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Valorización energética de la glicerina como subproducto del biodiésel 

Resumen  

El crecimiento del consumo de energía en la sociedad actual lleva consigo un aumento 

en el consumo de combustibles fósiles empleados en la obtención de dicha energía. Sin 

embargo, en la actualidad se está produciendo una concienciación y preocupación sobre el 

medio ambiente que lleva a la búsqueda de combustibles que no impliquen un incremento neto 

en las emisiones de CO2 a la atmósfera y que sean de carácter renovable. En este contexto se 

produce el aumento en la obtención de biocombustibles, combustibles obtenidos a partir de 

fuentes renovables como la biomasa. 

Uno de los biocombustibles más importante es el biodiésel y, debido al crecimiento en 

su producción, se ha visto también un crecimiento en la producción de la glicerina obtenida 

como subproducto del biodiésel. Para lograr la viabilidad económica del proceso de obtención 

de biodiésel resulta necesario el desarrollo de procesos que permitan valorizar la glicerina en 

productos valiosos. De estos procesos son importantes aquellos que transforman la glicerina en 

hidrógeno, que permite obtener energía y productos químicos. Dos de los procesos de 

obtención de hidrógeno a partir de la glicerina son el reformado catalítico con vapor de agua 

(SR) y el reformado catalítico en fase acuosa (APR). 

El objetivo del Trabajo de Fin de Grado consiste en el estudio de la obtención de 

hidrógeno a partir de glicerina mediante los dos procesos de reformado nombrados. Se realiza 

un estudio de la influencia de la concentración de la disolución de glicerina en la alimentación 

sobre el rendimiento a gas de síntesis obtenido y sobre la eficiencia energética del mismo. 

También se realiza un estudio comparativo entre los dos procesos sobre los rendimientos a 

productos obtenidos y las eficiencias energéticas obtenidas para cada uno de los procesos. 

Los resultados presentados en el trabajo sobre la influencia de la concentración de la 

disolución de glicerina muestran que, para el reformado con vapor de agua, mayores 

concentraciones de glicerina implican mayores rendimientos a gases, con un gas de síntesis rico 

en hidrógeno, y mayor eficiencia energética obtenida. Por contra, para el caso de reformado en 

fase acuosa, mayores concentraciones resultan en menores rendimientos a gases y menor 

eficiencia energética, obteniendo un aumento en el rendimiento a líquidos, con una corriente 

líquida rica en etanol y 1,2-propanodiol. Además, los rendimientos a gas y las eficiencias 

energéticas obtenidas en el reformado en fase acuosa son muy inferiores a los obtenidos para 

el reformado con vapor de agua. Sin embargo, el calor aportado en el APR también es mucho 

menor.  
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1. INTRODUCCIÓN Y OBJETIVOS 

1.1 Introducción 

El presente Trabajo de Fin de Grado se ha llevado a cabo en el Departamento de 

Ingeniería Química y Tecnologías del Medio Ambiente de la Universidad de Zaragoza. El trabajo 

se centra en el estudio de diversos procesos de valorización de glicerina obteniendo productos 

químicos valiosos, para reducir la glicerina residual obtenida en la producción del biodiésel. 

 

La preocupación social por el medio ambiente debido al aumento en las emisiones de 

gases de efecto invernadero como el CO2 y al agotamiento de las reservas de combustibles 

fósiles ha llevado al desarrollo y utilización de biocombustibles como fuente de energía 

alternativa. Los biocombustibles son una fuente de energía renovable que además no presenta 

un incremento neto en la emisión de CO2 a la atmósfera, al emitir en su combustión el mismo 

CO2 que absorbió en su crecimiento la planta empleada como materia prima en la obtención del 

biocombustible. 

 

Para fomentar el uso de fuentes de energía renovables se han llevado a cabo políticas 

que financian económicamente el desarrollo de biocombustibles obtenidos a partir de biomasa 

como materia prima. Los biocombustibles más importantes en la actualidad son el bioetanol y 

el biodiésel. Uno de los principales problemas en la producción del biodiésel se debe al coste 

que supone su producción a causa del precio de las materias primas. Esto lleva a una búsqueda 

del aprovechamiento de la glicerina como principal subproducto del proceso. La biorrefinería 

consiste en dicho aprovechamiento para conseguir que la producción de biodiésel sea 

competitiva y viable económicamente. 

 

En la obtención del biodiésel por medio de la transesterificación de aceites vegetales o 

grasas animales se obtiene como subproducto la glicerina. La glicerina es un producto químico 

con numerosas aplicaciones en la industria. Debido al incremento en la producción de biodiésel 

la producción de glicerina también ha aumentado considerablemente. Es por ello que hay que 

buscar nuevas rutas que den salida a la glicerina para minimizar la cantidad de la misma 

desechada como residuo. En la actualidad, se dirigen los estudios a la valorización de la glicerina 

para la obtención de hidrógeno, gas de síntesis rico en hidrógeno y diversos productos químicos.  
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El reformado de la glicerina como subproducto del biodiésel (bio-glicerina) para la 

obtención de hidrógeno está cobrando mayor importancia en la actualidad debido al gran 

número de aplicaciones del hidrógeno en la industria química y para la generación de energía 

como gas de síntesis (mezcla de gases de monóxido de carbono e hidrógeno). Además está en 

auge el estudio de las pilas de combustible, que emplean hidrógeno como fuente de energía 

para la obtención de energía eléctrica. 

 

El estudio presentado en este Trabajo Fin de Grado se centra en la valorización 

energética de la bio-glicerina para la obtención de gas de síntesis mediante el reformado con 

vapor de agua (SR) y el reformado en fase acuosa (APR). El proceso de reformado con vapor de 

agua se realiza a presión atmosférica y a una temperatura de 650 °C, mientras que el reformado 

en fase acuosa se realiza a una presión de 33 bar y una temperatura de 227 °C. En el caso del 

APR la reacción transcurre en fase líquida, lo que implica un menor aporte energético al no tener 

que llevarla a la vaporización como ocurre en el caso del reformado con vapor. Los reformados 

se realizan en instalaciones a pequeña escala de laboratorio con equipos suministrados por la 

empresa PID (“Process Integral Development Eng&Tech S.L.”), que operan a presión y en 

continuo. 

 

Este trabajo está enmarcado dentro del proyecto: “Reformado en fase acuosa de 

corrientes residuales de varios procesos industriales” (ENE2010-18985) que se está 

desarrollando en el Grupo de Procesos Termoquímicos del Instituto de Investigación en 

Ingeniería de Aragón (I3A). 

 

Concretamente el trabajo llevado a cabo en este TFG analiza los procesos desde un 

punto de vista energético. Para ello se utilizan resultados experimentales previamente 

obtenidos en el laboratorio [1,2]. 
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1.2 Objetivos 

El principal objetivo en este Trabajo Fin de Grado es el estudio energético de la 

valorización de la glicerina mediante el reformado con vapor de agua (SR) y mediante el 

reformado en fase acuosa (APR), y la comparación de ambos procesos. 

Para alcanzar dicho objetivo se han establecido los objetivos parciales planteados a 

continuación: 

- Estudio del proceso químico que tiene lugar en los reformados de la glicerina 

con vapor de agua (SR) y en fase acuosa (APR). 

- Estudio de la influencia de la concentración de glicerina en el caudal de 

alimentación sobre el rendimiento a hidrógeno para el reformado con vapor 

de agua. 

- Estudio de la influencia de la concentración de glicerina en el caudal de 

alimentación sobre el rendimiento a hidrógeno para el reformado en fase 

acuosa. 

- Comparación de los dos procesos de valorización de la glicerina, reformado 

con vapor de agua y reformado en fase acuosa. 

Los capítulos que estructuran el presente trabajo muestran el desarrollo de los 

anteriores objetivos parciales para alcanzar el objetivo principal. En el capítulo 2 se recoge un 

estudio de la actualidad energética, con una revisión de las técnicas empleadas para el 

aprovechamiento energético de la glicerina en su conversión a hidrógeno, así como el 

aprovechamiento del mismo hidrógeno. En el capítulo 3 se presenta una descripción de los 

sistemas experimentales empleados para obtener los datos. Los cálculos y los resultados 

obtenidos en el estudio energético del reformado catalítico con vapor de agua y en el reformado 

catalítico en fase acuosa se encuentran en el capítulo 4, así como el análisis de la influencia de 

la concentración de glicerina en la alimentación y una comparación de ambos procesos 

atendiendo a los resultados obtenidos. Por último, en el capítulo 5 se recogen las principales 

conclusiones del trabajo. 
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2. ANTECEDENTES 

2.1  Introducción 

A consecuencia de las revoluciones industriales de los siglos XVIII y XIX se produjo 

un incremento muy importante en el consumo de energía. Además la demanda de energía 

continúa aumentando para mantener el nivel de crecimiento económico y social de la 

sociedad actual. Los combustibles fósiles (carbón, petróleo y gas natural) representan la 

principal fuente de energía empleada en la actualidad.  

El aumento de la preocupación social por el medio ambiente lleva consigo la 

búsqueda del desarrollo sostenible. Esto se debe a que los combustibles fósiles no 

representan una fuente de energía sostenible al no ser fuentes renovables. Son recursos 

limitados cuyas reservas disminuyen en gran medida conforme aumenta la demanda 

energética a nivel mundial. Además, su uso continuo representa un peligro para el medio 

ambiente al producir un incremento en las emisiones de CO2 a la atmósfera, siendo el CO2 el 

principal gas causante del efecto invernadero [3]. 

Para resolver estos problemas, en la actualidad se está investigando en nuevas 

alternativas para los combustibles fósiles, como son los biocombustibles o productos 

químicos basados en fuentes renovables de energía. Estos biocombustibles son los 

obtenidos a partir de la biomasa y, al contrario que los combustibles fósiles, no implican un 

incremento neto en las emisiones de CO2. De usarse los combustibles de origen vegetal en 

su estado 100% puro sería inocuo para el medio ambiente ya que el CO2 emitido a la 

atmósfera durante la combustión del biocombustible es neutro al ser el mismo que las 

plantas empleadas para su obtención absorbieron para su crecimiento en el proceso de 

fotosíntesis. Es lo que se denomina  un ciclo cerrado de CO2. La biomasa es la principal 

alternativa considerada para obtener energía a partir de una fuente renovable [4]. Esta 

solución permite reducir la dependencia de los combustibles fósiles y conservar el medio 

ambiente a la vez que favorece el desarrollo socioeconómico del medio rural  (al favorecer 

la producción de cultivos destinados a biomasa). 

Debido a la gran variedad de transformaciones que permiten convertir la biomasa 

en energía, cada vez son más los procesos destinados a la obtención de energía que hacen 

uso de la biomasa. Algunos de estos procesos consisten en la obtención de carbón vegetal 
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y gas de síntesis mediante pirólisis de la biomasa y en la oxidación de hidrocarburos para 

obtener dióxido de carbono, vapor de agua y energía térmica [5]. 

La biorrefinería trata de valorizar los subproductos obtenidos de las 

transformaciones de la biomasa para rentabilizar al máximo el empleo de la misma. A nivel 

industrial, los principales productos obtenidos de las transformaciones de la biomasa son 

biocombustibles, como el biodiésel y el bioetanol, y productos químicos. Para que estos 

procesos de obtención de biocombustibles resulten económicamente viables se debe 

otorgar importancia al papel de la biorrefinería.  

El biodiésel es un biocombustible líquido producido a partir de un aceite vegetal o grasa 

animal, con una calidad similar al gasóleo obtenido del petróleo, para su uso como 

biocarburante. Se obtiene por la transesterificación de triglicéridos (molécula con grupos éster). 

El biodiésel son ésteres metílicos de ácidos grasos (FAME) cuyas propiedades define la norma 

EN 14214. 

La transesterificación consiste en combinar el triglicérido (aceite, generalmente 

empleado de origen vegetal aunque también puede emplearse de origen animal) con un alcohol 

ligero, normalmente metanol, a menudo en presencia de un catalizador, obteniendo como 

producto el éster metílico. Como principal subproducto del proceso se obtiene la glicerina.  

La glicerina subproducto se obtiene en grandes cantidades y con un precio de venta 

bajo. Es de apariencia oscura y viscosa, y se caracteriza por no  ser de alta pureza. Se puede 

aumentar la pureza de la glicerina pero es un proceso caro, esto conlleva a que gran parte de la 

glicerina sea considerada como residuo. Parte de la glicerina es quemada para obtener energía, 

pero es de bajo poder calorífico,  entre 2.800 y 3.500 kcal/kg. Esto hace que sea incapaz de 

mantener la llama en un quemador convencional, situación que empeora con la presencia de 

agua en la mezcla. La combustión de glicerina se hace difícil sin un combustible adicional [6]. Por 

ello la biorrefinería adquiere un papel importante en  la producción del biodiésel, para valorizar 

la glicerina logrando rentabilizar económicamente el caro proceso de obtención de biodiésel. 
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2.2 Glicerina 

2.2.1 Obtención 

El 1,2,3-propanotriol, también conocido como glicerina o glicerol, es un alcohol con tres 

grupos hidróxilos (-OH) y de fórmula química C3H8O3. 

La glicerina aparece en forma líquida a la temperatura ambiental de 25 °C y se 

caracteriza por tener un alto punto de ebullición (290 °C), escasa presión de vapor y alta 

viscosidad. Se trata de un líquido higroscópico, inodoro e incoloro y no es tóxico ni irritante. Es 

un compuesto biodegradable y reciclable y presenta una elevada capacidad para disolver 

compuestos orgánicos e inorgánicos, lo que convierte a la glicerina en un disolvente alternativo 

a los disolventes orgánicos comunes. 

La glicerina puede obtenerse a partir de aceites vegetales o grasas animales por medio 

de distintas reacciones. Estas reacciones son la saponificación (Figura 2.1), que consiste en la 

hidrólisis básica de un triglicérido para generar alcohol (glicerina) y jabones (los ácidos 

resultantes de la hidrólisis reaccionan a la vez con la base de la disolución obteniendo sales 

orgánicas, jabones), y la transesterificación de triglicéridos para producir biodiésel [7].   

 

Figura 2.1 Saponificación de triglicéridos.  

La transesterificación, como se representa en la Figura 2.2 consiste en la reacción de 

una molécula de triglicérido (aceite vegetal o grasa animal) con tres moléculas de alcohol (etanol 

o metanol, siendo este último el más común) produciendo tres moléculas de éster (biodiésel 

producto) y una molécula de glicerina. Este proceso se realiza a menudo en presencia de un 

catalizador, pudiendo ser tanto ácido como básico,  para mejorar la velocidad y rendimiento de 

la reacción. Este catalizador es comúnmente básico para dar ésteres etílicos o metílicos de 

ácidos grasos y la glicerina subproducto.  
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Figura 2.2 Transesterificación de triglicéridos. 

El proceso de transesterificación consiste en tres reacciones consecutivas donde el 

triglicérido pasa a convertirse en diglicérido, de diglicérido pasa a monoglicérido y, finalmente, 

a glicerina. Estas reacciones son reversibles y en todas ellas se consume un mol de alcohol para 

producir un mol de éster. La serie de reacciones puede observarse en la Figura 2.3. 

 

Figura 2.3 Transesterificación de triglicéridos por etapas [7]. 

Aunque también puede emplearse grasa animal, la principal fuente de aceite para la 

obtención del biodiésel es el aceite vegetal, tanto virgen como reciclado. El aceite vegetal virgen 

se extrae de la semilla cultivada siendo refinado antes de emplearlo en el proceso de producción 

del biodiésel. Los aceites más utilizados son la colza, la soja, el girasol y la palma; siendo la colza 

el más común al ser la planta oleaginosa con mayor rendimiento a aceite.  
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También se puede emplear el aceite reciclado procedente de la recogida en sectores 

como hostelería y alimentarios, cocinas domésticas, etc. De esta manera se protege el medio 

ambiente al evitar el vertido de aceites previniendo la contaminación tanto de las aguas 

superficiales como de las subterráneas. 

 

2.2.2 Aplicaciones 

Debido al bajo precio de la glicerina y a sus propiedades físicas y químicas, la glicerina 

es empleada para diversos usos en distintos sectores. La glicerina abarca sectores como el 

correspondiente a la alimentación (23% de la glicerina se destina a este sector), al cuidado 

personal y bucal (13% y 20% respectivamente), industria tabaquera (12%), etc., [8]. A 

continuación se detallan diversas aplicaciones de la glicerina. 

 
Uno de los sectores en los que más salida ha tenido la glicerina es en el área de la 

medicina, farmacia y en cosméticos. Las aplicaciones en este sector son: 

- Elaboración de cosméticos como jabones y productos para el cuidado del pelo y de la 

piel. La glicerina  da suavidad y blancura a la piel y es humectante. 

- Elaboración de medicamentos para alergias, jarabes, pasta de dientes y enjuagues 

bucales. 

- Supositorios de glicerina usados como laxante.  

- Empleada en lubricantes y humectantes oftalmológicos. 

- Para fabricar lacas de uñas y pinturas, la glicerina se emplea en los barnices que se 

utilizan como acabados. 

 
Otro de los sectores en los que se emplea la glicerina es la industria alimentaria. Se usa 

tanto en comestibles como en bebidas debido a las propiedades de la glicerina de humectante 

y disolvente, así como edulcorante y conservante: 

- Edulcorante, al ser tan dulce como el propio azúcar común, siendo la glicerina más 

calórica pero con la ventaja de que no produce caries. 
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- Empleada en la comida preparada baja en calorías como espesante, edulcorante y 

conservante. 

- Agente espesante en los licores. 

- Empleada como disolvente para preparar extractos de té, café y otros extractos de 

hierbas al ser un disolvente sin alcohol. 

- Disoluciones de glicerina empleadas en la agricultura para el tratamiento de la semilla 

de cereales para favorecer la germinación. 

 
Por último, el resto de aplicaciones de la glicerina están relacionadas con la industria, en 

especial con la industria química.  

- Empleado como anticongelante al bajar el punto de fusión del agua por el descenso 

crioscópico. 

- Elaboración de resinas alquídicas, empleadas como aislantes. 

- Fluido separador en tubos capilares de instrumentos. 

- Baño calefactor para temperaturas superiores a los 250 °C. 

- Lubricación de máquinas específicas al no ser tóxica (máquinas empleadas en la 

industria alimentaria). 

- Producción de materiales plásticos como materiales transparentes de embalaje. 

- Componente de la disolución empleada en los cigarrillos electrónicos. Y En la industria 

tabacalera, empleada por su capacidad higroscópica regulando la humedad para 

eliminar el sabor desagradable e irritante del humo del tabaco. 

- En la industria textil. Al proporcionar elasticidad y suavidad a las telas. 

- En la industria del cuero. Para las disoluciones empleadas para preservar las pieles y 

curtirlas. 

- Fabricación de explosivos, como la nitroglicerina. También en otras aplicaciones 

militares como enfriar los cañones de las armas de fuego. 
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Debido al reciente aumento en la producción de biodiésel como consecuencia del auge 

en el uso de biocombustibles, se genera una gran cantidad de glicerina subproducto. Estas 

grandes cantidades suponen un exceso de glicerina respecto a las demandas del mercado. Para 

algunos de los usos de la glicerina se requiere que ésta sea de alta pureza. La glicerina 

subproducto de la obtención de biodiésel es glicerina de baja pureza que hay que valorizar. 

La glicerina presenta un abanico de posibilidades en la industria química ya que puede 

producir distintos productos químicos mediante reacciones de esterificación, oxidación y 

deshidratación, siendo los más estudiados los procesos mediante los cuales produce gas de 

síntesis con alto contenido en hidrógeno. 

 

2.3 Hidrógeno 

2.3.1 Obtención 

El gas hidrógeno (H2) está compuesto por moléculas diatómicas de H elemental, siendo 

un gas incoloro, inodoro e insípido en condiciones normales. Empleado como combustible 

genera más energía por peso que el resto de combustibles empleados en la actualidad ya que 

su contenido energético es de 120 kJ/g, cantidad bastante mayor que para el caso de la gasolina 

o  del gas natural, cuyos contenidos energéticos son de 45,26 kJ/g y 50,19 kJ/g respectivamente. 

Además presenta la ventaja de no producir emisiones tóxicas en su combustión como el CO, 

CO2, SO2, ni emisiones de partículas.   

A pesar de que el hidrógeno monoatómico es el elemento más abundante del universo 

el hidrógeno diatómico no se encuentra fácilmente en la naturaleza al estar normalmente 

combinado formando compuestos químicos. Esto hace necesario la producción de gas 

hidrógeno a nivel industrial. El hidrógeno es empleado mayoritariamente en refinerías de 

petróleo y en la industria química. Dependiendo del método aplicado para la producción de gas 

hidrógeno se obtendrá distinta pureza en el gas de síntesis obtenido (contenido en hidrógeno 

en la mezcla de gas). 

 

La producción de hidrógeno en la actualidad se basa mayormente en hidrocarburos 

obtenidos de combustibles fósiles, llegándose a producir más del 90% del hidrógeno por medio 

de estos combustibles, lo que implica un aumento de las emisiones de CO2 a la atmósfera así 

como el consiguiente agotamiento de las reservas de dichos combustibles. Para disminuir la 
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repercusión negativa de los combustibles fósiles sobre el medio ambiente, se buscan nuevos 

métodos de obtención de hidrógeno a partir de fuentes renovables. De esta forma se trata 

también de evitar la dependencia de la energía de los combustibles fósiles.  

Los métodos de producción de hidrógeno a partir de combustibles fósiles comentados 

a continuación obtienen un gas de síntesis formado mayoritariamente por CO y H2, con el 

inconveniente de que suponen un aumento en las emisiones de CO2 a la atmósfera.  

- Reformado catalítico con vapor de agua (Steam Reforming, SR) 

Es el método más empleado para la obtención de hidrógeno en la actualidad, 

llegando a producir hasta el 50% del hidrógeno obtenido por medio de hidrocarburos 

[9]. La alimentación de hidrocarburos reacciona con vapor de agua en presencia de 

un catalizador generando un gas de síntesis formado mayoritariamente por 

hidrógeno, monóxido de carbono y dióxido de carbono. Es uno de los métodos más 

empleados ya que alcanza altos rendimientos a hidrógeno, dependiendo del 

catalizador empleado en el proceso puede llegar a rendimientos entre el 70% y el 

90% [9]. Es un proceso endotérmico que opera a altas temperaturas y bajas 

presiones. La reacción global del proceso es la siguiente: 

CnHmOk + vapor → óxidos de carbono + H2       ∆H > 0 kJ/mol                  (1) 

Las dos etapas en las que se divide el reformado con vapor de agua son la 

descomposición del hidrocarburo alimentado en fase gaseosa (Ec.2) y la reacción de 

intercambio “water-gas shift” (WGS) representada en la (Ec.3): 

CnH2n+2  + nH2O →  nCO + (2n + 1)H2        ∆H > 0 kJ/mol                               (2) 

CO + H2O ↔  CO2 +H2          ∆H298K
° = −41 kJ/mol                       (3) 

La reacción global es endotérmica por lo que el proceso se realiza a altas 

temperaturas (700 °C), sin embargo esto provoca que el equilibrio de la reacción de 

intercambio (WGS) se desplace de manera que la producción de hidrógeno se vea 

desfavorecida.  

El reformado con vapor de agua presenta la ventaja de que, a pesar de que sea 

necesario operar a altas temperaturas, presenta un alto rendimiento a hidrógeno y 

alta conversión del hidrocarburo alimentado. 
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- Oxidación parcial (Gasificación, PO) 

La oxidación parcial consiste en la combustión incompleta de la alimentación con 

oxígeno. El oxígeno, que puede ser alimentado como oxígeno puro o aire, se 

encuentra en una proporción menor a la estequiométrica. Esto se debe a que en caso 

de añadirse un exceso de aire, la alimentación se oxida completamente produciendo 

mayoritariamente dióxido de carbono y agua. 

El proceso, que puede realizarse con o sin catalizador, se representa con la (Ec.4): 

CnHmOk + aire → óxidos de carbono + H2 + N2             ∆H > 0 kJ/mol             (4) 

Para el proceso de oxidación parcial en el cual la materia prima empleada sean 

hidrocarburos, la reacción de oxidación queda de la forma (Ec.5): 

CnHm +
n

2
O2  ↔  nCO+

m

2
H2    ∆H > 0 kJ/mol           (5) 

 

- Reformado autotérmico (Autothermal Reforming, ATR) 

En el proceso del reformado autotérmico se combinan los efectos del reformado con 

vapor de agua y de la oxidación parcial ya que la alimentación de hidrocarburos se 

hace reaccionar con vapor de agua y O2 o aire. Las reacciones se realizan en presencia 

de un catalizador y se desarrollan de manera conjunta obteniendo un gas de salida 

rico en hidrógeno maximizando su producción, lo que le otorga mayor atractivo que 

los otros dos métodos [10]. La (Ec.6) representa la reacción global del reformado 

autotérmico. 

CnHmOk + aire + vapor → óxidos de carbono + H2 +N2      ∆H = 0 kJ/mol      (6) 

No resulta necesario en este método un aporte externo de calor, ya que el calor 

generado por la reacción de oxidación es absorbido por el reformado con vapor de 

agua para llevar a cabo la reacción. Esto representa una ventaja frente al reformado 

con vapor de agua al evitar el aporte externo de calor, sin embargo el rendimiento a 

hidrógeno de este proceso es menor que en el caso del reformado con vapor de agua. 

 

El hidrógeno puede obtenerse a partir de fuentes renovables mediante un gran número 

de procesos disponibles, con la ventaja de no producir emisiones contaminantes a la atmósfera 

y no producir un incremento neto en las emisiones de CO2 al producirse un ciclo completo de 

CO2 en el caso de la biomasa. 
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- Electrólisis del agua 

La electrólisis del agua es uno de los procesos de producción de hidrógeno más 

desarrollado. A pesar de ser más caro y requerir mayor energía que otras 

posibilidades de reformado, ofrece la ventaja de producir hidrógeno de alta pureza, 

requisito necesario en las pilas de combustible. Además supone la obtención de 

hidrógeno sin emisiones contaminantes a la atmósfera. 

El sistema está formado por varias celdas electrolíticas. Cada celda consiste en dos 

electrodos (ánodo y cátodo) separados por un electrolito. El principio de la 

electrólisis se basa en la aplicación de una corriente continua sobre agua para 

provocar la descomposición de ésta en hidrógeno y oxígeno (Ec.7) [11].  

H2O→ H2 +
1

2
O2                                               (7) 

La tecnología electrolítica más común es la alcalina. A pesar del alto coste y de una 

menor eficiencia, es el sistema de electrólisis más desarrollado. Un electrolito es una 

disolución acuosa. Una membrana situada entre los dos electrodos separa el 

hidrógeno generado en el cátodo del oxígeno generado en el ánodo. El electrolito 

circula por el sistema manteniendo la concentración de iones y refrigerando el 

sistema.  

El agua se descompone en el cátodo en H2 y en ión hidróxilo (OH-). El ión hidróxilo 

pasa por la membrana y el electrolito al ánodo, donde se forma el O2. 

Para que se trate de un hidrógeno obtenido de fuentes renovables, la electricidad 

necesaria debe tener este origen, por tanto se acoplará la electrólisis con la 

producción de electricidad mediante energía eólica o energía solar, entre otras. 

 

- Biomasa 

La biomasa es la materia orgánica originada en un proceso biológico, espontáneo o 

provocado, de origen vegetal o animal, incluyendo la materia orgánica de las aguas 

residuales y los lodos de depuradora, así como la fracción orgánica de los residuos 

sólidos urbanos, y otros residuos derivados de las industrias. Se trata de una fuente 

de energía renovable, ya que al tratarse de un circuito cerrado de materias primas 

es inagotable siempre que se gestione sosteniblemente. El carácter de renovable 

también se debe a su papel en el tratamiento de residuos y en el aprovechamiento 

de terrenos y usos. 
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Se considera como una fuente alternativa de energía limpia, con las ventajas de ser 

renovable, emitir bajos niveles de CO2 y tener bajo contenido en sulfuros. Entre las 

distintas fuentes renovables, la biomasa tiene la gran ventaja de ofrecer una 

relativamente alta cantidad de energía y una producción continua de hidrógeno 

debido a la posibilidad de almacenamiento de la materia prima, siendo ésta además 

abundante.  

La biomasa puede ser transformada en hidrógeno y en gas de síntesis rico en 

hidrógeno por medio de procesos termoquímicos y biológicos [12]. Los métodos de  

conversión más importantes debido a sus altas eficiencias y productividades son los 

procesos termoquímicos. Éstos incluyen principalmente la pirólisis, la gasificación y 

gasificación en condiciones supercríticas y el reformado con vapor de agua.  

En especial, el proceso termoquímico más prometedor para producir hidrógeno a 

partir de biomasa es la gasificación, en la cual la biomasa se descompone 

térmicamente en presencia de un agente gasificante para generar gas de síntesis. 

Debido al coste energético de secar la biomasa en disolución, la gasificación solo es 

energéticamente sostenible si el contenido en humedad de la biomasa es lo 

suficientemente bajo. 

Para biomasa con alto contenido en humedad, la gasificación en condiciones 

supercríticas representa una alternativa energéticamente más sostenible que la 

gasificación clásica al no requerir un secado previo de la biomasa. Sin embargo, las 

complejidades técnicas relacionadas con el estado supercrítico (para el agua, 

temperaturas superiores a 374 °C y presiones superiores a 221 bar) han dificultado 

el desarrollo de dicho proceso y la valorización de la biomasa en disolución [13]. 

Una alternativa a la gasificación supercrítica para biomasa en disolución es el 

reformado en fase acuosa. Se trata de un proceso relativamente reciente [14] que 

emplea presiones alrededor de 40 bar y temperaturas en torno a 225 °C. 

 

2.3.2 Aplicaciones 

El interés por el uso del hidrógeno está creciendo en la industria. Esto se debe 

principalmente a que el hidrógeno tiene un amplio uso en la industria química como materia 

prima. La principal aplicación del hidrógeno como combustible en la actualidad corresponde a 

la industria espacial. Esto se debe a que el hidrógeno es el único combustible que puede ser 

usado en dicho sector. Sin embargo, se espera que el hidrógeno vaya cobrando mayor 
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importancia en el sector energético, llegando a convertirse en la principal fuente de energía 

renovable y vector energético. 

Las aplicaciones más importantes en las que se emplea actualmente el hidrógeno están 

relacionadas con la industria química y la industria petroquímica. El consumo de dichas 

industrias en la producción de amoniaco y en el refinado del petróleo corresponde a más del 

95% del hidrógeno disponible en el mundo [11]. 

El resto del hidrógeno disponible es usado en diversas aplicaciones industriales como la 

industria vítrea, la elaboración de semiconductores, en el soldeo y en la industria alimentaria.  

 En el campo de la energía se pueden encontrar otros usos para el hidrógeno, como en 

los sectores industriales y de transporte. También están creciendo las experimentaciones con 

hidrógeno en el sector de los móviles y ordenadores. Uno de los campos en los que más se están 

desarrollando estudios sobre el hidrógeno es en su aplicación en las pilas de combustible. 

A continuación, se explican en detalle las diversas aplicaciones del hidrógeno en los 

distintos sectores nombrados. 

En la industria química la aplicación más importante del hidrógeno, como ya se ha 

indicado, es el proceso de obtención de amoniaco. Además del amoniaco, también es de 

importancia la obtención de metanol partiendo del hidrógeno como reactivo. 

- Proceso de síntesis del amoniaco.  

En la actualidad, el método más empleado para la obtención de amoniaco es el 

proceso de Haber-Bosch. El método implica la reacción de hidrógeno y nitrógeno en 

fase gas para la obtención de amoniaco en presencia de un catalizador para mejorar 

la cinética de la reacción (Ec.8). El método de síntesis del amoniaco es ampliamente 

utilizado debido a las numerosas aplicaciones en las que se emplea el amoniaco, de 

ahí que gran parte del hidrógeno disponible se dedique a la obtención de este 

producto. 

3H2(g) +N2(g)
Catalizador
→         2NH3(g)                 (8) 

- Proceso de síntesis del metanol.  

A partir de la década de 1920 se han desarrollado y mejorado las técnicas para la 

obtención del metanol. En 1923 los químicos Mittasch y Mathias desarrollaron un 

método para convertir un gas de síntesis, mezcla de hidrógeno con óxidos de 
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carbono, en metanol. La síntesis del metanol consiste en la reacción catalítica de 

monóxido de oxígeno con hidrógeno para la obtención de metanol (Ec.9). 

2H2 + CO
Catalizador
→         CH3OH                     (9)  

Otra de las aplicaciones ya nombradas es el papel de hidrógeno en la industria vítrea y 

en la industria metalúrgica. 

- Industria vítrea. 

La importancia del hidrógeno reside en el método de elaboración del vidrio flotado 

siendo el método más empleado en la actualidad en la construcción. El vidrio flotado 

consiste en una plancha de vidrio fabricada haciendo flotar el vidrio fundido sobre 

una capa de estaño fundido, proporcionándole al vidrio un grosor uniforme y una 

superficie plana. La cámara en la que se forma el vidrio flotado contiene una 

atmósfera protectora para evitar la oxidación del estaño compuesta por nitrógeno 

e hidrógeno, lo que implica un papel importante del hidrógeno en la elaboración de 

dicho vidrio. 

 

- Industria metalúrgica. 

La mayor aplicación del hidrógeno dentro de la industria metalúrgica corresponde 

al soldeo. El hidrógeno se emplea en las mezclas de las distintas corrientes gaseosas 

empleadas en los procesos de corte y soldadura de metales, y además se utiliza para 

tratamientos superficiales y tratamientos de metales en atmósferas especiales, 

como se ha indicado también para la industria vítrea. 

 

En la industria alimentaria el hidrógeno se emplea para mejorar las propiedades de los 

alimentos, como disminuir el olor y color de los mismos, a la vez que actúa como conservante 

para los alimentos envasados al evitar el crecimiento de microorganismos. 

 

Una de las aplicaciones del hidrógeno que está cobrando más protagonismo en la 

actualidad corresponde a las pilas de combustible. 

La pila de combustible, también llamada célula o celda de combustible, es un dispositivo 

electroquímico en el cual un combustible y un oxidante, suministrados como un flujo continuo 

desde el exterior, sufren una reacción química controlada que suministra directamente energía 

eléctrica a un circuito exterior.  
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La pila de combustible se caracteriza por tener una alta eficiencia y un mínimo impacto 

ambiental. La eficiencia en la obtención de energía en la pila de combustible, al estar ésta exenta 

de procesos térmicos o mecánicos intermedios, no se ve limitada por la eficiencia del Ciclo de 

Carnot, lo que permite obtener unas eficiencias del 40-60%, pudiendo llegar a un 85% en 

cogeneración si se captura el calor residual para su uso. Además, al no implicar el proceso la 

combustión de los reactivos se minimizan las emisiones contaminantes a la atmósfera. 

El hidrógeno se puede emplear en las pilas de combustible como combustible de la 

reacción electroquímica. Al combinarse en el proceso Redox con el oxígeno se obtiene la 

corriente eléctrica y, como subproducto del proceso, corriente de agua, vapor o líquida. 

Las reacciones Redox dadas en los electrodos de las pilas de combustible son las 

reacciones de oxidación del ánodo (Ec.10) y la reacción de reducción del cátodo (Ec.11): 

Ánodo:           H2 →  2H
+ + 2e−                        (10) 

Cátodo:    
1

2
O2 + 2H

+ + 2e− → H2O          (11) 

Reacción Global:  H2 +
1

2
O2 → H2O           (12) 

 

La pila de combustible se compone de tres partes: 

- Electrolito: Es a la vez conductor iónico (en el caso de las pilas de hidrógeno 

permite el paso de iones H+ al cátodo y separa los electrones e-), aislante 

eléctrico y separador del cátodo y el ánodo. Puede ser líquido o sólido. 

- Electrodos: En su superficie tienen lugar las reacciones electroquímicas. En 

el ánodo se oxida el combustible y en el cátodo se reduce el agente 

oxidante. En las pilas de hidrógeno el combustible es el propio hidrógeno, y 

la reacción producida en el cátodo corresponde al O2 con H+. 

- Placas o platos bipolares: Elementos colocados en los apilamientos de 

celdas unitarias de combustible. Sirven para separar las celdas 

distribuyendo uniformemente el flujo de gas sobre la misma, y para evacuar 

el H2O producto en las pilas de hidrógeno. 

Debido a que el oxígeno empleado como oxidante para las pilas de combustible se 

obtiene típicamente del aire ambiental, su uso en ambientes sin aire como en el caso del espacio 

exterior o debajo del agua lleva a la necesidad de la adición de un tanque de oxígeno a la mezcla. 
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Esto implica una notable disminución del rendimiento energético del sistema de la pila de 

combustible. En el estudio de alternativas al oxígeno como oxidante, se realizan en la actualidad 

numerosas investigaciones sobre el peróxido de hidrógeno (H2O2) [15]. En estas pilas de 

combustibles la disolución electrolítica consistiría en una mezcla de peróxido de hidrógeno y 

ácido sulfúrico. 

Las aplicaciones en las que se emplean las pilas de combustible son las siguientes: 

- Lugares remotos al ser un sistema compacto, ligero y no tener piezas 

móviles importantes, como naves espaciales, estaciones meteorológicas 

alejadas, parques grandes, localizaciones rurales, y en ciertos usos militares. 

- Aplicaciones de cogeneración para viviendas, edificios de oficinas y fábricas. 

Este tipo de sistema genera energía eléctrica de manera constante y al 

mismo tiempo produce aire y agua caliente gracias al calor que desprende. 

Esta cualidad hace de la pila de combustible un sistema óptimo para 

hospitales y centros cuyo consumo de energía y calor es continuo.  

- Fuentes de energía de pequeños dispositivos portátiles como móviles y 

ordenadores y de vehículos de cualquier tipo (desde coches hasta barcos). 

 

2.4 Métodos de obtención del hidrógeno a partir de la glicerina 

La glicerina es una materia prima alternativa a los combustibles fósiles en la obtención 

del hidrógeno. En la actualidad se han desarrollado diversos métodos de producción de gas de 

síntesis rico en hidrógeno a partir de la glicerina [3]. Los distintos métodos son: reformado con 

vapor de agua, oxidación parcial o gasificación, reformado autotérmico, reformado en fase 

acuosa y reformado en agua supercrítica. Estas técnicas han sido explicadas con anterioridad.  

Dado que este Trabajo de Fin de Grado se centra en el estudio de las técnicas de 

reformado de la glicerina con vapor de agua y en fase acuosa, a continuación se detallan los 

procesos de reformado catalítico de glicerina con vapor de agua y de reformado catalítico de 

glicerina en fase acuosa. 
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2.4.1 Reformado con vapor de agua  

El reformado catalítico de glicerina con vapor de agua (SR) es uno de los métodos más 

importantes en la obtención de hidrógeno a partir de esta materia prima [9]. Se trata de la 

obtención de un gas rico en hidrógeno a partir de una disolución de glicerina en presencia de un 

catalizador. El gas de síntesis obtenido está compuesto mayoritariamente por hidrógeno y 

óxidos de carbono (CO y CO2). Es un proceso altamente endotérmico realizado en fase vapor. La 

reacción global del proceso de reformado en vapor de agua se representa en la (Ec.13). 

C3H8O3 + 3(H2O)v  → 3CO2 + 7H2   ∆H298K
° = 128 kJ/mol         (13) 

El proceso de reformado global corresponde a la suma de sus dos etapas principales, 

siendo la primera la descomposición de la glicerina, también llamada craqueo, por la que se 

obtiene CO y H2, como se observa en la (Ec.14), y la segunda etapa, la (Ec.15) correspondiente a 

la reacción de intercambio water-gas shift (WGS), reacción reversible por la que se obtiene CO2 

y H2. En la reacción global se observa como en el reformado por estequiometria se obtienen 7 

moles de H2 por cada mol de glicerina de alimentación.  

C3H8O3  
H2O
→   3CO + 4H2   ∆H298K

° = 251 kJ/mol                       (14) 

CO + H2O ↔  CO2 +H2   ∆H298K
° = −41 kJ/mol           (15) 

El proceso, que tiene lugar en fase vapor, se realiza a altas temperaturas (750 °C) y bajas 

presiones (presión atmosférica). Aunque el proceso global es endotérmico, ya que el craqueo 

absorbe más calor del que desprende la reacción water-gas shift al ser una reacción altamente 

endotérmica, la reacción de intercambio (WGS), al ser un proceso reversible y exotérmico, se ve 

desfavorecida a altas temperaturas, lo que conlleva una mayor formación de CO. 

La mezcla de gases obtenida como producto en el reformado catalítico de la glicerina 

con vapor de agua está constituida principalmente por H2, CO y CO2, pudiendo aparecer otros 

subproductos gaseosos en menores cantidades como el metano. 

 Una de las desventajas que presenta el reformado en fase vapor es el hecho de que a 

las altas temperaturas de operación los compuestos oxigenados dan lugar a reacciones 

secundarias de descomposición indeseadas que pueden favorecer la aparición de depósitos de 

carbono o coque sobre el catalizador. Esto además puede suponer una disminución del 

rendimiento a hidrógeno del proceso así como una rápida desactivación del catalizador. 
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2.4.2 Reformado en fase acuosa 

El reformado catalítico en fase acuosa (APR) permite obtener un gas de síntesis con alto 

contenido en hidrógeno. El proceso se realiza con la alimentación en fase líquida, en condiciones 

de bajas temperaturas (225 °C) y a presiones moderadas (30 MPa). Esto se debe a que la 

alimentación se debe mantener en estado líquido, lo que implica un menor consumo de energía 

al no tener que llevar la corriente de agua a vapor.  

Las bajas temperaturas favorecen la reacción de intercambio (WGS), obteniendo 

monóxido de carbono en menores cantidades que en el caso de reformado con vapor de agua, 

de manera que se obtiene hidrógeno y dióxido de carbono en un solo paso. 

Estas bajas temperaturas también implican la ventaja frente al reformado con vapor de 

agua de minimizar las descomposiciones a altas temperaturas de los compuestos oxigenados y 

la deposición de carbono en el catalizador.  

El proceso del reformado en fase líquida consiste en la descomposición de la glicerina 

en productos gaseosos y líquidos. Se producen gases como hidrógeno y monóxido de carbono 

(Ec.14) y mediante la reacción de intercambio “water-gas shift” (WGS) (Ec.15) el equilibrio se ve 

favorecido para la conversión de CO en H2 y CO2 debido a las bajas temperaturas del proceso. 

En la fase líquida ocurren reacciones de deshidratación, hidrogenación, deshidrogenación, entre 

otras, que generan productos líquidos como 1,2 propanodiol, acetol, etanol y etilenglicol [2]. 

En el caso del reformado en fase acuosa, al producirse a baja temperatura ocurren 

también reacciones secundarias de metanación favorecidas a bajas temperaturas y altas 

presiones, el hidrógeno reacciona con el monóxido de carbono (Ec.16) o con el dióxido de 

carbono (Ec.17) para formar metano. 

CO(g) + 3H2(g)  ↔  CH4(g) + H2O               (16) 

CO2(g) + 4H2(g)  ↔  CH4(g) + 2H2O               (17) 

Sin embargo, cabe destacar el hecho de que el proceso de reformado con vapor de agua 

obtiene un rendimiento a hidrógeno mayor que el obtenido en el caso del reformado en fase 

acuosa. 
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3. INSTALACIONES EXPERIMENTALES 

Para el Trabajo de Fin de Grado se han empleado los datos obtenidos en dos 

instalaciones experimentales distintas: una instalación preparada para el estudio del 

reformado catalítico de glicerina con vapor de agua y otra instalación para el reformado 

catalítico de glicerina en fase acuosa.  

 A continuación se muestra una descripción general de ambas instalaciones. Una 

descripción más detallada puede encontrarse en el Trabajo Fin de Máster de Sara Eito López 

[1]. 

 

3.1 Instalación experimental del reformado catalítico con vapor de agua 

(SR) 

El trabajo experimental del reformado catalítico de glicerina con vapor de agua se 

ha llevado a cabo en una instalación a pequeña escala de laboratorio que trabaja a presión 

atmosférica y en continuo. En la Figura 3.1 se presenta un esquema de la instalación 

utilizada para el reformado con vapor de agua. 

 

Figura 3.1 Esquema de la instalación experimental de reformado catalítico con vapor [9].  

El equipo empleado en la instalación fue “Microactivity Reference v3.0”, diseñado 

y fabricado por la empresa “Process Integral Development Eng&Tech S.L.” (PID). La 

instalación se compone de los siguientes equipos:  

- Reactor tubular de cuarzo que opera en lecho fijo. 

- Caja caliente  (Hot Box).  

- Horno de calentamiento (horno eléctrico situado en el interior de la caja 

caliente). 
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- Controladores digitales de temperatura suministrados por TOHO, modelo TTM-

005. 

- Tres controladores de flujo másico para los gases HI-TECH Bronkhorst, modelo 

EL-FLOW. 

- Bomba dosificadora de la disolución acuosa de los compuestos a reformar 

(HPLC) Gilson 307. 

- Sistema de separación líquido-gas basado en el efecto termoeléctrico de Peltier. 

- Cromatógrado de gases (Micro GC) Agilent M3000 series G2801A. 

- Software para el control de la instalación, registro de las variables de operación 

y la adquisición de datos.  

Los líquidos de la reacción se recogieron y analizaron mediante un analizador de 

carbono orgánico total (COT) y por cromatografía de gases (GC) utilizando un detector de 

ionización de llama (FID) para poder cuantificar los diferentes productos químicos. 

 

3.2 Instalación experimental del reformado catalítico en fase acuosa 

(APR) 

En el caso del estudio del reformado catalítico de glicerina en fase acuosa la 

instalación en la que se ha llevado a cabo trabaja a presiones moderadas y en continuo. La 

instalación empleada para el reformado en fase acuosa se representa en el esquema de la 

Figura 3.2. 

 

Figura 3.2 Esquema de la instalación experimental de reformado catalítico en fase acuosa [9].  
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Para esta instalación se empleó el equipo “Microactivity Reference v6.0”, diseñado 

y fabricado también por la empresa PID. La instalación se compone a su vez de los 

siguientes equipos: 

- Reactor tubular de acero inoxidable que opera en lecho fijo. 

- Caja caliente  (Hot Box).  

- Horno de calentamiento (horno eléctrico situado en el interior de la caja 

caliente). 

- Controladores digitales de presión y temperatura suministrados por TOHO, 

modelo TTM-005. 

- Tres controladores de flujo másico para los gases HI-TECH Bronkhorst, modelo 

EL-FLOW. 

- Bomba dosificadora de la disolución acuosa de los compuestos a reformar 

(HPLC) Gilson 307. 

- Sistema de separación líquido-gas basado en el efecto termoeléctrico de Peltier. 

- Cromatógrado de gases (Micro GC) Agilent M3000 series G2801A.  

- Software para el control de la instalación, registro de las variables de operación 

y la adquisición de datos.  

Tras la reacción catalítica los líquidos obtenidos fueron recogidos y analizados 

mediante un analizador de carbono orgánico total y por cromatografía de gases (GC) con 

un detector FID. 

 



 

 

 

 

 

 

 

Capítulo 4 
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4. CÁLCULOS ENERGÉTICOS 

4.1 Reformado catalítico de glicerina con vapor de agua  

El estudio del reformado catalítico de la glicerina con vapor de agua se ha desarrollado 

para datos experimentales y de equilibrio. 

Los estudios realizados en base a datos de equilibrio consideran una alimentación de 

glicerina en disolución acuosa con concentración en peso de glicerina del 5%, 8,49%, 17,17%, 

39,17% y 55,93%.  

Para una alimentación al 5% de glicerina en peso los resultados se han obtenido 

mediante el programa computacional Aspen Hysys, utilizando un módulo de reactor de Gibbs, 

según las propiedades seleccionadas por el paquete de propiedades PRSV. El software HYSYS 

permite desarrollar el proceso químico del reformado catalítico de glicerina con vapor de agua, 

simulando las condiciones de entorno en las que se desarrolla el proceso, para obtener los 

resultados de equilibrio buscados. De esta manera se obtienen los datos de rendimientos 

globales referidos a la alimentación al 5%, los cuales se reflejan en la Tabla 4.1. 

El resto de resultados de los equilibrios con las distintas concentraciones en peso de 

glicerina de 8,49%, 17,17%, 39,17% y 55,93%, se obtienen del Trabajo de Fin de Máster de Sara 

Eito López [1], también realizados mediante el software Hysys, con la misma configuración y 

propiedades. Los resultados obtenidos en el TFM se reflejan en la Tabla 4.1.  

Las especificaciones del proceso de reformado empleadas en el programa HYSYS del 

presente trabajo han sido definidas de manera que coinciden con las condiciones 

experimentales. El caudal de N2 se emplea en el reformado como gas portador y como gas de 

arrastre para facilitar el flujo de la alimentación hacia el reactor y el flujo de los productos 

formados en la reacción. El nitrógeno también permite cuantificar los gases formados a partir 

de los análisis  de cromatografía. 

Las condiciones de temperatura y presión a la entrada del proceso son de 25 °C y 1 atm. 

Los productos obtenidos en la reacción, a una temperatura de 650 °C son H2, CO, CO2, agua sin 

reaccionar y trazas de CH4. También se encuentra N2 en el gas de salida al ser un gas inerte que 

no reacciona en el proceso. Se consigue en el proceso una conversión de glicerina del  100%. 

Los rendimientos globales para la concentración de glicerina de 5% en la alimentación 

han sido obtenidos en moles de gas por mol de glicerina alimentada y representados en la Tabla 
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4.1. Sin embargo, los rendimientos obtenidos en el TFM han sido proporcionados en gramos de 

gas por gramo de glicerina alimentada. Partiendo de los datos de los rendimientos en masa, se 

obtienen los rendimientos globales de los gases en moles según la (Ec.16): 

Rto gasi (
molgas

molglicerina
) = Rto gasi (

ggas

gglicerina
) ×

Masa molarglicerina

Masa molargas i 
                       (16) 

Los rendimientos de equilibrio para el reformado con vapor de agua aparecen en la 

Tabla 4.1. 

Tabla 4.1 Rendimientos de equilibrio para reformado con vapor de agua. 

Concentración de glicerina 
(% en peso) 

5% 8,49% 17,17% 39,17% 55,93% 

S/C   (mol/mol) 32,37 18,12 8,22 2,66 1,34 

Rendimiento en el equilibrio 
(mol/mol glicerina) 

     

H2 6,887 6,808 6,670 5,888 4,646 

CO 0,102 0,177 0,378 0,940 1,837 

CO2 2,893 2,821 2,618 2,005 1,418 

CH4 0 0 0 0 0 

 

A partir de los datos obtenidos con el programa Hysys se ha procedido a realizar un 

balance de materia a las especies atómicas (C, H y O). No resulta necesario añadir un balance de 

materia para el nitrógeno dado que el N2 es un gas inerte que no participa en las reacciones que 

se llevan a cabo en el reformado, tan sólo actúa como gas de arrastre. El balance de materia se 

aplica según la reacción global del proceso (Ec.17) para una base de t=1min. 

a ∙ C3H8O3 + b ∙ H2O + c ∙ N2  → d ∙ H2 + e ∙ CO + f ∙ CO2 +  g ∙ CH4 + h ∙ N2 + i ∙ H2O       (17) 

Siendo a, b y c los moles de glicerina, agua y nitrógeno alimentados respectivamente, y 

d, e, f, g, h e i los moles de los respectivos productos obtenidos. 

En la Tabla 4.2 se presentan los moles de glicerina alimentada así como los moles de los 

compuestos obtenidos considerando un caudal de alimentación de 2 g/min, para una base de 1 

minuto, según las distintas concentraciones de glicerina a la entrada. También se muestran en 

la tabla las entalpías de combustión de los compuestos. Estas entalpías de combustión 

corresponden a 25 °C y agua en fase vapor y se obtienen mediante la base de datos NIST 

(National Institute of Standards and Technology). 

http://www.nist.gov/
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Tabla 4.2 Moles obtenidos en el reformado con vapor de agua y entalpías de combustión. 

Concentración 
de glicerina    
(% en peso) 

5% 8,49% 17,17% 39,17% 55,93% ΔHc,i 

S/C   (mol/mol) 32,37 18,12 8,22 2,66 1,34 
 

 (mol) (kJ/mol) 

Glicerina 
alimentada 

1,087E-3 1,846E-3 3,733E-3 8,515E-3 1,216E-2 -1.485,74 

H2 7,486E-3 1,257E-2 2,490E-2 5,014E-2 5,649E-2 -241,83 

CO 1,109E-4 3,275E-4 1,410E-3 8,002E-3 2,233E-2 -283,24 

CO2 3,145E-3 5,206E-3 9,771E-3 1,707E-2 1,724E-2 - 

CH4 0 0 0 0 0 -802,43 

 

En la Tabla 4.2 se puede observar la influencia de la concentración de glicerina en la 

alimentación sobre la cantidad y proporción de gases obtenidos. Las Figuras 4.1 (a-c) muestran 

la representación de los resultados indicados en la Tabla 4.2. En la Figura 4.1 (a) se presentan 

los moles de hidrógeno obtenidos para las distintas concentraciones de glicerina. Se observa 

cómo entre las concentraciones del 5% y del 39,17% el rendimiento a hidrógeno va aumentando 

considerablemente, mientras que a partir de concentraciones de glicerina superiores al 39,17% 

el crecimiento de la producción de hidrógeno es mucho menos pronunciado. Esto lleva a la 

conclusión de que concentraciones mayores del 40% de glicerina alimentada implican una 

notable disminución en el rendimiento a hidrógeno (Tabla 4.1). La Figura 4.1 (b) muestra los 

moles obtenidos en este caso de monóxido de carbono. Se puede apreciar como para 

concentraciones menores al 20% de glicerina en la alimentación, la obtención de monóxido de 

carbono es muy próxima a cero para después crecer pronunciadamente para concentraciones 

mayores. Se puede deducir que para concentraciones altas de glicerina alimentada se obtendrá 

un alto rendimiento a monóxido de carbono, aun siendo ésta en todo momento mucho menor 

que la obtenida de hidrógeno (Tabla 4.1). En la Figura 4.1 (c) se representan los moles obtenidos 

de dióxido de carbono. Se aprecia en la gráfica que la cantidad obtenida de dióxido de carbono 

para concentraciones de glicerina alimentada menores al 50% es mayor que la obtenida de 

monóxido de carbono, mientras que para concentraciones mayores la cantidad de CO es mayor 

que la de CO2. Esto se debe a que para el dióxido de carbono la influencia de la concentración 

de glicerina en el proceso es la opuesta a la del monóxido. Los moles de dióxido de carbono van 

aumentando conforme aumenta la concentración de glicerina pero, a partir del 39,17% de 
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concentración de glicerina, la cantidad de dióxido de carbono obtenida se mantiene 

prácticamente constante. 

La evolución de los rendimientos de los gases se debe al equilibrio de la reacción de 

water-gas shift (Ec.15). Conforme aumenta la concentración de glicerina en la alimentación la 

cantidad de agua disminuye y por tanto la relación S/C, por lo que el equilibrio WGS se desplaza 

hacia la obtención de monóxido de carbono de acuerdo al principio de Le Chatelier. La relación 

H2/CO varía desde 67,5 para S/C de 32,37 hasta 2,5 para S/C de 1,34. De esta manera, al 

aumentar la concentración de glicerina el rendimiento a monóxido de carbono aumenta 

mientras disminuyen los rendimientos a hidrógeno y dióxido de carbono. 

 

 

Figura 4.1 (a-c) Moles de (a) hidrógeno, (b) monóxido de carbono y (c) dióxido de carbono obtenidos en 
los equilibrios de reformado de glicerina con vapor de agua. 

  

Una vez obtenidos los moles de los distintos productos y reactivos se realiza el balance 

de energía (Ec.18) de los compuestos para obtener el aporte de calor necesario para llevar a 

cabo el reformado con vapor de agua. 

Hentrada + Qaportado = Hsalida              (18) 
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La (Ec. 18) no considera la existencia de pérdidas de calor con el entorno. 

La entalpía a la entrada se calcula según las condiciones de la alimentación de presión 

atmosférica (1 atm) y temperatura de 25 °C, atendiendo a las entalpías de los reactivos (glicerina 

y agua) así como del nitrógeno de gas de arrastre, según la (Ec.19). Debido a las condiciones de 

presión y temperatura de la alimentación, las entalpías a la entrada coinciden con las entalpías 

de formación de los compuestos. 

Hentrada = a ∙ H°
C3H8O3

+ b ∙ H°
H2O(l)e

 + c ∙ H°
N2

           (19) 

Para calcular la entalpía a la salida se calculan las entalpías de los productos obtenidos 

y del gas nitrógeno para la presión y temperatura de salida. La presión se mantiene constante 

en el reformado a 1 atm, mientras que la temperatura de reacción es de 650 °C. La entalpía de 

salida se calcula según la (Ec.20). 

Hsalida = d ∙ HH2
+ e ∙ HCO + f ∙ HCO2

+ g ∙ HCH4
+ h ∙ HN2

+ i ∙ HH2O(v)s
        (20) 

Aplicando las entalpías obtenidas en la (Ec.18) se obtiene el calor que se debe aportar 

para llevar a cabo la reacción de reformado catalítico con vapor de agua. Dichos resultados 

aparecen en la Tabla 4.3 para cada una de las distintas concentraciones de glicerina de 

alimentación evaluadas. 

Los cálculos del balance de energía se han realizado con el programa EES (Engineering 

Equation Solver), empleando las entalpías facilitadas en la librería de funciones de dicho 

programa. 

Se han definido los siguientes rendimientos para poder caracterizar las eficiencias 

energéticas de los equilibrios estudiados para las distintas concentraciones de glicerina en el 

reformado con vapor de agua: 

ηH2,Gli =
PCIH2producto

PCIglicerina alimentada
                               (21) 

ηH2
=

PCIH2producto

PCIglicerina alimentada +Qaportado
                                 (22) 

Se añade la (Ec.23) para poder obtener una explicación a las eficiencias energéticas de 

hidrógeno obtenidas. La eficiencia energética obtenida mediante la (Ec.21) da como resultado 

la energía que se puede obtener del hidrógeno producido con respecto a la energía de la 
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glicerina alimentada al proceso. Al no tener en cuenta la energía que se debe aportar al proceso 

para llevar a cabo la reacción, la eficiencia energética en este caso puede llegar a ser mayor que 

la unidad. Es por ello que se define la eficiencia energética de la (Ec.22), para obtener el 

rendimiento energético de hidrógeno en relación a la energía total del proceso. De esta manera 

se observa que, aunque la eficiencia energética ηH2,Gli va disminuyendo conforme aumenta la 

concentración de glicerina a la entrada, debido al rendimiento molar a hidrógeno, el 

rendimiento ηH2 va aumentando ya que, a pesar de ir disminuyendo la producción de hidrógeno 

e ir aumentado el calor a aportar, el calor aportado por mol de glicerina a la concentración 

disminuye en gran medida debido a que hay que calentar menor caudal de agua en la 

alimentación.  

Qglicerina =
Qaportado

molglicerina alimentación 
                                (23) 

Por último, se añade la siguiente eficiencia para obtener un rendimiento energético del 

gas de síntesis producto. 

η =
PCIgas producto

PCIglicerina alimentada+Qaportado
                          (24) 

Los PCIs empleados para la obtención de los rendimientos se calculan con los calores de 

combustión de los compuestos tal y como se indica en la (Ec.25), siendo ni los moles del 

compuesto i. 

PCIi = − ∑ ni ∙ ∆H°
c ,ii                                                         (25) 

Donde el calor de combustión corresponde a la combustión a 25 °C para formar agua en 

fase vapor. 

De esta manera, el PCI de los gases producto en el reformado con vapor de agua será el 

sumatorio (Ec.26): 

PCIgas producto = − [𝑑 ∙ ∆H°
c ,H2

+ 𝑒 ∙ ∆H°
c ,CO + g ∙ ∆H°

c ,CH4
]                                           (26)           

 En la Tabla 4.3 se representan los PCIs obtenidos según las ecuaciones (Ec.25) y (Ec.26) 

y a partir de los resultados obtenidos en la Tabla 4.2. También se representan el calor aportado 

obtenido mediante los cálculos de equilibrio según (Ec.18) y los rendimientos obtenidos a partir 

de los datos anteriores mediante las ecuaciones (Ec.21), (Ec.22) y (Ec.24). 
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Tabla 4.3 PCIs y rendimientos de los equilibrios del reformado con vapor de agua. 

Concentración de 
glicerina    (% en peso) 

5% 8,49% 17,17% 39,17% 55,93% 

S/C   (mol/mol) 32,37 18,12 8,22 2,66 1,34 

PCIs (kJ)  

Glicerina alimentada 1,615 2,743 5,546 12,650 18,070 

H2 1,810 3,040 6,022 12,130 13,660 

Gas producto 1,842 3,133 6,421 14,390 19,990 

Qaportado (kJ) 7,483 7,500 7,623 7,712 5,940 

ηH2,Gli 1,121 1,108 1,086 0,958 0,756 

ηH2 0,199 0,297 0,457 0,596 0,569 

Qglicerina 6,88E+03 4,06E+03 2,04E+03 9,06E+02 4,88E+02 

η 0,2024 0,3058 0,4876 0,7068 0,8325 

  

Las eficiencias energéticas a hidrógeno y a gases producto se representan en las Figuras 

4.2 (a-c). En la Figura 4.2 (a) se representa la eficiencia energética del hidrógeno para las 

distintas concentraciones. Se puede apreciar que su evolución decreciente se debe a la 

disminución en el rendimiento a hidrógeno. Para bajas concentraciones de glicerina el 

rendimiento a hidrógeno y la eficiencia energética del hidrógeno son altas, mientras que para 

concentraciones mayores del 39,17% el rendimiento disminuye en gran medida y por tanto, así 

lo hace también la eficiencia energética. Se muestra en la Figura 4.2 (b) la eficiencia energética 

del hidrógeno con respecto a la glicerina alimentada y al calor aportado. Al contrario que en la 

eficiencia energética anterior también del hidrógeno, en este caso la eficiencia aumenta 

conforme aumenta la concentración de glicerina en la alimentación. Esto se debe a que la 

cantidad de calor a aportar por mol de glicerina alimentada va disminuyendo al aumentar la 

concentración de glicerina debido a la menor cantidad de agua a calentar para llevar a cabo la 

reacción, como se ha explicado anteriormente. En la Figura 4.2 (c) se muestra la eficiencia 

energética de los gases producto obtenidos en el reformado de glicerina con vapor de agua en 

relación al poder calorífico de la glicerina alimentada y del calor aportado al proceso. Se puede 

observar que la eficiencia va aumentando conforme aumenta la concentración de glicerina 

debido al mayor poder calorífico de los gases de salida al aumentar el rendimiento a monóxido 

de carbono y debido también al menor calor aportado por mol de glicerina.  
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Figura 4.2 (a-c) Eficiencias energéticas del equilibrio del reformado con vapor de agua. 

Para obtener los resultados experimentales del reformado catalítico de glicerina con 

vapor de agua se realizan los experimentos en la instalación experimental indicada en el capítulo 

3 del presente trabajo. Las condiciones de temperatura y presión coinciden con las indicadas en 

el equilibrio (temperatura de 25 °C a la alimentación y presión de 1 atm; y los productos se 

obtienen a una temperatura de 650 °C). Se realizan los experimentos para las mismas 

concentraciones de glicerina que en el caso del equilibrio (5%, 17,17%, 39,17% y 55,93%). La 

mayoría de los resultados de los experimentos se recogen del Trabajo de Fin de Máster de Sara 

Eito López [1]. En este caso no se estudia el reformado para una concentración de glicerina del 

8,49% ya que los resultados obtenidos en dicho experimento no resultaron coherentes.  

Se obtiene como producto un gas de síntesis compuesto por hidrógeno, monóxido de 

carbono y dióxido de carbono, y el nitrógeno empleado de gas de arrastre. También se obtienen 

en este caso trazas de metano. Los rendimientos en mol experimentales de dichos gases se 

obtienen de igual manera que en el caso del equilibrio, mediante la (Ec.16). Dichos rendimientos 

se muestran en la Tabla 4.4. Estos rendimientos son resultados globales, ya que el catalizador 

puede variar su actividad con el tiempo de experimento. 
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El catalizador utilizado en la mayoría de los experimentos fue Ni/CeO2, dentro de los 

catalizadores estudiados en el TFM de Sara Eito [Ref] es el que presentó los mejores resultados.  

Tabla 4.4 Rendimientos globales de experimento para reformado con vapor de agua. 

 Concentración de glicerina 
(% en peso) 

5% 17,17% 39,17% 55,93% 

S/C   (mol/mol) 32,37 8,22 2,66 1,34 

Rendimiento en el equilibrio 
(mol/mol glicerina) 

    

H2 6,196 6,072 5,106 4,416 

CO 0,299 0,562 0,772 1,163 

CO2 2,541 2,346 1,878 1,365 

CH4 0 0,081 0,052 0,184 

 

 Los moles de gas obtenidos experimentalmente considerando un caudal de 2 g/min de 

alimentación se hallan igualmente mediante el balance de materia indicado en la (Ec.17). Estos 

resultados se representan en la Tabla 4.5. 

Tabla 4.5 Moles obtenidos en el reformado con vapor de agua experimentales. 

Concentración 
de glicerina    
(% en peso) 

5% 17,17% 39,17% 55,93% 

S/C   (mol/mol) 32,37 8,22 2,66 1,34 

 (mol) 

Glicerina 
alimentada 

1,087E-3 3,733E-3 8,515E-3 1,216E-2 

H2 6,735E-3 2,266E-2 4,348E-2 5,369E-2 

CO 3,250E-4 2,297E-3 6,575E-3 1,414E-2 

CO2 2,762E-3 8,757E-3 1,599E-2 1,660E-2 

CH4 0 3,005E-5 4,407E-4 2,237E-3 

 

En las Figuras 4.3 (a-d) se muestran los moles obtenidos en los experimentos de 

reformado con vapor de agua en relación a la concentración de glicerina a la alimentación. El 

comportamiento observado en la producción de hidrógeno (Figura 4.3 (a)) y en la producción 

de dióxido de carbono (Figura 4.3 (c)) se aproxima al comportamiento observado en el caso del 

equilibrio, pero obteniendo unos rendimientos ligeramente inferiores en este caso. En la Figura 

4.3 (b) se representan los moles de monóxido de carbono obtenidos. Se observa que el 



Cálculos energéticos  Capítulo 4 

37 
 

monóxido de carbono obtenido en este caso es menor que el obtenido en el equilibrio. Aunque 

en el equilibrio se ha obtenido una cantidad de metano próxima a cero, en el caso del 

experimento se puede apreciar un ligero aumento en la obtención de metano conforme 

aumenta la concentración de glicerina en la alimentación (Figura 4.3 (d)). 

Este último resultado es debido a que el aumento de la concentración de glicerina en la 

alimentación, conlleva la disminución del contenido de agua y por tanto de la relación S/C. Al 

considerar las reacciones de reformado de CH4: 

CH4(g) + H2O ↔  CO(g) + 3H2(g)              (27) 

CH4(g) + 2H2O ↔  CO2(g) + 4H2(g)             (28) 

Según el principio de Le Chatelier estas reacciones no están favorecidas hacia la 

formación de CO e H2 al disminuir la relación S/C, y por tanto, aumenta el CH4 generado. 

 

 

Figura 4.3 (a-d) Moles de (a) hidrógeno, (b) monóxido de carbono, (c) dióxido de carbono y (d) metano 
obtenidos en los experimentos de reformado de glicerina con vapor de agua. 
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Aplicando el balance de energía (Ec.18) con la entalpía de entrada, obtenida mediante 

la (Ec.19), y la entalpía de salida, mediante la (Ec.20), se puede obtener el calor que es necesario 

aplicar al proceso. El calor a aportar según los datos experimentales se muestra en la Tabla 4.6. 

 

Las eficiencias energéticas se han obtenido en el caso del experimento de reformado 

con vapor de agua, de igual forma que en el caso de los equilibrios (Ec.21, Ec.22 y Ec.24). Se han 

calculado a partir de los calores inferiores obtenidos tal y como se muestra en las (Ec.25 y Ec.26). 

Los calores de combustión empleados aparecen en la Tabla 4.2, mientras que los resultados de 

las eficiencias energéticas se muestran en la Tabla 4.6. 

Tabla 4.6 PCIs y rendimientos del experimento del reformado con vapor de agua. 

Concentración de 
glicerina    (% en peso) 

5% 17,17% 39,17% 55,93% 

S/C   (mol/mol) 32,37 8,22 2,66 1,34 

PCIs (kJ)     

Glicerina alimentada 1,615 5,546 12,650 18,070 

H2 1,629 5,480 10,515 12,984 

Gas producto 1,721 6,155 12,731 18,784 

Qaportado (kJ) 7,469 7,536 7,425 7,336 

ηH2/Gli 1,008 0,988 0,831 0,719 

ηH2 0,179 0,419 0,524 0,511 

Qglicerina 6,87E+03 2,02E+03 8,72E+02 6,06E+02 

η 0,189 0,470 0,634 0,739 

 

En las Figuras 4.4 (a-c) se muestran las eficiencias energéticas experimentales a 

hidrógeno y a gases. En la Figura 4.4 (a) se observa el crecimiento de la eficiencia energética del 

hidrógeno en relación al poder calorífico de la glicerina alimentada. Por ello su evolución es igual 

que la evolución que presenta el rendimiento a hidrógeno, decreciente. En la Figura 4.4 (b) se 

representa la eficiencia del hidrógeno con respecto a la glicerina alimentada y al calor aportado 

para la reacción. Al añadir el calor aportado la eficiencia aumenta conforme aumenta la 

concentración de glicerina en la alimentación debido a la disminución de la relación de calor 

aportado por mol de glicerina alimentado ya que al aumentar la concentración de glicerina 

disminuye el agua en la alimentación que es necesario calentar. Por último, en la Figura 4.4 (c) 

se muestra la eficiencia energética de los gases productos con respecto al poder calorífico de la 
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glicerina alimentada y del calor aportado. Al aumentar el rendimiento a monóxido de carbono y 

metano conforme aumenta la concentración de glicerina, la eficiencia energética aumenta. Este 

aumento de la eficiencia también se debe al menor calor que hay que aportar por mol de 

glicerina.  

 

 

Figura 4.4 (a-c) Eficiencias energéticas del experimento del reformado con vapor de agua. 

Se pueden comparar las eficiencias térmicas obtenidas en los experimentos en la Tabla 

4.6 con las obtenidas en los equilibrios (Tabla 4.3), comprobando que experimentalmente el 

rendimiento obtenido es menor que en el caso del equilibrio. Esta comparación se representa 

en las Figuras 4.5 (a-c) en las que se comparan las distintas eficiencias entre el equilibrio y el 

experimento. En la Figura 4.5 (a), en la que se representa el poder calorífico del hidrógeno 

obtenido en relación al poder calorífico de la glicerina alimentada, se observa que las dos 

gráficas tienen un comportamiento decreciente igual pero, en el caso del equilibrio, la eficiencia 

térmica obtenida es mayor que en el caso del experimento. Esto se debe a que los rendimientos 

a hidrógeno obtenidos en el equilibrio son mayores que lo que en la realidad se obtiene 

experimentalmente. La Figura 4.5 (b) muestra las eficiencias energéticas del hidrógeno con 

respecto al poder calorífico de la glicerina alimentada y el calor aportado al proceso. Las 

eficiencias obtenidas para el equilibrio y para el experimento tienen el mismo comportamiento 

y con resultados similares, si bien la eficiencia en el equilibrio también se mantiene mayor que 
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en el experimento en este caso. Se puede apreciar en la comparación de las eficiencias 

energéticas del gas producto mostrada en la Figura 4.5 (c) como las eficiencias son también muy 

similares. Sin embargo, para altas concentraciones de glicerina la eficiencia en el equilibrio es 

superior a la del experimento. Esto es debido a que, aunque experimentalmente los moles de 

monóxido de carbono y metano aumentan para altas concentraciones, en el caso del equilibrio 

la cantidad de hidrógeno y monóxido de carbono producido es superior. 

 

 

Figura 4.5 (a-c) Comparación de las eficiencias energéticas del equilibrio y del experimento del 

reformado con vapor de agua. 
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como de los productos líquidos en moles de producto por moles gaseosos y en moles de 

producto por moles líquidos respectivamente. 

Los resultados de los experimentos para las distintas concentraciones en peso de 

glicerina de 2%, 5%, 10% y 15%, se obtienen de la Tesis Doctoral de Ana Valiente Torres [2]. El 

catalizador utilizado en estos experimentos fue un catalizador Ni/Al coprecipitado con un 

contenido de Ni del 28% Ni/(Ni+Al). 

 Las especificaciones de reformado en fase acuosa empleadas son de un caudal de 

glicerina a la entrada de 2 g/min, con un caudal de nitrógeno de 35 cm3N/min. Esta corriente de 

nitrógeno se empleó como gas portador, gas de arrastre y gas presurizador, para conseguir que 

el sistema adquiera la presión necesaria para llevar a cabo la reacción de reformado. También 

se emplea el nitrógeno para cuantificar los productos gaseosos utilizando la cromatografía de 

gases. 

El proceso se realiza a bajas temperaturas y presiones moderadas. En el experimento, 

las condiciones de temperatura y presión a la entrada son de 25 °C y 1 atm. El proceso se realiza 

a una temperatura de 227 °C y 33 bar. Los productos gaseosos obtenidos en la reacción son H2, 

CO, CO2, CH4, C2H6 y C3H8, y de productos líquidos se obtienen mayoritariamente etanol, acetol, 

etilenglicol y 1,2-propanodiol. También se encuentra N2 en el gas de salida al ser un gas inerte 

en el proceso y agua de la alimentación que queda sin reaccionar. En el caso dele reformado en 

fase acuosa la glicerina de la alimentación no reacciona al 100%, por lo que en los líquidos 

obtenidos a la salida del proceso también aparece glicerina. 

En la Tabla 4.7 se muestran las composiciones de los gases y líquidos a la salida del 

proceso de reformado catalítico en fase acuosa. 
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Tabla 4.7 Composiciones de productos de experimento para reformado fase acuosa. 

Concentración de glicerina 
(% en peso) 

2% 5% 10% 15% 

Conversión global de 
glicerina (%) 

43,44 55,57 65,23 68,16 

Conversión de C a gas (%) 15,44 16,88 15,05 8,14 

H2 44,7 38,5 35,2 37,8 

CO 0,7 1,0 1,1 1,9 

CO2 40,2 43,8 44,8 31,8 

CH4 13,7 15,6 17,4 26,0 

C2H6 0,7 0,9 1,1 1,7 

C3H8 0 0,2 0,4 0,8 

Conversión de C 
 a líquidos (%) 

28,00 38,69 50,18 60,02 

Selectividad de C a 
productos líquidos (%) 

    

Etanol 20 19 15 14 

Acetol 15 14 16 16 

Etilenglicol 12 15 24 40 

1,2-propanodiol 53 52 45 30 

 

La conversión de carbono a gas indica el porcentaje de moles de átomos de carbono de 

la alimentación que se convierte a gas (CO2 y CO, CH4, C2H6 Y C3H8). Se calcula como los moles 

totales de átomos de carbono en los productos gaseosos en relación a los moles de átomos de 

carbono en la alimentación, como aparece en la (Ec.27).  

Conversión C a gas(%) =
nCO2+nCO+nCH4+2∙nC2H6+3∙nC3H8

n°C glicerina∙nglicerina
∙ 100          (27) 

La selectividad a los líquidos producidos en la reacción indica el porcentaje de moles 

de átomos de carbono de cada compuesto líquido obtenido en relación a los moles totales de 

átomos de carbono de la fase líquida. La selectividad se calcula mediante la (Ec.28). 

Selectividad a líquidoi(%) =
n°C∙ni

2∙netanol+3∙nacetol+3∙netilenglicol+2∙npropanodiol
∙ 100        (28) 

Para la obtención de los moles de los productos líquidos y gaseosos se realiza un balance 

de materia a las especies atómicas (C, H y O), sin ser necesario el balance de materia para el 
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nitrógeno. El balance de materia se aplica según la reacción en fase acuosa del proceso (Ec.29) 

para una base de t=1min. 

a ∙ C3H8O3 + b ∙ H2O + c ∙ N2  → d ∙ H2 + e ∙ CO + f ∙ CO2 +  g ∙ CH4 + h ∙ C2H6  +  i ∙ C3H8 +  j ∙ N2   +

  k ∙ H2O + l ∙ propanodiol + m ∙ acetol + n ∙ etanol + o ∙ etilenglicol + p ∙ (C3H8O3)salida              (29) 

Siendo a, b y c los moles de glicerina, agua y nitrógeno alimentados respectivamente;  d, 

e, f, g, h, i y j los moles de los gases obtenidos y k, l, m, n, o y p los moles de los productos líquidos 

obtenidos. 

Para la obtención de los moles se emplean tanto los balances de materia como la 

conversión del carbono a gases y la selectividad a líquidos ya explicados en las ecuaciones (Ec.27) 

y (Ec.28). Los moles obtenidos se muestran en la Tabla 4.8 junto con los calores de combustión 

obtenidos mediante la base de datos de NIST y la tabla facilitada en el libro de Himmelblau [16]. 

Tabla 4.8 Moles obtenidos en el reformado en fase acuosa y entalpías de combustión. 

Concentración   
de glicerina              
(% en peso) 

2% 5% 10% 15% ΔHc,i 

 (mol) (kJ/mol) 

Glicerina 
alimentada 

1,087E-3 1,846E-3 3,733E-3 8,515E-3 -1.485,74 

H2 1,608E-4 3,374E-4 5,180E-4 4,595E-4 -241,83 

CO 2,517E-6 8,765E-6 1,619E-5 2,310E-5 -283,24 

CO2 1,446E-4 3,839E-4 6,593E-4 3,866E-4 - 

CH4 4,927E-5 1,367E-4 2,560E-4 3,161E-4 -802,43 

C2H6 2,517E-6 7,888E-6 1,619E-5 2,067E-5 -1.426,45 

C3H8 0 1,753E-6 5,886E-6 9,726E-6 -2.041,92 

Glicerina salida 2,459E-4 4,829E-4 7,559E-4 1,038E-3 -1.485,74 

Etanol 2,557E-5 9,462E-5 3,109E-4 5,872E-4 -1.233,63 

Acetol 1,948E-5 6,729E-5 1,527E-4 2,936E-4 -1.490,00 

Etilenglicol 7,304E-5 1,514E-4 2,454E-4 3,523E-4 -1.059,11 

1,2-propanodiol 3,652E-5 1,892E-4 5,673E-4 1,037E-3 -1.645,78 

 

En la Tabla 4.8 se puede apreciar la influencia de la concentración de glicerina en la 

alimentación sobre proporción a la salida de los gases obtenidos y de los líquidos. Las Figuras 
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4.6 (a-b) representan la composición del gas obtenido y de la corriente líquida obtenida 

respectivamente. En la Figura 4.6 (a) se muestra la evolución de los moles de los productos 

gaseosos en relación a la concentración de glicerina. Se puede observar como las cantidades de 

C2H6 y C3H8 son muy pequeñas en proporción al resto de productos gaseosos. Lo mismo ocurre 

con el monóxido de carbono ya que a las bajas temperaturas a las que se da el proceso la 

reacción de water-gas shift (Ec.15) se ve muy favorecida, lo que provoca el aumento en la 

producción de hidrógeno y dióxido de carbono, como se observa en la Figura 4.6 (a). Las 

reacciones secundarias de metanación que se producen en el proceso también se ven 

favorecidas a las bajas temperaturas y altas presiones del proceso (Ec.16 y Ec.17). Para las altas 

concentraciones de glicerina, al aumentar la cantidad de hidrógeno y dióxido de carbono 

producido el equilibrio de las reacciones de metanación se ve favorecido hacia la producción de 

metano. Es por ello que la producción de metano aumenta para las altas concentraciones 

mientras que la de hidrógeno y dióxido de carbono disminuye. En la Figura 4.6 (b) se puede 

apreciar como la cantidad de productos líquidos aumentan conforme aumenta la concentración 

de glicerina de manera proporcional. El producto líquido que mayor rendimiento tiene es el 1,2-

propanodiol, como se puede observar en la Figura 4.6 (b). 

 

Figura 4.6 (a-b) Moles de producto gaseoso (a) y de producto líquido (b) obtenidos en los experimentos 
de reformado de glicerina en fase acuosa. 
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Hentrada + Qaportado + Wbomba = Hsalida                         (30) 

La entalpía a la entrada se calcula de igual forma que en caso del reformado con vapor de 

agua (Ec.19) dado que se trata de los mismos productos en la alimentación y a las mismas 

condiciones de presión y temperatura (1 atm y 25 °C). 

La entalpía a la salida se calcula mediante la ecuación empleada en el reformado con 

vapor de agua (Ec.20) añadiendo las entalpías correspondientes al etano y propano y a los 

productos líquidos, así como la de la glicerina sin reaccionar que se obtiene a la salida de la 

reacción.  

Las entalpías empleadas se obtienen de la librería de funciones del EES. Las entalpías a la 

salida se calculan para una temperatura de 227 °C y una presión de 1 atm, empleando las 

entalpías en estado líquido para el caso de los productos líquidos. Esta simplificación implica 

errores al no tener en cuenta el efecto de la presión en la salida. Se ha realizado esta 

simplificación debido a la dificultad de realizar los cálculos empleando la presión a la salida de 

33 bar. 

Para hallar el trabajo realizado por la bomba se emplea el principio de Bernoulli 

presentado en la (Ec.31). 

WBomba(m) =
∆P

γ
               (31)  

Donde ΔP corresponde a la diferencia de presión de 33 bar, y γ se calcula como el 

producto de la gravedad por la densidad de la disolución de agua y glicerina de la alimentación. 

Para emplear el trabajo obtenido en el balance de materia de la (Ec.30) se pasa a las unidades 

empleadas en el balance (kJ). En la Tabla 4.9 en la que se muestran los trabajos obtenidos, tanto 

el calor a aportar como el trabajo se indican en unidades de Julio debido a los valores pequeños 

obtenidos.  

En la Tabla 4.9, donde se muestran los resultados del trabajo y el calor obtenidos, se 

observa una ligera disminución del trabajo aportado con el aumento de la concentración de 

glicerina. Esta pequeña disminución se debe al denominador de la (Ec.31), ya que conforme 

aumenta la concentración de glicerina también aumenta la densidad de la disolución y, por 

tanto, el denominador. 

Con respecto al calor aportado, según el balance de energía indicado en la (Ec.30), al 

disminuir el trabajo aportado y aumentar la entalpía de salida por la mayor formación de gases 
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y líquidos a 227 °C, el calor aportado va aumentando con el aumento de la concentración de 

glicerina. 

Se definen para el reformado en fase acuosa las mismas eficiencias empleadas en el caso 

de reformado con vapor de agua pero dado que el calor que hay que aportar en la reacción es 

muy bajo al no tener que llevar a la evaporación el agua de la alimentación, no se tiene en cuenta 

a la hora de estimar la eficiencia energética del proceso. Por tanto las ecuaciones a emplear son 

las ecuaciones (Ec.21 y Ec.24). En el denominador de la (Ec.24) no se tiene en cuenta el calor a 

aportar como se ha indicado. 

Los PCIs empleados se han obtenido de igual manera que en el reformado catalítico con 

vapor de agua, atendiendo a la (Ec.25). Para la obtención del PCI de los productos gaseosos del 

reformado en fase acuosa se ha empleado la siguiente ecuación. 

PCIgas = − [d ∙ ∆H°
c ,H2

+ e ∙ ∆H°
c ,CO + g ∙ ∆H°

c ,CH4
+ h ∙ ∆H°

c ,C2H6
+ j ∙ ∆H°

c ,C3H8
]             (32) 

 Se representan en la Tabla 4.9 los PCIs obtenidos necesarios para el cálculo de los 

rendimientos, el calor  a aportar y el trabajo de la bomba obtenidos mediante los balances de 

energía, así como los rendimientos hallados mediante las ecuaciones (Ec.21) y (Ec.24) para las 

distintas concentraciones de glicerina en la alimentación. 

Tabla 4.9 PCIs y rendimientos del experimento del reformado con vapor de agua. 

Concentración de 
glicerina    (% en peso) 

2% 5% 10% 15% 

PCIs (kJ)  

Glicerina alimentada 1,615 2,743 5,546 12,651 

H2 0,039 0,082 0,125 0,111 

Gas producto 0,083 0,209 0,370 0,421 

Qaportado (J) 6,428 7,620 79,500 387,400 

Wbomba (J) 6,367 6,318 6,238 6,160 

ηH2,Gli 0,0241 0,0297 0,0226 0,0088 

η 0,0512 0,0761 0,0668 0,0333 

 

 Se puede apreciar en la tabla anterior en la eficiencia del hidrógeno como ésta aumenta 

al principio para luego disminuir en gran medida. Esto se debe a que el rendimiento del 

hidrógeno, como ya se ha indicado anteriormente, disminuye para las mayores concentraciones 
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de glicerina en la alimentación. Este decrecimiento se puede observar en la Figura 4.7 (a), que 

representa la eficiencia del hidrógeno con respecto a la concentración de glicerina.  

En el caso de la eficiencia energética de los gases producto se observa el mismo 

comportamiento, inicialmente crece para luego disminuir. Sin embargo, en este caso el 

descenso no es tan pronunciado como en el caso del hidrógeno. Esto se debe a que, como ya se 

ha explicado, para concentraciones mayores, aunque el rendimiento a hidrógeno disminuye, la 

cantidad de metano obtenida crece, aumentando el PCI de los productos gaseosos. Este 

comportamiento se aprecia en la Figura 4.7 (b)  que muestra la influencia de la concentración 

de glicerina en la alimentación en la eficiencia energética de los gases producto.  

 

Figura 4.7 (a-b) Eficiencias energéticas del experimento del reformado en fase acuosa. 

 

4.3 Comparación de procesos 

 

Las condiciones de temperatura y presión a las que se realizan los procesos varían de un 

proceso a otro. En el reformado con vapor de agua se emplean temperaturas de 650 °C y 

presiones atmosféricas de 1 atm, mientras que en el reformado en fase acuosa se opera a bajas 

temperaturas de 227 °C y altas presiones de 33-40 bar (en los experimentos realizados en el 

presente trabajo se toman presiones de 33 bar). Esto influye principalmente en las reacciones 

que se llevan a cabo en el proceso y en el calor a aportar al mismo. 

Una de las etapas del proceso es la reacción de water-gas shift (Ec.15), equilibrio que se 

ve favorecido a bajas temperaturas, ya que se trata de una reacción exotérmica. Por ello, en el 

reformado catalítico con vapor de agua el monóxido de carbono es obtenido en mayor 

proporción en relación al hidrógeno y al dióxido de carbono obtenidos que en el reformado 
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catalítico en fase acuosa. De esta misma forma, en el reformado en fase acuosa la reacción WGS 

se ve más favorecida que en el otro proceso. 

Sin embargo, como se puede apreciar en las Figuras 4.8 (a-d) el rendimiento a los 

distintos gases obtenidos en el caso del reformado en fase acuosa es mucho menor que en el 

reformado con vapor de agua. Las bajas temperaturas del proceso APR favorecen reacciones de 

metanación, produciendo metano en el gas de salida, mientras que en el reformado con vapor 

de agua el metano obtenido es prácticamente nulo. Además, en el reformado en fase acuosa 

también se producen otros gases como el etano y el propano. También se debe a que en el APR 

se producen reacciones de deshidratación, hidrogenación, etc., que generan una corriente de 

productos líquidos (en este Trabajo de Fin de Grado se consideran etanol, acetol, etilenglicol y 

1,2-propanodiol por ser los mayoritarios), siendo mayor el carbono de la alimentación 

convertido a líquidos que el convertido a gases. Además, cabe destacar el hecho de que la 

glicerina tiene una alta conversión en el reformado con vapor de agua (en este trabajo se 

considera una conversión del 100%), mientras que la conversión de la glicerina en el caso del 

reformado en fase acuosa es notablemente menor (menor del 70% en los casos evaluados). 

En las Figuras 4.8 (a-d) se representan las comparaciones de los rendimientos a gases 

entre el reformado con vapor de agua (equilibrio y experimento) y el reformado en fase acuosa 

(experimento). Se muestran los moles obtenidos de hidrógeno en la Figura 4.8 (a), los moles de 

monóxido y de dióxido de carbono (Figuras 4.8 (b) y (c) respectivamente). También se 

representan los moles obtenidos de metano (Figura 4.8 (d)), pero en este caso sólo se muestran 

obtenidos experimentalmente tanto en el reformado con vapor de agua como en el de fase 

acuosa ya que en el equilibrio del reformado con vapor de agua el metano obtenido es nulo. 

Para el caso del hidrógeno obtenido (Figura 4.8 (a)), el rendimiento del reformado en 

fase acuosa es 10 veces menor que el del reformado con vapor de agua. También es el caso del 

dióxido de carbono observado en la Figura 4.8(c). Esto se debe, como ya se ha explicado 

anteriormente, a la baja conversión a gases de la glicerina alimentada en el caso del APR. Se 

puede apreciar también un menor rendimiento al monóxido de carbono obtenido en el 

reformado en fase acuosa. Sin embargo, la Figura 4.8 (b) muestra que el monóxido de carbono 

obtenido para concentraciones bajas de glicerina es igualmente bajo en ambos procesos, si bien 

se observa un crecimiento notable del rendimiento a monóxido de carbono en los casos de 

reformado con vapor de agua para concentraciones mayores al 10%. En la Figura 4.8 (d) se 

puede apreciar que el rendimiento a metano es mayor en el reformado en fase acuosa que en 

reformado con vapor de agua. Esto se debe a, como ya se ha explicado, las reacciones de 
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metanación (exotérmicas) que se ven favorecidas por las bajas temperaturas en las que opera 

el reformado en fase acuosa. 

 

 

Figura 4.8 (a-d) Comparativa de los moles de (a) hidrógeno, (b) monóxido de carbono, (c) dióxido de 
carbono y (d) metano obtenidos en los reformados de glicerina con vapor de agua y en fase acuosa. 

  

En las Figuras 4.9 (a-b) se representan las comparaciones de las eficiencias energéticas. 

La eficiencia energética del hidrógeno se muestra en la Figura 4.9 (a). A pesar de que la eficiencia 

del hidrógeno calculada para el APR no tiene en cuenta el calor aportado debido a que son 

valores muy pequeños en relación al PCI de la glicerina alimentada, la eficiencia del hidrógeno 

del reformado con vapor de agua empleada en la comparativa se toma la eficiencia definida en 

la (Ec.22) en la que sí se emplea el calor aportado al proceso. Esto se debe porque los calores 

aportados en dicho proceso son de un valor significado y no se pueden despreciar por lo tanto. 

La Figura 4.9 (b)  representa la comparación de las eficiencias energéticas del gas producto.  

Se observa en los gráficos que las eficiencias en el APR son menores que las obtenidas 

en los casos del reformado con vapor de agua. Esta diferencia de eficiencia de entre 20% y 35% 

para bajas concentraciones de glicerina (concentraciones empleadas para el reformado en fase 

acuosa) se debe a que, si bien en el reformado en fase acuosa el calor aportado es prácticamente 
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despreciable, la cantidad de producto gaseoso generado en el proceso es muy inferior a la 

generada en el reformado con vapor de agua, como se puede apreciar en las Figuras 4.8. 

El hecho de que el rendimiento a gases en el reformado en fase acuosa sea mucho 

menor que en el reformado con vapor de agua se debe no sólo a la baja conversión de la glicerina 

en este proceso sino también a la alta conversión de glicerina a líquidos. A pesar de que esta 

conversión a líquidos produce una menor eficiencia energética a gases en el proceso, la corriente 

líquida obtenida es de interés. Se obtienen en gran medida productos como el etanol, 1,2-

propanodiol y etilenglicol. De la forma en que se obtienen dichos productos podría usarse la 

corriente líquida como anticongelante. Otra forma de aprovechamiento consistiría en separar la 

corriente en los distintos productos líquidos para obtener los distintos líquidos para su 

aprovechamiento individual. 

 

Figura 4.9 (a-b) Comparación de las eficiencias energéticas de los reformados de glicerina con vapor de 

agua y en fase acuosa. 
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5. CONCLUSIONES Y TRABAJOS FUTUROS  

5.1 Conclusiones 

El presente Trabajo de Fin de Grado se ha realizado estudiando el reformado catalítico 

de glicerina con vapor de agua y el reformado catalítico de glicerina en fase acuosa. Se ha llevado 

a cabo un estudio de la influencia de la concentración de glicerina en la alimentación sobre el 

rendimiento a productos de los procesos así como las eficiencias energéticas obtenidas en 

ambos. 

En el estudio del reformado con vapor de agua se realizó el proceso a una temperatura 

de 650 °C y una presión de 1 atm, realizándose para datos de equilibrio y experimentale. Se 

estudió la influencia de la concentración de glicerina en los rendimientos a gases obtenidos así 

como en el calor aportado para llevar a cabo la reacción. También se evaluaron la eficiencia 

energética del gas de síntesis obtenido y la eficiencia energética del hidrógeno producto. 

El estudio del reformado en fase acuosa se realizó experimentalmente a una 

temperatura de 227 °C y 33 bar de presión. Se estudió en este caso también la influencia de la 

concentración de glicerina en la alimentación en los rendimientos tanto a productos gaseosos 

como a productos líquidos. Además se estudió el calor aportado al proceso y el trabajo necesario 

para obtener la presión de 33 bar requerida en el proceso. Al igual que en el reformado con 

vapor de agua se evaluaron las eficiencias energéticas del gas producto y del hidrógeno en 

concreto. 

A partir de estos estudios realizados para ambos reformados pueden obtenerse las 

siguientes conclusiones como resultado de este trabajo: 

 En el proceso de reformado con vapor de agua un aumento de la concentración 

de la disolución de glicerina en la alimentación produce un descenso del 

rendimiento a hidrógeno y a dióxido de carbono y un aumento del rendimiento 

a monóxido de carbono. Esto es debido a que la reacción de water-gas shift se 

ve favorecida hacia la generación de CO. Por lo tanto, aumentar la concentración 

de glicerina más del 55,93% aumentará la cantidad de hidrógeno obtenido en el 

gas producto, pero el rendimiento irá disminuyendo. 

 

 El calor aportado en el reformado con vapor de agua aumenta conforme 

aumenta la concentración de la disolución de glicerina pero el calor aportado 
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por mol de glicerina alimentada disminuye. Esto se debe a que la reacción es 

endotérmica y por ello aumenta el calor, pero debido a que un aumento en la 

concentración de glicerina implica una disminución en el agua alimentada, la 

cantidad de agua que hay que calentar hasta la temperatura del proceso es 

menor. 

 

 En el reformado con vapor de agua la eficiencia energética de los gases y de 

hidrógeno aumenta para altas concentraciones de glicerina. Sin embargo, para 

concentraciones superiores al 55,93% de glicerina el crecimiento del 

rendimiento disminuye notablemente, lo que resulta en que aumentar la 

concentración en la disolución por encima del 55,93% podría no ser aconsejable. 

 

 Para las condiciones de temperatura y presión empleadas en el reformado en 

fase acuosa (227 °C y 33 bar) la mayor conversión global del carbono alimentado 

obtenida es del 68,16% para una concentración de glicerina a la entrada del 

15%. La conversión global del carbono aumenta conforme aumenta la 

concentración de a disolución de glicerina, sin embargo el crecimiento va 

disminuyendo, por lo que aumentar la concentración de glicerina mucho más 

del 15% es previsible que no conseguirá conversiones mayores del carbono en 

el reformado en fase acuosa, de acuerdo a los datos experimentales obtenidos. 

 

 En el reformado en fase acuosa los principales productos líquidos obtenidos son 

etanol y 1,2-propanodiol, mientras que los principales productos gaseosos son 

hidrógeno y dióxido de carbono. Para altas concentraciones de glicerina se 

hacen también significativas las cantidades de etilenglicol en los productos 

líquidos y de metano en los gaseosos. 

 

 Para mayores concentraciones en la disolución de glicerina en el reformado de 

la glicerina en fase acuosa la conversión del carbono alimentado a líquidos 

aumenta mientras que la de gases disminuye. Esto hace que la eficiencia 

energética del gas producto y del hidrógeno disminuya. Por lo tanto, aumentar 

la concentración de glicerina sólo hará disminuir la eficiencia energética del 

proceso al disminuir la conversión de carbono a gases. 

 



Conclusiones y trabajos futuros  Capítulo 5 

54 
 

5.2 Trabajos futuros 

Los estudios que se han llevado a cabo en el presente trabajo se centran en observar la 

influencia de la concentración de la disolución de glicerina en la alimentación para los dos 

procesos de reformado catalítico de la glicerina.  

Las condiciones de temperatura y presión seleccionadas para cada uno de los 

reformados catalíticos estudiados se encuentran dentro del rango óptimo de temperatura y 

presión de los procesos. Estudios futuros podrían dirigirse hacia el estudio de las condiciones de 

presión y temperatura en los reformados, observando la influencia de la temperatura y la 

influencia de la presión en los rendimientos a gases y en las eficiencias energéticas obtenidas. 

De esta manera se podrían obtener las condiciones de presión y temperatura óptimas para la 

obtención de una mayor eficiencia energética. 

Trabajos futuros podrían centrarse en el estudio de los distintos procesos a escala 

industrial, ya que los análisis realizados en el este Trabajo de Fin de Grado se basan en estudios 

realizados en laboratorio de pequeña escala. Así se podría obtener la eficiencia energética que 

se podría conseguir a escala industrial según los distintos parámetros evaluados. En vistas al 

estudio a escala industrial de los procesos también podría estudiarse la viabilidad económica de 

dichos procesos en función del coste de las materias primas y de la energía a aportar para llevar 

a cabo los procesos, y del coste obtenido en función de la eficiencia energética de los gases 

producto. 
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