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Resumen 

 

El modelo utilizado para el cálculo de estructuras hasta aproximadamente la última 

década había sido siempre el modelo elástico lineal. A partir de entonces y 

progresivamente, se ha ido aceptando la introducción del diseño plástico para el cálculo 

de estructuras. Las numerosas ventajas que este diseño tiene frente al elástico, como son 

el mejor aprovechamiento de los materiales y el aumento de la capacidad de carga por 

parte de la estructura, han supuesto que cada vez se tenga más en consideración este tipo 

de cálculo. 

Este proyecto pretende, a partir del análisis particular de un pórtico rígido plano de acero, 

comparar los resultados obtenidos entre el modelo elástico y el plástico. Previamente al 

cálculo estructural, se realiza el dimensionamiento del pórtico a analizar para que éste 

cumpla con la normativa vigente.   

Con el objetivo profundizar en el análisis plástico, se procede a la resolución del mismo 

problema por diversos métodos (directos y paso a paso) y se comparan los resultados 

obtenidos entre ellos. La diferencia entre ellos reside en que la resolución mediante un 

método directo proporciona directamente el mecanismo de fallo de la estructura mientras 

que el método paso a paso estudia la progresiva evolución de la plastificación en la 

misma. Además, se lleva a cabo el estudio de la influencia que la fuerza axial 

(inicialmente despreciable) tiene en la capacidad de carga de la estructura. 

Finalmente, para estudiar la capacidad de la sección y del material para deformarse 

plásticamente se lleva a cabo un análisis de una viga con el programa computacional 

Abaqus. Éste se trata de un programa de simulación que aplica el método de los 

elementos finitos para realizar cálculos estructurales estáticos lineales y no lineales. 

Adicional al estudio de plasticidad, un estudio de pandeo es realizado con el programa 

para verificar que el perfil elegido en la estructura cumple efectivamente con la 

normativa. 
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1. Introducción

1.1. Justificación del trabajo 

Todas las publicaciones referentes a cálculos de estructuras anteriores a 1914 estaban 

basadas en el comportamiento elástico de los materiales. No fue hasta la fecha citada 

cuando se produjeron las primeras publicaciones considerando la posibilidad de 

dimensionar utilizando la ductilidad de los mismos. Sin embargo, aunque en la época 

de los 40 se produjeron los primeros ensayos sistemáticos de plasticidad en pórticos 

que darían el impulso a la teoría actual, su mayor desarrollo y aceptación no se ha 

experimentado hasta las últimas décadas. 

Gracias al diseño plástico es posible la obtención de diseños más racionales, la 

simplificación de los cálculos y un mejor aprovechamiento de los materiales. Con 

este trabajo por tanto, se quiere justificar y demostrar las ventajas que el diseño 

plástico presenta frente al diseño elástico mediante el análisis particular de un pórtico 

rígido plano. 

1.2. Planteamiento del problema 

1.2.1. Geometría, cargas y condiciones de contorno 

El problema a analizar va a consistir en un pórtico constituido por un vano y dos 

alturas como el que se observa en la Figura 1 cuyas medidas están dadas en metros. 

Consta de 3 cargas puntuales y una carga distribuida a lo largo de la jácena de la 

primera planta. Los apoyos del pórtico se disponen empotrados. 
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Figura 1. Geometría, cargas y condiciones de contorno del pórtico 

1.2.2. Dimensionamiento de la estructura 

Para el dimensionamiento y la adecuada selección de los perfiles que forman el 

pórtico se define inicialmente la relación existente entre el módulo plástico de los 

pilares y de las jácenas. Debido a que la carga principal actúa sobre las jácenas se 

considera que éstas tienen el doble del módulo plástico de los pilares. Por 

consiguiente el momento plástico de los pilares será Mp mientras que el de las 

jácenas será 2Mp (Figura 2). 

 

Figura 2. Relación entre los momentos plásticos de pilares y jácenas 
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El tipo de viga de los pilares se fija como un perfil catalogado HEB200, cuya 

geometría y propiedades se muestran en las Figuras 3 y 4. Las unidades de los 

datos de las figuras están expresadas en mm.  

 

 

Figura 3. Geometría del perfil HEB200 

 

Figura 4. Propiedades del perfil HEB200 

Para garantizar que el perfil elegido para las jácenas admite plastificación, éste ha 

de pertenecer a la Clase 1 según el Eurocódigo 3. Conocidos el tipo de viga que 

componen los pilares, la relación existente entre los módulos plásticos de jácenas 

y pilares y aplicando el Eurocódigo 3 mencionado se obtiene qué perfil cumple 

con los requisitos. En la Tabla 1 se detallan los requisitos que han de cumplir los 

perfiles para pertenecer a cada clase. Introduciendo en la Tabla 1 los datos del 

perfil que se muestran en la Tabla 2 se observa que dicho perfil se clasifica dentro 

de la Clase 1. 

Tabla 1. Clasificación de los perfiles según el Eurocódigo 3 

Clases 

Limites Esbelteces 

{ tabla 6,1 } Sección 1 Sección 2 

Ala Alma Ala Alma Ala Alma 

kesb * e kesb * e 
c / tf cw / tw c / tf cw / tw 
7,96 20,7150 1,00 1 

Clase 1 8,32 66,56 x x x x 
Clase 2 9,24 76,7 . . . . 
Clase 3 12,9 115 . . . . 
Clase 4 > clase 3 > clase 3 . . . . 

Clasificación 1 1 
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Tabla 2. Datos del perfil analizado con el Eurocódigo 3 

Sección I 
cf  [mm] 95,5 
tf [mm] 12 
cw [mm] 248,6 
tw [mm] 12 
b [mm] 220 
h [mm] 325,5 

 

El perfil elegido es, de acuerdo con lo anterior, una viga armada H295,5x220. Su 

geometría y propiedades se muestran en las Figuras 5 y 6. Las unidades de ambas 

figuras están dadas en mm. 

 

 

Figura 5. Geometría del perfil de la viga armada de 295,5x220 

 

Figura 6. Propiedades del perfil H295,5x220 

Se observa que el módulo plástico del perfil HEB200 es 643000mm
3
 (Figura 4) 

mientras que el de la viga armada 295,5x200 es 1286610mm
3
 (Figura 6), por lo 

que se cumple que el segundo es el doble que el primero. 

Los tipos de perfiles que constituyen la estructura teniendo en cuenta todo lo 

anterior se muestran en la Figura 7. 
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Figura 7. Perfiles que forman la estructura  



 

12 

 

2. Conceptos generales 

2.1. Comportamiento elástico y plástico 

El diseño elástico se basa en que al aplicar ciertas cargas sobre una estructura, ningún 

punto de la misma sobrepasa el límite elástico del material del que está compuesta y, 

por tanto, la retirada de las cargas lleva consigo una vuelta de la estructura al estado 

inicial indeformado. En el momento en que algún punto sobrepasa dicho límite, se 

producen fenómenos de fluencia plástica. Si la carga se sigue incrementando y llega 

hasta la carga última que la estructura es capaz de soportar, se produce el colapso. 

Las cargas que producen el inicio de la fluencia pueden ser determinadas mediante el 

análisis elástico, sin embargo es necesario recurrir a las hipótesis de cálculo plástico 

para determinar la resistencia de la estructura desde que aparece el primer punto de 

plastificación hasta que se produce el colapso. 

2.2. Hipótesis consideradas 

2.2.1. Modelo elastoplástico 

El material con el que se va a trabajar es el acero, cuyas propiedades se muestran 

en la Tabla 3. 

Tabla 3. Propiedades del acero 

Material Acero 

σY 275 MPa 

Módulo de Young, E 210 GPa 

Módulo de cizalla, G 150 GPa 

Coeficiente de Poisson, v 0,3 

 

En la Figura 8 se observa la curva de tensión-deformación de este material en el 

ensayo de tracción. Se pueden observar diferentes zonas
1
.  

- Zona elástica lineal O-A: al descargar la probeta se recupera y vuelve a su 

estado inicial. 

- Zona de fluencia A-B: transición entre la zona elástica y plástica. 

                                                 

1
 M. R. Dalmau y J. Vilardell (2003). “Análisis plástico de estructuras. Introducción” 
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- Zona plástica B-C: la probeta se deforma plásticamente y al retirar la carga 

conserva un alargamiento remanente. 

- Zona de endurecimiento por deformación C-D: la probeta sigue deformándose 

plásticamente pero es necesario aumentar la carga para conseguir el 

alargamiento. 

- Zona de estricción D-E: la probeta se sigue alargando con una fuerte 

contracción en el punto donde finalmente se produce la rotura 

 

 Figura 8. Curva tensión-deformación acero 

Con el objetivo de simplificar los efectos producidos por la carga y descarga del 

material, se va a considerar que el comportamiento del material es elastoplástico 

ideal. La curva de tensión-deformación para este caso se observa en la Figura 9. 

A diferencia del comportamiento real, en la simplificación elastoplástica no se 

tiene en cuenta el límite de fluencia superior, el endurecimiento por deformación 

ni el efecto Bauschinger. El material elastoplástico ideal tiene por tanto un 

comportamiento lineal hasta alcanzar la tensión de fluencia a partir de la cual no 

puede soportar más carga y las deformaciones aumentan en forma ilimitada 

manteniéndose la carga constante. 

 

 Figura 9. Modelo de comportamiento elastoplástico ideal 
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2.3. Teoría elemental de flexión plástica de 

vigas 

2.3.1. Principio de plastificación 

Las hipótesis que rigen la teoría de la flexión simple de vigas en régimen elástico 

se enuncian a continuación: 

a) El alargamiento de cada fibra longitudinal es proporcional a su distancia al eje 

neutro  

b) El material es elástico lineal  

c) Las deformaciones son lo bastante pequeñas para que pueda admitirse que la 

curvatura cumple que ϕ~tgϕ 

d) El sistema de fuerzas internas actuante en una sección de la viga, de área A 

equivale a una función normal de valor 

    
 

 

 

y a un par de fuerzas cuyo momento M es 

     
 

 

 

donde y es la distancia al eje neutro y σ es la distribución de esfuerzos en la 

sección, de modo que 

   
 

 
  

Para el caso de la teoría de flexión plástica de vigas, las hipótesis anteriores siguen 

siendo válidas pero modificando la hipótesis b) ya que ahora el material se va a 

considerar elastoplástico perfecto, cuyas propiedades se han detallado en el 

apartado anterior. 

Se considera una viga de sección rectangular constituida por un material 

elastoplástico perfecto. Esta viga se somete a un momento flector M que se va a 

aumentar paulatinamente desde 0. Mientras el material se encuentre en régimen 

elástico (Figura 10.a) el esfuerzo máximo en esa sección puede calcularse como 

σmax=M/W siendo W el módulo resistente. Cuando el momento flector alcanza el 

valor de MY (Figura 10.b), que es el llamado momento de fluencia, comienza la 

plastificación de las fibras externas de la sección y en ellas σ=σy. Si M sigue 

aumentando por encima de MY, como se muestra en la Figura 10.c, las zonas 

externas de la sección van plastificando mientras que el núcleo permanece en 

régimen elástico. Conforme el valor de M se incrementa más, la zona plastificada 

se va agrandando hacia el eje neutro hasta que llega el momento en que se alcanza 

el valor de Mp (Figura 10.d), que es el momento plástico para el cual toda la 
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sección está ya plastificada y la carga que lo provoca se denomina carga última o 

de agotamiento y es la que provoca el colapso.
2
 

 

 

Figura 10. Proceso de plastificación de una sección rectangular 

2.3.2. Relación momento-curvatura 

La relación existente entre el momento flector aplicado y la curvatura producida 

para una viga de diferentes secciones se muestra en la Figura 11. Todas las curvas 

representadas cuentan con un tramo recto desde el origen hasta M/MY=1, que se 

corresponde con el comportamiento elástico lineal del material. A continuación se 

produce una porción curva que representa el momento en que el material es 

parcialmente elástico y parcialmente plástico y que tiende al valor MP/MY=f, al 

que correspondería un valor de la curvatura ϕ/ϕY que tiende a infinito y que 

corresponde al caso de plastificación total. Se denomina factor de forma al valor f, 

que es función de la forma de la sección trasversal. 

                                                 

2
 M. R. Dalmau y J. Vilardell (2003). “Análisis plástico de estructuras. Introducción” 
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Figura 11. Relación momento-curvatura de algunas secciones 

En el caso que nos ocupa, es decir, para una viga en doble T se observa en la 

Figura 12 que el factor de forma es pequeño y por tanto el paso de 

comportamiento elástico a plastificación total se produce rápidamente. Es decir, 

las vigas en doble T llegan a la situación de rotación ilimitada casi repentinamente 

una vez alcanzada la fluencia de las fibras exteriores, lo que permite idealizar la 

curva momento-curvatura suponiendo por tanto que la sección se comportará 

elásticamente justo hasta el momento en que plastifica completamente. 

 

Figura 12. Relación momento-curvatura de una sección en doble T 
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3. Cálculo elástico 

Para la realización del análisis elástico lineal de la estructura, se ha utilizado el programa 

MEFI. De este modo, se va a simular la estructura aplicando la carga P máxima que 

garantice que ningún punto de la estructura plastifica y por lo tanto, asegurando que toda 

la estructura se comporta de manera elástica. 

En la Figura 13 se muestran las cargas máximas admisibles que aseguran el 

comportamiento elástico expresadas en kg y kg/m para las cargas puntuales y distribuidas  

respectivamente.  

 

Figura 13. Cargas máximas en comportamiento elástico 

Durante el proceso incremental de carga, la estructura se comporta de manera elástica 

hasta el momento en que algún punto de la misma alcanza el límite elástico. En ese 

momento la sección empieza a plastificar abandonando la estructura el comportamiento 

elástico. La carga que produce una tensión igual a tensión límite elástica es P=4544 kg. 

Los diagramas de los momentos flectores resultantes para las cargas aplicadas se 

observan en la Figura 14. Al aplicar la carga de 4544 kg, el punto superior del pilar 

inferior derecho alcanza el valor del momento elástico de una sección HEB200, cuyo 
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valor es Me HEB200 =15972 kgm. Por lo tanto, en el momento en que ese punto de la 

estructura ha alcanzado el momento elástico máximo, la estructura deja de comportarse 

elásticamente. 

 

Figura 14. Diagramas de momentos flectores del estado elástico 

 

Por lo tanto, de este análisis se concluye que con la aplicación de cargas menores o 

iguales a P=4544 kg se puede asegurar que toda la estructura en su totalidad va a trabajar 

de manera elástico lineal y por tanto, no se va a producir el fenómeno de la plastificación 

en ninguno de sus puntos. 
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4. Cálculo plástico 

Una vez realizado el cálculo elástico de la estructura, se va a proceder al cálculo plástico 

de la misma a través de diferentes métodos con el objetivo de obtener el mecanismo de 

colapso final y la carga última. 

Al realizar el estudio de una estructura sometida a un estado de carga creciente, se 

comienza trabajando en fase elástica hasta que se produce la primera rótula plástica. A 

partir de ese momento, ese punto entra en fase plástica y por tanto tendrá un valor igual y 

constante a Mp mientras que el resto de la estructura continuará trabajando en fase elástica 

hasta que se produzca la siguiente rótula y así sucesivamente hasta que finalmente se 

produzca el colapso. 

4.1. Aplicación del Principio de los Trabajos 

Virtuales  

En primer lugar, se va a utilizar el Principio de los Trabajos Virtuales para conocer 

cuál va a ser el mecanismo que producirá el colapso de la estructura. Este método 

consiste en la aplicación del Principio de los Trabajos Virtuales como ecuación de 

equilibrio a todos los mecanismos posibles que se puedan producir en la estructura, y 

calcular para cada uno de ellos su carga última. De este modo, el mecanismo cuya 

carga última sea inferior será el mecanismo de colapso. Este análisis ha de aplicarse 

no solo a los mecanismos independientes que existen, sino también a las posibles 

combinaciones entre ellos.  

4.1.1.  Secciones críticas 

Se considera que los puntos en los que es posible localizar la formación de rótulas 

plásticas son los siguientes: 

a) Los empotramientos, los nudos rígidos y las uniones no articuladas donde 

concurran dos o más elementos. 

b) Los apoyos intermedios de las vigas continuas. 

c) Los puntos de aplicación de las cargas concentradas 

d) Bajo cargas distribuidas, a partir de los puntos donde el momento flector es 

máximo. 

Para el caso estudiado, los puntos de posible formación de rótulas son, siguiendo 

lo considerado anteriormente, el 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12, marcados en la 

Figura 15. 
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 Figura 15. Secciones críticas de la estructura 

4.1.2. Mecanismos independientes 

El número de mecanismos independientes existentes es igual al número de 

secciones críticas menos el grado de hiperestatismo, es decir 

    ecanis os independientes =  ecciones cr ticas      

En este caso, se ha visto que el número de secciones críticas es 12 y que el grado 

de hiperestaticidad es 6, por lo que existe un total de 6 mecanismos 

independientes posibles. Como se muestra en la Figura 16, existen dos 

mecanismos independientes de viga (Figura 16.a y 16.b), dos de marco (Figura 

16.c y 16.d) y dos de nudo (Figura 16.e y 16.f).  

El número de mecanismos independientes de la estructura coincide con el número 

de ecuaciones de equilibrio independientes. 
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Figura 16. Mecanismos independientes 
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4.1.3. Mecanismos combinados 

Además de los mecanismos independientes, hay que analizar los mecanismos que 

se producen con las diferentes combinaciones de los anteriores. Existen 11 

mecanismos combinados y algunos de ellos se muestran en la Figura 17. 

 

 

  

Figura 17. Mecanismos combinados 

4.1.4. Mecanismo de colapso 

Una vez analizados todos los posibles mecanismos, se ha de aplicar el principio de 

los trabajos virtuales, de modo que 

                  (4.1)
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En la Tabla 4 se resume la aplicación del Principio de los Trabajos Virtuales a los 

16 mecanismos considerados. Se observa que el mecanismo cuya menor carga 

última soporta es el mecanismo 17, que resulta de la combinación de los 

mecanismos independientes 1, 2, 3 y 4, y éste será por tanto el mecanismo de 

colapso. Ver Anexo I para más detalle. 

 Tabla 4. Aplicación del Principio de los Trabajos Virtuales a cada mecanismo 

Mecanismo Combinación 
Trabajo We de las cargas y trabajo  

Wi de las fuerzas internas 
Pu 

1 - 
Wint = 4,5Mpθ 

0,375 
Wext = 12Puθ 

2 - 
Wint =6,73Mpθ 

0,527 
Wext = 12,78Puθ 

3 - 
Wint = 4Mpθ 

1,333 
Wext = 3Puθ 

4 - 
Wint = 4Mpθ 

0,444 
Wext = 9Puθ 

7 1 y 2 
Wint = 11,23Mpθ 

0,453 
Wext = 24,78Puθ 

8 1 y 3 
Wint = 5,5Mpθ 

0,367 
Wext = 15Puθ 

9 1 y 4 
Wint = 8,5Mpθ 

0,405 
Wext = 21Puθ 

10 2 y 3 
Wint = 10,73Mpθ 

0,367 
Wext = 15,78Puθ 

11 2 y 4 
Wint = 10,73Mpθ 

0,493 
Wext = 21,78Puθ 

12 3 y 4 
Wint = 8Mpθ 

0,667 
Wext = 12Puθ 

13 1, 2 y 3 
Wint = 12,232Mpθ 

0,44 
Wext = 27,784Puθ 

14 1, 2 y 4 
Wint  = 15,232Mpθ 

0,451 
Wext = 33,784Puθ 

15 1, 3 y 4 
Wint = 9Mpθ 

0,375 
Wext = 24Puθ 

16 2, 3 y 4 
Wint =10,73Mpθ 

0,433 
Wext = 24,78Puθ 

17 1, 2, 3 y 4 
Wint =13,23Mpθ 

0,35997 
Wext= 36,78 Pu 

  

Para el mecanismo de colapso hallado se obtiene que Pu=0.35977Mp. 

Sustituyendo Mp por el valor del momento plástico de la sección, que es 

18.031kgm se obtiene el valor de la carga última 

   Pu=
13,23

3 ,78
 Mp=0,35977 Mp=   487    
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Así, la carga última que puede soportar la estructura antes del colapso es de 6487 

kg. 

 

 Figura 18. Mecanismo de colapso 

4.2. Método directo: Método estático 

Mediante la aplicación de los métodos directos es posible conocer cuál va a ser el 

mecanismo de colapso de una estructura y la carga final que lo produce sin necesidad 

de analizar su progresión plástica. Para ello es necesario únicamente hacer uso de las 

condiciones de equilibrio.  

Dentro de los diferentes métodos directos que existen, el método estático es el que va 

a ser utilizado en este caso. Este método consiste en la utilización de las ecuaciones 

de equilibrio estático de manera sistemática. 

Para ello, se determinan los puntos de posible formación de rótulas plásticas y se 

liberan tantas condiciones de apoyo como grado de hiperestaticidad tenga la 

estructura. En este caso se van a liberar las 6 condiciones de apoyo que se observan 

en la Figura 19: R, S T, X Y y Z.  



 

25 

 

 

Figura 19. Incógnitas hiperestáticas 

A partir del planteamiento de las 12 ecuaciones que relacionan las incógnitas 

hiperestáticas con los momentos (inicialmente desconocidos) en los puntos de posible 

formación de rótulas y trabajando sobre ellas, se obtienen las 6 ecuaciones de 

equilibrio que rigen la estructura estudiada. Véase Anexo II para observar el cálculo 

detallado de dichas ecuaciones. 

Las ecuaciones de equilibrio de momentos son las siguientes 

                       

                                   

                 

                   

           

            

 

 

 

(4.2) 

 

y cualquier distribución de momentos que satisfaga las ecuaciones anteriores será 

estáticamente admisible. 

Supuesto, por tanto, el mecanismo de colapso hallado anteriormente mediante el 

Principio de los Trabajos Virtuales, se ha de dar el valor de ±Mp a los puntos en los 

que se van a producir las rótulas. En este caso, como las jácenas tienen el doble 

módulo plástico que los pilares, se aplicará ±2Mp en las rótulas de las jácenas y ±Mp 

en las rótulas de los pilares. 

Los valores que caracterizan el colapso son, por tanto, los siguientes 
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Se sustituye a continuación los valores anteriores en las ecuaciones de equilibrio y 

los momentos incógnita quedan en función de Mp, P y el valor b que es la distancia a 

la que se va a formar la rótula de la jácena de la primera planta en la cual actúa la 

carga distribuida.  

      

              

              

       
   

   
           

            

  
           

                
 

Para obtener el valor de b se ha de derivar la expresión de P obtenida en función de b 

y se ha de igualar a 0. De este modo, se obtiene el punto donde el valor es máximo y 

ese punto será por tanto, el buscado. 

  

  
   

                                                

                   
   

          

Sustituyendo el valor de b en la ecuación de P se obtiene la carga última Pu: 

   
                  

                              
          

                          

que como se puede observar, es igual a la carga última obtenida con la aplicación del 

Principio de los Trabajos Virtuales. 

Para poder garantizar que el mecanismo de colapso calculado es el mecanismo de 

colapso real, hay que verificar que todos los momentos flectores sean iguales o 

menores a los momentos plásticos, es decir, menores a 2Mp en las jácenas y Mp en 

los pilares en valor absoluto. Los valores de todos los momentos del mecanismo 

estudiado se observan en la Tabla 5. 
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 Tabla 5. Valor de los momentos en cada sección 

Sección Momento flector Momento plástico ¿Cumple? 

1 -18031 ±18031 Sí 

2 4245  ±18031 Sí 

3 2213 ±36062 Sí 

4 2032 ±18031 Sí 

5 -14644 ±18031 Sí 

6 36062 ±36062 Sí 

7 -18031  ±18031 Sí 

8 18031  ±18031 Sí 

9 -36062 ±36062 Sí 

10 -18031 ±18031 Sí 

11 36062 ±36062 Sí 

12 18031 ±18031 Sí 

 

Se verifica por tanto, que ningún momento sobrepasa los valores mencionados y por 

lo tanto, este mecanismo es el mecanismo solución del problema. Se observan en la 

Figura 20 los diagramas de momentos flectores de este mecanismo en el momento 

del colapso. 

 

 Figura 20. Diagramas de momentos del mecanismo de colapso 
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4.3. Método paso a paso 

En el apartado anterior, mediante el método directo estático se ha obtenido el 

mecanismo de colapso de la estructura sin estudiar el progresivo proceso de 

plastificación. El método paso a paso, sin embargo, permite analizar la sucesiva 

formación de las rótulas desde la fase elástica hasta que se produce el mecanismo de 

colapso. 

En el caso que nos concierne, se tiene como ya se ha comentado anteriormente una 

estructura hiperestática y por lo tanto, la formación de una sola rótula plástica no 

implica el colapso de la estructura, sino que será necesaria la formación de 7 rótulas 

para que se produzca el colapso. 

Dado el tipo de pórtico a estudiar y de las cargas que le son aplicadas, existen 12 

secciones críticas donde es posible la formación de las rótulas. Se tiene por tanto 

doce valores de momentos flectores que estarán ligados mediante las seis ecuaciones 

de equilibrio ya halladas en el método directo y serán necesarias otras seis ecuaciones 

de compatibilidad para la resolución del problema. 

Las ecuaciones de compatibilidad necesarias se van a obtener mediante el Principio 

de los Trabajos Virtuales. Para ello, se han de elegir sistemas de fuerzas virtuales en 

los que las cargas exteriores sean nulas. La ecuación a aplicar se puede expresar 

como 

          
 

 

       

 

 

 

Donde m
*
 son los momentos correspondientes al sistema virtual y κ y ϕ son las 

curvaturas y giros de la estructura real, respectivamente. Teniendo en cuenta la 

relación entre momento y curvatura, la ecuación (4.3) puede escribirse como 

   
    

   
   

 

 

       

 

 

 

En el caso de las cargas puntuales, tanto los valores de m
*
 como de M en la integral 

de (4.4) varían linealmente, y dicha ecuación queda 

 
    

   
   

  

 

 
 

     
    

              
              

Sin embargo, en el caso de una carga distribuida, m
*
 varía linealmente mientras que 

M es una función cuadrática. En este caso la ecuación (4.3) resulta 

 
    

   
   

  

 

 
 

     
    

               
             

     

      
    

    
   

(4.6) 

Ver Anexo III  para ver la deducción de las ecuaciones 4.5 y 4.6 

A partir de las ecuaciones 4.5 y 4.6 se van a plantear 6 sistemas de momentos 

virtuales m
*
 de carga nula, con la única condición de que satisfagan las ecuaciones de 

equilibrio. Es decir: 
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J,lllllllllllllll

llllllllll             
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(4.7) 

 

Para su resolución, hay que elegir 6 sistemas virtuales que satisfagan esas ecuaciones. 

Los sistemas elegidos así como las ecuaciones que se obtienen se muestran a 

continuación. Ver Anexo III para más detalle. 

 

- Sistema 1:    
    

    
    

        
    

      

- Sistema 2:    
    

    
    

     
        

      

- Sistema 3:    
    

    
     

        
    

      

- Sistema 4:    
    

    
        

     
        

        

- Sistema 5:    
    

    
       

    
    

    

- Sistema 6:    
    

    
     

        
    

      

 

De acuerdo con estos sistemas, las ecuaciones de compatibilidad que se obtienen son 
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(4.8) 

 

Agrupando las ecuaciones de equilibrio (4.7) y las de compatibilidad (4.8) y 

expresándolas de manera matricial incremental, resulta 
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       (4.9) 

A partir de estas ecuaciones se va a estudiar sistemáticamente el comportamiento 

paso a paso de la estructura. Los cálculos realizados para la obtención de los 

resultados de este método han sido realizados con el pro ra a “Mathe atica”. 

En la pri era fase, el co porta iento de la estructura es elástico y por tanto Δϕi =0 

ya que todavía no existe ninguna rótula plástica. En esas condiciones, el sistema (4.9) 

admite la solución 

            
              
             
              
             
              
             
              
             
              
               
               

 

 

El mayor momento corresponde a la sección 10, por lo que será ahí donde se forme la 

primera rótula plástica y se alcance el valor de Mp. La carga para la que se producirá 

esta situación será de 5113,11kg. 

En la siguiente fase, el valor del momento M10 será constante e igual a Mp, mientras 

que el resto de la estructura permanece en régimen elástico. Las condiciones que se 

producen en este caso son las siguientes 
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Bajo estas condiciones, del sistema de ecuaciones (4.9) se obtiene   

 

             
              
             
              
             
              
             
              
             
              
               
               

 

 

Se observa que en esta fase, el valor del segundo mayor momento aparece en la 

sección 7 y por tanto, la segunda rótula plástica se formará en ese punto. 

Realizando sistemáticamente el mismo procedimiento en cada una de las fases se 

obtiene la distribución de los momentos en la estructura para cada una de las 7 fases 

(Tabla 6), desde que la estructura se comporta elásticamente hasta que se produce la 

séptima rótula y con ella el colapso. Los datos recogidos en la Tabla 6 son los 

resultados obtenidos de “Mathe atica”. 

De este modo, se obtiene que el orden de las secciones en que se producen las rótulas 

es: 10, 7, 12, 8, 6, 1 y 11. 

Tabla 6. Resultados del método paso a paso 

 

ΔP P [kg] M1 [kg m] M2 [kg m] M3 [kg m] M4 [kg m] M5 [kg m] 

1ª fase   5113,11 -8942,08 2174,6 -6748,3 8922,9 -8949,09 

2ª fase 
235,34   -937,08 485,89 -218,66 704,55 -511,94 

  5348,34 -9879,16 2660,49 -6966,96 9627,45 -9461,03 

3ª fase 
142,88   -584,14 235,18 83,64 150,82 -137,24 

  5491,22 -10463,3 2895,67 -6883,32 9778,27 -9598,27 

4ª fase 
39,41   -233 121,74 66,03 56,43 -37,14 

  5530,63 -10696,3 3017,41 -6817,29 9834,7 -9635,41 

5ª fase 
455,48   -3087,2 1012,12 1467,96 -455,85 910,59 

  5986,11 -13783,5 4029,53 -5349,33 9378,85 -8724,82 

6ª fase 
463,6   -4247,5 -75,11 6878,96 -6954,05 -5563,28 

  6449,71 -18031 3954,42 1529,63 2424,8 -14288,1 

7ª fase 
36,53   0 328,76 876,69 -545,93 -438,3 

  6486,24 -18031 4283,18 2406,32 1878,87 -14726,4 
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M6 [kg m] M7 [kg m] M8 [kg m] M9 [kg m] M10[kg m] M11[kg m] M12 [kg m] 

1ª fase 29212,7 -17178,2 16033,1 -34064,1 -18031 21003,6 16870,3 

2ª fase 
1256,30 -852,80 1069,40 -1069,40 0 1222,90 694,10 

30469 -18031 17102,5 -35133,5 -18031 22226,5 17564,4 

3ª fase 
1051,60 0 717,40 -717,40 0 843,80 466,60 

31520,6 -18031 17819,9 -35850,9 -18031 23070,3 18031 

4ª fase 
290,5 0 211,1 -211,1 0 252,9 0 

31811,1 -18031 18031 -36062 -18031 23323,2 18031 

5ª fase 
4250,9 0 0 0 0 4331,9 0 

36062 -18031 18031 -36062 -18031 27655,1 18031 

6ª fase 
0 0 0 0 0 7608,6 0 

36062 -18031 18031 -36062 -18031 35263,7 18031 

7ª fase 
0 0 0 0 0 798,3 0 

36062 -18031 18031 -36062 -18031 36062 18031 

La situación final de la estructura en el momento del colapso corresponde a los 

valores de los momentos reflejados en la última fila de la Tabla 6. La carga de 

colapso es 6486 kg.  

4.4. Influencia de la fuerza axial 

La presencia de fuerzas axiales en las secciones puede provocar una posible 

inestabilidad por pandeo y una disminución del momento plástico. En general, las 

fuerzas axiales son pequeñas y por tanto no se tienen en consideración. Sin embargo, 

en el caso que nos ocupa, los esfuerzos axiles en las jácenas son considerables, por lo 

que se va a estudiar la influencia de los mismos sobre los resultados obtenidos, ya 

que dicha influencia puede modificar el valor de la carga última e incluso el 

mecanismo de colapso. 

En fase elástica, la tensión normal en una fibra cualquiera viene dada por 

   
 

 
 

 

 
  

donde A es el área de la sección, I es la inercia y z es la distancia al centro de 

gravedad de la sección. Tanto en régimen elástico como en régimen plástico deberán 

satisfacerse las condiciones de equilibrio 

       
 

 

 

          
 

 

 

La plastificación comenzará cuando la fibra con mayor tensión alcance el valor de 

σY. La fibra plástica progresará hasta el interior hasta que en la fibra extrema inferior 

se alcance ta bién el valor σY. Si se continúa aumentando los esfuerzos, la 

plastificación alcanzará toda la sección.  
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En ese momento, los momentos flectores y esfuerzos axiles que aparecerán serán 

denominados Mp’ y  p’. En la fi ura 21 se muestra la evolución de la plastificación. 

 

Figura 21. Proceso de plastificación de una sección cuadrada 

Se considera inicialmente una sección rectangular sometida a un momento flector M 

y una fuerza axial de compresión F. Se observa que el momento flector presenta una 

distribución lineal mientras que la fuerza axial tiene un comportamiento uniforme. En 

este caso, el momento plástico en presencia de fuerza axil es 

          
 

 
       

 

 
 
 

 
        

   

 
       

 

Para una sección rectangular, Z = (bh
2
/4). Por consiguiente 

  
     

  

    
 

Dividiendo la expresión anterior por Mp = σy (bh
2
/4) resulta 

   

  
    

 

  
 
 

 

Mediante el mismo procedimiento, se deduce que la expresión equivalente a (4.10)  

para una sección en doble T es  

   

  
   

  

   
 
 

  
 
 

     
 

  
 

       

 
  

 

cuando la zona plastificada está dentro del alma de la sección. Cuando la zona 

plastificada se encuentra dentro del ala, la expresión correspondiente resulta ser 

 

   

  
 

 

  
     

 

  
  

 

  
   

 

  
 
 

    
       

 
  

 

  
   

 

Para poder conocer por tanto la influencia que ejerce la fuerza axial en el pórtico 

estudiado, se ha de conocer los valores de los axiles en cada punto de la estructura. 

Estos valores se muestran en la Figura 22. 
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Figura 22.Valor de los axiles en la estructura 

Conocidos los axiles, los momentos plásticos sin influencia axil y la geometría de los 

perfiles es posible calcular a partir de las ecuaciones (4.11a) y (4.11b) los valores de 

los nuevos momentos flectores considerando la influencia de los axiles. 

La Tabla 7 recopila los datos de la geometría y de algunas propiedades de los perfiles 

necesarios para el cálculo de los nuevos momentos flectores.  

Se observan en la Tabla 8 los resultados obtenidos del cálculo de los nuevos 

momentos flectores con influencia del axil. La séptima columna de la tabla muestra si 

la plastificación de la sección de los puntos se produce en el alma o en el ala. Si se 

produce en el alma, se aplica la fórmula (4.11a) para hallar el momento flector; si se 

produce en ala, se utiliza la (4.11b). 

Tabla 7. Datos de las secciones de los perfiles 

Secciones 

Pilares - HEB200 Jácenas – H295,5x220 

1,2,4,5,7,8,10,12 3,6,9,11 

h [mm] 200 h [mm] 325,5 

s [mm] 9 s [mm] 12 

t [mm] 15 t [mm] 15 

b [mm] 200 b [mm] 220 

Z [mm
4
] 643000 Z [mm

4
] 1286610 

A [mm
2
] 7810 A [mm

2
] 10146 
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Tabla 8. Resultados de los momentos plásticos con influencia del axil 

Sección Mp [kgm] F [N] Fy [N] F/Fy s(h-2t)/A Alma/Ala Mp' [kgm] Mp'/Mp 

1 18031 530340 2147750 0,2469 0,196 Ala 15280 0,85 

2 18031 530340 2147750 0,2469 0,196 Ala 15280 0,85 

3 36062 120 2790150 0,0000 0,349 Alma 36062 1,00 

4 18031 253740 2147750 0,1181 0,196 Alma 17368 0,96 

5 18031 253740 2147750 0,1181 0,196 Alma 17368 0,96 

6 36062 120450 2790150 0,0432 0,349 Alma 35950 1,00 

7 18031 135420 2147750 0,0631 0,196 Alma 17842 0,99 

8 18031 135420 2147750 0,0631 0,196 Alma 17842 0,99 

9 36062 120 2790150 0,0000 0,349 Alma 36062 1,00 

10 18031 539850 2147750 0,2514 0,196 Ala 15198 0,84 

11 36062 120 2790150 0,0000 0,349 Alma 36062 1,00 

12 18031 539850 2147750 0,2514 0,196 Ala 15198 0,84 

 

De los resultados obtenidos, se observa que en aquellos puntos en los cuales el axil es 

muy pequeño, la influencia de éste sobre el momento plástico es prácticamente nula y 

el valor de Mp’/Mp es aproximadamente 1. Sin embargo,  en los puntos donde el 

valor del axil es más elevado, el momento plástico disminuye respecto al inicial. 

Para poder cuantificar la influencia de los axiles, se va a calcular la nueva carga 

última que la estructura es capaz de asumir considerando los nuevos momentos 

plásticos obtenidos. Además se ha de comprobar si el mecanismo de colapso se 

mantiene o varía. 

Aplicando del nuevo el Principio de los Trabajos Virtuales a todos los posibles 

mecanismos del mismo modo que en el apartado 4.1, se determina que el mecanismo 

de colapso se mantiene. Sin embargo, el valor de la carga última disminuye debido a 

la influencia del axil.  

La aplicación del Principio de los Trabajos Virtuales en el mecanismo de colapso 

para la obtención de la carga última se detalla a continuación 

                                                 

                                                

   
           

       
           

                            

La nueva carga última de la estructura es 6337,9 kg en comparación con los 6487 kg 

que admitía si no se consideraba la influencia de los axiles. Esto supone una 

reducción del 2,3% de la capacidad de carga. Se concluye por tanto, que la influencia 

de los axiles en la estructura analizada es muy pequeña.  
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5. Análisis con Abaqus 

Una vez llevado a cabo el estudio y la resolución del proceso de plastificación del pórtico 

por diferentes métodos analíticos, se va a proceder a realizar un análisis plástico de un 

problema hiperestático más sencillo con el programa informático Abaqus. El objetivo es 

observar la ductilidad de la sección, es decir, la capacidad de la sección y del material 

para deformarse plásticamente y permitir la formación de una rótula plástica. Ella vendrá 

dada por el alcance del momento plástico y de la posibilidad de aparición de giros 

infinitos en la sección. 

Abaqus  es un programa de simulación que aplica el método de los elementos finitos para 

realizar cálculos estructurales estáticos lineales y no lineales. En este caso, al tratarse de 

un problema de plasticidad se trabaja en régimen no lineal. 

El problema analizado se trata de una viga biempotrada en sus extremos como la de la 

Figura 23 a la cual se le aplica una carga distribuida
3
. Esta viga tiene grado de 

hiperestaticidad 3, por lo que será necesaria la formación de 3 rótulas plásticas para que 

se produzca su colapso. 

 

Figura 23. Viga biempotrada con carga distribuida 

Del análisis lineal, el diagrama de momentos flectores de esta viga (Figura 24) muestra 

que será en los empotramientos A y B donde se formarán las dos primeras rótulas 

plásticas al tener en esos puntos los momentos flectores más elevados. 

 

Figura 24. Diagrama de momentos flectores de una viga biempotrada 

                                                 

3
 M. R. Dalmau y J. Vilardell (2003). “Análisis plástico de estructuras. Introducción” 
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Las rótulas plásticas en A y B se formarán al aplicar la una carga qi que haga que los 

extremos de la viga alcancen su momento plástico Mp (Figura 25).  

 

Figura 25. Diagrama de momentos en la formación de las dos primeras rótulas plásticas 

Si la carga sigue aumentando hasta que q llega a la carga última (qu) se formará la tercera 

articulación en el centro de la viga, ya que en ese punto (punto C) se alcanza también el 

valor de Mp como se muestra en la Figura 26. 

 

Figura 26. Diagrama de momentos en el colapso 

Para realizar la simulación de este problema mediante Abaqus, se ha elegido una viga con 

una geometría equivalente a la de la primera jácena del pórtico analizado en este 

proyecto. La largura de la viga es de 6 m y el perfil de la misma es un H295,5x220. El 

material del que está compuesta es acero cuyas propiedades elásticas y plásticas se 

muestran en la Figura 27. Se ha introducido el material de manera que tenga plasticidad 

perfecta, de manera que se mantenga la hipótesis de material elastoplástico perfecto 

considerada en la primera parte del estudio. 

La carga aplicada es una carga distribuida de valor 1,5 N/mm
2
. Se introduce esta carga 

debido a que este valor es aproximadamente tres veces mayor que el que hace que la viga 

empiece a plastificar. Es decir, en el límite del comportamiento elástico, el momento que 

se produce en los empotramientos es el siguiente 
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Figura 27. Propiedades del material introducidas en Abaqus

Despejando q de (5.1) se obtiene la carga que hay que aplicar a la viga para que se 

produzca el inicio de la plastificación 

  
 

  
  

      

  
 

              

     
       

 

  
 

Para pasarlo a N/mm
2
 que son las unidades en las que se ha de introducir la carga en 

Abaqus, se divide la carga obtenida entre el ancho de la sección, que para el perfil con el 

que se trabaja son 220mm.  

  
 

   
  

      

   
     

 

   
 

La carga para la cual aparecen las dos primeras rótulas y el problema por tanto se vuelve 

isostática es 0,47 N/mm
2
, por tanto, para asegurar el buen funcionamiento del análisis 

plástico se introduce el triple de esa carga (1,5N/mm
2
). 

La geometría de la viga simulada se observa en la Figura 28. En la zona de los 

empotramientos del ala superior se ha introducido una rebaja de la sección de manera que 

se favorezca la formación de la rótula en ese punto.  

 

Figura 28. Geometría del modelo en Abaqus 
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Una vez introducido el modelo y los parámetros necesarios para el cálculo, se procede al 

mallado del mismo (Figura 29). Se han introducido más elementos en la zona de los 

extremos para observar con mayor precisión la formación de las primeras rótulas en los 

empotramientos.  

 

Figura 29. Mallado del modelo en Abaqus 

Como ya ha sido comentado en el apartado de selección de los perfiles, este perfil 

pertenece a la Clase 1, por lo que admite el análisis plástico. Para comprobar mediante 

Abaqus que efectivamente este tipo de perfil no presenta inestabilidades locales que 

produzcan pandeo y que imposibiliten el análisis plástico se ha realizado un análisis de 

pandeo a la viga.  

Para asegurar que no existen problemas de pandeo, el αcr, que se trata de un parámetro 

que mide la estabilidad de la estructura, debe ser mayor que 1. Esto quiere decir que la 

carga a partir de la cual se produzcan fenómenos de pandeo debe ser superior a la carga 

aplicada. En la Figura 30 se observa que el αcr para el primer modo de pandeo de la viga 

es 14,871 y por tanto sería necesario aplicar una carga casi 15 veces superior a la actual 

para que se produjera el pandeo en la viga analizada. 

 

Figura 30. Análisis de pandeo mediante Abaqus 

La simulación del cálculo plástico es realizada por el programa de manera incremental. 

La carga es aplicada en sucesivos pasos comenzando desde el 0% de la carga hasta 

alcanzar el 100%. De este modo es posible analizar en qué momento y para qué valor de 

carga se forman las diferentes rótulas.  
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El inicio de la plastificación de los extremos se produce cuando se ha aplicado un 30% de 

la carga total introducida (Figura 31), es decir, cuando la carga vale  

      
 

   
          

 

   
 

Se comprueba que es la misma carga que la calculada anteriormente de manera analítica 

para el inicio de la plastificación.  

 

Figura 31. Inicio de la plastificación en la sección 

Al aumentar la carga y producirse la plastificación en toda la sección de los extremos, se 

forman las rótulas plásticas (Figura 32). Toda la zona de los empotramientos ha alcanzado 

la tensión máxima admisible por el material de 275Mpa y por tanto, el momento flector 

en esa zona tiene el valor del momento plástico. Se observa que la formación de las dos 

primeras rótulas se produce en el Step Time = 0,45. Es decir, en ese momento la carga 

aplicada es un 45% de la carga total. 

 

Figura 32. Formación de las rótulas en los extremos de la viga 

En el momento en que el centro de la sección comienza a plastificar el valor del momento 

plástico en ese punto es  
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Despejando q de (5.2) se obtiene la carga para la cual se produce el inicio de la 

plastificación en la sección central de la viga 

  
 

  
  

      

  
 

              

     
    

 

  
     

 

   
 

Para pasar los 165 N/mm a N/mm
2
 se divide por el ancho del perfil que son 220mm. En la 

Figura 33 se observa que en la simulación con Abaqus el centro de la viga comienza a 

plastificar cuando se aplica el 50% de la carga total. Es decir, cuando la carga aplicada es 

  
 

   
      

 

   
          

 

   
 

Se comprueba que esta carga es la misma a la obtenida de manera analítica. 

 

Figura 33. Inicio de plastificación en el centro de la viga 

Si la carga continua aumentando, llega un momento en que todo el centro de la sección 

está plastificado y se forma la tercera rótula plástica en la viga (Figura 34). Esto se 

produce cuando se ha aplicado el 64,37% de la carga total introducida.  

 

Figura 34. Formación de la rótula central 

Ver Anexo IV para más detalle. 
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6. Conclusiones 

La resolución del problema particular del pórtico rígido plano mediante el análisis 

elástico lineal y el análisis plástico permite la comparación entre ambos modelos. Dicho 

pórtico ha sido dimensionado de manera que los perfiles utilizados cumplan con el 

Eurocódigo 3. Mediante el cálculo elástico, la carga última obtenida que soporta la 

estructura es de Pu, elástico = 4544 kg, mientras que al realizar el análisis plástico se obtiene 

una Pu, plástico = 6487 kg. Se concluye, por lo tanto, que la utilización del análisis plástico 

en lugar del elástico proporciona un 42,75% adicional de resistencia en la estructura. Así 

pues, además de resultar ser un análisis más racional, el cálculo plástico nos proporciona 

un ahorro de materiales, aumentando la competitividad industrial. 

Dentro del cálculo plástico, los cálculos han sido realizados mediante dos métodos 

directos (Principio de los Trabajos Virtuales y método estático) y un método paso a paso. 

De todos ellos se han obtenido, aunque de maneras diferentes, los mismos resultados para 

el mecanismo de colapso y la carga última. Estos métodos han sido aplicados inicialmente 

sin considerar la posible influencia de los momentos axiles. Al analizar la influencia de 

éstos, se ha obtenido que el mecanismo de colapso de la estructura se mantiene, pero la 

carga última que admite la estructura disminuye hasta Pu, elástico influencia axil = 6338 kg. Esto 

supone una disminución del 2,3% de la capacidad de carga, por lo que se puede afirmar 

que para este caso, la consideración de los momentos axiles en los cálculos no es 

trascendental ya que su influencia es pequeña. 

Por otro lado, mediante la simulación de una viga armada en el programa computacional 

Abaqus se ha llevado a cabo un análisis de pandeo y plastificación del modelo. Se 

comprueba que los resultados obtenidos con Abaqus en el proceso de plastificación para 

la capacidad de la sección son los mismos a los obtenidos analíticamente para la viga. 

Para concluir, se quiere apuntar que en este trabajo se ha centrado y profundizado en el 

cálculo del proceso de plastificación del pórtico elegido. Sin embargo, aunque la 

estructura sí ha sido seleccionada teniendo en cuenta la Normativa, no se han estudiado 

las deformadas de la misma. A la hora de validar la geometría sería necesario un análisis 

de las deformadas para verificar que se encuentran por debajo de las limitaciones en la 

Normativa vigente. 
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Anexo I. Principio de los Trabajos 

Virtuales 

El principio de los trabajos virtuales expresa que “si un cuerpo so etido a un estado de 

equilibrio se asocia a otro estado de deformaciones, el trabajo virtual producto de ambos 

es nulo, pues se compensa la componente producida por las acciones y desplazamientos 

externos, con la componente debida a los esfuerzos y deformaciones internos”.
1
 

Para que se cumpla, es condición necesaria y suficiente que el estado de deformaciones y 

desplazamientos sea compatible, en el sentido de que las deformaciones internas sean 

solidarias con los desplazamientos externos. Es también necesario que el sistema de 

fuerzas y esfuerzos esté en equilibrio. 

En el caso de estructuras hiperestáticas, como las estudiadas en el Apartado 4.1, existirán 

infinitas soluciones en equilibrio y cualquiera de ellas será válida y generará los mismos 

resultados. 

 Se ha estudiado anteriormente que cuando en una estructura hiperestática se forma un 

número suficiente de articulaciones plásticas, se produce el mecanismo de colapso que 

agota la estructura. Se supone que las partes de una viga situadas a uno y otro lado de la 

articulación giran una respecto de la otra bajo la oposición de un par de fuerzas de 

momento Mp, lo que va a permitir determinar el valor de la carga última sin más que 

aplicar el Principio de los Trabajos Virtuales 

                    

En el caso que nos ocupa, al estar trabajando en régimen plástico, el trabajo interno 

vendrá determinado por el número de rótulas, k, y el momento plástico Mp resistido por 

cada rótula de ellas y el ángulo de giro en torno a cada una 

                

 

 

Este trabajo debe igualar el trabajo externo hecho por las fuerzas que actúan sobre la 

estructura provocado la aparición de rótulas 

                           

  

 

                                                 

1
  uiller o Rus Carlbor  (2008). “Cálculo plástico de estructuras de barras: teor a” 
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Sustituyendo las ecuaciones (AI.2) y (AI.3) en (AI.1) y despejando, se obtiene una 

ecuación en la que es posible despejar la carga última en función del momento plástico. 

Se detalla a continuación el cálculo de la carga última mediante el Principio de los 

Trabajos Virtuales para todos los mecanismos posibles, tanto elementales como 

combinados, con el objetivo de determinar cuál es aquel que posee la menor carga última 

y ese será por lo tanto, el mecanismo de colapso de la estructura. 

I. 1. Mecanismos elementales 

I. 1. 1. Mecanismo 1 

El mecanismo 1 (Figura 1) se trata de un mecanismo de viga.  

 

Figura 1. Mecanismo 1 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                    

                  

  
      

  
          

se obtiene que la carga última de este mecanismo es de 0,375Mp. 

I. 1. 2. Mecanismo 2 

El mecanismo 2 (Figura 2) se trata al igual que el mecanismo 1 de un mecanismo 

de viga, siendo 
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Figura 2. Mecanismo 2 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                               

                                        

  
          

       
           

la carga última que se obtiene en este caso es de 0,5266Mp. 

I. 1. 3. Mecanismo 3 

El mecanismo es un mecanismo de marco (Figura 3) 

 

Figura 3. Mecanismo 3 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 
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la carga última obtenida es de 1,333Mp. 

I. 1. 4. Mecanismo 4 

El mecanismo 4 es también un mecanismo de marco (Figura 4) 

 

Figura 4. Mecanismo 4 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                

                       

  
     

 
          

la carga última que obtiene es de 0,444Mp. 

II. 2. Mecanismos combinados 

I. 2. 1. Mecanismo 7 

Este mecanismo combina los mecanismos 1 y 2, ambos mecanismos de viga.  

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 
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la carga última que se obtiene es de 0,4532Mp. 

 

Figura 5. Mecanismo 7 

I. 2. 2. Mecanismo 8 

Este mecanismo combina el mecanismo de viga 1 con el mecanismo de marco 3 

(Figura 6). 

 

Figura 6. Mecanismo 8 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                                           

                         

  
       

  
           

la carga última obtenida es de 0,3667Mp. 
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I. 2. 3. Mecanismo 9 

Este mecanismo se observa en la Figura 7 y combina el mecanismo 1 de viga con 

el mecanismo 4 de marco. Aplicando las ecuaciones (AI.2) y (A.I.3) y 

sustituyendo en (A.I.1) 

                                              

                           

                               

  
       

  
           

la carga última obtenida es de 0,4048Mp. 

 

Figura 7. Mecanismo 9 

I. 2. 4. Mecanismo 10 

Este mecanismo combina el mecanismo 2 de viga con el mecanismo 3 de marco 

(Figura 8). 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                                      

                                  

                                   

  
       

  
           

la carga última obtenida es de 0,3667Mp. 



 

52 

 

 

Figura 8. Mecanismo 10 

I. 2. 5. Mecanismo 11 

Este mecanismo (Figura 9) combina el mecanismo 2 de viga con el mecanismo 4 

de marco. 

 

Figura 9. Mecanismo 11 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                                      

                                  

                                         

  
           

       
           

la carga última obtenida es de 0,4927Mp. 

I. 2. 6. Mecanismo 12 

Este mecanismo (Figura 10) combina los mecanismos 3 y 4, ambos de marco. 



 

53 

 

 

Figura 10. Mecanismo 12 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                            

                       

                        

  
     

  
           

la carga última obtenida es de 0,6667Mp. 

I. 2. 7. Mecanismo 13 

Este mecanismo combina los mecanismos de viga 1 y 2 con el mecanismo de 

marco 3 (Figura 11) 

 

Figura 11. Mecanismo 13 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 
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la carga última obtenida es de 0,4403Mp. 

I. 2. 8. Mecanismo 14 

Este mecanismo combina los mecanismos de viga 1 y 2 con el mecanismo de 

marco 4 (Figura 12). 

 

Figura 12. Mecanismo 14 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 

                                                             

                                            

              

                                                

  
           

       
           

la carga última obtenida es de 0,4509Mp. 

I. 2. 9. Mecanismo 15 

Este mecanismo combina el mecanismo 2 de viga con los mecanismos 3 y 4 de 

marco (Figura 13). 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1) 
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la carga última obtenida es de 0,433Mp. 

 

Figura 13. Mecanismo 15 

I. 2. 10. Mecanismo 16 

Este mecanismo combina los 4 mecanismos elementales: el 1 y 2 de viga con el 3 

y 4 de marco (Figura 14). 

 

 

Figura 14. Mecanismo 16 

Aplicando las ecuaciones (AI.2) y (A.I.3) y sustituyendo en (A.I.1).  
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la carga última obtenida es de 0,3597Mp. 

Una vez analizados todos los mecanismos posibles, se observa que el mecanismo  

que soporta la carga última más pequeña es el mecanismo 16, combinación de los 4 

mecanismos elementales, por lo que ese es el mecanismo de colapso. Por tanto, la 

carga última de la estructura es 
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Anexo II. Método directo estático 

El objetivo de la aplicación del método directo estático se ha visto que es la obtención del 

mecanismo de colapso directamente, sin analizar la progresión plástica de la estructura. 

Para su resolución, se parte de 12 ecuaciones que relacionan las 6 incógnitas 

hiperestáticas con los momentos de posible formación de rótulas (Figura 15).  

 

Figura 15. Incógnitas hiperestáticas y momentos en puntos de posible formación de rótulas 

Las ecuaciones iniciales que relacionan las incógnitas hiperestáticas con los momentos en 

los puntos de posible formación de rótulas plásticas se muestran a continuación 
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A partir de las ecuaciones anteriores se obtienen de manera directa dos de las 6 

ecuaciones buscadas. Estas dos ecuaciones pertenecen a las ecuaciones de equilibrio de 

nudos y son  

De (AII. 4) 

          

De (AII. 11) 

         

Para la obtención de las otras 4 ecuaciones necesarias, se despejan en primer lugar las 

incógnitas hiperestáticas  

      

     

  
       

 
 

  
              

 
 

  
           

 
 

                
  

 
 

  

 
       

A continuación se sustituyen sistemáticamente dentro de las ecuaciones  

 

De (AII. 7) 

                

                  
  

 
 

  

 
       

  

 
 

  

 
           

                    

De (AII. 8) 
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Sabiendo que de (AII. 1)            

                 

 

De (AII. 9) 

                           

       
           

 
                   

   

 

   
   

 

   
                        

       

 

   
   

 

   
        

 

De este modo, las ecuaciones de equilibrio resultantes que rigen la estructura son 
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Anexo III. Método paso a paso 

El planteamiento del problema por el método paso a paso se basa en la obtención de 6 

ecuaciones de compatibilidad que, unidas a las otras 6 ecuaciones de equilibrio permitan 

la obtención de la solución al problema. 

Para encontrar las ecuaciones de compatibilidad, se han de elegir 6 sistemas de momentos 

virtuales m* de carga exterior nula, con la única condición de que satisfagan las 

ecuaciones de equilibrio. 

Las seis ecuaciones de compatibilidad las obtendremos al plantear: 

          
 

 

       

 

 

 

o bien 

   
    

   
   

 

 

       

 

 

 

donde m
*
 son los  o entos correspondientes al siste a virtual y κ y ϕ son las curvaturas 

y giros de la estructura real, respectivamente.  

En el caso de las cargas puntuales, tanto los valores de m
*
 como de M en la integral de 

(AIII.2) varían linealmente, es decir 

           
 

 
        

 

 
  

        
     

 

 
      

   
 

 
 

Sustituyendo M(x) y m
*
(x) en la integral de (AIII.2) se obtiene 
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Sin embargo, en el caso de una carga distribuida, m
*
 varía linealmente mientras que M es 

una función cuadrática: 

           
 

 
        

 

 
    

 

 
          

        
     

 

 
      

   
 

 
  

En este caso, la integral de (AIII.2)  quedará  

 
    

   
   

  

 

 
 

     
    

              
             

  
   

 
          

   
   

  

 

 

siendo 

 
   

 
          

   
   

  

 

 
 

   
     

     
 

 
      

   
 

 
   

 

 
            

  

 

  

 
    

   
   

  

 

 
 

     
    

               
             

     

      
    

    
   

y por tanto resulta 
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Las ecuaciones de equilibrio que se han de satisfacer son las siguientes 

   
        

        
    

   
  

 

   
  

  
 

   
    

    

   
    

    
    

    

   
    

     
     

    

  
    

    
    

 

  
    

     
    

 

Para la obtención de las ecuaciones de compatibilidad hay que elegir por tanto 6 sistemas 

virtuales que satisfagan esas ecuaciones. Para todos los sistemas se va a utilizar la 

siguiente nomenclatura: 

lp: longitud de los pilares = 3m 

lv,  i j=lon itud de la vi a i j 

Ip=Inercia de los pilares  

Iv=Inercia de las vi as 

α=
Iv

Ip
=3,2479  

Sistema 1 

  
    

    
    

      

   
    

      

De (AIII. 7):    
    

De (AIII. 8):     
    

De (AIII. 6):     
    

De (AIII. 5):    
    

De (AIII. 4):     
    

De (AIII. 3):      
        

    

F

Figura 16. Valores de m* en el sistema 1 
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Sustituyendo en (AIII. 2) 

  
  

      
           

  

      
            

      

        
           

  
      

        
            

      

        
           

 
      

        
            

  

      
            

  

      
            

                     

 

               
 

 
     

 

 
        

 

 
      

                                             

 

Sistema 2 

  
    

    
    

     
     

  
      

De (AIII. 3):   
    

De (AIII. 4):     
    

De (AIII. 5):   
    

De (AIII. 7):   
    

De (AIII. 8):    
    

               
    

i

u

r

Figura 17. Valores de m* en el sistema 2 

Sustituyendo en (AIII. 2) 
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Sistema 3 

  
    

    
     

     

  
    

      

              
    

               
    

              
    

              
    

               
    

              
    

F

 Figura 18. Valores de m* en el sistema 3 

 

Sustituyendo en (AIII. 2) 
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Sistema 4 

  
    

    
    

   
     

    

  
        

              
       

               
    

               
  

       

 
 

              
    

              
      

              
       

F

 Figura 19. Valores de m* en el sistema 4 

Sustituyendo en (AIII. 2) 
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Sistema 5 

  
    

    
     

  
    

    
      

              
       

               
    

               
  

   

 
 

              
       

              
       

               
      

Figura 20. Valores de m* en el sistema 5 

 

Sustituyendo en (AIII. 2) 
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Sistema 6 

  
    

    
     

      

  
    

      

              
     

              
     

               
    

              
    

              
    

               
  

   

 
 

 

 
   

Figura 21. Valores de m* en el sistema 6 
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Sustituyendo en (AIII. 2) 

   
  

      
           

  

      
           

       

      
               

 
       

      
            

         
 

       
        

       

      
              

 
       

      
            

         
 

       
                            

 

 

 
                   

     

 
   

 

 
     

    

   
 

        

   
  

                                 

 

En resumen, las seis ecuaciones de compatibilidad obtenidas tras la resolución de los seis 

sistemas planteados son las siguientes 
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A partir de las ecuaciones anteriores, se ha explicado en el Apartado 4.3. el proceso de 

cálculo para la obtención de las diferentes rótulas plásticas paso a paso. Se muestra a 

continuación un resumen de la sucesiva formación de las rótulas detallando el incremento 

de carga a aplicar entre la formación de una rótula y la siguiente y los diagramas de 

momentos flectores de la estructura en cada paso. 

La formación de la primera rótula aparece en el punto 10 y se produce cuando se aplica 

una carga P=5113 kg. En la Figura 22 se muestra el diagrama de momentos flectores para 

ese momento. Se observa que el punto 10 es el primero en alcanzar el valor del momento 

plástico de los pilares, es decir, Mp=18031 y por tanto, ese es el punto en que se forma la 

primera rótula plástica. 

Al ir incrementando la carga, el siguiente punto de la estructura que alcanza su momento 

plástico es el punto 7 y por consiguiente es ahí donde aparece la segunda rótula plástica. 

Para que se alcance Mp en dicho punto es necesario un incremento de 235 kg, por lo que 

la carga aplicada en este caso es P=5348 kg. En la Figura 23 se observa que 

efectivamente, el valor del momento plástico en el nodo 7 es de 18031 kgm. 
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Figura 22. Momentos flectores en la formación de la primera rótula 

 

  

Figura 23. Momentos flectores en la formación de la segunda rótula 
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La tercera rótula plástica se forma en el nodo 12. Como se observa en la Figura 24, el 

momento plástico de este punto ha alcanzado también el momento plástico de la sección 

del pilar. La carga aplicada cuando el momento flector del punto 12 llega al valor de Mp 

es de P=5491 kg.  

 

Figura 24. Momentos flectores en la formación de la tercera rótula 

Si se sigue incrementando la carga, el siguiente nodo que alcanza el valor plástico es el 8. 

La carga aplicada en el momento en que el momento flector del nodo 8 alcanza el valor 

de Mp=18031 kgm es P=5530 kg. Los diagramas de los momentos flectores cuando se 

produce la cuarta rótula se observan en la Figura 25. Debido a que en los nudos 8, 9 y 10 

existe un nudo, al haberse formado rótulas plásticas en los nodos 8 y 10, el nodo 9 

alcanza también el momento plástico de su sección. Como el nodo 9 se encuentra a la 

derecha de la jácena de la primera planta y las jácenas tienen el doble de módulo plástico 

que los pilares, el valor del momento plástico el punto 9 se puede observar en la Figura 25 

que es 2Mp=36062 kgm. 

En la Figura 26 se muestran los diagramas de momentos flectores cuando se produce la 

formación de la quinta rótula plástica. Ésta aparece en el nodo 6 cuando la carga alcanza 

el valor de 5986 kg.  
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Figura 25. Momentos flectores en la formación de la cuarta rótula 

 

 

Figura 26. Momentos flectores en la formación de la quinta rótula 
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La sexta rótula plástica se forma en el nodo 1 cuando la carga se incrementa hasta P=6450 

kg. En ese momento, el momento plástico del nodo 1 alcanza el valor de Mp=18031 kgm 

(Figura 27). En este momento el mecanismo es isostático. Al incrementar la carga hasta 

P=6487 kg, se produce la formación de la séptima rótula en el nodo 11 (Figura 28) que 

hace que el mecanismo colapse, Por tanto, la carga última que puede asumir la estructura 

es de 6487 kg. 

 

Figura 27. Momentos flectores en la formación de la quinta rótula 

 

Figura 28. Momentos flectores en la formación de la séptima rótula 
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Anexo IV. Análisis con Abaqus 

La simulación realizada con Abaqus para analizar un problema de plastificación se ha 

llevado a cabo para una biga biempotrada con carga distribuida. Se ha realizado, además 

del análisis de plastificación, un análisis previo de pandeo de la viga. El objetivo de dicho 

análisis es asegurar que el tipo de viga elegida no presenta problemas de inestabilidades 

locales que produzcan pandeo y que imposibiliten el análisis de plastificación para la 

misma. 

III. 1. Realización del modelo  

En la sección 5 de la memoria se ha estudiado la sucesiva aparición de las rótulas 

plásticas para el problema particular de la viga biempotrada con carga distribuida. Se 

conoce que las dos primeras rótulas aparecen en los extremos empotrados cuando el 

valor de la carga aplicada es tal que produce que el momento flector en los extremos 

alcance el momento plástico. Con el objetivo de forzar la aparición de las rótulas en 

la zona de los extremos de la viga que más nos interese, se ha realizado el modelo 

introduciéndole una pequeña rebaja en la sección de ambos extremos (Figura 29). Al 

reducir la sección de la zona se consigue que los momentos sean mayores que en el 

resto del perfil ante la misma carga y por tanto, esa zona alcanzará antes el valor del 

momento plástico. 

 

Figura 29. Rebaja en la sección de la viga 

Las condiciones de contorno y la carga se introducen como se muestra en la Figura 

30. Ambos extremos de la viga se disponen empotrados y el valor de la carga 

distribuida es de 1,5N/mm
2
. 
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Figura 30. Carga y condiciones de contorno 

El material utilizado es el acero. Como se va trabaja en régimen plástico, es necesario 

introducirle propiedades elásticas y plásticas como se muestra en la Figura 31. La 

propiedad elástica se ha introducido de manera que el material tenga plasticidad 

perfecta para continuar con la hipótesis de material elastoplástico perfecto 

considerada en la primera parte del proyecto. 

 

Figura 31. Propiedades elásticas y plásticas del acero 

Una vez dibujada la geometría deseada e introducidos todos los parámetros 

necesarios comentados anteriormente se procede al mallado del modelo. Éste se ha 

realizado de manera que posea más elementos en los extremos de la viga para 

apreciar mejor la formación de las primeras rótulas (Figura 32). 

 

Figura 32. Mallado del modelo 
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III. 2. Análisis de pandeo 

El pandeo es un fenómeno de inestabilidad que puede darse en elementos 

comprimidos esbeltos y se manifiesta por la aparición de desplazamientos 

importantes trasversales. Por ello, como ya ha sido explicado es necesario asegurar 

que no se van a producir fenómenos pandeo en la viga estudiada que impidan realizar 

el análisis plástico correctamente. 

Para determinar si se produce pandeo, es necesaria la obtención de αcr, que es el 

parámetro que mide la estabilidad de la estructura. Este parámetro se trata del factor 

por el que hay que multiplicar la carga aplicada para que la estructura pandee. Es 

decir, si αcr es mayor que 1, se asegura que la estructura sufrirá antes el agotamiento 

plástico que el fallo por pandeo.  

El cálculo de αcr computacional, en este caso con Abaqus, se realiza a partir de un 

análisis de valores propios. El primer valor de αcr que da el programa pertenece al 

primer modo de pandeo que se produce en la estructura. En la Figura 33 se muestra 

este primer modo de pandeo que se produce. Las deformaciones de las figuras tienen 

un factor de ampliación de 200.  

 

Figura 33 .Primer modo de pandeo de la viga 

Se observa que el primer modo de pandeo que aparece en la viga se trata de un 

pandeo flexo torsional o pandeo lateral, cuya αcr es de 14,871. Se puede asegurar por 

tanto que con la carga aplicada al modelo no se va a producir pandeo en la misma. 

En la Figura 34 se observa que para el segundo modo de pandeo de la viga, esta 

pandea según un modo de flexión puro en el eje de menor inercia. El αcr para este 

caso es de 24,6548. 

 

Figura 34. Segundo modo de pandeo de la viga 

El siguiente modo de pandeo se muestra en la Figura 35. Se trata de un pandeo 

producido por inestabilidades locales en la zona de los empotramientos. El αcr para 

este modo de pandeo es de 25,978, por lo que se puede asegurar que la rebaja 
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introducida en la sección en la zona de los empotramientos no produce fallos de 

carácter local. 

 

 

Figura 35. Tercer modo de pandeo de la viga 

Una vez realizado el análisis de pandeo y viendo que éste no afecta el modelo 

estudiado, se pasa a realizar el análisis plástico del mismo. 

 

 

III. 3. Análisis de plastificación 

El cálculo del análisis plástico es realizado por Abaqus de manera incremental. La 

carga se va aumentando desde el 0% de la carga total hasta aplicar el 100% de la 

misma. El proceso paso a paso que realiza el programa se detalla en la Tabla 1. 

Para este caso, se ha fijado que la carga se incremente inicialmente un 5% en cada 

paso. Se observa en la Tabla 1 que hasta el paso número 13 el programa ha aplicado 

en cada incremento un 5% más de carga que para el paso precedente. En el momento 

en que aumentar un 5% la carga supone problemas de cálculo para el programa, éste 

reduce este incremento y vuelve a recalcular. Este proceso lo realiza de manera 

iterativa (en este caso en 36 pasos) hasta que aplica el 100% de la carga y termina el 

cálculo.  

Una vez terminado el cálculo es posible visualizar los resultados del mismo. En la 

Figura 36 se observa que con la aplicación del 30% de la carga total, la zona de los 

extremos empotrados comienza a plastificar. Como se vio en el apartado 5 la carga 

aplicada para el comienzo de la plastificación es de 0,45 N/mm
2
 y coincide con la 

carga necesaria hallada de manera analítica. 

En la Figura 37 se muestran los desplazamientos sufridos por la viga para ese paso. 

En los extremos, al disponerse empotrados tienen desplazamiento nulo, mientras que 

en el centro de la viga existe un desplazamiento de 8,77 mm. 
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Tabla 1. Cálculo incremental de Abaqus 
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Figura 36. Inicio de plastificación de los extremos 

 

Figura 37. Desplazamientos con el 30% de carga 

La carga continúa aumentando y la sección de los extremos empotrados plastifica 

completamente cuando se alcanza el 45 % de la carga total aplicada.  

 

Figura 38. Plastificación completa de los extremos 
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En las Figuras 38 y 39 se muestran las tensiones y desplazamientos, respectivamente, 

para el caso citado. Los desplazamientos en los extremos no varían ya que están 

impedidos, mientras que en el centro de la viga aumentan hasta 22,39 mm. 

 

Figura 39. Desplazamientos con el 45% de carga 

Cuando se incrementa hasta el 50% de la carga, la plastificación llega al centro de la 

sección como se observa en la Figura 40. La Figura 41 muestra los desplazamientos 

para ese punto: el centro de la sección se desplaza 22,39mm. 

 

Figura 40. Inicio de plastificación en el centro 

 

 

Figura 41. Desplazamientos con el 60% de carga 
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Finalmente, cuando la carga llega al 64,37% (Figura 42) de la carga total aplicada, la 

sección central termina de plastificar completamente y se forma la rótula plástica. En 

la Figura 43 se muestran los desplazamientos cuando se forma la tercera rótula 

plástica. Se observa que el desplazamiento del centro aumenta notablemente hasta los 

195,9mm. 

 

 

Figura 42.  Plastificación en el centro 

 

 

Figura 43. Desplazamientos cuando se forma la tercera rótula 


