesarios para el calculo del
error. En estos casos, se ha extrapolado un tltimo valor del menor de ellos.

De aqui se obtiene el error relativo en tanto por uno como:

E

max (z;)’

Erel = (5)
siendo méx(z;) la mayor cotizacion de la muestra anual escogida.

Asi, en la Tabla 1 se han recogido los errores que arroja cada tipo de interpolacién
usando el codigo expuesto en el anexo A.1.2 para los primeros 8 anos del indice S&P.

Ano ‘ 2000 2001 2002 2003 2004 2005 2006 2007
Lineal | 091% 0,81% 092% 0,64% 0,46% 0,45% 0,40% 0,73 %
Spline | 0,93% 0,84% 098% 0,70% 047% 047% 0,42% 0,80%

Tabla 1. Errores relativos del interpolante lineal y el spline ciibico para el indice S&P en los
anos 2000-2007 en términos de porcentaje

Es apreciable que los errores en el interpolante lineal son sensiblemente inferiores a
los obtenidos con el spline ciibico. Dado que los resultados son similares en el resto de
indices y anos, la funcién de aproximacion que se ha usado para los sucesivos calculos
es la obtenida mediante el interpolante lineal.

En la Figura 6 se muestran los interpolantes lineal y por splines ciibicos para el
indice S&P en el ano 2000.
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Figura 6. Interpolaciéon lineal y por splines cubicos para el indice S&P 500 en el ano 2000,
junto a los puntos no considerados como nodos
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Figura 7. Aumento de la Figura 6 en 30 dias de cotizacion

2.1.2. Calculo numérico de los coeficientes de una suma aproximada de
Fourier

Dada una funcion f(t) periodica en el intervalo [0, 7], se considera la serie

it 2
S(t) =co+ Z (€ cos (mwot) + dpy, sin (mwpt)) , donde wy = % (6)

m=1
Una serie como la representada en (6) se llama serie trigonométrica de Fourier ([3])

de f. El valor wy se denomina frecuencia fundamental.
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Los coeficientes ¢y, ¢,,, d,, se definen como:

co = %/O F(t) dt (7)
Cm = ;/OT f(t) cos(muwyt) dt, m=12... (8)

T
dp = %/0 f(t) sin(muwot) dt, m=12,... (9)

Como no se dispone de la funcion original f(t), es posible calcular los coeficientes c,
Cm, d,, de varias formas. Una de las maneras es aplicar en las integrales una regla para
calcularla de forma aproximada, como la regla del trapecio compuesto, o bien sustituir
f(t) por algin interpolante. De aqui en adelante se utiliza el interpolante lineal como
aproximacion de la funcién f(¢) donde, naturalmente, se consideran todos los valores
de cada registro como nodos de interpolacion.

Dado que los registros que se analizan son anuales, se ha escogido 1" = 1, es decir,
se ha trabajado por afos. Asi mismo se consideré un niimero finito de sumandos M. La
forma de elegir M esté basada en el hecho de que la suma obtenida se ajuste al registro
de forma casi interpolatoria, fijada una tolerancia ¢ para la distancia a los datos. En
nuestro caso se obtuvo un niimero cercano a 50 como valor éptimo.

Como los métodos de Fourier son mas adecuados para variables de tipo estaciona-
rio, se sustrajo previamente a la senal original los valores sobre la recta de regresion
del registro. Asi, la curva de aproximaciéon consta de una parte lineal y otra de tipo
periodico, sobre la que se ha realizado el céalculo de los coeficienes de Fourier.

Utilizando la funcién interpolante lineal de la senal transformada (E(t)) se tiene que

los coeficientes son N
t; _
a=> [ T (10)
i=1 7 ti-1

N t; _
=23 /t () cos(mewt) dt, (11)
im1 Jti-1

N t

0n=2%" / (1) sin(muw,t) dt, (12)

i=1 Yti-1
con los que se reconstruye la suma de Fourier:

S(t) =2+ Z (¢ cos(muwot) + dp, sin(muwgt)) . (13)

m=1
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Con todo esto, si M = T so6lo se recogen ciclos anuales, con M = 12T se consideran
también los ciclos de longitud mensual y si M = 52T se recogen hasta los ciclos de
longitud semanal. Normalmente, para registros de un ano esta ultima aproximacion
semanal es bastante buena. Si se utilizara una constante M muy grande aumentaria
mucho el coste computacional y los calculos podrian ser inviables con un ordenador
convencional.

En la Figura 8 se muestra la suma de Fourier para M =T, M = 12Ty M = 52T con
T =1 junto a los datos de la senal modificada realizada con el codigo de Mathematica
del anexo A.1.3.
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(c) Ciclos semanales con M = 52T
Figura 8. Sumas de Fourier para el ano 2000 del indice S&P habiendo restado la recta de

tendencia

Tomando M = 52T y sumando la recta de tendencia r(t) que se habia sustraido
para calcular los coeficientes de Fourier tenemos, por ejemplo, la curva mostrada en la
Figura 9.
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Figura 9. Curva de aproximacion para el ano 2003 del indice S&P

De este modo se obtiene un conjunto de arménicos (¢, d,,) correspondientes a un
conjunto de frecuencias m-wy (m=0,1,...,M).

A partir de estas magnitudes se han calculado los parametros de Hjorth: Actividad
y Movilidad.

A continuacion se presentan algunos resultados ([28]) que aseguran la convergencia
de la serie de Fourier a la senal original, es decir,

Su(t) — f(t)

M—o0

con hipotesis basicas sobre f.

= Si f es continua en el intervalo I y su serie de Fourier converge uniformemente,
la serie converge puntualmente a f.

= Si f es continua y la serie numérica

—+00

> (eml + ldinl)

m=1
es convergente, la serie converge a f uniformemente.

Se define el modulo de continuidad w () de la funcion f como:
w(6) =sup{|f(t) = f(&)]: [t —¥'| <6, 8,0 € I}

Una funciéon f es Holder continua con exponente «, tal que 0 < o < 1, si se verifica
que existe L > 0 tal que:

[f(t) = fE) < LIt ="

14



para cualquier ¢,t € I.
Una consecuencia de esta definicion es que si f es Holder continua:

w(d) < Lo

Un resultado relevante para este trabajo es el siguiente (|5])

Teorema de Dini-Lipschitz

Si f es continua en I y su moédulo de continuidad verifica que
w () |log (§)] = 0 (14)

cuando § — 0, la serie de Fourier de f converge uniformemente a f.
En particular, una funcion Hélder continua satisface la expresion (14) porque

lw (0)log (6)] < L% |logd| — 0

para 6 — 0 (w es una funciéon positiva). Por tanto, si f tiene esta propiedad, su serie
de Fourier es convergente a f.

Otro resultado importante nos da la velocidad de convergencia a cero de los coefi-
cientes de Fourier en funciones continuas (|28]):

o] < w (g) (15)
| < w (%) (16)

cuando el intervalo es I = [-m,7]. Esto nos indica que cuanto menor es el exponente
a, mas lenta es la convergencia de la serie (en el caso de funciones Holder).

2.2. Parametros de Hjorth de la curva de aproximacién

En 1970, el neurofisidlogo B. Hjorth defini6 los parametros Actividad y Movilidad en
la revista Electroencephalography and Clinical Neurophysiology (|0]). Estos indicadores
estan basados en la computacion de la desviacion estandar de una senal y sus derivadas y
sirven, de modo cuantitativo, para describir y asignar valores numéricos a los diferentes
estados de un sistema experimental.
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Asi, el descriptor Actividad da una medida de la varianza de la amplitud de la
senal y el parametro Movilidad de la desviacion estdndar de la derivada de la senal en
referencia a la desviacion estandar de la amplitud.

La cotizacion de un indice en un determinado periodo se puede considerar como
una funcion del tiempo z(t) y también como funcion de la frecuencia por medio de
su transformada de Fourier Z(w). Multiplicando #(w) por su conjugado se obtiene el
espectro de potencia de la senal

S (w) = 7 (W) i* (w) . (17)

Se define el momento espectral de orden n como:

1 [t

My w"S (w) dw, paran =0,1,... (18)

:%_OO

Los parametros de Hjorth, en lo sucesivo A = Actividad y M = Movilidad se
expresan en funcion de los momentos espectrales de la siguiente manera

1 [+
A=mg= Dy S (w) dw, (19)
M= q[22, (20)

myo

Estos descriptores también pueden ser calculados en el dominio del tiempo ([15]).
Se puede demostrar, a partir de la relacion de Parseval, que dada una funcién periddica
de periodo T' (en el dominio del tiempo z() o en el dominio de la frecuencia z(w)) en
el intervalo I se cumple la siguiente igualdad:

3| @l = 1 [ (21)

21 ) _ o

Asi, se pueden calcular los momentos espectrales como

my = %/ij(t) dt, (22)

my = %/l (Z—j) dt. (23)
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En nuestro caso, la senal original no es conocida y posiblemente no sea una funcién
suave. Estos hechos motivan el calculo de los parametros correspondientes a la suma
de Fourier, es decir, en el dominio de la frecuencia. Se puede demostrar (ver [29]) que,
a partir de los coeficientes de la serie de Fourier se tiene que los descriptores de Hjorth
toman la forma

1 X -
A=my =+ 53 (e + ) (24)
m=1

1/2 00 2 (—2o , 72 1/2
Mo wWo (Dopr_ym” (G +dpy
M=|—= — 5 (25)
mo ——2 S —2 | 72 /
26"+ o en +dn
Un problema de utilizar los coeficientes de Fourier es que dependen de la magnitud
de la senal original, por lo que los momentos espectrales también dependen de dicha
magnitud y no sirven para realizar comparaciones entre distintos anos y/o indices.
Por ello, se normalizaron los coeficientes de Fourier dividiéndolos por el maximo de

la cotizacion en el periodo calculado, es decir se tiene que los nuevos coeficientes de
Fourier normalizados son:

= Co — Cm T _ dm (26)
7 nax {z;} “m = nax {z;} "™ max {z;}

Asi, se tiene que los nuevos parametros son

) 1M 2 —2
A=mg=5 +§m§::1(m +dm) (27)

) 1/2

v (St (7040

ma

- (EO> B =2 _, =2\\"" 28)
(2@ + Dot (m + dp, )>

El cociente m2/m, resulta ser una media ponderada de de las frecuencias angulares
2

cuadraticas con pesos igual a las potencias espectrales p,, = ﬁQ + ﬁ . Al extraer
la raiz cuadrada se obtiene un promedio de frecuencia angular. El calculo de estos
parametros se ha realizado con el codigo del anexo A.1.4.
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2.3. Resultados

Los resultados obtenidos para los distintos indices y anos se recogen en las siguientes
tablas:

Ano | Actividad Movilidad
2000 0,14 60, 28
2001 0,26 41,32
2002 0,34 43,68
2003 0,08 50, 26
2004 0,15 49, 20
2005 0,20 50,67
2006 0,35 40, 65
2007 0,24 47,51
2008 0,37 39, 80
2009 0,06 55,81
2010 0,31 41,61
2011 0,32 57,02
2012 0,29 53,78
2013 0,23 55,14

Tabla 2. Parametros de Hjorth para el indice Dow Jones.

Para el indice Dow Jones, el minimo valor para A es 0,06 en el ano 2009 y para
M es de 39,80 en 2008. El maximo de estos descriptores se da en el ano 2008 siendo
A =0,37y en el anio 2000 con M = 60, 28.
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Ano | Actividad Movilidad
2000 0,26 54,25
2001 0,37 41,65
2002 0,36 44,13
2003 0,10 49,33
2004 0,20 45,63
2005 0,27 51,23
2006 0,37 34,69
2007 0,28 51,20
2008 0,34 34,11
2009 0,07 61, 80
2010 0,29 38, 30
2011 0,31 60, 05
2012 0,27 51,10
2013 0,16 66,13

Tabla 3. Parametros de Hjorth para el indice S&P.

Para el indice S&P se obtiene un minimo de 0,07 en la Actividad en el ano 2009 y
dos maximos de 0,37 en los anos 2001 y 2006. Para el parametro Movilidad se obtiene
un minimo en 2008 de valor 34,11 y un maximo en 2013 de 66, 13.

Ano | Actividad Movilidad
2000 0,21 48, 66
2001 0,16 37,77
2002 0,24 35,98
2003 0,11 68, 54
2004 0,25 37,18
2005 0,12 47, 86
2006 0,37 27,27
2007 0,13 63, 64
2008 0,30 26, 85
2009 0,12 66, 62
2010 0,35 35,04
2011 0,26 72,54
2012 0,28 40, 80
2013 0,22 58, 37

Tabla 4. Pardmetros de Hjorth para el indice Nasdaq.
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Para el Nasdaq, en el ano 2003 se da un minimo de 0, 11 en la Actividad y, tres afios
més tarde, en el 2006 un maximo de 0, 37. Respecto a la Movilidad hay un minimo en
2006 de 27,27 y un maximo en 2011 de 72, 54.

Ano | Actividad Movilidad
2000 0,10 55,33
2001 0,17 45,06
2002 0,23 34,48
2003 0,26 46, 54
2004 0,16 55,39
2005 0,15 26, 81
2006 0,22 44,50
2007 0,24 44,93
2008 0,39 32,94
2009 0,21 46,78
2010 0,24 39,42
2011 0,17 66, 37
2012 0,14 51,49
2013 0,08 51,60

Tabla 5. Pardmetros de Hjorth para el indice Nikkei.

En la Actividad del indice bursatl japonés aparece un minimo en el 2013 de 0,08 y
un méaximo en el 2008 de 0,39. El minimo en la Movilidad es de 26,81 en el 2005 y el
méximo es de 66,37 en el 2011.
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Ano | Actividad Movilidad
2000 0,20 57,57
2001 0,25 53, 54
2002 0,27 43,70
2003 0,14 52,31
2004 0,17 44, 88
2005 0,14 45,15
2006 0,41 27,21
2007 0,31 52,52
2008 0,21 46,70
2009 0,07 60,67
2010 0,22 53,21
2011 0,30 64, 58
2012 0,46 28,35
2013 0,27 35,88

Tabla 6. Pardmetros de Hjorth para el IBEX.

Los minimos en el IBEX son, para A y M respectivamente, 0,07 en 2009 y 27,21
en 2006. Los maximos para estos descriptores son de 0,46 en el 2012 y de 64,58 en 2011
respectivamente.

Se han observado patrones espectrales muy similares de unos indices a otros ex-
ceptuando el comportamiento en cuanto a correlacion. Esto apoya la evidencia de que
la distribuciéon de probabilidad es idéntica en ambos descriptores de unos indices a
otros. Este hecho nos indica que los parametros son robustos (no pueden ser fruto de la
casualidad ni artefactos numéricos). También implica que existen patrones espectrales
“universales”, es decir, que los distintos indices internacionales tienen un comportamien-
to numérico similar.

Se han calculado matrices de correlacion para los parametros Actividad y Movilidad
en los periodos 2000 — 2006 y 2007 — 2013 a fin de distinguir entre periodo pre-crisis y
el periodo que concierne la crisis respectivamente.
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Actividad | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,92 0,63 0,25 0,84
S&P 0,92 1 0,50 —-0,09 | 0,75
Nasdaq 0,63 0,50 1 0,09 0,84
Nikkei 0,25 —0,09 0,09 1 0,27
IBEX 0,84 0,75 0,84 0,27 1

Tabla 7. Correlaciones para el parametro Actividad en el periodo 2000 — 2006

Actividad | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,94 0,80 0,34 0,51
S&P 0,94 1 0,65 0,45 0,53
Nasdaq 0,80 0,65 1 0,18 0,30
Nikkei 0,34 0,45 0,18 1 -0, 38
IBEX 0,51 0,53 0,30 -0, 38 1

Tabla 8. Correlaciones para el pardmetro Actividad en el periodo 2007 — 2013

Movilidad | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,90 0,57 0,33 0,61
S&P 0,90 1 0,71 0,04 0,76
Nasdaq 0,57 0,71 1 0,04 0,63
Nikkei 0,33 0,04 0,04 1 0,27
IBEX 0,61 0,76 0,63 0,27 1

Tabla 9. Correlaciones para el pardmetro Movilidad en el periodo 2000 — 2006

Movilidad | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,94 0,78 0, 86 0,02
S&P 0,94 1 0,85 0,75 0,06
Nasdaq 0,78 0,85 1 0,74 0,49
Nikkei 0, 86 0,75 0,74 1 0,17
IBEX 0,02 0,06 0,49 0,17 1
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Se ha observado que el comportamiento es similar para ambos parametros de un
periodo a otro. En la matriz siguiente (29) las flechas hacia arriba indican que la corre-
lacion aumenta en el periodo crisis, hacia abajo muestran decrecimiento.
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En el segundo periodo todos los indices extranjeros aumentan su correlacion signi-
ficativamente. Sin embargo, y en concreto para el parametro Movilidad, el IBEX sufre
una decorrelaciéon alarmante en el segundo periodo, lo que indica que los movimientos
en el resto de indices no son corroborados por el selectivo espanol.

Puede observarse que el indice japonés tiene unas correlaciones muy bajas con res-
pecto a los indices americanos en el periodo pre-crisis. Sin embargo, estas relaciones son
corregidas en el periodo crisis, sobre todo en el caso de la Movilidad.

La figura correspondiente al segundo periodo corrobora la decorrelacion que sufre
el IBEX en los ultimos anos, con respecto al resto de indices, manteniendo una ligera
correlacion con el Nasdaq para la Movilidad. También muestra la gran correlacion entre

el indice Dow Jones y el S&P 500.
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Figura 10. Movilidad en periodo pre-crisis y periodo crisis-postcrisis

I
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Los patrones para el descriptor Actividad mostrados en la Figura 11 son similares
a los presentados por la Movilidad pero con unas correlaciones menos acusadas.
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Por dltimo, un detalle a destacar del parametro Movilidad es que se encuentra entre

el cuarto y undécimo armonico para todos los indices considerados tal y como se muestra
en la Figura 12. La menor variabilidad se da en el Dow Jones (con una desviacion tipica
de 6,80), que significa que es el que méas conserva su espectro de potencias a lo largo
del tiempo (ver tabla 12). Asi mismo, es el que presenta una frecuencia promedio mas
rapida. La banda de frecuencias armonicas se reduce del 6° al 10° en este caso.
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Figura 12. Banda de armoénicos para el parametro Movilidad
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Actividad | Media Desviacién tipica
Dow Jones | 0,24 0,10
S&P 0, 26 0,10
Nasdaq 0,22 0,08
Nikkei 0,20 0,08
IBEX 0,24 0,10

Tabla 11. Medias y desviaciones tipicas para el parametro Actividad

Movilidad | Media Desviacion tipica
Dow Jones | 49,05 6, 80
S&P 48, 82 9,81
Nasdaq 47,65 15,65
Nikkei 45,83 10,27
IBEX 47,59 11,18

Tabla 12. Medias y desviaciones tipicas para el parametro Movilidad

En todas las Movilidades se aprecia una cierta tendencia al alza (recta de ajuste con
pendiente positiva) excepto en el IBEX y Nasdaq, donde la tendencia es a la baja.

2.3.1. Contraste de hipdtesis

El objetivo de este punto es realizar un analisis estadistico a fin de determinar si las
distribuciones de distintos indices son similares o no. Es decir, si puede afirmarse que
los parametros dan valores significativamente distintos de unos indices a otros.

Conocida la distribucion de la poblacion de interés, por ejemplo una distribucion
normal, podrian usarse métodos parameétricos para rechazar o no la hipotesis nula H
definida en (30). Dado que no se conoce la naturaleza de dicha distribucion se hara uso
de métodos no paramétricos, en concreto el método Mann-Whitney ([1]).

Hy: fi(t) = fo(t), (30)

donde fi(t) y f2(t) son las correspondientes funciones de densidad de probabilidad de
dos indices distintos. Es decir, la hipotesis nula considera que las distribuciones de la
Actividad o Movilidad para dos indices distintos son idénticas.

Se ha realizado este analisis entre todos los indices para los parametros de Actividad
y Movilidad. Ademas, se ha considerado el periodo completo 2000 — 2013 para tener
una muestra estadisticamente significativa. Los datos obtenidos para los p-valores y el
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estadistico U para cada par de indices en Movilidad y Actividad mediante el paquete
estadistico SPSS son:

P-valores | Dow Jones | S&P | Nasdaq | Nikkei | IBEX

Dow Jones X 0,520 | 0,550 0,214 | 0,854

S&P 0,520 X 0,223 0,038 | 0,475

Nasdaq 0,550 0,223 X 0,395 | 0,581

Nikkei 0,214 0,038 | 0,395 X 0,197
IBEX 0,854 0,475 | 0,581 0,197 X

Tabla 13. p-valores para Actividad

U Dow Jones | S&P | Nasdaq | Nikkei | IBEX

Dow Jones X 84 85 71 94
S&P 84 X 71,5 53 82,5

Nasdaq 85 71,5 X 79,5 86
Nikkei 71 53 79,5 X 70
IBEX 94 82,5 86 70 X

Tabla 14. Estadistico U para Actividad

En todos los casos el p-valor es mayor que 0,05, excepto en los indices S&P y Nikkei,
por lo tanto, en estos casos, se puede rechazar la hipotesis nula al 95 % de confianza.
Para el resto de casos, no hay evidencia estadisticamente significativa para rechazar la
hipotesis nula y es factible que ambas muestras, es decir, la Actividad en los periodos
descritos, sean similares.

P-valores | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones X 0,963 | 0,963 0,383 | 0,963
S&P 0,963 X 0,890 0,613 1
Nasdaq 0,963 0,890 X 0,435 | 0,679
Nikkei 0,383 0,613 | 0,435 X 0,520
IBEX 0,963 1 0,679 0,520 X

Tabla 15. p-valores para Movilidad
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U Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones X 97 97 79 97
S&P 97 X 95 87 98
Nasdaq 97 95 X 81 89
Nikkei 79 87 81 X 84
IBEX 97 98 89 84 X

Tabla 16. Estadistico U para Movilidad

El analisis Mann-Whitney para la Movilidad muestra que el p-valor es superior a
0,05, lo que indica que es posible que las distribuciones sean similares entre diferentes
indices.

Se observa que los p-valores obtenidos en la Actividad son menores que para la
Movilidad. Esto indica que hay una mayor probabilidad en la Movilidad de que las
muestran provengan de distribuciones idénticas, es decir, en términos de la Movilidad
los indices tendrian una mayor relacién entre ellos.

Profundizando mas, es posible ver que el contraste de hipotesis para el indice Nikkei
aporta una menor confianza para no rechazar la hipétesis nula, es decir, hay una mayor
probabilidad de que los parametros de Hjorth para dicho indice bursatil tuvieran una
distribucién que difiera de la dada por el resto de indices. Ademés, como era de esperar,
los p-valores y el estadistico U entre los indices americanos salen muy altos.

En resumen, p-valores bajos acercan la posibilidad de rechazar la hipotesis nula y
valores altos no permiten rechazarla. Asi, indices que se esperan que estén muy correla-
dos, como los indices americanos, muestran p-valores muy altos e indices como el Nikkei,
que de los tomados es el menos relacionado con el resto, obtienen bajos p-valores.

2.3.2. Relaciones entre indices

Es obvio que existe una cierta relacion entre los diferentes indices debido a que
la economia de los paises estan interconectadas, ademas se ha comprobado que existe
también una correlaciéon entre diferentes pardmetros de estos indices bursatiles. Con el
fin de indagar en el origen de la correlacion /decorrelacion entre los distintos indicadores,
se han calculado matrices de correlaciéon para la senal original de cada indice, es decir,
los pares de datos (t;, z;) distribuidos en los dos periodos (2000-2006 y 2007-2013).

Asi, los resultados obtenidos representados en una matriz de relaciones son los que
se describen en las tablas 17 y 18.
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Senal Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,847 | 0,457 0,747 | 0,806
S&P 0,847 1 0,811 0,890 | 0,881
Nasdaq 0,457 0,811 1 0,767 | 0,652
Nikkei 0,747 0,890 | 0,767 1 0,920
IBEX 0, 806 0,881 | 0,652 0,920 1

Tabla 17. Matriz de correlaciéon para la senal en el periodo 2000-2006

Senal Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,988 | 0,846 0,584 | 0,080
S&P 0,988 1 0,791 0,671 | 0,176
Nasdaq 0,846 0,791 1 0,151 | —0,391
Nikkei 0,584 0,671 | 0,151 1 0,671
IBEX 0,080 0,176 | —0,391 | 0,671 1

Tabla 18. Matriz de correlaciéon para la senal en el periodo 2007-2013

Se puede observar como casi todas las correlaciones (exceptuando Nasdag-Dow Jones
y Nasdagq-IBEX) son muy altas en el primer periodo, es decir, todos los indices se
mueven con tendencias similares. Es destacable la alta correlacion entre el IBEX y el
indice Nikkei.

Mas interesantes son los cambios que se producen en las correlaciones en el segundo
periodo. Se observa que después del estallido de la crisis, los indices americanos Dow
Jones y S&P aumentan su correlacion. El indice Nikkei e IBEX sufren una decorrelacion
bastante méas acusada respecto a los indices americanos, aunque mantienen una cierta
correlacion entre ellos, esto puede deberse al hecho de que la crisis ha tenido una du-
racion més prolongada en Japén y Espana. En el caso espanol, las cifras de correlacion
en el segundo periodo son alarmantemente bajas.

Los indices americanos no tecnolégicos estan muy correlados (algo 16gico puesto
que vienen del mismo mercado bursatil) e incluso incrementan su relacion después del
estallido de la burbuja de los créditos sub-prime. Por su parte, los indices Nikkei e IBEX
sufren una decorrelacién mayor en términos de la senial, aunque esto no es apoyado para
el selectivo japonés en términos de parametros de Hjorth. Es decir, este indice se correla
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con los demas en el segundo periodo en el dominio de la frecuencia, pero no en el dominio
temporal. Este hecho indica que los pardmetros estudiados aportan informacién nueva,
no aparente en los registros temporales. El IBEX se decorrela en el segundo periodo en
ambos dominios.
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3. Tests de fractalidad

3.1. Introduccion

En esta seccion se han buscado evidencias que apunten a una posible estructura
fractal de los precios de cierre diarios de cada indice bursatil considerado. Ademas, se
han determinado parametros que cuantifican los valores de los registros bursatiles y sus
tendencias, provenientes de la teoria fractal.

En concreto, primero se ha obtenido el exponente que caracteriza al espectro de
potencias de la senal con el fin de determinar el posible movimiento browniano de esta.
Se ha calculado también el exponente de Hurst, que da una medida de la autosimilaridad
del registro, y a partir de él se ha calculado la dimensién fractal de los datos, que es un
parametro que caracteriza patrones fractales cuantificando su complejidad.

Hay muchos procedimientos para calcular dimensiones fractales. Las directores del
proyecto han desarrollado un método numérico que utiliza interpolacion fractal, y lo
han aplicado ampliamente en el estudio electroencefalografico del sindrome de Atencién
Deficiente con Hiperactividad (ver por ejemplo las referencias [19] y [17]). Un diseno de
estrategia modular se describe en ([16]). En este trabajo se calcula lo que en algunos
textos se denomina dimension fractal de varianza, utilizando el exponente de Hurst.

3.2. Test de movimiento browniano

Se llaman ruidos coloreados o ruidos 1/w, siendo w la frecuencia, a aquellos procesos
([13]) que tienen un espectro de potencias S(w) que satisface:

S(w) ~ kw™, (31)
donde k es una constante. Segin el valor de « se pueden clasificar en:
= Ruido blanco o gaussiano para o = 0.
= Ruido rosa si a = 1.
» Ruido rojo o browniano para a = 2.

Se ha desarrollado un test de movimiento browniano sencillo para determinar si una
serie de tipo econémico como las que estamos manejando, admite una buena repre-
sentacion por medio de este modelo. En este caso, se han obtenido potencias discretas
correspondientes a frecuencias discretas w,, = muwy, siendo wy = 27/T la frecuencia
fundamental y m = 1,2, ..., provistas por el desarrollo de Fourier.
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Sea p,, el espectro discreto de potencias correspondiente a la frecuencia discreta wy,,
tomando logaritmos se obtiene:

log p,, ~ logk — alog w,, (32)
Se han ajustado los valores (logpm)f\f:l y (logwm)M donde M = 12, con el

m=1
objetivo de encontrar una correlaciéon entre las variables con pendiente —«. Una buena
correlacion lineal indicaria que la variable admite un modelo de este tipo. En concreto,
el valor o ~ 2 indicaria que los datos se ajustan a un movimiento browniano. Los
resultados se pueden encontrar en la secciéon 3.4.
Ademas, se han obtenido correlogramas mediante la férmula de coeficiente r-ésimo

de autocorrelacion:
n

> (v —T)(zig — T)

r(k) = = (33)
> (z; —T)?
i=1
siendo T la media, k = 1,...,10 y n es el namero tota de muestras en el ano calculado.

El correlograma da una medida del parecido de la senal consigo misma y, de este
modo, de su grado de aleatoriedad. Los histogramas calculados en los indicadores se han
comparado con los respectivos de una variable gaussiana, tal como muestra la figura
13.

1 L 1
08 q 0.8 - b
0.6 - q 0.6 - b
0.4 q 0.4 b

02 q 0.2 b
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(a) Correlograma del Nasdaq del afio 2000 (b) Correlograma de una sefal gaussiana

Figura 13. Correlogramas

Como se observa, el correlograma o histograma correspondiente a la senal gaussiana
(13b) tiende a cero mucho antes que el correspondiente de la senal econémica, lo que
prueba que el registro bursatil esta lejos de ser una variable aleatoria de tipo ruido
blanco o similar.
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El procedimiento seguido en Mathematica para el anélisis de este test se muestra
en el anexo A.2.1

3.3. Exponentes de Hurst

El segundo parametro calculado es el exponente de Hurst (H) de los registros de cada
indice. Este exponente fue propuesto por H. E. Hurst (|9]) en un estudio hidrologico y
ha sido aplicado a lo largo de los anos en diferentes campos. Su reciente popularidad
en el ambito financiero se debe principalmente al trabajo de Peters ([24], [25]).

A partir de dicho exponente se infiere si el registro bursatil utilizado admite un
modelo de funcién browniana fraccional. El movimiento browniano fraccional (mBf) es
un proceso aleatorio con dependencia a gran escala, lo cual se ajusta a los movimientos
alcistas o bajistas que tiene el mercado bursétil en grandes periodos de tiempo.

El mBf est4 asociado con una densidad espectral proporcional a 1/w?*#+1 donde H
es el exponente de Hurst y w la frecuencia.

Segun el valor de H (0 < H < 1), se puede distinguir entre ruido blanco para H = 0,
valores de H = 1 corresponden a una senal determinista y, los que se pretende testar
en este analisis, ruido rojo o movimiento browniano para H = 0,5. Es decir, cuanto
mayor es H, més predecible es la senal.

Ademés, para indices bursatiles, H se puede interpretar como una medida de la
tendencia del registro. Un valor 0 < H < 0,5 indica una serie anti-persistente® y
0,5 < H < 1 da evidencia de una serie persistente. Asi, la interpretacion econdémica del
exponente de Hurst es que H < 0,5 indica una alta volatilidad, es decir, cambios méas
frecuentes e intensos, y H > 0,5 una tendencia determinada.

Si B(t,w) es un movimiento browniano clasico, sus incrementos B(ty,w) — B(t1,w)
son gaussianos con media cero y varianza [ty — t1] ([22]):

{B(tz,w) — B(tl,w)} ~ N(O, |t2 - t1|) (34)

Un movimiento browniano fraccional con exponente H, By (t,w), tiene las siguientes
caracteristicas:

1. Las trayectorias de By (t,w) son casi siempre continuas.

2. El grafo de By(t,w) tiene dimension fractal Hausdorff igual a 2 — H.

1
3. SiH = 3 entonces By (t,w) es una funcion browniana ordinaria. En este caso los

incrementos en intervalos disjuntos son independientes.

4Una serie anti-persistente tiene la caracteristica de invertir la media, es decir, un valor alto tiene
una alta probabilidad de ir seguido de un valor bajo y viceversa.
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4. Los incrementos {By(to + T,w) — By(tp,w)} son gaussianos con media cero y
varianza proporcional a T2,

5. Casi todas las trayectorias son Holder continuas para cualquier exponente § < H,
es decir, existe una constante ¢ > 0 tal que:

|By(t,w) — By(s,w)| < cl|t —s|° (35)

Para el calculo del parametro H se han considerado los precios al cierre diarios por
indice y ano. Llamando de nuevo z(i) a la cotizacion al cierre del dia ¢ de un afo
concreto, se han usado retrasos h; para definir los incrementos:

i = (i + hy) — (i), (36)

donde hy = kd con § = 1 correspondiente a un dia, en nuestro caso.

Para cada incremento k se ha calculado la media y la varianza v". Entonces, si el
indice considerado admite un modelo de funciéon browniana fraccional, los incrementos
deben cumplir:

P o N(0,0") (37)

siendo N (0, vhk) gaussiano con varianza v proporcional a h2H.
Por lo tanto, si el indice es un mBf tiene que ocurrir que:

v~ O (38)
que tomando logaritmos queda:
log v ~ log C' + 2H log hy, (39)

donde H es el exponente de Hurst. Por tanto, si se representa una gréfica log-log de
las varianzas frente a los retrasos tal y como muestra la Figura 14, se obtienen datos
proximos a una recta de pendiente 2H.
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Figura 14. Representacion log-log de las varianzas v en funciéon de hy, para el indice Nasdaq
en el ano 2000

Asi, el exponente de Hurst es la mitad de la pendiente de dicha linea. La recta ha
sido calculada mediante regresion y se ha obtenido el indice de correlaciéon de dicha

regresion lineal (ver tabla 27).
Usando la propiedad 2, la dimension fractal de registros es D = 2 — H. El célculo
del exponente de Hurst y de la dimension fractal aparece en el anexo A.2.2.

3.4. Resultados

A continuaciéon se muestran los datos obtenidos en los tests de ruido coloreado («)
y movimiento browniano fraccional (H) asi como la dimensién fractal.
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Ano | Exponente o Exp. Hurst Dim. Fractal
2000 1,808 0,457 1,543
2001 2,235 0,498 1,502
2002 2,135 0,452 1,548
2003 2,191 0,477 1,523
2004 2,027 0,501 1,499
2005 1,897 0,450 1,550
2006 1,971 0,442 1,558
2007 1,925 0,437 1,563
2008 1,714 0,347 1,653
2009 1,881 0,507 1,493
2010 2,125 0,471 1,529
2011 1,940 0,435 1,565
2012 1,815 0,435 1,565
2013 2,038 0,519 1,481

Tabla 19. Tests brownianos y dimension fractal para el indice Dow Jones en el periodo 2000 —
2013
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Figura 15. Evolucion del exponente de Hurst para el indice Dow Jones

Los puntos méximos y minimos del exponente de Hurst del indice Dow Jones se dan
en 2013 con un valor maximo de 0,519 y en 2008 un minimo de 0, 347, siendo este el
valor mas bajo de todos los indices considerados. Asi, el rango de variaciéon es de 0,172
que representa un 33, 14 % respecto al valor méximo.
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Ano | Exponente o Exp. Hurst Dim. Fractal
2000 1,918 0,413 1,587
2001 2,052 0,500 1,500
2002 1,976 0,446 1,554
2003 2,253 0,448 1,552
2004 1,938 0,475 1,525
2005 1,849 0,436 1,564
2006 1,884 0,406 1,594
2007 1,979 0,401 1,599
2008 1,736 0,352 1,648
2009 1,832 0,489 1,511
2010 2,082 0,474 1,526
2011 1,878 0,432 1,568
2012 1,776 0,417 1,583
2013 1,883 0,459 1,541

Tabla 20. Tests brownianos y dimension fractal para el indice S&P en el periodo 2000 — 2013
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Figura 16. Evolucion del exponente de Hurst para el indice S&P

Considerando el exponente de Hurst del indice S&P, se puede apreciar que en 2001
se alcanza un méaximo con valor 0,500 y en 2008 se produce el minimo absoluto del
indice de valor 0,352. El rango de variacion del exponente de Hurst en el S&P es de
0,148, es decir, un 29, 6 %.
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Ano | Exponente o Exp. Hurst Dim. Fractal
2000 1,857 0, 396 1,604
2001 2,091 0,466 1,534
2002 2,191 0,406 1,595
2003 1,890 0,423 1,577
2004 2,009 0,754 1,246
2005 2,093 0,491 1,509
2006 1,977 0,436 1,565
2007 1,560 0,433 1,567
2008 1,932 0,397 1,603
2009 1,757 0,484 1,516
2010 2,192 0,497 1,503
2011 1,681 0,447 1,553
2012 1,825 0,436 1,564
2013 1,871 0,431 1,569

Tabla 21. Tests brownianos y dimension fractal para el indice Nasdaq en el periodo 2000 —2013

10—

02r- i

. - I
2008

0.0 I 1 1 L L L L 1 L L
2010 2012

R R R
2000 2002 2004 2006

Figura 17. Evolucién del exponente de Hurst para el indice Nasdaq

En el Nasdaq se alcanza el valor més alto del exponente de Hurst. Por encima del
resto de indices, en el ano 2004 con un valor de 0, 754. El minimo se produce al comienzo
del periodo considerado, en el ano 2000, con un valor de 0,396. En 2008 también se
produce un minimo relativo muy similar al minimo absoluto de 2000, con un valor de
0,397.
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El rango de variacion en este indice es de los mas altos, el exponente de Hurst varia
en el periodo considerado 0,358 puntos, que representa un 47,48 % respecto del valor
maximo.

Ano | Exponente o Exp. Hurst Dim. Fractal
2000 1,844 0,496 1,504
2001 1,819 0,409 1,591
2002 2,215 0,514 1,486
2003 2,104 0,467 1,533
2004 2,039 0,505 1,495
2005 1,885 0,491 1,509
2006 1,892 0,493 1,507
2007 2,316 0,487 1,513
2008 2,021 0,412 1,588
2009 1,999 0,499 1,501
2010 2,312 0,468 1,532
2011 1,534 0,453 1,547
2012 1,927 0,585 1,415
2013 1,861 0,479 1,521

Tabla 22. Tests brownianos y dimension fractal para el indice Nikkei en el periodo 2000 — 2013
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Figura 18. Evolucion del exponente de Hurst para el indice Nikkei

En el indice Nikkei se producen maximos y minimos absolutos en 2012 y 2001 con
valores de 0,585 y 0,409 respectivamente. El segundo minimo local se da en 2008 con
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un valor de 0,412. El rango de variaciéon es pequeno comparado con el resto de indices,
siendo este de 0,176 (30,09 %).

Ano | Exponente o Exp. Hurst Dim. Fractal
2000 1,466 0,219 1,781
2001 1,818 0,476 1,524
2002 1,998 0,420 1,580
2003 2,247 0,474 1,526
2004 2,074 0,523 1,477
2005 2,135 0,485 1,516
2006 2,301 0,520 1,480
2007 2,028 0,440 1,560
2008 1,933 0,381 1,619
2009 1,814 0,500 1,500
2010 1,873 0,465 1,535
2011 1,811 0,452 1,548
2012 2,001 0,459 1,541
2013 2,352 0,531 1,469

Tabla 23. Tests brownianos y dimensién fractal para el indice IBEX en el periodo 2000 — 2013
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Figura 19. Evoluciéon del exponente de Hurst para el indice IBEX

En el comienzo del periodo tomado, en 2000 se ha encontrado un minimo en el
exponente de Hurst del IBEX con valor 0,219. El siguiente minimo se da en 2008,
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con un valor de 0,381. El maximo se establece en 0,531 en el ano 2013. El rango de
variacion absoluto es de 0,312, el cual es el méas alto de todos los indices, siendo un
58,76 % respecto del valor maximo en el periodo.

Exponente o | Media Desviacion tipica
Dow Jones 1,98 0,15
S&P 1,93 0,13
Nasdaq 1,92 0,18
Nikkei 1,92 0,18
IBEX 1,99 0,24

Tabla 24. Medias y desviaciones tipicas totales para el exponente « del espectro de potencias.

H Media Desviacion tipica
Dow Jones | 0,46 0,04
S&P 0,44 0,04
Nasdaq 0,46 0,09
Nikkei 0,48 0,04
IBEX 0,45 0,08

Tabla 25. Medias y desviaciones tipicas totales para el exponente de Hurst.

Respecto al exponente o se muestra que en todos los casos la media del exponente «
es cercana a 2, pero ligeramente inferior a este valor, lo que corresponde a un ruido rojo
o movimiento browniano. En el caso del Dow Jones y el IBEX la media del exponente
a es mayor que en el resto de casos, lo que prueba que en el periodo analizado la senal
de estos indices se aproxima més a un movimiento browniano aunque, en el caso del
IBEX, la desviacion tipica es la mayor obtenida.

A continuaciéon se muestra la correlacion que presenta el exponente a en su célculo
para cada ano e indice.
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Correlacion « | Dow Jones S&P Nasdaq Nikkei IBEX
2000 —0, 764 -0,797 —0,800 —0,782 —0,764
2001 —0,841 —0,748 —0,801 —0,796 —0,824
2002 —0, 832 —0,745 —0,823 —0,835 —0,828
2003 —0, 849 -0,873 —0,789 —0,798 —0,833
2004 —0, 800 -0,733 —0,816 —0,816 —0,847
2005 —0, 789 -0,779 —0,799 —0,828 —0,854
2006 —0, 872 —0,812 —0,848 —0,773 —0,829
2007 —0,793 -0,83 —0,771 —0,841 —0,786
2008 —0,795 —0,800 —0,863 —0,786 —0,843
2009 —0, 815 -0,801 —0,780 —0,850 —0,845
2010 —0, 860 -0,838 —0,823 —0,823 —0,800
2011 -0, 839 -0,809 —0,799 —0,798 —0,864
2012 —0, 760 -0,733 —0,761 —0,904 —0,836
2013 -0, 829 -0,812 —-0,870 —0,820 —0,855

Tabla 26. Correlacién por anos e indices para el exponente a

Dado que H ~ 0,5, lo cual apoya la evidencia de que la senal se ajusta a un ruido
rojo, se infiere de los datos obtenidos que todos los indices se acercan a un camino
aleatorio clésico, siendo el caso mas destacable el Nikkei que tiene la mayor media y la
menor desviacion tipica. Por lo que se puede afirmar que en el periodo 2000 — 2013 es

la senal que mas se ajusta a un ruido rojo.

En la Tabla 27 se muestran las correlaciones que presenta el exponente de Hurst en
todos los indices. Se puede observar que es muy cercana a 1, lo que aporta validez al
procedimiento. Como los valores obtenidos son mejores que en el caso del exponente «,
se infiere que el modelo de movimiento browniano fraccional es mas adecuado para este
tipo de registros que el de ruido coloreado. Debido a este hecho, el resto de los célculos
se realizan sobre el exponente de Hurst. Las conclusiones realtivas a la dimensién fractal

serfan similares, dada su total relacion (D =2 — H).
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Correlacion H | Dow Jones S&P Nasdaq Nikkei IBEX
2000 1,000 0,999 0,999 1,000 0,999
2001 1,000 1,000 0,998 0,999 0,999
2002 0,998 1,000 0,998 1,000 0,998
2003 0,999 0,998 0,997 0,996 1,000
2004 1,000 0,999 0,708 1,000 1,000
2005 0,995 1,000 1,000 0,999 0,999
2006 0,998 0,995 0,999 0,999 1,000
2007 0,999 0,998 0,999 0,998 0,998
2008 0,997 0,998 0,995 1,000 1,000
2009 0,999 0,997 0,999 1,000 0,999
2010 0,998 0,999 1,000 0,999 0,992
2011 0,993 0,998 0,998 0,997 0,997
2012 0,998 0,993 0,999 1,000 1,000
2013 0,989 0,998 0,999 0,999 0,999

Tabla 27. Correlacién por anos e indices del exponente de Hurst

En el ano 2008, comienzo de la crisis financiera, se produce una caida generalizada en
el exponente de Hurst de los diversos indices, alcanzéndose en algunos casos el minimo
absoluto del periodo. En general se puede deducir que valores bajos del exponente de
Hurst se ajustan a las crisis que se puedan ver reflejadas en la cotizacién de un indice
bursatil. La caida del Hurst en el indice Nasdaq en 2008 es menor que en el resto, al
ser la influencia de la crisis financiera menor en este indice.

3.4.1. Contraste de hipo6tesis

Se ha realizado un analisis estadistico por el método no paramétrico de Mann-
Whitney de forma similar al de la secciéon 2.3.1 aplicado a los datos del exponente
de Hurst de cada indice. A continuaciéon se muestran los p-valores y el estadistico U
calculados a pares entre los indices anteriores.
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P-valores | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones X 0,628 | 0,168 0,215 | 0,597
S&P 0,628 X 0,382 0,081 | 0,346
Nasdaq 0,168 0,382 X 0,037 | 0,291
Nikkei 0,215 0,081 | 0,037 X 0,358
IBEX 0,597 0,346 | 0,291 0,358 X
Tabla 28. p-valores para exponente de Hurst
U Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones X 87,5 68 71 86,5
S&P 87,5 X 79 60 77,5
Nasdaq 68 79 X 52,5 75
Nikkei 71 60 52,5 X 78
IBEX 86,5 77,5 75 78 X

Tabla 29. Estadistico U para exponente de Hurst

Se puede observar que practicamente en todos los casos se tiene que p-valor > 0, 05,
por lo que no hay una evidencia estadisticamente significativa para rechazar que el
exponente de Hurst de estos indices provengan de poblaciones similares, excepto en el
caso del Nasdaq respecto del Nikkei.

3.4.2. Correlaciones

Se han calculado matrices de correlacion para el exponente de Hurst ya que algunos
estudios (ver [20] y [26]), y nuestros propios calculos, apoyan la evidencia de que puede
ser un buen predictor de grandes cambios econémicos.

Exp. Hurst | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,26 0,39 —0,16 0,47
S&P 0, 26 1 0,88 —-0,52 | 0,63
Nasdaq 0,39 0,88 1 —0,61 0,47
Nikkei —0,16 -0,52 | —0,61 1 0,16
IBEX 0,47 0,63 0,47 0,16 1
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Tabla 30. Matrices de correlacion para el exponente de Hurst en el periodo 2000 — 2006




En este primer periodo se puede observar que las correlaciones son pobres, excepto
en el caso del Nasdaq con respecto al S&P, que registra el valor maximo de la tabla. El
indice Nikkei toma valores negativos respecto a los valores americanos.

Exp. Hurst | Dow Jones | S&P | Nasdaq | Nikkei | IBEX
Dow Jones 1 0,97 0,85 0,39 0,50
S&P 0,97 1 0,92 0,35 0,64
Nasdaq 0,85 0,92 1 0,28 0,87
Nikkei 0,39 0,35 0,28 1 0,20
IBEX 0,50 0,64 0,87 0,20 1

Tabla 31. Matrices de correlacion para el exponente de Hurst en el periodo 2007 — 2013

En el segundo periodo se obtiene que los tres indices americanos (Dow Jones, S&P
y Nasdaq) adoptan una correlacion fuerte. El Nikkei aumenta su correlacion respecto a
estos indices. El selectivo espanol no se correla mucho mas en este periodo salvo con el
Nasdaq.

En efecto, el exponente de Hurst puede ser utilizado como predictor de la crisis ya
que en el comienzo de la crisis el coeficiente H disminuye, y esto se ve apoyado por
todos los selectivos.
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4. Convergencia del procedimiento numérico para el
calculo de la suma de Fourier

En este apartado se proporcionan argumentos para la idoneidad del método utilizado
para el calculo de la suma de Fourier.

Sea f(t) la senal original y fo(t) un interpolante lineal de la misma con respecto a
los datos {(t,, xn)}gzo. Sea Sy fo(t) la M-ésima suma de Fourier del interpolante fo. Se
considera la distancia uniforme, es decir, la métrica d(f1, fo) = || f1 — f2||, siendo

11 = folloo = méx{[f1(t) — ()] : t €I}, (40)

y fi1, f2 continuas en I (intervalo de definicion).
El error cometido en la aproximaciéon de f mediante Sy, fo puede ser desglosado en
dos términos:

1f = Su foll < [1f = folloo + llfo = Sar foll - (41)
El primer término puede ser acotado como:
1f = follow < w(h), (42)
siendo w(h) el modulo de continuidad de la funcion f definida en la seccion 2.1.2,
con h = max {t, —t,—1: n=1,2,..., N}. Este resultado puede ser consultado en la
referencia [15]. La desigualdad implica que || f — fyl|,, — 0 cuando h — 0 ([5]).

En cuando al segundo, se puede argumentar que fy es una funcién poligonal y, por
tanto, Hélder continua con exponente a = 1. Segun el teorema de Dini-Lipschitz (citado
en el capitulo 2) la serie de Fourier de fy converge uniformemente a f;. Por tanto, si
se escogen particiones refinadas tales que h — 0 y se considera un ntmero creciente de
sumandos (M — o), se tendria que:

I.fo — S folloo — 0, (44)

y de aqui la convergencia del método. Un analisis més detallado se puede encontrar en
[21].

Otro argumento importante viene de considerar que existen evidencias numéricas
de que los registros analizados admiten un modelo de movimiento browniano fraccional,
segtin se ha visto en secciones anteriores. Como se ha comentado anteriormente, este
tipo de variables son Hoélder continuas. Segun el teorema de Dini-Lipschitz este tipo de
funciones son bien representadas por su suma de Fourier, y de aqui la idoneidad del
procedimiento
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5. Conclusiones

5.1. Conclusiones de tipo numérico

Los patrones numéricos de los registros bursatiles analizados (Dow Jones, S&P,
Nasdaq, Nikkei e IBEX) en el periodo 2000-2013 han mostrado una serie de resultados
que se resumen a continuacion. Respecto a los calculos de los parametros de Hjorth se
han extraido las siguientes conclusiones:

= Los valores del descriptor Actividad se agrupan en torno a 0,23. La menor des-
viacion tipica es de 0,08 y corresponde a los indices Nasdaq y Nikkei. La mayor
se da en el Dow Jones, S&P e IBEX con un valor de 0, 10. Hay que destacar que
los valores han sido normalizados.

» El parametro Movilidad de los indices considerados se encuentra entre el cuarto
y undécimo armoénico con una media total de 47,73. En este caso, la menor des-
viacion tipica, de 6,80, se da en el indice americano Dow Jones y la mayor, de
15,65, en el Nasdaq.

= Para ambos parametros se ha encontrado que la correlacion entre los indices
aumenta del periodo 2000-2006 al 2007-2013 excepto en el caso del IBEX, que
presenta una gran decorrelaciéon con el resto de ellos en el ltimo periodo.

» El analisis estadistico de estos dos descriptores resalta que es posible que la dis-
tribucion de los parametros de Hjorth entre diferentes indices sea similar (excepto
en el caso del indice S&P y Nikkei para la Actividad) en un nivel de confianza
del 95%. Ademas, la probabilidad de que esto sea asi es mayor en la Movilidad
al haberse obtenido p-valores mas altos.

El célculo de correlaciones para la senal original de los indices muestra que los indica-
dores IBEX y Nikkei se decorrelan de los americanos en el segundo periodo, mientras
que estos mantienen o incrementan su correlacion. El méaximo se alcanza entre el Dow
Jones y S&P, con un valor de 0,98 (muy proximo a 1).

Los célculos realizados en el capitulo 3 sobre el movimiento browniano se resumen
a continuacion:

= Los datos obtenidos de lo que se ha denominado exponente a se encuentran en
torno a 1,94, valor muy cercano al caracteristico de un ruido rojo o browniano
(v = 2). La mayor desviacion tipica es de 0,24 y se da en el selectivo espaniol y
la menor, de 0,13, se da en el indice S&P.
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5.2.

El indice Dow Jones es destacable ya que la media del exponente o a lo largo
del periodo es de 1,98 (por encima de la media total) y la desviacion tipica es de
0, 15, que esta por debajo de la media de las desviaciones tipicas.

La media total de los exponentes de Hurst es de 0,46. Se obtienen desviaciones
tipicas pequenas, de valor 0,04, en los indices Dow Jones, S&P y Nikkei. La mayo
desviacion tipica se da en el indice Nasdaq con un valor de 0, 09.

La correlacion para el exponente de Hurst entre los indices bursétiles extranjeros
aumenta de forma globalizada en el segundo periodo, siendo destacable la alta
correlacion entre los indices americanos. El indice espatiol no incrementa mucho
su correlacion excepto con el Nasdaq.

Los p-valores proporcionados por el contraste de hipotesis admite la posibilidad,
al 95% de confianza, de la similitud entre las distribuciones del exponente de
Hurst de todos los indices excepto la relacionada entre el indice Nasdaq y Nikkei.

La probabilidad de que esto sea asi es menor, en general, que la respectiva para
la Actividad y Movilidad.

Otras consideraciones de tipo cuantitativo

El IBEX se decorrela durante la crisis del resto de indices, tanto en el dominio
espectral (Movilidad) como en el temporal (senal original).

Los selectivos més rapidos (mayor frecuencia promedio) son los indicadores ame-
ricanos no tecnolégicos que, ademas, presentan las menores desviaciones.

En el ano 2008 (comienzo de la crisis), se registra el primer o segundo minimo
local del exponente de Hurst en todos los indices analizados. Para los selectivos
Dow Jones y S&P se da un minimo absoluto en este periodo. La caida de este
cuantificador en el indice Nasdaq es menor, al ser la influencia de la crisis financiera
menor en este indice. En los maximos no se encuentra tanta uniformidad, aunque
en tres de ellos (Dow Jones, Nikkei e Ibex) el valor superior se obtiene al final del
segmento estudiado (afios 2012 y 2013).

Los distintos indices presentan una gran uniformidad numérica, tanto en los patro-
nes espectrales como en los fractales. Esto es asi incluso en ausencia de correlacion
entre los registros, que normalmente no se da excepto en los indices Dow Jones y
S&P. Las mayores diferencias estadisticas apuntan a los valores americanos frente
al indice japonés, en particular al Nasdaq versus Nikkei y S&P versus Nikkei.

47



Los indicadores americanos no tecnolégicos muestran una gran estabilidad desde
el punto de vista numérico. Para tres de los pardametros analizados (Movilidad y
ambos exponentes), la menor variabilidad se da en estos selectivos. El IBEX, y
en algunos casos, el Nasdaq, presentan grandes variaciones.

El indice Nasdaq presenta una estructura cuasiperiédica en lo referente al para-
metro Movilidad en los anos 2006-2012.

Es destacable el hecho de que los p-valores menores se dan en el indice Nikkei,
sobretodo respecto a los indices americanos.

5.3. Conclusiones metodolégicas y generales

= La interpolacion lineal de los datos es la que mejor se ajusta a estos en términos
del error cuadratico medio, entre los procedimientos més convencionales.

= Una buena aproximacion para el calculo de la suma de Fourier de la senal consiste
en tomar ciclos hasta longitud semanal. Tomar ciclos mas cortos aumentaria nota-
blemente el tiempo de computacién y no mejoraria significativamente el resultado
de dicho calculo.

= Los correlogramas de los distintos indices, cuya tendencia a cero es muy lenta,
preludiaban un tipo de variable aleatoria muy distinta de un ruido blanco. Los
calculos realizados en el capitulo tercero confirmaron esta diferencia. Los regis-
tros bursatiles admiten una buena representacion mediante ruidos coloreados, en
concreto de ruido rojo o browniano, y un modelo de funcién browniana fraccio-
nal mediante el exponente de Hurst bastante estricto. Este hecho sugiere que el
exponente de Hurst es un buen predictor de cambios en el mercado.

= El exponente de Hurst es un parametro muy robusto para la cuantificacion de
las caracteristicas fractales de los registros bursatiles (al menos de los indicado-
res analizados en esta memoria), ya que se han obtenido en todos los casos unas
correlaciones proximas a uno en su computacion®. Asi mismo se observa que este
indice de algtin modo previo la crisis del 2008, presentando valores bajos que deno-
tan una mayor impredictibilidad y que, en algunos casos, son extremos absolutos
(Dow Jones y S&P).

5Estas correlaciones nada tienen que ver con las correspondientes a los distintos parametros, des-
critas previamente.
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» Los escalares exponente de Hurst (o la dimension fractal) y Movilidad resultan
idoneos para la descripcion numérica de este tipo de senales econdémicas. Ambos
parametros se complementan mutuamente. La Movilidad proporciona una fre-
cuencia promedio del indice y el exponente da una medida de la autosimilaridad
(fractalidad) del registro. Las variaciones de estos cuantificadores dan una idea
de la volatilidad de cada indicador.

Todos estos resultados prueban que los cuantificadore propuestos pueden ser ttiles
para la implementaciéon de nuevas técnicas econdémicas que puedan predecir grandes
movimientos del mercado, para definir estrategias de compra-venta de acciones o para
la valoraciéon de activos financieros.
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A. Algoritmos implementados en Mathematica

A.1. Cédigos para el calculo de los cuantificadores del capitulo
2

En este apartado, se mostraran los algoritmos para el indice S&P en el ano 2000.
Los comandos son similares para el resto de indices, cambiando el nombre del registro
(en este caso SP500) y el ano por los correspondientes.

Los tiempos de computacion corresponden a Mathematica version 9.0 para Mac
OSX con un procesador Intel Core i7 a 2,8 GHz.

A.1.1. Importaciéon de datos financieros y reestructuracion

A continuacion se muestra el algoritmo usado para la importacion de datos. Después,
se han estructurado de nuevo para separar los datos pares de los impares, asi unos
serviran para formar la curva de aproximacion y otros para obtener los errores de dicha
curva.

dataint2000 y datamed2000 son los vectores con los datos al cierre impares y pares
respectivamente.

El tiempo de computacion es de 1,03 s, aunque varia notablemente en cada caso
debido a la conexioén de internet necesaria para la orden FinancialDatal].

sp|1] = FinancialData|"SP500", "Close", {{2000, 1, 1},
{2000, 12, 31}}];

n2000 = Length[sp[1]];

close2000 = Table[sp[1][[i, j]], {i, n2000}, {j = 2}];
close2000 = Table|[close2000 [[i, j||, {i, n2000}, {j, 1}];
close2000 = Table[close2000[[i, 1]], {i, 1, n2000}];

data2000 = Table[{i, close2000[[i]]}, {i, 1, n2000}];

dataint2000 = Table|[data2000[[2x1 — 1]], {i, 1, n2000/2}]|;
datamed2000 = Table|data2000([[2«1i]], {i, 1, n2000/2}];
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A.1.2. Interpolaciéon lineal y por splines cibicos

La primera orden, utilizando la funcién Interpolation[], obtiene la interpolacién
lineal de los datos. A continuacién se preparan los datos pares e impares para hallar la
raiz cuadratica del error (errrorlin2000) y el error relativo (errrel2000). El tiempo
de computacion para la interpolacion lineal es de 0,59 s.

linear2000 = Interpolation |[dataint2000 ,
InterpolationOrder —> 1|

d12000 = datamed2000 [[All, 2]];
1in2000 = Table|linear2000[2xi], {i, 1, (n2000/2)}];

errorlin2000 = Sqrt[Mean|(dl2000 — 1in2000)"~2]] // N
errrel2000 = %Max|data2000] // N

Para el calculo de los splines se carga primero el paquete mediante la orden Needs [*“‘Splines‘’’].
SplineFit devuelve la interpolacién mediante splines de los datos. Después de acomo-
dar los datos en vectores, las dos tultimas 6rdenes calculan la raiz cuadratica del error
y el error relativo. El procesado de este algoritmo toma un tiempo de 0,57 s.

Needs|" Splines ‘" |
spn2000 = SplineFit[dataint2000, Cubic]

spna2000 = Table|[spn2000[i + 0.5], {i, 0, (n2000/2) — 2}|;
spnmed2000 = spna2000 [[ All, 2]];
dc2000 = Drop|[dl12000, —1];

Sqrt [Mean|(dc2000 — spnmed2000)~2]|] // N
N[ %/Max | data2000]|, 10]

A.1.3. Calculo de los coeficientes de Fourier en ciclos anuales, mensuales y
semanales

L2000 es el célculo de las poligonales de interpolacion de los datos a los que se
les ha sustraido la tendencia r2000. w2000 es la frecuencia fundamental de la serie de
Fourier. A continuacion se calculan los coeficientes en distintos ciclos. Se reconstruye la
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suma de Fourier en fpo12000[t_] para ciclos anuales, £2p012000[t_] para mensuales
y £3p012000[t_] en ciclos semanales.

Como se usan los ciclos semanales, se ha sumado la tendencia r2000 a £3p012000 [t_],
que sera la que se use posteriormente para el calculo de los parametros de Hjorth.

En el célculo de los coeficientes de Fourier se ha utilizado el comando NIntegrate[]
para realizar la integracion numérica a fin de reducir el coste computacional. Este calculo
es el que més tiempo requiere, necesitando 146,92 s para cada ano. Si bien es cierto que
se estan calculando los coeficientes de Fourier para tres ciclos distintos es el ultimo, que
ocupa la mayor parte del tiempo.

NN2000 = Length|[close2000] — 1
T =1
h2000 = T/NN2000

datost2000 = Table[{h2000x(j — 1), y2000[[j]]},

(i, 1, NN2000 + 1}];

r2000 [t ]| = Fit|[datost2000, {1, t}, t]

x2000 = Table| datost2000[[i]][[2]] —

r2000 [datost2000 [[i|][[1]]], {i, 1, Length|[datost2000]}];
datos2000 = Table[{h2000(j — 1), x2000[[j]]},

(i, 1, NN2000 + 1}];

w2000 = 2%Pi/T

L2000[i , t ] = x2000[[i]] + ((x2000[[i + 1]] — x2000[[i]])/
h2000)(t — (i — 1)xh2000);

(¥ Calculo de los coeficientes de la serie de Fourier para m=T.
Ciclos anualesx)

c0pol2000 = (1/T)% Sum|NIntegrate[L2000[i, t],

{t, h2000x(i — 1), h2000«i}], {i, 1, NN2000}] // N

parada2000 = T;
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cmpol2000 = (2/T)x Table[Sum| NIntegrate| L2000[i, t]x
Cos [mxw2000xh2000«(i — 1)], {t, h2000x(i — 1), h2000xi }],
{i, 1, NN2000}], {m, 1, parada2000}| // N

dmpol2000 = (2/T)* Table|[Sum| NIntegrate| L2000[i, t]=
Sin [m+w2000xh2000%(i — 1)], {t, h2000%(i — 1), h2000%i}],
{i, 1, NN2000}|, {m, 1, parada2000}] // N

fpol2000 [t | := c0pol2000 + Sum|[cmpol2000 [[m]]=*

Cos [m*w2000%t | +dmpol2000 [[m]] Sin [m+xw2000xt |,
{m, 1, parada2000 }|

(¥ Calculo de los coeficientes de la serie de Fourier para m=12T.
Ciclos mensualesx)

c02pol2000 = cO0pol2000

paradam2000 = 12xT

cm2pol2000 = (2/T)x Table[Sum| NIntegrate| L2000[i, t]x
Cos [mxw20005h2000% (i — 1)], {t, h2000%(i — 1), h2000%i}],
{i, 1, NN2000}], {m, 1, paradam2000}| // N;

dm2pol2000 = (2/T)% Table[Sum| NIntegrate| L2000[i, t]x
Sin [m#w2000%h2000%(i — 1)], {t, h2000%(i — 1), h2000%i}],
{i, 1, NN2000}], {m, 1, paradam2000}| // N;

f2pol2000[t_] := c02pol2000 + Sum|cm2pol2000 [ [m]]x*

Cos [mxw2000xt | + dm2pol2000 [[m]] Sin [mxw2000xt |,

{m, 1, paradam2000 }|

(xCéalculo de los coeficientes de la serie de Fourier para m=>52T.
Ciclos semanalesx)

c03pol2000 = c02pol2000

paradas2000 = 52xT;

56



cm3pol2000 = (2/T)x Table[Sum| NIntegrate| L2000[i, t]=
Cos [mxw2000xh2000«(i — 1)], {t, h2000x(i — 1), h2000xi }],
{i, 1, NN2000}|, {m, 1, paradas2000}| // N;

dm3pol2000 = (2/T)x Table|[Sum| NIntegrate| L2000[i, t]=
Sin [m+w2000xh2000%(i — 1)|, {t, h2000%(i — 1), h2000%i}],
{i, 1, NN2000}|, {m, 1, paradas2000}]| // N;

f3pol2000[t_| := c03pol2000 + Sum|cm3pol2000 | [m]]=*
Cos [m*w2000%t | +dm3pol2000 [[m]] Sin [m+xw2000xt |,
{m, 1, paradas2000 }|

£3polt2000 [t | = r2000[t] + f3pol2000[t];

A.1.4. Calculo de los parametros de Hjorth

Los coeficientes de Fourier se han normalizado dividiéndolos por el méximo del
registro en ese ano x2000. A continuacién se han obtenido los parametros de Actividad
y Movilidad en Apo12000 y Mpol2000 respectivamente. El tiempo de computacion es
de 0,45 s

xmax2000 = Max[x2000 |

c03poln2000 = ¢03pol2000 /xmax2000;
cm3poln2000 cm3pol2000 /xmax2000 ;
dm3poln2000 = dm3pol2000/xmax2000 ;

Apol2000 = c03poln2000°2 + (1/2)x(Sum]|
(cm3poln2000[[i]])~2 + (dm3poln2000[[i]])"~2,
{i, 1, paradas2000}])

Mpol2000 = (w2000/Sqrt [2])* Sqrt [(Sum]|

i°2((cm3poln2000([i]])~2 + (dm3poln2000([[i]])"~2),
{i, 1, paradas2000}])/Apol2000 |
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A.2. C(Cédigos para el calculo de los cuantificadores del capitulo
3

A.2.1. Test de movimiento browniano o ruido rojo

powerspec2000 es el espectro de potencias, formado con powers2000 a partir de los
coeficientes de Fourier y la frecuencia fundamental con sus armoénicos de frecs2000.
s2000 [\ [Omega] _] es el ajuste del espectro de potencias a una curva de tipo y =
a + bw™2. La pendiente de 10gs2000 [\ [Omega] _] devuelve el exponente o del test de
movimiento browniano. Las tltimas lineas calculan la correlaciéon entre el logaritmo de

las frecuencias y de las potencias. El tiempo total de computacion para este algoritmo
es de 0,73 s.

powers2000 = Table | cm3pol2000 [[i]]"2 + dm3pol2000([[i]]~2,
{i, 1, paradas2000 }]|;
frecs2000 = Table|i*w2000, {i, 1, paradas2000 }]|;

powerspec2000 = Table [{ frecs2000 [[i]], powers2000([[i]]},
{i, 1, paradas2000 }];

s2000 [\ [Omega]| | Fit [powers2000, {1, 1/\[Omegal~2}, \[Omegal|

logpowersfrecs2000 = Table[{Log[2 Pi/ T x i],

Log|cm3pol2000[[i]]~2 + dm3pol2000[[i]]~2]},
{i, 1, paradas2000 }];

logs2000 [\ [Omega] | = Fit[logpowersfrecs2000 ,
{1, \[Omega]}, \[Omega]]

logfrecs2000 = Log|[frecs2000 |;
logpowers2000 = Log|[powers2000 |;

Correlation [logpowers2000, logfrecs2000 |
A.2.2. Calculo del exponente de Hurst y la dimensién fractal

Se calculan las varianzas de las variables asociadas al paso en varvhl, varvh2,
etc. lista organiza un vector con los logaritmos de los pasos y los logaritmos de las
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varianzas. La pendiente de la recta de ajuste dividida por 2 devuelve el exponente de
Hurst expHurst. dimfrac es la dimension fractal. 4,80 s es el tiempo de computaciéon
para el siguiente codigo.

d = 1;

hl = d; h2 = 2xd; h3 = 3xd; h4d = 4xd; hb = 5xd;
h6 = 6xd; h7 = 7xd; h8 = 8xd; h9 = 9xd;

h10 = 10xd;

(*VARIABLE ASOCIADA AL PASO hlx)

vhl = Table[sp[1]|[[i1 + hl||] — sp[L][[i]], {i, 1, nsp[l] — hl}];
medvhl = Mean|vhl |
varvhl = Variance|vhl|

(*VARIABLE ASOCIADA AL PASO h2x)

vh2 = Table[sp[1]|[[i1 + h2|] — sp[L][[i]], {i, 1, nsp[l] — h2}];
medvh2 = Mean|vh2 |
varvh2 = Variance|vh2|

(*VARIABLE ASOCIADA AL PASO h3x)

vh3 = Table[sp[1]|[[i1 + h3||] — sp[L][[i]], {i, 1, nsp[l] — h3}];
medvh3 = Mean|vh3|
varvh3 = Variance |vh3]|

(*VARIABLE ASOCIADA AL PASO h4x)

vh4 = Table|sp[1][[1 + h4]] — sp[1][[i]], {i, 1, nsp[l] — hd}];
medvh4 = Mean|vh4 |
varvh4d = Variance|vh4]

(*VARIABLE ASOCIADA AL PASO h5x)

vhs = Table[sp [1]|[[i + h5]] — sp[1][[i]], {i, 1, nsp[1l] — h5}];
medvh5 = Mean|vh5 |
varvhb = Variance [vh5 |

(*VARIABLE ASOCIADA AL PASO h6+)
vh6é = Table[sp[1]|[[i1 + h6]|] — sp[L1]|[[i]], {i, 1, nsp[l] — h6}];
medvh6 = Mean | vh6 |
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varvh6 = Variance [vh6]

(*VARIABLE ASOCIADA AL PASO h7x)

vh7 = Table[sp[1][[i + h7]] — sp[1][[i]], {i, 1, nsp[l] — h7}];
medvh7 = Mean|vh7|
varvh7 = Variance [vhT]

(*VARIABLE ASOCIADA AL PASO h8x)

vh8 = Table[sp[1][[i + h8]] — sp[1][[i]], {i, 1, nsp[1l] — h8}];
medvh8 = Mean|vh8 |
varvh8 = Variance [vh8]

(*VARIABLE ASOCIADA AL PASO h9x)

vh9 = Table[sp[1][[i + h9]] — sp[1][[i]], {i, 1, nsp[1l] — h9}];
medvh9 = Mean|vh9 |
varvh9 = Variance|[vh9]

(*VARIABLE ASOCIADA AL PASO h10:x)

vh10 = Table[sp[1]|[[i1 + h10]] — sp[1][[i]],
{i, 1, nsp[1] — h10}];

medvh10 = Mean|vh10 |

varvhl0 = Variance|[vh10]

lista = {{Log|hl], Log|[varvhl]|}, {Log|h2], Log|[varvh2]|},
{Log|h3], Log|[varvh3]|}, {Log|h4], Log|varvh4]|},
{Log|h5], Log|varvh5|}, {Log|[h6], Log|[varvhé6]|},
{Log|h7], Log|varvh7|}, {Log|[h8], Log|varvh8]|},
{Log|[h9]|, Log|varvh9|}, {Log[hl0], Log|varvhl0]}}

model = LinearModelFit[lista , x, x|

f[x | = model|" BestFit"|
pendiente = Expand|[(f[x]| — f[0])/x]

expHurst = pendiente /2
dimfrac = 2 — expHurst
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