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Entorno de simulación para control visual de un cuadricóptero con cámara 

fisheye 
 

RESUMEN 

Hoy en día, el uso de sistemas de localización y orientación, como pueden ser el GPS o la IMU, 

están muy extendidos. Pero en lugares donde el GPS no funciona o su señal es muy débil, como 

por ejemplo, en el interior de un edificio, es necesario el uso de otros sistemas de navegación.  

El objetivo de este TFG es el desarrollo de un entorno de simulación para control visual de 

cuadricópteros en interiores. El trabajo se centra en el uso de cámaras fisheye que ofrecen un 

campo de vista mucho más amplio que una cámara convencional. 

En este simulador, un cuadricóptero (conocidos sus parámetros, modelo dinámico y sistema de 

control) es capaz de navegar por un escenario desconocido de interiores con la única ayuda de 

una cámara fisheye colocada en su parte inferior. El proceso es el siguiente: dada una imagen 

del entorno, se extraen las proyecciones de las rectas de la escena y, asumiendo la existencia de 

direcciones dominantes, se calculan los puntos de fuga mediante un algoritmo robusto basado 

en RANSAC. Con dicha información se obtiene la orientación del escenario respecto del 

cuadricóptero. Seguidamente, se calculan y asignan las consignas al cuadricóptero, de manera 

que sea capaz de avanzar de un modo coherente por el entorno. Este proceso se repite cada 

cierto tiempo, tomando imágenes y recalculando la orientación. 

El trabajo se ha desarrollado utilizando Matlab, integrando POV-Ray para la generación y 

renderización de la escena 3D, y Simulink para describir el modelo dinámico y control del 

cuadricóptero. 

En este trabajo se asume como premisa que el entorno de interior contiene direcciones 

dominantes, característica típica de entornos construidos por el hombre. En este caso, existe 

paralelismo entre grupos de rectas que comparten puntos de fuga. El cálculo de los puntos de 

fuga se realiza a partir de los planos de proyección de las rectas, que se describen mediante su 

vector normal, 
in . 

Como ya hemos dicho, una cámara fisheye tiene un campo de vista mucho mayor que una 

cámara perspectiva convencional, gracias al cual se puede tomar una longitud mayor de las 

rectas de la escena, hecho que favorece el cálculo de los planos de proyección. Aunque, por 

otra parte, es necesario utilizar un modelo de proyección no lineal y más complejo que el 

utilizado para cámaras convencionales. 
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1. Introducción 

En los últimos años, los vehículos aéreos no tripulados, entre los que se encuentra el 

cuadricóptero, han adquirido gran fama y han ganado en autonomía. Este avance es debido a la 

gran variedad de campos de aplicación de estos pequeños vehículos: búsqueda y rescate, 

exploración, vigilancia, inspección, en agricultura, en tareas militares… [1] así como a sus 

ventajas: alta maniobrabilidad, robustez, bajo coste, disminución del riesgo de vidas humanas, 

etc. [2] 

Pero, ¿por qué se ha escogido un cuadricóptero y no otro tipo de vehículo aéreo? 

En comparación con vehículos aéreos de ala fija, como podría ser un avión, un cuadricóptero 

consigue una mayor maniobrabilidad y es capaz de realizar despegues y aterrizajes verticales, 

lo que lo hace óptimo para entornos de interiores y zonas poco amplias. 

En comparación a los helicópteros convencionales con un gran rotor y un rotor de cola, el 

cuadricóptero es más sencillo de manejar, modelar y controlar; además, en estático, se puede 

mantener suspendido sin ningún tipo de rotación. Algo que no ocurre en el caso del helicóptero, 

que para mantenerse estático precisa de un giro continuo en el rotor de cola. 

A pesar de todo, el modelo de un cuadricóptero es complejo, altamente inestable y no lineal, 

por lo que se precisan diversos sensores y controladores para llevar a cabo su control. La 

mayoría de las aproximaciones de control se basan en dos subsistemas conectados en cascada. 

Un primer subsistema está formado por el control de la orientación y otro, superpuesto, por el 

control de la posición [1] [3] [4]. 

El manejo de un cuadricóptero resulta una tarea relativamente sencilla cuando se considera que 

el entorno es conocido y cuando se suponen comportamientos ideales de la IMU (Inertial 

Measurement Unit) y del GPS, que nos proporcionarán los datos necesarios de orientación y 

posición. El principal inconveniente es que un cuadricóptero no siempre vuela en entornos 

conocidos y, además, podría hacerlo en lugares donde la señal de GPS sería nula o no tan precisa 

como se desearía. Por ello, el siguiente paso de la investigación consiste en implementar 

sistemas de navegación en los que no sea necesario conocer a priori el entorno y no se disponga 

de señal GPS. 

Una vez justificada la elección del cuadricóptero como vehículo, se procede a la justificación 

de la elección de una fisheye como cámara escogida para la toma de imágenes. 

Una cámara fisheye permite la adquisición de imágenes con un gran campo de vista: 360º en 

un eje y 180º, o incluso más, en el otro. De esta manera, se puede observar una mayor longitud 

de las rectas de la escena, lo que favorecerá al cálculo de los planos de proyección del entorno. 

Al igual que los vehículos aéreos no tripulados, en los últimos años las cámaras fisheye también 

han experimentado un auge destacable. La alternativa a estas cámaras, para conseguir imágenes 
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con un amplio campo de vista, es un sistema de varias cámaras comunes orientadas en distintas 

direcciones, una sola cámara amarrada a un brazo móvil o una cámara enfocando hacia un 

espejo curvado donde se reflejan las imágenes que se desean tomar. El principal inconveniente 

es que estas alternativas obligan a tener grandes precisiones de posicionamiento y orientación 

o inutilizan un determinado número de píxeles de la imagen. 

En entornos construidos por el hombre suelen existir muchas líneas paralelas, y además, 

dispuestas en direcciones ortogonales. Estas líneas paralelas intersectan en el infinito, y ese 

punto de intersección se conoce como punto de fuga. En este trabajo se utilizan dichos puntos 

de fuga para calcular la orientación del cuadricóptero. La principal ventaja es que esos puntos 

no dependen de la posición del cuadricóptero, sino únicamente de la orientación [2]. Así, 

conociendo las tres direcciones principales ortogonales, podremos calcular la rotación del 

entorno respecto al cuadricóptero. En este caso el escenario será un pasillo que ha sido 

modelado con POV-Ray, un generador de imágenes en tres dimensiones (ver Anexo D). 

 

1.1 Objetivos y contribuciones 

El principal objetivo de este trabajo es implementar un sistema de navegación para un 

cuadricóptero cumpliendo las dos premisas que se han nombrado en el apartado anterior: no es 

necesario conocer el entorno a priori ni tampoco es necesaria la utilización de señal GPS. 

De esta manera, se ha diseñado un entorno de simulación donde un cuadricóptero, tomando 

imágenes con una cámara fisheye y procesándolas, es capaz de obtener su orientación respecto 

del entorno, pudiendo así moverse a lo largo de un escenario sin tener que conocer su posición 

absoluta ni su entorno. 

Para resolver el problema principal que nos atañe en este TFG ha sido necesaria la resolución 

de problemas más pequeños que se detallan a continuación: comprensión del modelo dinámico 

de un cuadricóptero, estudio y mejora del control original del cuadricóptero1, reutilización del 

código de extracción de planos de proyección en sistemas fisheye [5], cálculo de los puntos de 

fuga y de la orientación del cuadricóptero respecto de su entorno, programación de un entorno 

visual en 3D y, finalmente, integración, calibración y ajuste de todos los sistemas. 

 

                                                

 

1 El control original del cuadricóptero es el realizado por Peter Corke en la toolbox de robótica [7] 
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1.2 Entorno de trabajo 

Para llevar a cabo la ejecución de este trabajo ha sido necesaria la integración de varios entornos 

de trabajo y programación. 

El software principal de trabajo ha sido Matlab, desde el cual, mediante diferentes módulos de 

interfaz, se ha interactuado con un generador de imágenes sintéticas y con Simulink. 

Para el modelado del escenario y la generación de imágenes sintéticas se ha utilizado POV-

Ray. Este software de trazado de rayos utiliza un lenguaje algorítmico para la descripción del 

escenario y la cámara. Esto permite la integración en otros sistemas en los que se pueden generar 

los ficheros de texto necesarios para configurar la posición y orientación de la cámara. Una vez 

completada la generación, se obtiene una imagen que corresponde con la captura que adquiere 

una cámara fisheye situada en la parte inferior de un cuadricóptero. 

Esta imagen fisheye es procesada en Matlab, a fin de extraer proyecciones de rectas y sus 

correspondientes planos de proyección. A partir de éstos, se calculan los puntos de fuga que 

codifican la orientación del cuadricóptero, utilizada para generar las consignas de posición del 

cuadricóptero en el esquema de control. 

Estas consignas se introducen en Simulink, donde se ejecuta el modelo dinámico y el control 

del cuadricóptero. De esta manera se actualiza su estado, es decir, se calcula la nueva posición 

y orientación del mismo. Dicho estado se introduce, nuevamente, en el generador de imágenes 

POV-Ray, cerrando así el bucle. 

 

1.3 Estructura de contenidos 

Para proporcionar una idea más clara del conjunto de este trabajo se muestra la estructura 

principal del mismo: en el capítulo 2 se presenta el modelo dinámico de un cuadricóptero y se 

introduce cómo se realiza el control del mismo, utilizando la Robotics Toolbox [7]. El capítulo 

3 se centra en explicar cómo se calcula la orientación del entorno respecto del cuadricóptero a 

partir de las imágenes tomadas por la cámara fisheye. Se explica brevemente la parte de 

proyección de rectas en sistemas fisheye y detalladamente el cálculo de los puntos de fuga. En 

el capítulo 4 se expone cómo se calculan las consignas del cuadricóptero y cómo se ha 

conseguido realizar la integración de todos los sistemas. Los experimentos realizados se 

presentan en el capítulo 5. Y, finalmente, en el capítulo 6 se exponen las conclusiones obtenidas 

tras la realización de este trabajo, así como posibles futuras mejoras y aplicaciones. Se incluyen 

varios anexos, a los que se puede acudir para obtener información más completa y detallada de 

algunos de los aspectos ya nombrados. 
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2. Dinámica y control de un cuadricóptero 

Los robots aéreos tienen dos principales diferencias respecto a la mayoría de robots terrestres. 

La primera es el número de grados de libertad: un cuadricóptero tiene 6 grados de libertad, tres 

para posición y tres para orientación, lo que dificulta notablemente su control. La segunda es 

su naturaleza inestable, eso hace que se deba gobernar por fuerzas y momentos y no por 

velocidades, de manera que es necesario utilizar un modelado dinámico y no solamente 

cinemático [3]. 

En el Anexo A se amplía el detalle de la nomenclatura que se utiliza de aquí en adelante. 

 

2.1 Modelo dinámico 

En la Figura 2.1 se muestra un sencillo esquema del cuadricóptero. El sistema de referencia 

{B}, de ‘body’ en inglés, pertenece al cuadricóptero y se halla en su centro de masas. Se puede 

observar que el sistema de referencia escogido es dextrógiro, con el eje z hacia abajo. Los 

rotores se suelen designar ya sea con números del 1 al 4 o bien con las direcciones cardinales 

N, E, S, O. Se representa el empuje de cada uno de los rotores, designado por la letra T, de 

‘thrust’ en inglés. Los rotores 1 y 3 giran en sentido contrario a las agujas del reloj, y los rotores 

2 y 4 en el sentido de las agujas del reloj. Esta es la razón por la que un cuadricóptero se 

mantiene en suspensión (sin rotaciones) si sus cuatro rotores giran a la misma velocidad, ya que 

los momentos producidos por los rotores 1 y 3 se anulan con los producidos por los rotores 2 y 

4. 

 

Figura 2.1. Esquema de un cuadricóptero. Fuente: [3]. Se muestra el sentido de giro de los rotores, el 

sentido del empuje de cada uno de éstos, la longitud del brazo del rotor y el sistema de referencia {B} 

del propio cuadricóptero. 
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A continuación se presentan las ecuaciones que determinan el modelo dinámico del 

cuadricóptero, considerándolo como un sólido rígido. Se calcula el empuje, dos tipos distintos 

de pares y las derivadas primeras y segundas de la posición y la orientación [3] [6] [7]: 

 

1

2 2

1 1

1 1

sin

cos sin

cos cos

s

s s

s s

i

i t i i i

i i
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 3

3i q i iC Ar e   Q   (2.2) 

 i i i τ T D   (2.3) 

 r v   (2.4) 

 

i 1,2,3,4

0 0

0 0W

B

i

m

mg T


 
   
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 1n W Ω   (2.6) 

 
1,2,3,4

( )i i

i

    IΩ Ω IΩ τ Q   (2.7) 

 

En (2.1) aparecen dos variables relacionadas con el flapping: 
1s ia  y 

1s ib . El flapping es un 

efecto producido por la traslación horizontal de los rotores en el aire. Se basa en que las hélices 

del cuadricóptero tienen un comportamiento diferente si se sitúan en la parte delantera o trasera 

del rotor (según la dirección de vuelo), produciendo una especie de aleteo. Aun así, este tema 

no se ha planteado como objeto de ese trabajo, así que de aquí en adelante se obviará en las 

explicaciones. 

Cabe destacar también que Ti (sin tener en cuenta el flapping) siempre toma valores positivos 

en la ecuación (2.1); tal y como se ha definido el eje z del sistema de referencia {B} del 

cuadricóptero, observamos que realmente debería tomar valores negativos. En las siguientes 

ecuaciones observaremos que esta singularidad sí se tiene presente. En (2.2) i  se multiplica 

por su módulo para conservar el signo de rotación de cada rotor; el signo “–“ es necesario para 

que el valor del momento producido resulte coherente con el signo de la velocidad de rotación 

de cada rotor. 
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Por definición, el par o momento de una fuerza respecto a un punto viene definido por el 

producto vectorial de un vector distancia por un vector fuerza  τ r F . En la ecuación (2.3) 

se realiza el producto vectorial de esta manera  τ F r ; así se subsana la singularidad que se 

ha comentado anteriormente acerca del signo de Ti. 

Hay que remarcar que la velocidad y la aceleración lineal se expresan en el sistema de referencia 

absoluto {W}; por eso en (2.5) utilizamos W

BR , trasladando el empuje T del sistema de 

referencia {B} del cuadricóptero al sistema absoluto {W}. En dicha ecuación, el signo menos 

también se debe a la singularidad comentada de Ti. 

Para calcular la derivada de los ángulos YPR del cuadricóptero (2.6) es necesario utilizar el 

wronskiano inverso. Su obtención se detalla en el Anexo B. La aceleración angular Ω  (2.7) 

está expresada en la referencia {B}. 

 

2.2 Control 

Para realizar el control del cuadricóptero se ha utilizado la toolbox para Matlab “Robotics, 

Vision and Control” de Peter Corke [7], en la que se utilizan dos subsistemas en cascada, uno 

para controlar la orientación, y otro superpuesto para controlar la posición. Esto se hace así 

porque, a fin de que el cuadricóptero avance según direcciones paralelas al suelo, es necesario 

variar su orientación. 

La única manera posible de actuar sobre el cuadricóptero es variando la velocidad angular de 

sus rotores; así pues, deberemos conocer cómo se relacionan las fuerzas y pares producidos con 

las velocidades angulares: 

 2 2 2

i t i T iT C Ar c      (2.8) 

La constante 0Tc   puede ser determinada experimentalmente mediante test estáticos de 

empuje [4]. La ventaja es que de esta manera los términos del flapping están presentes 

implícitamente en dicha constante. 

 3 2

3i q i i Q iQ C Ar e c        (2.9) 

La ecuación (2.9) hace referencia al par producido por el giro de los rotores. 

 2

i i i T i iT D c D      (2.10) 

La ecuación (2.10) representa el par producido por el empuje, Ti, de cada rotor. 
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En las tres ecuaciones anteriores falta determinar correctamente los signos pues, por ejemplo, 

un empuje T1 positivo produce un 
y  positivo, pero un empuje T3 positivo produce un 

y  

negativo. Así, se muestran las tres ecuaciones de forma matricial con los signos correctamente 

asignados: 

 

2 2
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2 2

2 2

2 2

3 3

2 2

4 4

0 0

0 0

T T T T

T Tx

T Ty

Q Q Q Qz

c c c cT
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c c c c

 
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  

  


     
             
      
                 

A   (2.11) 

El control del cuadricóptero se describe más detalladamente en el Anexo C. 
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3. Estimación visual de la orientación 

El algoritmo utilizado para estimar la orientación se basa en la extracción de puntos de fuga a 

partir de imágenes tomadas por una cámara fisheye; por ello se parte de ciertas premisas, que 

se detallan a continuación: 

1. En el entorno debe haber suficiente luminosidad para que la cámara fisheye pueda 

tomar imágenes de calidad aceptable. 

2. El entorno debe tener suficientes rectas paralelas en direcciones ortogonales para 

poder extraer correctamente los puntos de fuga; esto se conoce como escenario de 

Manhattan. 

3. Cuantas más rectas paralelas en direcciones ortogonales existan en el escenario, mayor 

será la precisión y robustez del sistema. 

4. El cuadricóptero debe tener una altura suficiente respecto al suelo, de manera que la 

cámara fisheye pueda obtener imágenes lo suficientemente amplias para la obtención 

de los planos de proyección. 

5. Asumimos que el cuadricóptero se halla en una situación ambiental de calma, sin 

fuertes vientos ni otras fuerzas externas; de lo contrario, no bastaría con el control 

realizado. 

 

3.1 Proyección de rectas en sistemas fisheye 

La extracción de la proyección de rectas para cámaras perspectivas convencionales es una tarea 

relativamente sencilla si se compara con la extracción para cámaras fisheye. En el primer caso, 

se utiliza un modelo matemático lineal, pues cualquier recta 3D se proyecta sobre el plano de 

la imagen, resultando una línea 2D. Cuando el sistema de proyección no es perspectivo, como 

el caso de los sistemas fisheye, el modelo matemático deja de ser lineal y la línea proyectada es 

una curva. 

Para la ejecución de este trabajo se ha utilizado un código de extracción de planos de proyección 

[5] desarrollado por Jesús Bermúdez. Este mismo autor y otros en [8] [9] describen el modelo 

matemático utilizado y el funcionamiento del código. Se puede resumir de la siguiente manera: 

partiendo de un conjunto de al menos dos puntos que pertenezcan a una misma línea de la 

imagen, se puede construir un sistema lineal homogéneo; la solución a este sistema es un plano 

que contiene dicha recta 3D. Para detectar los puntos a partir de los cuales se determina la recta, 
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primeramente se detectan los contornos de la imagen con el algoritmo Canny2, y se almacenan 

en componentes conectadas. Para cada componente se lanza un algoritmo RANSAC (ver 3.2). 

Tras este algoritmo de votación, se determinan cuáles son los planos de proyección, con los que 

será posible el cálculo de los puntos de fuga del entorno. 

 

3.2 Estimación de la orientación basada en puntos de fuga 

Los planos de proyección, nombrados en el apartado anterior, se describen mediante su vector 

normal. Estos planos sólo contienen dos de los cuatro grados de libertad de cada recta. Sin 

embargo, si se impone paralelismo entre dos o más rectas, se puede calcular la dirección común 

de éstas. Asumiendo que el entorno contiene direcciones dominantes, y que por lo tanto existe 

este paralelismo, se puede plantear un algoritmo robusto para poder calcular los puntos de fuga, 

y así la orientación del cuadricóptero respecto a su entorno. 

Para comprender mejor cómo se han calculado los puntos de fuga o direcciones principales nos 

centraremos en un caso análogo pero mucho más sencillo. Supongamos un prisma como el que 

se representa a continuación; en éste se desea obtener la dirección principal ‘x’: 

 

Figura 3.1. Cálculo de los puntos de fuga a partir de las normales de los planos de proyección (ejemplo 

simplificado). 

                                                

 

2 También se utiliza para extraer el gradiente de cada píxel de la imagen y proporcionar mayor robustez 
al algoritmo RANSAC. 
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El origen respecto al que se definen los planos de proyección se ha dibujado con un punto de 

color rojo. Se pueden observar dos planos, uno azul y otro verde. Éstos son los planos de 

proyección de dos rectas paralelas, orientadas en dirección ‘x’ y que, por tanto, constituyen una 

dirección principal. Al realizar el producto vectorial de las normales ‘n’ de ambos planos, 

obtenemos un vector ‘v’ con la misma dirección que las dos rectas paralelas anteriores. 

En un entorno donde existen tres direcciones principales ortogonales, este mismo proceso se 

puede aplicar a las tres direcciones. De esta manera, se obtienen tres vectores, con las tres 

direcciones principales 1
v , 2

v  y 3
v . 

Esta condición de paralelismo en las rectas del entorno es una simplificación del problema 

general. Las siguientes razones justifican la integración del modelo geométrico propuesto en 

un método de extracción robusto: 

 El entorno donde se mueve el cuadricóptero puede tener rectas que no pertenecen a 

ninguna de las tres direcciones principales. Así, estas rectas hay que discriminarlas para 

que no induzcan errores en el cálculo de la orientación. 

 Se pueden encontrar dos planos de proyección paralelos o casi paralelos. 

Dos planos paralelos poseen dos vectores normales 1
n  y 2

n  también paralelos; su 

producto vectorial da como resultado un vector de valores nulos. Esto dará problemas a 

la hora de realizar el cálculo; más adelante se explicará por qué. 

 No se conocerá, a priori, qué planos son los que definen la misma dirección principal, 

de manera que hay que diseñar algún método iterativo que compare planos de 

proyección hasta obtener una solución correcta. 

El método que se usa es el RANSAC, abreviación de “RANdom SAmple Consensus”. Se trata 

de un método iterativo para estimar parámetros de un modelo matemático partiendo de un 

conjunto de datos que puede tener una cantidad razonable de valores atípicos o espurios. 

El ajuste por mínimos cuadrados tiene una clara desventaja: cuando se tiene una considerable 

cantidad de datos atípicos, se realiza un mal ajuste, pues todos esos datos influyen en el modelo. 

La ventaja de RANSAC en comparación al ajuste por mínimos cuadrados es que discrimina los 

valores atípicos, de manera que únicamente realiza el ajuste con valores que se aproximan al 

modelo. En este trabajo, el algoritmo se aplica al conjunto de rectas normales ‘n’, pero para una 

mejor comprensión se explicará el caso de RANSAC aplicado a puntos. 

En la Figura 3.2 pueden observarse una serie de puntos. Los puntos azules se conocen con el 

nombre de ‘inliers’ y los puntos rojos como ‘outliers’. El proceso iterativo es el siguiente: 

1. Se toma un subconjunto de puntos aleatoriamente. 

2. Se ajusta un modelo para el subconjunto seleccionado. 

3. Se determina y se almacena el número de puntos que se ajustan a dicho modelo. 
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4. Se repite el proceso un número determinado de veces. 

5. Se escoge el modelo al que mayor número de puntos se han ajustado. 

De esta manera, discriminando los puntos que están más allá de una determinada distancia, 

conseguimos que el ajuste sea más preciso que con el método de los mínimos cuadrados. 

 

 

Figura 3.2. Método RANSAC. 

 

La forma de resolver el problema con rectas, en vez de con puntos, es similar. Se parte de un 

conjunto de vectores, i
n , normales a los planos de proyección. 

1. Se escoge, aleatoriamente, una pareja de vectores 1
n  y 2

n . 

2. Se realiza el producto vectorial de ambos, obteniendo el vector v, perpendicular a 1
n  y 

2
n ; esta dirección v es la que interesa obtener, que es la dirección principal. 

 1 2
v = n ×n   (3.1) 

Si el producto vectorial da un vector de valores cercanos a 0, se desecha el resultado de 

esta iteración. Esto significa que 1
n  y 2

n  son paralelos o casi paralelos, de manera que 

sus respectivos planos son también paralelos. 

3. Se realiza el producto escalar de cada vector i
n  con v: 

 idist  
i

n v   (3.2) 
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4. Si la variable idist  es menor que un valor umbral3, ese vector i
n  vota positivo a dicho 

vector v . Se almacena qué vectores concretos i
n  han votado positivo. Si idist  es 

mayor, no se vota. 

5. Se repiten los puntos del 1 al 4 un número suficiente de veces. El número mínimo de 

veces, k, que hay que repetir el algoritmo viene determinado por la siguiente expresión 

[10]: 

 
log(1 )

log(1 )s

p
k







  (3.3) 

Donde p es la probabilidad de que el algoritmo seleccione, en alguna iteración, sólo 

inliers de entre todos los datos de entrada cuando se seleccionan los s puntos (s=2) con 

los cuales el modelo puede ser estimado.   es la probabilidad de que un vector dentro 

del conjunto de datos sea un inlier. 

6. Se determina qué vector v  ha obtenido mayor número de votos. 

7. Se hace un ajuste por mínimos cuadrados con todos los vectores que han votado positivo 

al vector v  que ha ganado en la votación. Por eso era necesario saber qué vectores 

concretos votaban a cada vector v. Recordamos que este ajuste por mínimos cuadrados 

sólo se hace con los vectores que han votado positivo, es decir, ya se han excluido los 

vectores que no se ajustaban al modelo. 

8. Se normaliza el vector resultado del ajuste por mínimos cuadrados 
final

v . Ésta será una 

dirección principal. 

9. Se desechan los vectores i
n  que han votado positivo. Se repite todo el proceso con los 

i
n  restantes, para sacar la segunda y la tercera dirección principal. A continuación, se 

muestran dos figuras: 

                                                

 

3 Por esta razón se desechan las iteraciones cuando 1 2
n n , pues en tal caso  0 0 0 ,

1 2
v = n ×n  

y entonces, para cualquier vector i
n  se cumpliría: 0idist   

i
n v . Así, todos los vectores i

n  votarían 

positivo al vector v, produciendo un resultado erróneo. 
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Figura 3.3. Extracción de proyecciones de rectas en una imagen sintética tomada por una 

cámara fisheye. 

En la Figura 3.3 se puede observar el conjunto de planos de proyección que se han 

obtenido para una posición y orientación concreta. 

 

 

Figura 3.4. Clasificación de los planos de proyección según direcciones dominantes. 

En la Figura 3.4, se muestran en color verde, las normales que se han usado para calcular 

una determinada dirección principal, y debajo, en rojo, las que no se han utilizado y que, 
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por tanto, se utilizarán para calcular la siguiente dirección. Finalmente, en la sexta figura 

(abajo a la derecha) se dibujan las que se desechan. En este caso sólo se desecha una. 

 

10. Lógicamente, las tres direcciones principales no tienen correctamente definido el 

sentido y será necesario ordenarlas para formar la matriz de rotación del cuadricóptero. 

Así que habrá que seleccionarlas, darles el sentido adecuado y ordenarlas correctamente 

en la matriz de rotación. 

Con el objetivo de obtener la matriz de rotación del cuadricóptero a partir de las 3 direcciones 

principales calculadas 1
v , 2

v  y 3
v  (se recuerda que con sentido aleatorio y sin ordenar), se ha 

creado una función a la que se le introducen estos tres vectores y la matriz de rotación calculada 

en la iteración justamente anterior4; se comparan, y se escogen los dos vectores que más se 

asemejan a la situación anterior; se les establece el sentido correcto, y se disponen de forma 

ordenada en la matriz de rotación. El tercer vector o dirección principal se calcula como el 

producto vectorial de los dos anteriores, cerciorándonos de que el sistema obtenido es 

dextrógiro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

4 Como excepción, para la primera iteración de la simulación, dicha comparación se realiza con la matriz 
de rotación obtenida en Simulink. 
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4. Integración de sistemas para la simulación del control visual 

En la Figura 4.1 se muestra un diagrama de bloques, donde se pueden observar los principales 

módulos que integran el sistema de simulación y con qué programa se ha implementado cada 

uno:  

 

 

Figura 4.1. Entorno de trabajo. Se muestran los diferentes módulos y el programa con el que se ha 
implementado cada uno. 

 

En el capítulo 3.2 se ha explicado cómo se calcula la matriz de rotación del pasillo respecto al 

cuadricóptero. Una vez conocida dicha información, se puede generar la consigna. Debemos 

señalar que el sistema de control del cuadricóptero se ha diseñado para que las consignas estén 

expresadas en el sistema de referencia absoluto. Por ello, son necesarias cuatro matrices de 

rotación que relacionen los sistemas de referencia absoluto, cuadricóptero, cámara y pasillo: 

 

 

 

POV-Ray

Generación de la 
imagen sintética 
tridimiensional

MATLAB

Planos de 
proyección

Puntos de fuga

Matriz de 
rotación

Consignas

Simulink

Modelo 
dinámico

+
Control

Posición y 
orientación
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La matriz de rotación AbsRCuad se determina por la orientación del cuadricóptero en la 

simulación en Simulink; la matriz CuadRCam relaciona la orientación de la cámara respecto al 

cuadricóptero, simplemente es una rotación de 180º en el eje ‘x’; La matriz CamRPas se ha 

calculado con los planos de proyección y puntos de fuga. Por tanto, la matriz de rotación que 

no se conoce, AbsRPas, se puede calcular como [11]: 

 Abs Abs Cuad Cam
Pas PasCamCuad

 R R R R   (4.1) 

Así se consigue relacionar la orientación del pasillo con la referencia absoluta, y posteriormente 

calcular las consignas del cuadricóptero en el sistema de referencia absoluto. Para que el 

cuadricóptero avance, por ejemplo, en el eje ‘x’ del pasillo, es necesario realizar la siguiente 

operación: 

 

*

*

*

1

0

0

Abs
pas

x

y

z

   
   

    
  
  

R   (4.2) 

 

Cada vez que se lanza el generador de imágenes y se calcula la orientación del pasillo respecto 

al cuadricóptero, se le ordena al cuadricóptero avanzar un metro en dirección x del pasillo. Si 

quisiéramos que el cuadricóptero avanzara más rápido, simplemente deberíamos modificar el 

vector de la ecuación (4.2), cambiando el 1 por un número mayor. De la misma manera, si 

quisiéramos que el cuadricóptero avanzara en la dirección ‘y’ del pasillo, bastaría con asignar 

CuadRCam 

AbsRPas 

AbsRCuad 

Figura 4.2. Sistemas de referencia y transformaciones necesarias para el cálculo de la consigna. 

CamRPas 

Abs 
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un valor distinto de cero en la segunda posición de dicho vector, siendo el resto de valores 

nulos. 

Cabe destacar que la consigna *z  se fija en 0. Como ya se ha explicado, la única forma que 

tiene el cuadricóptero de avanzar (en el eje ‘x’, por ejemplo) es realizar una rotación (en el eje 

‘y’, ángulo pitch). Si la cámara fisheye tomara una imagen en ese instante, se generaría una 

matriz de rotación semejante a la que se obtendría al avanzar por un pasillo con una determinada 

pendiente. Al multiplicar dicha matriz de rotación por el vector  1 0 0
T

, se obtendría una 

consigna *z  no nula, afectando pues a la altura del cuadricóptero sobre el suelo y poniendo en 

riesgo la correcta extracción de los planos de proyección. 

Los valores de las consignas *x , 
*

y  y *z  se añaden de manera acumulativa a la consigna total 

del cuadricóptero (ver Figura 4.3). 

En  el esquema de control mejorado (ver Figura 4.3) se ha añadido un bloque de ruido con el 

fin de hacer el esquema de control algo más realista. 

Otro nuevo bloque que aparece en el esquema de control mejorado (Figura 4.3) y que no 

aparecía en el esquema de control original (Figura C.1), es el bloque llamado “función 

completa”. Aquí se ejecuta todo el código comprendido desde la creación de la imagen sintética 

en POV-Ray a partir del estado del cuadricóptero hasta el cálculo de las consignas, pasando por 

la extracción de los planos de proyección, los puntos de fuga y la matriz de rotación del 

vehículo. Este bloque se ejecuta continuamente, pero internamente se ha programado que la 

visión sólo se lance cada cierto tiempo, pues consume bastante potencia de cálculo. Por tanto, 

los valores de las consignas *x , 
*

y , 
*z  sólo cambian cuando se lanza el algoritmo de visión. 
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Figura 4.3. Esquema de control mejorado. Se ha mejorado el tiempo de respuesta y la sobreoscilación, 
se ha añadido un bloque para introducir ruido de medida y se han añadido otras funciones necesarias.
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5. Ajustes y experimentos 

Principalmente, se han realizado tres experimentos distintos. Uno para mejorar el sistema de 

control; otro para definir qué umbrales son los más correctos en la diferenciación de los puntos 

de fuga, de manera que se seleccionen los planos adecuados para cada punto de fuga; y otro, el 

experimento final, en el que se puede observar cómo el cuadricóptero navega a través de dos 

pasillos unidos por un giro en ángulo recto. A continuación, se detalla más detenidamente cada 

uno de estos experimentos. 

 

5.1 Mejora del sistema de control 

El esquema de control original obtenido de la toolbox de robótica de Peter Corke [7] se basa en 

controladores PD. Tal y como estaban definidas las constantes, se obtiene un sistema con cierta 

sobreoscilación (en algunos casos casi del 40%) y con un tiempo de respuesta mejorable. Por 

eso se ha intentado mejorar el control variando el valor de las constantes proporcionales del 

esquema de control. Se han realizado varias simulaciones para distintos valores, y se han 

determinado como óptimos aquéllos que producen una mayor reducción en los tiempos de 

respuesta y en la sobreoscilación. 

Para analizar el tiempo de respuesta y la sobreoscilación, se han impuesto consignas de 1 metro 

para ‘x’, ‘y’ y ‘z’ individualmente, y de 1 rad para la rotación en el eje ‘z’, ‘yaw’. 

Es deducible que un menor tiempo de respuesta deriva en una mayor acción sobre los motores 

de los rotores, pero como se explica en el Anexo C, la velocidad angular de los rotores está 

limitada a 1000 rad/s, por tanto, no supone un problema. En la Figura 5.1 se muestran las 

gráficas donde se puede observar la mejora conseguida: 
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Figura 5.1. Comparación cualitativa entre el sistema de control original y el mejorado. Se muestran en 

color rojo las respuestas al control original y en color azul las respuestas al control mejorado. 

 

En la Tabla 5.1, se exponen cuantitativamente las mejoras realizadas: 

 

 SO (original) SO (mejorado) tr (original) [seg] tr (mejorado)  [seg] 

X 0 % 0.01 % 4.85 2.9 

Y 6.71 % 0.07 % 3.6 2.1 

Z 18.36 % 0.01 % 5.55 3.45 

yaw,   37.45 % 0.81 % 14.5 4.7 

Tabla 5.1. Comparación cuantitativa entre el sistema de control original y el mejorado 
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5.2 Calibración del algoritmo RANSAC 

A la hora de implementar el algoritmo RANSAC, es necesario definir un umbral. Este umbral 

será uno de los principales responsables de que funcione bien la extracción de las direcciones 

principales. 

En el caso que nos atañe, el umbral definido hace referencia a la diferencia de orientación entre 

las distintas rectas de proyección. Por tanto, un plano de proyección votará positivo a aquellas 

rectas con las que tenga una determinada afinidad (cuando la diferencia de orientación de la 

dirección principal que representa sea menor que el umbral definido), y no votará a aquéllas en 

las que la diferencia de orientación sea superior a dicho umbral. 

Tras varias pruebas, el umbral más adecuado se ha fijado entre ±0.1 y ±0.22; se trata de un 

umbral bastante pequeño, lo que resalta la precisión que vamos a obtener en la orientación del 

cuadricóptero. 

La correcta elección de dicho umbral es de suma importancia, pues en caso de escoger un 

umbral demasiado grande, existirán planos de proyección que votarán positivo a una 

determinada dirección principal y que,  realmente, no tendrán afinidad con la misma. De esta 

manera, se estarán incluyendo en el cálculo datos espurios (justamente lo que queríamos evitar 

aplicando el algoritmo RANSAC). Por el contrario, si el umbral es demasiado pequeño, se 

estará escogiendo un número demasiado pequeño de planos de proyección, desechando un 

número desmesurado e inadecuado de los mismos y, en consecuencia, se tendrán muy pocos 

datos para calcular la dirección principal. A continuación se muestran dos imágenes de la 

aplicación del algoritmo RANSAC para la misma imagen que aparece en la Figura 3.3, primero 

para un umbral superior y luego para uno inferior al escogido como más adecuado. 
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Figura 5.2. Clasificación de los planos de proyección con un umbral superior al adecuado. Se puede 

observar cómo en la primera imagen (arriba a la izquierda) se escogen planos de proyección que no 

corresponden a la dirección perpendicular al suelo. Umbral = ±0.6. 

 

 

Figura 5.3. Clasificación de los planos de proyección con un umbral inferior al adecuado. Se puede 
observar cómo se realiza una deficiente clasificación y se desecha, erróneamente, un gran número de 

planos de proyección. Umbral = ±0.0005.
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5.3 Simulación final 

Se recuerda que el objetivo principal de este trabajo es la creación de un entorno de simulación, 

donde un cuadricóptero, gobernado por un sistema de control que simule su comportamiento 

en la realidad, sea capaz de avanzar por un entorno construido por el hombre, sin más ayuda 

que las imágenes tomadas por una cámara fisheye unida a la parte inferior del vehículo. 

El escenario donde se ha realizado la simulación final está formado por dos pasillos unidos por 

una curva en ángulo recto. El suelo tiene un color rojizo; a un lado del pasillo aparecen paredes 

de tres colores distintos: morado, blanco y verde. El otro lado está formado por grandes 

ventanales con persianas de lama vertical. Se han colocado puertas, marcos, pomos, columnas, 

y rejillas para el apoyo de las lamas, todo esto con el fin de dotar al escenario de un mayor 

realismo. En la Figura 5.4 se muestran algunas imágenes de la escena tomadas con una cámara 

convencional y en la Figura 5.5 las tomadas con una cámara fisheye. 

  

  

Figura 5.4. Imágenes del entorno tomadas con una cámara convencional 
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Figura 5.5. Imágenes del entorno tomadas por una cámara fisheye. 

 

En este apartado se muestra el experimento principal, objeto de este trabajo. Se trata de un 

conjunto de imágenes tomadas por una cámara fisheye, donde se puede observar cómo el 

cuadricóptero avanza por un pasillo programado en POV-Ray. Primero avanza en línea recta 

por el primer pasillo, después toma la curva en ángulo recto y continúa avanzando por el 

segundo pasillo. 

Como ya se ha comentado, los puntos de fuga únicamente nos dan información de la 

orientación, no de la posición, por tanto, debe existir un sistema auxiliar que comunique al 

cuadricóptero cuándo está aproximándose a la curva, para que así comience a avanzar en la otra 

dirección. En la realidad, esto sería fácil implementarlo con sensores de distancia, de manera 

que cuando el sensor detectara que la distancia entre el vehículo y la pared fuera menor de un 

determinado valor, se recalculara la orientación y tomara la curva. 

Dado que en la simulación no tenemos ni un cuadricóptero real ni paredes reales, simplemente 

se le advierte al vehículo cuándo está a menos de una determinada distancia de la pared, para 

que cambie la dirección de avance. 

El sistema implementado es suficientemente robusto, pero en casos puntuales no es capaz de 

extraer correctamente la orientación del pasillo respecto al cuadricóptero. Las simulaciones 

realizadas tienen una duración de 150 segundos; el algoritmo de visión se lanza cada segundo, 

por tanto se ejecuta 150 veces en una simulación completa. Se ha calculado cuántas veces el 

algoritmo es incapaz de calcular fielmente dicha orientación, y se ha obtenido un número de 

errores de entre 12 y 14, lo que supone una tasa de error de aproximadamente un 8,5%. 

Se recuerda que para el cálculo de la matriz de rotación del pasillo respecto al cuadricóptero, 

se realiza una comparación con la obtenida en la iteración anterior, para así poder ordenar las 

direcciones principales correctamente en dicha matriz; por esta razón es importante que el 

sistema sea suficientemente robusto, pues si se obtiene un error en alguna iteración, perjudicaría 
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a las posteriores. Por eso, en los casos en los que se ha detectado error, se asigna directamente 

la matriz de rotación de la iteración justamente anterior, con lo que se resuelve el problema. 

Esto se puede hacer porque la visión se lanza cada poco tiempo (un segundo) y por tanto la 

matriz de rotación varía mínimamente. 

Cabe destacar que la extracción de los planos de proyección, cuando el cuadricóptero se 

aproxima a la curva o cuando se encuentra en ella, no es demasiado exacta debido a la 

iluminación y a las sombras que se producen en la unión entre los dos pasillos (ver Figura 5.6). 

Por eso, es en este instante cuando se ha registrado un mayor número de errores (unos 6 errores 

de media). Así pues, sin tener en cuenta los errores debidos a la curva y recalculando la tasa de 

error, se obtiene un valor menor al 5%, lo que destaca el nivel de robustez del sistema. 

En la Figura 5.6 se presenta una pequeña muestra de la secuencia de imágenes tomada justo en 

el momento que el cuadricóptero toma la curva en ángulo recto: 
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Figura 5.6. Secuencia de imágenes tomadas por la cámara fisheye del cuadricóptero (y los 
correspondientes planos de proyección) cuando éste toma la curva entre los dos pasillos. 
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6. Conclusiones 

En este trabajo se ha creado un entorno de simulación para un cuadricóptero. Para ello, se han 

integrado distintos sistemas (modelo dinámico y control de un cuadricóptero [7], toolbox de 

extracción de rectas en cámaras fisheye [5] y software de rendering POV-Ray) en un proyecto 

común para el que se han desarrollado las correspondientes interfaces. Además, se han 

desarrollado los correspondientes módulos para el cálculo de los puntos de fuga, el cálculo de 

la orientación del cuadricóptero a partir de dichos puntos de fuga, así como la generación de la 

consigna de este vehículo. 

Una importante parte del trabajo ha sido la integración de las distintas partes. En este apartado 

se puede observar cómo se ha dividido el problema u objetivo principal en pequeños problemas 

que se han ido resolviendo individualmente, como son: la dinámica y control del cuadricóptero, 

la programación de una escena en 3D con POV-Ray, la utilización del código de proyección de 

rectas en sistemas fisheye, el cálculo de los puntos de fuga aplicando el algoritmo RANSAC, 

la asignación de las consignas, etc. Una vez resueltos todos estos problemas, se han ido 

integrando en un único sistema, obteniendo el entorno de simulación que, finalmente, se ha 

presentado. 

Se ha cumplido el objetivo central del trabajo: implementar un entorno de simulación para un 

cuadricóptero con cámara fisheye, así como las principales premisas que se presentaron en la 

introducción: que no fuera necesaria la señal GPS ni se conociera el entorno con antelación. 

El sistema de visión y cálculo de la orientación y consignas es de una precisión destacable. Se 

han realizado simulaciones de navegación por el interior de un pasillo, llegando a recorrerse 70 

metros, obteniendo una desviación máxima en dirección perpendicular a la dirección de vuelo 

menor a 1 metro. Debe tenerse en cuenta que la única información que se le proporciona al 

cuadricóptero es la que se obtiene de la cámara fisheye5. En un vehículo real, esta desviación 

podría corregirse con sensores de distancia, al igual que se ha hecho para tomar la curva del 

pasillo. Pero en nuestro entorno de simulación, el correcto desplazamiento del cuadricóptero se 

debe al preciso cálculo de la orientación a partir de la visión. 

Una clara aplicación del trabajo realizado podría ser la vigilancia o la navegación autónoma en 

el interior de edificios desconocidos. 

En un cuadricóptero real, los ángulos pitch y roll son relativamente fáciles de calcular. Con el 

uso de la IMU, se puede detectar fácilmente cuál es la dirección de la gravedad y así conocer 

                                                

 

5 Excepto para tomar la curva y cuando llega al final de un pasillo. 
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dichos ángulos. El ángulo yaw es bastante más complicado de estimar. Por eso, si en un futuro 

aumentara la potencia de cálculo de los procesadores, y se programara un código para la parte 

de visión algo más depurado, se podría incluir el sistema de visión en el bucle de control, 

utilizando la cámara fisheye como un sensor más, con el fin de mejorar la estabilización del 

cuadricóptero y también la estimación del ángulo yaw.
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Anexo A. Detalle de nomenclatura utilizada 

A continuación se exponen los principales parámetros y datos físicos de un cuadricóptero, 

necesarios para llevar a cabo el modelado dinámico del mismo. 

Ajeno al cuadricóptero 

g Gravedad 

ρ Densidad del aire 

μ Viscosidad del aire 

Cuadricóptero 

M Masa total 

I Matriz de inercia 

h Altura de los rotores sobre el centro de gravedad 

d Longitud de los brazos 

Rotores 

nb Número de aspas por rotor 

r Radio del rotor 

Ct Coeficiente adimensional de empuje vertical 

Cq Coeficiente adimensional de par o momento 

También son necesarios diversos parámetros relativos a las aspas y al flapping, que no 

son objeto de este trabajo. 

Constantes derivadas de las anteriores 

A Área del rotor 

Tc   Coeficiente de empuje vertical producido por el giro de los rotores 

Qc   Coeficiente de momento producido por el giro de los rotores 
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Cabe destacar cómo se obtienen y de qué dependen los coeficientes Tc   y 
Qc  (distintos de Ct y 

Cq, que son adimensionales), pues serán decisivos a la hora de realizar el control: 

 
2

T tc C A r      (A.1) 

 3

Q qc C A r      (A.2) 

 

 x y zr   Posición en {W}, world (ref. absoluta) 

   yaw pitch roll    n   Orientación en {W} 

 
 W

x y zv   Velocidad en {W} 

 
 1 2 3 B

   Ω   Velocidad angular en {B} 

 1 2 3 4   ω   Velocidad angular de los rotores 

e1 = (1  0  0) 

e2 = (0  1  0) 

e3 = (0  0  1) 

Referencia del cuadro fijo del cuadricóptero. 

e1 alineado con el rotor Norte o 1, y e3 con la 

dirección y sentido de la gravedad. Observar 

que no es el mismo sistema de referencia que 

{B}, pues e3 siempre está alineado con la 

gravedad y en {B} no ocurre así. 

W

BR  = AbsRCuad Matriz de rotación del sistema de referencia 

{B} respecto de {W} 

1
W   Wronskiano inverso 

I   Matriz de inercia del cuadricóptero 

T Empuje vertical producido por el giro de los 

rotores 

τ   Par producido por el empuje, T, de los rotores 

Q Par producido por el giro de los rotores. 
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Anexo B. Wronskiano 

Para realizar la transformación de las velocidades angulares (expresadas en el sistema de 

referencia {B}) a las derivadas de los ángulos RPY es necesario el uso de lo que P. Corke 

denomina wronskiano inverso [7] y que se obtiene de la siguiente manera: 

Dada la siguiente ecuación6 (fuente: [4]):  

 
 R R Ω   (B.1) 

Donde Ω  es el tensor velocidad angular; se trata de una matriz antisimétrica tal que 

  Ω v Ω× v , así pues Ω  toma la siguiente forma: 

 

3 2

3 1

2 1

0

0

0



  
 

   
   

Ω   (B.2) 

Se toma la matriz R  y se realiza, para cada elemento, la derivada respecto de los ángulos ‘roll’, 

‘pitch’ y ‘yaw’. Formando así la matriz R : 

 
ij ij ij

ij

R R R
R   

  

  
  
  

  (B.3) 

Esta matriz se reordena y se dispone en forma de vector (utilizando el operador vec  [12]), de 

manera que se cumpla la siguiente igualdad: 

 
9 3x

vec







 
 

     
 
 

R A   (B.4) 

Por otro lado, se realiza el producto R Ω ; se dispone en columnas al igual que se hizo para 

R , y se reordenan los términos: en la primera columna, los factores que dependen de 1 , en 

la segunda, los que dependen 2 , y en la tercera, los que dependen de 3 . Se formará la matriz 

 vec R Ω  de la misma manera que en el caso anterior: 

                                                

 

6 Por simplicidad, en este anexo denotaremos R a la matriz de rotación 
W

BR . 
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  
1

2

3
9 3x

vec 

 
 

    
  

R Ω B   (B.5) 

Las matrices A y B tienen dimensión 9x3. Los grados de libertad únicamente son 3, por tanto 

sabemos que de las 9 filas, 3 de ellas serán independientes y las otras 6 restantes serán 

dependientes de las anteriores. Así, se escogen 3 filas de ambas matrices, formando las matrices 

A  y  B  respectivamente, asegurándonos de que su rango sea 3, es decir, que sus filas sean 

independientes y por tanto las matrices sean invertibles. 

Finalmente, se realiza la siguiente operación: 

 

1 1

1

2 2

3 3

1

wronskiano
inverso

 

 

 





       
      
              

             
W

A B A B   (B.6) 

De esta manera, se ha obtenido el wronskiano inverso, necesario para poder transformar las 

velocidades angulares del cuadricóptero (expresadas en el sistema de referencia {B}) a las 

derivadas de los ángulos RPY.
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Anexo C. Control del cuadricóptero 

Ya se ha explicado cómo se relacionan las fuerzas y pares producidos con la velocidad angular 

de cada rotor.  Esto es interesante saberlo, pero realmente el control no se realiza en términos 

de fuerzas y pares, sino en términos de velocidades angulares de los rotores, y a continuación 

se explica por qué: fijándonos en las ecuaciones expresadas en (2.11), se deduce que para hallar 
2

i  bastaría con invertir la matriz A y multiplicarla por la matriz del empuje y los pares, de 

manera que se obtendría lo siguiente: 

 

1
2

1

2

12

2

3

2

4

0 0

0 0

T T T T

T Tx x

T Ty y

Q Q Q Qz z

c c c cT T

dc dc

dc dc

c c c c



 

 

 





 
      
             
      
                

A   (C.1) 

El objetivo es calcular 
i a partir de 2

i ; es aquí donde se presenta el principal problema, pues 

en algunos casos obtenemos 2 0i  , siendo irresoluble en el conjunto de los números reales. 

En la Figura C.1 se muestra el esquema de control original extraído de la toolbox de Peter Corke 

[7]: 

 

Figura C.1. Esquema de control original. Fuente: [7] 
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El esquema de control se puede dividir en cuatro partes, comenzando desde abajo hacia arriba 

(por orden de complejidad) y de izquierda a derecha: 

1. Control de la altura del cuadricóptero en el sistema de coordenadas absoluto {W}. 

Se muestra en color rojo, y se rige por la siguiente ecuación (hay que remarcar que 

estamos hablando de T  y no de T, pues se está calculando la velocidad angular de cada 

rotor que produciría una determinada fuerza de empuje T):    

 
0( ) ( )T p dK z z K z z         (C.2) 

Normalmente el término z  se puede despreciar [3], y reordenando y agrupando las 

constantes queda lo siguiente: 

   

 
0[( ) ]T z zP z z D z       (C.3) 

Donde: 

 
0

·

4·cT

M g
    (C.4) 

Que es la velocidad angular que debe tener cada rotor para compensar el propio peso 

del cuadricóptero. 

2. Control del ángulo ‘yaw’ (eje ‘z’) del cuadricóptero en el sistema de referencia {W}. 

Se muestra en color negro y, al igual que para la altura, se utiliza un control derivativo-

proporcional: 

 *( ) ( ) [( ) D ]p dK K P                   (C.5) 

3. Control de la posición ‘x’ e ‘y’ del cuadricóptero en el sistema de referencia {V}7, 

actuando sobre los ángulos ‘pitch’ (eje ‘y’) y ‘roll’ (eje ‘x’). Se realiza en paralelo el 

control de ‘x’ e ‘y’. Por simplicidad y por evitar redundancia, se explica tan sólo para 

‘x’. 

                                                

 

7 Sistema de referencia ligado al cuadricóptero, con el mismo origen que {B}, pero con los ejes x e y 
paralelos al suelo. 
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Para conseguir desplazar el cuadricóptero en ‘x’ únicamente se puede actuar sobre el 

ángulo ‘pitch’. Así pues, a partir de la posición actual y la consigna en ‘x’, se calcula 

qué ángulo pitch es necesario; este primer cálculo aparece en color naranja (ver Figura 

C.1). Una vez calculado el ángulo pitch, se calcula qué velocidad angular de los rotores 

proporcionará un par en el eje ‘y’ suficiente para producir dicha rotación. 

El uso del sistema de referencia {V} está debidamente justificado: supongamos que 

situamos al cuadricóptero en un pasillo y queremos que se mueva a lo largo del eje ‘x’ 

del mismo. Esto produciría una pequeña rotación en el eje ‘y’, de manera que el 

cuadricóptero podría avanzar según ‘x’. En ese instante, el eje ‘x’ del pasillo no 

coincidiría con el eje ‘x’ del cuadricóptero. Es por ello que hay que definir el nuevo 

sistema de referencia {V}. Así, se pasa del sistema de referencia fijo o absoluto {W} al 

sistema de referencia {V}: 

  
 

 
 

cos sin

sin cosV W
x y x y

 

 

 
  

 
  (C.6) 

A continuación se presenta la ecuación con la que, una vez calculada la consigna en 

pitch, se obtendrá la velocidad angular necesaria: 

 

 *( ) ( ) [( ) D ]p dK K P                   (C.7) 

 

4. Bloques “Control Mixer”, “Quadrotor” y “Quadrotor Plot”. 

 Control Mixer. Para cada rotor, se suman/restan adecuadamente las velocidades 

individuales obtenidas 
ψ Tω , ω , ω  y ω 

, se saturan a una velocidad angular 

máxima de 1000 rad/s y se definen los sentidos de rotación de cada rotor. De 

este bloque, obtenemos las velocidades angulares con signo de cada rotor. 

 Quadrotor. En este bloque se introducen las velocidades angulares de cada rotor 

en la S-function, quadrotor_dynamics [7], donde se halla la dinámica del 

cuadricóptero. Esta función nos da el estado del cuadricóptero: 

  X x y z x y z        (C.8) 

 Quadrotor Plot. Hay que introducir el estado del cuadricóptero; dentro de este 

bloque está la función quadrotor_plot, que dibuja un esquema muy sencillo del 

cuadricóptero a través del cual se puede ver qué movimiento está realizando. 
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Anexo D. Generador de imágenes sintéticas POV-Ray 

POV-Ray (Persistence Of Vision Ray-tracer) es un programa de software libre destinado a la 

creación de imágenes en tres dimensiones.   

La escena se describe en un fichero de código que siempre debe contener: la posición y los 

parámetros de la luz, la cámara y los objetos. 

En este trabajo, POV-Ray se ha utilizado para generar, sucesivamente, las imágenes que se 

verían con una cámara fisheye situada debajo del cuadricóptero. De esta manera, una vez 

asignadas las luces y el entorno (en este caso, un pasillo), se ejecuta el programa desde Matlab, 

asignando la posición y orientación adecuada de la cámara fisheye conforme avanza la 

simulación. Las imágenes tomadas se han utilizado para extraer los planos de proyección, 

calcular los puntos de fuga y, así, la orientación del cuadricóptero respecto al pasillo, de manera 

que, generando adecuadamente las consignas, pueda navegar por éste. 
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Anexo E. Manual del programa 

En caso de que terceras personas quisieran comprender, modificar o reutilizar los programas 

desarrollados para realizar este entorno de simulación, en este anexo se explica de manera 

general el funcionamiento y la estructura del mismo. 

En la Tabla E.1 se muestran las principales funciones utilizadas, los argumentos que se deben 

introducir y las variables que éstas devuelven. 

 

 Nombre función Argumentos Return 

1 funcion_completa 

Vector de tiempos de la 

simulación, estado del 

cuadricóptero, velocidad 

angular de los rotores. Todo 

esto en un vector fila. 

*x  
*y  *z  

2 quad2pov AbsTCuad 
AbsTCam 

3 imagen_principal AbsTCuad 
1

v , 2
v , 3

v  (con sentido 

aleatorio y sin ordenar) 

4 create_scene AbsTCam
 

i
n y la imagen que ha 

tomado la fisheye (también 

aparecen dibujados los 

planos de proyección) 

6 ransac_anidado 
i

n , k (número de intentos), 

umbral 

1
v , 2

v , 3
v  (con sentido 

aleatorio y sin ordenar), y los 

planos de proyección 

clasificados en 3 direcciones. 

7 ransac_ind 

i
n  (los sobrantes, en caso de 

que ya se haya realizado 

alguna iteración), k, umbral. 

1, 2 ó 3v , utilizadosn , 

_ .siguiente iteracn  
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8 pintar_acepto_rechazo 
utilizadosn , 

_ .siguiente iteracn para las 

3 direcciones 

Ejecuta y guarda una figura 

compuesta por 6 ‘plots’, 

donde se ve la clasificación 

de los planos (ver Figura 3.4) 

9 ordenaRotacion 
AbsRCam de la iteración 

anterior 
CamRPas 

10 consignas_automatico 

AbsRCuad, 
CamRPas, r (posición 

quad. respecto abs.), *x  
*y  

*z  de la iteración anterior. 

*x  
*y  *z  

Tabla E.1. Principales funciones con los respectivos argumentos y las variables que devuelven. 

 

El esquema de Simulink (donde se ejecuta ‘funcion_completa’) recibe el nombre de 

‘sl_quadrotor_n.mdl’. Se ha creado un fichero de Matlab desde el que se lanza dicho esquema 

de Simulink, con el nombre: ‘Lanza_sl_quadrotor_n.m’, donde se pueden fijar, entre otros, los 

siguientes parámetros: 

 Periodo de muestreo del algoritmo de visión (en segundos). Variable 

‘tLimit(2)’ 

 Duración de la simulación (en segundos). 

 Ángulo de giro del cuadricóptero en el eje ‘z’ (en radianes). 

Cabe destacar la existencia de dos ficheros Matlab imprescindibles: 

‘mdl_quadrotor.m’, donde se hallan las variables y constantes físicas del cuadricóptero y del 

entorno (densidad del aire, gravedad…). 

‘quadrotor_dynamics.m’; se trata de una ‘S-function’ donde se ejecuta la dinámica del 

cuadricóptero. En caso de querer cambiar la situación inicial (posición y orientación) del 

cuadricóptero es aquí donde debe hacerse. 

Si se realizara un cambio en la escena 3D generada en POV-Ray habría que modificar las 

distancias para tomar la curva o señalar el final de pasillo en ‘consignas_automatico’. 

El fichero de POV-Ray donde está programado el entorno recibe el nombre de 

‘CorridorObj.pov’, y el fichero donde se carga la posición y orientación actualizadas de la 

cámara es ‘input.pov’. La versión de POV-Ray utilizada es la 3.6. 

La función ‘create_scene’ merece especial atención, pues es desde donde se ejecuta POV-Ray; 

se genera y se guarda la imagen obtenida por la cámara fisheye, y se realiza la extracción de los 

planos de proyección. Para su correcto funcionamiento es necesario determinar la ruta donde 
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se encuentra el ejecutable de POV-Ray, así cada vez que se lance el algoritmo de visión, Matlab 

será capaz de abrir y cerrar dicho software. También se determinan otros parámetros de 

configuración de POV-Ray, como son: la dimensión y definición de la imagen obtenida, el 

nombre de los ficheros ‘.pov’, el nombre del objeto programado en POV-Ray, si el sistema es 

dextrógiro o levógiro, etc. Otros parámetros que se definen en ‘create_scene’ son los relativos 

a la configuración del procesado de la imagen, a la configuración de la cámara, a la extracción 

de los planos de proyección y al algoritmo RANSAC utilizado para la correcta extracción de 

dichos planos [5].  

En la Figura  E.1 se muestra de manera esquemática la jerarquía que siguen algunas de las 

funciones anteriormente descritas con el fin de obtener una idea global del sistema. 

 

Lanza_sl_quadrotor_n 

sl_quadrotor_n 

 

Modelo 

 

 

 

Dinámica 

 

 

 

Control 

funcion_completa 

imagen_principal 

create_scene 

ordenaRotacion 

consignas_automatico 

pinar_acepto_rechazo 

ransac_anidado 

ransac_ind 

Figura  E.1. Jerarquía de las principales funciones que componen el sistema 
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