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Resumen

La presente Tesis está compuesta de cuatro artículos originales que pertenecen al campo
de la Geografía Económica y la Economía Regional y Urbana. Se presenta en dos partes,
cada una compuesta, a su vez, por dos papeles.

El primer capítulo presenta un nuevo modelo teórico de la Nueva Geografía Económica
en donde se introducen empresas heterogéneas, permitiendo que los trabajadores de una
cierta industria puedan, como los empresarios con alto nivel de gestión empresarial, crear
su propia empresa. La distinción entre estos dos tipos de emprendedores no se basa única-
mente en su nivel de productividad: su capacidad para moverse entre regiones es también
diferente. Este hecho nos permite analizar los efectos derivados de la competencia entre
diferentes tipos de empresa en un ámbito geográfico y cómo afectan al proceso de concen-
tración o dispersión económica en el espacio.

El modelo concluye que la heterogeneidad empresarial fomenta la concentración de las em-
presas menos productivas, si bien la localización de estas depende del valor del parámetro
que representa la libertad de comercio. Además, una mayor heterogeneidad favorece la
localización de la actividad económica (medida en ingresos, beneficios o número de traba-
jadores) en aquella región que concentra, a su vez, a las empresas más productivas.

El segundo capítulo desarrolla un marco alternativo al proceso de transporte de tipo Ice-
berg, asumido de forma general en los modelos de la Nueva Geografía Económica para
introducir una cierta fricción en el comercio derivada del espacio. Nuestro marco teórico
resuelve los problemas más importantes asociados al planteamiento Iceberg, a la vez que
mantiene su misma estructura matemática, de forma que los dos modelos son isomórficos,
aunque llegan a diferentes conclusiones. En nuestro marco introducimos el coste de
manera más realista, presentando los costes de transporte de forma directa en la función de
producción y no como una “caja negra”, como hace el marco Iceberg. Además, se producen
cambios importantes en la forma de interpretar el parámetro de libertad de comercio, que
no depende solo del coste de transporte, sino también de su relación con el coste de pro-
ducción.

El propósito del tercer capítulo es estimar la distribución del tamaño de las ciudades con
tres funciones de densidad: la lognormal, la doble Pareto lognormal y la normal-Box-Cox.

xi



La base de datos se compone de cuatro países: Alemania, Francia, Italia y España, estos
dos últimos con información de todo el siglo XX. Realizando los contrastes de Kolmogorov-
Smirnov y Cramér-Von Mises podemos discriminar entre las funciones que pueden explicar
esta distribución; asimismo, a partir de los criterios de información de Akaike y Bayesiano
elegimos la mejor opción.

Nuestra principal conclusión es que no hay ninguna función que, claramente, sea mejor
que el resto para los cuatro países seleccionados.

El cuarto capítulo profundiza en la temática del anterior, analizando ahora la distribu-
ción de las tasas de crecimiento de las ciudades para los mismos cuatro países: Alemania,
Francia, Italia y España. En este caso, las funciones consideradas son la normal, la alpha-
Stable y la t de Student. Utilizando los contrastes de Kolmogorov-Smirnov y Cramér-Von
Mises, para ver el ajuste entre la función teórica y la distribución empírica, y los criterios de
información de Akaike y Bayesiano concluimos, como en el capítulo anterior, que ninguna
función destaca entre las tres de manera regular.



Introduction

The present PhD Thesis is composed of four original papers that belong to the field of
Economic Geography, Regional and Urban Economics. It is presented in two parts, each
part containing two chapters.

The first part is based on a pure theoretical analysis within the New Economic Geog-
raphy framework; its purpose is to understand the behavior of the economy through math-
ematical models that take the space into account as one of its main components. The
focus of this approach is mainly on the distribution of economic activities, and how this
process is shaped by the concentration and dispersion forces that are created endogenously.

Although the economic studies that used the space dimension can be traced as far as
back as Von Thunen (1826), it is the model developed by Krugman (1991) that is used as
the base for the New Economic Geography. This model is determined by two important
features: The introduction of economies of scale into the production of differentiated goods
that foster the concentration of the production process, and the presence of costs of trans-
portation, in which the effects of the space on the localization of agents impose certain
restrictions on their economic interactions. The first two chapters of this thesis deal with
two main objectives: The first develops a theoretical model that introduces heterogeneous
firms, and analyzes its effects on the concentration process; the second proposes an alter-
native to the Iceberg transportation costs that is more in line with the real world.

The first chapter is associated with the inherent heterogeneity of the agents that compose
the economic system. It defines a topic of great interest in the field of the New Economic
Geography since it was presented as a necessary new area of research by Behrens and
Robert-Nicoud (2011) and Ottaviano (2011). As a result, in recent years, there has been
an increase in the number of scientific papers that try to describe the localization of dif-
ferent agents using some kind of heterogeneity. The aim of these studies is to analyze the
process of economic concentration over the space and, thus, how regions can specialize not
only in one particular economic sector, but also in certain types of firms (a country could
concentrate the more productive or the less productive companies, for example). Further-
more, competition forces foster the entry or exit of these heterogeneous firms differently,
changing their location decisions which, in turn, also affects the welfare level of the regions
(due, for example, to the access to a cheaper range of goods or to a greater income derived
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2 Introduction

by a higher productivity level of the businesses). This has been done, mainly, within the
framework developed by Melitz (2003), which introduces differences in the productivity
levels of firms. Redding (2011) review the theoretical literature between heterogeneity and
trade, and Melitz and Redding (2013) account for the empirical nature of this synthesis.

These previously cited works highlight the conclusion that a trade liberalization process
will generate an increase in the average productivity level of the economy due to higher
competition that pushes the less competitive firms out of the market, while the more pro-
ductive ones expand to other regions. However, questions as important as how a greater
firm heterogeneity affects the concentration process of these companies, or how these re-
lationships can change within different geographical units (cities, regions, countries), have
less consensus.

The first chapter of this thesis develops a new model within the New Economic Geog-
raphy framework with heterogeneous firms. It introduces a new type of firm heterogeneity,
in which the differences between firms are not only present in the productivity level, but
also in how these companies are created. This allows us to acknowledge the fact that the
workers of a certain industry, in addition to pure entrepreneurs, can create their own firms,
even though they are less prepared for the management process than other businessmen.
This distinction between the two kinds of entrepreneurs is not based only on the produc-
tivities that their companies will achieve: their ability to move between regions is also
different. This new interpretation shows that firm heterogeneity fosters the concentration
of the least productive firms; however, the location of this agglomeration depends on the
value of the freeness of trade parameter. We also conclude that a greater heterogeneity
concentrates the economic activity in the core, due to localization of the most productive
firms in it.

Continuing with the theoretical part of this thesis, the second chapter develops an al-
ternative to the Iceberg transportation costs that tries to explain, in a more realistic way,
the negative effects that the geographical space impose on the economic transactions of
goods between regions.

Since Samuelson (1952), the Iceberg approach has been proposed to explain, in a sim-
ple manner, the way in which the transportation process occurs: T(>1) units of a certain
commodity have to be sent from one region for one unit to arrive at another region. Krug-
man (1991) adopted this approach to implement it into his own models, contributing to
its wide-spreading and converting it into one of the core elements of the New Economic
Geography. But, although the Iceberg transportation costs are a really simple and opera-
tive instrument for the acknowledgement of the effects of space, they have important flaws:
many of their economic properties are at odds with the transport cost’s properties derived
from the real world.
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In a more detailed way, McCann (2005) explains that, due to its exponential formula-
tion, the Iceberg has three problematic outcomes: First, the transportation costs increase
in a convex manner with respect to distance; second, the transport cost per ton-kilometer
is invariant in relation to the initial weight of the product being sent; and third, the export
price has a unitary elasticity with respect to the domestic price. Finally we introduce a
fourth criticism which is associated with the Iceberg approach’s consideration of an irreal
homogeneous space.

Thus, the main purpose of the second chapter is to develop an alternative framework to
resolve the several and important problems pointed out before. In doing so, we maintain
the same structure as the Iceberg cost and, therefore, the models are isomorphic, although
with different economic underpinnings. This new approach is based on a more realistic
analysis of the modern transport process, incorporating the transportation costs directly
into the production function and not as a "black box", like the Iceberg approach does.
Furthermore, a new and interesting way to understand the freeness of trade parameter is
deduced.

In contrast with the first two, purely theoretical, chapters, the second part of this the-
sis deals with the empirical analysis of city size distribution. This topic has a long research
tradition, encouraged by the ubiquitous advance of the urban society. A rigorous analysis
of the size and growth distribution of cities can improve our knowledge of the fundamental
reasons that explain these urban agglomerations. We can not forget that it is in cities
where the main economic activity and the main forces that are theoretically studied in the
Economic Geography framework take place; moreover, the nature of the empirical distri-
bution can be used as a benchmark for the analysis of the concentration of other economic
variables, such as the distribution of income and the number of firms or employees.

Of course, the continuous interest in these topics is explained by the lack of consensus
about the theoretical distribution that could explain the particular equilibrium that each
country presents. As a general approximation, one of the more frequently used functions
for the size distributions of cities is the rank-size rule, or Zipf’s law. Following this function,
based on the contribution of Zipf (1949), the second most populated city will have half of
the population of the first, the third will have one third, and so on. This rule accurately
explains the distribution of population of the bigger cities within a country (upper tail);
however, it lacks real explanatory power when all the nuclei are considered.

A new wave of studies has been based on the necessity of taking into account two im-
portant remarks. First, the use all the cities of the country with no cutoffs, as Eeckhout
(2004) proposes, because selecting only the most populated cities can be understood as a
selection bias from which the rule will always be true. Secondly, graphical analysis is not
the best way of analyzing the goodness of fit, and, therefore, the additional use of tests is
preferable (González-Val et al., 2013b).
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Eeckhout (2004), one of the first proposals to analyze an un-truncated database of cities,
concludes that city size distribution follows the lognormal function, rather than the Pareto
(Zipf is a particular case of the latter). More recent works have stated that the function
which best describes the data is the double Pareto-lognormal (Giesen et al., 2010) or the
normal-Box-Cox (Schluter and Trede, 2013). There is, then, an on-going debate about the
best theoretical functions that explain the empirical nature of city size distribution.

The aim of the third chapter is to estimate the city size distribution with the lognormal,
double Pareto lognormal and normal-Box-Cox density functions for Germany, France, Italy
and Spain. The Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests are carried
out to discriminate among the functions; Akaike and Bayesian Information Criteria are
also used to select the best option. Our main conclusion is that there is no clear function
that outperforms the others, and that the differences between them allows us to think that
there may be a new function which could describe the size distribution of cities with a
better fit.

From the wide literature that deals with city size distribution, the analysis of the growth
process of cities follows naturally. However, there is a less extensive tradition devoted to
the study of the empirical distribution of city size growth rates. Among them, can be
found Schluter and Trede (2013) and the non-parametric analysis of González-Val et al.
(2013a, 2014). The former concludes that the lognormal is rejected as a function to de-
scribe city size distribution. This implies that Gibrat’s law (the proposition that city sizes
grow independently with respect to their size), whose main conclusion is that city size is
distributed as a lognormal, has certain problems.

The fourth chapter continues this path, analyzing the city size growth distribution, es-
timating the fitness of the normal, α-Stable and Student’s-t distribution functions, for the
case of Germany, France, Italy and Spain. Again, we use the Kolmogorov–Smirnov (KS)
and Cramér–Von Mises (CM) tests to analyze the goodness of fit of the estimated func-
tions and, again, try to select the best one based on the Akaike and Bayesian Information
Criteria. In conclusion, as in the previous chapter, we do not find a theoretical density that
outperforms the others, although it seems clear that the normal distribution is the worst
for describing the city size growth rates. This outcome, together with the third chapter,
seems to perpetuate the lack of consensus of an explanation that accounts for both the
distribution of the city sizes and their growth over time. The connection between the re-
sults found in these two chapters encourage us to continue following this research line, in
search of a new theoretical approach that can improve the previous analysis and explain
the process of the distribution of population in levels and in growth rates.
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Chapter 1

Economic concentration and firm
heterogeneity

1.1 Introduction

One of the traditional assumptions of economic geography models and, in general, of
any kind of theoretical model of an economy, is that all companies are equal in size and
productivity. However, in reality, the situation is clearly different. Firstly, with regard to
the size, as the latest report from the OECD on companies says, "the business population
is composed, in any region, of a predominant number of micro-firms, i.e. firms with fewer
than ten employees". Thus, large companies, those with more than 250 workers, represent,
on average, over all OECD regions, 0.2% of the total number of companies, this average
ranging between a minimum of 0.06% in South Korea and a maximum of 1.06% in Russia
(La Caixa Research 2014). Despite being few in number, big companies monopolize a much
more important percentage of employment. For example, in Spain, companies with over
250 employees represented 26.2% of total employment in 2000, a number that increased to
30.6% in 2013. Furthermore, in 2010, the big companies represented 49.8% of employment
in the United States and the 37% in Germany (OECD).

Large firms do not only have more workers, they are also more productive. In other words,
size and productivity are not independent variables. Indeed, according to the Eurostat
Structural Business Statistics, in 2005, the productivity of the larger firms of Germany,
Spain, France, Italy and United Kingdom was higher than the productivity of small firms
by a factor of 2.3. Latest data from 2013, although only for Spain, shows that the gross
value-added per worker of companies with more than 250 workers is 65 % higher than of
firms with fewer than 50 workers (La Caixa Research 2014).

In this context, it is necessary, if we want to approach to the stylized facts described
above, to introduce the heterogeneity of firms into the theoretical models of economic ge-
ography, as Behrens and Robert-Nicoud (2011) and Ottaviano (2011) claim. In the words
of the latter: "future research should look more deeply into finer micro-heterogeneity across

7
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people and firms". As a result, the main objective of this work is to reconcile and unite
two branches of the theoretical literature in a single model: one part concerning business
heterogeneity in the line of Melitz (2003), Melitz and Ottaviano (2008) and Melitz and
Redding (2013); the other, related to the new economic geography (NEG) formulated orig-
inally by Krugman (1991), and systematized by Fujita et al. (1999) and Baldwin et al.
(2003).

Of the various possible models of the NEG, we are going to take the Footloose Entrepeneur
Model proposed by Forslid and Ottaviano (2003) as our point of reference. The reason for
this decision is twofold: on the one hand, the model is completely solvable analytically; on
the other hand, it is especially suitable for introducing the distinction between qualified
and less qualified business managers. Other standard models in the NEG, such as the
original Core-Periphery Model of Krugman (1991), the Footloose Capital Model of Martin
and Rogers (1995) and the Vertical Linkages Model of Krugman and Venables (1995) and
Venables (1996), do not present either of the two advantage of the Footloose Entrepeneur
Model that we have mentioned.

Certainly, the introduction of firm heterogeneity into these kinds of models has found
its way in the literature, and a majority of them use the seminal contribution of Melitz
(2003). Okubo (2009) examines how a higher freeness of trade gradually increases the eco-
nomic agglomeration in the context of firm heterogeneity with intermediate input linkages.
Venables (2011) discusses the case in which heterogeneous workers decide their location
according to the probability of finding a better match with another worker. Okubo et al.
(2010) conclude that the most productive companies tend to locate in the larger region
(core) while the small and less productive firms are found first in the periphery; they move
towards the region with highest number of consumers with a higher freeness of trade. Fi-
nally, Forslid and Okubo (2012), using a multi-region version of the Baldwin and Okubo
(2006) model, deduce the interesting result that optimal commercial policies and the level
of mobility of capital suitable for each region depends on the size of the region.

For its resemblance to our approach and objectives, the work of Baldwin and Okubo
(2006) and, above all, Okubo (2010), deserves special mention.

Baldwin and Okubo (2006) take the Footloose Capital Model as its starting point. The
companies have sunk costs which are incurred in each market where they operate. This
element divides the spectrum of companies into three categories: those that are not prof-
itable even in the domestic market, those that only sell in the domestic market, and the
most productive firms that sell in all the regions. The main conclusions of Baldwin and
Okubo (2006) are that, first, companies with higher productivity are more footloose and
tend to be located in the largest markets and, second, that greater heterogeneity between
levels of business productivity acts as a centrifugal force, that is, in favor of dispersion,
through moderation in the processes of agglomeration.
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Like our model, Okubo (2010) is based on the Footloose Entrepeneur Model, but in-
corporates a quasi-linear demand function, as suggested in Pfluger (2004). Companies, as
in Baldwin and Okubo (2006), have to overcome a fixed cost to export. One similarity
with our approach is that differences between the productivity of firms are introduced in a
discrete way, that is, there are two types of companies (productive and not so productive)
and not in a continuous way, as in the original formulation of Melitz (2003) and Baldwin
and Okubo (2006). This hypothesis of only two types of companies greatly simplifies the
calculations without losing, as we will see later in our model, interpretative richness. The
main conclusion of Okubo (2010) is that the heterogeneity of companies acts as a cen-
tripetal force, i.e. it is more plausible that a symmetric equilibrium becomes unstable and,
therefore, that agglomeration occurs.

Against this background, our bi-regional model aims to shed light on the effect of het-
erogeneity on the binomial business agglomeration-dispersion from, as already mentioned,
an initial approach based on the Footloose Entrepreneur Model from Forslid and Ottaviano
(2003). The fundamental differences with Baldwin and Okubo (2006) and Okubo (2010)
define our contribution and explain why our results are not coincident with theirs and,
therefore, represent a novelty.

Firstly, we do not consider that companies suffer from a fixed cost to enter the foreign
market, in the belief that the cost of transport, which only affects exports and not domes-
tic sales, already gathers, at least in part, this fact. Secondly, these models are different
to ours: Baldwin and Okubo (2006) uses the Footloose Capital Model as its starting point
and Okubo (2010) uses the version of Pfluger (2004) of the Footloose Entrepeneur model.
Thirdly, in these two papers, all companies are mobile between regions; in our approach,
only companies that are managed by the most qualified and productive workers can move
between regions, while the companies managed by less productive workers can not. This
hypothesis is a simplification of the robust empirical evidence that the degree of mobility
of the labor force increases with the level of qualification: Docquier and Marfouk (2006),
Grogger and Hanson (2011) Docquier et al. (2014) and Artuç et al. (2015). Fourthly, the
less productive workers will be able to work in the manufacturing sector, in the agricultural
sector or, and this is the novelty, they will be able to create and manage their own manufac-
turing company, which will be, by definition, a less productive firm. This approach intends
to capture the fact that, in certain sectors, where the process of creation of a company
is not excessively expensive, the workers in this sector, with experience and information
about the product on sale, can become managers, creating their own company, in what
constitutes a theoretical approach to self-employment.

Finally, and contrary to Baldwin and Okubo (2006), in our model, the productivity of
companies does not follow a distribution function, but is introduced, as in Okubo (2010),
in a dichotomous way (companies that are more productive and less productive). Also,
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unlike Okubo (2010), in which the number of companies of both types is exogenously given,
in the model that we propose, the number of less productive firms is endogenous, so that
they can enter and exit the market according to the degree of competition; in other words,
the number of less productive firms is the endogenous variable that leads to the equilibrium
in the system.

We obtain four main results. One, the more productive firms are larger and are con-
centrated in the biggest region. Two, greater heterogeneity acts as a centripetal force, i.e.,
it increases the concentration of the less productive companies. Three, the freeness of trade
increases the number of less productive companies in the region where the most productive
companies are concentrated. In this way, the region in which the less productive firms are
more concentrated will depend on the value of the freeness of trade parameter. Four, for
low enough values of the cost of transportation, either the large region (the one that con-
centrates the most productive companies) will specialize in the industrial (differentiated)
sector, or the small region will specialize in the agricultural (homogeneous) sector. The
intuition and explanation associated with these findings are described in detail in the rest
of the work.

The chapter is structured as follows. Section 1.2 presents the model and solves its equi-
librium. Section 1.3 explains the effect of heterogeneity in the concentration or dispersion
of firms. Section 1.4 describes the resulting economic landscape in terms of specialization
and agglomeration. Section 1.5 carries out an analysis of welfare. The chapter closes with
the conclusions in Section 1.6.

1.2 The Model

1.2.1 Basic concepts

The economy consists of two regions, 1 and 2. There are two factors of production,
which we call productive and non-productive workers, where HT is the total amount of
the former and LT that of the latter. To talk about productive versus non-productive
firms and workers is really an abuse of language. In reality, strictu sensu, both types are
productive, although with different intensities. HT = H + H∗;LT = L + L∗. We use
the superscript * to refer to region 2. Productive workers can be associated with business
people who have acquired expertise in the management and creation of companies and
can move freely between regions. They are responsible for creating productive firms. Non-
productive workers can not migrate, but may change sector, so that they are able to work in
the industrial sector, both as workers or managers of their own firm, and in the agricultural
sector. This allows the presence of the two types of companies in the industrial sector, led
by productive and non-productive workers.



1. Economic concentration and firm heterogeneity 11

1.2.1.1 Demand

The utility is defined with two goods, a horizontally differentiated good that we asso-
ciate with the industrial sector and a homogeneous agricultural commodity. The utility
function of a consumer in region i = 1, 2, is:

Ui=X
µ
i A

1−µ
i (1.1)

Xi=

(∫
s∈N+N∗

di(s)
σ−1
σ ds

) σ
σ−1

(1.2)

where µ∈(0, 1), is a parameter that expresses the proportion of income used to consume
industrial goods, Xi is the consumption of the composite industrial good, Ai is the con-
sumption of agricultural goods, di(s) is the consumption of the variety s in i of good X.
N is the number of companies in region 1 (N = H + n)(where H is the total amount of
productive firms, each managed by a productive businessman, and n the total number of
non-productive firms in the region). N∗ is the number of companies in region 2, where
N∗ = H∗ + n∗; σ > 1 is the elasticity of demand of a variety and the elasticity of sub-
stitution between two varieties. The demand for a variety s of the industrial sector in
region i will be determined by the following function, which is the result of the standard
maximization of the utility (1.1)

di(s)=
pi(s)

−σ

P 1−σ
i

µYi, i = 1, 2 (1.3)

pi(s) being the price of the variety s in region i and Pi the price of the composite industrial
good in region i.

Pi=

[∫
s∈H+n

pki(s)
1−σds+

∫
s∈H∗+n∗

pkj(s)
1−σds

] 1
1−σ

(1.4)

where k = n, H indicates the type of company: n if it is managed by non-productive
workers, H if it is managed by a productive worker. A region’s income will be determined
by the sum of the wages of all workers

Yi=wiHi+w
L
i Li, i = 1, 2 (1.5)

wi(w
L
i ) being the wages of the (non-)productive workers.

1.2.1.2 Supply

The agricultural sector operates under perfect competition and constant returns to
scale, producing a homogeneous good. Without loss of generality, we choose units so that
producing an agricultural good requires one unit of non-productive labor. The price of the
good, therefore, will be equal to the marginal cost of producing it, which is the worker’s
salary: pAi = wLi =1, normalized to the unit price and, since the goods are traded without
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transport costs, the price will be the same in both regions.

The industrial sector produces horizontally differentiated goods (a variety for each existing
firm), with increasing returns to scale. Companies in the industrial sector may be formed
by productive workers (needing one productive worker per firm) or non-productive workers
(t > 1 of these being required to manage the firm). We can associate these differences with
the lower preparation of the workers for the fixed activities of the firm (independent of the
total production) and which are related by definition to the managerial functions of the
companies. The way of introducing heterogeneity, unlike Melitz (2003) and Baldwin and
Okubo (2006), is discretely, as in Okubo (2010). Each company, k =(H,n), uses βkxi non-
productive workers to produce xi output units, being βH < βn. In this way, producing the
same amount will require a greater number of workers in the non-productive firms. We can
associate this difference with a poorer quality of matching between manager and employee,
or directly with a lower productivity of the firm, consequence of a lower formation of the
manager as an entrepreneur.

The number of productive firms is determined by the total number of productive workers
that reside in the region, H in region 1 and H∗ in region 2. In both cases, the value of
H represents both the number of productive workers and the number of productive firms.
The number of non-productive firms is an endogenous variable, which is set as an equi-
librium variable in the labor market. Since there is perfect mobility between sectors, the
wage that a non-productive worker receives in the agricultural sector and in the industrial
sector is the same, wL = 1.

A non-productive worker will create his own company when he notices that the utility
obtained as the manager of a firm is greater than or equal to the wage he is receiving as a
worker. Obtaining the indirect (standard in the Dixit-Stiligtz framework) utility function,
this will happen whenever:

Umanager − Uworker = µµ(1− µ)(1−µ)
(∏

ni

tPµi
− wL

Pµi

)
> 0 (1.6)

∏
ni being the profit that a non-productive company obtains. We assume that the profit

is divided in equal parts between the t managers. The equilibrium condition (there are no
incentives for workers to create their own companies) is that Umanager = Uworker. Meaning
that the system is in equilibrium when real incomes are equal, and, therefore, when

∏
ni = t.

Non-productive workers will create non-productive companies until the profit obtained
is equal to the wage they would get as a worker, so that there are no incentives to change
of employment status. In this way, the number of non-productive firms will be adjusted
until the profit obtained by the non-productive firms is equal to t and, in equilibrium, the
incomes of workers will be the same whether in agriculture, in the industrial sector or as
managers of their own businesses.
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At the same time, industrial goods are traded with the common iceberg transportation
cost, where a firm should send τ∈[1,∞) units of the good so that one unit is received in
the other region.

With all of the above, the profit of a company, whatever its type, equals revenues mi-
nus the costs (which, in this case, only depend on the wages of the workers) of producing
the amount demanded:∏

k
(s)=pki(s)dki(s)+pkj(s)dkj(s)−wLβk [dki(s)+τdkj(s)], k = H,n (1.7)

where the subscript i refers to the domestic region and j to the foreign region. Companies
choose the price that maximizes their profit. We optimize both profit equations and get:

pki(s)=w
Lβk

σ

σ−1
= βk

σ

σ−1
(1.8)

pkj(s)=w
Lτβk

σ

σ−1
= τβk

σ

σ−1
(1.9)

First of all, we get that the price of the good increases with the marginal cost of producing
it, βk, and decreases with the price elasticity of demand (with less differentiation the
market is closer to perfect competition, decreasing the markups). Second, the price is
more expensive in regions where the goods have to be exported. In this case, the consumer
is paying for the units that he is going to consume, but also for those that the company has
had to produce and have been lost in the transportation process (the iceberg transportation
cost). Thirdly, the prices of goods produced in non-productive companies, with higher
marginal costs, are more expensive, which means that they will have a lower demand and,
therefore, a lower profit. At the same time, the price index for region i is determined by the
total set of prices of the industrial goods that can be purchased in that region. Bringing
(1.8) and (1.9) to (1.4):

Pi=

(
βn

σ

σ−1

)
(Hϕ+n+H∗ϕφ+n∗φ)

1
1−σ (1.10)

where φ=τ1−σ ∈ (0, 1] is a parameter derived from the transport costs that expresses
the freeness of trade, taking a value of 0 when there is no trade (when transport costs
are prohibitive) and a value of 1 when trade is completely free (there are no transport

costs). In turn, ϕ=
(
βH
βn

)1−σ
=
(
βn
βH

)σ−1
>1, is a key parameter in this model, resulting

from the ratio between the productivity or marginal costs between firms. The higher
this parameter is, the higher the difference between the two types of companies of the
economy. The parameter takes a value equal to 1 when there is no difference between the
two productivities.
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Knowing how the price is determined, we can deduce the profit that each company obtains
according to their demand: ∏

Hi
(s)=

βHxHi
σ−1

(1.11)

∏
ni

(s)=
βnxni
σ−1

=twLi =t (1.12)

where, in (1.12), we have applied the arbitrage condition which requires that the real in-
come of the non-productive workers is the same if they are workers or managers. Taking
into account that the profit of non-productive firms is equal to t and substituting the
equations of the demand for each variety (1.3) in (1.11) and (1.12), we obtain the complete
equations of the profit:

∏
ni (s)=

βn[dni(s)+τdnj(s)]
σ−1 = βn

σ−1

[
p−σni
P 1−σ
i

µYi+τ
p−σnj
P 1−σ
j

µYj

]
=

= βn
σ−1

[
(βn σ

σ−1)
−σ

(βn σ
σ−1)

1−σ
(Hϕ+n+H∗ϕφ+n∗φ)

µYi+τ
(τβn σ

σ−1)
−σ

(βn σ
σ−1)

1−σ
(Hϕφ+nφ+H∗ϕ+n∗)

µYj

]
=

=
[

1
σ(Hϕ+n+H∗ϕφ+n∗φ)µYi+φ

1
σ(Hϕφ+nφ+H∗ϕ+n∗)µYj

]
=t

∏
Hi (s)= βH

σ−1

[
p−σHi
P 1−σ
i

µYi+τ
p−σHj
P 1−σ
j

µYj

]
=

= βH
σ−1

[
(βH σ

σ−1)
−σ

(βn σ
σ−1)

1−σ
(Hϕ+n+H∗ϕφ+n∗φ)

µYi+τ
(τβH σ

σ−1)
−σ

(βn σ
σ−1)

1−σ
(Hϕφ+nφ+H∗ϕ+n∗)

µYj

]
=

=
(
βH
βn

)1−σ [
1

σ(Hϕ+n+H∗ϕφ+n∗φ)µYi+φ
1

σ(Hϕφ+nφ+H∗ϕ+n∗)µYj

]
=ϕ

∏
ni (s)=ϕt

In short, an important result that we obtain is:∏
Hi

(s) = ϕ
∏

ni
(s) (1.13)

In this way, the profit of the productive firms is greater than that of the non-productive
companies to a factor ϕ, so that the larger the difference between the productivities, the
greater the divergence in their profits.

Unlike the original model of Forslid and Ottaviano (2003), where the exogenous variable
is the number of companies and the endogenous variable is the profit of the companies (or
the wage of their managers), the model proposed here has the number of productive firms
as its exogenous variable and endogenously deduces the number of non-productive firms.
Knowing the individual remuneration of the productive workers, (wi =

∏
Hi = tϕ), we can

obtain the income of a given region from (1.5):

Yi = ϕtHi + Li (1.14)
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We can also deduce the number of non-productive workers that each type of company
employs:

βnxni=t(σ−1) (1.15)

βHxHi=ϕt(σ−1) (1.16)

Productive firms have a greater number of non-productive workers and, furthermore, each
of them is more productive, so the ratio between the output of each type of company is
greater than the ratio of productivities:

xHi
xni

=
βn
βH

ϕ=
βn
βH

(
βn
βH

)σ−1
=

(
βn
βH

)σ
> ϕ (1.17)

The more differentiated the product, the smaller the companies will be (each will use fewer
workers) and smaller will be the divergences in the quantities that each type of company
produces. With less differentiation (greater σ), each firm will employ more workers, and
there will be a greater difference between the outputs of the two types of firms.

Now we are in a position to establish the basic conclusions of this model. With knowledge
in business and through quality management, productive workers increase the productiv-
ity of their employees. Their companies are bigger and they get an income greater than
that of their workers. Furthermore, the companies managed by non-productive workers,
with experience in the sector, able to sell a variety of differentiated products, but with less
knowledge in economics and business management, are smaller, and may identify them-
selves, as SMEs (Small and medium-sized enterprises). In these smaller companies, the
managers will earn the same income as their employees.

1.2.2 Equilibrium

Although we apparently have four equations to determine the equilibrium (two for each
type of company and two for each region), as the profit of productive firms is proportional
to the profit of the non-productive companies, we really have only two equations. We use
the profits of non-productive firms in regions 1 and 2.

∏
n

(s)=
µ

σ

[
1

(Hϕ+n+H∗ϕφ+n∗φ)
(Htϕ+L) +

+ φ
1

(Hϕφ+nφ+H∗ϕ+n∗)
(H∗tϕ+L∗)

]
=t (1.18)

∏
n∗

(s)=
µ

σ

[
φ

1

(Hϕ+n+H∗ϕφ+n∗φ)
(Htϕ+L) +

+
1

(Hϕφ+nφ+H∗ϕ+n∗)
(H∗tϕ+L∗)

]
=t (1.19)
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Solving the system of two equations for the two unknowns (n and n∗) we obtain:

n=
µL−µφL∗+tϕ (H (µ−σ (1−φ))−µφH∗)

tσ (1−φ)
(1.20)

n∗=
µL∗−µφL+tϕ (H∗ (µ−σ (1−φ))−µφH)

tσ (1−φ)
(1.21)

In this way, we know the number of non-productive firms that are created for the labor
market to reach its equilibrium, that is, the wages of non-productive workers as workers
in any of the two sectors are the same as those they get as managers of their own businesses.

We can do a static comparative analysis and observe how the number of firms increases or
decreases with the variables that determine it. In the majority of cases, the sign of the ef-
fect is indeterminate and depends on the size of the regions (L and L∗) and the distribution
of productive workers (H and H∗). We accompany each derivative from the corresponding
sign, assuming that region 1 is of equal or greater size than region 2 (L ≥ L∗ and H ≥ H∗):

∂n
∂L = µ

tσ(1−φ) ≥ 0.
∂n
∂µ = (L−φL∗+ϕ(H−φH∗)

σt(1−φ) ≥ 0.
∂n
∂σ = −µ (L+ϕtH)−φ(L∗+ϕtH∗)

σ2t(1−φ) ≤ 0.
∂n
∂t = −µ(L−φL∗)

σt2(1−φ) ≤ 0.
∂n
∂ϕ = H(µ−σ(1−φ))−µφH∗

σ(1−φ) ≥ (≤)0 if φ ≥ (≤) H(σ−µ)
Hσ−H∗µ .

∂n
∂H = ϕ

(
µ(1+φ)
σ(1−φ) − 1

)
≥ (≤)0 if φ ≥ (≤) (σ−µ)σ+µ .

∂n
∂φ = µL−L

∗+(H−H∗)tϕ
(1−φ)2σt ≥ 0.

The less differentiated the industrial sector (higher σ), the lower n will be. At the same
time, as seems logical, the number of managers needed to start the business, t, also has a
negative influence, while the percentage of income that is spent on manufactured goods, µ,
has a positive one. The effects of a greater freeness of trade, φ, and a larger work force, L,
are also positive. On the other hand, the effect by the variable that measures the business
heterogeneity (ϕ), and the number of productive firms, H, on n is still undetermined and
will depend on the level of freeness of trade.

With regards to the effect of H, on the one hand, we find a competitive effect that implies
that a greater number of productive firms in a region will foster competition and lower the
output per company, reducing the profits for all firms and forcing the non-productive firms
out of the market until the market regains its equilibrium. This is the market crowding
effect. On the other hand, more productive firms increases demand and income in the
region, increasing the output per company and, therefore the profit, encouraging the cre-
ation of non-productive companies until the market again reaches its equilibrium.

In addition, an increase in the number of productive firms also increases the demand
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from the foreign region. This is the home market effect. The intensity of each of the effects
depends on the magnitude of the costs of transportation. If we are in a state of autarky,
the effect of an increase in the number of productive firms on the number of non-productive
firms will be negative, (the competitive effect will be greater than the effect via demand).
In a state of free trade, the effect will be positive.

With respect to how a greater heterogeneity (a greater ϕ) affects the number of SMEs, the
result is similar, in terms of its indeterminacy. A higher ϕ negatively affects the number of
SMEs since they have less capacity to compete in the market with productive firms (lower
output, fewer profits). On the other hand, a greater heterogeneity positively affects n as it
increases the income of the region and attracts more demand from abroad (home market
effect).

These two forces (home market effect and market crowding effect) alter the profits via
competition and via demand and directly affect the entry and exit of non-productive firms,
which means that market adjustment will be made by the number of non-productive firms.
We can associate this fact with greater market power of large companies that gives them
flexibility when assuming the shocks and the changing conditions of the market. Small
businesses are not only affected quantitatively (with a smaller or bigger profit), but quali-
tatively, that is, by changing its decision to remain in the market as managers or workers.

Productive firms assume that small businesses will leave or enter the market, and decide
their location knowing that their profit is not going to vary once equilibrium is reached (see
the Appendix for an analytic demonstration of this process). In other words, the entry or
exit of SMEs to and from the market neutralizes the effect of the home market effect and
the market crowding effect on the productive firm’s profit, which will be thus invariant.
In consequence, location in one area or another of these productive companies will depend
primarily on a third standard effect on the models of the NEG, namely the price index
effect, which, as we shall see, will favor the total concentration of companies in one of the
regions (the larger). In this context, Holmes and Stevens (2002) found empirical evidence
that explains how, within the same sector, large firms tend to concentrate more than small
ones.

A productive worker of region 2 will always move into region 1 if the utility (or, as we
see in (1.22), profit or income in real terms) that he obtains in region 1 is higher than the
one he gets in region 2. In this way, and using the indirect utility function we get, with
obvious notation:

MH = UH − UH∗ = µµ(1− µ)(1−µ)tϕ

(
1

Pµ
− 1

P ∗µ

)
(1.22)

To find out if an equilibrium is stable (where MH = 0 and no companies have incentives
to change their region), we must see how MH varies with respect to H. If the derivative
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is positive, any movement towards region 1 will create more incentives for companies of
region 2 to move to region 1. Otherwise, for the equilibrium to be stable, ∂MH

∂H < 0. Re-
placing (1.10) in (1.22) as well as (1.20) and (1.21) in (1.10), we get MH as a function of
H, and deriving:

∂MH

∂H
=
µ(1+µ)(1− µ)(1−µ)t2ϕ2

σ − 1



βσ
(

(1+φ)µ(L+Htϕ
σt

) 1
1−σ

σ−1

−µ
L+Htϕ

+

βσ
(

(1+φ)µ(L∗+H∗tϕ
σt

) 1
1−σ

σ−1

−µ
L∗ +H∗tϕ


> 0

(1.23)
With this we demonstrate that, based on a situation of equilibrium, any movement by
productive firms creates a chain reaction that ends with all the companies in one of the
two regions. That is, there is no stable equilibrium.

The equilibrium can also break if either of the two regions increases in size. In partic-
ular, productive firms will move to region 1 if:

P<P ∗ ←→ µ (1+φ) (L−L∗+tϕ (H−H∗))
tσ

>0 (1.24)

Suppose, for simplicity, that H = H∗. In this case, an increase in L (above L∗) will lower
the price index for region 1 (as it increases the number of SMEs) and will raise the real
income of productive workers that are located there, encouraging the entry of more pro-
ductive workers from region 2 which, in turn, will decrease the price index of region 1 even
further. We can say, therefore, that productive companies have incentives to locate in the
larger areas.

In summary, the first major conclusion of the structure of the model is that all productive
firms will finally be concentrated in a single region. Without loss of generality, we assume
that this region is 1.

This endogenous result (H∗ = 0) allows us to greatly simplify the expressions of n and n∗,
with the assumption that the number of non-productive workers is still the same in the
two regions (L = L∗):

n=
Lµ (1−φ) +Htϕ (µ−σ (1−φ))

tσ (1−φ)
(1.25)

n∗ =
Lµ (1−φ)−Htφϕµ

tσ (1−φ)
(1.26)

Now (H∗ = 0 and L = L∗), the signs of the derivatives in page 16 are the same, and, as
the most important case, we have:
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∂n

∂φ
=

Hµϕ

σ(1−φ)2
>0 (1.27)

∂n∗

∂φ
=− Hµϕ

σ(1−φ)2
<0 (1.28)

As we can see, an increase in freeness of trade (a decrease in transportation costs)positively
affects the number of non-productive firms located in the region that concentrates the pro-
ductive firms, while negatively affects the region which has only non-productive companies.

The explanation is as follows. Let us start with a state of autarky and infinite trans-
port costs. Since all productive companies are located in region 1, its price index will be
lower than that of region 2. As transport costs go down, the exports of each company
will increase. Then, as the the price index of region 1 is lower than region 2, the goods of
region 2 are more expensive for individuals of region 1 than the goods of region 1 are for
individuals of region 2. This makes the agents of region 1 consume more products of their
own region, importing less than region 2 imports from region 1, which causes the demand
in region 1 to increase with the consequent positive effect positive on n.

In this line of reasoning, if we obtain the derivative of the profit of SMEs with respect
to φ and then replace the value of n and n∗ by their expressions in the equilibrium in
(1.25) and (1.26) we also obtain some equations with a non-ambiguous sign1:

∂
∏
n

∂φ
=

Ht2ϕ (L (1− φ)−Htϕφ)

L (1− φ) (1 + φ)2 (L+Htϕ)
> 0 (1.29)

∂
∏
n∗

∂φ
= − Ht2ϕ (L (1− φ) +Htϕφ)

L (1− φ) (1 + φ)2 (L+Htϕ)
< 0 (1.30)

Lower transport costs increase the profits of SMEs in region 1, creating incentives for work-
ers to create their own company. At the same time, they lower the demand and profits in
region 2. The fact that companies are created in region 1 and leave the market in region 2,
causes the price index in region 1 to decrease and that of region 2 to increase even more.
Therefore, a decrease in the costs of transportation has an amplifying effect.

In conclusion, more competitive regions attract more foreign demand with more free trade,
which increases domestic economic activity in the form of a greater number of companies
and varieties.

1.3 Effects of heterogeneity on the location of companies

Heterogeneity is one of the key elements of our model. Therefore, since we have already
deduced that the most productive firms are concentrated entirely in one of the regions, we

1In equilibrium
∏
n =

∏
n∗ = t =constant. These derivatives should explain how profits vary with φ

before the number of non-productive firms meets the arbitrage condition
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will study in more detail how greater heterogeneity affects the distribution of the less
productive companies between the two regions (in the following section we analyze the
distribution of the economic activity as a whole).

The proportion of small businesses that perform their economic activity in region 1, dn is,
replacing the number of firms in each region by equations (1.25) and (1.26), given by:

dn =
n

n+ n∗
=

(1− φ)Lµ+H (µ− (1− φ)σ) tϕ

(1− φ) (2Lµ+H (µ− σ) tϕ)
(1.31)

The effect of more heterogeneity between firms (ϕ) in the proportion of non-productive
firms in region 1 is:

∂dn
∂ϕ

=
∂
(

n
n+n∗

)
∂ϕ

=
HLµ ((1 + φ)µ− (1− φ)σ) t

(1− φ) (2Lµ+H (µ− σ) tϕ)2
(1.32)

It can be checked that dn > (<) 0.5 if and only if φ > (<)σ−µσ+µ and that ∂dn
∂ϕ > (<) 0 if

and only if φ > (<)σ−µσ+µ .

That is, if the parameter of freeness of trade is less than the threshold σ−µ
σ+µ , on the one

hand, SMEs are more concentrated in region 2 (it has more than 50% of all non-productive
firms) and, on the other hand, a greater heterogeneity increases the percentage of SMEs
in region 2. But if the parameter of freeness of trade is higher than the threshold, then

Figure 1.1: Percentage of SMEs in region 1 when φ > σ−µ
σ+µ

region 1 has more than 50% of the non-productive firms or SMEs and, in addition, greater
heterogeneity raises this percentage (see Figures 1.1 and 1.2). In both cases we see that,
whatever the variable of freeness of trade, greater heterogeneity increases the proportion
of SMEs in the region that has more than 50% of the SMEs. We, conclude, therefore, that
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Figure 1.2: Percentage of SMEs in region 1 when φ < σ−µ
σ+µ

business heterogeneity fosters the concentration of non-productive companies, even though
the region where this agglomeration will take place depends on the value of the freeness of
trade: If it is high (low), will be in the region that has (does not have) the productive firms.

This is because greater heterogeneity reinforces the effect generated by productive firms
on the non-productive firms that we saw in Section 1.2.2. In this way, with high transport
costs, the market crowding effect was higher than the home market effect, in such a way
that the effect of productive firms on non-productive firms in the same region was negative.

Greater heterogeneity reinforces these effects, reducing the number of non-productive firms
in region 1, and decreasing the percentage of non-productive firms that are located in re-
gion 1 (since the effect, although it is also negative for firms in region 2, it is to a lesser
extent, as the magnitude of the market crowding effect is lower). On the other hand, with
low transport costs, productive firms attract demand from abroad, capable of generating
income and market potential for the creation of non-productive companies. An increase
in heterogeneity reinforces this effect, augmenting the market potential for non-productive
firms and, therefore, increasing both the number and the percentage of non-productive
firms in region 1.

1.4 Agglomeration and specialization

For the following analysis, we will continue assuming that the number of non-productive
workers is the same in both regions (that is, L = L∗). We have also inferred that pro-
ductive firms are concentrated (by the mechanism described in the previous section) in
region 1 (H∗ = 0). As we have seen, lower transportation costs increase the number of
non-productive companies in region 1 and lower it in region 2. It is convenient to establish
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three restrictions that will maintain economic common sense with respect to the values
that can be adopted by the endogenous variables n and n∗.

The first restriction will imply that the number of non-productive firms in region 1 will
always be positive. An increase in transport costs decreases the number of non-productive
companies in region 1. We want to make sure that, with infinite costs of transportation
(with no trade between the two regions), the number of these companies, which will be the
minimum possible, is at least zero. From (1.25)

nmin = n (φ=0) =
Lµ−Htϕ(σ−µ)

tσ
>0 (1.33)

Secondly, as the costs of transportation are reduced, the number of non-productive firms in
region 1 increases. However, the total population of region 1 is fixed (L), and the number
of workers that uses each company is also fixed ((1.15) and (1.16)). Therefore, there is a
maximum amount of companies who can enter the market. In particular, discounting the
population working for productive firms (Hϕ(σt−1)), the total amount of non-productive
labor force that is available to work in non-productive firms is L−Hϕ(σt−1). Taking into
account that each SME uses t(σ − 1) + t = tσ non-productive workers (considering also
the necessary number of worker to manage the company), we can establish the minimum
transport cost that will result in the maximum number of firms in region 1.

nmax = L−Htϕ(σ−1)
tσ = {(1.25)} = Lµ(1−φ)+Htϕ(µ−σ(1−φ))

tσ(1−φ) −→

−→ φM =
(1− µ)(L+Htϕ)

(1− µ)L+Htϕ
∈ (0, 1) (1.34)

For values greater than the parameter φM the number of companies in 1 will not increase,
because it will have reached the maximum possible (we will see later in detail what happens
for greater values of φ).

The third restriction refers to the number of companies in region 2. As transport costs
decrease, the total number of firms is lowered, but it is also impossible for that number to
be negative. Namely, there is a minimum number of companies, 0, which is found when
φ ≥ φP .

n∗min = 0 = {(1.26)} =
Lµ(1− φ)−Htµϕφ

tσ(1− φ)
−→ φP =

L

L+Htϕ
∈ (0, 1) (1.35)

For values greater than the parameter φP , the profit gained by the SMEs would be less
than t. In these circumstances, non-productive workers would not want to start a business
and, in the end, they would all end up working in the agricultural sector.
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When analyzing the resulting economic landscape for a high enough freeness of trade,
we have two possible outcomes if φM is greater than or less than φP , because the system
of equations will change depending on the case.

1.4.1 Total specialization of region 1 in the industrial sector if φ ≥ φM

This is the case in which φM < φP . This occurs whenever:

φM=
(1−µ)(L+Htϕ)

(1−µ)L+Htϕ
<

L

L+Htϕ
=φP→µ>

L+Htϕ

2L+Htϕ
=Se > 0.5 (1.36)

That is, if the proportion of the income to consume industrial goods (µ) is greater than
the variable Se = Y

Y+Y ∗ ∈ (0, 1) (which represents the percentage of income that region 1
has over the total amount of both regions), region 1 specializes in the industrial sector.

For a parameter of free trade greater than φM , the system of equations that determines the
number of firms (1.18 and 1.19) changes because, when all the workers of region 1 are in the
industrial sector, the number of industrial firms cannot increase, since it is exogenously
determined by the maximum number of companies, nmax. Not having an agricultural
sector in region 1 implies that there is no arbitrage condition that limits the salaries of
non-productive workers, i.e., wL does not have to be equal to 1 but is determined endoge-
nously via market equilibria (the endogenous variable changes from n to wL). From (1.6)∏
n = twL; in addition, (1.8) and (1.9) imply that prices are rising at the same rate as wL

and from (1.13),
∏
H = ϕ

∏
n and, therefore,

∏
H = ϕtwL.

The new system of equations of the business profits with φ > φM is not solvable, in
the style of the original model of Krugman, so we can not obtain a solution for n∗ or for
wL. Replacing (1.3) in (1.11) and (1.12) and taking into account the new prices (which are
now multiplied by the factor wL) and the new income of productive and non-productive
workers of region 1 (which are also multiplied by wL) the system of equations is given by:

∏
n

(s)=
µ

σ

[
(wL)

1−σ

(wL)1−σ(Hϕ+n)+n∗φ
wL(Hϕt+L)+

+φ
(wL)

1−σ

φ(wL)1−σ(Hϕ+n)+n∗
(L)

]
=twL (1.37)

∏
n∗

(s)=
µ

σ

[
φ

1

(wL)1−σ(Hϕ+n)+n∗φ
wL(Hϕt+L)+

+
1

φ(wL)1−σ(Hϕ+n)+n∗
(L)

]
=t (1.38)
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where, with all non-productive workers in region 1 in the industrial sector:

n(φ > φM )=nmax=
L−Htϕ(σ−1)

tσ
(1.39)

However, we can know the value at the extremes of this restriction, that is, at φ = φM (from
which this restriction takes effect) and φ = 1 (the maximum freeness of trade possible). In
this case:

wL = 1 (1.40)

n∗(φ = φM and φ = 1) =
L(2µ− 1)−Htϕ(1− µ)

tσ
(1.41)

The number of companies that are in region 2 in a full freeness of trade state depends on
the marginal propensity to consume industrial goods. Thus, in the extreme case that all
income will be spent on industrial goods, µ = 1, the population of region 2 will also be
devoted entirely to the production of the industrial sector (see (1.41)).

The following graphs illustrate the process of economic concentration when φM < φP .
We have the freeness of trade parameter on the horizontal axis and on the vertical axis the
total number of non-productive companies.

Figure 1.3 shows the evolution of the number of SMEs in region 1, which increases more
and more as the cost of transport is reduced, until reaching φ = φM , after which region 1
devotes its entire population to the production of industrial goods and n is maximum.

The second graph is for region 2. In this case, the number of SMEs falls increasingly
as the freeness of trade increases, reaching φM . From there on, the number of companies
remains practically constant, as we have seen when we obtained their values by a simu-
lation process. Note how, over to the right of φP , n∗ is not equal to zero, as would be
expected. This is because, in each of the two possible scenarios (Sections 1.4.1 and 1.4.2),
only the restriction which affects the minimum of (φM , φP ) is operational and the other is
not. The explanation is as follows. Suppose that we are in the case in which φM < φP (for
the opposite situation, the reasoning is analogous, mutatis mutandis). When φ = φM , n
adopts a specific value that will not change, this makes equations (1.18 and 1.19) become
(1.37 and 1.38), so (1.21 and 1.26) are no longer valid (remember that φP is deduced from
(1.26)). In summary, as shown in Figure 1.4, with values of φ over φP , n∗ is not zero.
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Figure 1.3: n as a function of φ (φM < φP )

Figure 1.4: n∗ as a function of φ (φM < φP )
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1.4.2 Total specialization of region 2 in the agricultural sector if φ ≥ φP

Now φP < φM . Lower transport costs from φP imply that region 2 is fully specialized
in the agricultural sector because it has no industrial firms (n∗ = 0). This fact greatly
simplifies the new system of equations since we will only have one equation, namely the
corporate profits of the non-productive companies of region 1:

∏
n (s)=µ

σ

[
1

(Hϕ+n)(Hϕt+L)+ φ 1
φ(Hϕ+n)(L)

]
=t

n=
2Lµ−Htϕ(σ−µ)

tσ
∀φ ≥ φp (1.42)

Figure 1.5 shows the increasing evolution of the number of SMEs in region 1 as the
transport costs are reduced. However, for any value of free trade greater than φP , the
number of SMEs remains constant, due to the disappearance of all industrial SMEs in
region 2 (the increase in demand due to the reduction of transport costs is offset by the
reduction of the production needed for one unit to arrive at region 2, maintaining the total
production and profits constant for SME’s in region 1). Figure 1.6 provides the behavior
of region 2, where the number of SMEs decays reaching its minimum with φ ≥ φP .

Figure 1.5: n as a function of φ (φP < φM )

The special case in which φM = φP implies that both restrictions are met simultane-
ously: any greater φ will imply that both regions 1 and 2 will be specialized in the industrial
and the agricultural sector, respectively. This special case occurs when µ = L+Htϕ

2L+Htϕ .
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Figure 1.6: n∗ as a function of φ (φP < φM )

1.4.3 Industrial concentration

We have seen the evolution of the number of SMEs, but to study the economic con-
centration in an industry we must take into account all businesses (large and small ones).
As we know, as transport costs decrease, industry will increase (due to the creation of
SMEs) where the productive firms are located (in our case, region 1). To study the evolu-
tion of the industry, we believe that it is not convenient to directly add up the number of
firms, since they are different entities and it is preferable to consider their economic weight.

Therefore, we define SI as the percentage of revenues of the industrial sector in region
1 over the total amount of both regions (it also represents the percentage of profits
earned by the industrial sector in region 1 over the total amount and the percentage
of non-productive workers dedicated to the industrial sector, without counting the busi-
ness managers): SI = Hϕ+n

Hϕ+n+n∗ . Substituting n and n∗ by (1.25) and (1.26) and taking
Se = Y

Y+Y ∗ = Htϕ+L
Htϕ+L+L∗ , we reach:

SI=
1

2
+

1+φ

1−φ

(
Se−

1

2

)
(1.43)

These equations are only met when φ is less than φM and φP . In another case, when
region 1 is fully specialized in the industrial sector and is unable to continue to concentrate
industrial productive capacity or when region 2 fully specializes in the agricultural sector
and the entire industry is now concentrated in region 1, we have seen that the behavior
of n and n∗ changes and the equations that describe the business concentration process
cannot be set analytically (although we can make numerical approximations to see what
is really happening).
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Figures 1.7 and 1.8 represent, as is customary in the new economic geography models,
the fork diagram, showing the industrial concentration according to the equation (1.43)
for the region that concentrates the productive firms (represented by the top line) and the
region that only has non-productive companies (represented by the bottom line).

Figure 1.7: Industrial concentration as a function of φ (µ > Se, φM < φP )

On the horizontal axis, we represent the different values of the freeness of trade and,
on the vertical axis, the industrial concentration, measured as a percentage of the industry
in each region over the total. Thus, in the case of a null freeness of trade, the percentage of
industry in each region is exactly equal to the percentage of income in that region. How-
ever, as the transport costs decrease, the number of non-productive firms in the region with
the highest percentage of income and industry increase. This raises production, revenues,
profits and the number of workers (the last three at the same rate) increasing the weight
of the industry in this region.

Figure 1.7 illustrates the case where µ > Se which implies that φM < φP . In this
situation, when the parameter of free trade (φ) is greater than φM , we are in the case in
which region 1 is unable to increase the number of non-productive companies, which en-
courages an increase in prices, wages, income and corporate profits, leading to an increase
in industry concentration but less intensively (due to the loss of competitiveness that the
increase in prices implies).

Above a certain level of freeness of trade, this process is reversed, as the loss of com-
petitiveness is too large to continue increasing the profits, so it produces the opposite
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Figure 1.8: Industrial concentration as a function of φ (µ < Se, φM > φP )

effect, a reduction in prices, salaries, wages and profits up to precisely the level prior to
the increase of these monetary factors, Seµ .

Figure 1.8 illustrates the case in which µ < Se, so that φP < φM . In this scenario,
when the parameter of free trade is greater than φP , region 2 is unable to further reduce
its industrial production, because it cannot be negative. In this case, region 1 is the only
one that has an industrial sector, thus making up 100% of the industry between the two
regions, percentage that remains while φ > φP .

1.5 Welfare

The indirect utility function is:

Usi=µ
µ(1−µ)1−µ

ws
Pµi

, s = L,L∗, H i = 1, 2. (1.44)

where ws, s = L,L∗, H, represents the associated income of both types of workers in the
corresponding region. Taking (1.10), (1.25) and (1.26), with ψ = µµ(1−µ)(1−µ)

(βn σ
σ−1)

µ we get:

UL = ψ
1

(Hϕ+ n+ φn∗)
µ

1−σ
= ψ

(
µ(1 + φ)(L+Htϕ)

tσ

) µ
σ−1

(1.45)

UL∗ = ψ
1

(φHϕ+ φn+ n∗)
µ

1−σ
= ψ

(
µ(1 + φ)L

tσ

) µ
σ−1

(1.46)
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UH = ψtϕ

(
µ(1 + φ)(L+Htϕ)

tσ

) µ
σ−1

(1.47)

All functions increase with respect to the freeness of trade parameter, that is, the lower the
transportation costs, the greater the utility level, since prices will be lower and individuals
can purchase more industrial goods. At the same time:

UL

UL∗
=
Y

Y ∗
=
L+Htϕ

L
> 1 (1.48)

UH
UL

= tϕ > 1 (1.49)

Productive workers have a greater utility than non-productive workers. These in turn enjoy
a greater utility if they are located in region 1. This occurs until the transport costs are so
low that either of the two restrictions are met, φM or φP . From then on, the utility of the
individuals in region 2 increases at a faster pace than the individuals of region 1 so that,
in a state of complete freeness of trade, φ = 1, the value of the utility of non-productive
workers is the same in both regions. In fact, evaluating the price index (1.10) with (1.41)
and (1.39) (if µ > Se) or n∗ =0 and (1.42) (if µ < Se) we have:

UL = UL∗ = ψ

(
µ

2L+Htϕ

tσ

) µ
σ−1

(1.50)

This convergence can be explained as that once a region is specialized, the improvement
in the trade involves only a greater accessibility to products from both regions. Since
region 2 is at a disadvantage, the improvement of trade more positively affects this region,
allowing access to more varieties at a lower price. Region 1 is also affected positively,
but with less intensity. With free trade the utility of non-productive workers is, therefore,
the same, regardless of the region in which they are located. This conclusion differs from
that obtained by Okubo (2010) where, even with full freeness of trade, the region that
concentrated the industry obtains greater welfare for their non-productive workers.

1.6 Conclusions

This work has introduced business heterogeneity in the level of productivity into a
standard model of the New Economic Geography using the Footloose Entrepeneur Model
of Forslid and Ottaviano (2003). The most important differences with the previous litera-
ture in this line, primarily the works of Baldwin and Okubo (2006) and Okubo (2010), are
three in number. First, we do not consider that companies suffer from a fixed cost to enter
foreign markets. Second, in the two cited papers, firms are mobile between regions while,
in our approach, only companies that are managed by the most qualified and productive
workers can move and companies managed by the less productive workers are immobile.
Third, the less productive workers will be able to work in the manufacturing sector, in the
agriculture sector or, and this is the novelty, will be able to create and manage their own
manufacture company, that will be, by definition, a less productive firm.
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The main conclusions that we can deduce from this model are the following.

One, the symmetrical equilibrium of productive firms is unstable, so the largest region
will concentrate all productive firms (a result also obtained by Nocke (2006) and, although
gradually, by Baldwin and Okubo (2006)). In this same line of reasoning, from a situation
in which each region has 50% of productive firms, any industrial policy that produces a
movement of a productive firm from one region to another (through, for example, tax in-
centives or the implementation of advantages that attract more skilled workers who can
create these productive companies) means that all productive companies will be located in
this region.

Two, in this model, the key endogenous variable is the number of SMEs in each region.
How does business heterogeneity affects these less productive companies? Greater busi-
ness heterogeneity leads to a higher concentration of SMEs. The question is, in which
of the regions will this concentration occur? If transport costs are high, the SMEs are
concentrated in the periphery (the smallest region or the one that does not concentrate
the more productive firms). If transport costs are low, concentration will be in the core.
What is the economic explanation of this important result? There are two forces acting
with different signs. On the one hand, a greater number of productive firms in a region
or a greater difference in productivity between the two types of companies acts as a force
that drives SMEs out of the market through a mechanism linked to greater competition.
On the other hand, more productive firms in a region or a greater difference in productiv-
ity between the two types of companies acts as a force that creates non-productive firms
through a mechanism linked to a greater income and, therefore, greater demand (there are
more productive firms, which generates a higher income). In addition, these effects will be
greater the higher the difference between productivities. With high transport costs, the
competitive force is superior to the demand-linked force, while the increase in free trade
(the freeness of trade parameter gradually approaches to one) will intensify the positive
effect until it dominates the negative force, with the result that the number of productive
firms or a superior firm heterogeneity favors the creation of SMEs.

Three, a direct consequence of the previous point is that, in the region that does not have
the productive companies, the number of non-productive firms decreases as the freeness
of trade increases and, therefore, it makes sense for that region to establish protectionist
policies to boost its manufacturing sector. If this is true, the trade off is that this policy
decreases the welfare of all individuals, including those located in the region whose indus-
try it is trying to protect, because of a reduction in the accessibility to foreign industrial
goods produced by more efficient firms that can sell them cheaply.

Four, the resulting economic landscape of the model is, for sufficiently low transportation
costs, the following: either the region that owns all productive firms is fully specialized in
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the industrial sector or the other region is completely specialized in the agricultural sector.
For a specific value of µ it is even possible for both events to occur simultaneously, i.e.,
there would be complete specialization in production at the international level. In our
model, each region specializes in the sector in which it has a comparative advantage. The
region that has productive firms, which gives it a greater technical efficiency in production,
specializes in manufacturing, and the other region in the sector in which it is relatively
better, namely the agricultural sector.

Five, from point two, it can be derived that, for a high freeness of trade, productive
firms in the region in which they are installed favor the creation of less productive firms,
generating a higher income resulting in an increase in demand and, therefore, an increase
of opportunities for SMEs opportunities. These positive externalities that productive com-
panies project onto the non-productive appear in Delgado et al. (2010): “There is a strong
evidence that the presence of a strong cluster surrounding a region industry accelerates the
growth in a start-up activities... Strong regional clusters enhance the range and diversity
of entrepreneurial start-up opportunities while also reducing the costs of starting a new
business”.

Finally, the reduction of transport costs unequivocally increases the welfare of all agents.
Productive workers also have a higher utility than non-productive workers, and those lo-
cated in the core will have a greater utility than those located in the periphery. Although,
for a sufficiently high freeness of trade, the welfare of the workers on the periphery increases
more quickly, so that in a state of full freeness of trade, all the non-productive workers
enjoy the same level of welfare.

Appendix: "market crowding effect" and the movement of
firms

In the model we have supposed that the "market crowding effect" (which decreases
the profits of industrial firms due to the increase in the number of companies compet-
ing in the same region) first affects the number of SMEs and that they are therefore the
first to move when there is a decrease in their profits. This assumption is key to the model.

When a productive firm moves from region 2 to region 1, competition increases, which
decreases the profits of all the companies. When deciding if it should move or not, on the
other hand, the manager does not consider this initial profit reduction because he knows
that the SMEs will leave the market in response to this increased competition, so that,
later, the firm’s profit will not change regardless of where it is located. What we are say-
ing, therefore, is that non-productive workers are the first to change their entrepreneurial
status when both types of firms (productive and non-productive) are facing greater com-
petition. If it wasn’t so, productive firms having moved into region 1, and due to the
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increased competition, might decided that they were better in region 2, which could make
the symmetrical equilibrium stable.

The above seems to infer that the model rests solely on a hypothesis which, if not adopted,
would be a non-trivial change in the outcomes arising from this model. But, fortunately,
this is not true: assuming that the SMEs are the first to move in an unfavorable situation
is not an imposed condition, it can also be obtained analytically.

In effect, we have to assume that the first to move will be those who have more incentives
(or relative earnings), similar to (though not the same as) what occurs in Baldwin and
Okubo (2006). Suppose, therefore, that a number of productive companies have been in-
stalled in region 1, increasing competition and reducing the profits of all companies by a
fraction h < 1:

∏
ni

= ht < t (1.51)∏
Hi

= hϕt < t (1.52)

Each non-productive worker as a manager, earns an income equal to h < 1. If they change
their employment status to industrial workers (they can not move from one region to the
other), they would get a salary equal to 1. The expected relative growth of their income
(or utility) is:

1− h
h

(1.53)

Each productive workers gets hϕt < ϕt. If they change their region, they would get
ϕt, but they also take into account the effect of the price index:

ϕt
P ∗µ − hϕt

Pµ

hϕt
Pµ

=

(
P
P ∗

)µ − h
h

(1.54)

Since P < P ∗, the improvement (or increase in the utility level) derived from the change
of status of non-productive individuals is greater than that of the productive individuals,
so non-productive workers will have more incentives to exit the market in a situation of
increased competition. For productive workers, the effect of competition will, therefore,
be neutralized by the movement of non-productive workers, and they can always assume
a profit equal to ϕt.
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Chapter 2

Transport costs: A more realistic
approach

2.1 Introduction

Space matters, therefore, transport costs matter. However, even though, from an em-
pirical point of view, the magnitude of transport costs or, more generally, trade costs, is
very important in practice and “the death of distance is exaggerated” (Anderson and van
Wincoop, 2004), considering them explicitly in the theoretical models has not always been
a simple matter.

Indeed, the research carried out in the middle of the last century, mainly by Arrow and
Debreu (1954), which resolved a key problem in economic theory, the existence of a general
competitive equilibrium, is essentially non-spatial. The explanation of why this problem
occurs comes from Starrett (1978) and his Spatial Impossibility Theorem: “Assume a two
region economy with a finite number of consumers and firms. If space is homogeneous,
transport is costly, and preferences are locally non-satiated, there is no competitive equi-
librium involving transportation” (Fujita and Thisse, 2002). We had to wait until the New
Economic Geography (NEG) emerged in the early 1990s for theoretical models to include
transport costs in a way which was operational and at the same time surprisingly simple1.
This, of course, used a non-competitive market structure characterized by the existence of
scale economies and differentiated products.

Space was almost always incorporated into NEG models using the approach known as
Iceberg transport costs. What these are, their advantages and, particularly, their disad-
vantages are described in Section 2.2. Another criticism based on the presence of non-
homogeneous transport costs will be detailed in Section 2.5.

The aim of this chapter is to propose an alternative theoretical approach to Iceberg trans-

1The importance of how to formulate transport costs in the empirical models of the NEG was demon-
strated by Bosker and Garretsen (2010).
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port costs. Our proposal presents two main characteristics. One, it is compatible with the
equation structure associated with the Iceberg approach and, therefore, shares its simplic-
ity and operational procedure. Two, it is an improvement on, and answers some of the
criticisms directed at, Iceberg costs.

This chapter is organized as follows. Section 2.2 gives a brief description of Iceberg costs
and their implications. Section 2.3 presents the most important elements of our proposal:
in a nutshell, part of the workforce of companies, which is homogeneous, is devoted to
producing the good itself and part to transporting it, with the same salary in both cases.
Section 2.4 analyzes the relationship between the domestic and the foreign price from both
approaches. Section 2.5 explores a new criticism based on non-homogeneous space. Sec-
tion 2.6 shows the relationship between the new parameters and the standard freeness of
trade parameter.

2.2 Iceberg transport costs in the literature: A very short
review

This section is based on the excellent article by McCann (2005).

As is well known, Iceberg transport costs were initially proposed by Samuelson (1952).
Their main advantage, and the reason for their subsequent widespread use, is that they
allow transport costs to be introduced without having to add a specific transport sector,
which would make the theoretical models excessively complex. It is essentially very simple:
due to being transported, a part of the good evaporates or is lost in its movement from
one region to another. Hence the name “Iceberg”: like the mass of ice, a portion of output
melts away as it travels so that, for a physical unit of the good to arrive at the destination,
T units must be sent (T > 1).

Despite its success, this approach is not without problems. First, there is no space in
the strict sense, as the magnitude of the transport cost, in general, does not depend on
distance. Second, de facto, it is equivalent to a level effect similar to that of a tariff: there
is a discontinuity between the domestic price and the foreign price, where the difference
is due to the cost of transport. Third, and connected to the above, the foreign price is
T times the domestic price, so that any increase in the price, even if it has nothing to
do with transport, automatically generates an increase in the cost of transport. Fourth,
the cost of transport per tonne is independent of the weight/amount of what is transported.

Nearly 40 years later, Krugman (1991, 1992), improved on Samuelson’s contribution by
considering, always within the Iceberg approach, that geography exists and, therefore, that
the magnitude of the transport cost is a function of the distance traveled D, according to
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the following expression:
Vf = Vde

−τD (2.1)

where Vf is the value of the good which actually reaches the foreign destination, Vd is the
value in the original (domestic) location and τ is the Iceberg decay parameter. Thus, the
relation between Vf and D is a decreasing function which, due to its convexity, seems to
agree with the economies of distance found in reality. However, it can be demonstrated
that the relationship between prices, with obvious notation, is given by:

pf = pde
τD = Tpd (2.2)

With this transportation cost framework, based on the Iceberg approach, McCann (2005)
analyzes three main criticisms.

The first criticism to this standard Iceberg formulation is that, according to (2.2), the
relationship between pf , on the vertical axis, and D is increasing and convex. The sec-
ond is based on the fact that transport cost per ton-kilometer is perfectly elastic, and
not decreasing, in relation to the initial amount (weight of good) transported. These two
properties go against the existence of economies of distance, a conclusion that has been
empirically obtained (Bayliss and Edwards, 1970; Jansson and Shneerson, 1985; Tyler and
Kitson, 1987; Savage, 1997). This conclusion implies that pf should increase with distance,
but in a concave manner, and that the transport cost per ton and per kilometer decrease
with respect to the distance and the amount (weight) of the good shipped.

A third criticism is based on the fact that the foreign price (pf ) has a unitary elastic-
ity with respect to the domestic price (pd), implying that an increase in the domestic price
always raises the foreign price by the same proportion., something at least questionable.

In Section 2.5, we will present a fourth criticism derived from a particular conclusion
obtained by the Iceberg approach, in a context of non-homogeneous transportation costs,
that deals with the outcome that a change in the transport cost in part of the distance
covered has the same effect regardless of the size of that part. Our approach resolves the
first two criticisms in Section 2.3, the third is resolved in Section 2.4, and the last one in
Section 2.5.

2.3 Our proposal and its consequences

Our approach is just as simple and operative as the Iceberg approach; that is, there is
no need to introduce a transport sector into the theoretical models and it is not affected
by the problems described in Section 2.2.
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Let us suppose, without loss of generality2, that there are only two regions or countries:
subindex d refers to the domestic country and subindex f to the foreign country. At the
same time, we only refer to the manufacturing good, which in the New Economic Geogra-
phy is traditionally the differentiated good, produced with increasing returns and subject
to Iceberg type transport costs; in its market a structure of monopolistic competition with
free entry prevails.

Let us consider the following production function:

l = c+ βqd + βqf + t+ δqf (2.3)

where l is the amount of work used in the production process, qd is the amount of output
which goes to the national market, and qf is the amount of output which is exported.
The parameters and their interpretation are as follows: c > 0 is the fixed labor needed to
start production (there are scale economies), β > 0 is the variable labor needed per unit
of output produced, t > 0 is the fixed labor needed to launch the transport process (there
are scale economies in transport) and δ > 0 is the variable labor needed per unit of output
transported. The new parameters associated with transport are t and δ. In short, part of
the workforce of companies, which is homogeneous, is devoted to producing the good itself
and part to transporting it, with the same salary in both cases. The workers dedicated
to transport perform all the tasks associated with exporting goods: transport itself, the
manager who organizes the foreign trade, the vendor who makes the trade agreements, the
worker who implements the necessary measures for the product to pass quality tests in the
receptor country, etc.

In turn, δ depends on distance as follows:

δ = ln(1 + τD) (2.4)

The profit function π of the companies is given, with obvious notation, by the following
expression:

π = pdqd + pfqf − w(c+ βqd + βqf + t+ δqf ) (2.5)

The first order conditions of profit maximization lead to the prices in the domestic market
and abroad:

pd = wβ
σ

σ − 1
(2.6)

pf = w(β + δ)
σ

σ − 1
= pd + w

σ

σ − 1
ln(1 + τD) = pd

(
1 +

δ

β

)
(2.7)

2All that follows can be extended to the generic case of S countries. Its only effect is to complicate the
notation.
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where σ > 1 is the elasticity of substitution between pairs of varieties or the price elasticity
of each variety of the product in question (Dixit and Stiglitz, 1977). It can immediately
be seen from (2.7) that the relationship between pf and D is as shown in Figure 2.1.

Figure 2.1: Relationship between pf and distance

Also, if we use Z to denote transport cost per unit (or weight) of the transported good
and kilometer traveled, we have:

Z =
wt

qfD
+ w

ln(1 + τD)

D
(2.8)

The Z − qf and Z −D relationships, respectively, are represented in Figure 2.2.

Figure 2.2: Relationship between cost per ton-kilometer and distance (left) and the amount
transported (right)
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Consequently, our approach is characterized by two main aspects. On one hand, it is
perfectly compatible with all the literature relating to Iceberg transport costs, as the se-
quence of basic equations is equivalent in both approaches (see the Appendix for a detailed
demonstration of this statement). On the other, it is a better reflection of the empirical
evidence relating to transport costs in the real world and resolves some of the criticisms
associated with the Iceberg approach described in Section 2.2. In our framework, the re-
lationship between the foreign price and distance is increasing and concave (Figure 2.1)
and the cost per tonne and kilometer is decreasing and convex in relation to the distance
traveled (Figure 2.2, left) and in relation to the amount transported (Figure 2.2, right).
Therefore the first two criticisms (see the end of Section 2.2) are resolved. The empirical
evidence confirming that these three graphs give a better reflection of what happens in the
real world is extensive and can be consulted in the work by McCann (2005) cited above.

2.4 The relationship between domestic and foreign prices

As we saw in Section 2.2, the third common criticism of the Iceberg approach, described
by Ottaviano and Thisse (2004) as unrealistic, is based on the elasticity of the foreign price
over the domestic price. In the standard Iceberg approach, the relationship between the
two prices is:

pf = Tpd = Twβ
σ

σ − 1
(2.9)

Based on (2.9), it is trivial to deduce that, if salary increases, the product becomes more
differentiated (lower σ) or productivity falls (higher β), an increase in pd and pf of the
same proportion occurs. Of course, if T varies and pd is not changed, pf moves in the same
direction and proportion as T (the elasticity of pf in relation to the parameter representing
the transport cost T is equal to one). In our approach things are a little different:

pf = w(β + δ)
σ

σ − 1
=

(
1 +

δ

β

)
pd = Tpd (2.10)

In other words, T =
(

1 + δ
β

)
. The effects of w and σ on pf are the same as the Iceberg

approach. But this is not the case with the technological parameters β and δ. In fact, the
relevant elasticities are now:

Eβpd = 1 Eβpf =
β

β + δ
< 1 (2.11)

Eδpd = 0 Eδpf =
δ

β + δ
< 1 (2.12)

Eβpd + Eδpd = Eβpf + Eδpf = 1 (2.13)

Consequently, the foreign price pf responds proportionately lower to variations in pa-
rameters β and δ and, thus, resolves the third of the four criticisms presented in Section 2.2.
The explanation is simple: as there are now two productive tasks, transport (δ) and pro-
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duction (β), rather than one, the changes in the technological parameters considered in-
dividually are translated with amortization to the foreign price, although their combined
or simultaneous action maintains the proportional effect (Eβpf +Eδpf = 1). This implies
that an increase in the production cost, without affecting the transportation cost, will raise
the foreign price in a lower proportion than the domestic price, and only an increase in the
same proportion of both the production and transport costs will affect the foreign price in
the same proportion as the domestic price.

2.5 A criticism based on non-homogeneous transportation
costs

The models that deal with the introduction of space into the microeconomics analy-
sis, Krugman (1991), Martin and Rogers (1995) and Forslid and Ottaviano (2003) being
the most commonly used (core-periphery model, footloose capital model and footloose
entrepreneur model, respectively), always introduce the Iceberg approach in the same
manner: as the transportation cost between two separate regions or countries. In this
framework, the structure of the space in which the transport occurs is of secondary im-
portance. This makes the models more simple, without having to deal directly with the
distance, D, since all the prices associated with transportation are summarized in the ‘black
box’ variable T (in other words, pf = Tpd).

Figure 2.3: Pure homogeneous transportation costs framework

In Figure 2.3 we can see that the distance between the domestic and the foreign coun-
tries, D, will be affected by τ , so that T = eτD in the Iceberg approach. As D is always
the same (physically), the only variable with economic interpretation is τ or, simplifying,
just T .

However, we believe, as McCann (2005) does, that even if the simplification is used as
an instrumentalist perspective (Blaug, 1993), its economic fundamentals have to be essen-
tially generalizable as realistically as possible, to overcome possible future research prob-
lems that deal with the real world in order to foster the introduction of more sophisticated
(but nonetheless useful and practical) instruments. One of the new insights through which
we can observe the effects of the transportation cost over the space is by considering non-
homogeneous transportation costs. This would imply that the same space can be divided
into parts that affect to the transportation process differently.
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We can decompose distance D into two different parts, D1 (the distance from d to m)
and D2 (the distance from m to f), in which we will suppose that D2 is a more complex
part so transporting goods across it will be more costly than over the previous terrain:
τ2 > τ1. In this case, the space not only affects extensively (more distance implying a

Figure 2.4: A very simple non-homogeneous transportation costs framework

higher cost), but also intensively. This could consist of a more difficult terrain, poor in-
frastructure or certain parts with more traffic congestion that increase transportation costs.

In accordance with the way the Iceberg cost is constructed, it will be necessary to send
eτ2 units from m to f (m being, as shown in the Figure 2.4, the point at which the space
changes, and f the foreign region) for one unit to arrive at the end of the transportation
process. And it is necessary to send eτ1 units from d (domestic region) for one unit to
arrive to m. Therefore, the whole transportation cost, T , will be:

T = eτ1D1eτ2D2 = eτ1D1+τ2D2 (2.14)

Of course, if the space is homogeneous, that is, if τ1 = τ2 = τ we have the common Iceberg
cost, T = eτD1+τD2 = eτ(D1+D2) = eτD, with D = D1 +D2.

The problem that arises with the Iceberg approach, in a situation like the one defined
in Figure 2.4, is that the proportional effect of an increase in the transport cost of one of
the parts (let’s say D2) is the same, regardless the relative size of that part:

Eτ2T =
∂T

∂τ2

τ2
T

= τ2D2 (2.15)

which only depends on D2. In our proposal, for the introduction of the two types of space
we can use δ = ln(1+τ1D1+τ2D2). If the two distances covered have the same ruggedness,
we will have the simplified version: δ = ln(1 + τD1 + τD2) = ln(1 + τD). The effect of an
increase in τ2 will be (with T = 1 + δ

β = 1 + ln(1+τ1D1+τ2D2

β )

Eτ2T =
∂T

∂τ2

τ2
T

=
τ2D2

(1 + τ1D1 + τ2D2)(β + ln(1 + τ1D1 + τ2D2))
(2.16)

which depends negatively on D1 and positively on D2. This seems more realistic, as
an increase in the transportation process over a part of the distance covered will have a
proportional effect that will be bigger the larger that part over the total distance D, and
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will be lower the larger the section (D1) not affected by the increase in transport costs.
This result is based on the existence of scale and distance economies in the transportation
process, but is only observable with a non-homogeneous transportation cost framework. It
also implies that the sudden appearance of a trade barrier (that can be considered as a
deterioration of a small part of the space) or even a border effect will affect trade partners
that are geographically closer to the new barrier more proportionately, something which
seems very plausible. So the proportional effect of an increase of τ2 in T will be bigger if
the goods are originally sent from m than if they are sent from d.

2.6 A new interpretation of the freeness of trade parameter

So far, we have seen how a new conceptual transportation process changes the proper-
ties of the transportation costs and how their relationship with certain economic variables
(such as the distance, the initial weight, the original price and the heterogeneous structure
of the space) can be explained in a more realistic manner. In a nutshell, we have been
changing the properties of T so that it better reflects what the empirical studies seem to
find. But, as the mathematical interpretation of T changes, the definition of the freeness
of trade parameter, which is based on T , will also change.

In the Iceberg formulation, the relationship between domestic and foreign prices is pf =

Tpd, where T, as we state above, is greater than one. In short, this equation can be
expressed as pf = (1 + ϕ)pd, with ϕ > 0. It is also standard in the literature to define
the freeness of trade parameter as φ = T 1−σ. This parameter ranges from 0 (infinite or
prohibitive transport cost) to 1 (absence of transport cost) and is a measure of how easy
it is to move goods between countries. In our case, we find directly, based on (2.7), that
T =

(
1 + δ

β

)
, so our freeness of trade parameter is given by:

φ =

(
1

1 + ϕ

)σ−1
=

(
β

β + δ

)σ−1
(2.17)

The new parameter ϕ = δ
β is especially useful because it is a relative measurement of

transport technology in relation to the production technology of the good, given that
it is the quotient between the labor requirements needed for each activity. It can also
be interpreted as the amount of goods which could be obtained if the workers devoted to
transport were to change to purely productive tasks. The relationship between the freeness
of trade parameter and the quotient between transport and production technologies is given
in Figure 2.5. The more efficient the transport activity is in relation to the production
activity (lower ϕ), the higher, logically, is the freeness of trade parameter, and vice versa.
The fact that φ depends, in relative terms, on transport and production technologies is
found only in our approach. A sector with greater absolute transport costs (greater δ) than
another sector can have greater freeness of trade as long as its relationship with production
costs in that industry

(
δ
β

)
is lower.
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Figure 2.5: φ as a function of ϕ

2.7 Conclusions

Iceberg-type transport costs have been and are used intensely in the theoretical models
of the New Economic Geography. Indeed, one of the reasons for the significant develop-
ment of this type of model is the excellent features of the Iceberg approach. In the words
of McCann (2005): “it is clear that new economic geography models incorporating Iceberg
transport costs have gone further than any other framework in developing a general equilib-
rium approach to analysing spatial economic phenomena”. However, as the above reference
clearly demonstrates, Iceberg costs also present important problems. For instance, when
computers, books or cars are transported, no units “evaporate” or “melt” on the way. What
the transport activity does is to consume some resources of the firms engaged in it. This
is the essence of the alternative approach we suggest: some of the workers of the company
carry out production tasks and some are engaged in the process of transporting the goods
to different locations.

This approach, more realistic in its basis, presents two important characteristics. On one
hand, it is compatible with the entire structure of equations of the Iceberg approach; in
other words, it is isomorphic with it. On the other, it overcomes some of the disadvantages
associated with Iceberg transport costs. In fact, the c.i.f. price of the product increases
with distance, but concavely, and the transport rate per ton-kilometer is decreasing and
convex with respect to both distance and the quantity of the good shipped. An increase in
the transport cost in some part of the space will affect more proportionately those goods
in which this space occupies a bigger proportional part of the whole transportation size
to be covered. Furthermore, the standard freeness of trade parameter now depends in a
useful way on the relationship between transport and production technologies. All these
are empirically tested features of the approach proposed here, which the Iceberg framework
does not satisfy.
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Appendix: Equivalence between the equations of the Iceberg
approach and the approach proposed in this work

We take the book by Fujita et al. (1999) as the standard reference associated with
the basic developments of the New Economic Geography and its Iceberg approach, FKV
hereafter. We have adapted the notation of FKV to our own and to the two-country case
considered. We have to demonstrate that the basic equations of Sections 4.2 (“Multiple
locations and transportation costs”) and 4.3 (“Producer behavior”) in FKV are also valid
in our case. Our approach does not introduce any novelty on the demand side.

In FKV, expression (4.14) represents, pf = Tpd. In our case, see (2.7), we come to
the same equation, with T =

(
1 + δ

β

)
. At the same time, the equivalent to the production

function (4.18) in FKV is given by (2.3). What about the size of a representative firm? In
FKV, the size of a manufacturing company is q∗ = qd + qfT as, to sell qf units abroad,
qfT must be produced, given that some will evaporate en route. In our approach, nothing
is lost en route, so that everything produced is sold. Therefore, we need to demonstrate
that our approach leads to the same expression (4.22) which defines q∗ in FKV. We start
by making the profit in (2.5) equal to zero. After some algebra and replacing pd and pf
with their expressions in (2.6) and (2.7), we get:[

qd + qf

(
1 +

δ

β

)]
= qd + qfT =

(c+ t) (σ − 1)

β
(2.18)

which is exactly (4.22) in FKV, applying the equivalences between the two notations ((c+t)
is the fixed work required to produce the goods which, in FKV, is denoted by F ; β is the
variable labor needed per unit of output produced, which, in the notation of FKV, is cM ).

At the same time, the associated equilibrium labor input l∗ in our approach is:

l∗ = βqd + βqf + δqf + c+ t = β

(
qd + qf

(
1 +

δ

β

)
+ c+ t

)
(2.19)

which, through (2.18), equals:
l∗ = (c+ t)σ (2.20)

an expression identical to (4.23) in FKV. In turn, we can obtain the important expressions
(4.34) and (4.35) in FKV, which close the basic range of equations of the model and
which define, respectively, the price index and the wage equation, just by carrying out the
normalizations β = σ−1

σ (equivalent to cM = σ−1
σ , which is (4.29) in FKV) and c+ t = µ

σ

(equivalent to F = µ
σ , which is (4.31) in FKV), where µ is the proportion of income used

to consume industrial goods.
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Chapter 3

On the parametric description of the
French, German, Italian and Spanish
city size distributions

3.1 Introduction

Since the contribution of Zipf (1949), the study of city size distribution has been of
great importance in the field of Urban Economics. The Zipf distribution, or its more gen-
eral form of Pareto distribution, has been extensively studied by many authors: Black and
Henderson (2003), Ioannides and Overman (2003), Soo (2005), Anderson and Ge (2005)
and Bosker et al. (2008). But this chapter is based, above all, in the works of the important
contributions of Eeckhout (2004), Giesen et al. (2010) and Ioannides and Skouras (2013).

The first of these last references highlights the need of considering the whole sample of
cities when studying their size distribution, and proposes the lognormal distribution (see
also Parr and Suzuki (1973)). Giesen et al. (2010) continues a line of research initiated
by Reed (2001, 2002, 2003) and Reed and Jorgensen (2004) in which the double Pareto
lognormal (dPln) distribution is introduced in the study of city size. This distribution has
Pareto tails mixed (by means of a convolution) with a lognormal body and offers a good fit
to the data, see Giesen et al. (2010) and González-Val et al. (2013). Ioannides and Skouras
(2013) propose two distributions which have a lognormal body and, above a certain exact
threshold, a Pareto upper tail mixed or not (by means of a convex linear combination)
with the lognormal. These two recently proposed distributions still do not outperform the
dPln for US places in the year 2000, as Giesen and Suedekum (2014) indicate.

González-Val et al. (2013a); González-Val et al. (2013) use city population data of France,
Italy and Spain without size restrictions. Schluter and Trede (2013) use a dataset of all
German municipalities or Gemeinden and propose a composition of the normal distribution
with a Box-Cox transformation of the population data, with apparently quite good results.
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This leads to a distribution which we will call normal-Box-Cox (nBC), to be defined in
Subsection 3.3.3.

Our aim in this chapter is to compare the lognormal, the dPln and the nBC distribu-
tions for, generally decennial, samples of city size data of France, Germany, Italy and
Spain without size restrictions. The main result is that there is no single function that can
explain the city size distribution of all countries. Mainly, the dPln works well for the case
of France and Italy, but is outperformed by the nBC for the case of Germany and Spain.

The rest of this chapter is organized as follows. Section 3.2 describes the databases used in
this paper. Section 3.3 shows the definitions and main properties of the three distributions
studied. Section 3.4 shows the detailed results, country by country. Finally, Section 3.5
concludes.

3.2 The databases

There is a lively debate about the proper definition of cities from an economic point of
view. The usual datasets comprise administratively defined cities, not always coinciding
with the economic sense of a city in terms of, for example, commuting or trade flows. This
is a limitation of the usual census datasets, and becomes more relevant perhaps for the
biggest agglomerations in a country (Giesen and Suedekum, 2012).

One way to overcome this problem is to define clusters that give economic sense to ac-
tual agglomerations, irrespective of their legal borders, as pioneered by Rozenfeld et al.
(2008, 2011). The construction of these data sets relies on the availability of previous
good information about the geolocalization of urban settlements. There are few of these
data sets currently, and the availability of data therefore imposes a clear constraint on the
studies that can be carried out.

Another way to deal with this issue is to use recent census data sets that include all
of the (administratively defined) cities, and cover (almost) 100% of the population. This
is a great advance which allows us to study city size distribution from an un-truncated
database, as Eeckhout (2004) advocates.

The description of the database used for the case of France, Germany, Italy and Spain
is now presented.

For the case of France, as in González-Val et al. (2013a), we consider the lowest spa-
tial subdivision, the communes, as listed by the Institut national de la statistique et des
études é conomiques (www.insee.fr). We have data for the years 1990, 1999 and 2009. For
the three samples, we have aggregated the populations of the arrondisements of the three
biggest cities (which are also communes): Paris, Marseille and Lyon. Note that Giesen
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and Suedekum (2012) use this kind of data for the year 2008.

For the case of Germany, Italy and Spain, the administrative urban unit of the data is
the municipality (Gemeinden for the case of Germany). For Germany, we take data from
two sources. The first is the data used in Schluter and Trede (2013), which has been kindly
provided to us by Prof. Trede (the original source is the Federal German Statistical Office).
We take the data of the years 1996 and 2006 in order to obtain a decennial period similarly
to the other countries considered. The second source is, directly, the cited statistical office
through its web page www.Destatis.de. We use information of the last available year
2011 for comparative purposes. For Italy, the data is obtained from the Istituto Nazionale
di Statistica (www.istat.it), with all the Italian municipalities (comuni) for the period
1901-2011. We have used the Italian census for 1936 instead of 1941 because of the partic-
ipation of Italy in the Second World War. The data for Spain is taken from the Instituto
Nacional de Estadística (www.ine.es). They cover all the municipalities (municipios) in
the period 1900-2010.

In Table 3.1, we offer the descriptive statistics of the data used for France, Germany, Italy
and Spain. The information for Italy and Spain is the same as that in Table 1 of González-
Val et al. (2013).

One of the common problems in the analysis of city size distributions is trying to achieve
the most homogeneous database for the countries that are going to be analyzed. But
countries often have different statistics due to the use of different concepts of city units.
From an economic point of view, metropolitan areas are usually considered the proper
"economic" base for the analysis of urban units, concentrating not only the core but also
the less populated surroundings that have an intense relationship with it.

But for the consideration of an un-truncated database composed of all the cities in a
country (one that includes all the population, not only those who live in the more pop-
ulated areas), the administrative definition used in the different official statistics is more
useful. With this in mind, we select the administrative division, based on the communes
for the case of France, Gemeinden for the case of Germany, comuni in Italy, and municipios
in Spain. The consideration of the more detailed data about the distribution of cities, one
that allows us to include all the urban units in the four countries from an administrative
point of view, provides the database with a certain degree of homogeneity.
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Table 3.1: Descriptive statistics of the samples of French, German, Italian and Spanish urban
units used

Urban units Mean of pop. SD of pop. Minimum Maximum

France

1990 36,644 1,611 14,157 1 2,175,200

1999 36,643 1,679 14,173 1 2,147,857

2009 36,674 1,793 14,895 1 2,257,981

Germany

1996 14,559 5,633 40,608 2 3,458,763

2006 12,312 6,686 44,043 7 3,404,037

2011 11,292 7,114 45,415 10 3,326,002

Italy

1901 7,711 4,275 14,425 56 621,213

1911 7,711 4,648 17,393 58 751,211

1921 8,100 4,864 20,032 58 859,629

1931 8,100 5,067 22,560 93 960,660

1936 8,100 5,234 25,274 116 1,150,338

1951 8,100 5,866 31,138 74 1,651,393

1961 8,100 6,250 39,131 90 2,187,682

1971 8,100 6,684 45,582 51 2,781,385

1981 8,100 6,982 45,329 32 2,839,638

1991 8,100 7,010 42,450 31 2,775,250

2001 8,100 7,021 39,325 33 2,546,804

2011 8,094 7,490 41,505 34 2,761,477

Spain

1900 7,800 2,282 10,178 78 539,835

1910 7,806 2,452 11,217 92 599,807

1920 7,812 2,622 13,501 82 750,896

1930 7,875 2,892 17,514 79 1,005,565

1940 7,896 3,181 20,100 11 1,088,647

1950 7,901 3,480 26,033 64 1,618,435

1960 7,910 3,802 33,652 51 2,259,931

1970 7,956 4,241 43,972 10 3,146,071

1981 8,034 4,701 45,995 5 3,188,297

1991 8,077 4,882 45,220 2 3,084,673

2001 8,077 5,039 43,079 7 2,938,723

2010 8,114 7,795 47,530 5 3,273,049
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3.3 Description of the distributions used

3.3.1 The lognormal distribution (lgn)

The well-known lognormal distribution for the population of cities has been proposed
in the field of Urban Economics by Parr and Suzuki (1973) and afterwards by Eeckhout
(2004) when considering all the cities. The corresponding density is simply

fln(x, µ, σ) =
1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
(3.1)

where µ, σ > 0 are, respectively, the mean and the standard deviation (SD) of lnx, x being
the population of the urban units under study.

3.3.2 The double Pareto lognormal distribution (dPln)

The second distribution in our study will be the double Pareto lognormal distribution,
introduced by Reed (2002, 2003) and Reed and Jorgensen (2004):

fdPln(x, α, β, µ, σ) =
αβ

2x(α+ β)
exp

(
αµ+

α2σ2

2

)
x−α

(
1 + erf

(
lnx− µ− ασ2√

2σ

))
− αβ

2x(α+ β)
exp

(
−βµ+

β2σ2

2

)
xβ
(

erf

(
lnx− µ+ βσ2√

2σ

)
− 1

)
(3.2)

where erf is the error function associated with the normal distribution and α, β, µ, σ > 0 are
the four parameters of the distribution. It has the property that it approximates different
power laws in each of its two tails: fdPln(x) ≈ x−α−1 when x → ∞ and fdPln(x) ≈ xβ−1

when x → 0, hence the name of double Pareto. The body is approximately lognormal,
although it is not possible to exactly delineate the switch between the lognormal and the
Pareto behaviors (Giesen et al., 2010). In this last reference, it is shown that the dPln
offers a good fit for a number of countries. In this line, see also the work of González-Val
et al. (2013) and Giesen and Suedekum (2014).

3.3.3 The normal-Box-Cox (nBC)

Schluter and Trede (2013) propose the idea of composing the normal distribution with
the well-known Box-Cox transformation to analyze German city data. We include the dis-
tribution so obtained in our study because it turns out that the nBC provides good results
in the case of Germany.

The Box-Cox transformation is given by the well-known expression (Box and Cox, 1964)

gλ(x) =


xλ − 1

λ
if λ 6= 0

lnx if λ = 0
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Its composition with the normal will be g′λ(x)fn(gλ(x), µ, σ), where g′λ(x) is the derivative
of gλ(x) with respect to x and

fn(y, µ, σ) =
1

σ
√

2π
exp

(
−(y − µ)2

2σ2

)
is the normal density function for the variable y, substituted in the previous expression
by gλ(x). The case of λ = 0 leads to the lognormal, introduced in Subsection 3.3.1 and
treated separately. Thus, for the case of λ 6= 0 we define the normal-Box-Cox (nBC) as
the density

fnBC(x, µ, σ, λ) =
xλ−1

σ
√

2π
exp

(
− 1

2σ2

(
xλ − 1

λ
− µ

)2
)

where x has the same meaning as before. The quantities µ and σ are, respectively, the

mean and standard deviation of
xλ − 1

λ
.

3.4 Results

For the sake of brevity, we will present the results country by country.

3.4.1 Results for France

In Table 3.2, we show the maximum likelihood (ML) estimators of the distributions
studied for the 1990, 1999 and 2009 French samples of communes. For the lognormal
(lgn), the ML estimators are exact and equal to the mean and standard deviation of the
log-population data. For the other two distributions (dPln and nBC), we provide the ML
estimators and 95% confidence intervals.1 The estimations appear to be very precise in all
cases.

In Table 3.3, we show the results of the Kolmogorov–Smirnov (KS) and Cramér–Von
Mises (CM) tests for the distributions used. These two tests are very powerful when the
sample size is high or very high (Razali and Wah, 2011) as in our French samples, and
non-rejections only occur if the deviations (statistics) are really small. We observe that
the lgn is strongly rejected in all cases and the nBC is also rejected always, although with
lower values of the tests’ statistics. The dPln is not rejected by either test in the 100%
of the cases. According to these tests, the French communes size distribution can be best
explained with the dPln. The excellent fit of the dPln for the French communes in the
year 2008 has been anticipated by Giesen and Suedekum (2012).

In order to choose one of the models, in Table 3.4 we show the results of the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC), which are especially well
suited to the maximum likelihood estimation we have performed before. Both the AIC and
BIC favor the distribution with greater maximum likelihood, but there is a penalty for the

1We have performed the estimations with MATLAB as in González-Val et al. (2013).
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number of parameters used. The distribution with the lowest AIC and/or BIC is preferred.

For the case of the French samples, we observe that the lgn always obtains the great-
est values of the AIC and BIC, and that the lowest AIC and BIC occur for the dPln in
all cases. This result, together with the outcomes of the KS and CM tests yields that the
French communes size distribution, can be very well described parametrically by the dPln.

3.4.2 Results for Germany

We now carry out a similar analysis for our 1996, 2006 and 2011 German samples of
Gemeinden. First, in Table 3.5 we show the estimation results. The estimations obtained
for the parameter λ for the years 1996 and 2006 are consistent with the results of Schluter
and Trede (2013). In Table 3.6, we show the results of the KS and CM tests. The lgn, the
dPln and nBC are (strongly) rejected in all cases.

The results of the AIC and BIC are shown in Table 3.7. The lgn is always the least
preferred distribution. Note as well that the nBC is always preferred to the dPln for the
German samples. Together with the results of the KS and CM tests, we conclude that the
German city size distribution of Gemeinden, without size restrictions, is approximately
described by the nBC. However, a substantial improvement is still possible.

3.4.3 Results for Italy

We have also performed the ML estimation of the Italian samples of comuni in the
period 1901-2011. In Table 3.8 we show the estimation results for the lognormal, the dPln
and the nBC. The estimations are quite precise in this case as well.

In Table 3.9 we show the results of the KS and CM tests for our three distributions.
The lgn is always rejected except in 2011. The dPln is never rejected. The nBC is not
rejected for the years 1981, 1991, 2001 and 2011. Thus, it follows that the dPln is a good
parametric description of Italian comuni size in the period 1901-2011.

In Table 3.10 we show the results of the AIC and BIC for the Italian samples. Out of
the three parametric models studied, the dPln is selected in 100% of the cases by both the
AIC and BIC. Thus, for the Italian comuni without size restrictions we obtain an excellent
parametric model, the dPln.

3.4.4 Results for Spain

Again, we have estimated the three distributions studied in this paper by ML for the
samples of Spanish municipios in the period 1900-2010. In Table 3.11 we show the esti-
mation results for the lognormal, the dPln and the nBC. The estimations are quite precise
in this case as well.
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In Table 3.12 we show the results of the KS and CM tests. The lgn and the dPln are
always strongly rejected. The nBC is rejected in almost all cases, with the exception of
the KS test in 1981. In Table 3.13 we show the values of the AIC and BIC. The nBC is
always preferred to the dPln for the Spanish municipios. In short, Spanish city size in the
period 1900-2010 is approximately described by the nBC although, again, a substantial
improvement is possible.

Table 3.2: Exact estimators for the lgn and the French samples. Estimators and 95%
confidence intervals of the parameters of the dPln and the nBC for the French samples

France lgn dPln

µ σ α β µ σ

1990 6.06 1.34 0.98±0.02 2.89±0.31 5.39±0.04 0.81±0.03

1999 6.11 1.35 0.98±0.02 3.03±0.37 5.42±0.04 0.84±0.03

2009 6.21 1.34 1.02±0.02 3.41±0.19 5.52±0.03 0.89±0.02

nBC

µ σ λ

1990 3.99±0.06 0.54±0.02 -0.14±0.01

1999 4.05±0.06 0.55±0.02 -0.14±0.01

2009 4.18±0.07 0.57±0.02 -0.13±0.01

3.4.5 An informal graphical approximation

The use of graphical tools in assessing the fit of parametric distributions to empiri-
cal data has certain shortcomings to be taken into account, see, e.g., González-Val et al.
(2013b). In this reference, it has been shown that, when representing the differences be-
tween the empirical and estimated ln(1 − cdf)’s, where cdf is the relevant cumulative
density function, an amplification effect of the differences of the cdf’s is obtained for the
upper tail. A similar effect occurs for the ln(cdf)’s and the lower tail. This amplification
effect increases as we approach infinity for the upper tail or zero for the lower tail, and it
is difficult to quantify.

Furthermore, the goodness-of-fit, as tested by the KS and CM, is strongly dependent
on the number of observations in the sample. The graphical fit does not take into account,
in an essential way, the number of observations. For completeness, in this subsection we
offer some graphs corresponding to the cases studied. For France, we have taken the three
samples and the best distribution obtained, the dPln. For Germany we also present the
graphs of the three samples used and the best parametric model of the three studied, the
nBC. For Italy, we take the sample of 2001 and the dPln. For Spain, we take the sample
of 1981, in which the nBC is not rejected by the KS test.

For the French samples and the dPln, the fit at both tails could be improved, although the
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Table 3.3: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for French samples and the density functions used. Non-rejections are marked in
bold

lgn dPln

France KS CM KS CM

1990 0 (0.05) 0 (23.07) 0.064 (0.0080) 0.133 (0.30)

1999 0 (0.04) 0 (21.02) 0.051 (0.0083) 0.105 (0.34)

2009 0 (0.04) 0 (18.97) 0.072 (0.0079) 0.075 (0.39)

nBC

KS CM

1990 0.002 (0.012) 0.006 (0.95)

1999 0 (0.012) 0.005 (1.00)

2009 0.026 (0.009) 0.016 (0.67)

Table 3.4: Maximum log-likelihoods, AIC and BIC for French samples. The lowest values of
AIC and BIC for each sample are marked in bold

lgn dPln

France log-likelihood AIC BIC log-likelihood AIC BIC

1990 -284,762 569,529 569,546 -283,460 566,928 566,962

1999 -286,697 573,398 573,415 -285,487 570,983 571,017

2009 -290,472 580,947 580,964 -289,437 578,882 578,916

nBC

log-likelihood AIC BIC

1990 -283,582 567,171 567,196

1999 -285,580 571,167 571,192

2009 -289,494 578,993 579,019

Table 3.5: Exact estimators for the lgn and the German samples. Estimators and 95%
confidence intervals of the parameters of the dPln and the nBC for the German samples

Germany lgn dPln

µ σ α β µ σ

1996 7.18 1.49 0.92±0.02 4.74±0.01 6.30±0.01 1.05±0.01

2006 7.43 1.50 1.18±0.03 4.11±0.01 6.82±0.01 1.21±0.01

2011 7.51 1.51 1.34±0.05 3.82±0.01 7.03±0.01 1.29±0.01

nBC

µ σ λ

1996 4.78±0.14 0.62±0.04 -0.12±0.01

2006 5.61±0.19 0.84±0.06 -0.08±0.01

2011 6.06±0.22 0.97±0.07 -0.06±0.01
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Table 3.6: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for German samples and the used density functions

lgn dPln

Germany KS CM KS CM

1996 0 (0.04) 0 (8.82) 0 (0.02) 0 (3.05)

2006 0 (0.03) 0 (3.00) 0 (0.02) 0 (1.51)

2011 0 (0.03) 0 (1.86) 0 (0.02) 0.004 (1.02)

nBC

KS CM

1996 0 (0.02) 0 (1.82)

2006 0.01 (0.01) 0.01 (0.75)

2011 0.02 (0.015) 0.03 (0.56)

Table 3.7: Maximum log-likelihoods, AIC and BIC for German samples. The lowest values
of AIC and BIC for each sample are marked in bold

lgn dPln

Germany log-likelihood AIC BIC log-likelihood AIC BIC

1996 -130,962 261,928 261,944 -130,697 261,402 261,432

2006 -113,895 227,795 227,810 -113,803 227,615 227,645

2011 -105,474 210,952 210,967 -105,426 210,860 210,889

nBC

log-likelihood AIC BIC

1996 -130,634 261,275 261,297

2006 -113,775 227,556 227,578

2011 -105,411 210,828 210,850
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Table 3.8: Exact estimators for the lgn and the Italian samples. Estimators and 95% confi-
dence intervals of the parameters of the dPln and the nBC for the Italian samples

Italy lgn dPln

µ σ α β µ σ

1901 7.79 0.92 1.68±0.10 3.04±0.49 7.52±0.05 0.61±0.04

1911 7.84 0.93 1.67±0.10 3.20±0.60 7.56±0.06 0.64±0.04

1921 7.84 0.96 1.62±0.10 3.49±0.72 7.51±0.06 0.68±0.04

1931 7.84 0.99 1.63±0.10 3.93±0.41 7.48±0.04 0.73±0.03

1936 7.84 1.01 1.63±0.10 3.59±0.77 7.51±0.06 0.74±0.04

1951 7.89 1.05 1.59±0.10 3.56±0.36 7.55±0.05 0.78±0.03

1961 7.85 1.10 1.47±0.08 3.84±0.16 7.43±0.04 0.82±0.02

1971 7.79 1.19 1.34±0.07 4.15±0.09 7.28±0.04 0.89±0.02

1981 7.79 1.25 1.36±0.06 4.36±0.02 7.29±0.03 0.98±0.01

1991 7.80 1.28 1.42±0.06 4.17±0.01 7.33±0.02 1.05±0.01

2001 7.80 1.31 1.50±0.06 4.10±0.01 7.38±0.01 1.10±0.00

2011 7.85 1.34 1.58±0.07 3.86±0.01 7.48±0.02 1.15±0.01

nBC

µ σ λ

1901 4.77±0.27 0.31±0.04 -0.14±0.02

1911 4.77±0.27 0.31±0.04 -0.14±0.02

1921 4.73±0.25 0.31±0.04 -0.14±0.02

1931 4.86±0.26 0.35±0.04 -0.13±0.02

1936 5.02±0.27 0.38±0.05 -0.12±0.02

1951 5.17±0.27 0.42±0.05 -0.11±0.02

1961 5.05±0.25 0.42±0.05 -0.12±0.01

1971 5.13±0.24 0.48±0.05 -0.11±0.01

1981 5.52±0.26 0.60±0.06 -0.09±0.01

1991 5.93±0.28 0.72±0.08 -0.07±0.01

2001 6.27±0.30 0.83±0.09 -0.06±0.01

2011 6.58±0.32 0.94±0.10 -0.05±0.01
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Table 3.9: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for Italian samples and the used density functions. Non-rejections are marked in
bold

lgn dPln

Italy KS CM KS CM

1901 0 (0.03) 0 (2.42) 0.40 (0.0106) 0.34 (0.167)

1911 0 (0.03) 0 (2.42) 0.26 (0.0119) 0.42 (0.142)

1921 0 (0.03) 0 (2.24) 0.21 (0.0122) 0.34 (0.167)

1931 0 (0.03) 0.02 (1.88) 0.10 (0.0140) 0.29 (0.190)

1936 0 (0.03) 0 (1.66) 0.21 (0.0122) 0.30 (0.184)

1951 0 (0.03) 0 (1.59) 0.11 (0.0140) 0.18 (0.254)

1961 0 (0.03) 0 (2.10) 0.16 (0.0129) 0.20 (0.239)

1971 0 (0.03) 0 (2.05) 0.11 (0.0140) 0.43 (0.138)

1981 0 (0.02) 0 (1.52) 0.52 (0.0094) 0.84 (0.056)

1991 0.002 (0.02) 0.006 (0.94) 0.83 (0.0072) 0.94 (0.039)

2001 0.005 (0.02) 0.008 (0.84) 0.94 (0.0061) 0.99 (0.024)

2011 0.10 (0.014) 0.06 (0.43) 0.98 (0.0055) 0.95 (0.036)

nBC

KS CM

1901 0 (0.02) 0 (0.98)

1911 0 (0.02) 0.01 (0.80)

1921 0.01 (0.02) 0.02 (0.65)

1931 0 (0.02) 0.02 (0.59)

1936 0.01 (0.019) 0.01 (0.70)

1951 0 (0.02) 0.01 (0.88)

1961 0 (0.02) 0.01 (0.88)

1971 0.02 (0.018) 0.03 (0.55)

1981 0.06 (0.015) 0.08 (0.38)

1991 0.17 (0.013) 0.14 (0.29)

2001 0.44 (0.010) 0.27 (0.20)

2011 0.85 (0.007) 0.59 (0.10)
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Table 3.10: Maximum log-likelihoods, AIC and BIC for Italian samples. The lowest values
of the AIC and BIC for each sample are marked in bold

lgn dPln

Italy log-likelihood AIC BIC log-likelihood AIC BIC

1901 -70,325 140,654 140,668 -70,148.4 140,305 140,333

1911 -70,871.9 141,748 141,762 -70,698.2 141,404 141,432

1921 -74,657.4 149,319 149,333 -74,474.5 148,957 148,985

1931 -74,918.2 149,840 149,854 -74,757.6 149,523 149,551

1936 -75,091.6 150,187 150,201 -74,942.3 149,893 149,921

1951 -75,830.9 151,666 151,680 -75,689.6 151,387 151,415

1961 -75,836.7 151,677 151,691 -75,675.3 151,359 151,387

1971 -75,951.9 151,908 151,922 -75,798 151,604 151,632

1981 -76,390.6 152,785 152,799 -76,284.1 152,576 152,604

1991 -76,653.1 153,310 153,324 -76,583.2 153,174 153,202

2001 -76,865.2 153,734 153,748 -76,818.1 153,644 153,672

2011 -77,390.1 154,784 154,798 -77,359.4 154,727 154,755

nBC

log-likelihood AIC BIC

1901 -70,201.5 140,409 140,430

1911 -70,743.5 141,493 141,514

1921 -74,511.5 149,029 149,050

1931 -74,786 149,578 149,599

1936 -74,973.1 149,952 149,973

1951 -75,719.6 151,445 151,466

1961 -75,702.3 151,411 151,432

1971 -75,818 151,642 151,663

1981 -76,297.1 152,600 152,621

1991 -76,594.1 153,194 153,215

2001 -76,827.6 153,661 153,682

2011 -77,365.7 154,737 154,758
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Table 3.11: Exact estimators for the lgn and the Spanish samples. Estimators and 95%
confidence intervals of the parameters of the dPln and the nBC for the Spanish samples

Spain lgn dPln

µ σ α β µ σ

1900 6.97 1.06 1.16±0.03 7.71±0.01 6.23±0.01 0.66±0.00

1910 7.01 1.08 1.14±0.03 7.66±0.01 6.26±0.01 0.67±0.00

1920 7.03 1.11 1.11±0.03 7.38±0.02 6.26±0.01 0.69±0.01

1930 7.06 1.14 1.10±0.03 7.04±0.02 6.28±0.01 0.73±0.00

1940 7.06 1.18 1.06±0.03 6.75±0.01 6.26±0.01 0.75±0.00

1950 7.09 1.20 1.04±0.03 6.78±0.01 6.27±0.01 0.76±0.00

1960 7.03 1.27 0.97±0.03 6.43±0.01 6.16±0.01 0.80±0.00

1970 6.83 1.44 0.95±0.03 5.00±0.01 5.97±0.01 0.99±0.00

1981 6.63 1.62 0.9±0.03 4.28±0.01 5.75±0.01 1.18±0.00

1991 6.53 1.71 0.83±0.02 4.11±0.01 5.58±0.01 1.24±0.00

2001 6.54 1.75 0.77±0.02 4.18±0.01 5.48±0.01 1.22±0.00

2010 6.58 1.85 0.75±0.02 3.88±0.01 5.51±0.01 1.32±0.00

nBC

µ σ λ

1900 3.53±0.17 0.22±0.03 -0.22±0.02

1910 3.56±0.17 0.22±0.03 -0.22±0.02

1920 3.62±0.17 0.24±0.03 -0.21±0.02

1930 3.73±0.18 0.26±0.03 -0.20±0.02

1940 3.85±0.17 0.30±0.03 -0.19±0.02

1950 3.79±0.17 0.29±0.03 -0.20±0.02

1960 3.88±0.17 0.33±0.04 -0.19±0.02

1970 4.38±0.17 0.55±0.05 -0.14±0.01

1981 4.72±0.16 0.80±0.06 -0.10±0.01

1991 4.69±0.15 0.86±0.06 -0.10±0.01

2001 4.55±0.15 0.82±0.06 -0.11±0.01

2010 4.70±0.15 0.92±0.07 -0.10±0.01
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Table 3.12: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for Spanish samples and the used density functions. Non-rejections are marked in
bold

lgn dPln

Spain KS CM KS CM

1900 0 (0.06) 0 (7.13) 0 (0.03) 0 (1.46)

1910 0 (0.05) 0 (6.42) 0 (0.03) 0 (1.72)

1920 0 (0.06) 0 (7.23) 0 (0.03) 0 (1.76)

1930 0 (0.05) 0 (7.27) 0 (0.03) 0 (2.07)

1940 0 (0.05) 0 (6.75) 0 (0.03) 0 (1.94)

1950 0 (0.06) 0 (7.43) 0 (0.03) 0 (2.01)

1960 0 (0.06) 0 (7.15) 0 (0.03) 0 (2.38)

1970 0 (0.05) 0 (5.48) 0 (0.03) 0 (1.37)

1981 0 (0.05) 0 (4.51) 0.001 (0.02) 0.002 (1.14)

1991 0 (0.05) 0 (4.91) 0 (0.02) 0 (1.39)

2001 0 (0.05) 0 (6.21) 0 (0.03) 0 (2.20)

2010 0 (0.05) 0 (5.17) 0 (0.03) 0 (2.76)

nBC

KS CM

1900 0 (0.02) 0.01 (0.85)

1910 0 (0.02) 0 (1.23)

1920 0 (0.02) 0.01 (0.91)

1930 0 (0.02) 0 (1.51)

1940 0 (0.02) 0 (1.20)

1950 0 (0.02) 0 (1.23)

1960 0 (0.02) 0 (1.34)

1970 0 (0.02) 0.01 (0.72)

1981 0.06 (0.015) 0.04 (0.50)

1991 0.02 (0.017) 0.01 (0.82)

2001 0.02 (0.022) 0 (1.29)

2010 0 (0.03) 0 (1.82)
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Table 3.13: Maximum log-likelihoods, the AIC and BIC for Spanish samples. The lowest
values of the AIC and BIC for each sample are marked in bold

lgn dPln

Spain log-likelihood AIC BIC log-likelihood AIC BIC

1900 -65,873.6 131,751 131,765 -65,627.3 131,263 131,290

1910 -66,413.5 132,831 132,845 -66,169.3 132,347 132,374

1920 -66,762.6 133,529 133,543 -66,520.7 133,049 133,077

1930 -67,782.4 135,569 135,583 -67,552.4 135,113 135,141

1940 -68,291.6 136,587 136,601 -68,042.6 136,093 136,121

1950 -68,656.2 137,316 137,330 -68,403.7 136,815 136,843

1960 -68,762 137,528 137,542 -68,514.3 137,037 137,065

1970 -68,529.4 137,063 137,077 -68,341.7 136,691 136,719

1981 -68,568.1 137,140 137,154 -68,424.2 136,856 136,884

1991 -68,592.2 137,188 137,202 -68,453.7 136,915 136,943

2001 -68,833.3 137,671 137,685 -68,687.1 137,382 137,410

2010 -69,911.2 139,826 139,840 -69,795.7 139,599 139,627

nBC

log-likelihood AIC BIC

1900 -65,579.8 131,166 131,186

1910 -66,119.1 132,244 132,265

1920 -66,468.5 132,943 132,964

1930 -67,496.8 135,000 135,021

1940 -68,003 136,012 136,033

1950 -68,350.5 136,707 136,728

1960 -68,458.6 136,923 136,944

1970 -68,304.5 136,615 136,636

1981 -68,398.3 136,803 136,824

1991 -68,416.8 136,840 136,861

2001 -68,629.9 137,266 137,287

2010 -69,729.8 139,466 139,487
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densities apparently present a global close fit, with small discrepancies near the mode of
the theoretical distributions.

For the German samples and the nBC, the lower tails present remarkable discrepancies
which diminish over time. For the upper tails, there are slight discrepancies. The densities
show remarkable discrepancies, visually apparent, which also diminish over time.

In the Italian case of 2001 and the dPln, we observe some slight discrepancies in the
lower tail and the six biggest cities in the upper tail deviate slightly from the estimated
parametric model. However, the fit of the densities is visually excellent.

For the Spanish sample of 1981 and the nBC, we observe close fits at the tails, but the
overall densities present marked deviations.

In short, the graphical approximation in the selected cases by our formal criteria shows
that improvements are possible, except maybe in the case of the sample of Italy (2001).

3.5 Conclusions

In this chapter, we have used population data corresponding to the lowest spatial sub-
division of four European countries, France, Germany, Italy and Spain in different periods
of the last and this century. We have used the data to study the parametric fit of three
density functions: the lognormal (lgn) (Parr and Suzuki, 1973; Eeckhout, 2004), the dou-
ble Pareto lognormal (dPln) (Reed, 2001, 2002, 2003; Reed and Jorgensen, 2004), and the
normal-Box-Cox (nBC) (Schluter and Trede, 2013).

We have estimated the three density functions by maximum likelihood for all the sam-
ples and have performed Kolmogorov–Smirnov and Cramér–Von Mises tests. We have also
studied the distributions according to the AIC and BIC.

The results show that the French city size distribution can be very well described by
the dPln. In the German case, the dPln is outperformed by the nBC, but the latter is a
parametric model which could be improved, since the statistical tests reject the nBC. In
the Italian case, the dPln is again an excellent parametric model and, in the Spanish case,
a similar situation to the German case occurs.

This variety of results, in which a clear possibility for the improvement of the parametric
description of the respective city size distributions arises for two countries, leads us to think
that there might exist another theoretical distribution that would be the best in (almost)
all cases, improving all of the results obtained in this chapter. We leave this question open
for future research.
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Chapter 4

On the parametric description of
French, German, Italian and Spanish
city log-growth rate distributions

4.1 Introduction

Several studies have dealt with the theory of the growth process of cities. However,
hardly any of the published papers deal with the study of the parametric description of
the distribution of city growth rates. This is possibly due to the lack of good data sets
in order to carry out the study until very recently. In the Chapter 3 of this thesis, we
have used an ample database covering four big European countries, France (1990-2009),
Germany (1996-2011), Italy (1901-2011) and Spain (1900-2010), with, generally, decennial
intervals. Using these data sets, the computation of the growth rates is relatively easy so
the study of their distribution follows naturally.

This research also has theoretical implications since Gibrat’s process, as it is described
in Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al. (2005),
takes the log-growth rates to be normally distributed. If, empirically, this assumption hap-
pens not to hold and, moreover, alternative descriptions are found, then the foundations of
Gibrat’s process would deserve a reconsideration. In this chapter we succeed in parameter-
izing the distribution of log-growth rates with two well-known distributions, the α-stable
distribution, see, e.g., Zolotarev (1986), Uchaikin and Zolotarev (1999), Nolan (2015) and
references therein; and the (non-standardized) Student’s-t distribution, see, e.g., Johnson
et al. (1995) and references therein. The normal distribution, in turn, reveals itself as a
poor description of the log-growth rates. The rest of the chapter is organized as follows.
Section 4.2 shows the motivation for our study. Section 4.3 describes the databases. Sec-
tion 4.4 introduces the parametric distributions used in this chapter. Section 4.5 describes
some of the empirical results obtained. Finally, Section 4.6 offers some conclusions.
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4.2 Motivation of our approach

Let us denote the population of the urban units under study as xi,t, where i is an index
for the urban units of a cross-sectional sample, and t is an index for time.1

As is well-known, gross growth rates are defined as

ggi,t =
xi,t − xi,t−1
xi,t−1

, (4.1)

so that xi,t = xi,t−1(1 + ggi,t). Taking the natural logarithm of this last expression we have

lnxi,t = lnxi,t−1 + ln(1 + ggi,t)

If we define the also well-known log-growth rates as

gli,t = lnxi,t − lnxi,t−1 (4.2)

then we can describe the exact relation:

gli,t = ln(1 + ggi,t) (4.3)

Under the assumption that, for a given t, the xi,t are independent and identically dis-
tributed (i.i.d.) random variables, it is of interest to study the (parametric or nonpara-
metric) distribution that they follow, based on empirical data. This has been treated
extensively in the literature of city size distributions.

Likewise, under the assumption that, for a given t, the ggi,t and gli,t are i.i.d. random
variables, it is also of interest to study the parametric distribution they follow, based
on empirical data. This is seldom studied in the field of Urban Economics, one excep-
tion being Schluter and Trede (2013). There are also non-parametric approaches to the
study of city growth rates, see, e.g., González-Val et al. (2013, 2014) and references therein.

From definitions (4.1) and (4.2) and the fact that xi,t ≥ 0 for all i and t ≥ 0, it is
easy to show that

ggi,t ∈ (−1,∞) , ∀i, t

and
gli,t ∈ (−∞,∞) , ∀i, t

These intervals are, respectively, the supports of the probability density functions of ggi,t
and gli,t. Let us fix time t and consider the probability density functions fg of gg (subindexes
i, t dropped for notational simplicity) and fl of gl. Due to (4.3) and the fact that the values

1Generally, in our study, the unit of time will be a decade, except for some instances of Italian samples.
This irregularity is caused by the participation of Italy in World War II.
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of the probability density functions are equal for the corresponding values of the two types
of the growth rates, the exact relation

fg(g
g) = fl(ln(1 + gg))

dgl

dgg
=

1

1 + gg
fl(ln(1 + gg))

holds, so it suffices to study fl(gl), which is what we will do in this chapter.

From a practical point of view, our interest is to obtain a very good parametric fit of the log-
growth rate distributions. To do so, we have first tried several distributions well-known in
the economics literature: the normal; the asymmetric exponential power (AEP) of Bottazzi
and Secchi (2011), which generalizes the Laplace distribution of, e.g., Johnson et al. (1995),
Stanley et al. (1996) and references therein; the α-stable distribution (see, e.g., Zolotarev
(1986), Uchaikin and Zolotarev (1999) and references therein and Nolan (2015)); the gen-
eralized hyperbolic distribution (Barndorff-Nielsen (1977), Barndorff-Nielsen and Halgreen
(1977), Barndorff-Nielsen and Stelzer (2005)); and the (non-standardized) Student’s-t dis-
tribution, see, e.g., Johnson et al. (1995) and references therein. For the sake of brevity
and comparison, we will present only the results of the normal (which is the distribution
that arise from the proportionate growth process of cities, e.g., in Eeckhout (2004)) and
the best or competing distributions for each case.2

4.3 The databases

In this chapter we use the same databases as in the Chapter 3 of this thesis, with one
exception: for Germany, in order to use a generally decennial period, as in all of the other
studied countries, we take the samples for 1996 and 2006, disregarding the one for 2011.
There is another reason for this: the number and structure of German Gemeinden varies
notably over time, and the construction of correlated data is very difficult.

The descriptive statistics of the data used can be seen in Table 4.1.

2The results for the distributions not presented here are available from the author upon request.
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Table 4.1: Descriptive statistics of the samples of French, German, Italian and Spanish urban
units used

Urban units Mean of log-growth rates SD of log-growth rates Minimum Maximum

France

1990-1999 36673 0.046 0.127 -1.386 1.786

1999-2009 36643 0.099 0.150 -2.060 2.692

Germany

1996-2006 12309 0.007 0.112 -0.827 1.006

Italy

1901-1911 7711 0.054 0.112 -0.957 1.890

1911-1921 7711 0.024 0.095 -0.802 0.683

1921-1931 8100 0.003 0.134 -0.933 3.447

1931-1936 8100 0.003 0.091 -0.704 2.488

1936-1951 8100 0.053 0.126 -0.531 2.324

1951-1961 8100 -0.047 0.161 -0.861 1.873

1961-1971 8100 -0.060 0.200 -1.075 2.234

1971-1981 8100 0.004 0.145 -0.900 1.108

1981-1991 8100 0.003 0.132 -3.098 3.835

1991-2001 8100 0.007 0.110 -1.384 1.366

2001-2011 8081 0.043 0.117 -0.580 3.303

Spain

1900-1910 7800 0.047 0.117 -0.689 1.493

1910-1920 7806 0.012 0.126 -1.504 2.143

1920-1930 7812 0.034 0.143 -1.304 1.804

1930-1940 7875 0.008 0.144 -3.313 1.330

1940-1950 7896 0.023 0.127 -1.382 2.411

1950-1960 7901 -0.053 0.176 -1.360 1.580

1960-1970 7910 -0.204 0.311 -2.104 2.619

1970-1981 7956 -0.198 0.306 -2.416 2.396

1981-1991 8034 -0.102 0.235 -2.351 3.131

1991-2001 8077 0.007 0.238 -1.985 2.529

2001-2010 8074 0.038 0.244 -1.458 3.258
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4.4 Description of the presented distributions

In this section we will introduce the distributions used in the chapter for the log-growth
rates, denoted by g for simplicity.

4.4.1 Normal distribution

The well-known normal distribution is, simply,

fn(g, µ, σ) =
1√
2πσ

exp

(
−(g − µ)2

2σ2

)
where µ, σ > 0 are respectively the mean and the standard deviation of g for the normal
density fn.

4.4.2 α-stable distribution

The general α-stable distribution is described, e.g., in Zolotarev (1986), Uchaikin and
Zolotarev (1999) and Nolan (2015), this last reference being the one that we will follow for
the parametrization chosen. This distribution does not admit a closed-form expression for
the probability density function, but the characteristic function does. Thus we will consider
that g follows an α-stable distribution with parameters α ∈ (0, 2] (index of stability),
β ∈ [−1, 1] (shape or skewness parameter), γ ≥ 0 (scale parameter), δ ∈ R (location
parameter) if g is distributed with the characteristic function

E(exp(iug))

=


exp(−γα|u|α[1 + iβ(tan πα

2 )(signu)(|γu|1−α − 1)] + iδu) α 6= 1

exp(−γ|u|[1 + iβ 2
π (signu) log(γ|u|)] + iδu) α = 1

The α-stable laws include the normal distribution (α = 2, β = 0), the Cauchy distribution
(α = 1, β = 0) and the Lévy distribution (α = 1/2, β = 1) as special cases, and they are
known to be associated with Lévy processes, see the cited references for details.

4.4.3 Student’s-t distribution

The (non-standardized) Student’s-t distribution, see, e.g., Johnson et al. (1995) and
references therein, is given by the following probability density function

fStu(g, µ, σ, ν) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πνσ

(
1 +

1

ν

(
g − µ
σ

)2
)− ν+1

2

where µ ∈ R (location parameter), σ > 0 (scale parameter), ν > 0 is the parameter
of degrees of freedom, and Γ(·) denotes the Gamma function. Particular cases of this
distribution are the Cauchy distribution (ν = 1) and the normal distribution (ν =∞).
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4.5 Results

4.5.1 The log-growth data

We have calculated the log-growth rates between each two consecutive cross-sections
of our data. In order to avoid infinite values, we have removed the observations for which
at least one of the population values is zero.

4.5.2 Results for France

Maximum likelihood (ML) is a standard technique which allows the estimation of the
parameters of a distribution, given a sample of data. For the case of the normal density
function, the corresponding ML estimators can be found easily in an exact closed form (the
µ and σ are then the mean and the standard deviation (SD) of the data). However, for the
α-stable and Student’s-t distributions used in this chapter one must resort to numerical
optimization methods in order to find the ML estimators.3

Although we estimate the log-growth rate distribution of cities by the standard maximum
log-likelihood, it should be noted that Schluter and Trede (2013) estimate their proposed
Student’s-t distribution by the Expectation-maximization algorithm, EM, (see, e.g., Bickel
and Doksum (2001) and references therein). As mentioned, we will present only the results
for the normal distribution and the best (competing) distributions.

In Table 4.2 we show the ML estimators of the distribution of the French samples stud-
ied. For the normal distribution, the ML estimators are exact and equal to the mean and
standard deviation of the log-growth data. For the other two distributions (α-stable and
Student’s-t), we provide the ML estimators and 95% confidence intervals. The estimators
show a slow variation of the values in the two samples, except for the increase in the mean
of the normal and Student’s-t distribution (µ) and the skewness parameter for the case of
the α-stable distribution (β).

In Table 4.3 we show the results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for the three distributions. These two tests are powerful when the sample size
is high or very high, and non-rejections only occur if the deviations are really small. We
see that the three distributions are rejected in all cases. According to these tests, there is
no clear distribution that can be taken for the French communes.

To select one of the models, we show in Table 4.4 the results of the Akaike information
criterion (AIC) and Bayesian information criterion (BIC), which are specially well suited
to the maximum likelihood estimation that we have performed. These criteria favour the
distribution with a greater maximum likelihood, but with a penalty for the number of

3For the α-stable distribution we have used the STABLE software of Robust Analysis Inc., see
http://www.robustanalysis.com/ and for the Student’s-t distribution we have used MATLAB in order
to perform the ML estimations, as in Chapter 3.
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parameters that have been used. The distribution with the lowest AIC / BIC is the one
preferred.

We observe that the α-stable distribution obtains the lowest values for both criteria in the
sample of 1999-2009 growth. For the 1990-1999 sample, the AIC selects the Student’s-t
distribution, and the BIC the α-stable. These results, yield that the most preferred dis-
tribution would be the α-stable, although it could be somehow outperformed by another
distribution of distributions (as it suggests the outcome of the KS and CM tests).

4.5.3 Results for Germany

For the case of Germany we carry out the same analysis for the period considered,
1996-2006. Table 4.5 show the estimation results. More important, in Table 4.6 we present
the results of the KS and CM tests. In this case, the Student’s-t is the only not rejected
for either test, meaning that this distribution presents a better fit for the sample.

The results of the AIC and BIC are presented in Table 4.7. In this case we obtain that the
Student’s-t is the preferred distribution for both criteria. We can conclude that the city
size log-growth of Gemeinden can be described by the Student’s-t distribution.

4.5.4 Results for Italy

In Table 4.8 we show the estimated parameters of the three distributions for the Italian
samples. These estimations are quite precise as well.

In Table 4.9 we show the results of the KS and CM tests. In this case, for the KS test,
neither the α-stable nor the Student’s-t are rejected in 9 out of 11 samples (81.8%). For the
CM test the α-stable is not rejected in 10 out of 11 samples (90.9%), while the Student’s-t
is not rejected in 8 out of 11 (72.7%). The normal distribution is rejected in all cases.

In Table 4.10 we show the values of the AIC and BIC information criteria. For the AIC,
the α-stable distribution is preferred in 6 out of 11 samples (54.5%), with the Student’s-t
being the most preferred in the other cases. The BIC present other results, the Student’s-t
is the one preferred in 7 out of 11 samples (63.6%) and the α-stable in the other four.

In short, both distributions (the α-stable and the Student’s-t) present a good fit in different
periods, but there is not a clear-cut distinction of what it is the best one.
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4.5.5 Results for Spain

In Table 4.11 we show the estimation results. In Table 4.12 we present the results of
the KS and CM tests. The α-stable distribution is not rejected in 8 out of 11 samples for
the KS test and 9 times for the CM test. The Student’s-t distribution is not rejected in 8
out of 11 cases in both tests. Again, the normal distribution is rejected in all cases.

Finally, in Table 4.13 we show that the AIC selects the α-stable for 5 out of 11 cases,
and the Student’s-t for the other 6 samples. For the BIC, the α-stable is preferred only in
3 out of 11 cases, the Student’s-t being preferred in the other 8.

With these results, we can see that both the α-stable and the Student’s-t present a good fit
for the samples, althought the Student’s-t is the preferred one in most cases. There is not,
however, a clear sign that either one of the functions present a better result in explaining
the distribution of our samples.

Table 4.2: Exact estimators for the French samples. Estimators and 95% confidence intervals
of the parameters

France normal α-stable

µ σ α β γ δ

1990-1999 0.05 0.13 1.75±0.01 0.36±0.05 0.07±0.00 0.04±0.00

1999-2009 0.1 0.15 1.79±0.01 0.64±0.05 0.09±0.00 0.08±0.00

Student’s-t

µ σ ν

1990-1999 0.04±0.00 0.09±0.00 4.47±0.21

1999-2009 0.09±0.00 0.11±0.00 5.24±0.26

Table 4.3: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for French samples and the density functions used. Non-rejections are marked in
bold

normal α-stable

France KS CM KS CM

1990-1999 0 (0.0513) 0 (30.9433) 0 (0.0138) 0 (1.4806)

1999-2009 0 (0.0533) 0 (31.9016) 0.0043 (0.0107) 0.0064 (0.9137)

Student’s-t

KS CM

1990-1999 0 (0.0143) 0 (2.1683)

1999-2009 0 (0.0234) 0 (4.4126)
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Table 4.4: Maximum log-likelihoods, AIC and BIC for French samples. The lowest values of
AIC and BIC for each sample are marked in bold

normal α-stable

France log-likelihood AIC BIC log-likelihood AIC BIC

1990-1999 23616.5 -47228.9 -47211.9 25819 -51630 -51915.7

1999-2009 17514.6 -35025.3 -35008.3 20439 -40870 -40836

Student’s-t

log-likelihood AIC BIC

1990-1999 25876.5 -51747.1 -51721.6

1999-2009 20166.6 -40327.2 -40301.6

Table 4.5: Exact estimators for the German samples. Estimators and 95% confidence inter-
vals of the parameters

Germany normal α-stable

µ σ α β γ δ

1996-2006 0.01 0.11 1.77±0.03 0.07±0.09 0.07±0.00 0.01±0.00

Student’s-t

µ σ ν

1996-2006 0.01±0.00 0.08±0.00 4.54±0.35

Table 4.6: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for German samples and the density functions used. Non-rejections are marked in
bold

normal α-stable

Germany KS CM KS CM

1996-2006 0 (0.0511) 0 (9.9794) 0.0091 (0.0157) 0.0229 (0.5991)

Student’s-t

KS CM

1996-2006 0.147 (0.0109) 0.0793 (0.3847)

Table 4.7: Maximum log-likelihoods, AIC and BIC for Germany samples. The lowest values
of AIC and BIC for each sample are marked in bold

normal α-stable

Germany log-likelihood AIC BIC log-likelihood AIC BIC

1996-2006 9431.68 -18859.4 -18844.5 10186 -20363 -20333

Student’s-t

log-likelihood AIC BIC

1996-2006 10202 -20398 -20375.8
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Table 4.8: Exact estimators for the Italian samples. Estimators and 95% confidence intervals
of the parameters

Italy normal α-stable

µ σ α β γ δ

1901-1911 0.05 0.11 1.85±0.03 0.00±0.17 0.07±0.00 0.05±0.00

1911-1921 0.02 0.09 1.78±0.03 -0.18±0.12 0.06±0.00 0.03±0.00

1921-1931 0.00 0.13 1.77±0.03 -0.45±0.11 0.08±0.00 0.01±0.00

1931-1936 0.00 0.09 1.65±0.03 -0.54±0.07 0.04±0.00 0.01±0.00

1936-1951 0.05 0.13 1.90±0.02 0.09±0.20 0.08±0.00 0.05±0.00

1951-1961 -0.05 0.16 1.89±0.02 0.75±0.14 0.10±0.00 -0.06±0.00

1961-1971 -0.06 0.20 1.83±0.03 0.60±0.12 0.12±0.00 -0.08±0.00

1971-1981 0.00 0.15 1.80±0.03 0.37±0.12 0.09±0.00 -0.01±0.00

1981-1991 0.00 0.13 1.68±0.03 0.07±0.09 0.06±0.00 0.00±0.00

1991-2001 0.01 0.11 1.76±0.03 -0.10±0.11 0.07±0.00 0.01±0.00

2001-2011 0.04 0.12 1.84±0.03 0.39±0.14 0.07±0.00 0.04±0.00

Student’s-t

µ σ ν

1901-1911 0.05±0.00 0.09±0.00 5.90±0.71

1911-1921 0.03±0.00 0.07±0.00 5.15±0.57

1921-1931 0.01±0.00 0.10±0.00 5.01±0.52

1931-1936 0.01±0.00 0.05±0.00 3.29±0.25

1936-1951 0.05±0.00 0.10±0.00 6.82±0.90

1951-1961 -0.05±0.00 0.13±0.00 6.65±0.82

1961-1971 -0.07±0.00 0.16±0.00 5.46±0.58

1971-1981 0.00±0.00 0.11±0.00 4.84±0.49

1981-1991 0.00±0.00 0.08±0.00 3.53±0.29

1991-2001 0.01±0.00 0.08±0.00 4.62±0.47

2001-2011 0.04±0.00 0.09±0.00 5.71±0.67
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Table 4.9: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for Italian samples and the density functions used. Non-rejections are marked in
bold

normal α-stable

Italy KS CM KS CM

1901-1911 0 (0.0355) 0 (4.166) 0.2848 (0.0116) 0.3139 (0.1783)

1911-1921 0 (0.0393) 0 (4.7116) 0.3628 (0.0109) 0.5133 (0.1157)

1921-1931 0 (0.0518) 0 (8.5967) 0.1939 (0.0125) 0.2299 (0.2212)

1931-1936 0 (0.097) 0 (32.7248) 0.3155 (0.0111) 0.4832 (0.1231)

1936-1951 0 (0.037) 0 (3.6067) 0.0137 (0.0182) 0.0517 (0.456)

1951-1961 0 (0.0381) 0 (3.3609) 0.8117 (0.0073) 0.6819 (0.0817)

1961-1971 0 (0.042) 0 (5.7044) 0.3049 (0.0112) 0.5111 (0.1162)

1971-1981 0 (0.0551) 0 (6.1134) 0.0074 (0.0193) 0.0147 (0.6848)

1981-1991 0 (0.089) 0 (24.5235) 0.0903 (0.0144) 0.0761 (0.3919)

1991-2001 0 (0.0501) 0 (7.2769) 0.243 (0.0118) 0.181 (0.2559)

2001-2011 0 (0.0829) 0 (20.0764) 0.3251 (0.011) 0.3583 (0.1608)

Student’s-t

KS CM

1901-1911 0.6877 (0.0084) 0.7725 (0.0666)

1911-1921 0.1145 (0.0141) 0.2356 (0.2178)

1921-1931 0.0177 (0.0177) 0.0098 (0.7513)

1931-1936 0 (0.0273) 0 (1.4002)

1936-1951 0.4549 (0.0099) 0.4158 (0.1418)

1951-1961 0.2335 (0.012) 0.1528 (0.2814)

1961-1971 0.1295 (0.0135) 0.0389 (0.5047)

1971-1981 0.2933 (0.0113) 0.1694 (0.2657)

1981-1991 0.7262 (0.008) 0.5542 (0.1065)

1991-2001 0.8177 (0.0073) 0.7576 (0.069)

2001-2011 0.3204 (0.011) 0.2876 (0.1901)
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Table 4.10: Maximum log-likelihoods, AIC and BIC for Italian samples. The lowest values
of AIC and BIC for each sample are marked in bold

normal α-stable

Italy log-likelihood AIC BIC log-likelihood AIC BIC

1901-1911 5959.71 -11915.4 -11901.5 6387 -12766 -12738

1911-1921 7235.13 -14466.3 -14452.4 7579.5 -15151 -15123

1921-1931 4814.06 -9624.13 -9610.13 5535 -11062 -11034

1931-1936 7915.57 -15827.1 -15813.1 9833 -19658 -19630

1936-1951 5275.53 -10547.1 -10533.1 5658.6 -11309 -11281

1951-1961 3321.99 -6639.99 -6625.99 3694.1 -7380.2 -7352.2

1961-1971 1523.75 -3043.5 -3029.5 2021 -4033.9 -4005.9

1971-1981 4123.95 -8243.9 -8229.9 4561 -9114 -9086

1981-1991 4935.42 -9866.83 -9852.83 6506.5 -13005 -12977

1991-2001 6358.46 -12712.9 -12698.9 6798.8 -13590 -13562

2001-2011 5854.65 -11705.3 -11691.3 6513.57 -13019.14 -12991.15

Student’s-t

log-likelihood AIC BIC

1901-1911 6387.92 -12769.8 -12749

1911-1921 7594.49 -15183 -15162.1

1921-1931 5514.67 -11023.3 -11002.3

1931-1936 9755.6 -19505.2 -19484.2

1936-1951 5656.89 -11307.8 -11286.8

1951-1961 3640.46 -7274.92 -7253.92

1961-1971 1968.16 -3930.32 -3909.32

1971-1981 4559.47 -9112.95 -9091.95

1981-1991 6545.97 -13085.9 -13064.9

1991-2001 6837.22 -13668.4 -13647.4

2001-2011 6512.85 -13019.7 -12998.7
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Table 4.11: Exact estimators for the Spanish samples. Estimators and 95% confidence
intervals of the parameters

Spain normal α-stable

µ σ α β γ δ

1900-1910 0.05 0.12 1.71±0.03 0.18±0.1 0.07±0.00 0.04±0.00

1910-1920 0.01 0.13 1.78±0.03 0.44±0.11 0.07±0.00 0.00±0.00

1920-1930 0.03 0.14 1.72±0.03 0.18±0.1 0.08±0.00 0.03±0.00

1930-1940 0.01 0.14 1.73±0.03 -0.22±0.1 0.08±0.00 0.01±0.00

1940-1950 0.02 0.13 1.71±0.03 0.12±0.1 0.07±0.00 0.02±0.00

1950-1960 -0.05 0.18 1.65±0.03 0.49±0.08 0.09±0.00 -0.08±0.00

1960-1970 -0.2 0.31 1.72±0.03 0.18±0.1 0.18±0.00 -0.22±0.01

1970-1981 -0.2 0.31 1.74±0.03 -0.1±0.1 0.18±0.00 -0.19±0.01

1981-1991 -0.1 0.24 1.67±0.03 0.00±0.09 0.12±0.00 -0.11±0.00

1991-2001 0.01 0.24 1.53±0.03 0.46±0.06 0.11±0.00 -0.03±0.00

2001-2010 0.04 0.24 1.67±0.03 0.78±0.06 0.13±0.00 -0.01±0.01

Student’s-t

µ σ ν

1900-1910 0.04±0.00 0.08±0.00 4.03±0.38

1910-1920 0.01±0.00 0.09±0.00 4.48±0.45

1920-1930 0.03±0.00 0.1±0.00 3.79±0.32

1930-1940 0.01±0.00 0.1±0.00 3.93±0.34

1940-1950 0.02±0.00 0.08±0.00 3.58±0.29

1950-1960 -0.07±0.00 0.11±0.00 3.25±0.25

1960-1970 -0.21±0.01 0.22±0.01 4.05±0.37

1970-1981 -0.2±0.01 0.22±0.01 4.13±0.38

1981-1991 -0.1±0.00 0.16±0.00 3.52±0.28

1991-2001 -0.02±0.00 0.13±0.00 2.46±0.16

2001-2010 0.01±0.00 0.17±0.00 3.71±0.31
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Table 4.12: p-values (statistics) of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises
(CM) tests for the Spanish samples and the density functions used. Non-rejections are marked
in bold

normal α-stable

Spain KS CM KS CM

1900-1910 0 (0.0581) 0 (9.6953) 0.0183 (0.018) 0.0942 (0.3571)

1910-1920 0 (0.0605) 0 (9.0233) 0.0756 (0.015) 0.0581 (0.4365)

1920-1930 0 (0.0705) 0 (13.1563) 0.7758 (0.0077) 0.7111 (0.0767)

1930-1940 0 (0.0653) 0 (15.2822) 0.4971 (0.0097) 0.5132 (0.1157)

1940-1950 0 (0.0761) 0 (18.9552) 0.0642 (0.0153) 0.2498 (0.2095)

1950-1960 0 (0.0858) 0 (19.342) 0.2287 (0.0121) 0.2388 (0.2159)

1960-1970 0 (0.0586) 0 (8.9549) 0.4562 (0.01) 0.419 (0.1408)

1970-1981 0 (0.0523) 0 (8.4837) 0.484 (0.0097) 0.4694 (0.1266)

1981-1991 0 (0.0762) 0 (14.9052) 0.0227 (0.0173) 0.0335 (0.5314)

1991-2001 0 (0.1198) 0 (35.2587) 0.0208 (0.0174) 0.0173 (0.6534)

2001-2010 0 (0.0829) 0 (20.0764) 0.1317 (0.0135) 0.2085 (0.2352)

Student’s-t

KS CM

1900-1910 0.0903 (0.0146) 0.1003 (0.3469)

1910-1920 0.1833 (0.0128) 0.2567 (0.2057)

1920-1930 0.3543 (0.0109) 0.4175 (0.1412)

1930-1940 0.1824 (0.0128) 0.1722 (0.2633)

1940-1950 0.6361 (0.0087) 0.641 (0.0891)

1950-1960 0.0015 (0.0221) 0.0063 (0.9195)

1960-1970 0.2147 (0.0123) 0.3708 (0.1564)

1970-1981 0.7003 (0.0082) 0.7489 (0.0704)

1981-1991 0.0561 (0.0155) 0.0654 (0.4171)

1991-2001 0 (0.0287) 0 (1.7459)

2001-2010 0 (0.0336) 0 (2.3608)
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Table 4.13: Maximum log-likelihoods, AIC and BIC for the Spanish samples. The lowest
values of AIC and BIC for each sample are marked in bold

normal α-stable

Spain log-likelihood AIC BIC log-likelihood AIC BIC

1900-1910 5637.68 -11271.4 -11257.4 6141.6 -12275 -12247

1910-1920 5085.31 -10166.6 -10152.7 5719.4 -11431 -11403

1920-1930 4129 -8254 -8240.08 5013.1 -10018 -9990.4

1930-1940 4114.54 -8225.07 -8211.13 5239.1 -10470 -10442

1940-1950 5068.87 -10133.7 -10119.8 6345.7 -12683 -12655

1950-1960 2517.51 -5031.01 -5017.06 3481 -6954 -6926.1

1960-1970 -1995.35 3994.69 4008.64 -1478.5 2964.9 2992.8

1970-1981 -1864.72 3733.43 3747.4 -1317 2642 2669.9

1981-1991 232.092 -460.184 -446.201 1102.6 -2197.2 -2169.2

1991-2001 143.037 -282.073 -268.079 1581.5 -3154.9 -3126.9

2001-2010 -80.254 164.508 178.501 913.081 -1818.16 -1790.18

Student’s-t

log-likelihood AIC BIC

1900-1910 6178.04 -12350.1 -12329.2

1910-1920 5715.74 -11425.5 -11404.6

1920-1930 5017.05 -10028.1 -10007.2

1930-1940 5237 -10468 -10447.1

1940-1950 6347.02 -12688 -12667.1

1950-1960 3439.6 -6873.2 -6852.28

1960-1970 -1451.87 2909.74 2930.67

1970-1981 -1292.45 2590.89 2611.84

1981-1991 1128.86 -2251.71 -2230.74

1991-2001 1534.93 -3063.87 -3042.88

2001-2010 749 -1492 -1471.01
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4.5.6 An informal graphical approximation

For the purpose of analyzing the goodness of fit of the distributions, the graphical rep-
resentation of the estimated density function along with the data has its own shortcomings.
In short, the graphical fit can not take into account the number of observations, while the
KS and CM tests are strongly dependent on this aspect of the data. Also, (see previous
chapter), there is an amplification effect on the diferences between the estimated cdf’s and
the empirical data for both tails.

Although the graphical tools are, then, less suited for the purpose of the selection of a
distribution function, we offer, for completeness, a representative case for every country,
using the distribution that has a better fit with the data in that period: The α-stable for
the case of France (1999-2009) and Spain (2001-2010). And the Student’s-t for Germany
(1996-2006) and Italy (1991-2001).

For the case of France and the Student’s-t, the fit can be improved for both tails, in
which the discrepancies are more important. The case of Germany is similar, and although
the fit is somewhat better, there appear remarkable deviations at the ends of the tails.

For the case of Spain and Italy we have again something similar. The fit of the densi-
ties are nearly perfect visually, but the tails present important differences between the
estimated function and the data.

This graphical approximation, in which the tails of the distributions are poorly fitted,
shows that an improvement may be possible.

4.6 Conclusions

In the preceding subsections we have seen that a very appropriate parametric models
for the log-growth rate distribution of France, Germany, Italy and Spain are the α-stable
and Student’s-t distributions. The normal, instead, offers a quite poor description of the
empirical log-growth rates.

In any case, of the distributions studied, there is none which is clear-cut preferable, but
instead the best ones are close competitors. Furthermore, none of them is preferable at all
instances.

This leads us to think that there might exist one or more distributions which would out-
perform the ones analyzed in this chapter, based if possible on theoretical arguments.

We hope to address this issue in future research.
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Conclusions

The first two chapters of the present PhD Thesis define two new models within the
field of the New Economic Geography.

The first chapter analyzes the spatial distribution of heterogeneous firms in a theoreti-
cal model based on the Footloose Entrepreneur Model, that allows us to study not only
the localization of economic activity but also the different dynamics derived by the com-
petition between firms. From the model we can obtain several conclusions: First, the most
productive firms will be concentrated in one region, the core. Second, an increase in the
freeness of trade will decrease the market crowding effect and will increase the home mar-
ket effect, fostering the creation of small firms in the core. Third, the presence of a higher
heterogeneity among firms increases the concentration of small firms, although this process
will take place in the core (periphery) if the value of the freeness of trade parameter is
higher (lower) than a certain threshold. Fourth, a greater heterogeneity also implies a more
concentrated industrial economic activity in the region where the most productive firms
are located, measured by employment, revenues or profits. Fifth, with a sufficiently high
freeness of trade, either the core is fully specialized in the industrial sector or the periphery
is completely specialized in the agricultural sector. Sixth, the reduction of transportation
costs increases the welfare of all agents in both regions. And seventh, the most productive
workers will have a superior utility (because of their income level) and the workers of the
core will have a higher utility than the workers of the periphery (thanks to a greater access
to cheap commodities), except in the case of free trade, in which they will have the same
level of welfare.

The second chapter develops an alternative framework to the Iceberg approach for the
analysis of the transportation costs in which the explanation of the frictions imposed by
the space is not due to the loss of a certain percentage of the quantity of the goods being
traded. In our case, we introduce an explicit cost that is assumed by the firm, who will
demand a certain number of workers to carry out the transportation process. This allows
us to model the transportation costs in a more suitable correspondence to the empirical
evidence: Increasing in a concave manner with respect to the distance, and with trans-
port costs per ton-kilometer decreasing with respect to the total amount of goods being
shipped. Also, our theoretical approach does not maintain the unitary elasticity between
the domestic and foreign price, a very unrealistic outcome, and is more convincing in the
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consideration of non homogeneous space. Finally, the theoretical determination of the
freeness of trade parameter changes too, and will no longer depend only on the total cost
of transportation, but on the ratio between the cost of transportation and the cost of pro-
duction; in this way, even an industry with a more costly process of transportation can
have a higher freeness of trade if its production costs are relatively higher.

The next two chapters analyze the city size distribution and the city growth rate dis-
tribution for four European countries.

In the third chapter, we check the correspondence of the city size distribution with the
lognormal, the double Pareto lognormal and the normal-Box-Cox, estimating them, by
maximum likelihood (ML), for France, Germany, Italy and Spain. Having computed the
Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests and the performance of the
distributions according to the Akaike and Bayesian information criteria, we can deduce that
there is mixed evidence as to which function better fits the data. The double Pareto log-
normal describes the French city size distribution accurately. In the case of Germany, this
function is outperformed by the normal-Box-Cox, although the latter could be improved,
since the statistical tests reject it. For the Italian case, the double Pareto lognormal can
be used as an excellent theoretical density function, as in France. Spain shows that the
normal-Box-Cox is preferable, but is rejected by the statistical tests, as in the German case.

In the fourth chapter, we carry out a similar analysis but with respect to the popula-
tion growth of the urban units for the same four countries. In this case we use the normal,
the α-stable and the Student’s-t functions, to fit the distribution of the growth rates of
city sizes. We conclude that the case of France can be explained with the α-stable, and
Germany with the Student’s-t. For Italy and Spain, there is not, however, a dominant
function. In all cases, the normal is the least preferable of the three.

With these results we can conclude that there is no clear theoretical explanation of the
distribution of population across all cities, at least, for the four countries analyzed. Fu-
ture research should be done in this regard for a complete understanding of the city size
distribution and the corresponding log-growth.



Conclusiones

Los dos primeros capítulos de la presente Tesis definen dos nuevos modelos pertenecientes
al campo de la Nueva Geografía Económica.

El primero de ellos analiza la distribución espacial de empresas heterogéneas en un modelo
teórico basado en el Footloose Entrepreneur Model, que nos permite estudiar no solo la
localización de la actividad económica, sino también los diferentes efectos derivados de
la competición entre empresas. A partir de este modelo podemos obtener varias conclu-
siones: Primera, la empresas más productivas están concentradas en una región, el centro
(core). Segunda, un incremento en el parámetro de libertad de comercio disminuye el
market crowding effect y aumenta el home market effect, fomentando la concentración de
empresas pequeñas en el centro. Tercera, la presencia de una mayor heterogeneidad entre
las empresas favorece la concentración de empresas pequeñas, aunque este proceso tendrá
lugar en el centro (periferia) si el valor del parámetro de libertad de comercio es mayor
(menor) que un cierto umbral. Cuarta, una mayor heterogeneidad también implica una
mayor concentración de la actividad económica industrial en la región donde las empre-
sas más productivas se han localizado, medida tanto por empleo, ingresos o beneficios.
Quinta, con una libertad de comercio lo suficientemente alta, o bien el centro se especializa
totalmente en el sector industrial o bien la periferia se especializa completamente en el
sector agrario. Sexta, la reducción de los costes de transporte aumenta el bienestar de
todos los agentes económicos, tanto en el centro como en la periferia. Y séptima, los tra-
bajadores más productivos disfrutan de un bienestar mayor (derivado de su mayor nivel
de renta) y los trabajadores del centro tienen un mayor nivel de bienestar que los traba-
jadores de la periferia (gracias al mejor acceso a bienes más baratos), excepto en el caso en
el que haya total libertad de comercio, en el que el nivel de felicidad es el mismo para todos.

El segundo capítulo desarrolla una alternativa al marco teórico conocido como Iceberg
para el análisis de los costes de transporte, en donde la explicación de la fricción impuesta
por el espacio no se debe a la pérdida en un cierto porcentaje de la cantidad de bienes
enviados. En nuestro caso, introducimos un coste explícito que es asumido por la em-
presa, que demanda una cierta cantidad de trabajadores para que lleven a cabo las tareas
del proceso de transporte. Esto nos permite modelizar los costes de transporte con una
mayor correspondencia con la evidencia empírica: Los costes aumentan con respecto a la
distancia de forma cóncava y los costes por kilo y kilómetro con respecto a la cantidad
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total de bienes enviados son decrecientes. Además, nuestro marco teórico no mantiene la
elasticidad unitaria entre el precio doméstico y externo, un resultado muy poco realista y,
a su vez, es más convincente a la hora de considerar un espacio no homogéneo. Finalmente,
la determinación teórica del parámetro de libertad de comercio cambia también, y no de-
pende únicamente del coste total de transporte, sino del ratio entre el coste de transporte
y el coste de producción; de esta forma, incluso una industria con un proceso de transporte
más costoso puede tener una mayor libertad de comercio si sus costes de producción son
relativamente más altos.

Los dos capítulos siguientes analizan la distribución del tamaño de las ciudades y la dis-
tribución de sus tasas de crecimiento para cuatro países europeos. En el tercero, estudiamos
la correspondencia de la distribución urbana con la función lognormal, la doble Pareto log-
normal y la normal-Box-Cox, estimándolas por el procedimiento de máxima verosimilitud
para Francia, Alemania, Italia y España. Tras computar los contrastes de Kolmogorov-
Smirnov y Cramér-Von Mises y de acuerdo con el criterio de Akaike y el criterio Bayesiano,
podemos deducir que hay una evidencia mixta sobre qué función es la que mejor se ajusta
a los datos. La doble Pareto lognormal describe la distribución del tamaño de las ciudades
francesas con cierta exactitud. Para el caso de Alemania, esta función es superada por
la normal-Box-Cox, aunque esta podría ser mejorada, ya que los contrastes estadísticos la
rechazan. Para Italia, la doble Pareto lognormal puede usarse como una excelente función
teórica, como en el caso de Francia. En España es preferible la normal-Box-Cox, pero
también es rechazada por los contrastes estadísticos.

En el cuarto capítulo llevamos a cabo un análisis similar, esta vez con respecto al
crecimiento poblacional de las unidades urbanas, para los mismos cuatro países. En este
caso, usamos la función normal, la alpha-stable y la t de Student para ajustar la distribu-
ción de las tasas de crecimiento de los tamaños de las ciudades. Concluimos que el caso
de Francia puede ser explicado con la función alpha-stable y Alemania con la t de Student.
Para Italia y España no hay, sin embargo, ninguna función dominante. Para todos los
países la función normal es la menos preferida de las tres. Con estos resultados podemos
concluir que no hay una clara explicación teórica sobre la distribución de la población
urbana sobre todas las ciudades, al menos para los cuatro países analizados. En el futuro
hay que profundizar en esta línea de investigación, de forma que nos permita una mayor
comprensión de la distribución urbana y su correspondiente crecimiento.
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