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Resumen

Determinación numérico-experimental de las
propiedades mecánicas de vena cava mediante

el método de los elementos finitos

La Ingenieŕıa Biomédica, o Bioingenieŕıa, es el resultado de la aplicación de los
principios y técnicas de la ingenieŕıa al campo de la medicina. Se dedica fundamentalmente
al diseño y construcción de productos y tecnoloǵıas sanitarias: equipos médicos, prótesis,
dispositivos médicos, dispositivos de diagnóstico (imagenoloǵıa médica) y de terapia, etc.
Dichos aparatos tienen un claro beneficio en la prevención y el tratamiento de varias
enfermedades que aquejan a los seres humanos.

En el presente trabajo se aplicarán conocimientos ingenieriles, tales como el método
de los elementos finitos o modelos matemáticos de materiales hiperelásticos, para hallar
las propiedades elásticas y de rotura de vena cava. Los aparatos biomédicos actuales para
sistema cardiovascular, como stents o filtros anti-trombo, están en continuo contacto con el
vaso sangúıneo. Por tanto, es de vital importancia conocer sus propiedades mecánicas para
llevar a cabo un correcto dimensionamiento de los dispositivos y minimizar el daño sufrido
por el organismo. El proyecto se enmarca dentro de la ĺınea de investigación de modelado
de sistema cardiovascular del Instituto Universitario de Investigación en Ingenieŕıa de
Aragón (I3A) mediante una beca de colaboración del Ministerio de Educación y Ciencia
de 12 meses de duración.

En la parte experimental, han sido extráıdas diversas muestras de vena cava de
oveja para realizar ensayos mecánicos (uniaxiales y biaxiales) en laboratorio junto con
el director del proyecto. Se han llevado a cabo mediciones geométricas y fotograf́ıas que
ayuden al manejo de los datos recogidos por los equipos.

Posteriormente, los datos experimentales se han post-procesado eliminando datos
indeseados antes y después del ensayo (ruido) y calculando las curvas medias. Las gráficas
del ensayo uniaxial sirven para ajustar mediante modelos teóricos el comportamiento
elástico de la vena cava, el cual resulta ser hiperelástico anisótropo.

Dichas propiedades son datos de entrada en el modelo de elementos finitos que
reproduce el ensayo de identación biaxial y, mediante sucesivos cálculos, se han determi-
nado las propiedades de las superficies cohesivos definidas en el modelo que reproduzcan
los ensayos experimentales y que permiten determinar la enerǵıa de rotura.
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Caṕıtulo 1

Introducción

1.1. Objetivo y alcance

El desarrollo del presente proyecto se centra en la determinación de las propiedades
mecánicas de la vena cava de oveja, tanto elásticas como de rotura, para su aplicación
posterior en otros trabajos de investigación enfocados en el diseño de dispositivos médicos
para, entre otras enfermedades, la trombosis pulmonar (TEP).

Uno de los mayores problemas de estos dispositivos es que en algunas ocasiones
pueden traspasar la pared del vaso, por tanto la determinación de la fuerza y enerǵıa
necesaria para penetrar la vena cava es fundamental para mejorar el diseño de dichos
dispositivos. Los objetivos básicos del proyecto son los siguientes:

Ensayos experimentales del tejido vascular: Recogida de datos realizando
pruebas de tracción uniaxial y biaxial en laboratorio y post-procesado de dicha
información.

Caracterización de las propiedades elásticas: Ajuste de las curvas experi-
mentales mediante modelos constitutivos teóricos y simulación por computador del
ensayo biaxial de laboratorio.

Caracterización de las propiedades de rotura: Realización de simulaciones
basadas en superficies cohesivas para determinar la curva de rotura de las probetas
y poder aproximar numéricamente los parámetros de rotura.

El trabajo se enmarca dentro de la ĺınea de investigación de modelado de sistema
cardiovascular del Instituto Universitario de Investigación en Ingenieŕıa de Aragón (I3A).
Ha sido financiado por el Ministerio de Educación, Cultura y Deporte por medio de una
Beca de Colaboración de 12 meses de duración en el Departamento de Ingenieŕıa Mecánica
de la Universidad de Zaragoza.
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1.2. Motivación 1. Introducción

1.2. Motivación

Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en
los páıses desarrollados. En la Unión Europea, además, representan la principal causa de
pérdida de años de vida por muerte prematura. Por tanto, cualquier esfuerzo para mejorar
su diagnóstico y tratamiento tendrá un alto impacto en la sociedad.

Los ataques al corazón y los accidentes vasculares cerebrales (AVC) suelen ser
fenómenos agudos que se deben sobre todo a obstrucciones que impiden que la sangre
fluya hacia el corazón o el cerebro. La causa más frecuente es la formación de depósitos de
grasa en las paredes de los vasos sangúıneos que irrigan el corazón o el cerebro, denomi-
nado arteroesclerosis. El tratamiento general para este tipo de enfermedad es puramente
preventivo: hábitos saludables o fármacos inhibidores de la formación de dichos estre-
chamientos del vaso. La bioingenieŕıa ha permitido crear dispositivos metálicos activos
con forma de muelle, denominados stents, que ayudan a corregir el estrechamiento de las
arterias.

(a) (b)

Figura 1.1: Ejemplos de dispositivos médicos para ECV: filtro anti-trombo de vena cava (a) y
stent para arterias coronarias (b). Fuente: [7].

Los AVC también pueden deberse a coágulos de sangre (trombos), dando lugar a
trombosis venosa profunda. El tratamiento general es la administración de anti-coagulantes
o trombolisis mediante radiación. Para aquellos pacientes con una contraindicación abso-
luta del tratamiento anti-coagulante, se puede recurrir al uso de filtro de vena cava. Dicho
dispositivo metálico se fija en el vaso mediante varias patas con ganchos en los extremos,
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1. Introducción 1.3. Metodoloǵıa

de tal forma que los posibles trombos y coágulos quedan atrapados para su posterior
extracción quirúrgica o absorción natural.

Un conocimiento detallado de las propiedades biomecánicas del tejido cardiovas-
cular es necesario para poder entender los cambios que éstos sufren debido a edad, en-
fermedades como la aterosclerosis e hipertensión o por alteraciones externas como daño
endotelial durante una intervención quirúrgica. Dentro del dominio fisiológico, los mode-
los constitutivos intentan capturar el comportamiento visco(elástico) de los tejidos car-
diovasculares, incorporando parámetros relacionados con la estructura del mismo en su
definición matemática. Uno de los retos más importantes es el identificar aquellos con un
mayor significado f́ısico como, por ejemplo, la incorporación de la orientación de fibras de
colágeno en las paredes de los vasos.

Debe señalarse también, que durante algunos procedimientos como la colocación
de filtros anti-trombo, las cargas a las cuales se ve sometido el tejido fisiológico están muy
por encima de las correspondientes a condiciones fisiológicas, por lo que las simulaciones
numéricas debeŕıan contemplar teoŕıas de daño y (visco)plasticidad entre otras.

En la actualidad, son muchos los modelos computacionales que han estudiado estos
fenómenos sobre arterias [2, 4, 10, 13, 24]. Sin embargo, pocos autores han estudiado su
comportamiento sobre venas incorporando las propiedades de anisotroṕıa y grandes defor-
maciones que caracterizan a dicho tejido [1]. Es por ello que se hace necesario un esfuerzo
importante en el desarrollo de modelos complejos anatómicos vasculares (anisotroṕıa, vis-
coelasticidad y daño) si se desea simular lo más realista posible el comportamiento del
sistema vascular sano y patológico y los efectos que intervenciones endovasculares tienen
sobre él.

1.3. Metodoloǵıa

Para la obtención de las propiedades mecánicas de vena cava se han utilizado
ensayos de penetración sobre muestras deformadas equibiaxialmente (equipo biaxial) y
ensayos uniaxiales. Dichos ensayos se han llevado a cabo en el laboratorio del grupo de
Mecánica Aplicada y Bioingenieŕıa (AMB) del Instituto Universitario de Investigación en
Ingenieŕıa de Aragón (I3A).

A partir de los ensayos uniaxiales, cuya solución elástica anaĺıtica es conocida, se
determinan las propiedades elásticas. Los ajustes aśı como el post-procesado de datos
experimentales se ha llevado a cabo mediante el programa Matlab 2013b. La medida de
las longitudes a través de las fotograf́ıas de las muestras se han realizado mediante el
programa ImageJ.

Por último, utilizando un modelo de elementos finitos con superficies cohesivas en
el software Abaqus se determinarán las propiedades de rotura del material. Los cálculos
se han llevado a cabo en el cluster de computación HERMES del I3A.
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Caṕıtulo 2

Método experimental

En este apartado se van a exponer los procedimientos utilizados en el laboratorio
para ensayar los tejidos de vena cava y obtener datos para su posterior post-procesado y
análisis.

Las muestras son de oveja, por la similitud anatómica entre su sistema venoso
y el del ser humano, y han sido proporcionadas por Unidad de Técnicas Mı́nimamente
Invasivas de la Facultad de Veterinaria de la Universidad de Zaragoza. El protocolo ex-
perimental ha sido aprobado por el Comité de Ética de la Universidad de Zaragoza. Los
sacrificios se debieron a causas ajenas al proyecto.

2.1. Extracción y preparación de las probetas

Antes de ser extráıda la muestra de vena cava del espécimen, se atan dos cordeles
separados unos 14 cm y se fotograf́ıa con una regla patrón. Los cordeles sirven para saber
la longitud inicial de la muestra in-situ antes de ser extráıda. Posteriormente se procede
a su corte y extracción. Todas las muestras se introducen en botes de suero fisiológico y
son enviadas al laboratorio, donde se guardan en un frigoŕıficos de ultracongelación a -80
oC.

El siguiente paso es adecuar la muestra para los ensayos biaxial y uniaxial. Se debe
descongelar progresivamente, limpiar con suero fisiológico y eliminar cualquier resto de
grasa o imperfección que pueda alterar los ensayos. A continuación, se deben realizar unas
pruebas previas a los ensayos de tracción y penetración. Estas pruebas estimarán el estado
tensional de una vena in-situ, tanto en dirección longitudinal como circunferencial.

2.1.1. Ensayo de pretensión axial

En este ensayo se determina el alargamiento longitudinal para simular la tensión
longitudinal a la que estaba sometida la vena en el interior del organismo. Se mide la
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2.1. Extracción y preparación de las probetas 2. Método experimental

longitud entre los cordeles, que será menor que la longitud medida al principio ya que
se ha destensado (Figura 2.1). La longitud inicial se calcula a través de las fotograf́ıas
realizadas cuando fue extráıda la muestra. Los resultados de dicho ensayo se exponen en
el Anexo B.1.

(a) (b)

Figura 2.1: Vena con cordeles atados in-situ (izquierda) y vena destensada ex-situ (derecha).

2.1.2. Ensayo de ángulo de apertura

Este ensayo tiene como objetivo calcular el estiramiento que se debe aplicar para
simular la pretensión circunferencial a la que está sometido el vaso incluso en ausencia
de presión sangúınea. Se corta transversalmente y fotograf́ıa un anillo de pequeño espesor
en las zonas distal de la muestra (Figura 2.2). Se corta radialmente y se deja relajar en
una placa de Petri con suero. Pasados 30 minutos se mide la longitud final del anillo,
que será menor que la anteriormente medida debido a la tensión circunferencial a la que
estaba sometida. Los resultados de dicho ensayo se exponen en el Anexo B.1.

(a) (b)

Figura 2.2: Ensayo de ángulo de apertura: anillo cerrado (a) y anillo abierto (b).
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2. Método experimental 2.1. Extracción y preparación de las probetas

2.1.3. Probetas

El siguiente paso es cortar longitudinalmente la vena, extenderla y recortar probe-
tas con las medidas normalizadas y acordes a las máquinas de cada ensayo:

Ensayo Biaxial: Probeta cuadrada de 35 mm de lado, con las direcciones longi-
tudinal y circunferencial alineadas con los lados del cuadrado. Para este corte se
usa un molde metálico (punch). Además, se marca con rotulador un extremo de la
probeta para no confundir la orientación circunferencial.

Ensayo Uniaxial: Probetas en forma de hueso de perro, de unos 15 mm de longitud,
cortadas con bistuŕı. El largo de la probeta debe ser al menos unas 5 veces el ancho
para asegurar que el centro de la probeta no se ve influenciado por las distorsiones
locales de las mordazas y garantizar aśı la hipótesis de tracción uniaxial.

(a) (b)

Figura 2.3: Probetas para ensayo biaxial (a) y uniaxial (b).

Es importante tener en cuenta los dos extremos de la muestra: distal y proximal.
La zona proximal es la más cercana al corazón y a la bifurcación renal, por lo tanto el
vaso tiene menor espesor que la zona distal, más alejada del corazón. La probeta cuadrada
se extrae lo más centradamente posible. Las probetas de hueso de perro serán recortadas
después a lo largo de las dos direcciones, en general dos probetas circunferenciales y dos
longitudinales, procurando tener una de cada lado (distal y proximal) para luego hacer la
media de las mediciones.

El último paso antes de ensayar, es medir las longitudes con pie de rey y los
espesores con micrómetro de la probeta cuadrada en tres zonas distintas y calcular las
medias, para luego usarlo en el post-procesado de los datos.
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2.2. Ensayo uniaxial 2. Método experimental

2.2. Ensayo uniaxial

2.2.1. Metodoloǵıa

El ensayo pretende traccionar las probetas de hueso de perro hasta rotura, para
determinar su curva de comportamiento a tracción. Para ello se utiliza una máquina
Instron Microtester 5548 con célula de carga de 50 N. Los datos servirán para llevar a
cabo los ajustes de las curvas y determinar las constantes elásticas del material.

(a) (b)

Figura 2.4: Probeta de hueso de perro antes (a) y después (b) de rotura durante el ensayo
uniaxial.

La probeta se sujeta con las dos mordazas y se introduce un humificador para
mantener condiciones de humedad adecuadas para la muestra. Se realizarán 3 ciclos a
3 tensiones distintas (30, 60 y 140 kPa) tras los cuales se tracciona hasta rotura. Este
método se denomina preciclado o precondicionado de las muestras, mediante el cual se
consigue que las fibras se alineen en la dirección deseada y se eliminan los efectos viscosos
debidos a la histéresis.

Según el tamaño de la muestra se han realizado entre 2 y 4 ensayos uniaxiales en
ambas direcciones. La rigidez de las probetas de la zona distal será mayor que las de la
zona proximal, por lo que se seleccionarán equitativamente muestras de cada lado con el
fin de poder calcular resultados medios.

Se registra la fuerza uniaxial que debe imponer la máquina para traccionar la
muestra y el desplazamiento de las mordazas. La medida de la deformación se realiza
mediante un videoextensiómetro láser Instron 5848.
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2. Método experimental 2.3. Ensayo biaxial

2.2.2. Resultados

A continuación se muestran las mediciones de la muestra II, representando la di-
rección circunferencial en ĺınea continua y la longitudinal en discontinua. Las gráficas
completas de las 6 muestras están representadas en el Anexo B.
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Figura 2.5: Tres ciclos de histéresis a tres niveles de tensión y tracción hasta rotura (a) y
detalle de los ciclos de histéresis en las probetas de dirección circunferencial (b).

Figura 2.5 (a): Curvas de tracción. Se puede comprobar la mayor rigidez de las dos
muestras circunferenciales frente a las longitudinales debido a las fibras de colágeno.
Las probetas cicunferenciales además tienen una menor tensión de rotura frente a
las longitudinales.

Figura 2.5 (b): Detalle de los ciclos de histéresis anteriores a la rotura final. Dichos
ciclos se realizan para orientar las fibras paralelas al eje de a probeta, si se desea
ensayar la dirección circunferencial, o perpendiculares si se quiere la longitudinal,
además de evitar los efectos viscosos. El cambio de comportamiento observado ante
las cargas ćıclicas a varias tensiones se debe al denominado efecto Mullins, y se puede
descontar realizando la envolvente de dichos ciclos, como se detalla en el art́ıculo
[1].

2.3. Ensayo biaxial

2.3.1. Metodoloǵıa

El ensayo tiene por objetivo determinar la curva de comportamiento del tejido ante
la penetración de un identador metálico hasta rotura. La probeta se encuentra preten-
sionada, para reproducir de manera aproximada las condiciones en las que se encontraŕıa
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2.3. Ensayo biaxial 2. Método experimental

dentro del organismo. Este análisis está basado en los ensayos bixiales desarrollados en
tejido de miocardio por Gasser [26]. Se utiliza una máquina biaxial para el estiramiento
de las cavas y un equipo Instron con célula de carga de 5 N y un penetrador de 0.35 mm
de diámetro para la identación.

La probeta cuadrada se sujeta con unas mordazas y se pretensa imponiendo un
estiramiento equivalente en las direcciones longitudinal (λl) y circunferencial (λc) deter-
minados previamente en los ensayos de pretensión axial y ángulo de apertura. Para evitar
que se reseque y rigidice la muestra, se añade cierta humedad al ensayo mediante un
humidificador.

(a) (b)

Figura 2.6: Probeta cuadrada durante el ensayo biaxial (a) y pretensión ejercida por las
mordazas en direcciones longitudinal (λl) y circunferencial (λc) en la bajada del punzón (b).

Fuente: [26].

El identador penetra en la muestra a un ritmo de 5 mm/min y las mordazas
registran el valor de la fuerza que deben aplicar para mantener el desplazamiento inicial
impuesto con un tiempo de muestreo de 1 segundo. De esta forma, se pueden obtener
los datos de la tensión biaxial longitudinal y circunferencial, los cuales no son iguales
al tratarse de un material anisótropo. Al mismo tiempo, el identador registra la fuerza
de reacción de la probeta sobre el identador (fuerza de punzón) y tiene un tiempo de
muestreo de 0.01 segundos.

Se realizan un total de 25 identaciones dispuestas de forma uniforme alrededor del
centro de la probeta separadas 4 mm entre śı, para que el agujero generado en una rotura
no influya en el siguiente (Figura B.9).

2.3.2. Resultados

A continuación se muestran las mediciones de la muestra II, representando la di-
rección circunferencial en ĺınea continua y la longitudinal en discontinua. Las gráficas
completas de las 6 muestras están representadas en el Anexo B.
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Figura 2.7: Tensión biaxial longitudinal y circunferencial frente al desplazamiento del punzón
(a) y fuerza de punzón frente a fuerza de las mordazas (b).

Figura 2.7 (a): Tensión longitudinal y circunferencial frente al desplazamiento del
punzón. A una velocidad constante de penetración las gráficas son claramente no-
lineales y se asemejan a la forma de una exponencial. A su vez se puede comprobar
la marcada anisotroṕıa del material, puesto que las mediciones en las dos direcciones
no coinciden.

Figura 2.7 (b): Fuerza de la biaxial frente a Fuerza del punzón. Existe una corre-
lación lineal entre ambas, lo cual tiene sentido, ya que al bajar el punzón de forma
constante, también lo hace la fuerza de las mordazas.
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Figura 2.8: Fuerza del punzón frente al desplazamiento del punzón (a) y fuerza de punzón
máxima soportada antes de rotura (b).
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2.3. Ensayo biaxial 2. Método experimental

Figura 2.8 (a): Fuerza del punzón frente al desplazamiento del punzón. Conforme
avanza el punzón, la fuerza necesaria para mantener la pretensión es cada vez mayor.
Se confirma la no-linealidad del conjunto del ensayo, ya que su forma es análoga a
la de una exponencial.

Figura 2.8 (b): Gráfico de puntos con la fuerza de rotura. Hay una dispersión con-
siderable de los puntos de ruptura. Sin embargo, la nube de puntos tiene un carácter
lineal ascendente, lo cual indica que en los puntos que resisten mayor desplazamiento
de punzón soportan mayor fuerza y viceversa.
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Caṕıtulo 3

Determinación de las constantes
mecánicas del material

En el siguiente caṕıtulo se presenta la metodoloǵıa y resultados de los ajustes de
las curvas obtenidas a partir de las mediciones del ensayo uniaxial, aśı como el modelo y
simulaciones de elementos finitos. En el Anexo B se reflejan todos los resultados que, por
razones de extensión, no han podido ser abordados dentro de la memoria principal.

3.1. Propiedades elásticas

Como puede verse en la Figura 2.5, los tejidos venosos se caracterizan por tener un
comportamiento no-lineal con altos valores de deformación, siendo al principio casi lineal
(isótropo) y volviéndose más ŕıgido a altas deformaciones, mostrando carácter anisótropo.
Además, las curvas de carga y descarga no coinciden (histéresis), lo cual revela una res-
puesta inelástica del material. Dicho comportamiento elástico puede modelarse de forma
apropiada mediante un modelo de material denominado hiperelástico anisótropo con dos
familias de fibras.

3.1.1. Metodoloǵıa

Existen muchos posibles modelos hiperelásticos fibrados para modelar el compor-
tamiento de vasos. En el presente proyecto se emplean los dos más utilizados: modelo
de Holzapfel-Gasser-Ogden (Ecuación 3.1) y modelo de Gasser (Ecuación 3.2). Ambos
modelos constan de 5 parámetros, los cuales se calcularán a partir de un ajuste de los
datos experimentales. Dicho ajuste se ha realizado con el software Matlab mediante el
algoritmo de minimización de Levenberg-Marquardt [16]. Para mayor información acerca
de los modelos, consultar Anexo C.3.2.
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Ψ = µ(I1 − 3) +
k1

2k2

(ek2(I4−1)2 − 1) +
k3

2k4

(ek4(I6−1)2 − 1) (3.1)

Ψ = µ(I1 − 3) +
k1

2k2

(ek2[κI1+(1−3κ)I4−1]2 − 1) +
k3

2k4

(ek4[κI1+(1−3κ)I6−1]2 − 1) (3.2)

Dada la naturaleza del ensayo biaxial, las probetas no fueron precicladas al con-
trario que en el ensayo uniaxial. Por tanto, para el ajuste de parámetros elásticos se debe
calcular la envolvente de los ciclos de carga-descarga para descontar los efectos inelásticos
(efecto Mullins).
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Figura 3.1: Envolventes de las curvas de comportamiento uniaxial en dirección
circunferencial (a) y curvas medias para el ensayo uniaxial en ambas direcciones (b).

Debido a la alta variabilidad de resultados [1], se calcularán los parámetros de
las curvas medias de las 6 muestras para ambas direcciones. Con esto se consiguen unos
ajustes que logran simular el comportamiento elástico medio de las venas cavas ensaya-
das. Para los ajustes experimentales, se incluye la media y desviación estándar (SD). Se
calculará adicionalmente la ráız cuadrada del error cuadrático medio (RMSE) con el fin
de mostrar la bondad del ajuste realizado, según la Ecuación 3.3, donde n es el número
de datos y q el número de parámetros.

RMSE =

√√√√ 1

n− q

n∑
i=1

(xajustei − xexpi )2 (3.3)

SD =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (3.4)
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3. Constantes mecánicas 3.1. Propiedades elásticas

3.1.2. Resultados

Modelo de Holzapfel-Gasser-Ogden:

Muestra µ [MPa] k1 [MPa] k2 [-] k3 [MPa] k4 [-] RMSE

I 0.01 0.0077 0.343 0.754 4.119 0.070

II 0.01 0.0399 0.238 0.083 1.136 0.119

III 0.01 0.0047 0.058 0.049 4.694 0.061

IV 0.01 0.0182 0.694 0.219 2.813 0.096

V 0.01 0.0094 0.054 0.135 3.362 0.084

VI 0.01 0.0227 0.103 0.137 1.885 0.062

Media 0.01 0.0171 0.248 0.229 3.002 -

SD 0 0.013 0.246 0.263 1.342 -

Tabla 3.1: Parámetros elásticos del modelo de HGO para cada muestra.

Puede observarse como el término neo-hookeano (µ) asociado a la parte isótropa del
material es muy pequeño. En el ajuste real de las curvas µ = 0, puesto que las direcciones
circunferencial y longitudinal están casi totalmente desacopladas (gran anisotroṕıa). Con
el fin de evitar problemas computacionales, se ha limitado su valor a 0.01 MPa en todas
las muestras sin decremento del error en el ajuste.

Modelo de Gasser:

Muestra µ [MPa] k1 [MPa] k2 [MPa] α [o] κ [-] RMSE

I 0.015 2.227 19.664 89.89 0.210 0.063

II 0.010 1.152 4.013 89.99 0.294 0.104

III 0.013 0.314 2.168 89.90 0.196 0.114

IV 0.010 1.800 23.265 89.94 0.269 0.087

V 0.010 0.559 0.059 89.89 0.215 0.041

VI 0.048 0.658 5.449 85.84 0.233 0.089

Media 0.017 1.118 9.103 89.24 0.236 -

SD 0.015 0.757 9.810 1.666 0.038 -

Tabla 3.2: Parámetros elásticos del modelo de Gasser para cada muestra.

El ángulo α, referido respecto a la dirección longitudinal, es muy próximo a 90o,
lo cual indica que las fibras están casi alineadas en dirección circunferencial. Al igual que
en el ajuste de Holzapfel, el ĺımite inferior del neo-hookeano µ durante el ajuste se ha
limitado a 0.01 para evitar problemas computacionales en la simulación posterior.
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3.1. Propiedades elásticas 3. Constantes mecánicas

La alta dispersión de los resultados se puede comprobar en la Figura 3.2. En ella
se representan las curvas en dirección circunferencial y longitudinal de las 6 muestras de
vena cava, junto con su curva media y el ajuste de la misma con los dos modelos. En el
Anexo B.1 se muestran en gráficas comparativas los ajustes completos de las 6 muestras.

µ [MPa] k1 [MPa] k2 [-] k3 [MPa] k4 [-] RMSE

Curva Media 0.01 0.0094 0.201 0.056 9.040 0.059

Tabla 3.3: Parámetros elásticos del modelo de HGO para la curva media.

µ [MPa] k1 [MPa] k2 [MPa] α [o] κ [-] RMSE

Curva Media 0.01 0.642 5.014 89.93 0.243 0.066

Tabla 3.4: Parámetros elásticos del modelo de Gasser para la curva media.
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Figura 3.2: Curvas uniaxiales en dirección circunferencial y longitudinal de las 6 muestras y
ajuste de las curvas medias.

Puede observarse como el ajuste de las curvas medias entra dentro del disperso
rango de las muestras experimentales. Nótese que los parámetros medios de ajuste de las
6 muestras no coinciden con los parámetros del ajuste de las curvas medias, puesto que
se tratan de funciones exponenciales no-lineales. De ambos es el último el que representa
más fielmente el comportamiento medio de las muestras.
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3. Constantes mecánicas 3.2. Propiedades de rotura

3.2. Propiedades de rotura

En esta sección se realiza un modelo de elementos finitos del ensayo biaxial en el
software Abaqus, con el fin de hallar mediante análisis inverso los parámetros promedio
de rotura de la vena cava.

3.2.1. Metodoloǵıa

A continuación se expone un resumen de la metodoloǵıa utilizada para modelar la
geometŕıa, contacto y comportamiento entre el punzón y la probeta del ensayo biaxial.
Para más información sobre los tipos de formulaciones de elementos finitos y elementos
cohesivos, ver Anexo D.

Software: El ensayo biaxial es cuasiestático hasta rotura, posee contacto entre
punzón, probeta y zona de rotura, muy altas deformaciones y un material hiper-
elástico anisótropo altamente no-lineal. La formulación adecuada para el problema
antes de rotura seŕıa Abaqus/Standard. Al alcanzar la rotura se convierte en un pro-
ceso dinámico y de dif́ıcil convergencia, haciendo necesario aplicar la formulación de
Abaqus/Explicit.

Geometŕıa: El punzón es ciĺındrico con punta esférica de 0.7 mm de diámetro y
6 mm de largo. Se va a considerar sólo mitad de probeta cuadrada, imponiendo
condiciones de simetŕıa en dirección longitudinal (eje Y). La longitud de la probeta
cuadrada en dirección longitudinal y circunferencial ha sido calculada a partir de las
longitudes medias reflejadas en la Tabla B.3. Se incluyen unos huecos trapezoidales
de los extremos, los cuales simulan el agarre de las mordazas del equipo biaxial.

(a) (b)

Figura 3.3: Mallado y ensamblaje de probeta y punzón con detalle del mayado en zona de
contacto (a) y mallado del punzón (b).
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3.2. Propiedades de rotura 3. Constantes mecánicas

Materiales: El material del punzón es acero y el de la probeta es vena cava. Las
propiedades hiperelásticas anisótropas en Abaqus sólo son admitidas mediante el
modelo de Gasser. Adicionalmente para el análisis en Standard, se utilizará el modelo
de Holzapfel implementado mediante una rutina de usuario (UMAT) desarrollada
por el grupo de invertigación. Ambos materiales se consideran incompresibles [14].
El punzón es mucho más ŕıgido que la probeta, por lo que se va a considerar con
restricciones de sólido ŕıgido para conseguir menor tiempo computacional.

Mallado: El mallado final se muestra en la Figura 3.3 y consta de 6558 nodos y 4975
elementos en el caso de la probeta y 6322 nodos y 5529 elementos para el punzón. Los
elementos son hexagonales trilineales (C3D8) puesto que los elementos cuadráticos
generan problemas durante el contacto. El mallado de la zona de contacto entre
la probeta y el punzón es más fino que el resto de la probeta, para facilitar la
convergencia del problema durante el contacto.

Pasos y Condiciones de Contorno: El análisis se dividirá en dos pasos: Pre-
tensado y Punzonado. En el Pretensado se imponen los desplazamientos medios
en direcciones longitudinal y perpendicular de los ensayos biaxiales, calculados en
la Tabla B.3. En el Punzonado, se impone un desplazamiento vertical medio del
punzon de 10 mm en dirección normal a la superficie de la probeta.

Zona de rotura: Según los ensayos a tejido de miocardio elaborados por Forsell
y Gasser [8] se observó que durante el ensayo biaxial el mecanismo principal de
penetración es de modo apertura (Fractura Modo-I). Además, la rotura del material
se genera de forma muy localizada y se alinea con la dirección de las fibras (dirección
circunferencial).

(a) (b)

Figura 3.4: Fractura Modo-I experimentada por el tejido fibroso (a) y esquema de la
superficie cohesiva remarcada en rojo en el modelo de elementos finitos (b).

Para simular este comportamiento, se decide generar una Superficie Cohesiva en
la probeta, situada en la zona inferior del contacto con el punzón y orientada en
sentido circunferencial, como se representa en la Figura 3.4. A dicha Zona Cohesiva
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se le debe definir una ley de tracción-separación que, por simplicidad, se supondrá de
forma triangular (Figura D.2). Por ello habrá que definir 3 parámetros: pendiente
antes del fallo (K), tensión máxima (σmáx) y enerǵıa de fractura (G0).

El Modo-I de fallo implica que la tensión de fractura (σmáx) es perpendicular a la
superficie cohesiva, definida en el mismo sentido que las fibras del tejido (dirección
circunferencial). Por tanto, dicha tensión tiene dirección longitudinal. En el Anexo
B.3 se calcula de los ensayos uniaxiales la tensión de rotura media de las muestras de
vena cava en dirección longitudinal. Fijado este valor, se llevarán a cabo iteraciones
para calcular los otros dos parámetros (K y G0) para definir completamente el
triángulo de fractura de la Figura D.2.

Contacto: Se define un General Contact que incluye todos los cuerpos dentro de
la simulación y que es mas adecuado para formular el contacto del punzón con
varias superficies tras rotura. Para más información sobre formulaciones de contacto,
consultar [30].

Compensación de efectos inerciales: Abaqus/Explicit se basa en ecuaciones
dinámicas para el cálculo de los desplazamientos y las tensiones, y está diseñado
para análisis a altas velocidades. Sin embargo, el ensayo biaxial es cuasiestático hasta
rotura lo cual supone un alto coste computacional. Por tanto, se debe disminuir el
tiempo de cálculo reduciendo todo el proceso a 2 segundos de duración (1 segundo
para pretensado y 1 segundo para punzonado). Esto supone una velocidad de punzón
de 10 mm/s mientras que el ensayo original es de 0.08 mm/s (5 mm/min). La
velocidad de simulación es 125 veces la real, por lo que se debe realizar un escalado
de masa y de viscosidad para que los efectos inerciales no distorsionen los resultados.
Se elige un mass scaling uniforme para conseguir un incremento lo suficientemente
pequeño de 10−6 segundos.

Equipo: Debido al alto coste computacional de los análisis de elementos finitos se
ha recurrido al cluster de computación HERMES, realizando múltiples cálculos en
paralelo con 8 Gb de RAM y 4 CPU’s a cada uno. En los cálculos en Explicit, para
evitar errores de redondeos debido al alto número de incrementos, se ejecutan a
doble precisión. El tiempo de simulación está entre 5 y 6 horas para Explicit y 1
hora para Standard.

3.2.2. Resultados

En la Figura 3.5 se representan las curvas medias de la fuerza del punzón en cada
muestra de vena cava en la zona elástica previa a rotura del ensayo biaxial. Las ĺıneas
discontinuas son los resultados de las simulaciones de elementos finitos durante el tramo
cuasiestático antes de rotura. Puede observarse que el análisis del modelo de Gasser en
Explicit se ajusta correctamente a las curvas, lo cual indica un correcto escalado de masa.
El análisis en Standard da una muy buena aproximación con el modelo de Holzapfel. En
ambos casos, la curva se encuentra contenida entre las curvas experimentales.
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Figura 3.5: Medias de la Fuerza del punzón en los ensayos bixiales y ajustes de la zona
cuasiestática con Standard y Explicit.

Una vez comprobados los resultados elásticos en Explicit, se procede a realizar
iteraciones para averiguar los valores óptimos de la pendiente antes de fallo (K) y enerǵıa
de fractura (G0). Sabiendo que σmáx = 2.2 MPa, aplicando relaciones trigonómétricas del
triángulo de fractura (Figura D.2) se obtienen las siguientes ecuaciones

K =
σmáx
δ0

=
2.2

δ0

G0 =
δr · σmáx

2
= 1.1 · δr (3.5)

En el Anexo B.3, se proponen diferentes combinaciones de separaciones de inicio de
daño (δ0) y de rotura (δr) de la superficie cohesiva. Deben estar sujetos a dos restricciones:
δ0 < δr y δ0, δr ≤ φ = 0.7mm, donde φ es el diámetro del punzón.

Existen varias posibles combinaciones de parámetros válidas para simular la rotura
del ensayo biaxial, mostradas en la Tabla 3.5. Todas tienen en común un bajo valor de
separación inicial antes de fallo δ0 ∈ [0.01, 0.05] mm frente a la separación de rotura
δr ∈ [0.15, 0.45] mm y son inversamente proporcionales, de tal forma que la enerǵıa de
fractura G0 permanece casi constante.

Solución δ0 [mm] δr [mm] σmáx [MPa] K [-] G0 [N/mm]

1 0.01 0.35 2.2 220 0.33

2 0.03 0.3 2.2 73.33 0.33

3 0.05 0.2 2.2 44 0.22

Tabla 3.5: Distintas soluciones que modelan correctamente la rotura del ensayo biaxial.
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Figura 3.6: Comparación de los resultados de simulación con los datos medios del ensayo
biaxial (a) y de la muestra I (b).

Se puede comprobar como la curva de rotura de la simulación logra reproducir con
buena precisión el comportamiento de la rotura del ensayo biaxial. Cabe destacar el error
en la zona elástica a bajas deformaciones, el cual repercute en un ligero error en la zona
de rotura. Dicho error podŕıa evitarse implementando el modelo de Holzapfel en Explicit
mediante una rutina de usuario VUMAT.

Debido al pequeño espesor de las muestras (del orden del diámetro del punzón)
hace que la rotura sea súbita, sin zona plástica, lo cual se ve reflejado en los valores
pequeños de enerǵıa de deformación. En la Figura 3.7 se representa la evolución de las
tensiones durante cada paso de la simulación con los parámetros de rotura de la solución
número 2. En el Anexo B.3 se incluyen los resultados de las tres soluciones.
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(a)

(b)

(c)

Figura 3.7: Mapa de tensiones durante la simulación del ensayo biaxial con rotura en el
pretensado (a), durante el punzonado (b) y rotura (c).
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Caṕıtulo 4

Conclusiones

Los objetivos del presente Trabajo de Fin de Grado, aśı como del Proyecto de
Colaboración, han sido cubiertos en su totalidad. Para concluir, se citan las observaciones
más importantes llevadas a cabo durante la realización de los ensayos experimentales y
análisis computacional.

4.1. Observaciones experimentales

Es de vital importancia reproducir en los ensayos el estado de la cava in vivo en
la medida de lo posible. Para ello se han introducido los parámetros de pretensión
longitudinal y circunferencial.

La variabilidad de resultados es muy alta, puesto que cada organismo es único y en
función de la edad, sexo o historia cĺınica los tejidos pueden tener diferente compor-
tamiento. Generalmente en todas las aplicaciones de bioingenieŕıa la dispersión de
datos es tal que la desviación t́ıpica suele ser del mismo orden de magnitud que la
media.

El tejido venoso expuesto al aire se seca y rigidiza rápidamente, lo cual falsea los
datos. Por tanto, es fundamental ser metódico y cuidadoso a la hora de llevar a cabo
los ensayos, de tal forma que la manipulación de las probetas no interfiera en los
resultados finales.

4.2. Observaciones mecánicas/numéricas

El comportamiento de la vena cava es altamente no lineal. Además presenta gran
anisotroṕıa, comportándose de forma diferente en dirección circunferencial y longi-
tudinal debido asu particular microestructura, hecho que se ha tenido en cuenta en
el modelo del material introduciendo las fibras de colágeno.
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4.3. Ĺıneas Futuras 4. Conclusiones

Los modelos de Gasser y Holzapfel logran un ajuste correcto en la mayoŕıa de
las muestras, siendo las curvas circunferenciales en las que mayor error se comete.
Además, son coherentes con la histoloǵıa de vena cava, puesto que marcan gran
anisotroṕıa (µ ' 0) y alineación de las fibras en dirección circunferencial (α ' 90o)

Tras múltiples cálculos en serie, se determinó que el problema de elementos fini-
tos de rotura de la probeta biaxial en Abaqus/Standard es imposible de realizar,
debido a problemas de convergencia. En su defecto, se debe recurrir al análisis en
Abaqus/Explicit teniendo muy en cuenta los incrementos correctos de tiempo y es-
calados de masa para poder despreciar los efectos inerciales y que la enerǵıa total
del sistema permanezca constante durante el periodo cuasiestático.

Para simulaciones estáticas o cuasiestáticas el modelo de Holzapfel da una solu-
ción óptima. El modelo de Gasser también es válido, aunque aporta soluciones más
ŕıgidas y con mayor error.

La rotura de la probeta se produce de forma súbita sin apenas deformación plásti-
ca, debido al pequeño espesor de la misma y a las caracteŕısticas del tejido. Los
parámetros calculados logran simular de forma correcta el fallo, y existen múltiples
combinaciones posibles las cuales poseen una enerǵıa de fractura casi constante.

El método utilizado para el cálculo de las propiedades de rotura con parámetros
medios se puede realizar para cada muestra individual. Sin embargo, queda fuera
del alcance de un Proyecto Fin de Grado aunque la metodoloǵıa a emplear ha
quedado plenamente definida.

4.3. Ĺıneas Futuras

Tras la consecución del presente proyecto, los resultados sobre propiedades mecáni-
cas de vena cava pueden ser utilizadas para modelar aplicaciones concretas en aparatos
biomédicos, y da lugar a posibles ĺıneas futuras para proyectos de investigación tales como:

Diseño y mejora de filtro anti-trombo. Simulación con rotura y fibrosis de su inter-
acción en vena cava. Simulación de la extracción del filtro. Esta ĺınea futura va a
realizarse como continuación del presente Proyecto de Fin de Grado con otro durante
el curso 2014-15.

Aplicación de los métodos expuestos para calcular propiedades de rotura de otros
tipos de tejidos biológicos planos análogos (tejido de miocardio, arterias, piel, etc).

Implantación en la formulación expĺıcita para la función de enerǵıa de Holzapfel
mediante una rutina de usuario (VUMAT).
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Anexo A

Anatomı́a de los vasos sangúıneos

El sistema cardiovascular o circulatorio es el que conduce y hace circular la sangre.
Está formado por el corazón, vasos sangúıneos (venas, arterias y capilares) y la sangre.
Posee como función el distribuir los nutrientes y ox́ıgeno a las células y recoger los desechos
metabólicos que se han de eliminar después por los riñones (orina) y por el aire exalado
en los pulmones (dióxido de carbono). Se divide en dos circuitos más pequeños:

Circulación menor o pulmonar: Este circuito lleva la sangre del corazón a los pul-
mones y de estos al corazón. De manera más espećıfica, la sangre viaja del ventŕıculo
derecho por la arteria pulmonar hasta los pulmones. Estas se dividen rápidamente
hasta capilares que rodean a los sacos aéreos (alveolos) para intercambiar el dióxi-
do de carbono por ox́ıgeno. De manera gradual los capilares se reúnen formando
las venas pulmonares, que llevan la sangre oxigenada de los pulmones a la auŕıcula
izquierda.

Circulación mayor o sistémica: Es el circuito principal de la circulación. Lleva la
sangre procedente de los pulmones a todas las regiones del cuerpo y luego de regreso
al corazón. Todas las arterias sistémicas desembocan en la vena cava inferior o en
la superior, las cuales a su vez lo hacen en la auŕıcula derecha.

A.1. Tipos

Los vasos sangúıneos (arterias, capilares y venas) son conductos musculares y/o
elásticos que distribuyen y recogen la sangre de todos los rincones del cuerpo. Se deno-
minan arterias a aquellos vasos sangúıneos que llevan la sangre desde el corazón hasta
los órganos corporales. Las grandes arterias que salen desde los ventŕıculos del corazón
van ramificándose y haciéndose más finas hasta que por fin se convierten en capilares,
vasos tan finos que a través de ellos se realiza el intercambio gaseoso y de sustancias entre
la sangre y los tejidos. Una vez que este intercambio sangre-tejidos a través de la red
capilar, los capilares van reuniéndose en vénulas y venas por donde la sangre regresa a las
auŕıculas del corazón.
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A.1. Tipos A. Anatomı́a de los vasos sangúıneos

Figura A.1: Sistema circulatorio pulmonar (arriba) y sistémico (abajo). Fuente: [15].

Arterias: Son vasos gruesos y elásticos que nacen en el corazón y aportan sangre
a los órganos del cuerpo. Existen dos arterias principales: arteria pulmonar, que
sale del ventŕıculo derecho y lleva la sangre a los pulmones, y la arteria aorta,
que sale del ventŕıculo izquierdo formando el arco aórtico (cayado). De este último
emergen arterias para cabeza, cuello y miembros superiores, desciende como aorta
tóracica y al atravesar diafragma cambia a aorta abdominal que irriga las estructuras
abdominales. Finalmente se divide en dos arterias iĺıacas.

Capilares: En promedio no miden más de un miĺımetro de longitud y 8-12 micras
de diámetro. Forman redecillas y en ellos se produce el intercambio entre plasma y
ĺıquido tisular, de modo que cuando la sangre sale del lecho capilar ya ha entregado
el ox́ıgeno y otros productos a las células del tejido, y ha recibido en cambio dióxido
de carbono y productos de desecho.

Venas: Son conductos con la función inversa de las arterias: gúıan la sangre de
los capilares de vuelta al corazón. Existen dos tipos de vena cava: la cava superior
está formada por la unión de las venas braquicefálicas (yugulares que vienen de la
cabeza y las subclavias que proceden de los miembros superiores) y la cava inferior
que engloba las venas iĺıacas que vienen de los miembros inferiores (venas femorales,
safena magna o interna y safena parva o externa), las renales de los riñones, la
suprahepática del h́ıgado y las genitales.
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A. Anatomı́a de los vasos sangúıneos A.2. Estructura

El flujo de las venas es mucho más lento que en las arterias, por lo que tienen mayor
diámetro de modo que el caudal de entrada al corazón sea igual al de salida. Ya que las
venas devuelven la sangre en contra de la gravedad, poseen unas válvulas antirretorno.
El tejido elástico se pierde en la anciandad, y entonces las arterias tienden a encogerse,
hacerse tortuosas y endurecerse.

(a) (b) (c)

Figura A.2: Sistema arterial (a), corazón (b) y sistema venoso (c). Fuentes: [22], [28], [29].

A.2. Estructura

La microestructura de los vasos sangúıneos vaŕıa dependiendo de varios factores:
edad, localización y tipo de vaso, espécimen y condiciones de trabajo a las que esté so-
metido. Esto quiere decir que cada vaso sangúıneo tiene su propia composición microes-
tructural. A pesar de estas diferencias, todos están compuestos por tres capas principales:
ı́ntima, media y adventicia. En la Figura A.3 se puede observar la composición capa por
capa de los conductos sangúıneos. A continuación se describen brevemente cada capa con
sus caracteŕısticas y composición. Para más información, consultar [23].

Adventicia: Es la capa exterior de los vasos sangúıneos. Se compone principalmente
de fibras de colágeno, que permiten a las venas y arterias expandirse lo suficiente
como para soportar los altos rangos de presión ejercidos por el flujo sangúıneo en
las paredes. Además, pueden aparecer células musculares sobre todo en venas largas
como la vena cava, en la cual estas células se disponen de forma longitudinal. Esta
capa suele ser la más gruesa de las tres en venas (40 % al 50 % del vaso). Sin embargo,
en arterias sólo es del 30 % al 35 % del vaso
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A.2. Estructura A. Anatomı́a de los vasos sangúıneos

Media: Es la capa media, compuesta por células musculares blandas reforzadas por
capas ordenadas de tejido elástico y fibras de colágeno. Es más gruesa en arterias
que en venas. Tiene la mayor capacidad resistente, fundamentalmente para rangos
de presión fisiológicos.

Íntima: Es la capa interior de venas y arterias. Suele estar compuesta únicamente
por células endoteliales y en algunos casos por células musculares.

(a) (b)

Figura A.3: Composición microestructural por capas de una arteria (a) y una vena (b).
Fuente: [7].
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Anexo B

Post-procesado de datos

En el presente Anexo se muestran los resultados experimentales de los ensayos
expuestos en el Caṕıtulo 2. Todos los espesores y longitudes han sido medidas 3 veces con
pie de rey. Por facilidad de lectura y reducción de la extensión del documento, en esta
memoria sólo aparecen las medias de dichas medidas.

B.1. Resultados de ensayo uniaxial

En la Tabla B.1 se calcula el área transversal de la probeta (A0) a partir del
espesor (e) y la anchura (a) de la probeta. También se incluye su longitud (l), puesto que
es necesaria para el cálculo de la deformación longitudinal. Dichas medidas se pueden ver
esquematizadas en la Figura B.1.

Figura B.1: Esquema de las medidas de las probetas uniaxiales.

La célula de carga mide el desplazamiento entre las mordazas (∆l) y la fuerza que
ejercen (F ). Mediante el uso de las Fórmulas B.1 y B.21 se pueden calcular las curvas
tensión-alargamiento de la Figura B.2 a la B.7.

λ =
∆l

l
(B.1)

1Nótese que se utiliza la fórmula de tensión en grandes deformaciones, puesto que compensa la reduc-
ción progresiva del área de la probeta durante el ensayo.
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos

σ = λ
F

A0

(B.2)

El estado de tracción uniaxial se caracteriza porque las tensiones σx = σy = 0.
Considerando las Ecuaciones C.20 y teniendo en cuenta la condición de incompresibilidad
(detF = λ1λ2λ3 = 1) y de deformación uniaxial, los alargamientos principales valdŕıan

λ1 = λ2 =
1√
λ

λ3 = λ (B.3)

Dichos alargamientos se tendrán en cuenta a la hora de calcular los invariantes explicados
en el Anexo C.3.2 y se incluirán en el ajuste con el modelo de Gasser o Holzapfel.

I1 = λ2
1 + λ2

2 + λ2
3 =

2

λ
+ λ2

I4 = λ2
1cos

2(θ) + λ2
2sin

2(θ)

I6 = λ2
1cos

2(−θ) + λ2
2sin

2(−θ)

(B.4)

De la Figura B.2 a la B.7 se muestran las gráficas post-procesadas de los ensayos
uniaxiales. Adicionalmente, se incluyen los ajustes teóricos mediante los modelos de Gasser
y Holzapfel mostrados en el Caṕıtulo 3.1.2.
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B. Post-procesado de datos B.1. Resultados de ensayo uniaxial

I II

e [mm] a [mm] l [mm] A0 [mm2] e [mm] a [mm] l [mm] A0 [mm2]

L 1 0.61 5.07 17.01 3.08 L1 0.62 4.85 22.15 3.02

L 2 0.52 4.47 16.02 2.31 L2 0.61 5.27 22.47 3.23

L 3 0.37 4.31 14.98 1.63 C1 0.54 5.30 21.84 2.86

C 1 0.58 5.05 16.12 3.21 C2 0.57 4.56 21.04 2.72

C 2 0.61 5.27 15.85 3.19

III IV

e [mm] a [mm] l [mm] A0 [mm2] e [mm] a [mm] l [mm] A0 [mm2]

L1 0.82 3.34 20.87 2.73 L1 0.55 3.91 16.38 2.16

L2 0.68 5.01 15.32 3.41 L2 0.61 4.25 13.29 2.61

C1 0.57 4.06 12.84 2.23 C1 0.55 3.41 16.84 1.89

C2 0.56 3.41 12.29 1.92 C2 0.56 3.10 12.29 1.75

V VI

e [mm] a [mm] l [mm] A0 [mm2] e [mm] a [mm] l [mm] A0 [mm2]

L1 0.93 3.41 13.35 3.17 L1 0.50 4.17 15.85 2.10

L2 0.75 3.57 14.57 2.69 L2 0.62 4.54 15.40 2.80

L3 0.78 3.69 17.36 2.89 L3 0.37 4.67 15.30 1.75

C1 0.71 4.06 14.51 2.88 L4 0.45 4.23 14.62 1.89

C2 0.71 4.11 9.87 2.92 C1 0.55 4.38 21.39 2.42

C2 0.66 3.64 17.98 2.41

Tabla B.1: Medida de longitudes y espesores de las probetas longitudinales (L) y
circunferenciales (C) para ensayo uniaxial.
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos
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Figura B.2: Curvas de ensayo uniaxial de muestra I (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B. Post-procesado de datos B.1. Resultados de ensayo uniaxial
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Figura B.3: Curvas de ensayo uniaxial de muestra II (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos
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Figura B.4: Curvas de ensayo uniaxial de muestra III (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B. Post-procesado de datos B.1. Resultados de ensayo uniaxial
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Figura B.5: Curvas de ensayo uniaxial de muestra IV (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.1. Resultados de ensayo uniaxial B. Post-procesado de datos
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Figura B.6: Curvas de ensayo uniaxial de muestra V (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B. Post-procesado de datos B.1. Resultados de ensayo uniaxial
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Figura B.7: Curvas de ensayo uniaxial de muestra VI (a) y ajuste de curvas medias por el
modelo de Gasser (b) y Holzapfel (c).
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos

B.2. Resultados de ensayo biaxial

En la Tabla B.2 se exponen las mediciones de longitudes iniciales (L0) y finales
(Lf ) de los ensayos de pretensión axial y ángulo de apertura. Adicionalmente, se calculan
las pretensiones en dirección longitudinal (λl) y circunferencial (λc) que se han de imponer
en cada ensayo biaxial. Para el cálculo de los alargamientos (λ) se aplica la Ecuación B.52.

λ = 1 + ε = 1 +
∆L

L0

= 1 +
Lf − L0

L0

(B.5)

∆Li = εiLi = (λi − 1)Li i = l, c (B.6)

Pretensión Axial Ángulo de Apertura

Muestra L0 [mm] Lf [mm] λl [-] L0 [mm] Lf [mm] λc [-]

I 121.38 63.43 1.91 52.97 57.78 1.09

II 109.26 71.88 1.52 51.49 63.12 1.23

III 43.87 38.17 1.13 57.06 58.57 1.02

IV 130.55 86.73 1.33 37.70 40.84 0.91

V 100.85 63.20 1.59 50.48 51.93 1.03

VI 133.82 94.07 1.42 57.70 66.03 1.13

Tabla B.2: Medida de las longitudes inicial y final de los ensayos de pretensión axial y ángulo
de apertura y cálculo de las pretensiones para las probetas del ensayo biaxial.

Figura B.8: Esquema de las medidas de las probetas biaxiales.

2Para el caso del ensayo de pretensión axial, puesto que la longitud final es menor que la inicial, la
longitud inicial del ensayo es la final de la fórmula y viceversa.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial

Las probetas para ensayo biaxial tienen forma cuadrada normalizada de 35 mm
de lado. Sin embargo, debido a la relajación del material es frecuente que esas medidas
vaŕıen. En la Tabla B.3 se exponen las mediciones de espesor (e) y longitud en dirección
circunferencial (Lc) y longitudinal (Ll) llevadas a cabo en cada muestra, aśı como su valor
medio.

Muestra el [mm] ec [mm] Ll [mm] Lc [mm]

I 0.54 0.43 37.73 36.50

II 0.73 0.69 36.77 36.08

III 0.98 1.05 36.55 34.16

IV 0.69 0.84 35.46 34.63

V 0.73 0.75 34.99 34.96

VI 0.88 0.95 35.52 35.50

Media ± SD 0.76 ± 0.15 0.79 ± 0.22 36.17 ± 1.03 35.31 ± 0.89

Tabla B.3: Medida y media de longitudes y espesores de las probetas para el ensayo biaxial.

Partiendo de los alargamientos de la Tabla B.2 se calculan los desplazamientos
longitudinales (∆Ll) y circunferenciales (∆Lc) que se deberán imponer en las mordazas
al inicio del ensayo biaxial mediante la Fórmula B.6. Nótese que λ < 1 implica despla-
zamientos y pretensión negativos, lo cual implicaŕıa compresión de las mordazas en esa
dirección y se interpreta como que no es necesario traccionar la muestra (λ = 1).

Muestra ∆Ll [mm] ∆Lc [mm]

I 34.33 3.29

II 19.72 8.14

III 4.75 1

IV 11.70 1

V 20.6 0.94

VI 14.92 4.47

Media ± SD 17.67 ± 10 3.14 ± 2.85

Tabla B.4: Cálculo de los alargamientos longitudinales y circunferenciales de las probetas
para el ensayo biaxial.
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B.2. Resultados de ensayo biaxial B. Post-procesado de datos

Las 25 identaciones se disponen de forma uniforme alrededor del centro de la
probeta separadas 4 mm entre śı, como se muestra en la Figura B.9. Los 9 puntos centrales
recuadrados en ĺınea discontinua son los utilizados para llevar a cabo las medias y, por
tanto, los ajustes de parámetros.

Figura B.9: Disposción de las 25 identaciones.

De la Figura B.10 a la B.15 se exponen las gráficas post-procesadas de cada ensayo
biaxial. En las muestras V y VI no se disponen de los datos de tensión biaxial, puesto
que los instrumentos de medida no estaban correctamente calibrados y presentaban datos
erróneos. La célula de carga mide el desplazamiento del punzón y la fuerza biaxial ejercida
por las mordazas. Con ello es sencillo calcular la tensión mediante la Fórmula B.7.

σi =
Fi
Ai

i = l, c (B.7)
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial
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Figura B.10: Curvas de ensayo biaxial de muestra I.
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Figura B.11: Curvas de ensayo biaxial de muestra II.
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Figura B.12: Curvas de ensayo biaxial de muestra III.
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Figura B.13: Curvas de ensayo biaxial de muestra IV.
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Figura B.14: Curvas de ensayo biaxial de muestra V. No se disponen datos de tensión biaxial
debido a la incorrecta calibración del equipo.
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Figura B.15: Curvas de ensayo biaxial de muestra VI. No se disponen datos de tensión
biaxial debido a la incorrecta calibración del equipo.
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B. Post-procesado de datos B.2. Resultados de ensayo biaxial

Para hallar los parámetros de rotura, se debe realizar un análisis estad́ıstico de las
fuerzas de rotura y desplazamientos medios que se representan en los gráficos de puntos
de los resultados biaxiales. De esta forma, se calcula la fuerza media y desplazamiento
medio del punzón, para saber dónde debe de romper la simulación de elementos finitos. A
continuación se exponen diagramas de cajas que representan los cuartiles y datos at́ıpicos
(outlayers) de las roturas de las 6 muestras.
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Figura B.16: Diagrama de cajas de fuerzas (a) y desplazamientos de punzón (b).

Para cada una de las muestras se calcula la media de la fuerza de rotura (Fmax) y
desplazamiento de rotura (dmax). El valor al cual el modelo de elementos finitos se debe
acercar será la media de las medias, calculadas en la Tabla B.5.
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Muestra Fmax [N] dmax [mm]

I 0.95 8.16

II 1.27 7.80

III 0.72 13.72

IV 0.69 7.46

V 0.81 8.87

VI 1.07 7.38

Media ± SD 0.92 ± 0.22 8.90 ± 2.42

Tabla B.5: Cálculo de la fuerza y desplazamientos medios de punzón durante rotura en el
ensayo biaxial.

B.3. Resultados de modelo de elementos finitos

La Figura B.17 muestra la geometŕıa acotada tanto de la probeta como del punzón.
Los huecos trapezoidales de los laterales simulan el agarre de las mordazas.

(a) (b)

Figura B.17: Geometŕıa con las medidas principales de la probeta (a) y el punzón (b)
obtenidas del ensayo experimental.

En la Figura B.18 se muestra la primera simulación en Abaqus/Standard de la
zona elástica sin rotura mediante el modelo de Holzapfel, cuyos resultados se comparan
con el modelo de Abaqus/Explicit en la Figura 3.5.
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B. Post-procesado de datos B.3. Resultados de modelo de elementos finitos

Figura B.18: Mapa de desplazamiento durante la simulación del ensayo biaxial sin rotura con
el modelo de Holzapfel en Abaqus/Standard.
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

La zona de fractura se alinea con las fibras de colágeno, por lo que la tensión entre
las superficies cohesivas es en dirección longitudinal. Por tanto, partir de las tensiones de
rotura de los ensayos uniaxiales se puede calcular la tensión de rotura longitudinal media,
para introducirla en la ley de tracción-separación de la superficie cohesiva.

Muestra σmax [MPa]

I 4.09 5.59 1.80 - 3.83 ± 1.91

II 2.81 2.78 1.12 - 2.24 ± 0.97

III 1.29 0.99 - - 1.14 ± 0.21

IV 2.72 1.74 - - 2.23 ± 0.69

V 1.81 1.06 1.12 - 1.33 ± 0.42

VI 3.50 2.34 2.17 1.59 2.40 ± 0.80

Media ± SD 2.20 ± 0.96

Tabla B.6: Cálculo de la tensión media de los ensayos uniaxiales en dirección longitudinal.

En este punto se llevan a cabo diversas simulaciones con el modelo de elementos
finitos del ensayo biaxial con identación para hallar los parámetros de rotura que satisfaga
el desplazamiento de punzón en rotura de dmax = 8.9 mm y la tensión normal máxima de
rotura de σmax = 2.2 MPa.

En una primera iteración (Figura B.7), los resultados que más se aproximan a
los resultados experimentales (dr = 8.9 mm) son los marcados en verde. El resto de
simulaciones o rompen demasiado pronto (dsim < 8 mm) o no llegan a romper (dsim > 10
mm). A continuación se seleccionan puntos intermedios para centrar la búsqueda del punto
de rotura deseado. Partiendo de los mejores resultados de la primera iteración, se escogen
parámetros intermedios en una segunda iteración (Figura B.8) para acercarse al punto
solución del problema en función de los datos experimentales.

Figura B.19: Detalle de la separación de la Zona Cohesiva durante la rotura.
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B. Post-procesado de datos B.3. Resultados de modelo de elementos finitos

Simulación δ0 [mm] δr [mm] K [-] G0 [N/mm] dsim [mm]

1A

0.01

0.7

220

0.77 >10

2A 0.5 0.55 >10

3A 0.3 0.33 8.5

4A 0.1 0.11 7

5A

0.05

0.7

44

0.77 >10

6A 0.5 0.55 >10

7A 0.3 0.33 9.4

8A 0.1 0.11 8.4

9A

0.1

0.7

11

0.77 >10

10A 0.5 0.55 >10

11A 0.3 0.33 >10

12A

0.2

0.7

22

0.77 >10

13A 0.5 0.55 >10

14A 0.3 0.33 9.8

Tabla B.7: Primera iteración (A) de simulaciones con modificaciones en los parámetros de
rotura.

Simulación δ0 [mm] δr [mm] K [-] G0 [N/mm] dsim [mm]

1B

0.01

0.45

220

0.495 >10

2B 0.4 0.44 >10

3B 0.35 0.33 9.4

4B

0.03

0.5

73.33

0.385 >10

5B 0.3 0.33 9

6B 0.2 0.22 8.5

7B 0.1 0.11 7.8

8B

0.05

0.25

44

0.275 9.6

9B 0.2 0.22 9.4

10B 0.15 0.385 8.4

Tabla B.8: Segunda iteración (B) de simulaciones con modificaciones en los parámetros de
rotura.
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B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

(a)

(b)

(c)

Figura B.20: Mapa de tensiones durante la simulación 3B (Solución 1) del ensayo biaxial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).
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B. Post-procesado de datos B.3. Resultados de modelo de elementos finitos

(a)

(b)

(c)

Figura B.21: Mapa de tensiones durante la simulación 5B (Solución 2) del ensayo biaxial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).

53



B.3. Resultados de modelo de elementos finitos B. Post-procesado de datos

(a)

(b)

(c)

Figura B.22: Mapa de tensiones durante la simulación 9B (Solución 3) del ensayo biaxial con
rotura en el pretensado (a), durante el punzonado (b) y rotura (c).
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Anexo C

Mecánica de Medios Continuos

Cuando se quieren llevar análisis del comportamiento de poĺımeros, cauchos o en
este caso tejidos biológicos, se deben manejar modelos constitutivos no-lineales más com-
pletos que el clásico sólido elástico lineal. Para ello se debe profundizar más en la Mecánica
de Medios Continuos y en conceptos aparentemente simples, como son la tensión y la defor-
mación, pero que con el cálculo tensorial en grandes deformaciones no son tan intuitivos.
La vena cava está compuesta principalmente por células musculares en dirección longitu-
dinal y fibras de colágeno en dirección circunferencial. Además, el colágeno es mucho más
ŕıgido que las células musculares, por tanto puede considerarse como un material com-
puesto mucho más ŕıgido en la dirección circunferencial que en la longitudinal (no-lineal
anisótropo).

En este anexo se expone brevemente las bases de los modelos constitutivos hiper-
elásticos actuales, los cuales son necesarios para el ajuste de los datos experimentales, par-
tiendo de las ecuaciones cinemáticas y de equilibrio para llegar a las deseadas ecuaciones
de comportamiento. Para mayor detalle sobre Mecánica de Medios Continuos, consultar
[19, 20].

C.1. Ecuaciones cinemáticas

Se formalizan a continuación las definiciones de los conceptos más importantes
asociados a un sólido deformable. Para ello será necesario, en primer lugar, definir ma-
temáticamente qué entendemos por sólido. En la formulación de Mecánica de Medios
Continuos se entiende por sólido tridimensional (denotado por Ω) un subconjunto de R3

cuyos puntos se identifican mediante las coordenadas en un sistema de referencia, deter-
minado, pero arbitrario. Desde un punto de vista matemático, podemos interpretar lo
anterior a través de la función siguiente:

ϕ0 : Ω ∈ R3 −→ R3; ϕ0(P ) ≡ X(x, y, z); ϕ0(P )I ≡ XI (C.1)
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C.1. Ecuaciones cinemáticas C. Mecánica de Medios Continuos

A dicha configuración ϕ0 la denominaremos configuración inicial del sólido Ω o
configuración indeformada. A lo largo del movimiento del sólido, la posición de cada
uno de los puntos del mismo va variando, por lo que la función anterior va asimismo
modificándose, pudiendo considerarse que un movimiento no es más que una familia de
configuraciones del sólido dependiente del tiempo. Para un instante t determinado, la con-
figuración correspondiente define las coordenadas de los puntos del sólido en ese instante
t respecto a un sistema de referencia a través de una expresión similar a (C.1):

ϕt : Ω ∈ R3 −→ R3; ϕt(P ) ≡ x; ϕt(P )I ≡ xI (C.2)

Denotaremos a partir de este momento con mayúsculas los ı́ndices que correspon-
den a coordenadas de puntos del sólido en la configuración indeformada (X i) denominadas
coordenadas materiales y con minúsculas los correspondientes a las coordenadas de puntos
del sólido en cada una de las configuraciones deformadas (xi) denominadas coordenadas
espaciales, siendo por tanto dependientes de t. A partir de este momento utilizaremos
coordenadas cartesianas tanto para la configuración inicial como la deformada.

Figura C.1: Representación de un sólido en configuración indeformada (Xi) y deformada
(xi).

El concepto de deformación está relacionado esencialmente a la variación de en-
tornos de un punto más que a la modificación de las coordenadas de un solo punto. Un
movimiento que sólo implique traslación y giro del sólido global (movimiento como sólido
ŕıgido) no modifica entornos, sino tan sólo significa un cambio de coordenadas del sóli-
do. La deformación se trata del cambio relativo de distancias entre puntos, es decir, las
derivadas espaciales del movimiento.

Dado un movimiento ϕt : Ω ∈ R3, se define el gradiente de deformación F al campo
tensorial sobre la configuración indeformada ϕ0(Ω)
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C. Mecánica de Medios Continuos C.1. Ecuaciones cinemáticas

F : ϕ0(Ω) ∈ R3 −→ R3 × R3

X ≡ ϕ0(P ) −→ F (X) =
∂ϕt
∂X

(X) =
∂x

∂X
(X)

F = FiI =


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 (C.3)

El gradiente de deformación F proporciona la evolución del vector posición relati-
vo dx en función de la correspondiente posición relativa dX en el instante de referencia.
Este tensor presenta muchos inconvenientes: no es simétrico, está definido en ambas con-
figuraciones e incorpora movimiento como sólido ŕıgido. Por ello, se definen dos tensores
adicionales con parecido significado f́ısico y más cómodos para operar: uno en la configu-
ración deformada y otro en la indeformada. Al primero se le denomina tensor de defor-
mación de Cauchy-Green por la derecha (C) y el segundo es el tensor de deformación de
Cauchy-Green por la izquierda (b).

C : ϕ0(Ω) −→ R3 × R3; C = F TF (C.4)

b : ϕt(Ω) −→ R3 × R3; b = FF T (C.5)

Los valores propios de ambos tensores C y b son los mismos y se les conocen como
el cuadrado de los alargamientos principales (λ2

1, λ2
2 y λ2

1). Además, estos tensores de
Cauchy-Green nos pueden servir para dada una determinada configuración deformada en
un inistante t, determinar el mismo tensor en configuración indeformada y viceversa. A
este proceso se denomina pull-back (C.6) y push-forward (C.7) respectivamente.

ϕt(b) = F TbF (C.6)

ϕt(C) = F−TCF−1 (C.7)

Por último, nombrar otras dos magnitudes que también miden la deformación:
tensor de Cauchy-Saint-Venant (E, definido en configuración indeformada) y tensor de
Cauchy-Almansi (e, definido en configuración deformada). La ventaja frente al tensor
gradiente de deformación, es que a deformaciones nulas valen 0, lo cual es más intuitivo.
Se relacionan con los demás tensores de la siguiente forma:

E =
1

2
(C − 1) =

1

2
(F TF − 1) (C.8)

e =
1

2
(1− b) =

1

2
(1− FF T ) (C.9)
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C.2. Ecuaciones de equilibrio C. Mecánica de Medios Continuos

En pequeñas deformaciones, ambos tensores coinciden entre śı, denominándse ten-
sor de deformación de Cauchy (ε).

Todas las variables mencionadas, deben cumplir el principio básico de conservación
de materia en medios continuos, pudiéndose escribir de la siguiente forma:

Dm

Dt
=
D(ρV )

Dt
=
∂ρ

∂t
+ div(ρV ) = 0; (C.10)

C.2. Ecuaciones de equilibrio

Vistas las variables cinemáticas, se definen las fuerzas internas por unidad de su-
perficie que mantienen la cohesión del sólido, impidiendo que se rompa: las tensiones. Al
trabajar en grandes desplazamientos, como en las deformaciones, se pueden definir varios
tensores dependiendo si realizamos el equilibrio en la configuración deformada (Tensor de
Cauchy, σ), indeformada (Segundo tensor de Piola-Kirchhoff, S) o mixta (Primer tensor
de Piola-Kirchhoff o tensión ingenieril, P ). Los tres representan lo mismo, solo que en
perspectivas distintas:

S = SIJ P = PiJ = J−1FS σ = σij = J−1FSF T (C.11)

De forma análoga a la fórmula de conservación de masa (C.10), podemos obtener la
ecuación de conservación de momento cinético1(C.12) aśı como la ecuación de conservación
de la enerǵıa (C.13), considerando proceso isotermo sin flujos de calor:

divP + ρX = 0 (C.12)

D

Dt

∫
Ω0

1

2
ρV 2dV︸ ︷︷ ︸

E. cinética

+

∫
Ω0

P : Ḟdv︸ ︷︷ ︸
E. de deformación

=

∫
δΩ

TV dS︸ ︷︷ ︸
F. superficiales exteriores

+

∫
Ω

XV dV︸ ︷︷ ︸
F. volumétricas exteriores

(C.13)

C.3. Ecuaciones de comportamiento

Una vez definidos por separado las deformaciones y las tensiones, el objetivo es
deducir una ley general que relacione a ambos. En los materiales elástico lineales esta
relación es bien conocida (Ley de Hooke o ecuaciones de Lamé), pero la teoŕıa hiperelástica
en grandes deformaciones es mucho más compleja.

1Las ecuaciones de equilibrio se han planteado en configuración mixta (P y F ). Si se quisieran en
deformada seŕıa análogo, pero con los respectivos tensores en deformada (σ y d).
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C. Mecánica de Medios Continuos C.3. Ecuaciones de comportamiento

Un sólido hiperelástico se caracteriza por la existencia una función escalar de las
deformaciones de cuyas derivadas resulta la tensión. A esta función se le denomina fun-
ción densidad de enerǵıa de deformación (Ψ). Su deducción procede de la aplicación de
la segunda ley de la termodinámica: la cantidad de entroṕıa tiende a incrementarse en el
tiempo. Sin profundizar en la deducción, resultan estas fórmulas2 denominadas desigual-
dad de Clausius-Durham [12].

Dint = S :
Ċ

2
− Ψ̇(C) =

(
1

2
S − ∂Ψ

∂C

)
: Ċ ≥ 0 −→ S = 2

∂Ψ

∂C
(C.14)

Dint = P : Ḟ− Ψ̇(F ) =

(
P − ∂Ψ

∂F

)
: Ċ ≥ 0 −→ P =

∂Ψ

∂F
(C.15)

En ambos casos se deduce que una magnitud relacionada con la tensión resulta de la
derivada de la función densidad de enerǵıa. Sin embargo, que se cumpla la segunda ley de la
termodinámica no implica que esa función exista o sea la correcta, teniendo que cumplirse
una serie de condiciones f́ısicas fijas relacionadas con las tensiones y deformaciones:

Enerǵıa nula para deformación nula: Ψ(C = 1) = 0

Enerǵıa infinita para deformación infinita: Ψ(C =∞) =∞

Tensión nula para deformación nula: S(C = 1) = 0

Función convexa o policonvexa: Ψ(C) ≥ 0

La existencia de la función densidad de enerǵıa de deformación, junto a la exigencia
de policonvexidad de la misma permitirá garantizar la existencia de solución del problema
de sólidos deformables [5]. Lógicamente la función densidad de enerǵıa debe de cumplir
el axioma de objetividad (independencia de la referencia) o invariancia ante isometŕıas.
De esta forma, el modelo constitutivo del material será invariante ante una rotación o
traslación del sistema de referencia espacial de la siguiente forma

Ψ(X,C(X)) = Ψ(X + c,C(X + c)) (C.16)

Ψ(X,C) = Ψ(X,QCQT ) (C.17)

donde c es una traslación y Q una rotación finita (matriz ortogonal) arbitrarias.

C.3.1. Modelos hiperelásticos isótropos

Una simetŕıa del material como en el caso isótropo y ortótropo implica la invariancia
de los tensores de comportamiento ante cambios de coordenadas asociados a la simetŕıa.

2Misma fórmula expresada de dos maneras equivalentes
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C.3. Ecuaciones de comportamiento C. Mecánica de Medios Continuos

Es posible demostrar también [6] que, para materiales hiperelásticos con simetŕıas, la
función densidad de enerǵıa de deformación ha de depender solamente de los invariantes
de C o de los alargamientos principales.

I1 = trC = trb

I2 =
1

2
((trC)2 − trC2) =

1

2
((trb)2 − trb2)

I3 = detC = detb

(C.18)

Para el caso de tracción uniforme, se tienen los siguientes invariantes:

Figura C.2: Ensayo uniaxial

x = λ1X
y = λ2Y
z = λ3Z

 (C.19)

F = FiI =
∂xi
∂XJ

=

λ1 0 0

0 λ2 0

0 0 λ3

 ; C = F TF =

λ
2
1 0 0

0 λ2
2 0

0 0 λ2
3

 (C.20)

I1 = trC = λ2
1 + λ2

2 + λ2
3

I2 =
1

2
((trC)2 − trC2) = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3

I3 = detC = λ2
1λ

2
2λ

2
3

(C.21)

Existen diferentes modelos propuestos en la literatura, que se comentan seguida-
mente, y que pueden profundizarse en el texto de Ogden [19].
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Modelo de Ogden (1984): Uno de los modelos fenomenológicos más completos
para la simulación de materiales incompresibles es el modelo por Ogden [18]. En él
se supone que la enerǵıa de deformación es función de los alargamientos principales
λi con i = 1, 2, 3 donde se verifica que J = λ1λ2λ3 = 1 de la siguiente manera

Ψ = Ψ(λ1, λ2, λ3) =
N∑
i=1

µi
αi

(λαi
1 + λαi

2 + λαi
3 − 3) (C.22)

Si se hace una comparación con la teoŕıa lineal puede obternerse una condición de
consistencia

2µ =
N∑
i=1

µiαi con µiαi > 0 (C.23)

donde el parámetro µ es el módulo de cizalladura lineal G.

Modelo de Valanis y Landel (1967): En este modelo [27] se supone que la
enerǵıa de deformación Ψ = Ψ(λ1, λ2, λ3) puede escribirse como la suma de tres
funciones separadas $i(λi) que dependen de los alargamientos principales. A esta
descomposición aditiva de la enerǵıa se denomina hipótesis de Valanis-Landel.

Ψ = Ψ(λ1, λ2, λ3) =
3∑
i=1

$(λi) (C.24)

Para esta hipótesis, la función densidad de enerǵıa de Ogden se escribiŕıa como en
la ecuación anterior pero con

$(λi) =
N∑
i=1

µi
αi

(λαi
i − 1) (C.25)

Modelo de Arruda-Boyce (1993): Este modelo es conocido como el modelo
de las ocho cadenas, ya que fue dearrollado partiendo de la representación de un
volumen elemental con ocho muelles que surǵıan desde el centro del cubo hacia las
esquinas [3]. La función densidad de enerǵıa resulta ser

Ψ = µ
5∑
i=1

Ci
λ2i−1
m

(I1 − 3i) (C.26)

donde

C1 =
1

2
C2 =

1

20
C3 =

11

1050
C4 =

19

7000
C5 =

519

673750
(C.27)
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Modelo de Mooney-Rivlin (1940): Este modelo es una particularización de
modelo de Ogden (Ecuación C.22) [17] y resulta de tomar N = 2, α1 = 2 y α2 = −2.
Usando los invariantes I1 , I2 y con la restricción de que I3 = λ2

1λ
2
2λ

2
3 = 1 se puede

definir

Ψ = C1(λ2
1 +λ2

2 +λ2
3−3)+C2(λ−2

1 +λ−2
2 +λ−2

3 −3) = C1(I1−3)+C2(I2−3) (C.28)

con las constantes C1 = µ1

2
y C2 = −µ2

2
. Paralelamente a la Ecuación C.23 se tiene

que el módulo de cizalladura µ = µ1 − µ2. El modelo clásico de Mooney-Rivlin
es el más empleado para la descripción de gomas con comportamieno isótropo y
está obtenido en base a argumentos matemáticos relacionados con la simetŕıa.

Modelo Neo-Hookeano: El modelo Neo-Hookeano es probablemente el más sen-
cillo de todos y se obtiene de nuevo de la particularización del modelo de Ogden
con N = 1 y α1 = 2. Usando únicamente el primer invariante I1 se tiene

Ψ = C1(λ2
1 + λ2

2 + λ2
3 − 3) = C1(I1 − 3) (C.29)

con la constnte C1 = µ1

2
y el módulo de cizalladura µ = µ1. Esta función densidad

de enerǵıa de deformación incluye un único parámetro y proporciona un modelo
matmático simple para un comportamiento no lineal.

C.3.2. Modelos hiperelásticos anisótropos

Existen dos formas de definir la dependencia direccional en la deformación: restrin-
gir el camino en el cual la enerǵıa depende de la deformación [11] o introducir un vector
que represente de forma expĺıcita la dirección preferente en el material. En este caso la
enerǵıa de deformación puede ser expresada como una función de los componentes de la
deformación lagrangiana en un sistema de coordenadas alineado con la dirección de las
fibras. Dicha dirección local de las fibras se define mediante un vector unitario a0 en la
configuración indeformada.

Cuando un sólido se deforma, el vector a0(X) también se deforma con él, defor-
mación af́ın, y la nueva dirección de las fibras se describe mediante a(ϕ,X). Las fibras
también pueden sufrir un alargamiento (λ) que puede ser determinado en términos del
gradiente de deformación y de la dirección de las fibras en la configuración indeformada
(Figura C.3):

λa = F · a0 (C.30)

dado que a es un vector unitario

λ2a · a = λ2 = a0 · F TF · a0 = a0 ·C · a0 (C.31)

Partiendo de la definición anterior, un material se dice transversalmente isótropo
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Figura C.3: Alargamiento del vector unidireccional de las fibras. Fuente: [21].

si se cumplen las simetŕıas expresadas en la Ecuación C.17, pero en este caso Q no es una
matriz de rotación cualquiera sino que debe verificar que

Q · a0 = a0 =

cos(θ)sin(θ)

0

 (C.32)

La dependencia de la enerǵıa de deformación de a0 puede ser introducida de forma
expĺıcita en Ψ

Ψ(X,C,a0) = Ψ(X,QCQT ,Q · a0 ⊗ a0 ·Q) (C.33)

con Ψ una función isótropa de C y a0 ⊗ a0.

Spencer expresa la función densidad de enerǵıa de deformación Ψ mediante los
invariantes del tensor de deformación de Cauchy-Green por la derecha (I1, I2 y I3) los
cuales definen el comportamieno isótropo, y los pseudo-invariantes I4, I5 que introducen
la anisotroṕıa de las fibras [12].

I1 = trC = λ2
1 + λ2

2 + λ2
3

I2 =
1

2
((trC)2 − trC2) = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3

I3 = detC = λ2
1λ

2
2λ

2
3

I4 = a0 ·C · a0 = λ2
1cos

2(θ) + λ2
2sin

2(θ)

I5 = a0 ·C2 · a0 = λ4
1cos

2(θ) + λ4
2sin

2(θ)

(C.34)

de esta forma se puede expresar la función densidad de enerǵıa de deformación como:

Ψ̃(X,C,a0) = Ψ(X, I1(C), I2(C), I3(C), I4(C,a0), I5(C,a0)) (C.35)
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De forma análoga, pueden existir dos direcciones de anisotroṕıa correspondientes
a dos vectores a0

1 y a0
2, por lo que los nuevos invariantes serán

I4 = a0
1 ·C · a0

1

I5 = a0
1 ·C2 · a0

1

I6 = a0
2 ·C · a0

2

I7 = a0
2 ·C2 · a0

2

I8 = a0
1 ·C · a0

2

(C.36)

Es posible definir la interacción entre las dos direcciones de fibras, sin embargo
este efecto no se suele considerar (I8). Debido al gran número de parámetros e invarian-
tes involucrados, se suelen llevar a cabo varias simplificaciones que permitan disminuir
el tiempo de cálculo computacional. De hecho, los invariantes I4, I6 pueden reproducir
correctamente los efectos de la anisotroṕıa del material aun despreciando la deformación
transversal de las fibras (invariantes I5, I7).

Teniendo en cuenta los expuesto anteriormente, la función densidad de enerǵıa que
gobierna el comportamiento elástico se puede escribir en función de los invariantes I1, I4 e
I6. En la literatura se pueden encontrar varios modelos para tejidos biológicos anisótropos,
de los cuales en el presente proyecto se utilizarán los dos siguientes.

Modelo de Holzapfel-Gasser-Ogden (2000): Uno de los modelos más utilizados
fue propuesto por Holzapfel [14], el cual considera las dos fibras de anisotroṕıa de
forma independiente.

Ψ = Ψ(C,a0
1,a

0
2) = µ(I1 − 3) +

k1

2k2

(ek2(I4−1)2 − 1) +
k3

2k4

(ek4(I6−1)2 − 1) (C.37)

donde el término neo-Hookeano está asociado con el material base con constante
µ > 0, los parámetros k1 > 0 y k3 > 0 tienen dimensiones de tensión y k2 > 0 y
k4 > 0 son adimensionales.

Modelo de Gasser (2006): Posteriormente, Gasser et al. [9] propuso una modi-
ficación del anterior modelo donde se incuye el parámetro κ ∈ (0, 1/3), relacionado
con la dispersión de las fibras alrededor de las direcciones principales determinadas
por I4 e I6. Se puede comprobar que κ = 1/3 indica que el material es isótropo
(dispersión total de las fibras) mientras que κ = 0 indica nula dispersión de las
fibras.

Ψ = Ψ(C,a0
1,a

0
2) = µ(I1−3)+

k1

2k2

(ek2[κI1+(1−3κ)I4−1]2−1)+
k3

2k4

(ek4[κI1+(1−3κ)I6−1]2−1)

(C.38)

Además, este modelo considera que la pareja de fibras son iguales (k1 = k3 y k2 = k4)
y que las direcciones de anisotroṕıa están orientadas de forma helicoidal a ±θo
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respecto a la dirección longitudinal (ver Figura C.4). Por tanto, θ1 = θ y θ2 = −θ,
sustituyendo en las ecuaciones C.34 de los invariantes en tracción uniaxial resulta

I4 = λ2
1cos

2(θ) + λ2
2sin

2(θ)

I6 = λ2
1cos

2(−θ) + λ2
2sin

2(−θ)
(C.39)

Figura C.4: Esquema de la disposición helicoidal de las fibras en un tejido biológico. Fuente:
[7].
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Anexo D

Formulaciones de elementos
finitos

A continuación se exponen los conceptos referidos al análisis de elementos finitos
expuestos en el Caṕıtulo 3.2, pero que por razones de extensión no se han podido explicar
de forma plena. Se supondrán conocimientos básicos del método de elementos finitos. Para
más información al respecto, consultar [31, 32, 33].

El problema biaxial simulado en el Caṕıtulo 3.2 puede ser considerado cuasiestático,
puesto que es un proceso de punzonado lento el cual se puede subdividir en incrementos
diferenciales de tiempo en los que el sistema está en equilibrio constantemente. Durante
la rotura, la cuasiestaticidad se pierde puesto que la probeta rota tiende a recuperar la
posición inicial a alta velocidad.

D.1. Formulaciones de Elementos Finitos

Las ecuaciones de equilibrio discretizadas para un modelo de elementos finitos se
puede resumir de la siguiente forma

P − I = M · ü (D.1)

donde P es el vector de fuerzas externas, I es el vector de fuerzas internas (tensión entre
los elementos) y M · ü es el vector de fuerza debido a la inercia del material.

A la hora de la elección del método de resolución de esta ecuación mediante ele-
mentos finitos, se pueden considerar dos opciones: formulación impĺıcita (Standard) o
expĺıcita (Explicit). Cada una parte de hipótesis distintas y utilizan métodos numéricos
distintos. A continuación se muestran las diferencias entre ambas, aśı como sus ventajas
e inconvenientes.
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D.1.1. Método Impĺıcito

La formulación impĺıcita utiliza el algoritmo de Newton para resolver equilibrio
estático (M · ü = 0). Asumiendo que es conocida la solución de la iteración i (ui), la serie
de Taylor de la estimación siguiente es

P − I +

(
∂P

∂u
− ∂I

∂u

)
c+ ... = 0 (D.2)

Despreciando los términos de mayor órden de la serie, la ecuación quedaŕıa

P − I =

(
∂I

∂u
− ∂P

∂u

)
c = K · c (D.3)

donde K es la matriz de rigidez y c es el factor corrector de la iteración i.

Cada incremento (∆u) se actualiza de la siguiente forma

∆ui+1 = ∆ui + ci (D.4)

En cada incremento se repiten las iteraciones necesarias hasta que se produce la
convergencia. Ello conlleva que las restricciones de contacto se satisfacen para cada nodo,
aśı como el equilibrio de fuerzas y momentos. También las correciones en desplazamiento
(c) deben ser pequeñas comparadas con el incremento de desplazamiento.

Por defecto, Abaqus/Standard utiliza incrementos automáticos. Esto quiere decir
que la convergencia es controlada para determinar el correcto incremento de tiempo (car-
ga). De esta forma, si la convergencia es pobre el incremento de tiempo se disminuye y
viceversa. A continuación se enumeran las caracteŕısticas más importantes del análisis
Standard.

El cálculo comienza con una aproximación inicial e itera hasta la convergencia.

Muy preciso.

Incrementos de tiempo grandes.

Altos requerimientos de memoria.

Adecuado para problemas estáticos o cuasiestáticos con contactos simples.
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D.1.2. Método Expĺıcito

La formulación expĺıcita utiliza el algoritmo de Euler o de diferencias centrales
para resolver el equilibrio dinámico al instante de tiempo actual (t):

(P − I)|t = M · ü|t (D.5)

En este procedimiento, se utiliza una matriz de masas diagonal para gestionar de
forma eficiente el tiempo de cálculo. Por ello, las aceleraciones nodales se puede calcular
facilmente:

üt = M−1(P − I)t (D.6)

Las velocidades y desplazamientos se actualizan de la siguiente forma

u̇t+ ∆t
2

= u̇t−∆t
2

+

(
∆tt+∆t + ∆tt

2

)
üt

ut+∆t = ut + ∆tt+∆tu̇t+ ∆t
2

(D.7)

El método de diferencias centrales es sólo condicionalmente estable, es decir, si el
incremento de tiempo es grande la solución se inestabiliza rápidamente. Por ello, se debe
estimar un incremento de tiempo estable, dado por la fórmula

∆t = min

(
Le
cd

)
(D.8)

donde Le es la longitud caracteŕıstica del elemento y cd es la velocidad de propagación de
ondas, que para materiales lineales es

cd =

√
λ+ 2µ

ρ
=

√
E

ρ
(D.9)

donde λ y µ son las constantes de Lamé (E, módulo de Young) y ρ la densidad del material.
A continuación se enumeran las caracteŕısticas más importantes del análisis Explicit.

El cálculo resuelve incrementos de tiempo sin iteraciones.

No utiliza chequeo de convergencia.

Incrementos de tiempo muy pequeños.

Bajos requerimientos de memoria.

Adecuado para problemas dinámicos o cuasiestáticos con contactos complejos y
grandes deformaciones.
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D.2. Modelización de rotura

Con el fin de simular situaciones en las que la integridad y la fuerza entre dos
fases sea de interés, Abaqus dispone de los denominados elementos cohesivos. Son útiles
para modelar adhesivos, interfases unidas, juntas y fractura. La respuesta constitutiva de
dichos elementos depende de la aplicación espećıfica que se le quiera dar y está basado
en aproximaciones sobre la deformación y la tensión que son apropiadas para el área de
aplicación. La naturaleza de cada respuesta mecánica se pueden clasificar en tres:

Modelo Continuo: Se utiliza para modelar juntas adhesivas donde dos cuerpos
están unidos a través de un material pegajoso con un espesor finito. Las propiedades
macroscópicas del adhesivo, como la rigidez, se pueden medir experimentalmente e
incluirlas en la simulación. Los elementos cohesivos modelan la carga inicial, el inicio
del daño y su propagación tras la fractura.

Modelo de Juntas: Modela juntas entre sólidos y/o parches adhesivos sin restric-
ción lateral. Se puede definir el comportamiento de juntas definiendo propiedades
macroscópicas del material, pero no hay definido un comportamiento espećıfico. Se
diferencian de los elementos de junta ya que los elementos cohesivos son no-lineales,
se puede realizar análisis dinámico y están disponibles tanto en Standard como en
Explicit. Se asume que las juntas están sujetas a un estado de tensión uniaxial.

(a) (b)

Figura D.1: Test de separación con adhesivo de espesor finito (a) y aplicación en probema
con juntas de apriete (b). Fuente: [25]

Ley de tracción-separación: Se utiliza para modelizar interfases adhesivas con
espesor despreciable. En este caso, las propiedades del adhesivo no son relevantes y
se deben aplicar conceptos derivados de la mecánica de la fractura. El modelo sirve
para determinar la posición donde se inicia una grieta y su evolución. Sin embargo,
la grieta está restringida a la zona donde están definidos los elementos cohesivos,
impidiendo que se propague al material contiguo.
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Existe, entre otras, una opción alternativa mucho más sencilla de definir denomina-
das Superficies cohesivas. Se utiliza para interfases unidas cuando el espesor del adhesivo
es despreciable. Por tanto, su comportamiento es muy similar al de los elementos cohesivos
por ley de tracción-separación, aunque computacionalmente más sencillo y eficiente. Sin
embargo, se debe definir la superficie espećıfica donde se inicia la grieta. Este modelo es
el que se empleaen el presente proyecto.

Es importante distinguir que las superficies cohesivas son propiedades de interac-
ción y no propiedades de material. Los conceptos de tensión y desplazamientos propios
de los elementos cohesivos se reinterpretan como separaciones de contacto y fuerzas cohe-
sivas actuando en dirección normal (σ) y tangencial (τs, τt) a la superficie de contacto. A
la hora de definir los parámetros de la zuperficie cohesiva, se deben distinguir tres fases
durante la rotura:

Comportamiento elástico: Antes de iniciarse la grieta, existe una fase elástica
sin daño. Se representa mediante una matriz constitutiva que relaciona las tensio-
nes normal y tangenciales con sus respectivos desplazamientos dentro de la zona
cohesiva.

t =

στs
τt

 =

Knn Kns Knt

Ksn Kss Kst

Ktn Kts Ktt


δnδs
δt

 = Kδ (D.10)

Se puede llevar a cabo una simplificación, suponiendo que las separaciones no estén
acopladas, por lo que sólo hace falta definir los términos de la diagonal (Knn, Kss

y Ktt). Además, como se demuestra en [26], los tejidos biológicos fibrosos muestran
fractura de Modo-I, por lo que sólo existen esfuerzos tensionales en dirección normal
a la grieta (Kss = Ktt = 0).

Iniciación del daño: En esta fase se produce el inicio de la degradación del com-
portamiento cohesivo en el punto de contacto. Dicho proceso comienza cuando las
tensiones o separaciones de contacto satisfacen un determinado criterio definido por
el usuario. Un valor de 1 o más indica que la condición de inicio se ha cumplido. A
continuación se exponen diferentes criterios de inicio de rotura:

máx

(
σ

σmáx
,

τs
τs,máx

,
τt

τs,máx

)
= 1 (D.11)

(
σ

σmáx

)2

+

(
τs

τs,máx

)2

+

(
τt

τs,máx

)2

= 1 (D.12)

Propagación del daño: La ley de evolución de daño describe el ritmo de degrada-
ción de la rigidez cohesiva una vez cumplido el criterio de inicio de fallo. Se define
una variable escalar D que representa el daño total en el punto de contacto, valiendo
0 inicialmente y creciendo hasta 1 si la carga continúa después de la iniciación del
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daño. Las tensiones de contacto son afectadas por el daño de la siguiente forma

σ =

{
(1−D)σ′ σ′ ≥ 0
σ′ σ′ < 0

τs = (1−D)τ ′s
τt = (1−D)τ ′t

(D.13)

donde σ′, τ ′s y τ ′t son los componentes de tensión de contacto predichos por la ley
elástica de tracción-separación sin daño. Existen dos componentes para la definición
de la evolución de daño: la enerǵıa disipada por la fractura (G0) y la especificación
de la naturaleza de la propagación de daño (D) explicada anteriormente, que puede
ser tanto lineal como exponencial.

En la Figura D.2 se representan las tres fases expuestas anteriormente. Se ha
supuesto una evolución de daño lineal, puesto que es una formulación más sencilla y logra
simular correctamente la rotura. Para su completa definición se ha de proporcionar a
Abaqus la pendiente antes del fallo (K), tensión máxima (σmáx) y enerǵıa de fractura
(G0).

Figura D.2: Parámetros de rotura para una ley de tracción-separación.

Del triángulo de la fractura se pueden deducir las separaciones cŕıticas de fallo
(δ0) y de rotura (δr) formuladas en las Ecuaciones D.14. Además, se pueden obtener dos
condiciones obvias para mantener el significado f́ısico: δ0 < δr y G0 > 0.

δ0 =
σmáx
K

δr =
2G0

σmáx

(D.14)
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