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Resumen

Determinacién numérico-experimental de las
propiedades mecanicas de vena cava mediante
el método de los elementos finitos

La Ingenieria Biomédica, o Bioingenieria, es el resultado de la aplicacién de los
principios y técnicas de la ingenieria al campo de la medicina. Se dedica fundamentalmente
al diseno y construccién de productos y tecnologias sanitarias: equipos médicos, protesis,
dispositivos médicos, dispositivos de diagndstico (imagenologia médica) y de terapia, etc.
Dichos aparatos tienen un claro beneficio en la prevencién y el tratamiento de varias
enfermedades que aquejan a los seres humanos.

En el presente trabajo se aplicaran conocimientos ingenieriles, tales como el método
de los elementos finitos o modelos matematicos de materiales hipereldsticos, para hallar
las propiedades elasticas y de rotura de vena cava. Los aparatos biomédicos actuales para
sistema cardiovascular, como stents o filtros anti-trombo, estan en continuo contacto con el
vaso sanguineo. Por tanto, es de vital importancia conocer sus propiedades mecanicas para
llevar a cabo un correcto dimensionamiento de los dispositivos y minimizar el dano sufrido
por el organismo. El proyecto se enmarca dentro de la linea de investigacién de modelado
de sistema cardiovascular del Instituto Universitario de Investigacion en Ingenieria de
Aragén (I3A) mediante una beca de colaboracién del Ministerio de Educacién y Ciencia
de 12 meses de duracién.

En la parte experimental, han sido extraidas diversas muestras de vena cava de
oveja para realizar ensayos mecdnicos (uniaxiales y biaxiales) en laboratorio junto con
el director del proyecto. Se han llevado a cabo mediciones geométricas y fotografias que
ayuden al manejo de los datos recogidos por los equipos.

Posteriormente, los datos experimentales se han post-procesado eliminando datos
indeseados antes y después del ensayo (ruido) y calculando las curvas medias. Las graficas
del ensayo uniaxial sirven para ajustar mediante modelos tedricos el comportamiento
elastico de la vena cava, el cual resulta ser hiperelastico anisétropo.

Dichas propiedades son datos de entrada en el modelo de elementos finitos que
reproduce el ensayo de identacion biaxial y, mediante sucesivos calculos, se han determi-
nado las propiedades de las superficies cohesivos definidas en el modelo que reproduzcan
los ensayos experimentales y que permiten determinar la energia de rotura.
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Capitulo 1

Introduccion

1.1. Objetivo y alcance

El desarrollo del presente proyecto se centra en la determinacién de las propiedades
mecanicas de la vena cava de oveja, tanto elasticas como de rotura, para su aplicacion
posterior en otros trabajos de investigacién enfocados en el diseno de dispositivos médicos
para, entre otras enfermedades, la trombosis pulmonar (TEP).

Uno de los mayores problemas de estos dispositivos es que en algunas ocasiones
pueden traspasar la pared del vaso, por tanto la determinacién de la fuerza y energia
necesaria para penetrar la vena cava es fundamental para mejorar el disenio de dichos
dispositivos. Los objetivos basicos del proyecto son los siguientes:

» Ensayos experimentales del tejido vascular: Recogida de datos realizando
pruebas de traccion uniaxial y biaxial en laboratorio y post-procesado de dicha
informacion.

» Caracterizacion de las propiedades elasticas: Ajuste de las curvas experi-
mentales mediante modelos constitutivos tedricos y simulacién por computador del
ensayo biaxial de laboratorio.

» Caracterizacion de las propiedades de rotura: Realizacion de simulaciones
basadas en superficies cohesivas para determinar la curva de rotura de las probetas
y poder aproximar numéricamente los parametros de rotura.

El trabajo se enmarca dentro de la linea de investigacién de modelado de sistema
cardiovascular del Instituto Universitario de Investigacién en Ingenierfa de Aragén (I3A).
Ha sido financiado por el Ministerio de Educacion, Cultura y Deporte por medio de una
Beca de Colaboracion de 12 meses de duracion en el Departamento de Ingenieria Mecanica
de la Universidad de Zaragoza.



1.2. Motivacién 1. Introduccién

1.2. Motivacion

Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en
los paises desarrollados. En la Unién Europea, ademas, representan la principal causa de
pérdida de anos de vida por muerte prematura. Por tanto, cualquier esfuerzo para mejorar
su diagndstico y tratamiento tendra un alto impacto en la sociedad.

Los ataques al corazén y los accidentes vasculares cerebrales (AVC) suelen ser
fenomenos agudos que se deben sobre todo a obstrucciones que impiden que la sangre
fluya hacia el corazon o el cerebro. La causa mas frecuente es la formacion de depdsitos de
grasa en las paredes de los vasos sanguineos que irrigan el corazén o el cerebro, denomi-
nado arteroesclerosis. El tratamiento general para este tipo de enfermedad es puramente
preventivo: habitos saludables o farmacos inhibidores de la formacién de dichos estre-
chamientos del vaso. La bioingenieria ha permitido crear dispositivos metdlicos activos
con forma de muelle, denominados stents, que ayudan a corregir el estrechamiento de las
arterias.

(a) (b)

Figura 1.1: Ejemplos de dispositivos médicos para ECV: filtro anti-trombo de vena cava (a) y
stent para arterias coronarias (b). Fuente: [7].

Los AVC también pueden deberse a codgulos de sangre (trombos), dando lugar a
trombosis venosa profunda. El tratamiento general es la administracién de anti-coagulantes
o trombolisis mediante radiacion. Para aquellos pacientes con una contraindicacién abso-
luta del tratamiento anti-coagulante, se puede recurrir al uso de filtro de vena cava. Dicho
dispositivo metalico se fija en el vaso mediante varias patas con ganchos en los extremos,
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1. Introduccién 1.3. Metodologia

de tal forma que los posibles trombos y codgulos quedan atrapados para su posterior
extraccién quirtrgica o absorcién natural.

Un conocimiento detallado de las propiedades biomecanicas del tejido cardiovas-
cular es necesario para poder entender los cambios que éstos sufren debido a edad, en-
fermedades como la aterosclerosis e hipertensién o por alteraciones externas como dano
endotelial durante una intervencién quirtrgica. Dentro del dominio fisiologico, los mode-
los constitutivos intentan capturar el comportamiento visco(eldstico) de los tejidos car-
diovasculares, incorporando parametros relacionados con la estructura del mismo en su
definicién matematica. Uno de los retos mas importantes es el identificar aquellos con un
mayor significado fisico como, por ejemplo, la incorporacién de la orientacién de fibras de
coldgeno en las paredes de los vasos.

Debe senalarse también, que durante algunos procedimientos como la colocacién
de filtros anti-trombo, las cargas a las cuales se ve sometido el tejido fisiologico estan muy
por encima de las correspondientes a condiciones fisiologicas, por lo que las simulaciones
numéricas deberfan contemplar teorias de danio y (visco)plasticidad entre otras.

En la actualidad, son muchos los modelos computacionales que han estudiado estos
fenémenos sobre arterias [2, 4, 10, 13, 24]. Sin embargo, pocos autores han estudiado su
comportamiento sobre venas incorporando las propiedades de anisotropia y grandes defor-
maciones que caracterizan a dicho tejido [1]. Es por ello que se hace necesario un esfuerzo
importante en el desarrollo de modelos complejos anatémicos vasculares (anisotropia, vis-
coelasticidad y dano) si se desea simular lo més realista posible el comportamiento del
sistema vascular sano y patolégico y los efectos que intervenciones endovasculares tienen
sobre él.

1.3. Metodologia

Para la obtencién de las propiedades mecanicas de vena cava se han utilizado
ensayos de penetracién sobre muestras deformadas equibiaxialmente (equipo biaxial) y
ensayos uniaxiales. Dichos ensayos se han llevado a cabo en el laboratorio del grupo de
Mecénica Aplicada y Bioingenieria (AMB) del Instituto Universitario de Investigacién en
Ingenieria de Aragén (I3A).

A partir de los ensayos uniaxiales, cuya solucién elastica analitica es conocida, se
determinan las propiedades elasticas. Los ajustes asi como el post-procesado de datos
experimentales se ha llevado a cabo mediante el programa Matlab 2013b. La medida de
las longitudes a través de las fotografias de las muestras se han realizado mediante el
programa ImagelJ.

Por 1ltimo, utilizando un modelo de elementos finitos con superficies cohesivas en
el software Abaqus se determinaran las propiedades de rotura del material. Los cédlculos
se han llevado a cabo en el cluster de computacion HERMES del I3A.






Capitulo 2

Método experimental

En este apartado se van a exponer los procedimientos utilizados en el laboratorio
para ensayar los tejidos de vena cava y obtener datos para su posterior post-procesado y
analisis.

Las muestras son de oveja, por la similitud anatémica entre su sistema venoso
y el del ser humano, y han sido proporcionadas por Unidad de Técnicas Minimamente
Invasivas de la Facultad de Veterinaria de la Universidad de Zaragoza. El protocolo ex-
perimental ha sido aprobado por el Comité de Etica de la Universidad de Zaragoza. Los
sacrificios se debieron a causas ajenas al proyecto.

2.1. Extraccion y preparacion de las probetas

Antes de ser extraida la muestra de vena cava del espécimen, se atan dos cordeles
separados unos 14 cm y se fotografia con una regla patron. Los cordeles sirven para saber
la longitud inicial de la muestra in-situ antes de ser extraida. Posteriormente se procede
a su corte y extraccion. Todas las muestras se introducen en botes de suero fisiologico y
son enviadas al laboratorio, donde se guardan en un frigorificos de ultracongelacién a -80
°C.

El siguiente paso es adecuar la muestra para los ensayos biaxial y uniaxial. Se debe
descongelar progresivamente, limpiar con suero fisioldgico y eliminar cualquier resto de
grasa o imperfeccion que pueda alterar los ensayos. A continuacién, se deben realizar unas
pruebas previas a los ensayos de traccion y penetracion. Estas pruebas estimaran el estado
tensional de una vena in-situ, tanto en direccién longitudinal como circunferencial.

2.1.1. Ensayo de pretensién axial

En este ensayo se determina el alargamiento longitudinal para simular la tension
longitudinal a la que estaba sometida la vena en el interior del organismo. Se mide la



2.1. Extraccién y preparacion de las probetas 2. Método experimental

longitud entre los cordeles, que sera menor que la longitud medida al principio ya que
se ha destensado (Figura 2.1). La longitud inicial se calcula a través de las fotografias

realizadas cuando fue extraida la muestra. Los resultados de dicho ensayo se exponen en
el Anexo B.1.

(a) (b)

Figura 2.1: Vena con cordeles atados in-situ (izquierda) y vena destensada ex-situ (derecha).

2.1.2. Ensayo de angulo de apertura

Este ensayo tiene como objetivo calcular el estiramiento que se debe aplicar para
simular la pretension circunferencial a la que esta sometido el vaso incluso en ausencia
de presion sanguinea. Se corta transversalmente y fotografia un anillo de pequeno espesor
en las zonas distal de la muestra (Figura 2.2). Se corta radialmente y se deja relajar en
una placa de Petri con suero. Pasados 30 minutos se mide la longitud final del anillo,
que serda menor que la anteriormente medida debido a la tension circunferencial a la que
estaba sometida. Los resultados de dicho ensayo se exponen en el Anexo B.1.

(a) (b)

Figura 2.2: Ensayo de dngulo de apertura: anillo cerrado (a) y anillo abierto (b).
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2.1.3. Probetas

El siguiente paso es cortar longitudinalmente la vena, extenderla y recortar probe-
tas con las medidas normalizadas y acordes a las maquinas de cada ensayo:

» Ensayo Biaxial: Probeta cuadrada de 35 mm de lado, con las direcciones longi-
tudinal y circunferencial alineadas con los lados del cuadrado. Para este corte se
usa un molde metdlico (punch). Ademads, se marca con rotulador un extremo de la
probeta para no confundir la orientacién circunferencial.

» Ensayo Uniaxial: Probetas en forma de hueso de perro, de unos 15 mm de longitud,
cortadas con bisturi. El largo de la probeta debe ser al menos unas 5 veces el ancho
para asegurar que el centro de la probeta no se ve influenciado por las distorsiones
locales de las mordazas y garantizar asi la hipotesis de traccion uniaxial.

(b)

Figura 2.3: Probetas para ensayo biazial (a) y uniazial (b).

Es importante tener en cuenta los dos extremos de la muestra: distal y proximal.
La zona proximal es la mas cercana al corazén y a la bifurcacion renal, por lo tanto el
vaso tiene menor espesor que la zona distal, mas alejada del corazon. La probeta cuadrada
se extrae lo mas centradamente posible. Las probetas de hueso de perro seran recortadas
después a lo largo de las dos direcciones, en general dos probetas circunferenciales y dos
longitudinales, procurando tener una de cada lado (distal y proximal) para luego hacer la
media de las mediciones.

El ultimo paso antes de ensayar, es medir las longitudes con pie de rey y los
espesores con micrometro de la probeta cuadrada en tres zonas distintas y calcular las
medias, para luego usarlo en el post-procesado de los datos.
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2.2. Ensayo uniaxial 2. Método experimental

2.2. Ensayo uniaxial

2.2.1. Metodologia

El ensayo pretende traccionar las probetas de hueso de perro hasta rotura, para
determinar su curva de comportamiento a traccién. Para ello se utiliza una méaquina
Instron Microtester 5548 con célula de carga de 50 N. Los datos serviran para llevar a
cabo los ajustes de las curvas y determinar las constantes elasticas del material.

(a)

Figura 2.4: Probeta de hueso de perro antes (a) y después (b) de rotura durante el ensayo
uniazial.

La probeta se sujeta con las dos mordazas y se introduce un humificador para
mantener condiciones de humedad adecuadas para la muestra. Se realizaran 3 ciclos a
3 tensiones distintas (30, 60 y 140 kPa) tras los cuales se tracciona hasta rotura. Este
método se denomina preciclado o precondicionado de las muestras, mediante el cual se
consigue que las fibras se alineen en la direccién deseada y se eliminan los efectos viscosos
debidos a la histéresis.

Segun el tamano de la muestra se han realizado entre 2 y 4 ensayos uniaxiales en
ambas direcciones. La rigidez de las probetas de la zona distal serd mayor que las de la
zona proximal, por lo que se seleccionaran equitativamente muestras de cada lado con el
fin de poder calcular resultados medios.

Se registra la fuerza uniaxial que debe imponer la maquina para traccionar la
muestra y el desplazamiento de las mordazas. La medida de la deformaciéon se realiza
mediante un videoextensiémetro laser Instron 5848.
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2.2.2. Resultados

A continuacion se muestran las mediciones de la muestra II, representando la di-
reccién circunferencial en linea continua y la longitudinal en discontinua. Las graficas
completas de las 6 muestras estan representadas en el Anexo B.
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Figura 2.5: Tres ciclos de histéresis a tres niveles de tension y traccion hasta rotura (a) y
detalle de los ciclos de histéresis en las probetas de direccion circunferencial (b).

» Figura 2.5 (a): Curvas de traccién. Se puede comprobar la mayor rigidez de las dos
muestras circunferenciales frente a las longitudinales debido a las fibras de colageno.
Las probetas cicunferenciales ademaés tienen una menor tensién de rotura frente a
las longitudinales.

» Figura 2.5 (b): Detalle de los ciclos de histéresis anteriores a la rotura final. Dichos
ciclos se realizan para orientar las fibras paralelas al eje de a probeta, si se desea
ensayar la direccién circunferencial, o perpendiculares si se quiere la longitudinal,
ademas de evitar los efectos viscosos. El cambio de comportamiento observado ante
las cargas ciclicas a varias tensiones se debe al denominado efecto Mullins, y se puede
descontar realizando la envolvente de dichos ciclos, como se detalla en el articulo

[1].

2.3. Ensayo biaxial

2.3.1. Metodologia

El ensayo tiene por objetivo determinar la curva de comportamiento del tejido ante
la penetracién de un identador metalico hasta rotura. La probeta se encuentra preten-
sionada, para reproducir de manera aproximada las condiciones en las que se encontraria
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dentro del organismo. Este andlisis esta basado en los ensayos bixiales desarrollados en
tejido de miocardio por Gasser [26]. Se utiliza una méquina biaxial para el estiramiento
de las cavas y un equipo Instron con célula de carga de 5 N y un penetrador de 0.35 mm
de diametro para la identacion.

La probeta cuadrada se sujeta con unas mordazas y se pretensa imponiendo un
estiramiento equivalente en las direcciones longitudinal (\;) y circunferencial (\.) deter-
minados previamente en los ensayos de pretension axial y dngulo de apertura. Para evitar
que se reseque y rigidice la muestra, se anade cierta humedad al ensayo mediante un
humidificador.

Figura 2.6: Probeta cuadrada durante el ensayo biaxial (a) y pretension ejercida por las
mordazas en direcciones longitudinal (N;) y circunferencial (A.) en la bajada del punzdn (b).
Fuente: [26].

El identador penetra en la muestra a un ritmo de 5 mm/min y las mordazas
registran el valor de la fuerza que deben aplicar para mantener el desplazamiento inicial
impuesto con un tiempo de muestreo de 1 segundo. De esta forma, se pueden obtener
los datos de la tension biaxial longitudinal y circunferencial, los cuales no son iguales
al tratarse de un material anisétropo. Al mismo tiempo, el identador registra la fuerza
de reaccién de la probeta sobre el identador (fuerza de punzdn) y tiene un tiempo de
muestreo de 0.01 segundos.

Se realizan un total de 25 identaciones dispuestas de forma uniforme alrededor del
centro de la probeta separadas 4 mm entre si, para que el agujero generado en una rotura
no influya en el siguiente (Figura B.9).

2.3.2. Resultados

A continuacion se muestran las mediciones de la muestra II, representando la di-
reccion circunferencial en linea continua y la longitudinal en discontinua. Las graficas
completas de las 6 muestras estan representadas en el Anexo B.
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0.04 0.8
0.035 1 0.7 1
0.03 1 0.6 1
w | _.0. |
g 0.025 §0 5
= 8 ]
T 002 1 % 04
8 5
o
o 0.015 1 “03 1

0.01

0.005

4 6 . 1
Desplazamiento [mm]) F punzon (N)
(a) (b)

Figura 2.7: Tension biaxial longitudinal y circunferencial frente al desplazamiento del punzon
(a) y fuerza de punzén frente a fuerza de las mordazas (b).

» Figura 2.7 (a): Tensién longitudinal y circunferencial frente al desplazamiento del
punzén. A una velocidad constante de penetracién las graficas son claramente no-
lineales y se asemejan a la forma de una exponencial. A su vez se puede comprobar
la marcada anisotropia del material, puesto que las mediciones en las dos direcciones
no coinciden.

» Figura 2.7 (b): Fuerza de la biaxial frente a Fuerza del punzén. Existe una corre-
lacién lineal entre ambas, lo cual tiene sentido, ya que al bajar el punzon de forma
constante, también lo hace la fuerza de las mordazas.
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Figura 2.8: Fuerza del punzon frente al desplazamiento del punzdn (a) y fuerza de punzon
mdazxima soportada antes de rotura (b).
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2.3. Ensayo biaxial 2. Método experimental

» Figura 2.8 (a): Fuerza del punzoén frente al desplazamiento del punzén. Conforme
avanza el punzon, la fuerza necesaria para mantener la pretension es cada vez mayor.
Se confirma la no-linealidad del conjunto del ensayo, ya que su forma es analoga a
la de una exponencial.

» Figura 2.8 (b): Gréfico de puntos con la fuerza de rotura. Hay una dispersién con-
siderable de los puntos de ruptura. Sin embargo, la nube de puntos tiene un caracter
lineal ascendente, lo cual indica que en los puntos que resisten mayor desplazamiento
de punzon soportan mayor fuerza y viceversa.
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Capitulo 3

Determinacion de las constantes
mecanicas del material

En el siguiente capitulo se presenta la metodologia y resultados de los ajustes de
las curvas obtenidas a partir de las mediciones del ensayo uniaxial, asi como el modelo y
simulaciones de elementos finitos. En el Anexo B se reflejan todos los resultados que, por
razones de extension, no han podido ser abordados dentro de la memoria principal.

3.1. Propiedades elasticas

Como puede verse en la Figura 2.5, los tejidos venosos se caracterizan por tener un
comportamiento no-lineal con altos valores de deformacién, siendo al principio casi lineal
(is6tropo) y volviéndose mas rigido a altas deformaciones, mostrando caracter anisétropo.
Ademds, las curvas de carga y descarga no coinciden (histéresis), lo cual revela una res-
puesta inelastica del material. Dicho comportamiento elastico puede modelarse de forma
apropiada mediante un modelo de material denominado hipereldstico anisoétropo con dos
familias de fibras.

3.1.1. Metodologia

Existen muchos posibles modelos hiperelasticos fibrados para modelar el compor-
tamiento de vasos. En el presente proyecto se emplean los dos mas utilizados: modelo
de Holzapfel-Gasser-Ogden (Ecuacién 3.1) y modelo de Gasser (Ecuacién 3.2). Ambos
modelos constan de 5 parametros, los cuales se calcularan a partir de un ajuste de los
datos experimentales. Dicho ajuste se ha realizado con el software Matlab mediante el
algoritmo de minimizacién de Levenberg-Marquardt [16]. Para mayor informacién acerca
de los modelos, consultar Anexo C.3.2.
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k k
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Dada la naturaleza del ensayo biaxial, las probetas no fueron precicladas al con-
trario que en el ensayo uniaxial. Por tanto, para el ajuste de pardmetros elasticos se debe
calcular la envolvente de los ciclos de carga-descarga para descontar los efectos inelasticos
(efecto Mullins).
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Figura 3.1: Envolventes de las curvas de comportamiento uniazial en direccion
circunferencial (a) y curvas medias para el ensayo uniazxial en ambas direcciones (b).

Debido a la alta variabilidad de resultados [1], se calculardn los pardmetros de
las curvas medias de las 6 muestras para ambas direcciones. Con esto se consiguen unos
ajustes que logran simular el comportamiento elastico medio de las venas cavas ensaya-
das. Para los ajustes experimentales, se incluye la media y desviacién estandar (SD). Se
calculard adicionalmente la rafz cuadrada del error cuadratico medio (RMSE) con el fin
de mostrar la bondad del ajuste realizado, segin la Ecuacion 3.3, donde n es el nimero
de datos y ¢ el nimero de parametros.

1 .
RMSE = pduste _ geapya 3.3
1 < _
SD = - (x; — )2 (3.4)
i=1



3. Constantes mecanicas

3.1. Propiedades elasticas

3.1.2.

Resultados

= Modelo de Holzapfel-Gasser-Ogden:

Muestra | p [MPa] ky [MPa] ko [[] k3 [MPa] k4 [-] | RMSE
I 0.01 0.0077  0.343 0.754 4.119 | 0.070
II 0.01 0.0399  0.238 0.083 1.136 | 0.119
I1I 0.01 0.0047  0.058 0.049  4.694 | 0.061
1AY 0.01 0.0182  0.694 0.219 2.813 | 0.096
\Y% 0.01 0.0094  0.054 0.135 3.362 | 0.084
VI 0.01 0.0227  0.103 0.137 1.885 | 0.062

Media 0.01 0.0171  0.248 0.229 3.002 -
SD 0 0.013 0.246 0.263 1.342 -

Tabla 3.1: Pardmetros eldsticos del modelo de HGO para cada muestra.

Puede observarse como el término neo-hookeano (1) asociado a la parte isétropa del
material es muy pequeno. En el ajuste real de las curvas p = 0, puesto que las direcciones
circunferencial y longitudinal estan casi totalmente desacopladas (gran anisotropia). Con
el fin de evitar problemas computacionales, se ha limitado su valor a 0.01 MPa en todas

las muestras sin decremento del error en el ajuste.

» Modelo de Gasser:

Muestra | u [MPa] k& [MPa] ke [MPa] «[°] &[] | RMSE
I 0.015 2.227 19.664  89.89 0.210 | 0.063
II 0.010 1.152 4.013 89.99 0.294 | 0.104
11 0.013 0.314 2.168 89.90 0.196 | 0.114
v 0.010 1.800 23.265 89.94 0.269 | 0.087
\Y 0.010 0.559 0.059 89.89 0.215 | 0.041
VI 0.048 0.658 5.449 85.84 0.233 | 0.089

Media 0.017 1.118 9.103 89.24 0.236 -
SD 0.015 0.757 9.810 1.666 0.038 -

Tabla 3.2: Parametros elasticos del modelo de Gasser para cada muestra.

El angulo «, referido respecto a la direccion longitudinal, es muy préximo a 90°,
lo cual indica que las fibras estan casi alineadas en direccién circunferencial. Al igual que
en el ajuste de Holzapfel, el limite inferior del neo-hookeano p durante el ajuste se ha
limitado a 0.01 para evitar problemas computacionales en la simulacién posterior.
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3.1. Propiedades eldsticas 3. Constantes mecanicas

La alta dispersion de los resultados se puede comprobar en la Figura 3.2. En ella
se representan las curvas en direccion circunferencial y longitudinal de las 6 muestras de
vena cava, junto con su curva media y el ajuste de la misma con los dos modelos. En el
Anexo B.1 se muestran en graficas comparativas los ajustes completos de las 6 muestras.

1 [MPa] ki [MPa] ks [] ks [MPa] ks [-] | RMSE
Curva Media | 0.01  0.0094 0201  0.056  9.040 | 0.059

Tabla 3.3: Pardmetros eldsticos del modelo de HGO para la curva media.

w [MPa]  ky [MPa] ke [MPa] o« [°] &[] | RMSE
Curva Media 0.01 0.642 5.014 89.93 0.243 | 0.066

Tabla 3.4: Pardmetros eldsticos del modelo de Gasser para la curva media.

4 |—1Circ
---lLong
Il Circ
Il Long
——1ll Circ
11 -lllLong
— IV Circ
---1V Long
/| |—VCirc
/. 4|---V Long
—— VI Circ
4|---VlLong
p — Media Circ
. - - -Media Long
’ Ajuste Long Gasser
- - -Ajuste Long Holzapfel
i Ajuste Circ Gasser
— Ajuste Circ Holzapfel

2.2 2.4

Figura 3.2: Curvas uniaziales en direccion circunferencial y longitudinal de las 6 muestras y
ajuste de las curvas medias.

Puede observarse como el ajuste de las curvas medias entra dentro del disperso
rango de las muestras experimentales. Notese que los parametros medios de ajuste de las
6 muestras no coinciden con los parametros del ajuste de las curvas medias, puesto que
se tratan de funciones exponenciales no-lineales. De ambos es el tltimo el que representa
mas fielmente el comportamiento medio de las muestras.
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3. Constantes mecanicas 3.2. Propiedades de rotura

3.2. Propiedades de rotura

En esta seccion se realiza un modelo de elementos finitos del ensayo biaxial en el
software Abaqus, con el fin de hallar mediante andlisis inverso los parametros promedio
de rotura de la vena cava.

3.2.1. Metodologia

A continuacién se expone un resumen de la metodologia utilizada para modelar la
geometria, contacto y comportamiento entre el punzon y la probeta del ensayo biaxial.
Para més informacion sobre los tipos de formulaciones de elementos finitos y elementos
cohesivos, ver Anexo D.

= Software: El ensayo biaxial es cuasiestatico hasta rotura, posee contacto entre
punzoén, probeta y zona de rotura, muy altas deformaciones y un material hiper-
elastico anisétropo altamente no-lineal. La formulacion adecuada para el problema
antes de rotura serfa Abaqus/Standard. Al alcanzar la rotura se convierte en un pro-
ceso dindmico y de dificil convergencia, haciendo necesario aplicar la formulacion de
Abaqus/Explicit.

s Geometria: El punzon es cilindrico con punta esférica de 0.7 mm de didmetro y
6 mm de largo. Se va a considerar sélo mitad de probeta cuadrada, imponiendo
condiciones de simetria en direccién longitudinal (eje Y). La longitud de la probeta
cuadrada en direccién longitudinal y circunferencial ha sido calculada a partir de las
longitudes medias reflejadas en la Tabla B.3. Se incluyen unos huecos trapezoidales
de los extremos, los cuales simulan el agarre de las mordazas del equipo biaxial.

Figura 3.3: Mallado y ensamblaje de probeta y punzon con detalle del mayado en zona de
contacto (a) y mallado del punzon (b).
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3.2. Propiedades de rotura 3. Constantes mecanicas

= Materiales: El material del punzon es acero y el de la probeta es vena cava. Las
propiedades hiperelasticas anisétropas en Abaqus solo son admitidas mediante el
modelo de Gasser. Adicionalmente para el analisis en Standard, se utilizara el modelo
de Holzapfel implementado mediante una rutina de usuario (UMAT) desarrollada
por el grupo de invertigacién. Ambos materiales se consideran incompresibles [14].
El punzon es mucho mas rigido que la probeta, por lo que se va a considerar con
restricciones de solido rigido para conseguir menor tiempo computacional.

= Mallado: El mallado final se muestra en la Figura 3.3 y consta de 6558 nodos y 4975
elementos en el caso de la probeta y 6322 nodos y 5529 elementos para el punzon. Los
elementos son hexagonales trilineales (C3D8) puesto que los elementos cuadréticos
generan problemas durante el contacto. El mallado de la zona de contacto entre
la probeta y el punzén es mas fino que el resto de la probeta, para facilitar la
convergencia del problema durante el contacto.

» Pasos y Condiciones de Contorno: El analisis se dividira en dos pasos: Pre-
tensado y Punzonado. En el Pretensado se imponen los desplazamientos medios
en direcciones longitudinal y perpendicular de los ensayos biaxiales, calculados en
la Tabla B.3. En el Punzonado, se impone un desplazamiento vertical medio del
punzon de 10 mm en direccién normal a la superficie de la probeta.

= Zona de rotura: Segun los ensayos a tejido de miocardio elaborados por Forsell
y Gasser [8] se observé que durante el ensayo biaxial el mecanismo principal de
penetracién es de modo apertura (Fractura Modo-I). Ademds, la rotura del material
se genera de forma muy localizada y se alinea con la direccién de las fibras (direccién
circunferencial).

Punzoén Tejido fibroso

1]

H
AN
N
-
L
AN
1]
T
-

Figura 3.4: Fractura Modo-I experimentada por el tejido fibroso (a) y esquema de la
superficie cohesiva remarcada en rojo en el modelo de elementos finitos (b).

Para simular este comportamiento, se decide generar una Superficie Cohesiva en
la probeta, situada en la zona inferior del contacto con el punzoén y orientada en
sentido circunferencial, como se representa en la Figura 3.4. A dicha Zona Cohesiva
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3. Constantes mecanicas 3.2. Propiedades de rotura

se le debe definir una ley de traccion-separacion que, por simplicidad, se supondra de
forma triangular (Figura D.2). Por ello habra que definir 3 pardmetros: pendiente
antes del fallo (K), tensién maxima (o,,4,) v energia de fractura (Gy).

El Modo-I de fallo implica que la tensién de fractura (o,,4:) es perpendicular a la
superficie cohesiva, definida en el mismo sentido que las fibras del tejido (direccion
circunferencial). Por tanto, dicha tensién tiene direccién longitudinal. En el Anexo
B.3 se calcula de los ensayos uniaxiales la tensién de rotura media de las muestras de
vena cava en direccién longitudinal. Fijado este valor, se llevaran a cabo iteraciones
para calcular los otros dos pardmetros (K y Gg) para definir completamente el
triangulo de fractura de la Figura D.2.

= Contacto: Se define un General Contact que incluye todos los cuerpos dentro de
la simulacién y que es mas adecuado para formular el contacto del punzén con
varias superficies tras rotura. Para mas informacion sobre formulaciones de contacto,
consultar [30].

» Compensacién de efectos inerciales: Abaqus/Explicit se basa en ecuaciones
dindamicas para el cédlculo de los desplazamientos y las tensiones, y esta disenado
para analisis a altas velocidades. Sin embargo, el ensayo biaxial es cuasiestatico hasta
rotura lo cual supone un alto coste computacional. Por tanto, se debe disminuir el
tiempo de célculo reduciendo todo el proceso a 2 segundos de duracién (1 segundo
para pretensado y 1 segundo para punzonado). Esto supone una velocidad de punzén
de 10 mm/s mientras que el ensayo original es de 0.08 mm/s (5 mm/min). La
velocidad de simulacion es 125 veces la real, por lo que se debe realizar un escalado
de masa y de viscosidad para que los efectos inerciales no distorsionen los resultados.
Se elige un mass scaling uniforme para conseguir un incremento lo suficientemente
pequeiio de 107¢ segundos.

» Equipo: Debido al alto coste computacional de los analisis de elementos finitos se
ha recurrido al cluster de computacion HERMES, realizando multiples calculos en
paralelo con 8 Gb de RAM y 4 CPU’s a cada uno. En los calculos en Explicit, para
evitar errores de redondeos debido al alto nimero de incrementos, se ejecutan a
doble precision. El tiempo de simulacion esta entre 5 y 6 horas para Explicit y 1
hora para Standard.

3.2.2. Resultados

En la Figura 3.5 se representan las curvas medias de la fuerza del punzén en cada
muestra de vena cava en la zona eldstica previa a rotura del ensayo biaxial. Las lineas
discontinuas son los resultados de las simulaciones de elementos finitos durante el tramo
cuasiestatico antes de rotura. Puede observarse que el analisis del modelo de Gasser en
Explicit se ajusta correctamente a las curvas, lo cual indica un correcto escalado de masa.
El analisis en Standard da una muy buena aproximacion con el modelo de Holzapfel. En
ambos casos, la curva se encuentra contenida entre las curvas experimentales.
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Figura 3.5: Medias de la Fuerza del punzon en los ensayos biziales y ajustes de la zona
cuasiestdtica con Standard y FExplicit.

Una vez comprobados los resultados elasticos en Explicit, se procede a realizar
iteraciones para averiguar los valores 6ptimos de la pendiente antes de fallo (K) y energia
de fractura (Gy). Sabiendo que 0,4, = 2.2 MPa, aplicando relaciones trigonémétricas del
tridngulo de fractura (Figura D.2) se obtienen las siguientes ecuaciones

mazx 2.2
o B Gy

K= === = O Omir
5 0 2

|

|
=
-
&

(3.5)

En el Anexo B.3, se proponen diferentes combinaciones de separaciones de inicio de
dano (dg) y de rotura (d,) de la superficie cohesiva. Deben estar sujetos a dos restricciones:
0o < 0r ¥ 99,0, < ¢ = 0.7mm, donde ¢ es el diametro del punzén.

Existen varias posibles combinaciones de parametros validas para simular la rotura
del ensayo biaxial, mostradas en la Tabla 3.5. Todas tienen en comin un bajo valor de
separacion inicial antes de fallo §y € [0.01,0.05] mm frente a la separacién de rotura
5, € [0.15,0.45] mm y son inversamente proporcionales, de tal forma que la energia de
fractura Gy permanece casi constante.

Solucién | ég [mm] | 6, [mm] || opna. [MPa] | K [-] | Go [N/mm]
1 0.01 0.35 2.2 220 0.33
2 0.03 0.3 2.2 73.33 0.33
3 0.05 0.2 2.2 44 0.22

Tabla 3.5: Distintas soluciones que modelan correctamente la rotura del ensayo biazial.
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Figura 3.6: Comparacion de los resultados de simulacion con los datos medios del ensayo
biazial (a) y de la muestra I (b).

Se puede comprobar como la curva de rotura de la simulacién logra reproducir con
buena precisién el comportamiento de la rotura del ensayo biaxial. Cabe destacar el error
en la zona elastica a bajas deformaciones, el cual repercute en un ligero error en la zona
de rotura. Dicho error podria evitarse implementando el modelo de Holzapfel en Explicit
mediante una rutina de usuario VUMAT.

Debido al pequeno espesor de las muestras (del orden del didmetro del punzén)
hace que la rotura sea subita, sin zona pléastica, lo cual se ve reflejado en los valores
pequenos de energia de deformacion. En la Figura 3.7 se representa la evolucion de las
tensiones durante cada paso de la simulacién con los parametros de rotura de la solucién
numero 2. En el Anexo B.3 se incluyen los resultados de las tres soluciones.
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Figura 3.7: Mapa de tensiones durante la simulacion del ensayo biaxial con rotura en el

pretensado (a), durante el punzonado (b) y rotura (c).



Capitulo 4

Conclusiones

Los objetivos del presente Trabajo de Fin de Grado, asi como del Proyecto de
Colaboracién, han sido cubiertos en su totalidad. Para concluir, se citan las observaciones
mas importantes llevadas a cabo durante la realizacién de los ensayos experimentales y
analisis computacional.

4.1. Observaciones experimentales

= Es de vital importancia reproducir en los ensayos el estado de la cava in vivo en
la medida de lo posible. Para ello se han introducido los parametros de pretension
longitudinal y circunferencial.

= La variabilidad de resultados es muy alta, puesto que cada organismo es tinico y en
funcién de la edad, sexo o historia clinica los tejidos pueden tener diferente compor-
tamiento. Generalmente en todas las aplicaciones de bioingenieria la dispersién de
datos es tal que la desviacion tipica suele ser del mismo orden de magnitud que la
media.

= El tejido venoso expuesto al aire se seca y rigidiza rapidamente, lo cual falsea los
datos. Por tanto, es fundamental ser metddico y cuidadoso a la hora de llevar a cabo
los ensayos, de tal forma que la manipulaciéon de las probetas no interfiera en los
resultados finales.

4.2. Observaciones mecanicas/numéricas

= El comportamiento de la vena cava es altamente no lineal. Ademas presenta gran
anisotropia, comportandose de forma diferente en direccién circunferencial y longi-
tudinal debido asu particular microestructura, hecho que se ha tenido en cuenta en
el modelo del material introduciendo las fibras de coldgeno.

23



4.3. Lineas Futuras 4. Conclusiones

= Los modelos de Gasser y Holzapfel logran un ajuste correcto en la mayoria de
las muestras, siendo las curvas circunferenciales en las que mayor error se comete.
Ademas, son coherentes con la histologia de vena cava, puesto que marcan gran
anisotropia (u ~ 0) y alineacién de las fibras en direccién circunferencial (o ~ 90°)

» Tras multiples céalculos en serie, se determiné que el problema de elementos fini-
tos de rotura de la probeta biaxial en Abaqus/Standard es imposible de realizar,
debido a problemas de convergencia. En su defecto, se debe recurrir al andlisis en
Abaqus/Explicit teniendo muy en cuenta los incrementos correctos de tiempo y es-
calados de masa para poder despreciar los efectos inerciales y que la energia total
del sistema permanezca constante durante el periodo cuasiestatico.

» Para simulaciones estaticas o cuasiestaticas el modelo de Holzapfel da una solu-
cién 6ptima. El modelo de Gasser también es véalido, aunque aporta soluciones mas
rigidas y con mayor error.

= La rotura de la probeta se produce de forma sibita sin apenas deformacion plasti-
ca, debido al pequeno espesor de la misma y a las caracteristicas del tejido. Los
parametros calculados logran simular de forma correcta el fallo, y existen multiples
combinaciones posibles las cuales poseen una energia de fractura casi constante.

» El método utilizado para el calculo de las propiedades de rotura con parametros
medios se puede realizar para cada muestra individual. Sin embargo, queda fuera
del alcance de un Proyecto Fin de Grado aunque la metodologia a emplear ha
quedado plenamente definida.

4.3. Lineas Futuras

Tras la consecucion del presente proyecto, los resultados sobre propiedades mecani-
cas de vena cava pueden ser utilizadas para modelar aplicaciones concretas en aparatos
biomédicos, y da lugar a posibles lineas futuras para proyectos de investigacién tales como:

= Diseno y mejora de filtro anti-trombo. Simulacién con rotura y fibrosis de su inter-
accion en vena cava. Simulacién de la extraccion del filtro. Esta linea futura va a
realizarse como continuacién del presente Proyecto de Fin de Grado con otro durante
el curso 2014-15.

= Aplicacién de los métodos expuestos para calcular propiedades de rotura de otros
tipos de tejidos biolégicos planos andlogos (tejido de miocardio, arterias, piel, etc).

= Implantacién en la formulacién explicita para la funciéon de energia de Holzapfel
mediante una rutina de usuario (VUMAT).
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Anexo A

Anatomia de los vasos sanguineos

El sistema cardiovascular o circulatorio es el que conduce y hace circular la sangre.
Estd formado por el corazdn, vasos sanguineos (venas, arterias y capilares) y la sangre.
Posee como funcion el distribuir los nutrientes y oxigeno a las células y recoger los desechos
metabdlicos que se han de eliminar después por los rifiones (orina) y por el aire exalado
en los pulmones (diéxido de carbono). Se divide en dos circuitos més pequenos:

» Circulacién menor o pulmonar: Este circuito lleva la sangre del corazén a los pul-
mones y de estos al corazén. De manera més especifica, la sangre viaja del ventriculo
derecho por la arteria pulmonar hasta los pulmones. Estas se dividen rapidamente
hasta capilares que rodean a los sacos aéreos (alveolos) para intercambiar el diéxi-
do de carbono por oxigeno. De manera gradual los capilares se retinen formando
las venas pulmonares, que llevan la sangre oxigenada de los pulmones a la auricula
izquierda.

s Circulacion mayor o sistémica: Es el circuito principal de la circulacion. Lleva la
sangre procedente de los pulmones a todas las regiones del cuerpo y luego de regreso
al corazén. Todas las arterias sistémicas desembocan en la vena cava inferior o en
la superior, las cuales a su vez lo hacen en la auricula derecha.

A.1. Tipos

Los vasos sanguineos (arterias, capilares y venas) son conductos musculares y/o
elasticos que distribuyen y recogen la sangre de todos los rincones del cuerpo. Se deno-
minan arterias a aquellos vasos sanguineos que llevan la sangre desde el corazén hasta
los 6rganos corporales. Las grandes arterias que salen desde los ventriculos del corazon
van ramificindose y haciéndose mas finas hasta que por fin se convierten en capilares,
vasos tan finos que a través de ellos se realiza el intercambio gaseoso y de sustancias entre
la sangre y los tejidos. Una vez que este intercambio sangre-tejidos a través de la red
capilar, los capilares van reuniéndose en vénulas y venas por donde la sangre regresa a las
auriculas del corazon.
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A.1. Tipos A. Anatomia de los vasos sanguineos
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Figura A.1: Sistema circulatorio pulmonar (arriba) y sistémico (abajo). Fuente: [15].

» Arterias: Son vasos gruesos y elasticos que nacen en el corazén y aportan sangre
a los organos del cuerpo. Existen dos arterias principales: arteria pulmonar, que
sale del ventriculo derecho y lleva la sangre a los pulmones, y la arteria aorta,
que sale del ventriculo izquierdo formando el arco adrtico (cayado). De este 1ltimo
emergen arterias para cabeza, cuello y miembros superiores, desciende como aorta
toracica y al atravesar diafragma cambia a aorta abdominal que irriga las estructuras
abdominales. Finalmente se divide en dos arterias iliacas.

» Capilares: En promedio no miden més de un milimetro de longitud y 8-12 micras
de diametro. Forman redecillas y en ellos se produce el intercambio entre plasma y
liquido tisular, de modo que cuando la sangre sale del lecho capilar ya ha entregado
el oxigeno y otros productos a las células del tejido, y ha recibido en cambio diéxido
de carbono y productos de desecho.

= Venas: Son conductos con la funcién inversa de las arterias: guian la sangre de
los capilares de vuelta al corazén. Existen dos tipos de vena cava: la cava superior
estd formada por la unién de las venas braquicefdlicas (yugulares que vienen de la
cabeza y las subclavias que proceden de los miembros superiores) y la cava inferior
que engloba las venas ilfacas que vienen de los miembros inferiores (venas femorales,
safena magna o interna y safena parva o externa), las renales de los rinones, la
suprahepatica del higado y las genitales.
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A. Anatomia de los vasos sanguineos A.2. Estructura

El flujo de las venas es mucho mas lento que en las arterias, por lo que tienen mayor
didmetro de modo que el caudal de entrada al corazén sea igual al de salida. Ya que las
venas devuelven la sangre en contra de la gravedad, poseen unas vélvulas antirretorno.
El tejido eléstico se pierde en la anciandad, y entonces las arterias tienden a encogerse,
hacerse tortuosas y endurecerse.
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Vena cava inferior

(a) (b) (c)

Figura A.2: Sistema arterial (a), corazén (b) y sistema venoso (c). Fuentes: [22], [28], [29].

A.2. Estructura

La microestructura de los vasos sanguineos varia dependiendo de varios factores:
edad, localizacion y tipo de vaso, espécimen y condiciones de trabajo a las que esté so-
metido. Esto quiere decir que cada vaso sanguineo tiene su propia composiciéon microes-
tructural. A pesar de estas diferencias, todos estan compuestos por tres capas principales:
intima, media y adventicia. En la Figura A.3 se puede observar la composicion capa por
capa de los conductos sanguineos. A continuacion se describen brevemente cada capa con
sus caracteristicas y composicién. Para més informacién, consultar [23].

= Adventicia: Es la capa exterior de los vasos sanguineos. Se compone principalmente
de fibras de colageno, que permiten a las venas y arterias expandirse lo suficiente
como para soportar los altos rangos de presion ejercidos por el flujo sanguineo en
las paredes. Ademas, pueden aparecer células musculares sobre todo en venas largas
como la vena cava, en la cual estas células se disponen de forma longitudinal. Esta
capa suele ser la més gruesa de las tres en venas (40 % al 50 % del vaso). Sin embargo,
en arterias sélo es del 30 % al 35 % del vaso
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A.2. Estructura A. Anatomia de los vasos sanguineos

= Media: Es la capa media, compuesta por células musculares blandas reforzadas por
capas ordenadas de tejido elastico y fibras de colageno. Es mas gruesa en arterias
que en venas. Tiene la mayor capacidad resistente, fundamentalmente para rangos
de presién fisiolégicos.

» Intima: Es la capa interior de venas y arterias. Suele estar compuesta tinicamente
por células endoteliales y en algunos casos por células musculares.

Figura A.3: Composicion microestructural por capas de una arteria (a) y una vena (b).
Fuente: [7].
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Anexo B

Post-procesado de datos

En el presente Anexo se muestran los resultados experimentales de los ensayos
expuestos en el Capitulo 2. Todos los espesores y longitudes han sido medidas 3 veces con
pie de rey. Por facilidad de lectura y reduccion de la extension del documento, en esta
memoria sélo aparecen las medias de dichas medidas.

B.1. Resultados de ensayo uniaxial

En la Tabla B.1 se calcula el drea transversal de la probeta (Ap) a partir del
espesor (e) y la anchura (a) de la probeta. También se incluye su longitud (1), puesto que
es necesaria para el calculo de la deformacién longitudinal. Dichas medidas se pueden ver
esquematizadas en la Figura B.1.

Figura B.1: Esquema de las medidas de las probetas uniaxiales.

La célula de carga mide el desplazamiento entre las mordazas (Al) y la fuerza que
ejercen (F'). Mediante el uso de las Férmulas B.1 y B.2! se pueden calcular las curvas
tensién-alargamiento de la Figura B.2 a la B.7.

A== (B.1)

INétese que se utiliza la férmula de tensién en grandes deformaciones, puesto que compensa, la reduc-
cién progresiva del area de la probeta durante el ensayo.
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos

F
= \— B.2
o )\Ao (B.2)

El estado de traccién uniaxial se caracteriza porque las tensiones o, = o, = 0.
Considerando las Ecuaciones C.20 y teniendo en cuenta la condiciéon de incompresibilidad
(detF = MA2A3 = 1) y de deformacién uniaxial, los alargamientos principales valdrian

1
)\1 - )\2 - ﬁ )\3 - )\ (BS)
Dichos alargamientos se tendréan en cuenta a la hora de calcular los invariantes explicados
en el Anexo C.3.2 y se incluirdn en el ajuste con el modelo de Gasser o Holzapfel.

2
11:A§+>\§+>\§:X+A2

I, = Njcos®(0) + A3sin®(0) (B-4)
Is = M2cos*(—0) + M\3sin*(—0)

De la Figura B.2 a la B.7 se muestran las graficas post-procesadas de los ensayos
uniaxiales. Adicionalmente, se incluyen los ajustes tedricos mediante los modelos de Gasser
y Holzapfel mostrados en el Capitulo 3.1.2.
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B. Post-procesado de datos

B.1. Resultados de ensayo uniaxial

I IT
e [mm] | @ [mm] | [ [mm] | Ay [mm?] e [mm] | @ [mm] | [ [mm] | Ay [mm?]
L1| 061 5.07 17.01 3.08 L1 | 0.62 4.85 22.15 3.02
L2 0.52 4.47 16.02 2.31 L2 | 0.61 2.27 22.47 3.23
L3 0.37 4.31 14.98 1.63 Cl| 0.54 5.30 21.84 2.86
C1l| 0.58 5.05 16.12 3.21 C2 | 0.57 4.56 21.04 2.72
C2| 061 527 | 15.85 3.19
I1I IV
e [mm] | @ [mm] | [mm] | Ag [mm?] e [mm] | @ [mm] | [ [mm] | Ag [mm?]
L1 0.82 3.34 20.87 2.73 L1 | 0.55 3.91 16.38 2.16
L2 0.68 5.01 15.32 3.41 L2 | 0.61 4.25 13.29 2.61
C1 0.57 4.06 12.84 2.23 Cl| 0.55 3.41 16.84 1.89
C2 0.56 3.41 12.29 1.92 C2| 0.56 3.10 12.29 1.75
Vv VI
e [mm] | a [mm] | [ [mm] | Ay [mm?] e [mm] | a [mm] | [ [mm] | Ay [mm?]
L1 0.93 3.41 13.35 3.17 L1 0.50 4.17 15.85 2.10
L2 0.75 3.57 14.57 2.69 L2 | 0.62 4.54 15.40 2.80
L3 | 0.78 3.69 17.36 2.89 L3 | 0.37 4.67 | 15.30 1.75
C1 0.71 4.06 14.51 2.88 L4 | 045 4.23 14.62 1.89
C2 0.71 4.11 9.87 2.92 Cl| 0.55 4.38 21.39 2.42
C2 | 0.66 3.64 17.98 2.41

Tabla B.1: Medida de longitudes y espesores de las probetas longitudinales (L) y
circunferenciales (C) para ensayo uniazial.
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B.1. Resultados de ensayo uniaxial

B. Post-procesado de datos
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Figura B.2: Curvas de ensayo uniazial de muestra I (a) y ajuste de curvas medias por el

modelo de Gasser (b) y Holzapfel (c).




B. Post-procesado de datos

B.1. Resultados de ensayo uniaxial
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Figura B.3: Curvas de ensayo uniaxial de muestra II (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos
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Figura B.4: Curvas de ensayo uniaxial de muestra III (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.1. Resultados de ensayo uniaxial

B. Post-procesado de datos
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Figura B.5: Curvas de ensayo uniazial de muestra IV (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).

35



B.1. Resultados de ensayo uniaxial

B. Post-procesado de datos
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Figura B.6: Curvas de ensayo uniazial de muestra V (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B. Post-procesado de datos

B.1. Resultados de ensayo uniaxial
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Figura B.7: Curvas de ensayo uniazial de muestra VI (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos

B.2. Resultados de ensayo biaxial

En la Tabla B.2 se exponen las mediciones de longitudes iniciales (Lg) y finales
(L¢) de los ensayos de pretensién axial y dngulo de apertura. Adicionalmente, se calculan
las pretensiones en direccién longitudinal ();) y circunferencial (A.) que se han de imponer
en cada ensayo biaxial. Para el cdlculo de los alargamientos (\) se aplica la Ecuacién B.52.

A=1+5:1+AL—0L:1+LfLOL° (B.5)
AL, =¢e;L; = (N — 1)L, i=1rc (B.6)
Pretensién Axial Angulo de Apertura
Muestra | Ly [mm] | Ly [mm] | A\, [-] || Lo [mm] | Ly [mm] | A; []
I 121.38 63.43 1.91 52.97 D7.78 1.09
IT 109.26 71.88 1.52 51.49 63.12 1.23
I1I 43.87 38.17 1.13 57.06 28.57 1.02
v 130.55 86.73 1.33 37.70 40.84 0.91
\Y% 100.85 63.20 1.59 50.48 51.93 1.03
VI 133.82 94.07 | 1.42 57.70 66.03 1.13

Tabla B.2: Medida de las longitudes inicial y final de los ensayos de pretension axial y dngulo
de apertura y cdlculo de las pretensiones para las probetas del ensayo biazxial.

Figura B.8: Esquema de las medidas de las probetas biaxiales.

2Para el caso del ensayo de pretensién axial, puesto que la longitud final es menor que la inicial, la
longitud inicial del ensayo es la final de la férmula y viceversa.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial

Las probetas para ensayo biaxial tienen forma cuadrada normalizada de 35 mm
de lado. Sin embargo, debido a la relajacién del material es frecuente que esas medidas
varfen. En la Tabla B.3 se exponen las mediciones de espesor (e) y longitud en direccion
circunferencial (L) y longitudinal (L;) llevadas a cabo en cada muestra, asi como su valor
medio.

Muestra e; [mm] e, [mm] L; [mm] L. [mm]
I 0.54 0.43 37.73 36.50
IT 0.73 0.69 36.77 36.08
IIT 0.98 1.05 36.55 34.16
v 0.69 0.84 35.46 34.63
\Y 0.73 0.75 34.99 34.96
VI 0.88 0.95 35.52 35.50
Media + SD | 0.76 £ 0.15 | 0.79 £ 0.22 | 36.17 + 1.03 | 35.31 + 0.89

Tabla B.3: Medida y media de longitudes y espesores de las probetas para el ensayo biaxial.

Partiendo de los alargamientos de la Tabla B.2 se calculan los desplazamientos
longitudinales (AL;) y circunferenciales (AL.) que se deberan imponer en las mordazas
al inicio del ensayo biaxial mediante la Formula B.6. Nétese que A < 1 implica despla-
zamientos y pretension negativos, lo cual implicaria compresién de las mordazas en esa
direccién y se interpreta como que no es necesario traccionar la muestra (A = 1).

Muestra AL; [mm] | AL, [mm]
I 34.33 3.29
II 19.72 8.14
11 4.75 1
v 11.70 1
\Y 20.6 0.94
VI 14.92 4.47
Media 4+ SD | 17.67 & 10 | 3.14 £ 2.85

Tabla B.4: Cdlculo de los alargamientos longitudinales y circunferenciales de las probetas
para el ensayo biaxial.
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos

Las 25 identaciones se disponen de forma uniforme alrededor del centro de la
probeta separadas 4 mm entre si, como se muestra en la Figura B.9. Los 9 puntos centrales
recuadrados en linea discontinua son los utilizados para llevar a cabo las medias y, por
tanto, los ajustes de parametros.

Circ
! ! Long
| |
x | x x | x

Figura B.9: Disposcion de las 25 identaciones.

De la Figura B.10 a la B.15 se exponen las graficas post-procesadas de cada ensayo
biaxial. En las muestras V y VI no se disponen de los datos de tensién biaxial, puesto
que los instrumentos de medida no estaban correctamente calibrados y presentaban datos
erroneos. La célula de carga mide el desplazamiento del punzon y la fuerza biaxial ejercida
por las mordazas. Con ello es sencillo calcular la tension mediante la Formula B.7.

o= i=lc (B.7)
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial
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Figura B.10: Curvas de ensayo biaxial de muestra I.
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos
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Figura B.11: Curvas de ensayo biazial de muestra I1.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial
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Figura B.12: Curvas de ensayo biazial de muestra I11.
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos
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Figura B.13: Curvas de ensayo biazial de muestra IV.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial
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Figura B.14: Curvas de ensayo biazial de muestra V. No se disponen datos de tension biaxial
debido a la incorrecta calibracion del equipo.
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos
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Figura B.15: Curvas de ensayo biazial de muestra VI. No se disponen datos de tension
biaxial debido a la incorrecta calibracion del equipo.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial

Para hallar los pardmetros de rotura, se debe realizar un anélisis estadistico de las
fuerzas de rotura y desplazamientos medios que se representan en los graficos de puntos
de los resultados biaxiales. De esta forma, se calcula la fuerza media y desplazamiento
medio del punzén, para saber dénde debe de romper la simulacion de elementos finitos. A
continuacion se exponen diagramas de cajas que representan los cuartiles y datos atipicos
(outlayers) de las roturas de las 6 muestras.
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Figura B.16: Diagrama de cajas de fuerzas (a) y desplazamientos de punzon (b).
Para cada una de las muestras se calcula la media de la fuerza de rotura (F,a.) y

desplazamiento de rotura (dpq.). El valor al cual el modelo de elementos finitos se debe
acercar serd la media de las medias, calculadas en la Tabla B.5.
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

Muestra Frae [N] Aoz [mm]

I 0.95 8.16

1I 1.27 7.80

I11 0.72 13.72

v 0.69 7.46

Vv 0.81 8.87

VI 1.07 7.38
Media 4+ SD | 0.92 + 0.22 | 8.90 £ 2.42

Tabla B.5: Cdlculo de la fuerza y desplazamientos medios de punzon durante rotura en el
ensayo biazrial.

B.3. Resultados de modelo de elementos finitos

La Figura B.17 muestra la geometria acotada tanto de la probeta como del punzoén.
Los huecos trapezoidales de los laterales simulan el agarre de las mordazas.

L
15
Q
T |
5N .
5 J 3
o e}
L. !
pN
_ - @Q%\

(a) (b)

Figura B.17: Geometria con las medidas principales de la probeta (a) y el punzdon (b)
obtenidas del ensayo experimental.

En la Figura B.18 se muestra la primera simulacién en Abaqus/Standard de la

zona eldstica sin rotura mediante el modelo de Holzapfel, cuyos resultados se comparan
con el modelo de Abaqus/Explicit en la Figura 3.5.
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B. Post-procesado de datos B.3. Resultados de modelo de elementos finitos

U, u3
+5.407e-01
-1.712e-01
-8.832e-01
-1.595e+00
-2.307e+00
-3.019e+00
-3.731e+00
-4.443e+00
-5.155e+00
-5.867e+00
-6.579e+00
-7.291e+00
-8.003e+00

Figura B.18: Mapa de desplazamiento durante la simulacion del ensayo biaxial sin rotura con
el modelo de Holzapfel en Abaqus/Standard.
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

La zona de fractura se alinea con las fibras de colageno, por lo que la tensién entre
las superficies cohesivas es en direccion longitudinal. Por tanto, partir de las tensiones de
rotura de los ensayos uniaxiales se puede calcular la tensién de rotura longitudinal media,
para introducirla en la ley de traccién-separacion de la superficie cohesiva.

Muestra Omaz [MPa]
1 4.09 5.59 1.80 - 3.83 £ 191
1I 281 2.78 1.12 - 2.24 + 0.97
111 1.29 0.99 - - 1.14 + 0.21
1A% 272 1.74 - - 2.23 + 0.69
A% 1.81 1.06 1.12 - 1.33 £ 0.42
VI 3.50 2.34 2.17 1.59 || 2.40 £ 0.80
Media 4+ SD 2.20 4+ 0.96

Tabla B.6: Cdlculo de la tension media de los ensayos uniaziales en direccion longitudinal.

En este punto se llevan a cabo diversas simulaciones con el modelo de elementos
finitos del ensayo biaxial con identacion para hallar los parametros de rotura que satisfaga
el desplazamiento de punzén en rotura de d,,q, = 8.9 mm y la tensiéon normal méxima de
rotura de g4, = 2.2 MPa.

En una primera iteracién (Figura B.7), los resultados que més se aproximan a
los resultados experimentales (d, = 8.9 mm) son los marcados en verde. El resto de
simulaciones o rompen demasiado pronto (dg;, < 8 mm) o no llegan a romper (dg;, > 10
mm). A continuacién se seleccionan puntos intermedios para centrar la busqueda del punto
de rotura deseado. Partiendo de los mejores resultados de la primera iteracion, se escogen
pardmetros intermedios en una segunda iteracién (Figura B.8) para acercarse al punto
solucion del problema en funcion de los datos experimentales.

Figura B.19: Detalle de la separacion de la Zona Cohesiva durante la rotura.
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B. Post-procesado de datos

B.3. Resultados de modelo de elementos finitos

Simulacién | dp [mm] | 6, [mm] || K [-] | Go [N/mm)] || dsip, [mm]
1A 0.7 0.77
2A 0.01 0.5 990 0.55
3A 0.3 0.33
4A 0.1 0.11
5A 0.7 0.77
6A 0.05 0.5 m 0.55
TA 0.3 0.33
8A 0.1 0.11
9A 0.7 0.77
10A 0.1 0.5 11 0.55
11A 0.3 0.33
12A 0.7 0.77
13A 0.2 0.5 22 0.55
14A 0.3 0.33

Tabla B.7: Primera iteracion (A) de simulaciones con modificaciones en los pardmetros de

rotura.
Simulacion | ¢y [mm] | §, [mm] || K [-] | Go [N/mm] || dgp, [mm]

1B 0.45 0.495

2B 0.01 0.4 220 0.44

3B 0.35 0.33 9.4
1B 0.5 038 || >10 |
5B 0.3 0.33 9

0.03 73.33

6B 0.2 0.22 8.5
B 0.1 0.11

8B 0.25 0.275

9B 0.05 0.2 44 0.22 9.4
10B 0.15 0.385 8.4

Tabla B.8: Segunda iteracion (B) de simulaciones con modificaciones en los pardmetros de
rotura.
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

S, Max. Principal

{Avg: 75%)
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+1.881e-04

S, Max. Principal

(Avg: 75%)
+1.984e+02
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+1.355e-04

S, Max. Principal

(Avg: 75%)
+3.326e+01
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+1.925e-04

()

Figura B.20: Mapa de tensiones durante la simulacion 3B (Solucion 1) del ensayo biaxial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).
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B. Post-procesado de datos B.3. Resultados de modelo de elementos finitos

S, Max. Principal

(Avg: 75%)
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+3.516e-04

S, Max. Principal

(Avg: 75%)
+7.704e+01
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+¢.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+2.960e-04

S, Max. Principal

{Avg: 75%)
+2.988e+01
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+9.540e-05

()

Figura B.21: Mapa de tensiones durante la simulacion 5B (Solucidn 2) del ensayo biazial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

S, Max. Principal

(Avg: 75%)
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+2.998e-04

S, Max. Principal

(Avg: 75%)
+1.808e+02
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+2.624e-04

S, Max. Principal

{(Avg: 75%)
+6.980e+01
+1.000e+00
+9.175e-01
+8.350e-01
+7.525e-01
+6.700e-01
+5.875e-01
+5.050e-01
+4.225e-01
+3.400e-01
+2.575e-01
+1.750e-01
+9.250e-02
+1.000e-02
+3.675e-04

()

Figura B.22: Mapa de tensiones durante la simulacion 9B (Solucién 3) del ensayo biazial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).
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Anexo C

Mecanica de Medios Continuos

Cuando se quieren llevar analisis del comportamiento de polimeros, cauchos o en
este caso tejidos bioldgicos, se deben manejar modelos constitutivos no-lineales més com-
pletos que el clasico sélido elastico lineal. Para ello se debe profundizar mas en la Mecanica
de Medios Continuos y en conceptos aparentemente simples, como son la tension y la defor-
macién, pero que con el calculo tensorial en grandes deformaciones no son tan intuitivos.
La vena cava estda compuesta principalmente por células musculares en direccion longitu-
dinal y fibras de coldgeno en direccion circunferencial. Ademas, el coldgeno es mucho més
rigido que las células musculares, por tanto puede considerarse como un material com-
puesto mucho maés rigido en la direccién circunferencial que en la longitudinal (no-lineal
anisétropo).

En este anexo se expone brevemente las bases de los modelos constitutivos hiper-
elasticos actuales, los cuales son necesarios para el ajuste de los datos experimentales, par-
tiendo de las ecuaciones cinematicas y de equilibrio para llegar a las deseadas ecuaciones
de comportamiento. Para mayor detalle sobre Mecdnica de Medios Continuos, consultar
(19, 20].

C.1. Ecuaciones cinematicas

Se formalizan a continuacion las definiciones de los conceptos mas importantes
asociados a un sélido deformable. Para ello serd necesario, en primer lugar, definir ma-
tematicamente qué entendemos por sélido. En la formulacion de Mecéanica de Medios
Continuos se entiende por sélido tridimensional (denotado por ) un subconjunto de R?
cuyos puntos se identifican mediante las coordenadas en un sistema de referencia, deter-
minado, pero arbitrario. Desde un punto de vista matematico, podemos interpretar lo
anterior a través de la funcion siguiente:

o QeR’ —R%  (P)=X(z,y,2);  ¢o(P) =X’ (C.1)
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C.1. Ecuaciones cineméticas C. Mecanica de Medios Continuos

A dicha configuracién ¢y la denominaremos configuracion inicial del solido €2 o
configuracion indeformada. A lo largo del movimiento del sélido, la posicion de cada
uno de los puntos del mismo va variando, por lo que la funcién anterior va asimismo
modificindose, pudiendo considerarse que un movimiento no es mas que una familia de
configuraciones del sélido dependiente del tiempo. Para un instante ¢ determinado, la con-
figuracion correspondiente define las coordenadas de los puntos del sélido en ese instante
t respecto a un sistema de referencia a través de una expresién similar a (C.1):

Il
8

¢ QeR’ — R, eu(P) = x; wi(P)! ! (C.2)

Denotaremos a partir de este momento con mayusculas los indices que correspon-
den a coordenadas de puntos del sélido en la configuracién indeformada (X"*) denominadas
coordenadas materiales y con minusculas los correspondientes a las coordenadas de puntos
del sélido en cada una de las configuraciones deformadas (') denominadas coordenadas
espaciales, siendo por tanto dependientes de t. A partir de este momento utilizaremos
coordenadas cartesianas tanto para la configuracion inicial como la deformada.

X-’i X:;

\ 01(2)
X ,J\l‘
- X P

X/ P
Q Q
po(§2) :X\ P /;:(Q) =X

Q

Figura C.1: Representacion de un sélido en configuracién indeformada (X*) y deformada

(x').

El concepto de deformacion esta relacionado esencialmente a la variacién de en-
tornos de un punto méas que a la modificaciéon de las coordenadas de un solo punto. Un
movimiento que sélo implique traslacién y giro del sélido global (movimiento como sélido
rigido) no modifica entornos, sino tan sélo significa un cambio de coordenadas del sdli-
do. La deformacion se trata del cambio relativo de distancias entre puntos, es decir, las
derivadas espaciales del movimiento.

Dado un movimiento ¢, : Q € R3?, se define el gradiente de deformacién F al campo
tensorial sobre la configuracién indeformada g (€2)
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C. Mecanica de Medios Continuos C.1. Ecuaciones cinematicas

F:py(Q) eR® — R* xR?

Op ox
XESOD(P)—>F(X):a—Xf( >:8_X(X)
oz dr O
oX oY oz
oy oy B
F-Fi- |2 2 % (©23)
0z 0z 0z

80X oY 9z

El gradiente de deformacion F' proporciona la evolucién del vector posicion relati-
vo dx en funcion de la correspondiente posicion relativa dX en el instante de referencia.
Este tensor presenta muchos inconvenientes: no es simétrico, esta definido en ambas con-
figuraciones e incorpora movimiento como sélido rigido. Por ello, se definen dos tensores
adicionales con parecido significado fisico y mas cémodos para operar: uno en la configu-
raciéon deformada y otro en la indeformada. Al primero se le denomina tensor de defor-
macion de Cauchy-Green por la derecha (C) y el segundo es el tensor de deformacion de
Cauchy-Green por la izquierda (b).

C : ¢o() — R? x R?; C=F"F (C.4)
b: () — R? x R?; b=FF"

Los valores propios de ambos tensores C' y b son los mismos y se les conocen como
el cuadrado de los alargamientos principales (A2, A2 y A\?). Ademds, estos tensores de
Cauchy-Green nos pueden servir para dada una determinada configuracién deformada en
un inistante ¢, determinar el mismo tensor en configuracién indeformada y viceversa. A
este proceso se denomina pull-back (C.6) y push-forward (C.7) respectivamente.

@i(b) = FTbF (C.6)
0 (C)=F TCF™! (C.7)

Por 1ltimo, nombrar otras dos magnitudes que también miden la deformacién:
tensor de Cauchy-Saint-Venant (E, definido en configuracién indeformada) y tensor de
Cauchy-Almansi (e, definido en configuraciéon deformada). La ventaja frente al tensor
gradiente de deformacién, es que a deformaciones nulas valen 0, lo cual es mas intuitivo.
Se relacionan con los demads tensores de la siguiente forma:

1 1, .
1 1 .
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C.2. Ecuaciones de equilibrio C. Mecanica de Medios Continuos

En pequenas deformaciones, ambos tensores coinciden entre si, denominandse ten-
sor de deformacion de Cauchy (€).

Todas las variables mencionadas, deben cumplir el principio bésico de conservacion
de materia en medios continuos, pudiéndose escribir de la siguiente forma:

Dm  D(pV) 0dp . o
Dt D o + div(pV') = 0; (C.10)

C.2. Ecuaciones de equilibrio

Vistas las variables cinematicas, se definen las fuerzas internas por unidad de su-
perficie que mantienen la cohesién del solido, impidiendo que se rompa: las tensiones. Al
trabajar en grandes desplazamientos, como en las deformaciones, se pueden definir varios
tensores dependiendo si realizamos el equilibrio en la configuracién deformada ( Tensor de
Cauchy, o), indeformada (Segundo tensor de Piola-Kirchhoff, S) o mixta (Primer tensor
de Piola-Kirchhoff o tension ingenieril, P). Los tres representan lo mismo, solo que en
perspectivas distintas:

S=S8; P=P;=J'FS o=o0,;=J"'FSF" (C.11)

De forma anéloga a la férmula de conservacién de masa (C.10), podemos obtener la
ecuacién de conservacién de momento cinético’ (C.12) asf como la ecuacién de conservacién
de la energia (C.13), considerando proceso isotermo sin flujos de calor:

divP + pX =0 (C.12)
D [1_, .
— —pV=dV + P:Fdv = TVdS + Xvav
Dt Qo 2 Qo 6N Q
N ~ S o ~ J w_/
E. cinética E. de deformacién F. super ficiales exteriores F. volumétricas exteriores
(C.13)

C.3. Ecuaciones de comportamiento

Una vez definidos por separado las deformaciones y las tensiones, el objetivo es
deducir una ley general que relacione a ambos. En los materiales elastico lineales esta
relacion es bien conocida (Ley de Hooke o ecuaciones de Lamé), pero la teoria hiperelastica
en grandes deformaciones es mucho mas compleja.

1Las ecuaciones de equilibrio se han planteado en configuracién mixta (P y F). Si se quisieran en
deformada serfa andlogo, pero con los respectivos tensores en deformada (o y d).
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C. Mecanica de Medios Continuos C.3. Ecuaciones de comportamiento

Un solido hipereldstico se caracteriza por la existencia una funcién escalar de las
deformaciones de cuyas derivadas resulta la tension. A esta funcién se le denomina fun-
cion densidad de energia de deformacion (¥). Su deduccion procede de la aplicacion de
la segunda ley de la termodindamica: la cantidad de entropia tiende a incrementarse en el
tiempo. Sin profundizar en la deduccidn, resultan estas férmulas? denominadas desigual-
dad de Clausius-Durham [12].

Dintzs:%—\i/(C):(%S—g—g>:C20 — 5222—21;], (C.14)
Dmt:P:F—\D(F):(P—g—F):CEO — P:g—F (C.15)

En ambos casos se deduce que una magnitud relacionada con la tensién resulta de la
derivada de la funcién densidad de energia. Sin embargo, que se cumpla la segunda ley de la
termodinamica no implica que esa funcién exista o sea la correcta, teniendo que cumplirse
una serie de condiciones fisicas fijas relacionadas con las tensiones y deformaciones:

Energia nula para deformacién nula: ¥(C =1) =0

Energfa infinita para deformacién infinita: ¥(C = 00) = oo

Tensién nula para deformacion nula: S(C=1) =0

Funcién convexa o policonvexa: ¥(C) > 0

La existencia de la funcién densidad de energia de deformacién, junto a la exigencia
de policonvexidad de la misma permitira garantizar la existencia de solucion del problema
de sélidos deformables [5]. Légicamente la funcién densidad de energia debe de cumplir
el axioma de objetividad (independencia de la referencia) o invariancia ante isometrias.
De esta forma, el modelo constitutivo del material serd invariante ante una rotacién o
traslacion del sistema de referencia espacial de la siguiente forma

U(X,C(X)) = V(X +c,C(X +0)) (C.16)

¥(X,C) - U(X,QCQ") (C.17)
donde ¢ es una traslacién y Q una rotacién finita (matriz ortogonal) arbitrarias.
C.3.1. Modelos hiperelasticos iso6tropos

Una simetria del material como en el caso usétropo y ortétropo implica la invariancia
de los tensores de comportamiento ante cambios de coordenadas asociados a la simetria.

2Misma férmula expresada de dos maneras equivalentes
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C.3. Ecuaciones de comportamiento C. Mecanica de Medios Continuos

Es posible demostrar también [6] que, para materiales hipereldsticos con simetrias, la
funcién densidad de energia de deformacién ha de depender solamente de los invariantes
de C o de los alargamientos principales.

I =trC =trb

1 1
L= 5((t7’C)2 —trC?) = 5((t7"b)2 — trb?) (C.18)
I3 = detC = detb

Para el caso de traccién uniforme, se tienen los siguientes invariantes:

Y,
A
X
o —
AX | P 7| Y
‘ "Ly
|
- P
X,x
Figura C.2: Ensayo uniaxial
T = )\1X
y =AY (C.19)
z = )\3Z
5 A 00 Moo 0
FI:Eng%L:: 0 X 0|; Cc=FF=[0 X2 o (C.20)
N0 0 0 0 A2
L =trC =)\ + X3+ )3
1
Iy = 5 ((trC)* — trC?) = MA; + A{XS + 50 (C.21)

I; = detC = A2A2\2

Existen diferentes modelos propuestos en la literatura, que se comentan seguida-
mente, y que pueden profundizarse en el texto de Ogden [19].
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C. Mecanica de Medios Continuos C.3. Ecuaciones de comportamiento

= Modelo de Ogden (1984): Uno de los modelos fenomenolégicos mas completos
para la simulacién de materiales incompresibles es el modelo por Ogden [18]. En él
se supone que la energia de deformacion es funcién de los alargamientos principales
A con i =1, 2, 3 donde se verifica que J = A\;\2A\3 = 1 de la siguiente manera

N
W= U0 Ao Ag) = O EEOG ST+ AS - 3) (C.22)
=1

Q;

Si se hace una comparacién con la teoria lineal puede obternerse una condicion de
consistencia

2 = Z,uiozi con wic; >0 (C.23)
—1

donde el parametro p es el médulo de cizalladura lineal G.

» Modelo de Valanis y Landel (1967): En este modelo [27] se supone que la
energia de deformacién W = W(A1, Ay, A\3) puede escribirse como la suma de tres
funciones separadas w;()\;) que dependen de los alargamientos principales. A esta
descomposicion aditiva de la energia se denomina hipdtesis de Valanis-Landel.

U =T(A, Ao, Ag) = Y @(\) (C.24)

Para esta hipdtesis, la funcién densidad de energia de Ogden se escribiria como en
la ecuacién anterior pero con

N
=3 e - (C.25)

(67
=1 t

» Modelo de Arruda-Boyce (1993): Este modelo es conocido como el modelo
de las ocho cadenas, ya que fue dearrollado partiendo de la representacion de un
volumen elemental con ocho muelles que surgian desde el centro del cubo hacia las
esquinas [3]. La funcién densidad de energia resulta ser

5
C; .

U=p) (L =3 (C.26)

=1 m

donde
1 1 11 19 519

Ci== (Ch=— (C3=—  (C4=—" (5= C.27
179 2790 571050 77000 > 673750 (C.27)
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C.3. Ecuaciones de comportamiento C. Mecanica de Medios Continuos

» Modelo de Mooney-Rivlin (1940): Este modelo es una particularizacién de
modelo de Ogden (Ecuacién C.22) [17] y resulta de tomar N =2, a1 =2y ag = —2.
Usando los invariantes I , I y con la restriccién de que I3 = A2A3\3 = 1 se puede

definir

U =CrA+ A+ —3) +Co(A\ 2+ 22+ 0%2=3) = C1(11 — 3) + Cy (I, —3) (C.28)

con las constantes C; = % y Cy = —%. Paralelamente a la Ecuacién C.23 se tiene
que el modulo de cizalladura 1 = p; — pe. El modelo clasico de Mooney-Rivlin
es el mas empleado para la descripcién de gomas con comportamieno isétropo y

estd obtenido en base a argumentos matemaéticos relacionados con la simetria.

= Modelo Neo-Hookeano: El modelo Neo-Hookeano es probablemente el mas sen-
cillo de todos y se obtiene de nuevo de la particularizacion del modelo de Ogden
con N =1y a; = 2. Usando tnicamente el primer invariante /; se tiene

U=C (AN + A+ —3)=Ci (I - 3) (C.29)
con la constnte Cy = & y el médulo de cizalladura p = p. Esta funcién densidad
de energia de deformacién incluye un tnico parametro y proporciona un modelo
matmatico simple para un comportamiento no lineal.

C.3.2. Modelos hiperelasticos anisétropos

Existen dos formas de definir la dependencia direccional en la deformacion: restrin-
gir el camino en el cual la energia depende de la deformacién [11] o introducir un vector
que represente de forma explicita la direccion preferente en el material. En este caso la
energia de deformacion puede ser expresada como una funcién de los componentes de la
deformacion lagrangiana en un sistema de coordenadas alineado con la direccién de las
fibras. Dicha direccién local de las fibras se define mediante un vector unitario a® en la
configuracion indeformada.

Cuando un sélido se deforma, el vector a’(X) también se deforma con él, defor-
macién afin, y la nueva direccién de las fibras se describe mediante a(p, X). Las fibras
también pueden sufrir un alargamiento (A) que puede ser determinado en términos del

gradiente de deformacion y de la direccion de las fibras en la configuracién indeformada
(Figura C.3):
\a=F-a’ (C.30)

dado que a es un vector unitario

Ma-a=XN=a" F'F-a"=a’-C-a° (C.31)

Partiendo de la definicién anterior, un material se dice transversalmente isétropo
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time ¢

Agy = Fag
[Aag| = A
timet =0

ag] =1

Figura C.3: Alargamiento del vector unidireccional de las fibras. Fuente: [21].

si se cumplen las simetrias expresadas en la Ecuacién C.17, pero en este caso @ no es una
matriz de rotacién cualquiera sino que debe verificar que

cos ()
Q-a’=a’= | sin() (C.32)
0

La dependencia de la energia de deformacién de a® puede ser introducida de forma
explicita en ¥

U(X,C,a’) = ¥(X,QCQ",Q a’®a’ Q) (C.33)
con ¥ una funcién isétropa de C y a’ ® a®.

Spencer expresa la funcion densidad de energia de deformacién ¥ mediante los
invariantes del tensor de deformacién de Cauchy-Green por la derecha (I, Iy y I3) los
cuales definen el comportamieno isétropo, y los pseudo-invariantes I4, I5 que introducen
la anisotropia de las fibras [12].

L =trC =)\ + )3+ )3
1
I = §((trC)2 —trC?) = M3+ NI\3 + A3\
I3 = detC = A2A2\2 (C.34)
Iy =a"- C-a’ = \cos*(0) + \5sin’(0)
Iy =a’- C?-a’ = Xcos?(0) + \ysin(0)

de esta forma se puede expresar la funcién densidad de energia de deformacién como:

U(X,C,a’) = V(X,[,(C), L(C),I5(C), I,(C,a"), I;(C, a’)) (C.35)
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De forma andloga, pueden existir dos direcciones de anisotropia correspondientes
a dos vectores a y a9, por lo que los nuevos invariantes serdn

_ 0 0
[4—011'0'011

Iy=a? C* a°
Iy =a)-C-a) (C.36)
I; =al-C*-al

_ 40 0
IB—al'C'a/2

Es posible definir la interaccion entre las dos direcciones de fibras, sin embargo
este efecto no se suele considerar (Ig). Debido al gran nimero de pardametros e invarian-
tes involucrados, se suelen llevar a cabo varias simplificaciones que permitan disminuir
el tiempo de calculo computacional. De hecho, los invariantes I, I pueden reproducir
correctamente los efectos de la anisotropia del material aun despreciando la deformacion
transversal de las fibras (invariantes I, I7).

Teniendo en cuenta los expuesto anteriormente, la funcién densidad de energia que
gobierna el comportamiento elastico se puede escribir en funcién de los invariantes I, I e
Is. En la literatura se pueden encontrar varios modelos para tejidos biolégicos anisétropos,
de los cuales en el presente proyecto se utilizaran los dos siguientes.

» Modelo de Holzapfel-Gasser-Ogden (2000): Uno de los modelos més utilizados
fue propuesto por Holzapfel [14], el cual considera las dos fibras de anisotropia de
forma independiente.

k k
U= U(C,al, af) = pu(ly — ) + o (e 1) 4 T (kU ) (Cu37)
2k‘2 2k4
donde el término neo-Hookeano estd asociado con el material base con constante
> 0, los parametros k1 > 0 y k3 > 0 tienen dimensiones de tension y ks > 0y
ks > 0 son adimensionales.

» Modelo de Gasser (2006): Posteriormente, Gasser et al. [9] propuso una modi-
ficacion del anterior modelo donde se incuye el pardmetro x € (0,1/3), relacionado
con la dispersiéon de las fibras alrededor de las direcciones principales determinadas
por I, e Is. Se puede comprobar que £ = 1/3 indica que el material es isétropo
(dispersién total de las fibras) mientras que x = 0 indica nula dispersion de las

fibras.

ﬂ(ekg[l-ﬁfl—i-(l—&{)hl—l]g _1)4_& (ek4[/€11+(1—3n)16—1]2 _1)

U =U(C,al,al) = pu(I,—3)+ o e

(C.38

)
Ademéds, este modelo considera que la pareja de fibras son iguales (k1 = k3 y ko = ky)
y que las direcciones de anisotropia estan orientadas de forma helicoidal a 46°
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respecto a la direccién longitudinal (ver Figura C.4). Por tanto, 6; = 0y 0y = —0,
sustituyendo en las ecuaciones C.34 de los invariantes en tracciéon uniaxial resulta

Iy = Njcos®(0) + A3sin®(0)

C.39
Is = Njcos*(—0) + \3sin*(—0) ( )

v

Figura C.4: Esquema de la disposicion helicoidal de las fibras en un tejido bioldgico. Fuente:

[7].
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Anexo D

Formulaciones de elementos
finitos

A continuacién se exponen los conceptos referidos al andlisis de elementos finitos
expuestos en el Capitulo 3.2, pero que por razones de extensién no se han podido explicar
de forma plena. Se supondran conocimientos basicos del método de elementos finitos. Para
mas informacién al respecto, consultar [31, 32, 33].

El problema biaxial simulado en el Capitulo 3.2 puede ser considerado cuasiestdtico,
puesto que es un proceso de punzonado lento el cual se puede subdividir en incrementos
diferenciales de tiempo en los que el sistema esta en equilibrio constantemente. Durante
la rotura, la cuasiestaticidad se pierde puesto que la probeta rota tiende a recuperar la
posicion inicial a alta velocidad.

D.1. Formulaciones de Elementos Finitos

Las ecuaciones de equilibrio discretizadas para un modelo de elementos finitos se
puede resumir de la siguiente forma

P-I=M- i (D.1)

donde P es el vector de fuerzas externas, I es el vector de fuerzas internas (tensién entre
los elementos) y M - 4 es el vector de fuerza debido a la inercia del material.

A la hora de la eleccién del método de resolucion de esta ecuacion mediante ele-
mentos finitos, se pueden considerar dos opciones: formulacion implicita (Standard) o
explicita (Explicit). Cada una parte de hipdtesis distintas y utilizan métodos numéricos
distintos. A continuacion se muestran las diferencias entre ambas, asi como sus ventajas
e inconvenientes.
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D.1.1. Meétodo Implicito

La formulacion implicita utiliza el algoritmo de Newton para resolver equilibrio
estatico (M -@ = 0). Asumiendo que es conocida la solucién de la iteracién i (u;), la serie
de Taylor de la estimacién siguiente es

oP 01

Despreciando los términos de mayor 6rden de la serie, la ecuacion quedaria
ol OP
P—I—(———)c—K'c (D.3)

donde K es la matriz de rigidez y c es el factor corrector de la iteracion i.

Cada incremento (Awu) se actualiza de la siguiente forma

AU¢+1 = A’U,Z +c; (D4)

En cada incremento se repiten las iteraciones necesarias hasta que se produce la
convergencia. Ello conlleva que las restricciones de contacto se satisfacen para cada nodo,
asi como el equilibrio de fuerzas y momentos. También las correciones en desplazamiento
(¢) deben ser pequenas comparadas con el incremento de desplazamiento.

Por defecto, Abaqus/Standard utiliza incrementos autométicos. Esto quiere decir
que la convergencia es controlada para determinar el correcto incremento de tiempo (car-
ga). De esta forma, si la convergencia es pobre el incremento de tiempo se disminuye y
viceversa. A continuacién se enumeran las caracteristicas mas importantes del analisis

Standard.

El calculo comienza con una aproximacién inicial e itera hasta la convergencia.

= Muy preciso.

Incrementos de tiempo grandes.

Altos requerimientos de memoria.

Adecuado para problemas estaticos o cuasiestaticos con contactos simples.
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D.1.2. Método Explicito

La formulacion explicita utiliza el algoritmo de FEuler o de diferencias centrales
para resolver el equilibrio dindmico al instante de tiempo actual (t):

(P—-1I)|;=M -1 (D.5)

En este procedimiento, se utiliza una matriz de masas diagonal para gestionar de
forma eficiente el tiempo de cédlculo. Por ello, las aceleraciones nodales se puede calcular
facilmente:

i, = M Y(P —1), (D.6)

Las velocidades y desplazamientos se actualizan de la siguiente forma

. . AtH_At + Att ..
Uppae = Uy s+ (# Uy

Uprar = Wy + Abpyartey, o

(D.7)

El método de diferencias centrales es sélo condicionalmente estable, es decir, si el
incremento de tiempo es grande la solucién se inestabiliza rapidamente. Por ello, se debe
estimar un incremento de tiempo estable, dado por la formula

At = min (i—d) (D.8)

donde L. es la longitud caracteristica del elemento y ¢, es la velocidad de propagaciéon de

ondas, que para materiales lineales es
A+2
Y (D.9)

donde A y p son las constantes de Lamé (E, médulo de Young) y p la densidad del material.
A continuacién se enumeran las caracterlstlcas méas importantes del analisis Explicit.

El célculo resuelve incrementos de tiempo sin iteraciones.

No utiliza chequeo de convergencia.

Incrementos de tiempo muy pequenos.

Bajos requerimientos de memoria.

Adecuado para problemas dinamicos o cuasiestaticos con contactos complejos y
grandes deformaciones.

69
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D.2. Modelizacion de rotura

Con el fin de simular situaciones en las que la integridad y la fuerza entre dos
fases sea de interés, Abaqus dispone de los denominados elementos cohesivos. Son utiles
para modelar adhesivos, interfases unidas, juntas y fractura. La respuesta constitutiva de
dichos elementos depende de la aplicacion especifica que se le quiera dar y esta basado
en aproximaciones sobre la deformacion y la tensién que son apropiadas para el area de
aplicacion. La naturaleza de cada respuesta mecanica se pueden clasificar en tres:

= Modelo Continuo: Se utiliza para modelar juntas adhesivas donde dos cuerpos
estdn unidos a través de un material pegajoso con un espesor finito. Las propiedades
macroscépicas del adhesivo, como la rigidez, se pueden medir experimentalmente e
incluirlas en la simulacién. Los elementos cohesivos modelan la carga inicial, el inicio
del dano y su propagacion tras la fractura.

» Modelo de Juntas: Modela juntas entre sélidos y/o parches adhesivos sin restric-
cion lateral. Se puede definir el comportamiento de juntas definiendo propiedades
macroscopicas del material, pero no hay definido un comportamiento especifico. Se
diferencian de los elementos de junta ya que los elementos cohesivos son no-lineales,
se puede realizar andlisis dindmico y estan disponibles tanto en Standard como en
Explicit. Se asume que las juntas estan sujetas a un estado de tension uniaxial.

——— —_ Carcasas

! T
P
|\ ”21 .'II Junta ,_____) l — - ; _§ —— Junta
II'N I|'III|'II |II K E d % ‘.g___, Tuercas
|
| | > Parches de
HH Adhesivo

(a) (b)

Figura D.1: Test de separacion con adhesivo de espesor finito (a) y aplicacion en probema
con juntas de apriete (b). Fuente: [25]

» Ley de traccidon-separacion: Se utiliza para modelizar interfases adhesivas con
espesor despreciable. En este caso, las propiedades del adhesivo no son relevantes y
se deben aplicar conceptos derivados de la mecanica de la fractura. El modelo sirve
para determinar la posicién donde se inicia una grieta y su evolucién. Sin embargo,
la grieta esta restringida a la zona donde estan definidos los elementos cohesivos,
impidiendo que se propague al material contiguo.
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Existe, entre otras, una opcién alternativa mucho mas sencilla de definir denomina-
das Superficies cohesivas. Se utiliza para interfases unidas cuando el espesor del adhesivo
es despreciable. Por tanto, su comportamiento es muy similar al de los elementos cohesivos
por ley de traccion-separacion, aunque computacionalmente mas sencillo y eficiente. Sin
embargo, se debe definir la superficie especifica donde se inicia la grieta. Este modelo es
el que se empleaen el presente proyecto.

Es importante distinguir que las superficies cohesivas son propiedades de interac-
cion y no propiedades de material. Los conceptos de tension y desplazamientos propios
de los elementos cohesivos se reinterpretan como separaciones de contacto y fuerzas cohe-
sivas actuando en direccién normal (o) y tangencial (75, 1) a la superficie de contacto. A
la hora de definir los parametros de la zuperficie cohesiva, se deben distinguir tres fases
durante la rotura:

= Comportamiento elastico: Antes de iniciarse la grieta, existe una fase eldstica
sin dano. Se representa mediante una matriz constitutiva que relaciona las tensio-
nes normal y tangenciales con sus respectivos desplazamientos dentro de la zona
cohesiva.

o Knn Kns Knt 571
t=|n|=|Kw K. Kgul|]|6|=Kb6 (D.10)
Tt Ky K Ky O

Se puede llevar a cabo una simplificacién, suponiendo que las separaciones no estén
acopladas, por lo que sélo hace falta definir los términos de la diagonal (K, K
y Ki). Ademds, como se demuestra en [26], los tejidos bioldgicos fibrosos muestran
fractura de Modo-I, por lo que sélo existen esfuerzos tensionales en direccién normal
a la grieta (Kg = Ky = 0).

= Iniciacién del dano: En esta fase se produce el inicio de la degradacién del com-
portamiento cohesivo en el punto de contacto. Dicho proceso comienza cuando las
tensiones o separaciones de contacto satisfacen un determinado criterio definido por
el usuario. Un valor de 1 o mas indica que la condicién de inicio se ha cumplido. A
continuacion se exponen diferentes criterios de inicio de rotura:

mdm( L ):1 (D.11)

Oméz Tsméx Ts,mdx

o 2 T 2 T 2
( >+( )+( t>=1 (D.12)
Omax Ts,max Ts,max

= Propagacion del dano: La ley de evolucion de dano describe el ritmo de degrada-
cién de la rigidez cohesiva una vez cumplido el criterio de inicio de fallo. Se define
una variable escalar D que representa el dano total en el punto de contacto, valiendo
0 inicialmente y creciendo hasta 1 si la carga contintia después de la iniciacion del
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dano. Las tensiones de contacto son afectadas por el dafio de la siguiente forma

(D.13)

donde ¢, 7/ y 7/ son los componentes de tension de contacto predichos por la ley
elastica de traccién-separacién sin dano. Existen dos componentes para la definicién
de la evolucién de dano: la energia disipada por la fractura (Gg) y la especificacion
de la naturaleza de la propagacién de dano (D) explicada anteriormente, que puede
ser tanto lineal como exponencial.

En la Figura D.2 se representan las tres fases expuestas anteriormente. Se ha
supuesto una evolucion de dano lineal, puesto que es una formulacién mas sencilla y logra
simular correctamente la rotura. Para su completa definicién se ha de proporcionar a
Abaqus la pendiente antes del fallo (K), tensién méxima (0,,4,) y energia de fractura

(Go).

Ombr fpom===

K

do 0,

Figura D.2: Pardmetros de rotura para una ley de traccion-separacion.

Del tridangulo de la fractura se pueden deducir las separaciones criticas de fallo
(6o) v de rotura (6,) formuladas en las Ecuaciones D.14. Ademads, se pueden obtener dos
condiciones obvias para mantener el significado fisico: oy < 4, y Gog > 0.

by = 7t

2C (D.14)
o, =

Omazx
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