
Anexo A

Acrónimos

• SNMP: Simple Network Management Protocol.

• RFC: Requests for Comments.

• RMON: Remote Network Monitoring.

• MIB: Management Information Base.

• GUI: Graphical User Interface.

• ASN: Abstract Syntax Notation.

• AES: Advanced Encryption Standard.

• DES: Data Encryption Standard.

• SHA1: Secure Hash Algorithm 1.

• MD5: Message-Digest Algorithm 5.

• MySQL: My Structured Query Language.

• LibPCAP: Packet Capture Library.

• IETF: Internet Engineering Task Force.

• SMI: Structure of Management Information.

37

38

• USM: User-based Security Model.

• VACM: View-based Access Control Model.

• BER: Basic Encoding Rules.

• OID: Object Identifier.

• LAN: Local Area Network.

• OSI: Open System Interconnection.

• SMON: RMON Extensions for Switched Networks.

• DSMON: RMON Extensions for Differentiated Services.

• HCRMON: RMON for High Capacity Networks.

• API: Application Programming Interface.

• HTTP: Hypertext Transfer Protocol.

• ASCII: American Standard Code for Information Interchange.

• BPF: Berkeley Packet Filter.

• HTML: HyperText Markup Language.

• RTF: Rich Text Format.

• STC: Stylized Text Control.

• MAC: Media Access Control.

• ARP: Address Resolution Protocol.

• IP: Internet Protocol.

• ICMP: Internet Control Message Protocol.

• TCP: Transmission Control Protocol.

• UDP: User Datagram Protocol.

Anexo A. Acrónimos 39

• USB: Universal Serial Bus.

• Mbps: Megabit por segundo.

• NetConf: Network Configuration Protocol.

Anexo B

Diagramas de flujo de la

interacción agente SNMP - MIB

Este anexo corresponde con el anexo E del proyecto “Implementación

automática de un agente SNMP a partir de la definición formal de su MIB”[1] y

ha sido añadido aqúı para facilitar al lector la comprensión de la forma de realizar

la búsqueda en la base de datos.

En este anexo se muestran los diagramas de flujos creados para la elaboración

de los algoritmos pertinentes a la interacción del Agente SNMP con la MIB según

el tipo de mensaje PDU que se puede recibir del gestor.

41

42

Figura B.1: Workflow Get.

Anexo B. Diagramas de flujo de la interacción agente SNMP - MIB 43

Figura B.2: Workflow GetNext.

44

Figura B.3: Workflow GetBulk.

Anexo B. Diagramas de flujo de la interacción agente SNMP - MIB 45

Figura B.4: Workflow Set.

Anexo C

Proceso de definición de la MIB

Para realizar la definición formal de la MIB es esencial tener en cuenta la

funcionalidad que se espera que aporte al agente, aśı como las especificaciones del

estándar SNMP, ya que es imprescindible cumplir con todas ellas. Dado que esta

MIB debeŕıa permitir almacenar las comunidades y las vistas asociadas a ellas,

será necesaria una tabla cuyas columnas sean el nombre de la comunidad, el nivel

de acceso, el OID sobre el que se tiene acceso y un campo para manejar las filas.

A priori parece razonable que esta tabla estuviese indexada por el propio nombre

de la comunidad.

Según el estándar de SNMP un String no puede indexar una tabla, por lo

que se decidió utilizar la representación ASCII de cada uno de los caracteres que

componen el String separados por puntos, lo cual si que esta encaja dentro del

estandar. Esto se puede hacer de dos formas y deberá aparecer reflejado en la MIB

cuál es el método empleado:

• Longitud impĺıcita: no se indica el número de caracteres que componen el

ı́ndice. Ej: “dave” = ’d’.’a’.’v’.’e’

• Longitud expĺıcita: debe añadirse el número de caracteres que componen

el ı́ndice delante de éste. Este método es obligatorio si no es el último ı́ndice.

Ej: “dave” = 4.’d’.’a’.’v’.’e’

Para facilitar la visualización del contenido de la tabla, además del

campo correspondiente al ı́ndice, se añadirá otro campo que será rellenado

47

48

automáticamente por el agente cuando se cree una nueva fila, el cual representara

en forma de string el nombre de la comunidad.

Dado que a una misma comunidad se le pueden asignar varias vistas no

será suficiente con indexar la tabla de esta manera sino que se deberá añadir

un nuevo campo, el cual será un identificador numérico que actuará como ı́ndice

secundario permitiendo identificar cada una de las vistas asociadas a una misma

comunidad.

Por otro lado, al utilizar SNMP para gestionar esta tabla, será necesaria la

existencia de una comunidad que cuente con permisos de lectura y escritura sobre

dicha tabla. Esta comunidad no puede formar parte de la tabla, ya que en ese

caso no habŕıa forma de evitar que fuese borrada. Finalmente se opto por que la

comunidad de gestión no perteneciera a la tabla, y definirla como un escalar, los

cuales no pueden ser borrados.

Anexo D

communityManagement MIB

ZNMRG-COMMUNITY-MANAGEMENT-MIB DEFINITIONS ::= BEGIN

IMPORTS

enterprises, Integer32, OBJECT-TYPE, MODULE-IDENTITY,

OBJECT-IDENTITY, NOTIFICATION-TYPE

FROM SNMPv2-SMI

DateAndTime, DisplayString, RowStatus,

TEXTUAL-CONVENTION

FROM SNMPv2-TC;

EntryStatus

FRON RMON-MIB;

– 1.3.6.1.4.1.28308.1.1.1

znmrgGlobalModule MODULE-IDENTITY

LAST-UPDATED ”201408211611Z- August 21, 2014 at 16:11 GMT

ORGANIZATION

“Organization.”

CONTACT-INFO

“Contact-info.”

DESCRIPTION

“Description.”

49

50

::= znmrgModules 1

– – Node definitions –

– 1.3.6.1.4.1.28308

znmrgRoot OBJECT-IDENTITY

STATUS current

DESCRIPTION

“The root of the OID sub-tree assigned to Company by the

Internet Assigned Numbers Authority (IANA)”

::= enterprises 28308

– 1.3.6.1.4.1.28308.1

znmrgReg OBJECT-IDENTITY

STATUS current

DESCRIPTION

“Sub-tree for registrations”

::= znmrgRoot 1

– 1.3.6.1.4.1.28308.1.1

znmrgModules OBJECT-IDENTITY

STATUS current

DESCRIPTION

”Sub-tree to register the values assigned to modules with the

MODULE-IDENTITY construct”

::= znmrgReg 1

– 1.3.6.1.4.1.28308.2

znmrgGeneric OBJECT-IDENTITY

STATUS current

DESCRIPTION

Anexo D. communityManagement MIB 51

”Sub-tree for common object and event definitions”

::= znmrgRoot 2

– 1.3.6.1.4.1.28308.3

znmrgProducts OBJECT-IDENTITY

STATUS current

DESCRIPTION

”Sub-tree for specific object and event definitions”

::= znmrgRoot 3

– 1.3.6.1.4.1.28308.3.1

communityManagement OBJECT IDENTIFIER ::= znmrgProducts 1

– 1.3.6.1.4.1.28308.3.1.1

master OBJECT-TYPE

SYNTAX DisplayString

MAX-ACCESS read-write

STATUS current

DESCRIPTION

”This is the community used to manage the

CommunityManagementTable.”

::= communityManagement 1

– 1.3.6.1.4.1.28308.3.1.2

communityTable OBJECT-TYPE

SYNTAX SEQUENCE OF communityEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

”This is the table that store all commuintyEntry.”

::= communityManagement 2

52

– 1.3.6.1.4.1.28308.3.1.2.1

communityEntry OBJECT-TYPE

SYNTAX CommunityEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

”This Each entry will store one community view and its

permissions.”

INDEX communityIndex, communityRowID

::= communityTable 1

CommunityEntry ::=

SEQUENCE

communityIndex

OBJECT IDENTIFIER,

communityName

DisplayString,

communityRowID

Integer32 (1..255),

communityAccess

Integer32 (0..3),

communityView

OBJECT IDENTIFIER,

communityStatus

EntryStatus

– 1.3.6.1.4.1.28308.3.1.2.1.1

communityIndex OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS read-only

Anexo D. communityManagement MIB 53

STATUS current

DESCRIPTION

”This is the ascII encoding of each character in the

communityName.”

::= communityEntry 1

– 1.3.6.1.4.1.28308.3.1.2.1.2

communityName OBJECT-TYPE

SYNTAX DisplayString

MAX-ACCESS read-only

STATUS current

DESCRIPTION

”This is the name of the community.”

::= communityEntry 2

– 1.3.6.1.4.1.28308.3.1.2.1.3

communityRowID OBJECT-TYPE

SYNTAX Integer32 (0..255)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

”This field indexes each fo the views in the same community.”

::= communityEntry 3

– 1.3.6.1.4.1.28308.3.1.2.1.4

communityAccess OBJECT-TYPE

SYNTAX Integer32 (0..3)

MAX-ACCESS read-write

STATUS current

DESCRIPTION

”This is the access level the community has for this view:

54

0) No permissions

1) Read only

2) Write only

3) Read and Write”

::= communityEntry 4

– 1.3.6.1.4.1.28308.3.1.2.1.5

communityView OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS read-write

STATUS current

DESCRIPTION

”This This community will have the permissions specified in this

OID and all its descendants.”

::= communityEntry 5

– 1.3.6.1.4.1.28308.3.1.2.1.6

communityStatus OBJECT-TYPE

SYNTAX EntryStatus

MAX-ACCESS read-write

STATUS current

DESCRIPTION

”This column is used to manage each row of this table.”

::= communityEntry 6

– 1.3.6.1.4.1.28308.4

znmrgCaps OBJECT-IDENTITY

STATUS current

DESCRIPTION

”Sub-tree for agent profiles”

::= znmrgRoot 4

Anexo D. communityManagement MIB 55

– 1.3.6.1.4.1.28308.5

znmrgReqs OBJECT-IDENTITY

STATUS current

DESCRIPTION

”Sub-tree for management application requirements”

::= znmrgRoot 5

– 1.3.6.1.4.1.28308.6

znmrgExpr OBJECT-IDENTITY

STATUS current

DESCRIPTION

”Sub-tree for experimental definitions”

::= znmrgRoot 6

END

Anexo E

Gúıa gestión de las comunidades

Como ya se ha explicado, la forma de controlar los permisos en SNMP es a

través de comunidades, pero no existe una forma estándar para gestionarlas y esto

queda a elección de cada agente, bien sea mediante un fichero de texto, una página

web o ĺınea de comandos.

En este trabajo se ha decidido implementar todo lo relativo a la gestión de las

comunidades a través del env́ıo de mensajes SNMP, definiendo para ello una nueva

MIB, que se adjunta al final del documento y tiene una estructura parecida a la

siguiente:

+ enterprise

|——— + Zaragoza Network Management Research Group

|——— + master

|——— + communityTable

|——— + communityEntry

|——— + communityIndex

|——— + communityName

|——— + communityRowId

|——— + communityAccess

|——— + communityView

|——— + communityStatus

A continuación se explicará el funcionamiento y los procedimientos empleados

57

58

para añadir y eliminar comunidades aśı como para modificar los permisos de las

ya existentes.

En primer lugar, debido a que la gestión de las comunidades se va a realizar

a través de mensajes SNMP será necesaria la existencia de una comunidad con

permisos para realizar dicha gestión. Esta comunidad será el valor del campo

master y por defecto es .admin”. Para modificarla basta con enviar un mensaje

set como el siguiente:

snmpset -v [versión] -c [comunidad de gestión actual] [host del agente]

.1.3.6.1.4.1.28308.1 s [comunidad de gestión nueva]

El siguiente paso es crear comunidades con diferentes permisos de lectura y/o

escritura en las diferentes MIBs soportadas por el agente. Para ello habrá que

crear nuevas entradas en la communityTable. Esto se hace con el mismo sistema

de creación de filas implementado por RMON, mediante un campo del tipo

EntryStatus.

Cada fila se indexa mediante los campos communityIndex y communityRowId.

El communityIndex identifica a la comunidad y el communityRowId a cada una de

las entradas correspondientes a dicha comunidad, ya que cada comunidad puede

tener diferentes permisos de lectura y escritura sobre cada parte de la MIB.

Dado que se desea utilizar como ı́ndice de la fila un string, habrá que utilizar

la representación ASCII de cada uno de los caracteres que forman el string. Esto

puede hacerse de forma muy sencilla gracias a NetSNMP y para crear una entrada

en la tabla basta con:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.6.\’[comunidad]\’.[fila] i 2

A continuación se definirá una vista para esta entrada. La vista es los OID a

los que va a afectar esta entrada, y serán todos los OIDs que cuelguen del valor

introducido en el campo communityView. Se añadirá una vista a la entrada que

se ha creado con anterioridad del siguiente modo:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.5.\’[comunidad]\’.[fila] s [OID padre]

NOTA: El campo “OID padre”deberá tener una longitud mı́nima de dos (Ej:

Anexo E. Gúıa gestión de las comunidades 59

.1.3) ya que si intentamos introducir el valor “1” obtendremos como resultado un

error.

Una de las últimas cosas por hacer es determinar los permisos que tendrá la

vista que hemos creado. Estos pueden ser:

0: no tiene permisos

1: read only

2: write only

3 read and write

Para añadir permisos a una entrada ya existente:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.4.\’[comunidad]\’.[fila] i [tipo de permiso]

Y por ultimo solo resta pasar la entrada a valid:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.6.\’[comunidad]\’.[fila] i 1

En el caso de que una comunidad cuente con varias entradas que afecten a un

mismo OID se tomara siempre la más cercana y la más restrictiva. Por ejemplo si

existen dos entradas una con vista 1.3.6.1.2.1 y access 1 y otra con 1.3.6.1.2.1.16

con access 3 se podrá leer todos los grupos de la MIB2 pero escribir únicamente

en los correspondientes a RMON. Por otra parte si existen dos entradas con la

vista 1.3.6.1.2.1, una con access 1 y otra con access 3 únicamente se podrá leer los

grupos de la MIB2 y no escribir nada en ellos.

Dado que se está utilizando el mismo mecanismo de gestión de filas que RMON

para borrar una entrada de la tabla será suficiente con:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.6.\’[comunidad]\’.[fila] i 4

En el caso de querer modificar una entrada ya creada, primero será necesario

pasarla a UnderCreation:

snmpset -v [versión] -c [comunidad de gestión] [host del agente]

1.3.6.1.4.1.28308.2.1.6.\’[comunidad]\’.[fila] i 3

y a continuación realizar las modificaciones requeridas.

Anexo F

Implementaciones desechadas de

la funcionalidad de filtrado

F.1 Primera implementación

En el momento del inicio del agente se crea un proceso TCPDUMP el cual

guardará en un fichero todos los paquetes que llegan a su interfaz. Para cada

uno de los canales configurados, cuando su channelStatus toma el valor valid,

se crea un proceso independiente del propio agente. Dicho proceso recibirá como

único parámetro el ı́ndice de la fila cuyo channeStatus se ha modificado, con el

cual recuperará toda la información relativa a ese filtro de la base de datos y

lo aplicará continuamente a todos los paquetes nuevos en el fichero. En caso de

encontrar alguna coincidencia actualizará la base de datos.

Para evitar que este fichero crezca de forma indefinida se configura TCPDUMP

con un tamaño máximo para el fichero, alcanzado el cual se creará un nuevo fichero

con nombres correlativos. Para eliminar los ficheros que ya han sido procesados,

en el momento del inicio del agente se crea otro proceso que a modo de garbage

collector (recolector de basura) comprobara si el fichero más antiguo está siendo

accedido por algún proceso, y en caso contrario lo eliminara.

Este modelo de trabajo queda ilustrado en las figuras F.1 y F.2.

Este método degradaba significativamente las prestaciones ya que todos los

61

62 F.1. Primera implementación

Figura F.1: Primera implementación del módulo de filtrado 1.

Figura F.2: Primera implementación del módulo de filtrado 2.

paquetes teńıan que traspasar la frontera entre espacio de Kernel y espacio de

Usuario. Además el mismo proceso encarado de realizar el filtrado deb́ıa actualizar

la base de datos.

Anexo F. Implementaciones desechadas de la funcionalidad de filtrado 63

F.2 Segunda implementación

Al inicio del agente se crea un segundo proceso que ejecutará un programa

principal que funciona a modo de command receiver. Ambos procesos estarán

comunicados mediante una tubeŕıa, y cuando un channelStatus pase a valid, el

agente, a través de la tubeŕıa, indicará al otro proceso el ı́ndice del filtro siendo

éste quien creará el proceso de filtrado.

Este programa principal utilizará el ı́ndice para recuperar toda la información

relativa al filtro de la base de datos, y a partir de ella generar el filtro BPF.

El programa de filtrado configurará este filtro en el Kernel gracias a la libreŕıa

Scapy (basada en LibPCAP), y en caso de que algún paquete supere el filtro se

ejecutará una función del callback.

El programa principal crea una tubeŕıa con cada uno de los programa de

filtrado que lanza, por lo que la función de callback simplemente deberá escribir

en la tubeŕıa para indicar que se ha superado ese filtro, y el programa principal

actualizará la base de datos.

El esquema completo de trabajo queda ilustrado en la figura F.3.

Figura F.3: Segunda implementación del módulo de filtrado.

Este método mejoro significativamente las prestaciones, ya que se redujo

significativamente la cantidad de información que teńıa que atravesar la frontera

64 F.2. Segunda implementación

entre el kernel-space y el user-space y a que la actualización de la base de datos ya

no era responsabilidad de los programas de filtrado. Sin embargo el uso de tubeŕıas

segúıa limitando las prestaciones.

Anexo G

Gúıa de manejo de la GUI

Hay que destacar que el objetivo de esta GUI es facilitar la realización de las

tareas básicas, y no explotar todo el potencial que ofrece RMON.

El primer paso a realizar durante la primera utilización de este software es la

creación de una nueva conexión. Para ello hay que ir al menú “Conexion”→“Add”,

donde aparecerá una pantalla como la de la figura G.1, en la cual se presentan los

campos Name, Address, Community y Version. El campo Name únicamente sirve

para identificar la conexión, el campo Address es la dirección IP del agente, el

campo Community es la comunidad utilizada para realizar las peticiones, por lo

que es muy recomendable que tenga permisos de lectura y escritura, y el campo

Version es la versión del protocolo y se presentan las opciones v1, v2c y v3. Una

vez están completados todos los campos hay que pulsar el botón “Add”para crear

la conexión.

El menú “Conexion”presenta otras opciones tales como “Edit”, Figura G.2,

la cual muestra una lista desplegable con todas las conexiones existentes, y al

seleccionar de ellas una carga los datos relativos a dicha conexión (Address,

Community y Version) y permite modificarlos. Para guardar las modificaciones

realizadas simplemente hay que pulsar el botón “Save”.

La opción “Delete”, Figura G.3, del mismo menú muestra una lista de todas las

conexiones existentes y al igual que “Edit”, al seleccionar una de ellas muestra sus

datos, pero en este caso no permite realizar ninguna modificación en ninguno de

65

66

Figura G.1: Menu Conexion→Add.

Figura G.2: Menu Conexion→Edit.

los campos, únicamente presenta la posibilidad de utilizar el botón “Delete”para

borrar la conexión que se encuentre seleccionada en ese momento.

La última opción que ofrece el menú “Conexion”, es “Select”, Figura G.4.

Esta opción es muy importante ya que permite seleccionar el equipo sobre el que

se realizarán todas las acciones posteriores, por ello es imprescindible seleccionar

una conexión antes de realizar cualquiera de las acciones que ofrecen los menús

“Filter”→“Add 2“Filter”→“Show”. Al acceder a este menú se muestra una lista

con todas las conexiones existentes y simplemente habrá que seleccionar la de

interés y pulsar el botón “Select”.

En el menú “Filter”la primera opción que se presenta es “Create”, Figuras

Anexo G. Gúıa de manejo de la GUI 67

Figura G.3: Menu Conexion→Delete.

Figura G.4: Menu Conexion→Select.

G.5 y G.6, la cual sirve para definir nuevos filtros. Para definir filtros, los campos

“FilterName” y “FilterOwner” son obligatorios, mientras que en el resto de los

campos aunque no pueden dejarse en blanco puede utilizarse el carácter “*”para

indicar que cualquier valor de ese campo cumplirá el filtro. Dependiendo de

los valores con que se rellenen los campos tipo, se mostraran unos campos u

otros en función del protocolo superior seleccionado. Las direcciones MAC han

de introducirse con formato xx:xx:xx:xx:xx:xx y las direcciones IP con formato

x.x.x.x.

En la opción “Delete”del menú “Filter”, Figura G.7, se puede seleccionar uno

de los filtros existentes de una lista, se mostrara todo la información relativa a ese

68

Figura G.5: Menu Filter→Create 1.

Figura G.6: Menu Filter→Create 2.

filtro, y en caso de pulsar el botón “Delete” éste será elimindado.

Como ya se ha comentado anteriormente, para poder utilizar la opción “Add”,

Figura G.8, es necesario haber seleccionado una conexión previamente. Al abrir

Anexo G. Gúıa de manejo de la GUI 69

Figura G.7: Menu Filter→Delete.

la opción “Add”se mostrara una lista con checkboxes con todos los filtros que se

hayan definido previamente y una lista con todos los interfaces disponibles en el

equipo seleccionado. Habrá que seleccionar los filtros que se desean aplicar a dicho

equipo, en que interfaz y pulsar el botón “Add”.

Por último la opción “Show”, Figura G.9, la cual también requiere que haya una

conexión seleccionada, muestra una lista con todos los filtros activos en el equipo

seleccionado, con su ı́ndice, nombre y número de coincidencias. Para eliminar

alguno de estos filtros se marcará el checkbox que se encuentra delante de cada

ı́ndice y se pulsará el botón “Delete”.

70

Figura G.8: Menu Filter→Add.

Figura G.9: Menu Filter→Show.

Anexo H

/etc/init.d/rmon

BEGIN INIT INFO

Provides: rmon

Required-Start: $all

Required-Stop: $all

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Start rmon daemon at boot time

Description: Enable service provided by rmon daemon

END INIT INFO

if [“$1”== “start”]; then

status=$(ps aux | grep /etc/rmon/ | grep -v grep | awk ’{print $2}’)

if [“$status”! = “”]; then

echo “rmon already started”

else

echo “starting rmon service...”

python /etc/rmon/start.py &> /dev/null &

fi

elif [“$1”== “stop”]; then

echo “stopping rmon service...”

filtros=$(ps aux | grep /etc/rmon/ | grep -v grep | awk ’{print $2}’)

71

72

IFS=$’ ’

for i in $filtros; do a=$i; done

IFS=$’\n’

for PID in $a; do kill -9 $PID; done

unset IFS

elif [“$1”== “restart”]; then

echo “restarting rmon service...”

filtros=$(ps aux | grep /etc/rmon/ | grep -v grep | awk ’{print $2}’)

IFS=$’ ’

for i in $filtros; do a=$i; done

IFS=$’\n’

for PID in $a; do kill -9 $PID; done

unset IFS

python /etc/rmon/start.py &> /dev/null &

elif [“$1”== “status”]; then

status=$(ps aux | grep /etc/rmon/ | grep -v grep | awk ’{print $2}’)

if [“$status”! = “”]; then

echo “running...”

else

echo “stopped”

fi

else

echo “Usage /etc/init.d/rmon start—stop—restart—status”

fi

Anexo I

Gúıa completa de instalación de

la sonda en sistemas Debian

Todos los pasos indicados en esta gúıa han sido verificados en una maquina

virtual generada con VirtualBox, dedicándole al menos 512 MB de memoria RAM

y 1.5 GB en un disco duro virtual en formato “.vdi”. El sistema operativo utilizado

ha sido deb́ıan 7.4.0 en su versión para sistemas i386.

Asumiendo que se parte de una instalación limpia de deb́ıan, lo primero que

habrá que hacer es conseguir los ficheros del programa. Éstos pueden conseguirse

de la red del siguiente modo:

• Obtener permisos de súper usuario utilizando el comando ”su” e

introduciendo la contraseña elegida durante la instalación para el usuario

root en el momento que se nos requiera.

• Descargar los ficheros utilizando el comando wget y los copiarlos al directorio

de trabajo:

– wget -r http://631500.comlu.com

– cp -r ./631500.comlu.com/RMON .

– rm -r 631500.comlu.com

• Moverse al directorio apropiado

73

74

– cd RMON/Configuracion

• Dar permisos de ejecución al fichero de instalación

– chmod 0777 Configuracion.sh

• Modificar el fichero inittab para permitir el login automático cuando se

encienda la máquina:

– Buscamos la ĺınea 1:2345:respawn:/sbin/getty -autologin USER -noclear

38400 tty1 y modificamos USER por el nombre de usuario creado

durante la instalación de deb́ıan

• Modificar fichero Configuracion.sh para modificar la contraseña de la base

de datos

– Buscar la ĺınea mysql -h localhost -u root -p –password=PASS

¡./mysql config y cambiar PASS por la contraseña de la base de datos

y que se introducirá durante la instalación de la misma.

• Ejecutar el fichero de instalación

– ./Configuracion.sh

• configuración de la red y del fichero /etc/rmon/rmon.conf.

Por defecto, cuando se encienda la maquina le agente

ya se estará ejecutando.Para interactuar con él se pueden utilizar los siguientes

comandos:

• /etc/init.d/rmon start

• /etc/init.d/rmon stop

• /etc/init.d/rmon restart

• /etc/init.d/rmon status

Anexo J

Banco de pruebas

import os

import subprocess

import sys

import time

for b in range(1,31):

for n in [5, 10, 15, 20, 25, 30]:

w = open(’resultados.txt’, ’a’)

subprocess.call([“python”, “borrar filtros.py”])

subprocess.call([“python”, “rmon filter monitoring.py”, str(n)])

aux = subprocess.check output([“iperf”, “-c”, “192.168.1.3”, “-p”,

“5760”, “-t”, “60”, “-u”, “-b”, str(b) + “m”])

aux = aux.split(“ ”)

sent = int(aux[len(aux)-2])

time.sleep(10)

aux = subprocess.check output([“snmpget”, “-v”, “1”, “-c”,

“public”, “192.168.1.3”, “1.3.6.1.2.1.16.7.2.1.9.1”])

aux = aux.split(“ ”)

recived = int(aux[len(aux)-1])

loss = round((float(sent - recived) / float(sent)),4) * 100

w.write(str(loss)+“\n”)

75

76

w.close()

w = open(’resultados.txt’, ’a’)

w.write(“\n”)

w.close()

Donde rmon filter monitoring es una función creada para cargar en la sonda los

filtros correspondientes a trafico ARP, TCP, UDP, ICMP y HTTP, HTTPS, DNS,

FTP, SSH, SMTP, POP3, NTP, NETBIOS137, NETBIOS138, NETBIOS139,

IMAP, SNMP, RDESKTOP origen y destino. La función borrar filtros sirve para

borrar todos estos filtros.

	Acrónimos
	Diagramas de flujo de la interacción agente SNMP - MIB
	Proceso de definición de la MIB
	communityManagement MIB
	 Guía gestión de las comunidades
	Implementaciones desechadas de la funcionalidad de filtrado
	Primera implementación
	Segunda implementación

	Guía de manejo de la GUI
	/etc/init.d/rmon
	 Guía completa de instalación de la sonda en sistemas Debian
	Banco de pruebas

