
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado

IMPLEMENTACIÓN DEL GRUPO FILTER DE UNA

SONDA RMON CON PYTHON Y LIBPCAP

Autor/es

Jorge Sancho Larraz

Director/es

Álvaro Alesanco Iglesias

Escuela de Ingeniería y Arquitectura

2014

Agradecimientos

En primer lugar queŕıa dar las gracias a Álvaro, ya que sin él este proyecto no

habŕıa sido posible, y sobretodo agradecerle la confianza que ha depositado en mı́ en todo

momento.

A mis padres y mi hermana, quienes realmente han hecho posible que haya llegado

hasta aqúı. Gracias por estar siempre a mi lado, animándome en los malos momentos y

aguantándome en aquellos de mayor estrés.

A todos los compañeros de la universidad por hacer que todas esas largas horas en

el aula y en los laboratorios, aśı como las interminables semanas durante el periodo de

exámenes en la sala de estudios hayan transcurrido de la forma más amena posible.

A toda la gente de la AATUZ, con quienes tantas horas he pasado este año

en el despacho viendo “frikadas” y bebiendo café entre risas. En especial quiero

agradecerles el esfuerzo que realizan para organizar las jornadas NEOCOM y los talleres

desinteresadamente para que puedan disfrutarlos todo el mucho.

A mis amigos de Tauste, por el interés y apoyo que me habéis mostrado en todo

momento y por todos esos momentos que hemos compartido a lo largo de los años.

A todos los miembros de la banda, por soportar mis repetidas ausencias a los ensayos

en los periodos de exámenes.

A la charanga, por todos los buenos momentos que compartimos tanto mientras

tocamos como estando de fiesta.

En definitiva, a todas las personas importantes para mı́, simplemente gracias.

Implementación del grupo Filter de una sonda

RMON con Python y LibPCAP

RESUMEN

Actualmente el protocolo más extendido para gestión de red es SNMP

(Simple Network Management Protocol). Este protocolo permite realizar labores de

monitorización gracias al grupo RMON (Remote Network Monitoring) de la MIB-2

(Management Information Base II).

Durante este proyecto se ha implementado el grupo Filter de RMON. Para ello,

en primer lugar se ha desarrollado un agente SNMP con Python, utilizando la API

PySNMP, que implementase la MIB de RMON. Para mejorar la usabilidad del agente,

se han desarrollado una serie de ficheros que permiten el control del agente del mismo

modo que el resto de servicios del sistema en entornos Linux

A continuación, para dar soporte a la MIB-2, necesaria para el correcto

funcionamiento del grupo Filter, se ha realizado un modulo para nuestro agente capaz

de redireccionar las peticiones correspondientes a OIDs (Object Identifier) de la MIB-

2 hacia un agente NetSNMP que estará corriendo en un puerto privado de la misma

máquina.

Para llevar a cabo las funciones especificas del grupo Filter, ha sido necesario realizar

otro modulo capaz de realizar eficientemente las labores de filtrado. Para este propósito

se han desarrollado las funciones necesarias para generar dinámicamente filtros BPF a

partir de los datos introducidos por el gestor en el agente. Mediante la libreŕıa LibPCAP

se han utilizado dichos filtros para realizar el filtrado de paquetes a nivel de Kernel, lo

cual es imprescindible para mantener la eficiencia.

También se ha propuesto una forma de realizar la gestión de las comunidades en los

agentes a través de mensajes SNMP. Para ello se ha creado una nueva MIB, denominada

communityManagement MIB, y se ha desarrollado un modulo que la implemente en

nuestro agente.

Por último se ha desarrollado una interfaz gráfica que facilite la realización de las

tareas básicas ofrecidas por la sonda desarrollada de forma rápida e intuitiva.

Índice general

1 Introducción 1

1.1 Gestión de red: monitorización y control 1

1.2 Objetivos . 2

1.3 Materiales y herramientas utilizadas 2

1.4 Organización de la memoria . 4

2 La arquitectura SNMP 7

2.1 Introducción a SNMP . 7

2.2 Introducción a RMON . 10

3 Arquitectura y desarrollo del sistema 13

3.1 Arquitectura del sistema . 13

3.1.1 Dispatcher . 14

3.1.2 MIB . 16

3.1.3 Security . 17

3.1.4 Soporte de la MIB-2 . 18

3.1.5 Gestión de las comunidades 18

3.1.6 Filtros . 20

3.1.7 Desarrollo de la GUI . 22

3.2 Integración con el sistema operativo 22

3.3 Instalación . 24

4 Banco de pruebas 25

4.1 Perdida de paquetes. 25

i

ii ÍNDICE GENERAL

4.2 Funcionamiento y estabilidad. 26

5 Conclusiones y ĺıneas futuras 31

5.1 Conlusiones . 31

5.2 Ĺıneas de futuro . 32

Bibliograf́ıa 35

A Acrónimos 37

B Diagramas de flujo de la interacción agente SNMP - MIB 41

C Proceso de definición de la MIB 47

D communityManagement MIB 49

E Gúıa gestión de las comunidades 57

F Implementaciones desechadas de la funcionalidad de filtrado 61

F.1 Primera implementación . 61

F.2 Segunda implementación . 63

G Gúıa de manejo de la GUI 65

H /etc/init.d/rmon 71

I Gúıa completa de instalación de la sonda en sistemas Debian 73

J Banco de pruebas 75

Índice de figuras

2.1 Interacción entre gestor y agente. 8

2.2 Tipos de mensajes definidos en SNMPv2. 10

2.3 Estructura de la MIB-2. 10

2.4 Estructura de la MIB de RMON. 11

3.1 Arquitectura del sistema. 14

3.2 Estructura de la MIB communityManagement. 19

3.3 Funcionamiento de los filtros BPF. 21

3.4 Interfaz gráfica de usuario. 23

4.1 Escenario para controlar la perdida de paquetes. 26

4.2 Tráfico ARP entre el 31/03/2014 y el 31/07/2014. 27

4.3 Tráfico ARP medido por la sonda. 27

4.4 Tráfico TCP medido por la sonda. 27

4.5 Tráfico UDP medido por la sonda. 28

4.6 Tráfico DNS query medido por la sonda. 28

4.7 Tráfico DNS response medido por la sonda. 28

4.8 Tráfico SNMP request medido por la sonda. 29

4.9 Tráfico SNMP response medido por la sonda. 29

4.10 Tráfico HTTPS response origen medido por la sonda. 29

4.11 Tráfico HTTP request origen medido por la sonda. 30

4.12 Tráfico HTTP response origen medido por la sonda. 30

B.1 Workflow Get. 42

B.2 Workflow GetNext. 43

iii

iv ÍNDICE DE FIGURAS

B.3 Workflow GetBulk. 44

B.4 Workflow Set. 45

F.1 Primera implementación del módulo de filtrado 1. 62

F.2 Primera implementación del módulo de filtrado 2. 62

F.3 Segunda implementación del módulo de filtrado. 63

G.1 Menu Conexion→Add. 66

G.2 Menu Conexion→Edit. 66

G.3 Menu Conexion→Delete. 67

G.4 Menu Conexion→Select. 67

G.5 Menu Filter→Create 1. 68

G.6 Menu Filter→Create 2. 68

G.7 Menu Filter→Delete. 69

G.8 Menu Filter→Add. 70

G.9 Menu Filter→Show. 70

Índice de cuadros

v

Caṕıtulo 1

Introducción

1.1 Gestión de red: monitorización y control

La gestión de red consiste en monitorizar y controlar los recursos de una red

con el fin de evitar que ésta llegue a funcionar incorrectamente degradando sus

prestaciones. Las cinco grandes áreas funcionales de la gestión son: rendimiento,

fallos, contabilidad, configuración y seguridad. La monitorización es la parte de la

gestión encargada de observar y analizar el estado y el comportamiento tanto de las

redes como de los equipos que las componen, permitiendo aśı detectar anomaĺıas y

fallos y tomar las medidas oportunas. El control es la parte encargada de modificar

parámetros e iniciar acciones en los equipos, normalmente como respuesta frente

a algún evento detectado por la monitorización.

SNMP es actualmente el estándar de facto en la gestión de redes TCP/IP, y

puede ser utilizado en un amplio espectro de equipos, tales como end systems,

switches, routers y equipamiento de telecomunicaciones entre otros. RMON es un

grupo de SNMP que extiende su funcionalidad, incluyendo la gestión de redes

de área local aśı como de los equipos conectados a estas redes. Especial atención

dentro de RMON requiere el grupo Filter, el cual dota a SNMP de la funcionalidad

necesaria para un filtrado eficiente de los paquetes de red, identificando aquellos

que cumplen un patrón introducido por el gestor y aśı poder monitorizarlos.

A d́ıa de hoy, SNMP es un estándar ya maduro, sobre el que existen numerosos

1

2 1.2. Objetivos

estudios y se encuentra implementado en una ingente cantidad de equipos.

Sin embargo, a pesar de existir varias implementaciones gratuitas de la MIB-

2, las implementaciones de RMON son escasas y muy costosas, por lo que en

este proyecto se propone el desarrollo del grupo Filter de una sonda RMON

multiplataforma y basada en software libre que posibilite la monitorización de

tráfico espećıfico, definido por el gestor de la red mediante filtros.

1.2 Objetivos

El objetivo principal de este proyecto es la implementación del grupo Filter de

una sonda RMON, multiplataforma y basada en software libre. Para considerar el

desarrollo como exitoso, además se deberan cumplir los siguientes objetivos:

• Integración de la sonda con el sistema operativo, de forma que pueda

manejarse del mismo modo que el resto de los servicios del sistema.

• Además de ser funcional, cumpliendo con el estándar SNMP/RMON, debe

ser estable a largo plazo.

• La utilización de la sonda no debe degradar el rendimiento general del sistema

operatvo, esto implica la optimización del consumo de recursos del sistema.

• La gestión de comunidades de acceso al sistema debe integrarse dentro de la

arquitectura de gestión SNMP.

1.3 Materiales y herramientas utilizadas

En cuanto a recursos f́ısicos únicamente fue necesario un ordenador con un

adaptador de red Ethernet y el siguiente software, gratuito en su totalidad.

• Debian: Sistema operativo sobre el que se ha realizado el desarrollo. Es

una distribución de Linux gratuita, fácil de instalar y cuenta con una

ingente cantidad de software. Muestra una de las mejores relaciones entre

funcionalidad y recursos empleados.

Caṕıtulo 1. Introducción 3

• Python: Lenguaje de programación interpretado, multiparadigma y de

código abierto. Se ha utilizado el entorno de desarrollo por defecto, IDLE,

por venir ya instalado con Python y por contar con una interfaz muy sencilla

de utilizar.

– PyASN1: Libreŕıa para trabajar con el lenguaje ASN1 desde Python,

es necesaria para poder trabajar con el agente SNMP.

– PyCryto: Libreŕıa de seguridad para Python, permite utilizar una gran

cantidad de funciones criptográficas, tanto algoritmos criptográficos,

AES o DES, como funciones de hash, SHA1 o MD5.

– PySNMP: Libreŕıa que cuenta con todo lo necesario para trabajar con

SNMP desde Python.

– MySQLdb: Libreŕıa que permite establecer una conexión con una base

de datos MySQL desde Python.

– Signal: Libreŕıa para utilizar señales en Python .

– PyLibPCAP: Libreŕıa que permite utilizar todas las funciones de

LibPCAP desde Python. LibPCAP es una libreŕıa open source de

filtrado de paquetes.

– WxPython: Libreŕıa para la realización de interfaces graficas en

Python

• NetSNMP: Agente SNMP gratuito que implementa la mayoŕıa de grupos

de la MIB-2

• MySQL: Motor de bases de datos gratuito.

• EMMA: Gestor de bases de datos MySQL que facilita la realización de

consultas SQL y la visualización de los datos.

• Cacti: Herramienta para la representación grafica de datos. Permite varios

modos de adquisición de datos y permite la representación de históricos

gracias a la base de datos que utiliza.

4 1.4. Organización de la memoria

• Iperf: Herramienta para la monitorización del ancho de banda disponible

que permite la generación de trafico tanto TCP como UDP.

• VirtualBox: Entorno de virtualización gratuito.

1.4 Organización de la memoria

La memoria está estructurada de la siguiente manera:

• Caṕıtulo 1: Introducción. Es el caṕıtulo actual y contiene una breve

descripción del trabajo realizado, aśı como sus principales objetivos.

• Caṕıtulo 2: La arquitectura SNMP. En este caṕıtulo se describen las

principales caracteŕısticas de la arquitectura SNMP, y las mejoras que le

aporta RMON.

• Caṕıtulo 3: Arquitectura y desarrollo del sistema. En este caṕıtulo se

presenta la arquitectura desarrollada aśı como los diferentes elementos que

se han implementado.

• Caṕıtulo 4: Banco de pruebas. En este caṕıtulo se detallan las pruebas

a las que ha sido sometido el programa y los resultados obtenidos.

• Caṕıtulo 5: Conclusiones y ĺıneas futuras. Este es el último caṕıtulo de

la memoria y contiene las conclusiones que se han sacado en este proyecto y

las posibles ĺıneas futuras que se podŕıan seguir.

También se han añadido los siguientes anexos:

• Anexo A. Acrónimos.

• Anexo B. Diagrama de flujo de la interacción agente SNMP - MIB.

• Anexo C. Proceso de definición de la MIB.

• Anexo D. communityManagement MIB.

Caṕıtulo 1. Introducción 5

• Anexo E. Gúıa para la gestión de las comunidades.

• Anexo F. Implementaciones desechadas de la funcionalidad de

filtrado.

• Anexo G. Gúıa de manejo de la GUI.

• Anexo H. /etc/init.d/rmon

• Anexo I. Gúıa completa de instalación de la sonda en sistemas

Debian.

• Anexo J. Banco de pruebas.

Caṕıtulo 2

La arquitectura SNMP

2.1 Introducción a SNMP

SNMP es una arquitectura propuesta por el IETF para la gestión y

monitorización de red. Dicha arquitectura se ha convertido en el estándar de

facto en redes TCP/IP debido a su simplicidad y potencia. SNMP define tanto

el protocolo para el intercambio de información de gestión como el formato para

la representación de esa información (SMI) y un marco para organizar sistemas

distribuidos en gestores y agentes.

La primera versión del protocolo teńıa fallos tanto de seguridad como

funcionales, tales como la imposibilidad de pedir grandes cantidades de información

en un mismo paquete. En la segunda versión se solucionan algunos problemas

funcionales, pero la seguridad que implementaba no fue aceptada por fallos en

su definición, aśı que se propuso a una tercera versión en la que se implementa

un sistema de seguridad efectivo, manteniendo el funcionamiento de las versiones

anteriores.

En la versión 3 del protocolo se sigue manteniendo el payload (campos de

datos) de las versiones anteriores del protocolo, pero se añade un sistema de

seguridad basado en usuarios (USM, User-based Security Model), que garantiza la

confidencialidad, autenticación e integridad gracias al uso de algoritmos de cifrado

(DES-CBC o AES de 128 bits) y de Hash (MD5 o SHA-1). Por su parte el sistema

7

8 2.1. Introducción a SNMP

VACM (Viewbased Access Control Model) gestiona a que partes de la MIB, es

decir, a que datos, tiene acceso cada usuario.

La arquitectura de SNMP define dos roles básicos, gestor y agente, que

interactuan como se muestra en la figura 2.1:

• Gestor: es el encargado de pedir información y modificarla según las

necesidades de funcionamiento de la máquina en la que reside el agente.

• Agente: programa situado en el equipo que se va a monitorizar, sus

misiones son recolectar y guardar información local, aśı como responder ante

peticiones del gestor y enviar información de forma aśıncrona cuando sucede

algún evento.

Figura 2.1: Interacción entre gestor y agente.

En SNMP existen varios tipos de mensajes, que pueden clasificarse dependiendo

de si es el gestor o el agente el que lo genera. Todos ellos pueden observarse en la

figura 2.2.

Mensajes enviados por el gestor al agente:

• GetRequest: petición de una o varias variables incluidas en el mensaje de

respuesta Response.

• GetNextRequest: petición del valor inmediatamente siguiente al indicado

en el mensaje, cuya respuesta se incluye también en un mensaje Response.

• GetBulkRequest: tipo de petición presente solo a partir de la versión

2. Permite recibir una lista de variables consecutivas para cada variable

solicitada. El número de variables consecutivas viene determinado por el valor

Caṕıtulo 2. La arquitectura SNMP 9

max-repetitions. Además permite pedir variables sin repetir, cuyo número

viene determinado por el valor non-repeaters. Esto posibilita la petición de

una cantidad mayor de información utilizando menor número de mensajes,

lo que incrementa la eficiencia.

• SetRequest: mensaje que modifica una variable de la base de datos. Si

se ha producido algún error durante la realización de la modificación, el

agente lo comunicará en el mensaje de respuesta mediante el código de error

correspondiente.

Mensajes enviados por el agente al gestor:

• Response: mensaje de respuesta para los mensajes enviados por el gestor.

En él se incluyen los valores de las variables requeridas, y el código del error

en caso de que se produzca alguno.

• Trap: mensaje generado y transmitido de forma aśıncrona como respuesta a

un evento excepcional. En él se incluye el sysUpTime, que es el tiempo que

lleva encendido el dispositivo, además de las variables que correspondan al

tipo de trap generado.

Mensajes enviados de gestor a gestor:

• InformationRequest: mensaje para enviar una alerta de un gestor a otro.

Estos mensajes son codificados con BER (Basic Encoding Rules) y se realizan

de forma atómica, es decir, o se completan exitosamente todas las instrucciones de

la petición o no se realizará ninguna.

La forma de conocer la información de la que dispone un agente SNMP es a

través de las MIBs que implementa. Una MIB es una base de datos modelada

en lenguaje SMI (Structure of management Information) y definida por una serie

de objetos, el tipo de dato que representa el objeto y un identificador conocido

como OID (Object Identifier), el cual está formado por una secuencia de números

separados por puntos, representado una estructura jerárquica.

10 2.2. Introducción a RMON

Figura 2.2: Tipos de mensajes definidos en SNMPv2.

Las MIBs se dividen en dos tipos, públicas y privadas. Las públicas están

definidas mediante estándares y proporcionan información general del sistema.

Las privadas están definidas por los fabricantes y ofrecen información acerca del

equipo concreto. La MIB más conocida es la MIB-2, debido a que tiene una amplia

información tanto de la red, por ejemplo parámetros estad́ısticos de tráfico, como

de los dispositivos, por ejemplo el uso de CPU o de memoria. La estructura de

esta MIB puede apreciarse en la figura 2.3.

Figura 2.3: Estructura de la MIB-2.

2.2 Introducción a RMON

RMON es un grupo de la MIB-2 formado por una familia de MIBs y extensiones

diseñadas por el IETF para dar soporte a la monitorización y análisis de protocolos

en redes LAN. La versión original (a veces referida como RMON1, RFC 2819) se

Caṕıtulo 2. La arquitectura SNMP 11

centra en las capas 1 y 2 del modelo OSI en redes ethernet y token ring. Existen

numerosas extensiones como RMON2 (RFC 4502) para dar soporte a las capas de

red y de aplicación, SMON (RFC 2613) para redes conmutadas, DSMON (RFC

3287) para la monitorización de Servicios diferenciados (Differentiated Services),

HCRMON (RFC 3273) para redes de alta capacidad y otras muchas con fines muy

diversos.

El caso de mayor éxito ha sido RMON1, ya provee a SNMP de una gran

expansión de su funcionalidad, mediante la definición de una MIB, sin realizar

ningun cambio en el protocolo. Todo esto ha permitido que RMON haya sido

implementado en una gran cantidad de equipos de los principales fabricantes.

Dicha MIB está formada por 10 subgrupos, tal y como se muestra en la figura

2.4:

Figura 2.4: Estructura de la MIB de RMON.

• stadistics: mantiene estad́ısticas de bajo nivel sobre la utilización y los

errores de cada una de las subredes monitorizadas por el agente.

• history: guarda periódicamente muestras estad́ısticas de la información

disponible en el grupo stadistics.

• alarm: permite al gestor definir un intervalo de muestreo y un umbral para

cualquier contador o entero guardado por la sonda RMON.

• host: contiene contadores de varios tipos de trafico con origen o destino a

los host conectador a la subred.

• hostTopN: contiene almacenadas estad́ısticas de los host que encabezan una

lista basada en algunos parámetros en la tabla de control.

12 2.2. Introducción a RMON

• matrix: muestra información acerca de los errores y la utilización en forma

matricial, aśı el gestor puede recibir información acerca de cada pareja de

direcciones de red.

• filter: permite al gestor observar los paquetes que cumplen un patrón

determinado. Los paquetes que cumplen el filtro pueden ser almacenados

o simplemente contados.

• capture: maneja la forma en que los datos son enviados hasta el gestor.

• event: contiene una tabla con todos los eventos generados por la sonda

RMON.

• tokenRing: mantiene las estad́ısticas e información de configuración para

subredes token ring.

Especial atención merece el grupo Filter, formado por dos tablas, channelTable

y filterTable. Cada una de las filas de la tabla channelTable define un canal único.

Asociado a cada canal hay una o más filas de la tabla filterTable, las cuales definirán

los filtros asociados. Cada vez que un paquete que cumpla los filtros llegue a un

interfaz de la sonda se incrementara un contador en la fila correspondiente de la

tabla channelTable. También es posible gracias al grupo capture que en el caso de

un paquete atraviese el canal exitosamente, dicho paquete sea almacenado en un

buffer de la sonda, y quede disponible para que el gestor pueda descargarlo para

su posterior análisis.

Caṕıtulo 3

Arquitectura y desarrollo del

sistema

3.1 Arquitectura del sistema

Dado que se necesitaba control total sobre el agente, no era suficiente con

extender un agente sino que era necesario desarrollar uno propio. Para realizar esta

tarea existen varias APIs que evitan la programación de algunos aspectos de bajo

nivel, como la codificación/decodificación con BER o conocer exactamente que

bits componen cada uno de los campos del paquete. A pesar de existir APIs para

varios lenguajes de programación, se decidió realizar el desarrollo en Python por

ser un lenguaje de fácil aprendizaje y rápido desarrollo, soportar la programación

orientada a objetos y contar con una ingente cantidad de libreŕıas.

La arquitectura que se ha decidido desarrollar es la mostrada en la figura

3.1. En ella se pueden ver todos los módulos desarrollados, que serán explicados

posteriormente con mayor grado de detalle.

• Dispatcher: Elemento encargado de iniciar el sistema, tras lo cual se ocupa

de recibir paquetes SNMP de la red y enviar las respuestas, extraer y analizar

los campos de cada paquete, y en función del objeto sobre el que se pregunte

delegar en el modulo correspondiente.

• Security: Elemento que verifica que una petición tiene los permisos

13

14 3.1. Arquitectura del sistema

Figura 3.1: Arquitectura del sistema.

necesarios para realizarse.

• MIB: Elemento encargado de almacenar la información tanto introducida

por el gestor como recogida por el agente. Este elemento almacena la

información referente tanto a la gestión de las comunidades como la de

RMON.

• Soporte MIB-2: Elemento permite utilizar la funcionalidad de un agente

externo corriendo en el mismo equipo de forma transparente al usuario, como

si se tratase de un único agente.

• Gestión Comunidades: Elemento que nos permite añadir y eliminar

comunidades SNMP, aśı como editar los privilegios de aquellas ya existentes,

mediante la interacción con una MIB definida para tal fin.

• Filtros: Elemento que interactua con la implementación del grupo Filter de

RMON realizada en este trabajo, y genera los filtros necesarios.

• GUI: Elemento que facilita la interacción con la sonda RMON posibilitando

la configuración de la misma de forma gráfica.

3.1.1 Dispatcher

El Dispatcher es el primer elemento en ser lanzado, por lo que es el

encargado de iniciar el agente. En primer lugar lee un fichero de configuración,

/etc/rmon/rmon.conf, en el cual el usuario puede añadir varios aspectos de la

Caṕıtulo 3. Arquitectura y desarrollo del sistema 15

configuración del agente sin necesidad de modificar el código. Con la información

recuperada de dicho fichero el Dispatcher es capaz de establecer esta configuración

en el Sistema Operativo.

Una vez el sistema está completamente iniciado, el Dispatcher pasa a su

funcionamiento normal quedando encargado de recibir las peticiones SNMP. Para

cada una de las peticiones extrae la versión del protocolo utilizada, la comunidad, el

tipo de petición, el ID para añadirlo al paquete de respuesta (este campo permite al

gestor saber a qué petición corresponde cada respuesta), los campos non-repeaters

y max-repetitions si procede, y los varBinds. Un varBind es una asociación entre

un OID y un valor. Este valor únicamente es relevante en las peticiones de tipo

“Set”. Para cada uno de los varBinds, en primer lugar, el dispatcher invoca al

módulo de seguridad pasando como parámetros la comunidad, el OID y el tipo de

petición. Este módulo devuelve un 1 en caso de tener los permisos adecuados y un

0 en caso contrario.

En caso de no tener permisos el dispatcher ejecutara la función de rollback

cuya finalidad se explicara más adelante y se añadirán los campos de error

correspondientes al paquete de respuesta. Si los permisos son los necesarios, el

dispatcher invocara a una función de backup, que será explicada junto a la

de rollback nombrada anteriormente, decidirá a que modulo tiene que invocar

(Soporte MIB-2, Gestión comunidades o Filtros) en función del OID, y lo

hará pasandole como parámetros el tipo de petición, el OID y el valor (este último

únicamente para las peticiones de tipo “Set”). Este módulo devolverá el OID, el

valor que se encuentre almacenado en la MIB y un campo status que indicará si

todo se ha realizado correctamente y en caso contrario el tipo de error que ha

ocurrido.

En el caso de que haya producido algún error, al igual que en el caso de no tener

los permisos necesarios, se ejecutara la función de rollback y se añadirán los campos

de error correspondientes al paquete de respuesta en función de lo indicado en el

campo status. Si todo el proceso se ha completado satisfactoriamente el dispatcher

añade los campos OID y valor a un varBind del paquete de respuesta con el formato

apropiado y pasa a procesar el siguiente varBind en caso de que exista. Una vez

16 3.1. Arquitectura del sistema

se han acabado de procesar todos los varBinds se procede a enviar el paquete de

respuesta.

La finalidad de las funciones de backup y rollback nombradas anteriormente es

cumplir la especificación del estándar que indica que todas las instrucciones dentro

de un mismo mensaje deben ser ejecutadas atómicamente, es decir, o se ejecutan

todas correctamente o no se ejecutara ninguna. Como existen algunas instrucciones

para las cuales el éxito de su ejecución depende de los valores que toman otros

campos, que pueden ser modificados en el mismo mensaje, no podremos saber si

una instrucción es posible ejecutarla hasta que lo intentemos junto con todas las

anteriores. Para solucionar este problema la función de backup es invocada cada

vez que llega un paquete de tipo set y se encarga de almacenar el estado de la

MIB antes de realizar modificación alguna. La función de rollback es invocada

cada vez que se produce algún error mientras se lleva a cabo alguna de las tareas

relacionadas con dicho paquete y se encarga de devolver la MIB al estado salvado

por la función de backup.

3.1.2 MIB

La MIB es el elemento que almacenará tanto los datos introducidos por el gestor

como la información recogida por el agente. Dado que una MIB esta modelada en

SMIv2, el cual es un lenguaje abstracto que no define el tipo de almacenamiento

sino la estructura de la información, existen diversas posibilidades a la hora de

su implementación en un dispositivo f́ısico. Habrá que recurrir a un medio de

almacenamiento no volátil de la información debido a que en el caso de reiniciar el

agente no se debe perder la información almacenada. Se decidió utilizar una base

de datos MySQL por adaptarse perfectamente a las especificaciones del proyecto

(gratuita y multiplataforma) y existir una libreŕıa para trabajar con ella desde

Python (PyMySQL).

La forma de organizar la base de datos se ha basado en la estructura propuesta

en el Proyecto Fin de Carrera, “Implementación automática de un agente SNMP

a partir de la definición formal de su MIB”[1], para mantener la coherencia con la

Caṕıtulo 3. Arquitectura y desarrollo del sistema 17

forma de trabajo de proyectos anteriores y la compatibilidad con dichos proyectos.

Esta estructura se basa en la utilización de tres tipos de tablas, tablas secundarias

(ts), tablas de control (tc) y tablas de datos (td). Las tablas secundarias son

indexadas por el siguiente fragmento del OID, y contiene el nombre de la siguiente

tabla en la que se buscará, permitiendo recorrer de forma jerárquica la estructura

que definen los OIDs. Las tablas de control están formadas por metadatos e

incluyen toda la información contenida en la MIB. Las tablas de datos son las

que contienen los valores de la instancia del objeto, y en caso de representar a

una tabla de SNMP los ı́ndices de la tabla de datos coincidirán con los de la tabla

SNMP.

Esta estructura de tablas se ha utilizado para representar tanto la MIB

“communityManagement”, la cual se explicará en el punto 3.1.5, como la MIB

del grupo Filter de RMON.

3.1.3 Security

La forma de gestionar los privilegios en las dos primeras versiones del protocolo

es a través de las comunidades. Cada comunidad puede tener una o varias vistas

asociadas, donde cada vista es una dupla compuesta por un OID y el nivel de

acceso sobre esa parte de la MIB, siendo posibles cuatro niveles de acceso: Sin

permisos, Solo lectura, Solo escritura y Lectura-Escritura. La vista tiene efecto

tanto sobre el OID indicado como sobre todos sus descendientes.

Para verificar que una petición tiene los privilegios necesarios, se ha

implementado un módulo el cual es invocado por el Dispatcher cada vez que recibe

una petición. Dicho módulo obtiene como parámetros la comunidad, el OID y el

tipo de petición, y recorre todas las vistas asociadas a la comunidad en busca del

máximo nivel de acceso correspondiente a ese OID. Se asigna como máximo nivel

de acceso el asociado a aquella vista cuyo OID sea el ascendente más cercano al

OID de la petición. En caso de no existir ninguna vista aplicable, el nivel de acceso

será “Sinpermisos”. A continuación comprueba que el nivel de acceso obtenido

sea mayor o igual al requerido por el tipo de petición, siendo de lectura para todas

18 3.1. Arquitectura del sistema

la peticiones excepto para “Set” en cuyo caso es de escritura. Si se cumple la

condición anterior devuelve un 1 y en caso contrario un 0.

3.1.4 Soporte de la MIB-2

Para un correcto funcionamiento del grupo Filter es obligaŕıa la presencia

de algunos grupos de la MIB-2, como el grupo “interfaces”, el cual asigna un

identificador numérico a cada uno de los interfaces de red del equipo. Dichos

identificadores son necesarios para seleccionar el interfaz en el que se desea

configurar cada uno de los canales (conjunto de filtros).

Para dar soporte a la MIB-2 se ha desarrollado un módulo que es invocado

por el Dispathcer cada vez que recibe una petición con un OID correspondiente

a dicha MIB. Este módulo recibirá como parámetros el tipo de petición, OID y

valor, y con ellos generará una nueva petición SNMP que enviará a un agente

NetSNMP (agente SNMP gratuito que implementa la MIB-2 completa) el cual

estará instalado y esperando peticiones en uno de los puertos privados del propio

equipo. Tras enviar la petición quedara a la espera de la respuesta y una vez la

haya recibido la procesará. En este procesado se analizará la posible existencia de

errores y se le asignará el valor correspondiente al campo status. A continuación, en

caso de no existir errores se extraerán los campos OID y valor. Una vez finalizada

su ejecución, este modulo devolverá al Dispatcher los tres campos mencionados

anteriormente.

A pesar de existir la opción de implementar los grupos necesarios como un

módulo de la sonda, se decidió utilizar este otro método debido a que permit́ıa dar

soporte a la MIB-2 completa y a que recoger parte de la información que contiene

la MIB-2 requiere de una delicada interacción con el núcleo del sistema que puede

afectar seriamente a la estabilidad y al rendimiento.

3.1.5 Gestión de las comunidades

Este módulo es el encargado de interactuar con la base de datos que implementa

la MIB “communityManagement”. Cada vez que llega una petición relacionada

Caṕıtulo 3. Arquitectura y desarrollo del sistema 19

con dicha MIB este módulo es lanzado recibiendo como parámetros el tipo de

petición, el OID y el valor. Con estos parámetros recorre la estructura de tablas

siguiendo el esquema presentado en el anexo B hasta obtener el valor deseado. Si

todo se ha realizado satisfactoriamente, asigna un 0 al campo status y devuelve los

valores recogidos de la base de datos al Dispatcher. En caso de haberse producido

algún error devuelve status igual a 1 e interrumpe la ejecución.

La MIB communityManagement se ha definido en este proyecto para permitir

integrar la gestión de las comunidades de acceso al sistema dentro de la arquitectura

SNMP, ya que a pesar de que el uso de comunidades es común a todos los agentes,

la forma de gestionarlas (crearlas, modificar las vistas asociad, etc.) no es estándar.

En la mayor parte de los agentes esta gestión se realizar bien a través de un fichero

de configuración, como es el caso de NetSNMP, o bien mediante una interfaz de

comandos, como sucede en una gran cantidad de equipos comerciales.

La estructura de esta MIB puede apreciarse en la figura 3.2, y el proceso de

definición de la MIB, la definición formal de la misma y una de uso se encuentran

adjuntas en los anexos D, E y F.

Figura 3.2: Estructura de la MIB communityManagement.

• master: Comunidad con permisos de lectura/escritura sobre la tabla

commuintyTable.

• communityIndex: Índice primario de la tabla. Es la representación ASCII

de cada uno de los carácteres que forman el nombre de la comunidad

separados por puntos.

20 3.1. Arquitectura del sistema

• communityName: El nombre de la comunidad.

• communityRowID: Índice secundario de la tabla. Identificador numérico

que permite identificar las diferentes vistas pertenecientes a una misma

comunidad.

• communiteAcces: Permisos asociados a cada una de las vistas.

• communityView: OID raid sobre el que se aplica la vista.

• communityStatus: Campo del tipo “EntryStatus”que permite añadir filas

a la tabla, borrarlas, modificarlas, activarlas y desactivarlas.

3.1.6 Filtros

Del mismo modo que el módulo “Gestión de las comunidades”se encarga de

interactuar con la base de datos que modela la MIB “communityManagement”, el

módulo “Filtros” interactuará con la base de datos que implementa la MIB del

grupo Filter de RMON.

Además, deberá realizar las funciones de filtrado que caracterizan a RMON,

para lo que se utilizará la libreŕıa LibPCAP, la cual permite realizar la captura y

filtrado de paquetes de red. Los programas basados en dicha libreŕıa se ejecutan

en la zona de usuario, pero la captura de paquetes se realiza en la zona del Kernel,

por lo que es necesaria la transferencia de datos desde el kernel-space hacia el

user-space. Esto conlleva una serie de operaciones muy costosas y que es necesario

minimizar para evitar degradar el rendimiento del sistema.

Se han testeado varios esquemas de trabajo pero en este caṕıtulo únicamente

se explica el utilizado en la versión definitiva de la sonda. El resto de las

implementaciones se encuentran comentadas en el anexo F.

Cuando un channelStatus toma el valor “valid”, el módulo “Filtros” crea

un nuevo proceso que quedará al cargo de ese canal. Este proceso correrá un

programa que recibe como parámetro el ı́ndice del canal en cuestión, y con él

recupera de la base de datos toda la información relacionada con dicho canal. A

partir de esa información el programa generará un filtro BPF que cumpla con las

Caṕıtulo 3. Arquitectura y desarrollo del sistema 21

especificaciones configuradas por el gestor. Estos filtros BPF se ejecutan a nivel de

Kernel y únicamente pasan a nivel de usuario aquellos paquetes que han superado

el filtro, como puede apreciarse en la figura 3.3.

Figura 3.3: Funcionamiento de los filtros BPF.

Para configurar un filtro de este tipo en Kernel se utiliza la libreŕıa LibPCAP,

y cada vez que un paquete supera el filtro se ejecuta una función de callback. Dado

que el proceso del agente es el encargado de crear los procesos de filtrado, estos

pueden compartir una zona de memoria que les servirá para comunicarse, por lo

que en la función de callback anterior simplemente se incrementará el contador

situado en la zona de memoria asignada para ese filtro. El esquema de trabajo es

el mostrado en la figura 3.4

La actualización de la base de datos la realizará el proceso del agente, el cual

dispone de toda la información necesaria en la zona de memoria compartida. Esta

actualización la realizará periódicamente en el Callback de una señal de alarma

configurada al inicio el agente. Como la memoria compartida ha de reservarse

al inicio de la ejecución, el número de filtros estará limitado por la cantidad de

memoria reservada. Además será necesario mantener una lista de los filtros activos

22 3.2. Integración con el sistema operativo

y en qué posición de memoria se encuentran.

3.1.7 Desarrollo de la GUI

Se ha desarrollado una aplicación que mediante una interfaz gráfica facilite

el desarrollo de las tareas más habituales realizadas con RMON. Para ello se ha

utilizado la libreŕıa WxPython, la cual está basada en WxWidgets (una libreŕıa

multiplataforma C/C++). Esta libreŕıa es muy rápida, soporta una gran cantidad

de elementos multimedia e interactivos, cuenta con contenedores nativos en todas

las plataformas y permite separar completamente el diseño de la interfaz del código

Python.

La aplicación permite mantener una lista de conexiones con los equipos

gestionados, permitiendo añadir conexiones a la lista aśı como editar y eliminar las

ya existentes. Además cuenta con una opción para seleccionar la conexión sobre

la que realizarán las acciones posteriores.

Para realizar las tareas relacionadas con el grupo Filter cuenta con dos

apartados, el primero permite definir y eliminar modelos de filtro, y la segunda

parte referida al equipo al que estamos conectados que permite ver los filtros que

tiene establecidos, eliminarlos o añadir uno nuevo de los modelados previamente.

La apariencia de la aplicación puede observarse en la figura 3.4 y la gúıa de

manejo se encuentra en el anexo G.

3.2 Integración con el sistema operativo

El agente desarrollado es completamente multiplataforma, pero para mejorar

la experiencia de usuario y facilitar la interacción con él, se han creado una serie

de scripts en Bash para sistemas Debian, que permitan manipular la sonda de

la misma manera que el resto de servicios del sistema operativo, utilizando las

siguientes instrucciones desde una terminal:

• /etc/init.d/rmon start Permite iniciar el agente. En caso de que ya

estuviese iniciado unicamente informa de ello.

Caṕıtulo 3. Arquitectura y desarrollo del sistema 23

Figura 3.4: Interfaz gráfica de usuario.

• /etc/init.d/rmon stop Detiene el agente por completo. En el caso de que

quedase algún proceso de una ejecución anterior no finalizada correctamente

también lo terminará.

• /etc/init.d/rmon restart Concatenación de los dos comandos anteriores,

en el orden stop-start.

• /etc/init.d/rmon status Informa del estado de la sonda, siendo estados

posibles running y stopped.

Además, para que el script pueda utilizarse para lanzar el agente durante

el arranque de Debian, éste debe responder al formato de un LSB init script,

incluyendo una cabecera en la cual se indica el nombre del script, los servicios

que han de iniciarse antes de lanzar el propio script y los que deberán de pararse

después, los runlevels para los cuales se iniciara o se detendrá el servicio, y una

descripción de la funcionalidad del script.

Este script puede verse en el anexo G.

24 3.3. Instalación

3.3 Instalación

Se ha creado una maquina virtual utilizando VirtualBox con una sonda

funcional ya instalada y configurada. En el caso de decir realizar una nueva

instalación se han creado una serie de script para facilitar la instalación en sistemas

Debian, y una gúıa de instalación que puede encontrarse en el anexo I. Es muy

importante tener en cuenta que si se decide instalar la sonda en equipos con

aplicaciones que utilicen bases de datos MySQL, éstas pueden dejar de funcionar

debido a la modificación en la configuración de dicha base de datos.

Caṕıtulo 4

Banco de pruebas

4.1 Perdida de paquetes.

Este parámetro indica el porcentaje de paquetes que no son contabilizados por

la herramienta aun habiendo superado los filtros con éxito. Estas pérdidas pueden

tener dos oŕıgenes, pequeñas pérdidas debidas a una saturación puntual de los

buffers en periodos que el sistema utilice todos los recursos para realizar tareas

criticas, y grandes pérdidas debidas a que la velocidad del tráfico es mayor que la

que el equipo puede procesar.

Para esta tarea se utilizó la herramienta IPERF trabajando con trafico UDP ya

que permite generar tráfico a velocidades determinadas. Para evitar que el trabajo

de generar paquetes degradase las prestaciones del programa de filtrado, tanto el

cliente como el servidor de IPERF se alojaron en equipos distintos al que corŕıa la

sonda, tal y como se aprecia en la figura 4.1.

Para automatizar el proceso de toma de medidas, se preparó un banco de

pruebas, cuyo fichero principal puede observarse en el anexo J. Se realizaron

medidas para un número máximo de filtros igual a 30, cada uno de los cuales

monitorizaba un tipo distinto de tráfico y se encuentran enumerados en el anexo

J, y una velocidad de trafico de hasta 100 Mbps generados por IPERF, obteniendo

en todos los casos que no se perd́ıa ningún paquete.

25

26 4.2. Funcionamiento y estabilidad.

Figura 4.1: Escenario para calcular la perdida de paquetes.

4.2 Funcionamiento y estabilidad.

La estabilidad de la sonda es fundamental para garantizar una correcta y

continua monitorización de la red. Para medir la estabilidad de la sonda, se

instaló en un router para medir los flujos de paquetes correspondientes a 32 filtros

con un tráfico medio de entrada de 300Kbps y de salida de 200Kbps, con picos de

hasta 8Mbps. Para poder monitorizar los filtros se utilizo cacti como sistema de

monitorización. Cacti es un gestor SNMP basado en un servidor web que puede

ofrecer la monitorización de las variables SNMP deseadas de un agente remoto a

través de una web. Se configuró cacti para que recogiera los datos de los filtros de

la sonda cada 5 minutos y los representase gráficamente, con lo que un fallo de

estabilidad podŕıa ser identificado con una discontinuidad en las gráficas.

La sonda permaneció en funcionamiento ininterrumpido durante 4 meses,

periodo tras el cual fue apagada por considerarlo suficiente. En la figura 4.2

podemos observar el tráfico ARP existente durante ese periodo.

Para verificar el correcto funcionamiento de la sonda se analizó la coherencia

de los patrones obtenidos de la sonda con lo esperado en una red de ese tipo. No

se encontró ningún tipo de anomaĺıa, ya que todos los patrones eran coherentes

con lo esperado. En las figuras 4.3, 4.4, 4.5 y 4.6 podemos observar algunas de las

gráficas generadas por Cacti con los datos recogidos por la sonda durante un d́ıa.

Caṕıtulo 4. Banco de pruebas 27

Figura 4.2: Tráfico ARP entre el 31/03/2014 y el 31/07/2014.

Figura 4.3: Tráfico ARP medido por la sonda.

Figura 4.4: Tráfico TCP medido por la sonda.

28 4.2. Funcionamiento y estabilidad.

Figura 4.5: Tráfico UDP medido por la sonda.

Figura 4.6: Tráfico DNS query medido por la sonda.

Figura 4.7: Tráfico DNS response medido por la sonda.

Caṕıtulo 4. Banco de pruebas 29

Figura 4.8: Tráfico SNMP request medido por la sonda.

Figura 4.9: Tráfico SNMP response medido por la sonda.

Figura 4.10: Tráfico HTTPS response origen medido por la sonda.

30 4.2. Funcionamiento y estabilidad.

Figura 4.11: Tráfico HTTP request origen medido por la sonda.

Figura 4.12: Tráfico HTTP response origen medido por la sonda.

Caṕıtulo 5

Conclusiones y ĺıneas futuras

5.1 Conlusiones

En este proyecto se ha desarrollado una sonda RMON que implementa el grupo

Filter, multiplataforma y completamente funcional, de forma que ha sido posible

integrar el resultado del proyecto en una práctica de la asignatura del grado,

“Gestión de Red”.

En las diferentes partes del proyecto se han analizado las principales

herramientas para realizar cada una de las tareas, y se han seleccionado las opciones

más interesantes, siempre tratando de optimizar el rendimiento para obtener un

resultado funcional que pudiese ser utilizado incluso en equipos con reducidas

prestaciones. Además, se ha desarrollado todo de forma modular para permitir que

cualquier parte de este trabajo pudiese ser reaprovechada en futuros proyectos.

El primero de los módulos desarrollados fue el denominado dispatcher, el cual

recibe y responde a las peticiones SNMP que llegan al equipo y realiza las acciones

adecuadas. El módulo security es utilizado cada vez que se recibe una petición

SNMP y verifica que cuenta con los permisos necesarios para ser procesada.

Otro de los módulos desarrollados es el que dota al agente de la funcionalidad

necesaria para comunicarse con agentes secundarios. Esto nos permite utilizar un

agente externo que implemente la MIB-2, de forma transparente al usuario.

El siguiente módulo es el que permite realizar la gestión de las comunidades

31

32 5.2. Ĺıneas de futuro

a través de mensajes SNMP. Para este propósito se ha definido formalmente la

MIB, se ha dado una estructura apropiada para organizar la base de datos y se ha

desarrollado todo lo necesario para interactuar con la base de datos.

El módulo de filtrado, él que da sentido a este proyecto, es capaz de leer la

configuración introducida por el gestor en el agente mediante mensajes SNMP, y

con esa configuración procesar todos los paquetes de red que llegan a su interfaz

(dirigidos a él o no), aplicando todos los filtros introducidos por el gestor y en

caso de existir alguno exitoso indicárselo al agente. Este módulo realiza las tareas

más cŕıticas de la sonda, por lo que ha sido necesario analizar cada detalle de la

implementación para minimizar el consumo de los recursos del sistema.

También se han creado una serie de scripts para integrar la sonda con el sistema

operativo posibilitando la interacción con ella del mismo modo que con el resto de

los servicios del mismo. Además se ha creado una maquina virtual con una sonda

funcional instalada y configurada.

Por último se realizo una aplicación que permite realizar todas las tareas de

configuración y la observación de los resultados a través de una interfaz gráfica

muy simple e intuitiva.

Respecto a los resultados, las medidas de capacidad de filtrado y de estabilidad

indican que la sonda cumple perfectamente con su misión en redes de mediano

tamaño con un número estimado de hasta 300 usuarios.

5.2 Ĺıneas de futuro

Aunque todos lo objetivos planteados se han cumplido en el presente TFG, se

plantean unas posibles mejoras que aportaŕıan funcionalidades extra a la sonda:

• Añadir soporte de la versión 3: Añadir al agente la funcionalidad

necesaria para soportar la versión 3 de SNMP, pudiendo reaprovechar todos

los módulos desarrollados en este trabajo.

• Desarrollo de otros grupos de RMON: Seŕıa muy interesante la

programación de grupos tales como,

Caṕıtulo 5. Conclusiones y ĺıneas futuras 33

– capture: Permite configurar que cuando un paquete supere un filtro,

además de contarlo, lo almacene en un buffer interno del agente y

posteriormente el gestor pueda descargarlo.

– alarm: Permite monitorizar una determinada variable de la MIB de

RMON, con una frecuencia de muestre configurable, y disparar un

evento en caso de que el valor de esta variable (o su delta) sea mayor o

menor que unos determinados umbrales en un periodo de muestreo.

– event: Permite configurar que cuando un evento es disparado se realice

una acción localizada en cualquier parte de la MIB e incluso enviar un

mensaje de tipo Trap al gestor.

• Integración con hardware externo: Con objetivo de mejorar las

prestaciones, se podŕıa delegar toda la funcionalidad de filtrado en un

dispositivo lógico programable con interfaz Ethernet.

• Proxy Netconf-RMON: NetConf es un protocolo para la gestión de

red desarrollado y estandarizado por el IETF. Se podŕıa definir de un

modulo YANG (equivalentes a las MIB en SNMP) e implementación de un

software que haga las veces de proxy permitiendo la explotación de toda la

funcionalidad de RMON desde un cliente NetConf.

• Sonda RMON distribuida: Estudio de las opciones existentes para que un

único agente RMON sea capaz de trabajar con una serie de filtros distribuidos

en varios equipos de la topoloǵıa de la red de forma transparente para el

usuario. En este caso podŕıan estudiarse la posibilidades de cada equipo

solo ejecutara unos pocos filtros en lugar de todos cuando se trate de redes

no segmentadas. En el caso de redes segmentadas cada equipo podŕıa estar

ejecutando el total de los filtros, pero solo lo haŕıa con el trafico que atravesase

su segmento. Esto permitiŕıa aprovechar al máximo los recursos disponibles.

Bibliograf́ıa

[1] Arribas, J. C. (2012). �Implementación automática de un agente SNMP a

partir de la definición formal de su MIB�.

[2] Case, J.; Fedor, M.; Schoffstall, M. y Davin, J. (Mayo de 1990). �RFC 1157 -

Simple Network Management Protocol (SNMP)�. Informe técnico, Internet

Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc1157

[3] McCloghrie, K. y Rose, M. (Mayo de 1990). �RFC 1213 - Management

Information Base for Network Management of TCP/IP-based internets: MIB-

II�. Informe técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc1213

[4] Stallings, W. (1996). SNMP, SNMPv2 and RMON: Practical Network

Management. Addison-Wesley.

[5] Stevens, W. y Rago, S. (2005). Advanced Programing in the UNIX

Environment. Addison-Wesley.

[6] Waldbusser, S. (Julio del 2002). �RFC 3273 - Remote Network Monitoring

Management Information Base for High Capacity Networks�. Informe

técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc3273

[7] —— (Mayo del 2000). �RFC 2819 - Remote Network Monitoring Management

Information Base�. Informe técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc2819

35

http://tools.ietf.org/html/rfc1157
http://tools.ietf.org/html/rfc1213
http://tools.ietf.org/html/rfc3273
http://tools.ietf.org/html/rfc2819

36 Bibliograf́ıa

[8] —— (Mayo del 2006). �RFC 4502 - Remote Network Monitoring Management

Information Base Version 2�. Informe técnico, Internet Engineering Task

Force (IETF).

http://tools.ietf.org/html/rfc4502

[9] Waldbusser, S.; Cole, R.; Kalbfleisch, C. y Romascanu, D. (Agosto del 2003).

�RFC 3577 - Introduction to the Remote Monitoring (RMON) Family of MIB

Modules�. Informe técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc3577

[10] Waterman, R.; Lahaye, B.; Romascanu, D. y Waldbusser, S. (Junio del 1999).

�RFC 2613 - Remote Network Monitoring MIB Extensions for Switched

Networks Version 1.0�. Informe técnico, Internet Engineering Task Force

(IETF).

http://tools.ietf.org/html/rfc2613

http://tools.ietf.org/html/rfc4502
http://tools.ietf.org/html/rfc3577
http://tools.ietf.org/html/rfc2613

	Introducción
	Gestión de red: monitorización y control
	Objetivos
	Materiales y herramientas utilizadas
	Organización de la memoria

	La arquitectura SNMP
	Introducción a SNMP
	Introducción a RMON

	Arquitectura y desarrollo del sistema
	Arquitectura del sistema
	Dispatcher
	MIB
	Security
	Soporte de la MIB-2
	Gestión de las comunidades
	Filtros
	Desarrollo de la GUI

	Integración con el sistema operativo
	Instalación

	Banco de pruebas
	Perdida de paquetes.
	Funcionamiento y estabilidad.

	Conclusiones y líneas futuras
	Conlusiones
	Líneas de futuro

	Bibliografía

