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Resumen

La reciente crisis bursátil que sufre y ha sufrido España desde el 2007-2008 ha
impulsado la creación de nuevos métodos, tanto en el ámbito económico como en
el matemático, que puedan predecir grandes cambios en la economía de un país o
región.

El objetivo de este trabajo ha sido la obtención de cuantificadores que permitan
prever estos cambios a partir de índices bursátiles que sean representativos del
mercado.

En concreto, se han usado técnicas del análisis de Fourier, la interpolación y la
teoría fractal para obtener las curvas de aproximación de los índices estudiados.
Después, se han cuantificado dichos registros usando los parámetros de Hjorth y
se ha comprobado si existe alguna relación entre estos y la crisis.

Por último, se ha intentado inferir una posible estructura fractal de los registros
bursátiles, en concreto si admiten una representación por ruidos coloreados o
mediante el exponente de Hurst. Se ha encontrado que este último es un parámetro
muy robusto que previó la actual crisis y que, por lo tanto, podría ser usado en
un futuro como predictor económico.
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1. Introducción

1.1. Índices internacionales
Un índice bursátil es una ponderación matemática de determinados valores que

cotizan en el mismo mercado bursátil. Desde la creación del primero en 1884, los índi-
ces bursátiles han servido como medida de la actividad económica y financiera de un
determinado sector económico o de un país.

Los precursores del establecimiento de los índices bursátiles fueron Charles Henry
Dow (1851-1902) y Edward David Jones (1856-1920) quienes, en 1884, crearon la pri-
mera media de valores bursátiles dentro del diario económico The Wall Street Journal
con el propósito de medir la salud económica de los Estados Unidos de América. Pos-
teriormente, en 1887, se crea el Dow Jones Industrial Average (DJIA), compuesto por
empresas industriales, y el Dow Jones Railroad Average, formado por compañías de fe-
rrocarriles y que después pasaría a llamarse Dow Jones Transportation Average (DJTA),
agrupando valores del sector transportes ([32]).

En el presente trabajo se han analizado cinco índices bursátiles, de los cuales tres
de ellos son estadounidenses (Dow Jones Industrial Average, Standard & Poor’s 500 y
Nasdaq 100), uno japonés (Nikkei 225) y uno español (IBEX 35). Esta elección permite
corroborar una relación numérica entre diferentes países y economías. Por ello, se han
escogido valores de un mismo país, esperando una alta correlación entre ellos, además
de los índices más representativos de los mercados español y japonés a fin de ver las
diferencias que puedan presentar respecto de los primeros.

Dow Jones Industrial Average Dentro de la denominación Dow Jones, existen
130.000 índices bursátiles, sin embargo, se suele denominar índice Dow Jones al más
importante de ellos, el Dow Jones Industrial Average (DJIA).

Aunque originalmente todos los valores que agrupaba este índice eran del sector in-
dustrial, en la actualidad está formado por 30 de las empresas más grandes de América,
sin importar el sector al que pertenecen ([1]).

Inicialmente su cálculo se realizaba mediante un promedio simple y posteriormente
se sustituyó por el ponderado, pasando cada compañía a tener un valor dentro del índice
relativo a su cotización. Así, los valores de las empresas con mayor importancia tienen
desde entonces más peso dentro del índice bursátil. Actualmente, las compañías con
mayor peso dentro del índice son Visa, IBM y Goldman Sachs con más de un 21 % de
la ponderación del índice ([14]).
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Standard & Poor’s 500 También conocido como S&P 500, es un índice basado en la
capitalización bursátil de 500 grandes empresas del NYSE (New York Stock Exchange) y
NASDAQ (National Association of Securities Dealers Automated Quotation). El índice
S&P 500 es mantenido por “S&P Dow Jones Indices”, quien también regula las empresas
que cotizan en este índice así como su ponderación.

Aunque originalmente se determinaba la ponderación de cada empresa en base a su
capitalización bursátil (capitalization-weighted), desde 2005 se realizó la transición a un
sistema de ponderación en base al capital flotante (float-weighted), es decir, se pondera
según el precio únicamente de las acciones que son susceptibles de ser negociadas en
bolsa obviando las pertenecientes al propio grupo controlante, gobierno, inversores a
largos plazo, etc ([30]). En el método de ponderación y en sus componentes es donde
difiere de otros grandes índices norteamericanos como el Dow Jones Industrial Average
o el índice Nasdaq.

Es considerado el índice bursátil más representativo de la situación del mercado
estadounidense ([27]), de hecho se considera representativo de, aproximadamente, el
70 % del mismo.

Nasdaq 100 El Nasdaq 100 recoge los 101 valores de las 100 compañías no financieras
más importantes del NASDAQ1, es decir, contiene también empresas internacionales. Se
diferencia del DJIA y S&P 500 en no contener compañías financieras, y en especial del
DJIA al tener valores tanto de empresas estadounidenses como de cualquier otra parte
del mundo. En este índice la burbuja dot-com2 del período 1997-2001 fue mucho más
acusada que en otros registros bursátiles al contener principalmente activos de empresas
tecnológicas y por ello la crisis financiera de 2008 se notó menos en este índice.

La ponderación de este índice está basada en la capitalización bursátil de cada
empresa que lo forma además de ciertas reglas añadidas para evitar que pocas compañias
acaparen la mayor parte de este registro.

Nikkei 225 Usualmente denominado índice Nikkei es el más usado dentro del mercado
japonés y está compuesto por los 225 valores más líquidos de la Bolsa de Tokio. Es
similar al Dow Jones Industrial Average aunque refleja la totalidad del mercado, sin
centrarse en ningún sector. Una de las características propias del índice Nikkei 225 es
que sus valores se ponderan por precios y no por capitalización.

1
Esta aparente contradicción se debe a que, desde abril de 2014, Google dividió sus activos en los

llamados de clase A y de clase C, por lo que el Nasdaq tiene, desde entonces, 101 valores listados.

2
Este término se refiere a un período de crecimiento que tuvo lugar entre 1997 y 2001 en el que las

empresas vinculadas a Internet tuvieron su mayor auge.
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IBEX 35 Creado en 1992, está formado por las 35 empresas con más liquidez que
cotizan en las cuatro Bolsas españolas (Madrid, Barcelona, Bilbao y Valencia). La pon-
deración del IBEX 35 es por capitalización bursátil de las empresas que lo forman,
siendo actualmente las que tienen mayor peso el Banco Santander, Telefónica, BBVA e
Inditex, que suman más del 50 % del índice.

Evolución de los índices en el período 2000-2013 En las figuras que aparecen
a continuación se muestra la cotización de cada uno de los índices bursátiles analizados
desde el 1 de enero del 2000 hasta el 31 de diciembre del 2013:

2000 2005 2010
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Figura 1. Evolución de la cotización del Dow Jones Industrial Average desde el año 2000 al
2013.
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Figura 2. Evolución de la cotización del S&P 500 desde el año 2000 al 2013.
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Figura 3. Evolución de la cotización del Nasdaq 100 desde el año 2000 al 2013.
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Figura 4. Evolución de la cotización del Nikkei 225 desde el año 2000 al 2013.
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Figura 5. Evolución de la cotización del IBEX 35 desde el año 2000 al 2013.

Se ha observado que casi todos los índices, y especialmente el Nasdaq 100 y el
Nikkei 225, parten en el año 2000 (comienzo del estudio) de valores altos. Esto se
debe a la llamada burbuja dot-com. El estallido de esta burbuja está marcado por
el gran descenso del Nasdaq 100, ya que es el índice con mayor cantidad de empresas
tecnológicas, dentro de las cuales se engloban las empresas dot-com, y marcó el comienzo
de una lenta recesión en las naciones occidentales.
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El crecimiento generalizado de los cinco índices a partir de 2003 es el efecto del
boom inmobiliario (más acusado en España) y, sobre todo, el efecto de las hipotecas
subprime3que aumentó las cotizaciones en los principales índices hasta detonar la crisis
financiera de 2008. La posterior caída es menos apreciable en el índice Nasdaq porque
no contiene activos financieros. Se puede observar como en los años siguientes los índices
norteamericanos comenzaron de nuevo su crecimiento, sin embargo, España sufrió en
2010 la llamada crisis del Euro debida en su mayor parte al aumento de la deuda
soberana, lo que hizo crear una desconfianza entre los inversores a la vez que las agencias
de rating rebajaban la calificación de los bonos de la eurozona.

Por su parte, Japón entró en recesión económica después de la crisis financiera
de 2008. Actualmente, cambios en las políticas financieras del gobierno japonés han
provocado un repunte en la cotización del índice Nikkei y por ende de toda la economía
japonesa.

1.2. Breve historia de la matemática financiera
El devenir de la matemática aplicada a la economía ha estado desde el principio

vinculado al concepto de movimiento browniano.
El movimiento browniano fue descrito por primera vez en 1827 por el biólogo y botá-

nico escocés Robert Brown, del que recibe su nombre. Este naturalista había observado
en el microscopio el movimiento de las motas de polen de la planta Clarkia pulchella
suspendidas en agua, viendo que se trataba de un movimiento aleatorio continuo pero
con constantes cambios de dirección. En la actualidad el término movimiento browniano
hace referencia al modelo matemático usado para describir movimientos aleatorios de
este tipo ([23]).

El 29 de marzo de 1900, fecha en la cual el francés Louis Bachelier (1870-1946)
presenta su tesis Teoría de la Especulación, es considerado el origen de la matemática
financiera. En su memoria, el autor discute el uso del movimiento browniano para
evaluar los precios de las opciones financieras, por ello es considerado el pionero en el
campo de las matemáticas aplicadas a las finanzas.

El movimiento browniano, también denominado proceso de Wiener, fue descrito
matemáticamente casi simultáneamente por Albert Einstein y Marian Smoluchowski
en 1905 y 1906 respectivamente. El desarrollo teórico que proporcionó Einstein serviría
para la posterior verificación experimental de la existencia de átomos y moléculas por
Jean Perrin en 1908.

3
Se conoce por créditos subprime ([2]) a aquellos créditos, principalmente en el mercado financiero

estadounidense, con un riesgo de impago muy superior a la media. En general, la mayor parte de estos

créditos son de tipo hipotecario.
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En 1975, el matemático Benoît Mandelbrot propuso el término “fractal” para obje-
tos geométricos cuya estructura se repite a diferentes escalas. Una de las aplicaciones
de la geometría fractal es la de proporcionar la primera y sistemática aproximación
cuantitativa del estudio de la complejidad (tanto espacial como temporal) en el ámbito
de las matemáticas y en el del mundo real. Los fractales han sido usados en el estu-
dio de fenómenos físicos como la turbulencia, rugosidad de materiales, distribución de
galaxias, y un largo etc.

Su libro The Fractal Geometry of Nature ([11]) es considerado un manifiesto en
favor del estudio científico de la irregularidad a través de los fractales, utilizando con-
ceptos matemáticos como la dimensión fractal, el exponente de Hurst o el movimiento
browniano fraccional.

Así, B. Mandelbrot fue el primero en estudiar la estructura de los registros financie-
ros desde este punto de vista, superando el modelo de movimiento browniano propuesto
por Louis Bachelier. Algunas de sus contribuciones pueden encontrarse en su libro Frac-
tals and Scaling in Finance: Discontinuity, Concentration, Risk ([12]). En este texto,
Mandelbrot asevera que los cambios en los precios gozan de una interdependencia que
se extiende en períodos asintóticos de tiempo y no son simplemente un “ruido de base”.

Posteriormente se han publicado otros trabajos sobre el tema como el realizado por
los físicos R. N. Mantegna y H. E. Stanley ([31]).

1.3. Objetivos del proyecto
El objetivo de este trabajo es el estudio numérico en el período 2000-2013 de los

índices internacionales anteriormente descritos: Dow Jones Industrial Average, S&P
500, Nasdaq 100, Nikkei 225 e IBEX 35 (en lo sucesivo, se denominarán Dow Jones,
S&P, Nasdaq, Nikkei e IBEX respectivamente). Para ello, se hace énfasis en los patro-
nes numéricos que presentan, desde un punto de vista espectral y fractal, y se omite
deliberadamente cualquier tipo de argumento económico y casual.

Tradicionalmente, la descripción de una variable experimental en el dominio de la
frecuencia se ha realizado mediante el algoritmo de la transformada rápida de Fourier
(FFT). Sin embargo, el desarrollo de herramientras computacionales avanzadas permite
ahora también el uso de procedimientos de carácter analítico. Los nuevos softwares
de cálculo como Mathematica, Maple, Maxima, Matlab, etc. proporcionan capacidades
algebraicas y gráficas que exceden los resultados meramente numéricos de los algoritmos
antiguos. En el presente proyecto se han realizado los cálculos utilizando el manipulador
simbólico Mathematica 9.

En este trabajo se pretende obtener curvas de aproximación para los distintos regis-
tros mediante procedimientos propios del análisis de Fourier, la interpolación y la teoría

7



fractal. Las frecuencias y amplitudes calculadas describirán el contenido espectral de
los distintos índices.

Además, se va a implementar una cuantificación de los registros bursátiles mediante
parámetros de Hjorth, o descriptores normalizados de pendiente, que describen la señal
en el dominio del tiempo y/o de la frecuencia para cada uno de los índices a partir de
sus curvas de aproximación. Se pretende estudiar si alguno de estos descriptores, puede
ser indicador de crisis económica y, en general, de fuertes variaciones en los precios de
cierre. Con estos cuantificadores, se va a analizar una posible relación entre las señales
de distintos índices para encontrar correlaciones en los períodos pre-crisis y crisis.

Se desea indagar también acerca del tipo de aleatoriedad en el movimiento de los
índices a través de dos tests distintos. Con el test de movimiento browniano sencillo
se determinará si dichos índices admiten una representación por ruidos coloreados.
Mediante el exponente de Hurst, se va a calcular la dimensión fractal por año para
cada uno de los índices, que da una medida de si los datos siguen un camino aleatorio
puro (dimensión igual a 2) o tienen tendencias subyacentes fuertes (dimensión próxima a
1). Así mismo, la idoneidad de este parámetro indicará si las series temporales descritas
admiten un modelo de movimiento browniano fraccional ([13]).

La crisis financiera del período 2008-2014 ha afectado con crudeza a los países del
sur de Europa y, particularmente, a España. El planteamiento del estudio a largo plazo
es el de indagar si de algún modo esta crisis podría haberse previsto, mediante métodos
analíticos y numéricos. En particular sería importante conocer si el IBEX posee alguna
característica diferenciadora respecto a otros índices internacionales, y si existe algún
parámetro cuantificador que anticipe los períodos críticos. Para ello, el primer objetivo
del proyecto es el de complementar y mejorar los osciladores empleados actualmente
mediante procedimientos de tipo interpolatorio y de aproximación, pero también es de
nuestro interés la comparación de la evolución del IBEX con respecto a otros índices
internacionales como el Dow Jones, Nikkei, etc. De este modo, aparte del desarrollo y de
la computación de procedimientos cuantificadores, el objetivo es analizar la evolución
temporal de la complejidad de distintos indicadores transnacionales antes y durante la
crisis actual.
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2. Análisis espectral

2.1. Curvas de aproximación
2.1.1. Pruebas de interpolación

Para obtener los coeficientes de Fourier necesarios en el posterior cálculo de los
parámetros numéricos se ha partido de una curva aproximada a la señal original, es
decir, a los pares de datos discretos (ti, xi) donde xi es la cotización al cierre del día ti
de cada índice. Las curvas de aproximación y los descriptores han sido calculados por
años para tener una serie suficiente de muestras para poder realizar análisis estadísticos
y de correlación adecuados.

El objetivo ha sido buscar el aproximante que mejor se ajuste al registro. La inter-
polación polinómica se descartó porque producía errores muy grandes. Los otros dos
procedimientos han sido lineal y spline. Por ello, se han ensayado estos dos tipos de
interpolantes para cada uno de los años. Se ha obtenido la interpolación para los datos
impares y se ha cotejado con los datos pares con objeto de hallar el error relativo de la
aproximación.

A continuación se expone un breve resumen de ambos tipos de interpolantes.
Se considera una partición del intervalo I = [a, b] ⇢ R tal que:

� : a = t0 < t1 < . . . < tN = b. (1)

Al realizar la interpolación lineal sobre una serie de puntos {(ti, xi)}Ni=0, en el presente
trabajo {(dı́a, cotización al cierre)}, se obtiene una curva continua de clase C0 definida
en el subintervalo [ti�1, ti] según la ecuación:

li(x) = xi +
xi � xi�1

ti � ti�1
(t� ti). (2)

Como es una función definida a trozos, puede expresarse mediante la función caracte-
rística:

'�(t) =
NX

i=1

li(t)�(ti�1,ti](t), �(ti�1,ti](t) =

(
1 si x 2 (ti�1, ti]

0 si x /2 (ti�1, ti]
(3)

La interpolación por splines cúbicos se define a continuación. Dado un intervalo
[a, b] ⇢ R, se considera de nuevo la partición (1) del mismo.

Se define un spline cúbico ([3]) S� en I como una funcion real S� : [a, b] ! R tal
que :

9



a) S� 2 C2
[a, b], es decir, admite segunda derivada continua.

b) En cada subintervalo [ti�1, ti], S� es un polinomio de grado tres y verifica:

S� (ti) = xi, i = 0, 1, . . . , N.

Para obtener la inexactitud en ambos casos se calcula la raiz cuadrática del error
sobre los datos no considerados en la interpolación, definido como:

E =

sPM
j=1

�
f(tj)� xj

�2

M
, (4)

donde f(tj) es el valor del interpolante usado en el punto tj y M es el número total
de muestras no consideradas, es decir, la mitad de los datos anuales. En algunos casos
el número de datos anuales era impar, es decir, no había la misma cantidad de datos
pares, usados para la interpolación, y de datos impares, necesarios para el cálculo del
error. En estos casos, se ha extrapolado un último valor del menor de ellos.

De aquí se obtiene el error relativo en tanto por uno como:

Erel =
E

máx (xi)
, (5)

siendo máx(xi) la mayor cotización de la muestra anual escogida.
Así, en la Tabla 1 se han recogido los errores que arroja cada tipo de interpolación

usando el código expuesto en el anexo A.1.2 para los primeros 8 años del índice S&P.

Año 2000 2001 2002 2003 2004 2005 2006 2007
Lineal 0,91 % 0,81 % 0,92 % 0,64 % 0,46 % 0,45 % 0,40 % 0,73 %
Spline 0,93 % 0,84 % 0,98 % 0,70 % 0,47 % 0,47 % 0,42 % 0,80 %

Tabla 1. Errores relativos del interpolante lineal y el spline cúbico para el índice S&P en los
años 2000-2007 en términos de porcentaje

Es apreciable que los errores en el interpolante lineal son sensiblemente inferiores a
los obtenidos con el spline cúbico. Dado que los resultados son similares en el resto de
índices y años, la función de aproximación que se ha usado para los sucesivos cálculos
es la obtenida mediante el interpolante lineal.

En la Figura 6 se muestran los interpolantes lineal y por splines cúbicos para el
índice S&P en el año 2000.
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Figura 6. Interpolación lineal y por splines cúbicos para el índice S&P 500 en el año 2000,
junto a los puntos no considerados como nodos
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Figura 7. Aumento de la Figura 6 en 30 días de cotización

2.1.2. Cálculo numérico de los coeficientes de una suma aproximada de
Fourier

Dada una función f(t) periódica en el intervalo [0, T ], se considera la serie

S(t) = c0 +
1X

m=1

(cm cos (m!0t) + dm sin (m!0t)) , donde !0 =
2⇡

T
. (6)

Una serie como la representada en (6) se llama serie trigonométrica de Fourier ([8])
de f . El valor !0 se denomina frecuencia fundamental.
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Los coeficientes c0, cm, dm se definen como:

c0 =
1

T

ˆ T

0

f(t) dt (7)

cm =

2

T

ˆ T

0

f(t) cos(m!0t) dt, m = 1, 2, . . . (8)

dm =

2

T

ˆ T

0

f(t) sin(m!0t) dt, m = 1, 2, . . . (9)

Como no se dispone de la función original f(t), es posible calcular los coeficientes c0,
cm, dm de varias formas. Una de las maneras es aplicar en las integrales una regla para
calcularla de forma aproximada, como la regla del trapecio compuesto, o bien sustituir
f(t) por algún interpolante. De aquí en adelante se utiliza el interpolante lineal como
aproximación de la función f(t) donde, naturalmente, se consideran todos los valores
de cada registro como nodos de interpolación.

Dado que los registros que se analizan son anuales, se ha escogido T = 1, es decir,
se ha trabajado por años. Así mismo se consideró un número finito de sumandos M . La
forma de elegir M está basada en el hecho de que la suma obtenida se ajuste al registro
de forma casi interpolatoria, fijada una tolerancia " para la distancia a los datos. En
nuestro caso se obtuvo un número cercano a 50 como valor óptimo.

Como los métodos de Fourier son más adecuados para variables de tipo estaciona-
rio, se sustrajo previamente a la señal original los valores sobre la recta de regresión
del registro. Así, la curva de aproximación consta de una parte lineal y otra de tipo
periódico, sobre la que se ha realizado el cálculo de los coeficienes de Fourier.

Utilizando la función interpolante lineal de la señal transformada
�
li(t)

�
se tiene que

los coeficientes son

co =
NX

i=1

ˆ ti

ti�1

li(t) dt, (10)

cm = 2

NX

i=1

ˆ ti

ti�1

li(t) cos(m!ot) dt, (11)

dm = 2

NX

i=1

ˆ ti

ti�1

li(t) sin(m!ot) dt, (12)

con los que se reconstruye la suma de Fourier:

¯S(t) = co +
MX

m=1

�
cm cos(m!0t) + dm sin(m!0t)

�
. (13)
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Con todo esto, si M = T sólo se recogen ciclos anuales, con M = 12T se consideran
también los ciclos de longitud mensual y si M = 52T se recogen hasta los ciclos de
longitud semanal. Normalmente, para registros de un año esta última aproximación
semanal es bastante buena. Si se utilizara una constante M muy grande aumentaría
mucho el coste computacional y los cálculos podrían ser inviables con un ordenador
convencional.

En la Figura 8 se muestra la suma de Fourier para M = T , M = 12T y M = 52T con
T = 1 junto a los datos de la señal modificada realizada con el código de Mathematica
del anexo A.1.3.
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(a) Ciclos anuales con M = T
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(b) Ciclos mensuales con M = 12T
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(c) Ciclos semanales con M = 52T

Figura 8. Sumas de Fourier para el año 2000 del índice S&P habiendo restado la recta de
tendencia

Tomando M = 52T y sumando la recta de tendencia r(t) que se había sustraído
para calcular los coeficientes de Fourier tenemos, por ejemplo, la curva mostrada en la
Figura 9.
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Figura 9. Curva de aproximación para el año 2003 del índice S&P

De este modo se obtiene un conjunto de armónicos (cm, dm) correspondientes a un
conjunto de frecuencias m · !0 (m = 0, 1, . . . ,M) .

A partir de estas magnitudes se han calculado los parámetros de Hjorth: Actividad
y Movilidad.

A continuación se presentan algunos resultados ([28]) que aseguran la convergencia
de la serie de Fourier a la señal original, es decir,

SM(t) �!
M!1

f(t)

con hipótesis básicas sobre f .

Si f es continua en el intervalo I y su serie de Fourier converge uniformemente,
la serie converge puntualmente a f .

Si f es continua y la serie numérica

+1X

m=1

(|cm|+ |dm|)

es convergente, la serie converge a f uniformemente.

Se define el módulo de continuidad ! (�) de la función f como:

! (�) = sup {|f(t)� f(t0)| : |t� t0|  �, t, t0 2 I}

Una función f es Hölder continua con exponente ↵, tal que 0 < ↵  1, si se verifica
que existe L > 0 tal que:

|f(t)� f(t0)|  L |t� t0|↵
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para cualquier t, t0 2 I.
Una consecuencia de esta definición es que si f es Hölder continua:

! (�)  L �↵.

Un resultado relevante para este trabajo es el siguiente ([5])

Teorema de Dini-Lipschitz

Si f es continua en I y su módulo de continuidad verifica que

! (�) |log (�)| ! 0 (14)

cuando � ! 0, la serie de Fourier de f converge uniformemente a f .
En particular, una función Hölder continua satisface la expresión (14) porque

|! (�) log (�)|  L �↵ |log �| ! 0

para � ! 0 (! es una función positiva). Por tanto, si f tiene esta propiedad, su serie
de Fourier es convergente a f .

Otro resultado importante nos da la velocidad de convergencia a cero de los coefi-
cientes de Fourier en funciones continuas ([28]):

|cm|  !

 
⇡

m

!
(15)

|dm|  !

 
⇡

m

!
(16)

cuando el intervalo es I = [-⇡,⇡]. Esto nos indica que cuanto menor es el exponente
↵, más lenta es la convergencia de la serie (en el caso de funciones Hölder).

2.2. Parámetros de Hjorth de la curva de aproximación
En 1970, el neurofisiólogo B. Hjorth definió los parámetros Actividad y Movilidad en

la revista Electroencephalography and Clinical Neurophysiology ([6]). Estos indicadores
están basados en la computación de la desviación estándar de una señal y sus derivadas y
sirven, de modo cuantitativo, para describir y asignar valores numéricos a los diferentes
estados de un sistema experimental.
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Así, el descriptor Actividad da una medida de la varianza de la amplitud de la
señal y el parámetro Movilidad de la desviación estándar de la derivada de la señal en
referencia a la desviación estándar de la amplitud.

La cotización de un índice en un determinado período se puede considerar como
una función del tiempo x(t) y también como función de la frecuencia por medio de
su transformada de Fourier x̂(!). Multiplicando x̂(!) por su conjugado se obtiene el
espectro de potencia de la señal

S (!) = x̂ (!) x̂?
(!) . (17)

Se define el momento espectral de orden n como:

mn =

1

2⇡

ˆ +1

�1
!nS (!) d!, para n = 0, 1, . . . (18)

Los parámetros de Hjorth, en lo sucesivo A = Actividad y M = Movilidad se
expresan en función de los momentos espectrales de la siguiente manera

A = m0 =
1

2⇡

ˆ +1

�1
S (!) d!, (19)

M =

s
m2

m0
. (20)

Estos descriptores también pueden ser calculados en el dominio del tiempo ([18]).
Se puede demostrar, a partir de la relación de Parseval, que dada una función periódica
de período T (en el dominio del tiempo x(t) o en el dominio de la frecuencia x̂(!)) en
el intervalo I se cumple la siguiente igualdad:

1

2⇡

ˆ +1

�1
|x̂ (!)|2 d! =

1

T

ˆ
I

|x(t)|2 dt. (21)

Así, se pueden calcular los momentos espectrales como

m0 =
1

T

ˆ
I

x2
(t) dt, (22)

m2 =
1

T

ˆ
I

 
dx

dt

!2

dt. (23)
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En nuestro caso, la señal original no es conocida y posiblemente no sea una función
suave. Estos hechos motivan el cálculo de los parámetros correspondientes a la suma
de Fourier, es decir, en el dominio de la frecuencia. Se puede demostrar (ver [29]) que,
a partir de los coeficientes de la serie de Fourier se tiene que los descriptores de Hjorth
toman la forma

A = m0 = c0
2
+

1

2

MX

m=1

⇣
cm

2
+ dm

2
⌘

(24)

M =

 
m2

m0

!1/2

=

!0

⇣P1
m=1 m

2
⇣
cm

2
+ dm

2
⌘⌘1/2

⇣
2c0

2
+

P1
m=1

⇣
cm

2
+ dm

2
⌘⌘1/2 (25)

Un problema de utilizar los coeficientes de Fourier es que dependen de la magnitud
de la señal original, por lo que los momentos espectrales también dependen de dicha
magnitud y no sirven para realizar comparaciones entre distintos años y/o índices.
Por ello, se normalizaron los coeficientes de Fourier dividiéndolos por el máximo de
la cotización en el período calculado, es decir se tiene que los nuevos coeficientes de
Fourier normalizados son:

c0 =
c0

máx {xi}
, cm =

cm

máx {xi}
, dm =

dm

máx {xi}
(26)

Así, se tiene que los nuevos parámetros son

A = m0 = c0
2
+

1

2

MX

m=1

✓
cm

2
+ dm

2
◆

(27)

M =

 
m2

m0

!1/2

=

!0

✓P1
m=1 m

2

✓
cm

2
+ dm

2
◆◆1/2

✓
2c0

2
+

P1
m=1

✓
cm

2
+ dm

2
◆◆1/2

(28)

El cociente m2/m0 resulta ser una media ponderada de de las frecuencias angulares
cuadráticas con pesos igual a las potencias espectrales pm = cm

2
+ dm

2
. Al extraer

la raíz cuadrada se obtiene un promedio de frecuencia angular. El cálculo de estos
parámetros se ha realizado con el código del anexo A.1.4.
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2.3. Resultados
Los resultados obtenidos para los distintos índices y años se recogen en las siguientes

tablas:

Año Actividad Movilidad
2000 0, 14 60, 28
2001 0, 26 41, 32
2002 0, 34 43, 68
2003 0, 08 50, 26
2004 0, 15 49, 20
2005 0, 20 50, 67
2006 0, 35 40, 65
2007 0, 24 47, 51
2008 0, 37 39, 80
2009 0, 06 55, 81
2010 0, 31 41, 61
2011 0, 32 57, 02
2012 0, 29 53, 78
2013 0, 23 55, 14

Tabla 2. Parámetros de Hjorth para el índice Dow Jones.

Para el índice Dow Jones, el mínimo valor para A es 0, 06 en el año 2009 y para
M es de 39, 80 en 2008. El máximo de estos descriptores se da en el año 2008 siendo
A = 0, 37 y en el año 2000 con M = 60, 28.
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Año Actividad Movilidad
2000 0, 26 54, 25
2001 0, 37 41, 65
2002 0, 36 44, 13
2003 0, 10 49, 33
2004 0, 20 45, 63
2005 0, 27 51, 23
2006 0, 37 34, 69
2007 0, 28 51, 20
2008 0, 34 34, 11
2009 0, 07 61, 80
2010 0, 29 38, 30
2011 0, 31 60, 05
2012 0, 27 51, 10
2013 0, 16 66, 13

Tabla 3. Parámetros de Hjorth para el índice S&P.

Para el índice S&P se obtiene un mínimo de 0, 07 en la Actividad en el año 2009 y
dos máximos de 0, 37 en los años 2001 y 2006. Para el parámetro Movilidad se obtiene
un mínimo en 2008 de valor 34, 11 y un máximo en 2013 de 66, 13.

Año Actividad Movilidad
2000 0, 21 48, 66
2001 0, 16 37, 77
2002 0, 24 35, 98
2003 0, 11 68, 54
2004 0, 25 37, 18
2005 0, 12 47, 86
2006 0, 37 27, 27
2007 0, 13 63, 64
2008 0, 30 26, 85
2009 0, 12 66, 62
2010 0, 35 35, 04
2011 0, 26 72, 54
2012 0, 28 40, 80
2013 0, 22 58, 37

Tabla 4. Parámetros de Hjorth para el índice Nasdaq.
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Para el Nasdaq, en el año 2003 se da un mínimo de 0, 11 en la Actividad y, tres años
más tarde, en el 2006 un máximo de 0, 37. Respecto a la Movilidad hay un mínimo en
2006 de 27, 27 y un máximo en 2011 de 72, 54.

Año Actividad Movilidad
2000 0, 10 55, 33
2001 0, 17 45, 06
2002 0, 23 34, 48
2003 0, 26 46, 54
2004 0, 16 55, 39
2005 0, 15 26, 81
2006 0, 22 44, 50
2007 0, 24 44, 93
2008 0, 39 32, 94
2009 0, 21 46, 78
2010 0, 24 39, 42
2011 0, 17 66, 37
2012 0, 14 51, 49
2013 0, 08 51, 60

Tabla 5. Parámetros de Hjorth para el índice Nikkei.

En la Actividad del índice bursátl japonés aparece un mínimo en el 2013 de 0, 08 y
un máximo en el 2008 de 0, 39. El mínimo en la Movilidad es de 26, 81 en el 2005 y el
máximo es de 66, 37 en el 2011.
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Año Actividad Movilidad
2000 0, 20 57, 57
2001 0, 25 53, 54
2002 0, 27 43, 70
2003 0, 14 52, 31
2004 0, 17 44, 88
2005 0, 14 45, 15
2006 0, 41 27, 21
2007 0, 31 52, 52
2008 0, 21 46, 70
2009 0, 07 60, 67
2010 0, 22 53, 21
2011 0, 30 64, 58
2012 0, 46 28, 35
2013 0, 27 35, 88

Tabla 6. Parámetros de Hjorth para el IBEX.

Los mínimos en el IBEX son, para A y M respectivamente, 0, 07 en 2009 y 27, 21
en 2006. Los máximos para estos descriptores son de 0, 46 en el 2012 y de 64, 58 en 2011
respectivamente.

Se han observado patrones espectrales muy similares de unos índices a otros ex-
ceptuando el comportamiento en cuanto a correlación. Esto apoya la evidencia de que
la distribución de probabilidad es idéntica en ambos descriptores de unos índices a
otros. Este hecho nos indica que los parámetros son robustos (no pueden ser fruto de la
casualidad ni artefactos numéricos). También implica que existen patrones espectrales
“universales”, es decir, que los distintos índices internacionales tienen un comportamien-
to numérico similar.

Se han calculado matrices de correlación para los parámetros Actividad y Movilidad
en los períodos 2000� 2006 y 2007� 2013 a fin de distinguir entre período pre-crisis y
el período que concierne la crisis respectivamente.
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Actividad Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 92 0, 63 0, 25 0, 84

S&P 0, 92 1 0, 50 �0, 09 0, 75
Nasdaq 0, 63 0, 50 1 0, 09 0, 84
Nikkei 0, 25 �0, 09 0, 09 1 0, 27
IBEX 0, 84 0, 75 0, 84 0, 27 1

Tabla 7. Correlaciones para el parámetro Actividad en el período 2000� 2006

Actividad Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 94 0, 80 0, 34 0, 51

S&P 0, 94 1 0, 65 0, 45 0, 53
Nasdaq 0, 80 0, 65 1 0, 18 0, 30
Nikkei 0, 34 0, 45 0, 18 1 �0, 38
IBEX 0, 51 0, 53 0, 30 �0, 38 1

Tabla 8. Correlaciones para el parámetro Actividad en el período 2007� 2013

Movilidad Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 90 0, 57 0, 33 0, 61

S&P 0, 90 1 0, 71 0, 04 0, 76
Nasdaq 0, 57 0, 71 1 0, 04 0, 63
Nikkei 0, 33 0, 04 0, 04 1 0, 27
IBEX 0, 61 0, 76 0, 63 0, 27 1

Tabla 9. Correlaciones para el parámetro Movilidad en el período 2000� 2006

Movilidad Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 94 0, 78 0, 86 0, 02

S&P 0, 94 1 0, 85 0, 75 0, 06
Nasdaq 0, 78 0, 85 1 0, 74 0, 49
Nikkei 0, 86 0, 75 0, 74 1 0, 17
IBEX 0, 02 0, 06 0, 49 0, 17 1

Tabla 10. Correlaciones para el parámetro Movilidad en el período 2007� 2013

22



Se ha observado que el comportamiento es similar para ambos parámetros de un
período a otro. En la matriz siguiente (29) las flechas hacia arriba indican que la corre-
lación aumenta en el período crisis, hacia abajo muestran decrecimiento.

0

BBBB@

� " " " #
" � " " #
" " � " #
" " " � #
# # # # �

1

CCCCA
(29)

En el segundo período todos los índices extranjeros aumentan su correlación signi-
ficativamente. Sin embargo, y en concreto para el parámetro Movilidad, el IBEX sufre
una decorrelación alarmante en el segundo período, lo que indica que los movimientos
en el resto de índices no son corroborados por el selectivo español.

Puede observarse que el índice japonés tiene unas correlaciones muy bajas con res-
pecto a los índices americanos en el período pre-crisis. Sin embargo, estas relaciones son
corregidas en el período crisis, sobre todo en el caso de la Movilidad.

La figura correspondiente al segundo período corrobora la decorrelación que sufre
el IBEX en los últimos años, con respecto al resto de índices, manteniendo una ligera
correlación con el Nasdaq para la Movilidad. También muestra la gran correlación entre
el índice Dow Jones y el S&P 500.
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Figura 10. Movilidad en período pre-crisis y período crisis-postcrisis

Los patrones para el descriptor Actividad mostrados en la Figura 11 son similares
a los presentados por la Movilidad pero con unas correlaciones menos acusadas.
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Figura 11. Actividad en período pre-crisis y período crisis-postcrisis

Por último, un detalle a destacar del parámetro Movilidad es que se encuentra entre
el cuarto y undécimo armónico para todos los índices considerados tal y como se muestra
en la Figura 12. La menor variabilidad se da en el Dow Jones (con una desviación típica
de 6, 80), que significa que es el que más conserva su espectro de potencias a lo largo
del tiempo (ver tabla 12). Así mismo, es el que presenta una frecuencia promedio más
rápida. La banda de frecuencias armónicas se reduce del 6º al 10º en este caso.
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Figura 12. Banda de armónicos para el parámetro Movilidad
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Actividad Media Desviación típica
Dow Jones 0, 24 0, 10

S&P 0, 26 0, 10
Nasdaq 0, 22 0, 08
Nikkei 0, 20 0, 08
IBEX 0, 24 0, 10

Tabla 11. Medias y desviaciones típicas para el parámetro Actividad

Movilidad Media Desviación típica
Dow Jones 49, 05 6, 80

S&P 48, 82 9, 81
Nasdaq 47, 65 15, 65
Nikkei 45, 83 10, 27
IBEX 47, 59 11, 18

Tabla 12. Medias y desviaciones típicas para el parámetro Movilidad

En todas las Movilidades se aprecia una cierta tendencia al alza (recta de ajuste con
pendiente positiva) excepto en el IBEX y Nasdaq, donde la tendencia es a la baja.

2.3.1. Contraste de hipótesis

El objetivo de este punto es realizar un análisis estadístico a fin de determinar si las
distribuciones de distintos índices son similares o no. Es decir, si puede afirmarse que
los parámetros dan valores significativamente distintos de unos índices a otros.

Conocida la distribución de la población de interés, por ejemplo una distribución
normal, podrían usarse métodos paramétricos para rechazar o no la hipótesis nula H0

definida en (30). Dado que no se conoce la naturaleza de dicha distribución se hará uso
de métodos no paramétricos, en concreto el método Mann-Whitney ([4]).

H0 : f1(t) ⌘ f2(t), (30)

donde f1(t) y f2(t) son las correspondientes funciones de densidad de probabilidad de
dos índices distintos. Es decir, la hipótesis nula considera que las distribuciones de la
Actividad o Movilidad para dos índices distintos son idénticas.

Se ha realizado este análisis entre todos los índices para los parámetros de Actividad
y Movilidad. Además, se ha considerado el período completo 2000 � 2013 para tener
una muestra estadísticamente significativa. Los datos obtenidos para los p-valores y el
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estadístico U para cada par de índices en Movilidad y Actividad mediante el paquete
estadístico SPSS son:

P-valores Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 0, 520 0, 550 0, 214 0, 854

S&P 0, 520 X 0, 223 0, 038 0, 475
Nasdaq 0, 550 0, 223 X 0, 395 0, 581
Nikkei 0, 214 0, 038 0, 395 X 0, 197
IBEX 0, 854 0, 475 0, 581 0, 197 X

Tabla 13. p-valores para Actividad

U Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 84 85 71 94

S&P 84 X 71, 5 53 82, 5
Nasdaq 85 71, 5 X 79, 5 86

Nikkei 71 53 79, 5 X 70

IBEX 94 82, 5 86 70 X

Tabla 14. Estadístico U para Actividad

En todos los casos el p-valor es mayor que 0,05, excepto en los índices S&P y Nikkei,
por lo tanto, en estos casos, se puede rechazar la hipótesis nula al 95 % de confianza.
Para el resto de casos, no hay evidencia estadísticamente significativa para rechazar la
hipótesis nula y es factible que ambas muestras, es decir, la Actividad en los períodos
descritos, sean similares.

P-valores Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 0, 963 0, 963 0, 383 0, 963

S&P 0, 963 X 0, 890 0, 613 1

Nasdaq 0, 963 0, 890 X 0, 435 0, 679
Nikkei 0, 383 0, 613 0, 435 X 0, 520
IBEX 0, 963 1 0, 679 0, 520 X

Tabla 15. p-valores para Movilidad
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U Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 97 97 79 97

S&P 97 X 95 87 98

Nasdaq 97 95 X 81 89

Nikkei 79 87 81 X 84

IBEX 97 98 89 84 X

Tabla 16. Estadístico U para Movilidad

El análisis Mann-Whitney para la Movilidad muestra que el p-valor es superior a
0, 05, lo que indica que es posible que las distribuciones sean similares entre diferentes
índices.

Se observa que los p-valores obtenidos en la Actividad son menores que para la
Movilidad. Esto indica que hay una mayor probabilidad en la Movilidad de que las
muestran provengan de distribuciones idénticas, es decir, en términos de la Movilidad
los índices tendrían una mayor relación entre ellos.

Profundizando más, es posible ver que el contraste de hipótesis para el índice Nikkei
aporta una menor confianza para no rechazar la hipótesis nula, es decir, hay una mayor
probabilidad de que los parámetros de Hjorth para dicho índice bursátil tuvieran una
distribución que difiera de la dada por el resto de índices. Además, como era de esperar,
los p-valores y el estadístico U entre los índices americanos salen muy altos.

En resumen, p-valores bajos acercan la posibilidad de rechazar la hipótesis nula y
valores altos no permiten rechazarla. Así, índices que se esperan que estén muy correla-
dos, como los índices americanos, muestran p-valores muy altos e índices como el Nikkei,
que de los tomados es el menos relacionado con el resto, obtienen bajos p-valores.

2.3.2. Relaciones entre índices

Es obvio que existe una cierta relación entre los diferentes índices debido a que
la economía de los países están interconectadas, además se ha comprobado que existe
también una correlación entre diferentes parámetros de estos índices bursátiles. Con el
fin de indagar en el origen de la correlación/decorrelación entre los distintos indicadores,
se han calculado matrices de correlación para la señal original de cada índice, es decir,
los pares de datos (ti, xi) distribuidos en los dos períodos (2000-2006 y 2007-2013).

Así, los resultados obtenidos representados en una matriz de relaciones son los que
se describen en las tablas 17 y 18.
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Señal Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 847 0, 457 0, 747 0, 806

S&P 0, 847 1 0, 811 0, 890 0, 881
Nasdaq 0, 457 0, 811 1 0, 767 0, 652
Nikkei 0, 747 0, 890 0, 767 1 0, 920
IBEX 0, 806 0, 881 0, 652 0, 920 1

Tabla 17. Matriz de correlación para la señal en el período 2000-2006

Señal Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 988 0, 846 0, 584 0, 080

S&P 0, 988 1 0, 791 0, 671 0, 176
Nasdaq 0, 846 0, 791 1 0, 151 �0, 391
Nikkei 0, 584 0, 671 0, 151 1 0, 671
IBEX 0, 080 0, 176 �0, 391 0, 671 1

Tabla 18. Matriz de correlación para la señal en el período 2007-2013

Se puede observar como casi todas las correlaciones (exceptuando Nasdaq-Dow Jones
y Nasdaq-IBEX) son muy altas en el primer período, es decir, todos los índices se
mueven con tendencias similares. Es destacable la alta correlación entre el IBEX y el
índice Nikkei.

Más interesantes son los cambios que se producen en las correlaciones en el segundo
período. Se observa que después del estallido de la crisis, los índices americanos Dow
Jones y S&P aumentan su correlación. El índice Nikkei e IBEX sufren una decorrelación
bastante más acusada respecto a los índices americanos, aunque mantienen una cierta
correlación entre ellos, esto puede deberse al hecho de que la crisis ha tenido una du-
ración más prolongada en Japón y España. En el caso español, las cifras de correlación
en el segundo período son alarmantemente bajas.

Los índices americanos no tecnológicos están muy correlados (algo lógico puesto
que vienen del mismo mercado bursátil) e incluso incrementan su relación después del
estallido de la burbuja de los créditos sub-prime. Por su parte, los índices Nikkei e IBEX
sufren una decorrelación mayor en términos de la señal, aunque esto no es apoyado para
el selectivo japonés en términos de parámetros de Hjorth. Es decir, este índice se correla
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con los demás en el segundo período en el dominio de la frecuencia, pero no en el dominio
temporal. Este hecho indica que los parámetros estudiados aportan información nueva,
no aparente en los registros temporales. El IBEX se decorrela en el segundo periodo en
ambos dominios.
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3. Tests de fractalidad

3.1. Introducción
En esta sección se han buscado evidencias que apunten a una posible estructura

fractal de los precios de cierre diarios de cada índice bursátil considerado. Además, se
han determinado parámetros que cuantifican los valores de los registros bursátiles y sus
tendencias, provenientes de la teoría fractal.

En concreto, primero se ha obtenido el exponente que caracteriza al espectro de
potencias de la señal con el fin de determinar el posible movimiento browniano de esta.
Se ha calculado también el exponente de Hurst, que da una medida de la autosimilaridad
del registro, y a partir de él se ha calculado la dimensión fractal de los datos, que es un
parámetro que caracteriza patrones fractales cuantificando su complejidad.

Hay muchos procedimientos para calcular dimensiones fractales. Las directores del
proyecto han desarrollado un método numérico que utiliza interpolación fractal, y lo
han aplicado ampliamente en el estudio electroencefalográfico del síndrome de Atención
Deficiente con Hiperactividad (ver por ejemplo las referencias [19] y [17]). Un diseño de
estrategia modular se describe en ([16]). En este trabajo se calcula lo que en algunos
textos se denomina dimensión fractal de varianza, utilizando el exponente de Hurst.

3.2. Test de movimiento browniano
Se llaman ruidos coloreados o ruidos 1/!, siendo ! la frecuencia, a aquellos procesos

([13]) que tienen un espectro de potencias S(!) que satisface:

S(!) ' k!�↵, (31)

donde k es una constante. Según el valor de ↵ se pueden clasificar en:

Ruido blanco o gaussiano para ↵ = 0.

Ruido rosa si ↵ = 1.

Ruido rojo o browniano para ↵ = 2.

Se ha desarrollado un test de movimiento browniano sencillo para determinar si una
serie de tipo económico como las que estamos manejando, admite una buena repre-
sentación por medio de este modelo. En este caso, se han obtenido potencias discretas
correspondientes a frecuencias discretas !m = m!0, siendo !0 = 2⇡/T la frecuencia
fundamental y m = 1, 2, . . ., provistas por el desarrollo de Fourier.
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Sea pm el espectro discreto de potencias correspondiente a la frecuencia discreta !m,
tomando logaritmos se obtiene:

log pm ' log k � ↵ log!m (32)

Se han ajustado los valores (log pm)
M
m=1 y (log!m)

M
m=1 , donde M = 12, con el

objetivo de encontrar una correlación entre las variables con pendiente �↵. Una buena
correlación lineal indicaría que la variable admite un modelo de este tipo. En concreto,
el valor ↵ ' 2 indicaría que los datos se ajustan a un movimiento browniano. Los
resultados se pueden encontrar en la sección 3.4.

Además, se han obtenido correlogramas mediante la fórmula de coeficiente r-ésimo
de autocorrelación:

r(k) =

nP
i=k+1

(xi � x)(xi�k � x)

nP
i=1

(xi � x)2
(33)

siendo x la media, k = 1, . . . , 10 y n es el número tota de muestras en el año calculado.
El correlograma da una medida del parecido de la señal consigo misma y, de este
modo, de su grado de aleatoriedad. Los histogramas calculados en los indicadores se han
comparado con los respectivos de una variable gaussiana, tal como muestra la figura
13.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(a) Correlograma del Nasdaq del año 2000
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(b) Correlograma de una señal gaussiana

Figura 13. Correlogramas

Como se observa, el correlograma o histograma correspondiente a la señal gaussiana
(13b) tiende a cero mucho antes que el correspondiente de la señal económica, lo que
prueba que el registro bursátil está lejos de ser una variable aleatoria de tipo ruido
blanco o similar.
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El procedimiento seguido en Mathematica para el análisis de este test se muestra
en el anexo A.2.1

3.3. Exponentes de Hurst
El segundo parámetro calculado es el exponente de Hurst (H) de los registros de cada

índice. Este exponente fue propuesto por H. E. Hurst ([9]) en un estudio hidrológico y
ha sido aplicado a lo largo de los años en diferentes campos. Su reciente popularidad
en el ámbito financiero se debe principalmente al trabajo de Peters ([24], [25]).

A partir de dicho exponente se infiere si el registro bursátil utilizado admite un
modelo de función browniana fraccional. El movimiento browniano fraccional (mBf) es
un proceso aleatorio con dependencia a gran escala, lo cual se ajusta a los movimientos
alcistas o bajistas que tiene el mercado bursátil en grandes períodos de tiempo.

El mBf está asociado con una densidad espectral proporcional a 1/!2H+1, donde H
es el exponente de Hurst y ! la frecuencia.

Según el valor de H (0  H  1), se puede distinguir entre ruido blanco para H = 0,
valores de H = 1 corresponden a una señal determinista y, los que se pretende testar
en este análisis, ruido rojo o movimiento browniano para H = 0, 5. Es decir, cuanto
mayor es H, más predecible es la señal.

Además, para índices bursátiles, H se puede interpretar como una medida de la
tendencia del registro. Un valor 0 < H < 0, 5 indica una serie anti-persistente4 y
0, 5 < H < 1 da evidencia de una serie persistente. Así, la interpretación económica del
exponente de Hurst es que H < 0, 5 indica una alta volatilidad, es decir, cambios más
frecuentes e intensos, y H > 0, 5 una tendencia determinada.

Si B(t,!) es un movimiento browniano clásico, sus incrementos B(t2,!)�B(t1,!)
son gaussianos con media cero y varianza |t2 � t1| ([22]):

{B(t2,!)� B(t1,!)} ⇠ N (0, |t2 � t1|) (34)

Un movimiento browniano fraccional con exponente H, BH(t,!), tiene las siguientes
características:

1. Las trayectorias de BH(t,!) son casi siempre continuas.

2. El grafo de BH(t,!) tiene dimensión fractal Hausdorff igual a 2�H.

3. Si H =

1

2

entonces BH(t,!) es una función browniana ordinaria. En este caso los
incrementos en intervalos disjuntos son independientes.

4
Una serie anti-persistente tiene la característica de invertir la media, es decir, un valor alto tiene

una alta probabilidad de ir seguido de un valor bajo y viceversa.
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4. Los incrementos {BH(t0 + T,!)� BH(t0,!)} son gaussianos con media cero y
varianza proporcional a T 2H .

5. Casi todas las trayectorias son Hölder continuas para cualquier exponente � < H,
es decir, existe una constante c > 0 tal que:

|BH(t,!)� BH(s,!)|  c |t� s|� (35)

Para el cálculo del parámetro H se han considerado los precios al cierre diarios por
índice y año. Llamando de nuevo x(i) a la cotización al cierre del día i de un año
concreto, se han usado retrasos hk para definir los incrementos:

 hk
i = x(i+ hk)� x(i), (36)

donde hk = k� con � = 1 correspondiente a un día, en nuestro caso.
Para cada incremento k se ha calculado la media y la varianza vhk . Entonces, si el

índice considerado admite un modelo de función browniana fraccional, los incrementos
deben cumplir:

 hk
i ' N

�
0, vhk

�
(37)

siendo N
�
0, vhk

�
gaussiano con varianza vhk proporcional a h2H

k .
Por lo tanto, si el índice es un mBf tiene que ocurrir que:

vhk ' C h2H
k , (38)

que tomando logaritmos queda:

log vhk ' logC + 2H log hk, (39)

donde H es el exponente de Hurst. Por tanto, si se representa una gráfica log-log de
las varianzas frente a los retrasos tal y como muestra la Figura 14, se obtienen datos
próximos a una recta de pendiente 2H.
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Figura 14. Representación log-log de las varianzas vhk en función de hk para el índice Nasdaq
en el año 2000

Así, el exponente de Hurst es la mitad de la pendiente de dicha línea. La recta ha
sido calculada mediante regresión y se ha obtenido el índice de correlación de dicha
regresión lineal (ver tabla 27).

Usando la propiedad 2, la dimensión fractal de registros es D = 2 � H. El cálculo
del exponente de Hurst y de la dimensión fractal aparece en el anexo A.2.2.

3.4. Resultados
A continuación se muestran los datos obtenidos en los tests de ruido coloreado (↵)

y movimiento browniano fraccional (H) así como la dimensión fractal.
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Año Exponente ↵ Exp. Hurst Dim. Fractal
2000 1, 808 0, 457 1, 543
2001 2, 235 0, 498 1, 502
2002 2, 135 0, 452 1, 548
2003 2, 191 0, 477 1, 523
2004 2, 027 0, 501 1, 499
2005 1, 897 0, 450 1, 550
2006 1, 971 0, 442 1, 558
2007 1, 925 0, 437 1, 563
2008 1, 714 0, 347 1, 653
2009 1, 881 0, 507 1, 493
2010 2, 125 0, 471 1, 529
2011 1, 940 0, 435 1, 565
2012 1, 815 0, 435 1, 565
2013 2, 038 0, 519 1, 481

Tabla 19. Tests brownianos y dimensión fractal para el índice Dow Jones en el período 2000�
2013
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Figura 15. Evolución del exponente de Hurst para el índice Dow Jones

Los puntos máximos y mínimos del exponente de Hurst del índice Dow Jones se dan
en 2013 con un valor máximo de 0, 519 y en 2008 un mínimo de 0, 347, siendo este el
valor más bajo de todos los índices considerados. Así, el rango de variación es de 0, 172
que representa un 33, 14% respecto al valor máximo.
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Año Exponente ↵ Exp. Hurst Dim. Fractal
2000 1, 918 0, 413 1, 587
2001 2, 052 0, 500 1, 500
2002 1, 976 0, 446 1, 554
2003 2, 253 0, 448 1, 552
2004 1, 938 0, 475 1, 525
2005 1, 849 0, 436 1, 564
2006 1, 884 0, 406 1, 594
2007 1, 979 0, 401 1, 599
2008 1, 736 0, 352 1, 648
2009 1, 832 0, 489 1, 511
2010 2, 082 0, 474 1, 526
2011 1, 878 0, 432 1, 568
2012 1, 776 0, 417 1, 583
2013 1, 883 0, 459 1, 541

Tabla 20. Tests brownianos y dimensión fractal para el índice S&P en el período 2000� 2013
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Figura 16. Evolución del exponente de Hurst para el índice S&P

Considerando el exponente de Hurst del índice S&P, se puede apreciar que en 2001
se alcanza un máximo con valor 0, 500 y en 2008 se produce el mínimo absoluto del
índice de valor 0, 352. El rango de variación del exponente de Hurst en el S&P es de
0, 148, es decir, un 29, 6%.
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Año Exponente ↵ Exp. Hurst Dim. Fractal
2000 1, 857 0, 396 1, 604
2001 2, 091 0, 466 1, 534
2002 2, 191 0, 406 1, 595
2003 1, 890 0, 423 1, 577
2004 2, 009 0, 754 1, 246
2005 2, 093 0, 491 1, 509
2006 1, 977 0, 436 1, 565
2007 1, 560 0, 433 1, 567
2008 1, 932 0, 397 1, 603
2009 1, 757 0, 484 1, 516
2010 2, 192 0, 497 1, 503
2011 1, 681 0, 447 1, 553
2012 1, 825 0, 436 1, 564
2013 1, 871 0, 431 1, 569

Tabla 21. Tests brownianos y dimensión fractal para el índice Nasdaq en el período 2000�2013
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Figura 17. Evolución del exponente de Hurst para el índice Nasdaq

En el Nasdaq se alcanza el valor más alto del exponente de Hurst. Por encima del
resto de índices, en el año 2004 con un valor de 0, 754. El mínimo se produce al comienzo
del período considerado, en el año 2000, con un valor de 0, 396. En 2008 también se
produce un mínimo relativo muy similar al mínimo absoluto de 2000, con un valor de
0, 397.
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El rango de variación en este índice es de los más altos, el exponente de Hurst varía
en el período considerado 0, 358 puntos, que representa un 47, 48% respecto del valor
máximo.

Año Exponente ↵ Exp. Hurst Dim. Fractal
2000 1, 844 0, 496 1, 504
2001 1, 819 0, 409 1, 591
2002 2, 215 0, 514 1, 486
2003 2, 104 0, 467 1, 533
2004 2, 039 0, 505 1, 495
2005 1, 885 0, 491 1, 509
2006 1, 892 0, 493 1, 507
2007 2, 316 0, 487 1, 513
2008 2, 021 0, 412 1, 588
2009 1, 999 0, 499 1, 501
2010 2, 312 0, 468 1, 532
2011 1, 534 0, 453 1, 547
2012 1, 927 0, 585 1, 415
2013 1, 861 0, 479 1, 521

Tabla 22. Tests brownianos y dimensión fractal para el índice Nikkei en el período 2000�2013
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Figura 18. Evolución del exponente de Hurst para el índice Nikkei

En el índice Nikkei se producen máximos y mínimos absolutos en 2012 y 2001 con
valores de 0, 585 y 0, 409 respectivamente. El segundo mínimo local se da en 2008 con
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un valor de 0, 412. El rango de variación es pequeño comparado con el resto de índices,
siendo este de 0, 176 (30, 09%).

Año Exponente ↵ Exp. Hurst Dim. Fractal
2000 1, 466 0, 219 1, 781
2001 1, 818 0, 476 1, 524
2002 1, 998 0, 420 1, 580
2003 2, 247 0, 474 1, 526
2004 2, 074 0, 523 1, 477
2005 2, 135 0, 485 1, 516
2006 2, 301 0, 520 1, 480
2007 2, 028 0, 440 1, 560
2008 1, 933 0, 381 1, 619
2009 1, 814 0, 500 1, 500
2010 1, 873 0, 465 1, 535
2011 1, 811 0, 452 1, 548
2012 2, 001 0, 459 1, 541
2013 2, 352 0, 531 1, 469

Tabla 23. Tests brownianos y dimensión fractal para el índice IBEX en el período 2000� 2013
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Figura 19. Evolución del exponente de Hurst para el índice IBEX

En el comienzo del período tomado, en 2000 se ha encontrado un mínimo en el
exponente de Hurst del IBEX con valor 0, 219. El siguiente mínimo se da en 2008,
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con un valor de 0, 381. El máximo se establece en 0, 531 en el año 2013. El rango de
variación absoluto es de 0, 312, el cual es el más alto de todos los índices, siendo un
58, 76% respecto del valor máximo en el período.

Exponente ↵ Media Desviación típica
Dow Jones 1, 98 0, 15

S&P 1, 93 0, 13
Nasdaq 1, 92 0, 18
Nikkei 1, 92 0, 18
IBEX 1, 99 0, 24

Tabla 24. Medias y desviaciones típicas totales para el exponente ↵ del espectro de potencias.

H Media Desviación típica
Dow Jones 0, 46 0, 04

S&P 0, 44 0, 04
Nasdaq 0, 46 0, 09
Nikkei 0, 48 0, 04
IBEX 0, 45 0, 08

Tabla 25. Medias y desviaciones típicas totales para el exponente de Hurst.

Respecto al exponente ↵ se muestra que en todos los casos la media del exponente ↵
es cercana a 2, pero ligeramente inferior a este valor, lo que corresponde a un ruido rojo
o movimiento browniano. En el caso del Dow Jones y el IBEX la media del exponente
↵ es mayor que en el resto de casos, lo que prueba que en el período analizado la señal
de estos índices se aproxima más a un movimiento browniano aunque, en el caso del
IBEX, la desviación típica es la mayor obtenida.

A continuación se muestra la correlación que presenta el exponente ↵ en su cálculo
para cada año e índice.
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Correlación ↵ Dow Jones S&P Nasdaq Nikkei IBEX
2000 �0, 764 �0, 797 �0, 800 �0, 782 �0, 764
2001 �0, 841 �0, 748 �0, 801 �0, 796 �0, 824
2002 �0, 832 �0, 745 �0, 823 �0, 835 �0, 828
2003 �0, 849 �0, 873 �0, 789 �0, 798 �0, 833
2004 �0, 800 �0, 733 �0, 816 �0, 816 �0, 847
2005 �0, 789 �0, 779 �0, 799 �0, 828 �0, 854
2006 �0, 872 �0, 812 �0, 848 �0, 773 �0, 829
2007 �0, 793 �0, 836 �0, 771 �0, 841 �0, 786
2008 �0, 795 �0, 800 �0, 863 �0, 786 �0, 843
2009 �0, 815 �0, 801 �0, 780 �0, 850 �0, 845
2010 �0, 860 �0, 838 �0, 823 �0, 823 �0, 800
2011 �0, 839 �0, 809 �0, 799 �0, 798 �0, 864
2012 �0, 760 �0, 733 �0, 761 �0, 904 �0, 836
2013 �0, 829 �0, 812 �0, 870 �0, 820 �0, 855

Tabla 26. Correlación por años e índices para el exponente ↵

Dado que H ' 0, 5, lo cual apoya la evidencia de que la señal se ajusta a un ruido
rojo, se infiere de los datos obtenidos que todos los índices se acercan a un camino
aleatorio clásico, siendo el caso más destacable el Nikkei que tiene la mayor media y la
menor desviación típica. Por lo que se puede afirmar que en el período 2000� 2013 es
la señal que más se ajusta a un ruido rojo.

En la Tabla 27 se muestran las correlaciones que presenta el exponente de Hurst en
todos los índices. Se puede observar que es muy cercana a 1, lo que aporta validez al
procedimiento. Como los valores obtenidos son mejores que en el caso del exponente ↵,
se infiere que el modelo de movimiento browniano fraccional es más adecuado para este
tipo de registros que el de ruido coloreado. Debido a este hecho, el resto de los cálculos
se realizan sobre el exponente de Hurst. Las conclusiones realtivas a la dimensión fractal
serían similares, dada su total relación (D = 2�H).
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Correlación H Dow Jones S&P Nasdaq Nikkei IBEX
2000 1, 000 0, 999 0, 999 1, 000 0, 999
2001 1, 000 1, 000 0, 998 0, 999 0, 999
2002 0, 998 1, 000 0, 998 1, 000 0, 998
2003 0, 999 0, 998 0, 997 0, 996 1, 000
2004 1, 000 0, 999 0, 708 1, 000 1, 000
2005 0, 995 1, 000 1, 000 0, 999 0, 999
2006 0, 998 0, 995 0, 999 0, 999 1, 000
2007 0, 999 0, 998 0, 999 0, 998 0, 998
2008 0, 997 0, 998 0, 995 1, 000 1, 000
2009 0, 999 0, 997 0, 999 1, 000 0, 999
2010 0, 998 0, 999 1, 000 0, 999 0, 992
2011 0, 993 0, 998 0, 998 0, 997 0, 997
2012 0, 998 0, 993 0, 999 1, 000 1, 000
2013 0, 989 0, 998 0, 999 0, 999 0, 999

Tabla 27. Correlación por años e índices del exponente de Hurst

En el año 2008, comienzo de la crisis financiera, se produce una caída generalizada en
el exponente de Hurst de los diversos índices, alcanzándose en algunos casos el mínimo
absoluto del período. En general se puede deducir que valores bajos del exponente de
Hurst se ajustan a las crisis que se puedan ver reflejadas en la cotización de un índice
bursátil. La caída del Hurst en el índice Nasdaq en 2008 es menor que en el resto, al
ser la influencia de la crisis financiera menor en este índice.

3.4.1. Contraste de hipótesis

Se ha realizado un análisis estadístico por el método no paramétrico de Mann-
Whitney de forma similar al de la sección 2.3.1 aplicado a los datos del exponente
de Hurst de cada índice. A continuación se muestran los p-valores y el estadístico U
calculados a pares entre los índices anteriores.
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P-valores Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 0, 628 0, 168 0, 215 0, 597

S&P 0, 628 X 0, 382 0, 081 0, 346
Nasdaq 0, 168 0, 382 X 0, 037 0, 291
Nikkei 0, 215 0, 081 0, 037 X 0, 358
IBEX 0, 597 0, 346 0, 291 0, 358 X

Tabla 28. p-valores para exponente de Hurst

U Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones X 87, 5 68 71 86, 5

S&P 87, 5 X 79 60 77, 5
Nasdaq 68 79 X 52, 5 75

Nikkei 71 60 52, 5 X 78

IBEX 86, 5 77, 5 75 78 X

Tabla 29. Estadístico U para exponente de Hurst

Se puede observar que prácticamente en todos los casos se tiene que p-valor > 0, 05,
por lo que no hay una evidencia estadísticamente significativa para rechazar que el
exponente de Hurst de estos índices provengan de poblaciones similares, excepto en el
caso del Nasdaq respecto del Nikkei.

3.4.2. Correlaciones

Se han calculado matrices de correlación para el exponente de Hurst ya que algunos
estudios (ver [20] y [26]), y nuestros propios cálculos, apoyan la evidencia de que puede
ser un buen predictor de grandes cambios económicos.

Exp. Hurst Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 26 0, 39 �0, 16 0, 47

S&P 0, 26 1 0, 88 �0, 52 0, 63
Nasdaq 0, 39 0, 88 1 �0, 61 0, 47
Nikkei �0, 16 �0, 52 �0, 61 1 0, 16
IBEX 0, 47 0, 63 0, 47 0, 16 1

Tabla 30. Matrices de correlación para el exponente de Hurst en el período 2000� 2006
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En este primer período se puede observar que las correlaciones son pobres, excepto
en el caso del Nasdaq con respecto al S&P, que registra el valor máximo de la tabla. El
índice Nikkei toma valores negativos respecto a los valores americanos.

Exp. Hurst Dow Jones S&P Nasdaq Nikkei IBEX
Dow Jones 1 0, 97 0, 85 0, 39 0, 50

S&P 0, 97 1 0, 92 0, 35 0, 64
Nasdaq 0, 85 0, 92 1 0, 28 0, 87
Nikkei 0, 39 0, 35 0, 28 1 0, 20
IBEX 0, 50 0, 64 0, 87 0, 20 1

Tabla 31. Matrices de correlación para el exponente de Hurst en el período 2007� 2013

En el segundo período se obtiene que los tres índices americanos (Dow Jones, S&P
y Nasdaq) adoptan una correlación fuerte. El Nikkei aumenta su correlación respecto a
estos índices. El selectivo español no se correla mucho más en este período salvo con el
Nasdaq.

En efecto, el exponente de Hurst puede ser utilizado como predictor de la crisis ya
que en el comienzo de la crisis el coeficiente H disminuye, y esto se ve apoyado por
todos los selectivos.

44



4. Convergencia del procedimiento numérico para el

cálculo de la suma de Fourier

En este apartado se proporcionan argumentos para la idoneidad del método utilizado
para el cálculo de la suma de Fourier.

Sea f(t) la señal original y f0(t) un interpolante lineal de la misma con respecto a
los datos {(tn, xn)}Nn=0. Sea SM f0(t) la M-ésima suma de Fourier del interpolantef0. Se
considera la distancia uniforme, es decir, la métrica d(f1, f2) = kf1 � f2k1 siendo

kf1 � f2k1 = máx {|f1(t)� f2(t)| : t 2 I} , (40)

y f1, f2 continuas en I (intervalo de definición).
El error cometido en la aproximación de f mediante SM f0 puede ser desglosado en

dos términos:
kf � SM f0k  kf � f0k1 + kf0 � SM f0k1 . (41)

El primer término puede ser acotado como:

kf � f0k1  !(h), (42)

siendo !(h) el módulo de continuidad de la funcion f definida en la sección 2.1.2,
con h = máx {tn � tn�1 : n = 1, 2, . . . , N}. Este resultado puede ser consultado en la
referencia [15]. La desigualdad implica que kf � f0k1 ! 0 cuando h ! 0 ([5]).

En cuando al segundo, se puede argumentar que f0 es una función poligonal y, por
tanto, Hölder continua con exponente ↵ = 1. Según el teorema de Dini-Lipschitz (citado
en el capítulo 2) la serie de Fourier de f0 converge uniformemente a f0. Por tanto, si
se escogen particiones refinadas tales que h ! 0 y se considera un número creciente de
sumandos (M ! 1), se tendría que:

kf � f0k1 ! 0, (43)

kf0 � SM f0k1 ! 0, (44)
y de aquí la convergencia del método. Un análisis más detallado se puede encontrar en
[21].

Otro argumento importante viene de considerar que existen evidencias numéricas
de que los registros analizados admiten un modelo de movimiento browniano fraccional,
según se ha visto en secciones anteriores. Como se ha comentado anteriormente, este
tipo de variables son Hölder continuas. Según el teorema de Dini-Lipschitz este tipo de
funciones son bien representadas por su suma de Fourier, y de aquí la idoneidad del
procedimiento
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5. Conclusiones

5.1. Conclusiones de tipo numérico
Los patrones numéricos de los registros bursátiles analizados (Dow Jones, S&P,

Nasdaq, Nikkei e IBEX) en el período 2000-2013 han mostrado una serie de resultados
que se resumen a continuación. Respecto a los cálculos de los parámetros de Hjorth se
han extraído las siguientes conclusiones:

Los valores del descriptor Actividad se agrupan en torno a 0, 23. La menor des-
viación típica es de 0, 08 y corresponde a los índices Nasdaq y Nikkei. La mayor
se da en el Dow Jones, S&P e IBEX con un valor de 0, 10. Hay que destacar que
los valores han sido normalizados.

El parámetro Movilidad de los índices considerados se encuentra entre el cuarto
y undécimo armónico con una media total de 47, 73. En este caso, la menor des-
viación típica, de 6, 80, se da en el índice americano Dow Jones y la mayor, de
15, 65, en el Nasdaq.

Para ambos parámetros se ha encontrado que la correlación entre los índices
aumenta del período 2000-2006 al 2007-2013 excepto en el caso del IBEX, que
presenta una gran decorrelación con el resto de ellos en el último período.

El análisis estadístico de estos dos descriptores resalta que es posible que la dis-
tribución de los parámetros de Hjorth entre diferentes índices sea similar (excepto
en el caso del índice S&P y Nikkei para la Actividad) en un nivel de confianza
del 95 %. Además, la probabilidad de que esto sea así es mayor en la Movilidad
al haberse obtenido p-valores más altos.

El cálculo de correlaciones para la señal original de los índices muestra que los indica-
dores IBEX y Nikkei se decorrelan de los americanos en el segundo período, mientras
que estos mantienen o incrementan su correlación. El máximo se alcanza entre el Dow
Jones y S&P, con un valor de 0, 98 (muy próximo a 1).

Los cálculos realizados en el capítulo 3 sobre el movimiento browniano se resumen
a continuación:

Los datos obtenidos de lo que se ha denominado exponente ↵ se encuentran en
torno a 1, 94, valor muy cercano al característico de un ruido rojo o browniano
(↵ = 2). La mayor desviación típica es de 0, 24 y se da en el selectivo español y
la menor, de 0, 13, se da en el índice S&P.
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El índice Dow Jones es destacable ya que la media del exponente ↵ a lo largo
del período es de 1, 98 (por encima de la media total) y la desviación típica es de
0, 15, que está por debajo de la media de las desviaciones típicas.

La media total de los exponentes de Hurst es de 0, 46. Se obtienen desviaciones
típicas pequeñas, de valor 0, 04, en los índices Dow Jones, S&P y Nikkei. La mayo
desviación típica se da en el índice Nasdaq con un valor de 0, 09.

La correlación para el exponente de Hurst entre los índices bursátiles extranjeros
aumenta de forma globalizada en el segundo período, siendo destacable la alta
correlacion entre los índices americanos. El índice español no incrementa mucho
su correlación excepto con el Nasdaq.

Los p-valores proporcionados por el contraste de hipótesis admite la posibilidad,
al 95 % de confianza, de la similitud entre las distribuciones del exponente de
Hurst de todos los índices excepto la relacionada entre el índice Nasdaq y Nikkei.
La probabilidad de que esto sea así es menor, en general, que la respectiva para
la Actividad y Movilidad.

5.2. Otras consideraciones de tipo cuantitativo
El IBEX se decorrela durante la crisis del resto de índices, tanto en el dominio
espectral (Movilidad) como en el temporal (señal original).

Los selectivos más rápidos (mayor frecuencia promedio) son los indicadores ame-
ricanos no tecnológicos que, además, presentan las menores desviaciones.

En el año 2008 (comienzo de la crisis), se registra el primer o segundo mínimo
local del exponente de Hurst en todos los índices analizados. Para los selectivos
Dow Jones y S&P se da un mínimo absoluto en este período. La caída de este
cuantificador en el índice Nasdaq es menor, al ser la influencia de la crisis financiera
menor en este índice. En los máximos no se encuentra tanta uniformidad, aunque
en tres de ellos (Dow Jones, Nikkei e Ibex) el valor superior se obtiene al final del
segmento estudiado (años 2012 y 2013).

Los distintos índices presentan una gran uniformidad numérica, tanto en los patro-
nes espectrales como en los fractales. Esto es así incluso en ausencia de correlación
entre los registros, que normalmente no se da excepto en los índices Dow Jones y
S&P. Las mayores diferencias estadísticas apuntan a los valores americanos frente
al índice japonés, en particular al Nasdaq versus Nikkei y S&P versus Nikkei.
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Los indicadores americanos no tecnológicos muestran una gran estabilidad desde
el punto de vista numérico. Para tres de los parámetros analizados (Movilidad y
ambos exponentes), la menor variabilidad se da en estos selectivos. El IBEX, y
en algunos casos, el Nasdaq, presentan grandes variaciones.

El índice Nasdaq presenta una estructura cuasiperiódica en lo referente al pará-
metro Movilidad en los años 2006-2012.

Es destacable el hecho de que los p-valores menores se dan en el índice Nikkei,
sobretodo respecto a los índices americanos.

5.3. Conclusiones metodológicas y generales
La interpolación lineal de los datos es la que mejor se ajusta a estos en términos
del error cuadrático medio, entre los procedimientos más convencionales.

Una buena aproximación para el cálculo de la suma de Fourier de la señal consiste
en tomar ciclos hasta longitud semanal. Tomar ciclos más cortos aumentaría nota-
blemente el tiempo de computación y no mejoraría significativamente el resultado
de dicho cálculo.

Los correlogramas de los distintos índices, cuya tendencia a cero es muy lenta,
preludiaban un tipo de variable aleatoria muy distinta de un ruido blanco. Los
cálculos realizados en el capítulo tercero confirmaron esta diferencia. Los regis-
tros bursátiles admiten una buena representación mediante ruidos coloreados, en
concreto de ruido rojo o browniano, y un modelo de función browniana fraccio-
nal mediante el exponente de Hurst bastante estricto. Este hecho sugiere que el
exponente de Hurst es un buen predictor de cambios en el mercado.

El exponente de Hurst es un parámetro muy robusto para la cuantificación de
las características fractales de los registros bursátiles (al menos de los indicado-
res analizados en esta memoria), ya que se han obtenido en todos los casos unas
correlaciones próximas a uno en su computación5. Así mismo se observa que este
índice de algún modo previó la crisis del 2008, presentando valores bajos que deno-
tan una mayor impredictibilidad y que, en algunos casos, son extremos absolutos
(Dow Jones y S&P).

5
Estas correlaciones nada tienen que ver con las correspondientes a los distintos parámetros, des-

critas previamente.
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Los escalares exponente de Hurst (o la dimensión fractal) y Movilidad resultan
idóneos para la descripción numérica de este tipo de señales económicas. Ambos
parámetros se complementan mutuamente. La Movilidad proporciona una fre-
cuencia promedio del índice y el exponente da una medida de la autosimilaridad
(fractalidad) del registro. Las variaciones de estos cuantificadores dan una idea
de la volatilidad de cada indicador.

Todos estos resultados prueban que los cuantificadore propuestos pueden ser útiles
para la implementación de nuevas técnicas económicas que puedan predecir grandes
movimientos del mercado, para definir estrategias de compra-venta de acciones o para
la valoración de activos financieros.
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A. Algoritmos implementados en Mathematica

A.1. Códigos para el cálculo de los cuantificadores del capítulo
2

En este apartado, se mostrarán los algoritmos para el índice S&P en el año 2000.
Los comandos son similares para el resto de índices, cambiando el nombre del registro
(en este caso SP500) y el año por los correspondientes.

Los tiempos de computación corresponden a Mathematica versión 9.0 para Mac
OSX con un procesador Intel Core i7 a 2,8 GHz.

A.1.1. Importación de datos financieros y reestructuración

A continuación se muestra el algoritmo usado para la importación de datos. Después,
se han estructurado de nuevo para separar los datos pares de los impares, así unos
servirán para formar la curva de aproximación y otros para obtener los errores de dicha
curva.

dataint2000 y datamed2000 son los vectores con los datos al cierre impares y pares
respectivamente.

El tiempo de computación es de 1, 03 s, aunque varía notablemente en cada caso
debido a la conexión de internet necesaria para la orden FinancialData[].

sp [ 1 ] = Financia lData [ " SP500" , "Close " , {{2000 , 1 , 1} ,
{2000 , 12 , 3 1 } } ] ;

n2000 = Length [ sp [ 1 ] ] ;

c l o s e2000 = Table [ sp [ 1 ] [ [ i , j ] ] , { i , n2000 } , { j = 2 } ] ;
c l o s e2000 = Table [ c l o s e2000 [ [ i , j ] ] , { i , n2000 } , { j , 1 } ] ;
c l o s e2000 = Table [ c l o s e2000 [ [ i , 1 ] ] , { i , 1 , n2000 } ] ;

data2000 = Table [ { i , c l o s e2000 [ [ i ] ] } , { i , 1 , n2000 } ] ;

data int2000 = Table [ data2000 [ [ 2 ∗ i � 1 ] ] , { i , 1 , n2000 / 2 } ] ;
datamed2000 = Table [ data2000 [ [ 2 ∗ i ] ] , { i , 1 , n2000 / 2 } ] ;
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A.1.2. Interpolación lineal y por splines cúbicos

La primera orden, utilizando la función Interpolation[], obtiene la interpolación
lineal de los datos. A continuación se preparan los datos pares e impares para hallar la
raíz cuadrática del error (errrorlin2000) y el error relativo (errrel2000). El tiempo
de computación para la interpolación lineal es de 0, 59 s.

l i n e a r 2000 = In t e r p o l a t i o n [ dataint2000 ,
In t e rpo l a t i onOrde r �> 1 ]

dl2000 = datamed2000 [ [ All , 2 ] ] ;
l i n2000 = Table [ l i n e a r 2000 [2∗ i ] , { i , 1 , ( n2000 / 2 ) } ] ;

e r r o r l i n 2 0 0 0 = Sqrt [Mean [ ( dl2000 � l i n2000 )^ 2 ] ] // N
e r r r e l 2 0 0 0 = %/Max[ data2000 ] // N

Para el cálculo de los splines se carga primero el paquete mediante la orden Needs[“Splines‘”].
SplineFit devuelve la interpolación mediante splines de los datos. Después de acomo-
dar los datos en vectores, las dos últimas órdenes calculan la raíz cuadrática del error
y el error relativo. El procesado de este algoritmo toma un tiempo de 0, 57 s.

Needs [ " Sp l ines ‘ " ]

spn2000 = Sp l i n eF i t [ dataint2000 , Cubic ]

spna2000 = Table [ spn2000 [ i + 0 . 5 ] , { i , 0 , ( n2000 /2) � 2 } ] ;
spnmed2000 = spna2000 [ [ All , 2 ] ] ;
dc2000 = Drop [ dl2000 , �1];

Sqrt [Mean [ ( dc2000 � spnmed2000 )^ 2 ] ] // N
N[ %/Max[ data2000 ] , 10 ]

A.1.3. Cálculo de los coeficientes de Fourier en ciclos anuales, mensuales y
semanales

L2000 es el cálculo de las poligonales de interpolación de los datos a los que se
les ha sustraído la tendencia r2000. w2000 es la frecuencia fundamental de la serie de
Fourier. A continuación se calculan los coeficientes en distintos ciclos. Se reconstruye la
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suma de Fourier en fpol2000[t_] para ciclos anuales, f2pol2000[t_] para mensuales
y f3pol2000[t_] en ciclos semanales.

Como se usan los ciclos semanales, se ha sumado la tendencia r2000 a f3pol2000[t_],
que será la que se use posteriormente para el cálculo de los parámetros de Hjorth.

En el cálculo de los coeficientes de Fourier se ha utilizado el comando NIntegrate[]
para realizar la integración numérica a fin de reducir el coste computacional. Este cálculo
es el que más tiempo requiere, necesitando 146,92 s para cada año. Si bien es cierto que
se están calculando los coeficientes de Fourier para tres ciclos distintos es el último, que
ocupa la mayor parte del tiempo.

NN2000 = Length [ c l o s e2000 ] � 1

T = 1

h2000 = T/NN2000

datost2000 = Table [ { h2000 ∗( j � 1) , y2000 [ [ j ] ] } ,
{ j , 1 , NN2000 + 1 } ] ;
r2000 [ t_ ] = Fit [ datost2000 , {1 , t } , t ]

x2000 = Table [ datost2000 [ [ i ] ] [ [ 2 ] ] �
r2000 [ datost2000 [ [ i ] ] [ [ 1 ] ] ] , { i , 1 , Length [ datost2000 ] } ] ;
datos2000 = Table [ { h2000 ∗( j � 1) , x2000 [ [ j ] ] } ,
{ j , 1 , NN2000 + 1 } ] ;

w2000 = 2∗Pi/T

L2000 [ i_ , t_ ] = x2000 [ [ i ] ] + ( ( x2000 [ [ i + 1 ] ] � x2000 [ [ i ] ] ) /
h2000 )∗ ( t � ( i � 1)∗ h2000 ) ;

(∗ Calculo de l o s c o e f i c i e n t e s de l a s e r i e de Four i e r para m=T.
C i c l o s anua les ∗)

c0pol2000 = (1/T)∗ Sum[ NIntegrate [ L2000 [ i , t ] ,
{ t , h2000 ∗( i � 1) , h2000∗ i } ] , { i , 1 , NN2000 } ] // N

parada2000 = T;
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cmpol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Cos [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , parada2000 } ] // N

dmpol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Sin [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , parada2000 } ] // N

fpo l2000 [ t_ ] := c0pol2000 + Sum[ cmpol2000 [ [m] ] ∗
Cos [m∗w2000∗ t ] +dmpol2000 [ [m] ] Sin [m∗w2000∗ t ] ,
{m, 1 , parada2000 } ]

(∗ Calculo de l o s c o e f i c i e n t e s de l a s e r i e de Four i e r para m=12T.
C i c l o s mensuales ∗)

c02pol2000 = c0pol2000

paradam2000 = 12∗T

cm2pol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Cos [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , paradam2000 } ] // N;

dm2pol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Sin [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , paradam2000 } ] // N;

f2po l2000 [ t_ ] := c02pol2000 + Sum[ cm2pol2000 [ [m] ] ∗
Cos [m∗w2000∗ t ] + dm2pol2000 [ [m] ] Sin [m∗w2000∗ t ] ,
{m, 1 , paradam2000 } ]

(∗ Cálculo de l o s c o e f i c i e n t e s de l a s e r i e de Four i e r para m=52T.
C i c l o s semanales ∗)

c03pol2000 = c02pol2000

paradas2000 = 52∗T;
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cm3pol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Cos [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , paradas2000 } ] // N;

dm3pol2000 = (2/T)∗ Table [Sum[ NIntegrate [ L2000 [ i , t ]∗
Sin [m∗w2000∗h2000 ∗( i � 1 ) ] , { t , h2000 ∗( i � 1) , h2000∗ i } ] ,
{ i , 1 , NN2000 } ] , {m, 1 , paradas2000 } ] // N;

f3po l2000 [ t_ ] := c03pol2000 + Sum[ cm3pol2000 [ [m] ] ∗
Cos [m∗w2000∗ t ] +dm3pol2000 [ [m] ] Sin [m∗w2000∗ t ] ,
{m, 1 , paradas2000 } ]

f 3po l t 2000 [ t_ ] = r2000 [ t ] + f3po l2000 [ t ] ;

A.1.4. Cálculo de los parámetros de Hjorth

Los coeficientes de Fourier se han normalizado dividiéndolos por el máximo del
registro en ese año x2000. A continuación se han obtenido los parámetros de Actividad
y Movilidad en Apol2000 y Mpol2000 respectivamente. El tiempo de computación es
de 0, 45 s

xmax2000 = Max[ x2000 ]

c03poln2000 = c03pol2000 /xmax2000 ;
cm3poln2000 = cm3pol2000/xmax2000 ;
dm3poln2000 = dm3pol2000/xmax2000 ;

Apol2000 = c03poln2000^2 + (1/2)∗ (Sum[
( cm3poln2000 [ [ i ] ] ) ^ 2 + ( dm3poln2000 [ [ i ] ] ) ^ 2 ,
{ i , 1 , paradas2000 } ] )

Mpol2000 = (w2000/Sqrt [ 2 ] ) ∗ Sqrt [ ( Sum[
i ^2(( cm3poln2000 [ [ i ] ] ) ^ 2 + ( dm3poln2000 [ [ i ] ] ) ^ 2 ) ,
{ i , 1 , paradas2000 } ] ) / Apol2000 ]
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A.2. Códigos para el cálculo de los cuantificadores del capítulo
3

A.2.1. Test de movimiento browniano o ruido rojo

powerspec2000 es el espectro de potencias, formado con powers2000 a partir de los
coeficientes de Fourier y la frecuencia fundamental con sus armónicos de frecs2000.
s2000[\[Omega]_] es el ajuste del espectro de potencias a una curva de tipo y =

a + b!�2. La pendiente de logs2000[\[Omega]_] devuelve el exponente ↵ del test de
movimiento browniano. Las últimas líneas calculan la correlación entre el logaritmo de
las frecuencias y de las potencias. El tiempo total de computación para este algoritmo
es de 0, 73 s.

powers2000 = Table [ cm3pol2000 [ [ i ] ] ^ 2 + dm3pol2000 [ [ i ] ] ^ 2 ,
{ i , 1 , paradas2000 } ] ;
f r e c s 2000 = Table [ i ∗w2000 , { i , 1 , paradas2000 } ] ;

powerspec2000 = Table [ { f r e c s 2000 [ [ i ] ] , powers2000 [ [ i ] ] } ,
{ i , 1 , paradas2000 } ] ;

s2000 [ \ [ Omega ]_] = Fit [ powers2000 , {1 , 1/\ [Omega]^2} , \ [Omega ] ]

l ogpower s f r e c s2000 = Table [ { Log [ 2 Pi/ T ∗ i ] ,
Log [ cm3pol2000 [ [ i ] ] ^ 2 + dm3pol2000 [ [ i ] ] ^ 2 ] } ,
{ i , 1 , paradas2000 } ] ;

l ogs2000 [ \ [ Omega ]_] = Fit [ l ogpowers f r ec s2000 ,
{1 , \ [Omega ] } , \ [Omega ] ]

l o g f r e c s 2 0 0 0 = Log [ f r e c s 2000 ] ;
logpowers2000 = Log [ powers2000 ] ;

Co r r e l a t i on [ logpowers2000 , l o g f r e c s 2 0 0 0 ]

A.2.2. Cálculo del exponente de Hurst y la dimensión fractal

Se calculan las varianzas de las variables asociadas al paso en varvh1, varvh2,
etc. lista organiza un vector con los logaritmos de los pasos y los logaritmos de las
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varianzas. La pendiente de la recta de ajuste dividida por 2 devuelve el exponente de
Hurst expHurst. dimfrac es la dimensión fractal. 4, 80 s es el tiempo de computación
para el siguiente código.

d = 1 ;

h1 = d ; h2 = 2∗d ; h3 = 3∗d ; h4 = 4∗d ; h5 = 5∗d ;
h6 = 6∗d ; h7 = 7∗d ; h8 = 8∗d ; h9 = 9∗d ;
h10 = 10∗d ;

(∗VARIABLE ASOCIADA AL PASO h1 ∗)
vh1 = Table [ sp [ 1 ] [ [ i + h1 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h1 } ] ;
medvh1 = Mean [ vh1 ]
varvh1 = Variance [ vh1 ]

(∗VARIABLE ASOCIADA AL PASO h2 ∗)
vh2 = Table [ sp [ 1 ] [ [ i + h2 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h2 } ] ;
medvh2 = Mean [ vh2 ]
varvh2 = Variance [ vh2 ]

(∗VARIABLE ASOCIADA AL PASO h3 ∗)
vh3 = Table [ sp [ 1 ] [ [ i + h3 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h3 } ] ;
medvh3 = Mean [ vh3 ]
varvh3 = Variance [ vh3 ]

(∗VARIABLE ASOCIADA AL PASO h4 ∗)
vh4 = Table [ sp [ 1 ] [ [ i + h4 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h4 } ] ;
medvh4 = Mean [ vh4 ]
varvh4 = Variance [ vh4 ]

(∗VARIABLE ASOCIADA AL PASO h5 ∗)
vh5 = Table [ sp [ 1 ] [ [ i + h5 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h5 } ] ;
medvh5 = Mean [ vh5 ]
varvh5 = Variance [ vh5 ]

(∗VARIABLE ASOCIADA AL PASO h6 ∗)
vh6 = Table [ sp [ 1 ] [ [ i + h6 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h6 } ] ;
medvh6 = Mean [ vh6 ]
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varvh6 = Variance [ vh6 ]

(∗VARIABLE ASOCIADA AL PASO h7 ∗)
vh7 = Table [ sp [ 1 ] [ [ i + h7 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h7 } ] ;
medvh7 = Mean [ vh7 ]
varvh7 = Variance [ vh7 ]

(∗VARIABLE ASOCIADA AL PASO h8 ∗)
vh8 = Table [ sp [ 1 ] [ [ i + h8 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h8 } ] ;
medvh8 = Mean [ vh8 ]
varvh8 = Variance [ vh8 ]

(∗VARIABLE ASOCIADA AL PASO h9 ∗)
vh9 = Table [ sp [ 1 ] [ [ i + h9 ] ] � sp [ 1 ] [ [ i ] ] , { i , 1 , nsp [ 1 ] � h9 } ] ;
medvh9 = Mean [ vh9 ]
varvh9 = Variance [ vh9 ]

(∗VARIABLE ASOCIADA AL PASO h10 ∗)
vh10 = Table [ sp [ 1 ] [ [ i + h10 ] ] � sp [ 1 ] [ [ i ] ] ,
{ i , 1 , nsp [ 1 ] � h10 } ] ;
medvh10 = Mean [ vh10 ]
varvh10 = Variance [ vh10 ]

l i s t a = {{Log [ h1 ] , Log [ varvh1 ] } , {Log [ h2 ] , Log [ varvh2 ] } ,
{Log [ h3 ] , Log [ varvh3 ] } , {Log [ h4 ] , Log [ varvh4 ] } ,
{Log [ h5 ] , Log [ varvh5 ] } , {Log [ h6 ] , Log [ varvh6 ] } ,
{Log [ h7 ] , Log [ varvh7 ] } , {Log [ h8 ] , Log [ varvh8 ] } ,
{Log [ h9 ] , Log [ varvh9 ] } , {Log [ h10 ] , Log [ varvh10 ]}}

model = LinearModelFit [ l i s t a , x , x ]

f [ x_] = model [ " BestFit " ]
pendiente = Expand [ ( f [ x ] � f [ 0 ] ) / x ]

expHurst = pendiente /2
dimfrac = 2 � expHurst
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