«2s Universidad
181 Zaragoza

1542

Trabajo Fin de Grado

IMPLEMENTACION DEL GRUPO FILTER DE UNA
SONDA RMON CON PYTHON Y LIBPCAP

Autor/es

Jorge Sancho Larraz

Director/es

Alvaro Alesanco Iglesias

Escuela de Ingenieria y Arquitectura
2014

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Agradecimientos

En primer lugar queria dar las gracias a Alvaro, ya que sin €l este proyecto no
habria sido posible, y sobretodo agradecerle la confianza que ha depositado en mi en todo
momento.

A mis padres y mi hermana, quienes realmente han hecho posible que haya llegado
hasta aqui. Gracias por estar siempre a mi lado, animdndome en los malos momentos y
aguantdndome en aquellos de mayor estrés.

A todos los companeros de la universidad por hacer que todas esas largas horas en
el aula y en los laboratorios, asi como las interminables semanas durante el periodo de
exdmenes en la sala de estudios hayan transcurrido de la forma mds amena posible.

A toda la gente de la AATUZ, con quienes tantas horas he pasado este arno
en el despacho viendo “frikadas” 1y bebiendo café entre risas. En especial quiero
agradecerles el esfuerzo que realizan para organizar las jornadas NEOCOM y los talleres
desinteresadamente para que puedan disfrutarlos todo el mucho.

A mis amigos de Tauste, por el interés y apoyo que me habéis mostrado en todo
momento y por todos esos momentos que hemos compartido a lo largo de los anos.

A todos los miembros de la banda, por soportar mis repetidas ausencias a los ensayos
en los periodos de exdmenes.

A la charanga, por todos los buenos momentos que compartimos tanto mientras
tocamos como estando de fiesta.

En definitiva, a todas las personas importantes para mi, simplemente gracias.

Implementacién del grupo Filter de una sonda
RMON con Python y LibPCAP

RESUMEN

Actualmente el protocolo mds extendido para gestion de red es SNMP
(Simple Network Management Protocol). Este protocolo permite realizar labores de
monitorizacion gracias al grupo RMON (Remote Network Monitoring) de la MIB-2
(Management Information Base II).

Durante este proyecto se ha implementado el grupo Filter de RMON. Para ello,
en primer lugar se ha desarrollado un agente SNMP con Python, utilizando la API
PySNMP, que implementase la MIB de RMON. Para mejorar la usabilidad del agente,
se han desarrollado una serie de ficheros que permiten el control del agente del mismo
modo que el resto de servicios del sistema en entornos Linux

A continuacién, para dar soporte a la MIB-2, mnecesaria para el correcto
funcionamiento del grupo Filter, se ha realizado un modulo para nuestro agente capaz
de redireccionar las peticiones correspondientes a OIDs (Object Identifier) de la MIB-
2 hacia un agente NetSNMP que estard corriendo en un puerto privado de la misma
mdquina.

Para llevar a cabo las funciones especificas del grupo Filter, ha sido necesario realizar
otro modulo capaz de realizar eficientemente las labores de filtrado. Para este propdsito
se han desarrollado las funciones necesarias para generar dindmicamente filtros BPF a
partir de los datos introducidos por el gestor en el agente. Mediante la libreria LibPCAP
se han utilizado dichos filtros para realizar el filtrado de paquetes a nivel de Kernel, lo
cual es imprescindible para mantener la eficiencia.

También se ha propuesto una forma de realizar la gestion de las comunidades en los
agentes a través de mensajes SNMP. Para ello se ha creado una nueva MIB, denominada
communityManagement MIB, y se ha desarrollado un modulo que la implemente en
nuestro agente.

Por dltimo se ha desarrollado una interfaz grdfica que facilite la realizacion de las

tareas bdsicas ofrecidas por la sonda desarrollada de forma rdpida e intuitiva.

Indice general

1 Introduccién

1.1 Gestion de red: monitorizacién y control oL L.
1.2 Objetivos
1.3 Materiales y herramientas utilizadas
1.4 Organizacion de la memoria L.

2 La arquitectura SNMP
2.1 Introduccion a SNMP
2.2 Introduccion a RMON

3 Arquitectura y desarrollo del sistema

3.1 Arquitectura del sistema L.
3.1.1 Dispatcher
3.1.2 MIB
3.1.3 Security
3.1.4 Soportedela MIB-2,
3.1.5 Gestion de las comunidades
3.1.6 Filtros
3.1.7 Desarrollodela GUI

3.2 Integracion con el sistema operativo

3.3 Instalaciomo

4 Banco de pruebas

4.1 Perdida de paquetes.

10

13
13
14
16
17
18
18
20
22
22
24

25

11

INDICE GENERAL

4.2 Funcionamiento y estabilidad. 0000

Conclusiones y lineas futuras
5.1 Conlusiones

5.2 Lineas de futuro

Bibliografia

A

B

Acrénimos

Diagramas de flujo de la interaccién agente SNMP - MIB
Proceso de definicién de la MIB

communityManagement MIB

Guia gestion de las comunidades

Implementaciones desechadas de la funcionalidad de filtrado
F.1 Primera implementacion

F.2 Segunda implementacion
Guia de manejo de la GUI

/etc/init.d /rmon

Guia completa de instalaciéon de la sonda en sistemas Debian

Banco de pruebas

26

31
31
32

35

37

41

47

49

57

61
61
63

65

71

73

75

Indice de figuras

2.1 Interaccién entre gestor y agente. 8
2.2 Tipos de mensajes definidos en SNMPv2. 10
2.3 Estructuradela MIB-2. 10
2.4 Estructura de la MIB de RMON. 11
3.1 Arquitectura del sistema. L. 14
3.2 Estructura de la MIB communityManagement. 19
3.3 Funcionamiento de los filtros BPF. 21
3.4 Interfaz grafica de usuario. 23
4.1 Escenario para controlar la perdida de paquetes. 26
4.2 Trafico ARP entre el 31/03/2014 y el 31/07/2014. 27
4.3 Trafico ARP medido por lasonda. 27
4.4 Trafico TCP medido por lasonda. 27
4.5 'Trafico UDP medido por lasonda. 28
4.6 Trafico DNS query medido por lasonda. 28
4.7 Tréafico DNS response medido por lasonda. 28
4.8 Trafico SNMP request medido por lasonda. 29
4.9 Tréfico SNMP response medido por lasonda. 29
4.10 Trafico HT'TPS response origen medido por la sonda. 29
4.11 Trafico HTTP request origen medido por la sonda. 30
4.12 Trafico HTTP response origen medido por la sonda. 30
B.1 Workflow Get. 42

B.2 Workflow GetNext. 43

iii

v

B.3
B.4

F.1
F.2
F.3

G.1
G.2
G.3
G.4
G.5
G.6
G.7
G.8
G.9

INDICE DE FIGURAS

Workflow GetBulk.o 44
Workflow Set. 45
Primera implementacién del médulo de filtrado 1. 62
Primera implementacién del modulo de filtrado 2. 62
Segunda implementacion del médulo de filtrado. 63
Menu Conexion—Add. 66
Menu Conexion—Edit. oo 66
Menu Conexion—Delete. oL 67
Menu Conexion—Select. 67
Menu Filter—Create 1. 68
Menu Filter—Create 2.o 68
Menu Filter—Delete.o 69
Menu Filter—Add. 70

Menu Filter—Show. 70

Indice de cuadros

Capitulo 1

Introduccion

1.1 Gestion de red: monitorizaciéon y control

La gestion de red consiste en monitorizar y controlar los recursos de una red
con el fin de evitar que ésta llegue a funcionar incorrectamente degradando sus
prestaciones. Las cinco grandes areas funcionales de la gestiéon son: rendimiento,
fallos, contabilidad, configuracion y seguridad. La monitorizacién es la parte de la
gestion encargada de observar y analizar el estado y el comportamiento tanto de las
redes como de los equipos que las componen, permitiendo asi detectar anomalias y
fallos y tomar las medidas oportunas. El control es la parte encargada de modificar
parametros e iniciar acciones en los equipos, normalmente como respuesta frente

a algin evento detectado por la monitorizacion.

SNMP es actualmente el estandar de facto en la gestién de redes TCP/IP, y
puede ser utilizado en un amplio espectro de equipos, tales como end systems,
switches, routers y equipamiento de telecomunicaciones entre otros. RMON es un
grupo de SNMP que extiende su funcionalidad, incluyendo la gestion de redes
de area local asi como de los equipos conectados a estas redes. Especial atencién
dentro de RMON requiere el grupo Filter, el cual dota a SNMP de la funcionalidad
necesaria para un filtrado eficiente de los paquetes de red, identificando aquellos

que cumplen un patrén introducido por el gestor y asi poder monitorizarlos.

A dia de hoy, SNMP es un estandar ya maduro, sobre el que existen numerosos

2 1.2. Objetivos

estudios y se encuentra implementado en una ingente cantidad de equipos.
Sin embargo, a pesar de existir varias implementaciones gratuitas de la MIB-
2, las implementaciones de RMON son escasas y muy costosas, por lo que en
este proyecto se propone el desarrollo del grupo Filter de una sonda RMON
multiplataforma y basada en software libre que posibilite la monitorizacion de

trafico especifico, definido por el gestor de la red mediante filtros.

1.2 Objetivos

El objetivo principal de este proyecto es la implementacion del grupo Filter de
una sonda RMON, multiplataforma y basada en software libre. Para considerar el

desarrollo como exitoso, ademas se deberan cumplir los siguientes objetivos:

e Integracion de la sonda con el sistema operativo, de forma que pueda

manejarse del mismo modo que el resto de los servicios del sistema.

e Ademads de ser funcional, cumpliendo con el estdndar SNMP/RMON, debe

ser estable a largo plazo.

e La utilizacion de la sonda no debe degradar el rendimiento general del sistema

operatvo, esto implica la optimizacion del consumo de recursos del sistema.

e La gestion de comunidades de acceso al sistema debe integrarse dentro de la

arquitectura de gestion SNMP.

1.3 Materiales y herramientas utilizadas

En cuanto a recursos fisicos unicamente fue necesario un ordenador con un

adaptador de red Ethernet y el siguiente software, gratuito en su totalidad.

e Debian: Sistema operativo sobre el que se ha realizado el desarrollo. Es
una distribucion de Linux gratuita, facil de instalar y cuenta con una
ingente cantidad de software. Muestra una de las mejores relaciones entre

funcionalidad y recursos empleados.

Capitulo 1. Introduccion 3

e Python: Lenguaje de programacién interpretado, multiparadigma y de
codigo abierto. Se ha utilizado el entorno de desarrollo por defecto, IDLE,
por venir ya instalado con Python y por contar con una interfaz muy sencilla

de utilizar.

— PyASN1: Libreria para trabajar con el lenguaje ASN1 desde Python,

es necesaria para poder trabajar con el agente SNMP.

— PyCryto: Libreria de seguridad para Python, permite utilizar una gran
cantidad de funciones criptograficas, tanto algoritmos criptograficos,

AES o DES, como funciones de hash, SHA1 o MD5.

— PySNMP: Libreria que cuenta con todo lo necesario para trabajar con

SNMP desde Python.

— MySQLdb: Libreria que permite establecer una conexién con una base

de datos MySQL desde Python.
— Signal: Libreria para utilizar senales en Python .

— PyLibPCAP: Libreria que permite utilizar todas las funciones de
LibPCAP desde Python. LibPCAP es una libreria open source de
filtrado de paquetes.

— WxPython: Libreria para la realizaciéon de interfaces graficas en

Python

e NetSNMP: Agente SNMP gratuito que implementa la mayoria de grupos
de la MIB-2

e MySQL: Motor de bases de datos gratuito.

e EMMA: Gestor de bases de datos MySQL que facilita la realizacién de

consultas SQL y la visualizacién de los datos.

e Cacti: Herramienta para la representacion grafica de datos. Permite varios
modos de adquisicion de datos y permite la representacion de historicos

gracias a la base de datos que utiliza.

1.4. Organizacién de la memoria

Iperf: Herramienta para la monitorizaciéon del ancho de banda disponible

que permite la generacién de trafico tanto TCP como UDP.

VirtualBox: Entorno de virtualizacion gratuito.

1.4 Organizacion de la memoria

La memoria esta estructurada de la siguiente manera:

Capitulo 1: Introduccién. Es el capitulo actual y contiene una breve

descripcion del trabajo realizado, asi como sus principales objetivos.

Capitulo 2: La arquitectura SNMP. En este capitulo se describen las
principales caracteristicas de la arquitectura SNMP, y las mejoras que le

aporta RMON.

Capitulo 3: Arquitectura y desarrollo del sistema. En este capitulo se
presenta la arquitectura desarrollada asi como los diferentes elementos que

se han implementado.

Capitulo 4: Banco de pruebas. En este capitulo se detallan las pruebas

a las que ha sido sometido el programa y los resultados obtenidos.

Capitulo 5: Conclusiones y lineas futuras. Este es el iltimo capitulo de
la memoria y contiene las conclusiones que se han sacado en este proyecto y

las posibles lineas futuras que se podrian seguir.

También se han anadido los siguientes anexos:

Anexo A. Acrénimos.
Anexo B. Diagrama de flujo de la interaccién agente SNMP - MIB.
Anexo C. Proceso de definicion de la MIB.

Anexo D. communityManagement MIB.

Capitulo 1. Introduccion 5

e Anexo E. Guia para la gestion de las comunidades.

e Anexo F. Implementaciones desechadas de la funcionalidad de

filtrado.
e Anexo G. Guia de manejo de la GUI.
e Anexo H. /etc/init.d/rmon

e Anexo I. Guia completa de instalacién de la sonda en sistemas

Debian.

e Anexo J. Banco de pruebas.

Capitulo 2

La arquitectura SNMP

2.1 Introduccion a SNMP

SNMP es una arquitectura propuesta por el IETF para la gestién y
monitorizacién de red. Dicha arquitectura se ha convertido en el estandar de
facto en redes TCP/IP debido a su simplicidad y potencia. SNMP define tanto
el protocolo para el intercambio de informacién de gestién como el formato para
la representacién de esa informacién (SMI) y un marco para organizar sistemas

distribuidos en gestores y agentes.

La primera versién del protocolo tenia fallos tanto de seguridad como
funcionales, tales como la imposibilidad de pedir grandes cantidades de informacion
en un mismo paquete. En la segunda versién se solucionan algunos problemas
funcionales, pero la seguridad que implementaba no fue aceptada por fallos en
su definicién, asi que se propuso a una tercera versién en la que se implementa
un sistema de seguridad efectivo, manteniendo el funcionamiento de las versiones

anteriores.

En la versién 3 del protocolo se sigue manteniendo el payload (campos de
datos) de las versiones anteriores del protocolo, pero se anade un sistema de
seguridad basado en usuarios (USM, User-based Security Model), que garantiza la

confidencialidad, autenticacion e integridad gracias al uso de algoritmos de cifrado

(DES-CBC o AES de 128 bits) y de Hash (MD5 o SHA-1). Por su parte el sistema

7

8 2.1. Introduccion a SNMP

VACM (Viewbased Access Control Model) gestiona a que partes de la MIB, es
decir, a que datos, tiene acceso cada usuario.
La arquitectura de SNMP define dos roles basicos, gestor y agente, que

interactuan como se muestra en la figura 2.1:

e Gestor: es el encargado de pedir informaciéon y modificarla segin las

necesidades de funcionamiento de la maquina en la que reside el agente.

e Agente: programa situado en el equipo que se va a monitorizar, sus
misiones son recolectar y guardar informacion local, asi como responder ante
peticiones del gestor y enviar informacién de forma asincrona cuando sucede

algin evento.

Envi¢ de peticiones SNMP

S
Envid de respuestas SNMP

Gestor SNMP Agente SNMP

v/

Figura 2.1: Interaccion entre gestor y agente.

En SNMP existen varios tipos de mensajes, que pueden clasificarse dependiendo
de si es el gestor o el agente el que lo genera. Todos ellos pueden observarse en la
figura 2.2.

Mensajes enviados por el gestor al agente:

e GetRequest: peticion de una o varias variables incluidas en el mensaje de

respuesta Response.

o GetNextRequest: peticion del valor inmediatamente siguiente al indicado

en el mensaje, cuya respuesta se incluye también en un mensaje Response.

e GetBulkRequest: tipo de peticiéon presente solo a partir de la version
2. Permite recibir una lista de variables consecutivas para cada variable

solicitada. El nimero de variables consecutivas viene determinado por el valor

Capitulo 2. La arquitectura SNMP 9

max-repetitions. Ademdas permite pedir variables sin repetir, cuyo nimero
viene determinado por el valor non-repeaters. Esto posibilita la peticién de
una cantidad mayor de informacién utilizando menor niimero de mensajes,

lo que incrementa la eficiencia.

e SetRequest: mensaje que modifica una variable de la base de datos. Si
se ha producido algin error durante la realizacion de la modificacion, el
agente lo comunicara en el mensaje de respuesta mediante el cédigo de error

correspondiente.
Mensajes enviados por el agente al gestor:

¢ Response: mensaje de respuesta para los mensajes enviados por el gestor.
En él se incluyen los valores de las variables requeridas, y el codigo del error

en caso de que se produzca alguno.

e Trap: mensaje generado y transmitido de forma asincrona como respuesta a
un evento excepcional. En €l se incluye el sysUpTime, que es el tiempo que
lleva encendido el dispositivo, ademéas de las variables que correspondan al

tipo de trap generado.
Mensajes enviados de gestor a gestor:
¢ InformationRequest: mensaje para enviar una alerta de un gestor a otro.

Estos mensajes son codificados con BER (Basic Encoding Rules) y se realizan
de forma atémica, es decir, o se completan exitosamente todas las instrucciones de
la peticiéon o no se realizard ninguna.

La forma de conocer la informacion de la que dispone un agente SNMP es a
través de las MIBs que implementa. Una MIB es una base de datos modelada
en lenguaje SMI (Structure of management Information) y definida por una serie
de objetos, el tipo de dato que representa el objeto y un identificador conocido
como OID (Object Identifier), el cual estd formado por una secuencia de ntimeros

separados por puntos, representado una estructura jerarquica.

10 2.2. Introduccion a RMON

Manager Agent Manager Agent Manager Agent

G G

G et) El
\",’iei‘ff\,/—/wpmj/ Respcnse’PDU \K/R,QSPL/WJ

Manager Agent Manager Manager Manager Agent

!

Seﬂ'\’equ est.ppy "fD’mRE‘ques t-FDY
U
\‘/’/Ref",mfiw// Rosponse P00 snnpvz-TroeP0

Figura 2.2: Tipos de mensajes definidos en SNMPv2.

Las MIBs se dividen en dos tipos, publicas y privadas. Las publicas estan
definidas mediante estandares y proporcionan informacion general del sistema.
Las privadas estan definidas por los fabricantes y ofrecen informacién acerca del
equipo concreto. La MIB mas conocida es la MIB-2, debido a que tiene una amplia
informacion tanto de la red, por ejemplo parametros estadisticos de trafico, como
de los dispositivos, por ejemplo el uso de CPU o de memoria. La estructura de

esta MIB puede apreciarse en la figura 2.3.

Mib-2 (.1.3.6.1.2.1)

| | | | | | |

System (1) Interfaces (2) At(3) IP (4) ICMP (5) TCP (6) UDP (7) EGP (8) SNMP (9)

Figura 2.3: Estructura de la MIB-2.

2.2 Introduccion a RMON

RMON es un grupo de la MIB-2 formado por una familia de MIBs y extensiones
disenadas por el IETF para dar soporte a la monitorizacién y analisis de protocolos

en redes LAN. La version original (a veces referida como RMON1, RFC 2819) se

Capitulo 2. La arquitectura SNMP 11

centra en las capas 1 y 2 del modelo OSI en redes ethernet y token ring. Existen
numerosas extensiones como RMON2 (RFC 4502) para dar soporte a las capas de
red y de aplicacién, SMON (RFC 2613) para redes conmutadas, DSMON (RFC
3287) para la monitorizacion de Servicios diferenciados (Differentiated Services),
HCRMON (RFC 3273) para redes de alta capacidad y otras muchas con fines muy
diversos.

El caso de mayor éxito ha sido RMONI, ya provee a SNMP de una gran
expansion de su funcionalidad, mediante la definicién de una MIB, sin realizar
ningun cambio en el protocolo. Todo esto ha permitido que RMON haya sido
implementado en una gran cantidad de equipos de los principales fabricantes.
Dicha MIB estd formada por 10 subgrupos, tal y como se muestra en la figura

2.4:

RMON (.1.3.6.1.2.1.16)

| | | | |

stadistics (1) histary (2) alarm (3) host (4) hostTopN (5) matrix (6) filter (7) capture (8) Event (9) tokenRing (10)

Figura 2.4: Estructura de la MIB de RMON.

e stadistics: mantiene estadisticas de bajo nivel sobre la utilizacién y los

errores de cada una de las subredes monitorizadas por el agente.

e history: guarda periddicamente muestras estadisticas de la informacién

disponible en el grupo stadistics.

e alarm: permite al gestor definir un intervalo de muestreo y un umbral para

cualquier contador o entero guardado por la sonda RMON.

e host: contiene contadores de varios tipos de trafico con origen o destino a

los host conectador a la subred.

e hostTopIN: contiene almacenadas estadisticas de los host que encabezan una

lista basada en algunos parametros en la tabla de control.

12 2.2. Introduccion a RMON

e matrix: muestra informacién acerca de los errores y la utilizacién en forma
matricial, asi el gestor puede recibir informaciéon acerca de cada pareja de

direcciones de red.

e filter: permite al gestor observar los paquetes que cumplen un patrén
determinado. Los paquetes que cumplen el filtro pueden ser almacenados

o simplemente contados.
e capture: maneja la forma en que los datos son enviados hasta el gestor.

e event: contiene una tabla con todos los eventos generados por la sonda

RMON.

e tokenRing: mantiene las estadisticas e informacion de configuracion para

subredes token ring.

Especial atencién merece el grupo Filter, formado por dos tablas, channel Table
y filterTable. Cada una de las filas de la tabla channelTable define un canal tinico.
Asociado a cada canal hay una o mas filas de la tabla filterTable, las cuales definiran
los filtros asociados. Cada vez que un paquete que cumpla los filtros llegue a un
interfaz de la sonda se incrementara un contador en la fila correspondiente de la
tabla channelTable. También es posible gracias al grupo capture que en el caso de
un paquete atraviese el canal exitosamente, dicho paquete sea almacenado en un
buffer de la sonda, y quede disponible para que el gestor pueda descargarlo para

su posterior analisis.

Capitulo 3

Arquitectura y desarrollo del

sistema

3.1 Arquitectura del sistema

Dado que se necesitaba control total sobre el agente, no era suficiente con
extender un agente sino que era necesario desarrollar uno propio. Para realizar esta
tarea existen varias APIs que evitan la programacion de algunos aspectos de bajo
nivel, como la codificacién/decodificaciéon con BER o conocer exactamente que
bits componen cada uno de los campos del paquete. A pesar de existir APIs para
varios lenguajes de programacion, se decidio realizar el desarrollo en Python por
ser un lenguaje de facil aprendizaje y rapido desarrollo, soportar la programacion
orientada a objetos y contar con una ingente cantidad de librerias.

La arquitectura que se ha decidido desarrollar es la mostrada en la figura
3.1. En ella se pueden ver todos los moédulos desarrollados, que seran explicados

posteriormente con mayor grado de detalle.

e Dispatcher: Elemento encargado de iniciar el sistema, tras lo cual se ocupa
de recibir paquetes SNMP de la red y enviar las respuestas, extraer y analizar
los campos de cada paquete, y en funcién del objeto sobre el que se pregunte

delegar en el modulo correspondiente.

e Security: Elemento que verifica que una peticién tiene los permisos

13

14 3.1. Arquitectura del sistema

Equipo Fisico Estacién gestora

Agente SNMP Externo Sonda RMON

SNMP

Protocol P
» Soporte MIB-2 Di ! SNMP Protocol sul

MIB-2

Gestion
comunidades

Filtros MIB -~ Security

Figura 3.1: Arquitectura del sistema.

necesarios para realizarse.

e MIB: Elemento encargado de almacenar la informacién tanto introducida
por el gestor como recogida por el agente. Este elemento almacena la

informacion referente tanto a la gestion de las comunidades como la de

RMON.

e Soporte MIB-2: Elemento permite utilizar la funcionalidad de un agente
externo corriendo en el mismo equipo de forma transparente al usuario, como

si se tratase de un unico agente.

e Gestion Comunidades: Elemento que nos permite anadir y eliminar
comunidades SNMP, asi como editar los privilegios de aquellas ya existentes,

mediante la interaccién con una MIB definida para tal fin.

e Filtros: Elemento que interactua con la implementacion del grupo Filter de

RMON realizada en este trabajo, y genera los filtros necesarios.

e GUI: Elemento que facilita la interaccion con la sonda RMON posibilitando

la configuracion de la misma de forma gréfica.

3.1.1 Dispatcher

El Dispatcher es el primer elemento en ser lanzado, por lo que es el
encargado de iniciar el agente. En primer lugar lee un fichero de configuracion,

/ete/rmon/rmon.conf, en el cual el usuario puede anadir varios aspectos de la

Capitulo 3. Arquitectura y desarrollo del sistema 15

configuracion del agente sin necesidad de modificar el cédigo. Con la informacion
recuperada de dicho fichero el Dispatcher es capaz de establecer esta configuraciéon
en el Sistema Operativo.

Una vez el sistema estd completamente iniciado, el Dispatcher pasa a su
funcionamiento normal quedando encargado de recibir las peticiones SNMP. Para
cada una de las peticiones extrae la version del protocolo utilizada, la comunidad, el
tipo de peticién, el ID para anadirlo al paquete de respuesta (este campo permite al
gestor saber a qué peticién corresponde cada respuesta), los campos non-repeaters
y max-repetitions si procede, y los varBinds. Un varBind es una asociacion entre
un OID y un valor. Este valor tinicamente es relevante en las peticiones de tipo
“Set”. Para cada uno de los varBinds, en primer lugar, el dispatcher invoca al
modulo de seguridad pasando como parametros la comunidad, el OID y el tipo de
peticiéon. Este médulo devuelve un 1 en caso de tener los permisos adecuados y un
0 en caso contrario.

En caso de no tener permisos el dispatcher ejecutara la funcién de rollback
cuya finalidad se explicara mas adelante y se anadiran los campos de error
correspondientes al paquete de respuesta. Si los permisos son los necesarios, el
dispatcher invocara a una funciéon de backup, que serd explicada junto a la
de rollback nombrada anteriormente, decidirda a que modulo tiene que invocar
(Soporte MIB-2, Gestion comunidades o Filtros) en funcién del OID, y lo
hard pasandole como pardametros el tipo de peticién, el OID y el valor (este tltimo
unicamente para las peticiones de tipo “Set”). Este médulo devolverd el OID, el
valor que se encuentre almacenado en la MIB y un campo status que indicara si
todo se ha realizado correctamente y en caso contrario el tipo de error que ha
ocurrido.

En el caso de que haya producido algin error, al igual que en el caso de no tener
los permisos necesarios, se ejecutara la funcién de rollback y se anadiran los campos
de error correspondientes al paquete de respuesta en funcién de lo indicado en el
campo status. Si todo el proceso se ha completado satisfactoriamente el dispatcher
anade los campos OID y valor a un varBind del paquete de respuesta con el formato

apropiado y pasa a procesar el siguiente varBind en caso de que exista. Una vez

16 3.1. Arquitectura del sistema

se han acabado de procesar todos los varBinds se procede a enviar el paquete de

respuesta.

La finalidad de las funciones de backup y rollback nombradas anteriormente es
cumplir la especificacién del estandar que indica que todas las instrucciones dentro
de un mismo mensaje deben ser ejecutadas atémicamente, es decir, o se ejecutan
todas correctamente o no se ejecutara ninguna. Como existen algunas instrucciones
para las cuales el éxito de su ejecucion depende de los valores que toman otros
campos, que pueden ser modificados en el mismo mensaje, no podremos saber si
una instruccion es posible ejecutarla hasta que lo intentemos junto con todas las
anteriores. Para solucionar este problema la funcién de backup es invocada cada
vez que llega un paquete de tipo set y se encarga de almacenar el estado de la
MIB antes de realizar modificacién alguna. La funcion de rollback es invocada
cada vez que se produce algin error mientras se lleva a cabo alguna de las tareas
relacionadas con dicho paquete y se encarga de devolver la MIB al estado salvado

por la funciéon de backup.

3.1.2 MIB

La MIB es el elemento que almacenara tanto los datos introducidos por el gestor
como la informacién recogida por el agente. Dado que una MIB esta modelada en
SMIv2, el cual es un lenguaje abstracto que no define el tipo de almacenamiento
sino la estructura de la informacion, existen diversas posibilidades a la hora de
su implementacién en un dispositivo fisico. Habra que recurrir a un medio de
almacenamiento no volatil de la informacién debido a que en el caso de reiniciar el
agente no se debe perder la informacion almacenada. Se decidié utilizar una base
de datos MySQL por adaptarse perfectamente a las especificaciones del proyecto
(gratuita y multiplataforma) y existir una libreria para trabajar con ella desde
Python (PyMySQL).

La forma de organizar la base de datos se ha basado en la estructura propuesta
en el Proyecto Fin de Carrera, “Implementacién automéatica de un agente SNMP

a partir de la definicién formal de su MIB”[1], para mantener la coherencia con la

Capitulo 3. Arquitectura y desarrollo del sistema 17

forma de trabajo de proyectos anteriores y la compatibilidad con dichos proyectos.
Esta estructura se basa en la utilizacion de tres tipos de tablas, tablas secundarias
(ts_), tablas de control (tc_) y tablas de datos (td_). Las tablas secundarias son
indexadas por el siguiente fragmento del OID, y contiene el nombre de la siguiente
tabla en la que se buscara, permitiendo recorrer de forma jerarquica la estructura
que definen los OIDs. Las tablas de control estan formadas por metadatos e
incluyen toda la informacién contenida en la MIB. Las tablas de datos son las
que contienen los valores de la instancia del objeto, y en caso de representar a
una tabla de SNMP los indices de la tabla de datos coincidiran con los de la tabla

SNMP.

Esta estructura de tablas se ha utilizado para representar tanto la MIB

“communityManagement”, la cual se explicara en el punto 3.1.5, como la MIB

del grupo Filter de RMON.

3.1.3 Security

La forma de gestionar los privilegios en las dos primeras versiones del protocolo
es a través de las comunidades. Cada comunidad puede tener una o varias vistas
asociadas, donde cada vista es una dupla compuesta por un OID y el nivel de
acceso sobre esa parte de la MIB, siendo posibles cuatro niveles de acceso: Sin
permisos, Solo lectura, Solo escritura y Lectura-Escritura. La vista tiene efecto

tanto sobre el OID indicado como sobre todos sus descendientes.

Para verificar que una peticién tiene los privilegios necesarios, se ha
implementado un modulo el cual es invocado por el Dispatcher cada vez que recibe
una peticién. Dicho médulo obtiene como pardmetros la comunidad, el OID y el
tipo de peticién, y recorre todas las vistas asociadas a la comunidad en busca del
maximo nivel de acceso correspondiente a ese OID. Se asigna como méaximo nivel
de acceso el asociado a aquella vista cuyo OID sea el ascendente mas cercano al
OID de la peticion. En caso de no existir ninguna vista aplicable, el nivel de acceso
sera “Sinpermisos”. A continuacién comprueba que el nivel de acceso obtenido

sea mayor o igual al requerido por el tipo de peticion, siendo de lectura para todas

18 3.1. Arquitectura del sistema

la peticiones excepto para “Set” en cuyo caso es de escritura. Si se cumple la

condicién anterior devuelve un 1 y en caso contrario un 0.

3.1.4 Soporte de la MIB-2

Para un correcto funcionamiento del grupo Filter es obligaria la presencia
de algunos grupos de la MIB-2, como el grupo “interfaces”, el cual asigna un
identificador numérico a cada uno de los interfaces de red del equipo. Dichos
identificadores son necesarios para seleccionar el interfaz en el que se desea
configurar cada uno de los canales (conjunto de filtros).

Para dar soporte a la MIB-2 se ha desarrollado un médulo que es invocado
por el Dispathcer cada vez que recibe una peticién con un OID correspondiente
a dicha MIB. Este moédulo recibird como pardmetros el tipo de peticion, OID y
valor, y con ellos generard una nueva peticion SNMP que enviard a un agente
NetSNMP (agente SNMP gratuito que implementa la MIB-2 completa) el cual
estard instalado y esperando peticiones en uno de los puertos privados del propio
equipo. Tras enviar la peticion quedara a la espera de la respuesta y una vez la
haya recibido la procesara. En este procesado se analizara la posible existencia de
errores y se le asignara el valor correspondiente al campo status. A continuacién, en
caso de no existir errores se extraeran los campos OID y valor. Una vez finalizada
su ejecucion, este modulo devolvera al Dispatcher los tres campos mencionados
anteriormente.

A pesar de existir la opcién de implementar los grupos necesarios como un
modulo de la sonda, se decidié utilizar este otro método debido a que permitia dar
soporte a la MIB-2 completa y a que recoger parte de la informacion que contiene
la MIB-2 requiere de una delicada interaccion con el nicleo del sistema que puede

afectar seriamente a la estabilidad y al rendimiento.

3.1.5 Gestion de las comunidades

Este médulo es el encargado de interactuar con la base de datos que implementa

la MIB “communityManagement”. Cada vez que llega una peticién relacionada

Capitulo 3. Arquitectura y desarrollo del sistema 19

con dicha MIB este médulo es lanzado recibiendo como parametros el tipo de
peticiéon, el OID y el valor. Con estos parametros recorre la estructura de tablas
siguiendo el esquema presentado en el anexo B hasta obtener el valor deseado. Si
todo se ha realizado satisfactoriamente, asigna un 0 al campo status y devuelve los
valores recogidos de la base de datos al Dispatcher. En caso de haberse producido
algin error devuelve status igual a 1 e interrumpe la ejecucion.

La MIB communityManagement se ha definido en este proyecto para permitir
integrar la gestion de las comunidades de acceso al sistema dentro de la arquitectura
SNMP, va que a pesar de que el uso de comunidades es comin a todos los agentes,
la forma de gestionarlas (crearlas, modificar las vistas asociad, etc.) no es estandar.
En la mayor parte de los agentes esta gestion se realizar bien a través de un fichero
de configuracién, como es el caso de NetSNMP, o bien mediante una interfaz de
comandos, como sucede en una gran cantidad de equipos comerciales.

La estructura de esta MIB puede apreciarse en la figura 3.2, y el proceso de
definicién de la MIB, la definicion formal de la misma y una de uso se encuentran

adjuntas en los anexos D, E y F.

1 communityManagement

@ rnaster

w5 community Table
-5 communityEntry
& communitylndex
&% communityName
& communityRowID
&9 communityAccess
& communityView
&9 communityStatus

Figura 3.2: Estructura de la MIB communityManagement.

e master: Comunidad con permisos de lectura/escritura sobre la tabla

commuintyTable.

e communityIndex: [ndice primario de la tabla. Es la representacién ASCII
de cada uno de los caracteres que forman el nombre de la comunidad

separados por puntos.

20 3.1. Arquitectura del sistema

e communityName: El nombre de la comunidad.

e communityRowlID: Indice secundario de la tabla. Identificador numérico
que permite identificar las diferentes vistas pertenecientes a una misma

comunidad.
e communiteAcces: Permisos asociados a cada una de las vistas.
e communityView: OID raid sobre el que se aplica la vista.

e communityStatus: Campo del tipo “EntryStatus”que permite anadir filas

a la tabla, borrarlas, modificarlas, activarlas y desactivarlas.

3.1.6 Filtros

Del mismo modo que el médulo “Gestién de las comunidades”se encarga de
interactuar con la base de datos que modela la MIB “communityManagement”, el
modulo “Filtros” interactuara con la base de datos que implementa la MIB del
grupo Filter de RMON.

Ademas, deberd realizar las funciones de filtrado que caracterizan a RMON,
para lo que se utilizara la libreria LibPCAP, la cual permite realizar la captura y
filtrado de paquetes de red. Los programas basados en dicha libreria se ejecutan
en la zona de usuario, pero la captura de paquetes se realiza en la zona del Kernel,
por lo que es necesaria la transferencia de datos desde el kernel-space hacia el
user-space. Esto conlleva una serie de operaciones muy costosas y que es necesario
minimizar para evitar degradar el rendimiento del sistema.

Se han testeado varios esquemas de trabajo pero en este capitulo inicamente
se explica el utilizado en la versién definitiva de la sonda. El resto de las
implementaciones se encuentran comentadas en el anexo F.

Cuando un channelStatus toma el valor “valid”, el médulo “Fliltros” crea
un nuevo proceso que quedara al cargo de ese canal. Este proceso correrd un
programa que recibe como parametro el indice del canal en cuestiéon, y con él
recupera de la base de datos toda la informacion relacionada con dicho canal. A

partir de esa informacién el programa generard un filtro BPF que cumpla con las

Capitulo 3. Arquitectura y desarrollo del sistema 21

especificaciones configuradas por el gestor. Estos filtros BPF se ejecutan a nivel de
Kernel y inicamente pasan a nivel de usuario aquellos paquetes que han superado

el filtro, como puede apreciarse en la figura 3.3.

network network
monitor monitor
'y

kernel
R e e [TR S i
|
buffer buffer l
profocol
? T | stack
|
filter filter '
' |
|
|
_____ i |
link—level link-level link-level
driver driver driver
T‘ T‘ kernel
network

Figura 3.3: Funcionamiento de los filtros BPF.

Para configurar un filtro de este tipo en Kernel se utiliza la libreria LibPCAP,
y cada vez que un paquete supera el filtro se ejecuta una funcion de callback. Dado
que el proceso del agente es el encargado de crear los procesos de filtrado, estos
pueden compartir una zona de memoria que les servird para comunicarse, por lo
que en la funciéon de callback anterior simplemente se incrementard el contador
situado en la zona de memoria asignada para ese filtro. El esquema de trabajo es
el mostrado en la figura 3.4

La actualizacion de la base de datos la realizara el proceso del agente, el cual
dispone de toda la informacién necesaria en la zona de memoria compartida. Esta
actualizacién la realizard peridédicamente en el Callback de una senal de alarma
configurada al inicio el agente. Como la memoria compartida ha de reservarse
al inicio de la ejecucion, el nimero de filtros estard limitado por la cantidad de

memoria reservada. Ademas serd necesario mantener una lista de los filtros activos

22 3.2. Integracion con el sistema operativo

y en qué posicion de memoria se encuentran.

3.1.7 Desarrollo de la GUI

Se ha desarrollado una aplicacion que mediante una interfaz grafica facilite
el desarrollo de las tareas més habituales realizadas con RMON. Para ello se ha
utilizado la libreria WxPython, la cual esta basada en WxWidgets (una libreria
multiplataforma C/C++). Esta librerfa es muy rapida, soporta una gran cantidad
de elementos multimedia e interactivos, cuenta con contenedores nativos en todas
las plataformas y permite separar completamente el diseno de la interfaz del cédigo
Python.

La aplicacion permite mantener una lista de conexiones con los equipos
gestionados, permitiendo anadir conexiones a la lista asi como editar y eliminar las
ya existentes. Ademds cuenta con una opcién para seleccionar la conexion sobre
la que realizaran las acciones posteriores.

Para realizar las tareas relacionadas con el grupo Filter cuenta con dos
apartados, el primero permite definir y eliminar modelos de filtro, y la segunda
parte referida al equipo al que estamos conectados que permite ver los filtros que
tiene establecidos, eliminarlos o anadir uno nuevo de los modelados previamente.

La apariencia de la aplicacion puede observarse en la figura 3.4 y la guia de

manejo se encuentra en el anexo G.

3.2 Integracion con el sistema operativo

El agente desarrollado es completamente multiplataforma, pero para mejorar
la experiencia de usuario y facilitar la interaccion con él, se han creado una serie
de scripts en Bash para sistemas Debian, que permitan manipular la sonda de
la misma manera que el resto de servicios del sistema operativo, utilizando las

siguientes instrucciones desde una terminal:

e /etc/init.d/rmon start Permite iniciar el agente. En caso de que ya

estuviese iniciado unicamente informa de ello.

Capitulo 3. Arquitectura y desarrollo del sistema 23

Conexion Filter

Filter Name: Filter Owner:

| | | l

SRC MAC Address: DST MAC Address: Type:

g | I | e [~
SRC IP Address: DST IP Address: Type:

g | I | [ree [~
SRC Port: DST Port:

' I

' I

Create

Figura 3.4: Interfaz grafica de usuario.

e /etc/init.d/rmon stop Detiene el agente por completo. En el caso de que
quedase algin proceso de una ejecucién anterior no finalizada correctamente

también lo terminara.

e /etc/init.d/rmon restart Concatenacién de los dos comandos anteriores,

en el orden stop-start.

e /etc/init.d/rmon status Informa del estado de la sonda, siendo estados

posibles running y stopped.

Ademas, para que el script pueda utilizarse para lanzar el agente durante
el arranque de Debian, éste debe responder al formato de un LSB init script,
incluyendo una cabecera en la cual se indica el nombre del script, los servicios
que han de iniciarse antes de lanzar el propio script y los que deberan de pararse
después, los runlevels para los cuales se iniciara o se detendra el servicio, y una

descripcion de la funcionalidad del script.

Este script puede verse en el anexo G.

24 3.3. Instalacion

3.3 Instalacion

Se ha creado una maquina virtual utilizando VirtualBox con una sonda
funcional ya instalada y configurada. En el caso de decir realizar una nueva
instalacién se han creado una serie de script para facilitar la instalacion en sistemas
Debian, y una guia de instalacién que puede encontrarse en el anexo I. Es muy
importante tener en cuenta que si se decide instalar la sonda en equipos con
aplicaciones que utilicen bases de datos MySQL, éstas pueden dejar de funcionar

debido a la modificacién en la configuracion de dicha base de datos.

Capitulo 4

Banco de pruebas

4.1 Perdida de paquetes.

Este parametro indica el porcentaje de paquetes que no son contabilizados por
la herramienta aun habiendo superado los filtros con éxito. Estas pérdidas pueden
tener dos origenes, pequenas pérdidas debidas a una saturacion puntual de los
buffers en periodos que el sistema utilice todos los recursos para realizar tareas
criticas, y grandes pérdidas debidas a que la velocidad del trafico es mayor que la

que el equipo puede procesar.

Para esta tarea se utilizo la herramienta IPERF trabajando con trafico UDP ya
que permite generar trafico a velocidades determinadas. Para evitar que el trabajo
de generar paquetes degradase las prestaciones del programa de filtrado, tanto el
cliente como el servidor de IPERF se alojaron en equipos distintos al que corria la

sonda, tal y como se aprecia en la figura 4.1.

Para automatizar el proceso de toma de medidas, se preparé un banco de
pruebas, cuyo fichero principal puede observarse en el anexo J. Se realizaron
medidas para un numero maximo de filtros igual a 30, cada uno de los cuales
monitorizaba un tipo distinto de trafico y se encuentran enumerados en el anexo
J, y una velocidad de trafico de hasta 100 Mbps generados por IPERF, obteniendo

en todos los casos que no se perdia ninguin paquete.

25

26 4.2. Funcionamiento y estabilidad.

Servidor Cliente
IPERF IPERF

Figura 4.1: Escenario para calcular la perdida de paquetes.

4.2 Funcionamiento y estabilidad.

La estabilidad de la sonda es fundamental para garantizar una correcta y
continua monitorizacién de la red. Para medir la estabilidad de la sonda, se
instalé en un router para medir los flujos de paquetes correspondientes a 32 filtros
con un trafico medio de entrada de 300Kbps y de salida de 200Kbps, con picos de
hasta 8Mbps. Para poder monitorizar los filtros se utilizo cacti como sistema de
monitorizacion. Cacti es un gestor SNMP basado en un servidor web que puede
ofrecer la monitorizacion de las variables SNMP deseadas de un agente remoto a
través de una web. Se configur6 cacti para que recogiera los datos de los filtros de
la sonda cada 5 minutos y los representase graficamente, con lo que un fallo de
estabilidad podria ser identificado con una discontinuidad en las graficas.

La sonda permanecié en funcionamiento ininterrumpido durante 4 meses,
periodo tras el cual fue apagada por considerarlo suficiente. En la figura 4.2
podemos observar el trafico ARP existente durante ese periodo.

Para verificar el correcto funcionamiento de la sonda se analiz6 la coherencia
de los patrones obtenidos de la sonda con lo esperado en una red de ese tipo. No
se encontré ningin tipo de anomalia, ya que todos los patrones eran coherentes
con lo esperado. En las figuras 4.3, 4.4, 4.5 y 4.6 podemos observar algunas de las

graficas generadas por Cacti con los datos recogidos por la sonda durante un dia.

Capitulo 4. Banco de pruebas 27

Sonda RMON - PC fijo - ARP_pkts

.

2.0 Wﬁw“\rﬂ% -

1.0
0.0 .
Week 15 Week 17 Week 19 Week 21 Week 23 Week 25 Week 27 Week 29
From 2014/03/31 11:53:12 To 2014/07/31 08:25:06
~ Packets Current: 1.82 Average: 2.01 Max1imum: 2.62

Yearly (1 Day Average)

Figura 4.2: Tréfico ARP entre el 31/03/2014 y el 31/07/2014.

Sonda RMON - PC fijo - ARP pkts

ool WW{ |

un 12:08 Sun 18:00 Mon @0:00 Mon 06:00
From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

2 O MW B

~ Packets Current: 1.47 Average: 1.95 Maximum: 575

Figura 4.3: Trafico ARP medido por la sonda.

Sonda RMON - PC fijo - TCP_pkts

60 l

50

i M\ A e

. \W Nl ﬁ
. A WY LAY

a5un 12:00 Sun 18:00 Mon B0:80 Mon 06:00 g

From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

~ Packets Current: 34.42 Average: 19.33 Maximum: 62.13

Figura 4.4: Trafico TCP medido por la sonda.

28 4.2. Funcionamiento y estabilidad.

Sonda RMON - PC fijo - UDP_pkts

e o "
:: \j\‘p k/"lﬂm er 'W/\vl WL} LﬂL IJUL%FM/ *hl “”,eriw’\u}wr\ J\!l | i

From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

~ Packets Current: 28.32 Average: 40.95 Maximum: 76.44

Figura 4.5: Trafico UDP medido por la sonda.

Sonda RMON - PC fijo - DNS_pkts_dst

200 m

|

d

e WM MNM'WJV‘M{\W\FMMMJ-'L‘WMJ\HWN’HAW N _|hmw -‘\J =

Sun 12:00 Sun 13:00 Mon 00:00 Mon OB:00
From 2014/08/31 11:07:20 To 2014,/09/01 11:07:20

100 m

~ Packets Current: 144.35 m Average: 19.04 m Maximum: 222.81m

Figura 4.6: Trafico DNS query medido por la sonda.

Sonda RMON - PC fijo - DNS pkts ori

|

|
w,wwﬁww\ﬁwwh‘uw\maww ."‘M‘J]

Sun 12:00 Sun 18:00 Mon 00:00 Mon O6:08
From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

160 m

~ Packets Current: 144.35 m Average: 19.56 m Maximum: 222.81m

Figura 4.7: Trafico DNS response medido por la sonda.

Capitulo 4. Banco de pruebas

Sonda RMON - PC fijo - SNMP pkts dst

Yoo T i ENSSNERRRPLNN NSNS SRR N 50 O A S L P SRS P W S S A O G S

Sun 12:00 Sun 18:00 Mon ©0:00 Mon 06:00
From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

~ Packets Current: 300.82 m Average: 300.07 m Maximum: 313.17 m

Figura 4.8: Trafico SNMP request medido por la sonda.

Sonda RMON - PC fijo - SNMP pkts ori

.
300 m H—d———a T I B S NI OGS i S A
200 m
100 m

. 5un 12:80 5un 18:00 Mon @0:80 Mon @6:00 *

From 2014/08/31 11:07:20 To 2014/09/01 11:07:20

~ Packets Current: 300.82 m Average: 300.07 m Maximum: 314.66 m

Figura 4.9: Tréafico SNMP response medido por la sonda.

Sonda RMON - PC fijo - HTTPS pkts ori

14

12

1o

8

6

4

2 ura.

a ped N
Sun 1&:00 Mon 0O0:@0 Mon ©6:008 Mon 12:00

From 2014/08/31 13:39:20 To 2014/09/01 13:39:20

~ Packets Current: 114.09 m Average: 182.92 m Maximum: 12.97

Figura 4.10: Trafico HT'TPS response origen medido por la sonda.

30 4.2. Funcionamiento y estabilidad.

Sonda RMON - PC fijo - HTTP pkts dst

14
1z

6 I
4 L
2
o : =
Sun 18:00 Mon 0O:00 Mon Q6:00 Mon 12:00
From 2014/08/31 13:39:20 To 2014,/09/01 13:39:20
~ Packets Current: 3.04 Average: 782.93 m Maximum: 13.32

Figura 4.11: Trafico HTTP request origen medido por la sonda.

Sonda RMON - PC fijo - HTTP pkts ori

20 |
IS
15 i \
\ i
10 b |
: =
E] >
Sun 18:00 Mon 00:00 Mon 06:00 Mon 12:00
From 2014/08/31 13:39:20 To 2014/09/01 13:39:20

~ Packets Current: 3.65 Average: 1.22 Maximum: 21.30

Figura 4.12: Trafico HTTP response origen medido por la sonda.

Capitulo 5

Conclusiones y lineas futuras

5.1 Conlusiones

En este proyecto se ha desarrollado una sonda RMON que implementa el grupo
Filter, multiplataforma y completamente funcional, de forma que ha sido posible
integrar el resultado del proyecto en una practica de la asignatura del grado,

“Gestion de Red”.

En las diferentes partes del proyecto se han analizado las principales
herramientas para realizar cada una de las tareas, y se han seleccionado las opciones
mas interesantes, siempre tratando de optimizar el rendimiento para obtener un
resultado funcional que pudiese ser utilizado incluso en equipos con reducidas
prestaciones. Ademas, se ha desarrollado todo de forma modular para permitir que
cualquier parte de este trabajo pudiese ser reaprovechada en futuros proyectos.

El primero de los mdédulos desarrollados fue el denominado dispatcher, el cual
recibe y responde a las peticiones SNMP que llegan al equipo y realiza las acciones
adecuadas. El moédulo security es utilizado cada vez que se recibe una peticién
SNMP y verifica que cuenta con los permisos necesarios para ser procesada.

Otro de los médulos desarrollados es el que dota al agente de la funcionalidad
necesaria para comunicarse con agentes secundarios. Esto nos permite utilizar un

agente externo que implemente la MIB-2, de forma transparente al usuario.

El siguiente modulo es el que permite realizar la gestién de las comunidades

31

32 5.2. Lineas de futuro

a través de mensajes SNMP. Para este propdsito se ha definido formalmente la
MIB, se ha dado una estructura apropiada para organizar la base de datos y se ha
desarrollado todo lo necesario para interactuar con la base de datos.

El médulo de filtrado, él que da sentido a este proyecto, es capaz de leer la
configuracion introducida por el gestor en el agente mediante mensajes SNMP, y
con esa configuracién procesar todos los paquetes de red que llegan a su interfaz
(dirigidos a él o no), aplicando todos los filtros introducidos por el gestor y en
caso de existir alguno exitoso indicarselo al agente. Este médulo realiza las tareas
mas criticas de la sonda, por lo que ha sido necesario analizar cada detalle de la
implementacion para minimizar el consumo de los recursos del sistema.

También se han creado una serie de scripts para integrar la sonda con el sistema
operativo posibilitando la interaccion con ella del mismo modo que con el resto de
los servicios del mismo. Ademas se ha creado una maquina virtual con una sonda
funcional instalada y configurada.

Por tltimo se realizo una aplicacion que permite realizar todas las tareas de
configuracion y la observacion de los resultados a través de una interfaz grafica
muy simple e intuitiva.

Respecto a los resultados, las medidas de capacidad de filtrado y de estabilidad
indican que la sonda cumple perfectamente con su misiéon en redes de mediano

tamano con un numero estimado de hasta 300 usuarios.

5.2 Lineas de futuro

Aunque todos lo objetivos planteados se han cumplido en el presente TFG, se

plantean unas posibles mejoras que aportarian funcionalidades extra a la sonda:

e Anadir soporte de la version 3: Anadir al agente la funcionalidad
necesaria para soportar la version 3 de SNMP, pudiendo reaprovechar todos

los médulos desarrollados en este trabajo.

e Desarrollo de otros grupos de RMON: Seria muy interesante la

programacion de grupos tales como,

Capitulo 5. Conclusiones y lineas futuras 33

— capture: Permite configurar que cuando un paquete supere un filtro,
ademas de contarlo, lo almacene en un buffer interno del agente y

posteriormente el gestor pueda descargarlo.

— alarm: Permite monitorizar una determinada variable de la MIB de
RMON, con una frecuencia de muestre configurable, y disparar un
evento en caso de que el valor de esta variable (o su delta) sea mayor o

menor que unos determinados umbrales en un periodo de muestreo.

— event: Permite configurar que cuando un evento es disparado se realice
una accién localizada en cualquier parte de la MIB e incluso enviar un

mensaje de tipo Trap al gestor.

e Integracion con hardware externo: Con objetivo de mejorar las
prestaciones, se podria delegar toda la funcionalidad de filtrado en un

dispositivo logico programable con interfaz Ethernet.

e Proxy Netconf-RMON: NetConf es un protocolo para la gestion de
red desarrollado y estandarizado por el IETF. Se podria definir de un
modulo YANG (equivalentes a las MIB en SNMP) e implementacién de un
software que haga las veces de proxy permitiendo la explotacién de toda la

funcionalidad de RMON desde un cliente NetConf.

e Sonda RMON distribuida: Estudio de las opciones existentes para que un
unico agente RMON sea capaz de trabajar con una serie de filtros distribuidos
en varios equipos de la topologia de la red de forma transparente para el
usuario. En este caso podrian estudiarse la posibilidades de cada equipo
solo ejecutara unos pocos filtros en lugar de todos cuando se trate de redes
no segmentadas. En el caso de redes segmentadas cada equipo podria estar
ejecutando el total de los filtros, pero solo lo haria con el trafico que atravesase

su segmento. Esto permitiria aprovechar al méaximo los recursos disponibles.

Bibliografia

1]

Arribas, J. C. (2012). <Implementacién automética de un agente SNMP a

partir de la definicién formal de su MIB>.

Case, J.; Fedor, M.; Schoffstall, M. y Davin, J. (Mayo de 1990). «<RFC 1157 -
Simple Network Management Protocol (SNMP)s. Informe técnico, Internet
Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc1157

McCloghrie, K. y Rose, M. (Mayo de 1990). <RFC 1213 - Management
Information Base for Network Management of TCP /IP-based internets: MIB-
II>. Informe técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc1213

Stallings, W. (1996). SNMP, SNMPv2 and RMON: Practical Network
Management. Addison-Wesley.

Stevens, W. y Rago, S. (2005). Advanced Programing in the UNIX

Environment. Addison-Wesley.

Waldbusser, S. (Julio del 2002). «<RFC 3273 - Remote Network Monitoring
Management Information Base for High Capacity Networkss. Informe
técnico, Internet Engineering Task Force (IETF).
http://tools.ietf.org/html/rfc3273

—— (Mayo del 2000). <RFC 2819 - Remote Network Monitoring Management
Information Bases. Informe técnico, Internet Engineering Task Force (IETF).

http://tools.ietf.org/html/rfc2819

35

http://tools.ietf.org/html/rfc1157
http://tools.ietf.org/html/rfc1213
http://tools.ietf.org/html/rfc3273
http://tools.ietf.org/html/rfc2819

36

Bibliografia

8]

—— (Mayo del 2006). <RFC 4502 - Remote Network Monitoring Management
Information Base Version 2. Informe técnico, Internet Engineering Task
Force (IETF).

http://tools.ietf.org/html/rfc4502

Waldbusser, S.; Cole, R.; Kalbfleisch, C. y Romascanu, D. (Agosto del 2003).
<RFC 3577 - Introduction to the Remote Monitoring (RMON) Family of MIB
Moduless. Informe técnico, Internet Engineering Task Force (IETF).
http://tools.ietf.org/html/rfc3577

Waterman, R.; Lahaye, B.; Romascanu, D. y Waldbusser, S. (Junio del 1999).
<RFC 2613 - Remote Network Monitoring MIB Extensions for Switched
Networks Version 1.0». Informe técnico, Internet Engineering Task Force
(IETF).

http://tools.ietf.org/html/rfc2613

http://tools.ietf.org/html/rfc4502
http://tools.ietf.org/html/rfc3577
http://tools.ietf.org/html/rfc2613

	Introducción
	Gestión de red: monitorización y control
	Objetivos
	Materiales y herramientas utilizadas
	Organización de la memoria

	La arquitectura SNMP
	Introducción a SNMP
	Introducción a RMON

	Arquitectura y desarrollo del sistema
	Arquitectura del sistema
	Dispatcher
	MIB
	Security
	Soporte de la MIB-2
	Gestión de las comunidades
	Filtros
	Desarrollo de la GUI

	Integración con el sistema operativo
	Instalación

	Banco de pruebas
	Perdida de paquetes.
	Funcionamiento y estabilidad.

	Conclusiones y líneas futuras
	Conlusiones
	Líneas de futuro

	Bibliografía

