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de fatigas durante esos meses.

A mi amiga Yvonne Craddock por ayudarme a mejorar mi inglés y a mi amigo Quique

Barberán por su inestimable ayuda en temas informáticos.
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ABSTRACT

To date, the European Union Emissions Trading Scheme (EU ETS) is the largest

carbon market in the world. An analysis of the EU ETS is important for three different

agents: policy makers, companies, and investors. The thesis comprises three essays,

each addressing questions related to the economic performance of the EU ETS from a

different point of view (policy makers, companies, and investors).

In the first essay, we analyze the relationship between economic and environ-

mental performance of Spanish companies involved in the EU ETS. The EU ETS

was created with the aim of promoting reductions of greenhouse gas emissions in a

cost-effective and economically efficient manner. According to this aim, policy makers

should take into account not only the CO2 reduction targets, but also the influence of

these pollution goals on company economic performance, when making their decisions.

The aim of the second essay is two-fold. First, both the technical and the en-

vironmental efficiency for Spanish energy companies in the EU ETS are measured.

Second, it is studied how the level of environmental efficiency influences the number

of EUAs a company must buy, or is able to sell. Our research is very valuable for

company management as we can determine how the level of environmental efficiency

influences and determines the number of EUAs a company must buy, or is able to sell,

and, consequently, the expenses and revenues of the company related to those EUAs.

In the third essay, we take the investor point of view. EUAs have become a new

asset that attracts investors interest and, given that the energy sector is responsible

for the bulk of the CO2 emissions of the carbon market, our aim here is is to examine

how the EU ETS and energy stocks markets interact.
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RESUMEN

Un análisis del EU ETS es importante para tres tipos de agentes: instituciones públicas

(consideran este mercado como pieza clave de la poĺtica climática de la UE), empresas

(deben acudir a este mercado con el fin de cumplir con sus restricciones ambientales) e

inversores (ven este mercado como una nueva oportunidad de inversión). Basándonos

en las necesidades particulares de cada uno de estos tres grupos de interés, la tesis está

integrada por tres caṕıtulos emṕıricos que tienen como objetivo analizar la performance

económica, con vistas a obtener cada uno, implicaciones adaptadas a los necesidades

de cada uno de los citados grupos.

El primero, tiene como objetivo analizar la relación existente entre la performance

económica y la medioambiental de la totalidad de empresas españolas pertenecientes

al EU ETS con el fin de proporcionar más información a las instituciones encargadas

de elaborar poĺıticas relacionadas con el EU ETS nacional, teniendo en cuenta la im-

portancia de conseguir un balance entre las metas económicas y medioambientales.

El objetivo del segundo es doble. En primer lugar, calculamos la eficiencia

técnica y medioambiental de cada una de las empresas del sector energético español

pertenecientes al EU ETS. En segundo lugar, examinamos hasta qué punto la eficiencia

medioambiental determina el número de derechos de emisión que una empresa debe

comprar o se puede permitir vender, y por tanto, los gastos o ingresos derivados de

un bajo o alto grado de eficiencia. Esta investigación es considerablemente relevante

para el management empresarial ya que permite conocer hasta qué punto mejoras en

la eficiencia medioambiental influyen en el dinero que una empresa debe gastar en el

EU ETS.

Para el tercer caṕıtulo emṕırico, tomamos el punto de vista del inversor. Te-

niendo en cuenta que la mayor parte de las emisiones del EU ETS proceden del sec-

tor energético, nuestro objetivo es analizar la relación existente entre los EUAs y los

t́ıtulos bursátiles de empresas del sector energético, en concreto empresas del sector del

petróleo & gas y de enerǵıas limpias.
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Chapter 1

Introduction

The problem of climate change has become a topic of global concern in the scientific,

political, and economic spheres. Human activity generates significant emissions of

carbon dioxide and other Greenhouse Gases (GHG) that accumulate in the atmosphere

and are absorbed by oceans and forests, leading to global warming. The obvious

importance of this issue has raised many voices calling for the reduction of the emissions

of these poisonous gases. Such a reduction, however, has major repercussions for global

economy, and so an analysis of this topic is interesting not only from a scientific point

of view, but also from a social sciences perspective.

This extract from the European Commission webpage summarizes the situation:

”Environment has become a scarce resource. Since economics is about how to deal with

scarce resources, it can often be useful when tackling environmental problems. One

way of using economics is to ensure that the costs and the benefits of environmental

measures are well balanced. Although it is difficult to estimate costs and benefits,

there is an increasing demand that this is done before environmental policy is decided

on a European level. With the use of market-based instruments, environmental goals

can sometimes be reached more efficiently than with traditional command and control

regulations”. (European Commission, 2015).

In this context, a relatively new branch of the Economics literature appeared:
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Environmental Economics, which studies the relationship between the economy and

the environment. Our thesis fits into a sub-field of Environmental Economics: Envi-

ronmental Finance. This sub-field emerged alongside with the creation of market-based

mechanisms to reduce emissions. Environmental Finance focuses on analyzing the new

financial environmental markets, where a new type of asset is traded: the right to

emit a specific quantity of a certain GHG. These markets are called Emission Trading

Schemes (ETS).

Today, there are several such schemes in operation. In addition, the number of

this kind of market is likely to increase in the future, as there are already several ETS

under consideration in different parts of the world. (See Table 1.1).

To date, the European Union Emissions Trading Scheme (EU ETS) is the largest

Emissions Trading Scheme. It limits emissions from 11000 industrial and power in-

stallations based in 31 European countries (28 EU countries and the three EEA-EFTA

states (Iceland, Liechtenstein and Norway) and covers around 45% of the EU’s green-

house gas emissions. The EU ETS, also known as the carbon market, was launched

in 2005 and is defined by the European Commission as the cornerstone of the EU’s

policy to reduce CO2 emissions. The market works as follows: at the end of each year1

each company must hold a number a European Union Allowances (EUA) equal to its

level of emissions. Companies that maintain their emissions below the level of their

allowances can sell their excess. Those that want, or need, to emit more than what is

permitted must buy EUAs. This way, the EUA is considered as a new asset with a

daily price determined by supply and demand.

An analysis of the EU ETS is important for three different agents: policy makers,

companies and investors.

♦Policy makers. The EU ETS was created with the aim of promoting reduc-

tions of greenhouse gas emissions in a cost-effective and economically efficient manner.

1Auctioning, not free allocation, is now the default method for allocating allowances. In 2013
more than 40% of allowances will be auctioned, and this share will rise progressively each year.
(http://ec.europa.eu/clima/policies/ets/index_en.htm)
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Table 1.1: Emission trading schemes around the world

ETS in force
Canada - Québec Cap-and-Trade System

China - Beijing pilot system
China - Chongqing pilot system
China - Guangdong pilot system

China - Hubei pilot system
China - Shanghai pilot system
China - Shenzhen pilot system
China - Tianjin pilot system

EU Emissions Trading System (EU ETS)
Japan - Saitama Target Setting Emissions Trading System

Japan - Tokyo Cap-and-Trade Program
Kazakhstan Emissions Trading Scheme (KAZ ETS)

Korea Emissions Trading Scheme
New Zealand Emissions Trading Scheme (NZ ETS)

Swiss ETS
USA - California Cap-and-Trade Program

USA - Regional Greenhouse Gas Initiative (RGGI)
ETS implementation scheduled

China
ETS under consideration

Brazil
Brazil - Rio de Janeiro

Brazil - Sao Paulo
Canada - Manitoba (WCI)
Canada - Ontario (WCI)

Chile
Japan
Mexico
Russia

Thailand
Turkey
Ukraine

USA - Washington
Vietnam

Source: International Carbon Action Partnership (ICAP)
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According to this aim, policy makers should take into consideration not only the CO2

reduction targets, but also the influence of these pollution goals on company economic

performance.

♦Companies. As explained above, companies involved in the EU ETS must buy

or be able to sell EUAs depending on their level of emissions. Therefore, EUAs are

either a revenue or a cost for companies involved in the EU ETS. In this way, pollution

issues have been directly introduced into company income statements.

♦Investors. Market participants such as risk managers and traders have an

increasing financial interest in this market, and forecasting the EUA price can facilitate

their investment decisions.

The thesis comprises three essays, each addressing question related to the eco-

nomic performance of the EU ETS from a different point of view (policy makers,

companies and investors). Clearly, although each chapter is biased towards being use-

ful for a specific kind of agent, the findings of each chapter have implications for the

three kinds of agent in general.

Before presenting the thesis outline in more detail, we provide a brief overview

of the EU ETS.

1.1 The EU ETS. An overview

This section is divided into three parts. First, we focus on the Kyoto Protocol, which

is the origin of the creation of market-based instruments to combat climate change.

Second, we concentrate on the creation of the EU ETS, as a measure taken by the

European Commission to help European countries achieve their targets under the Ky-

oto Protocol. Third, since Spain plays a significant role in our research, we describe

how the Spanish Government has adapted to the inclusion of around 1000 Spanish

installations into the EU ETS.
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1.1.1 The origin of the EU ETS. Kyoto Protocol

Although the second half of the 20th century saw the first global-scale efforts against

climate change, as demonstrated by actions such as the creation of the World Meteoro-

logical Organization (WMO) in 1950 and the United Nations Environment Programme

(UNEP) in 1972, it was not until the end of the 1980s and beginning of the 1990s that

the governments of most developed countries began to express their concerns over cli-

mate change. Thus, in 1992 the United Nations Convention on Climate Change was

adopted, taking effect two years later when 195 countries committed to join forces to

reduce global emissions of GHG. Since the Convention only announced a declaration

of intent, given its lack of executive power, it is no surprise that a year after it took

effect (1994) not one of the participating countries had taken any required measures.

In order to remedy the situation, the Convention established the Kyoto Protocol

in 1997, marking the beginning of a new era in which environmental objectives would

bring with them the creation of new institutions and mechanisms.

The Kyoto Protocol was adopted in Japan on December 11, 1997 and took effect

on February 16, 2005. This document set a goal for 37 industrialized countries (Annex

B of the Kyoto Protocol. See Table 1.2) and the European Union: to reduce the

group’s emissions of greenhouse gases by at least 5%, compared to 1990 levels, during

the period 2008-2012.

It was hoped that these countries would achieve this goal by the establishment of

policies on a national scale. In addition, with the goal of facilitating compliance with

the objective that had been set, the Protocol designed three market mechanisms as

additional instruments; those instruments were to play a complementary role, always

keeping national strategies in the forefront. These tools are: Emission Trading Scheme

(ETS), Clean Development Mechanism (CDM) and Joint Implementation (JI).

Emission Trading Schemes (ETS)

As mentioned above, the Protocol establishes a goal for each country. This objec-
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Table 1.2: Annex B of the Kyoto Protocol

Party Emission
limitation

Australia 108
Austria 92
Belgium 92
Bulgaria 92
Canada 94
Croatia 95

Czech Republic 92
Denmark 92
Estonia 92

European Community 92
Finland 92
France 92

Germany 92
Greece 92

Hungary 94
Iceland 110
Ireland 92
Italy 92

Japan 94
Latvia 92

Liechtenstein 92
Lithuania 92

Luxembourg 92
Monaco 92

Netherlands 92
New Zealand 100

Norway 101
Poland 94

Portugal 92
Romania 92

Russian Federation 100
Slovakia 92
Slovenia 92

Spain 92
Sweden 92

Switzerland 92
Ukraine 100

United Kingdom of Great Britain and Northern Ireland 92
United States of America 93

Note: The second column indicates the quantified emission reduction to be achieved in
period 2008-2012. The reduction is expressed as a percentage of the emissions level in
the base year (the general rule was 1990). Note that, although United States of America
signed the Protocol it did not ratified the treaty.
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tive, besides being a percentage of reduction of emissions (in the case of the European

Union, 8% with regard to 1990) can also be expressed in the form of a maximum level

of emissions permitted. The initial quantity assigned for each country is calculated

as follows: the emissions of Greenhouse gases collected in Annex A of the Kyoto Pro-

tocol2in the base year (1990), multiplied by its objective of emissions reduction, and

by five. At the same time, this level of emissions is divided in units that are equal to

the right to emit an equivalent metric tonne of carbon dioxide, and termed Assigned

Amount Units (AAU).

In this way, if a country has emitted fewer tonnes of carbon than those assigned,

it can sell the AAUs that are left to another country that may find itself in the opposite

situation, having exceeded its limit. The trade in emissions rights does not affect the

total number of rights assigned (or, what is the same, the maximum level of global

emissions set for a specific period), it simply acts as a redistribution tool for those

rights among countries.

Clean Development Mechanism (CDM)

A Clean Development Mechanism (CDM) can be defined as the investment made

by an industrialized country, which has an obligation to reduce its emissions within the

framework of the Kyoto Protocol, in a developing country, with the goal of reducing

emissions and promoting sustainable development in that country. With a view toward

strengthening this mechanism, the Protocol has established that developed countries

that carry out this type of project may receive Certified Emission Reductions(CER)

that can be used by them to fulfill their objective of emissions reduction.

In this sense, the CDM establishes a mechanism that benefits developed as well

as developing countries. The former can use their participation in these projects as

accountability to the Kyoto agreement. The latter benefit from the investments in

their countries made by the developed countries.

2Carbon dioxide (C02, Methane (CH4, Nitrous oxide (N20, Hydrofluorocarbons
(HFCs),Perfluorocarbons (PFCs), Sulphur hexafluoride (SF6))
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Joint Implementation (JI)

A project of Joint Implementation consists of the investment made, by one of the

37 countries of the Kyoto Protocol, in another country that is also a signatory. By

virtue of this activity, the investor receives Emissions Reduction Units (ERU), which,

like the CERs, facilitate compliance with its goal.

Thus, the AAU, CER, ERU have been converted into commodities that can be

sold on the carbon market. In this sense, the Kyoto Protocol allows for the creation of

these types of markets at the national as well as the regional level, and although they

enjoy autonomy with regard to Kyoto, the Protocol does demand that the transactions

taking place in these markets are reflected in the register that has been created for

such a purpose. Currently, the European Union Emission Trading Scheme (EU ETS),

in which 11,000 installations in 31 European countries participate (the 28 Members of

the European Union, Norway, Liechtenstein and Iceland) is the largest in terms of its

level of operations.

The Kyoto Protocol establishes a first step in the struggle to reduce emissions of

GHG and provides the basis for a future agreement that will encompass virtually all

the countries of the world. In this sense, although the Protocol expired in 2012, the

IPCC, on numerous occasions has expressed the need to negotiate a new accord that

will allow continuing on the path to emissions reduction. United Nations negotiations

are under way to draw up a new global climate agreement to achieve greater cuts in

global emissions. This new agreement is to be finalised by 2015 and implemented from

2020.

1.1.2 Kyoto Protocol. Adaptation to the European Union

Coinciding with the adoption of the United Nations Framework Convention on Climate

Change (UNFCCC), 1991 marks the beginning of a series of actions designed within

the European Union with the objective of mitigating the effects of climate change.

The first, and most representative of these initiatives was the commissioning of
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the first community strategy with a view to reducing carbon dioxide emissions and

improving energy efficiency. Ten years later, at the turn of the century, there was a

significant advance in this field. The European Union published the ”Green Paper” ,

in which the trading of emission rights was presented as the key strategy on which the

Union should focus in order to achieve its objectives in relation to the Kyoto Protocol.

In this context, through the Council Decision 2002/358/EC, the European Com-

munity endorsed the Kyoto Protocol, committing to reducing its aggregate anthro-

pogenic emissions of greenhouse gases by 8% compared to 1990 levels, in the period

between 2008-2012, and thus exercising its rights under Article 4 of the Protocol that

allow countries to group themselves with a view towards fulfilling their objectives to

reduce emissions jointly. The decision was taken to tackle the general objective for all

the Member States, constituting the only example of the practical application of the

Article 4. Under the terms of this agreement, each Member State could have a different

goal than in principle was established in the Kyoto Protocol. Provided that at the end

of the period covered the emissions were on aggregate less than 8% compared to the

base year, it could be claimed that the European Union was in a state of compliance.

To contribute to the goal of compliance with this objective there emerged the

Directive 2003/87/EC, which fosters the use of more efficient energy technologies. The

Directive indicates that the Member States must safeguard its implementation and lay

down rules on penalties applicable to possible infringements. As will be explained in

Section 1.1.3, in Spain the Directive was incorporated into the domestic via the Law

1/2005 (Ley 1/2005).

Regarding the rights of emission, which is the topic that concerns us, the total

amount of rights assigned by the Kyoto Protocol will be shared among the European

Union Member States, always keeping in mind that the assignment to each country will

depend on the potential of emissions reduction of each one. In addition, there must

be an effort to maintain the integrity of the internal market, and to avoid competitive

distortions. Similarly, each country will decide the total number of rights that will
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be assigned for each of the periods, and how many will correspond to the owner of

each installation. With the goal of establishing a framework in which these rights of

emission could be commercialized, the European market of trading emission rights was

created, the European Union Emission Trading Scheme (EU ETS). These instruments

can be transferred between persons in the Community and persons in third countries

where such rights of emission are recognized. Thus, new assets are created: European

Union Allowances (EUA), European Union rights of emission.

The EU ETS is a system of emissions trading on a national scale only (an internal

measure of the European Community)and3. It became operational in 2005 and its

establishment can be divided into three phases. The First Phase covers the period

between January, 2005 and December, 2007 and is called the ”pilot phase”, since it

constitutes a test period before having to be accountable to Kyoto. The Second Phase

coincides with the compliance phase of the Kyoto Protocol, that is, 2008-2012. The

Third Phase began in 2013 and will extend to 2020, since the European Union intends

to continue with this market beyond the end date of the Protocol (2012).

The EU ETS works the following way 4 The EUA are offered to the market by

the operators of installations, subject to the system of trade in rights of emissions.

Thus, as the Directive dictates, it is established that no later than April 30th of each

year (2005-2012), the operator of each installation must submit a number of rights,

equivalent to the total emissions of that installation during the previous year. For

that, it may be necessary to turn to the EU ETS to acquire rights (if it has emitted

a volume of emissions greater than the quantity initially assigned). If, on the other

hand, the number of rights submitted is less than the emissions, the operator of the

installation must pay 40 euros (in the first phase) and 100 euros (in the second phase)

3The owners of installations in European Union countries can carry out exchanges (EUA) with
owners in the rest of the Member countries. Nevertheless, these units cannot be exchanged interna-
tionally, since, at that level, the units of negotiation established by the Kyoto Protocol receive the
name AAU (Assigned Amount Unit)

4As the sample period consider in the Thesis is manily 2005-2012, for the sake of brevity and in
order not to confuse the reader with much information, we focus only in the way the EU ETS work
over this period.
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for each equivalent tonne of carbon dioxide emitted. In addition to paying the fine, the

operator must submit a quantity of rights equivalent to the excess amount of emissions

when the corresponding rights of emission are submitted for the following year.

To facilitate the trade in rights of emission, secondary markets exist in Europe.

Some examples are: Climex (Holland), the European Energy Exchange (EEX) in Ger-

many, the BlueNext in France, Nord Pool in Norway, Austrian Energy Exchange in Aus-

tria, and the European Climate Exchange International Petroleum Exchange (ECX-

IPE) in the United Kingdom. Noteworthy among these is SENDECO2, the market

of reference for Spain, Italy, and Portugal. This is a secondary market specializing in

Small and Medium Enterprises that allows all its participants to exchange EUAs and

CERs (RCE, the acronym in Spanish).This body began work in 2004 and enjoys insti-

tutional support from the Generalitat de Catalunya, Generalitat Valenciana, Región

de Murcia y Fundación Forum Ambiental. Among its shareholders are representatives

from the environmental business sector (Ros Roca Group, Grupo Hera y GBI Serveis)

and Banco Sabadell.

1.1.3 Adaptation of the European Directive for Spain

As indicated in Annex B of the Kyoto Protocol, Spain has an obligation to reduce its

emissions of Greenhouse Gases by 8% compared to the levels of 1990. Nevertheless,

as mentioned in Section 1.1.2, the EU set up certain protections. Under the terms of

this agreement (Article 4 of the Kyoto Protocol), each Member State can have a goal

different from that established, in principle, in the Kyoto Protocol. This is the case of

Spain, which is permitted to increase its emissions by no more than 15% compared to

the base year (1990).

As a Member State of the EU, Spain forms part of the EU ETS and the need Directive

2003/87/EC was incorporated into domestic law, via the Law 1/2005, regulating the

trading of emission rights.(Ley 1/2005)

In Spain, the Commission for coordination of climate change policies was created as
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the collaborative body between the General Administration of the State and the Au-

tonomous Communities, for the application of the trading of emissions rights, as well as

for compliance with international obligations. The National Allocation Plan (NAP)5

is approved by the Government through Royal Decree and contains the following infor-

mation: the total number of anticipated rights to be assigned, the corresponding pro-

cedures of assignment, the quantity of Certified Reduction Units (CERs)and Emissions

Reduction Units (ERUs) which is anticipated to be in compliance with the national

objective and the percentage of the assignment for each installation.When distributing

the rights of emissions among the various installations, the generation of unjustified

imbalances between sectors of activity or installations must be avoided. The technical

and economic possibilities of emissions reduction in each sector, as well as predictions

regarding the evolution of production, and the measures taken to establish markets of

rights, must all be carefully monitored.

The National Allocation Plans have long-term validity (for the First Phase (2005-2007)

and the Second Phase (2008-2012)). From 2013, the National Allocation Plans disap-

pear, strictly speaking. Thus, according to the Directive 2009/29/EC, the assignment

of rights of emission will take place (by general law) through auctions at the community

level.

1.2 Thesis outline. Economic performance of the

EU ETS. Three points of view.

The structure of the Thesis is as follows. Following this Introduction, Chapters 2, 3 and

4 consist of three essays, each one analyzing the economic performance of the EU ETS

from three different points of view: policy makers (Chapter 2), companies (Chapter

3), and investors (Chapter 4). The three essays are self contained -each introduces the

5The NAP is approved by the Government by Royal Decree, pursuant to mandatory reports from
the National Council on Climate and from the Commission of coordination of policies on climate
change, at least 18 months prior to the beginning of the corresponding period.
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topic and presents the relevant prior literature, explains the methodology employed,

describes the results, and draws conclusions- and can be read separately.

In Chapter 2, we analyze the relationship between the economic and environ-

mental performance of Spanish companies involved in the EU ETS. When establishing

environmental targets, the European Commission states that achieving a balance be-

tween emissions restrictions and economic growth is essential. Following this line, the

Directive 2003/87/EC states that the objective of the EU ETS is to promote reductions

of greenhouse gas emissions in a cost-effective and economically efficient manner.

This conception gained more importance after the onset of the global economic

crisis in 2008, and especially for countries such as Spain that were strongly affected.

To undertake our research, we select a sample of Spanish installations (almost 90% of

the total), whose emissions were traded in the EU ETS during the period 2005-2011.

For each company, we construct an environmental performance indicator that we

have called Surplus of Allowances (SA)and which is calculated as the difference be-

tween assigned CO2 emissions and those actually emitted each year, all divided by the

allocated units. To measure economic performance we take two different measures: an

activity and a profitability ratio. The underlying logic of these two ways of measuring

economic performance is explained by the fact that a company’s environmental perfor-

mance in the EU ETS, is both a result and a determinant of economic performance.

First, the production level of a company determines its level of CO2 emissions and,

thus, its SA. Second, the SA (which indicates the number of EUAs a company must

buy or can sell, in relative terms) is a component of a company cost production and

thus, influences its profitability.

Given the lack of normality of the considered variables, we use a statistical

methodology based on copulas, which provides a set of models to capture dependence

in a broader context than the standard multivariate methodology and thus, gives more

realistic results.

The contribution of this research is three-fold. First, we contribute to prior studies
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that analyze the link between environmental and economic performance. These studies

usually take CO2 emissions as an indicator of environmental performance. Neverthe-

less, the focus of our research is quite different from prior studies, in that we investigate

company emissions by taking into account the constraints imposed by the EU ETS,

rather than considering only the company CO2 emissions. Second, to the best of our

knowledge, ours is the first study to cover an entire sample of companies from a coun-

try involved in the EU ETS. Normally, such studies focus on a group of important

companies from a given country, but in our case, we consider it is important for policy

makers to have a complete picture of the situation in the whole country. Third, ours

is the first research to examine in depth the link between environmental and economic

performance for Spanish companies in the EU ETS.

Chapter 3 focuses on the Spanish energy companies involved in the EU ETS.

With our analysis we aim to provide useful results for the management of these energy

companies.

Companies involved in the EU ETS are divided into 9 sectors. The first, covers

power stations (”Combustion installations with a rated thermal input exceeding 20

MW, mineral oil refineries, and coke ovens”), i.e. the energy sector, and sectors 2 to

9 are industrial sectors, producing iron, steel, cement, glass, lime, bricks, ceramics,

and pulp and paper. We focus on the energy sector since, in Spain, emissions from

this sector represented 60% of the EU ETS total in the period 2005-2012. In addition,

apart from adjusting their emissions to the restrictions imposed by the EU ETS, the

energy companies are expected to make an effort to improve efficiency (a 20% energy

efficiency improvement by 2020 is expected) according to the ”20-20-20” targets (Di-

rective 2012/27/EU). This Directive encourages the more efficient use of energy at all

stages of the energy chain.

Our objective in this Chapter is two-fold. First, given that energy companies

must increase efficiency, we measure both technical and environmental efficiency of ev-

ery company in our sample, by estimating a production stochastic frontier model with
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two outputs: good (production) and bad (emissions). The estimation is carried out

with a bayesian methodology. This model provides us with a technical and environ-

mental efficiency value for each company, so we can determine efficiency rankings. This

information is important for managers in order to know how well the company is doing

compared to its peers. Second, as these firms have CO2 emissions limits imposed by

the EU ETS, we analyze how environmental efficiency influences Surplus of Allowances

(SA). To achieve this goal, we use quantile regression techniques which allows us to

study how the level of environmental efficiency affects the number of EUAs a company

must buy, or is able to sell (SA), and, consequently, the expenses and revenues of the

company related to those EUAs.

Our contribution to the literature is two-fold. First, this is the first paper to an-

alyze in depth the environmental and technical efficiency of Spanish energy companies

in the EU ETS in the period 2005-2012. Second, we have found no other analysis in

the literature that focuses on how environmental efficiency affects the way a company

uses EUAs.

In the Chapter 4, we take the investor point of view. EUAs have become a new

asset that attracts investor interest and, given that the energy sector is responsible for

the bulk of the CO2 emissions of the carbon market, our aim here is to examine how

the EU ETS and energy stocks markets interact. More specifically, we concentrate on

the inter-relationship between EUA, stocks of clean energy companies and stocks of oil

& gas companies.

With this analysis our aim is three-fold. First, given that the objective of the

EU ETS is to encourage investment in clean energy, we analyze whether EUA pricing

does, in fact, accomplish this, while discouraging investment in oil and gas stocks.

Second, we analyze the inverse effects, that is, how stocks of both kinds influence EUA

prices. These prices are the cornerstone of the European climate change policy, and

thus knowing what factors affect this price is important in terms of EU ETS efficacy.

Third, given that investment in energy markets continues to grow, we study the link
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between clean energy stocks and oil and gas stocks. This analysis is important for

financial risk management of investors in the energy sector, i.e. diversification issues.

We analyze the simultaneous relationships among a set of variables and, given the

high frequency of the data, we propose the use of the Vector Autoregressive Regression

(VAR).In addition, to model the volatility of the considered variables, we employ a

multivariate GARCH structure to estimate co-volatility dynamics. The multivariate

GARCH approach is widely used in the financial literature when analyzing time series

data.

With this chapter, we contribute to the literature in two ways. First, prior studies

have already analyzed the effect of clean energy stocks on EUA prices, but our work

examines the effect of EUA on clean energy stocks, as well as but also the effect on

oil and gas stocks. Second, although the EUA drivers have been widely studied in the

literature, the price evolution of other stocks has not usually been considered to be

driving EUA. With this analysis, we aim to fill this gap in the literature.

Finally, in Chapter 5, the key findings of the previous essays are pulled together.
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Chapter 2

Environmental versus economic

performance in the EU ETS.

First point of view: Policy makers

2.1 Introduction

The European Union Emissions Trading Scheme (EU ETS) was created with the aim of

promoting reductions of greenhouse gas emissions in a cost-effective and economically

efficient manner (Directive 2003/87/EC). According to this aim, policymakers should

take into account not only the CO2 reduction targets, but also the influence of these

pollution goals on company economic performance, when making their decisions.

Given the importance of achieving a balance between pollution reduction targets

and economic growth issues (European Commission, 2012), the objective of this Chap-

ter is to analyze the link between environmental and economic performance in Spanish

companies involved in the EU ETS during the period 2005-2011. The environmental

and the economic performance in companies of the EU ETS are linked in two different

ways: revenues and costs. First, revenues of energy and industrial companies come

basically from production, and the production level, in turn, determines CO2 emis-
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sions. Second,the level of CO2 emissions influences the cost production function, since

companies in the EU ETS must buy European Union Allowances (EUA)(if its CO2

emissions surpass the limit) or are able to sell EUAs (if its CO2 emissions are lower

than the limit).

Accordingly, the objective of this Chapter is two-fold. First, to analyze the effect

of production on environmental performance. We study this effect on a year-on-year

basis with the aim of getting information on how intense is the effect of production on

CO2, and indirectly know whether companies have taken measures in order to reduce

its CO2 in their production process. Second, to examine the effect of environmental

performance on profitability in order to discover how the behavior of companies towards

its emissions targets (if they emit less or more than the limits) affects company results.

With this analysis we seek to discover whether the costs derived from fulfilling CO2

emissions limits imposed by the EU ETS have any effect on company profitability and,

in turn, discover whether the EU ETS created a real financial incentive for companies

to emit less than allocated.

For each company, we construct an environmental performance indicator that

we have called Surplus of Allowances (SA) and which is calculated as the difference

between assigned CO2 emissions and those actually emitted each year, all divided by

the allocated units. When analyzing the link between economic and environmental

performance, there is no consesous on the best way to measure environmental perfor-

mance. Measures of environmental performance used in the literature can be divided

into three groups: the behaviour of companies towards environment, e.g., implementa-

tion of environmental strategies by the management Molina-Azoŕın et al., 2008;Yang

et al.,2010;Aragón-Correa et al., 2008); the consequences of companies behavior in

terms of pollution,e.g. GHG emissions (Clarkson et al., 2011; Iwata and Okada, 2011;

Sarkis and Codeiro, 2001;Hart and Ahuja, 1996.) and environmental ratings and scores

carried out by organizations independent of companies’ management that measure en-

vironmental perfomrance taking into consideration both previous perspectives (Elsayed
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and Paton, 2004). The variable we have selected fits into the second group: companies’

pollution. Nevertheless, the focus of our research is quite different from prior studies,

in that we investigate companies’ emissions by taking into account the constraints

imposed by the EU ETS.

The economic performance is usually measured by financial ratios. Contrary to

the lack of consensous on the selection of a proper environmental performance measure,

as Horvathova (2010) explained, there seems to be no impact of the financial measure

on results. To measure economic performance we take two financial ratios widely used

in the literature: Asset Turnover Rotation (ATR) to measure company production and

Return on Assets (ROA) to measure company profitability.

We can now rewrite our two objectives in terms of the measures employed. Ac-

cordingly, we examine the effect of production (ATR) on surplus of allowances (SA)

and the influence of SA on profitability (ROA), from 2005 to 2011, on a year-on-year

basis for Spanish companies in the EU ETS.

In order to achieve accurate conclusions we need to carry out an appropriate em-

pirical strategy and, thus, we follow the recommendations of Horvathova (2010). This

author studied the inconsistency in the literature regarding the link between environ-

mental and economic performance (certain authors such as Molina-Azoŕın et al. (2008),

López-Gamero et al. (2009) and Yang et al. (2011) have found a positive link, whereas

others discern a neutral, Elsayed and Paton, (2004) or negative, Sarkis and Cordeiro

(2001), relationship) and makes several suggestions in order to obtain reliable results:

to use more advanced econometric analysis, rather than simple correlation coefficients,

and to account for omitted variable biases such as unobserved firm heterogeneity.

Following Horvathova (2010) recommendations, in this first Chapter, we complete

the study presented in Segura et al. (2014), where we assumed that quantiles of

economic performance were linear functions of environmental performance, although

the lack of normality of both variables could make this hypothesis unrealistic. To solve

this problem, a more flexible statistical methodology is now used, namely, copulas. This
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methodology provides a set of models to capture dependence in a broader context, as

Trivedi and Zimmer (2005) show, and it has been widely used in the field of finance

(Patton, 2006, 2009; Heinen and Valdesogo, 2008;Jondeau and Rockinger, 2006) and

in environmental contexts (Denault et al, 2009; Grothe and Schnieders, 2011). Apart

from using a more appropriate methodology, we include a set of firm characteristics

that may influence companies’ profitability and that were not considered in Segura et

al.(2014), which may also bias our results.

Our research has implications for Spanish policy makers in terms of designing

policies oriented to help EU ETS companies achieve a balance between environmental

restrictions and economic growth. Spanish companies involved in the EU ETS (com-

bustion plants, oil refineries, coke ovens, iron and steel and factories producing cement,

glass, lime, bricks, ceramics, and pulp and paper) are strongly connected to the con-

struction industry, which was one of the main pillars economic development in Spain,

from the 1990s until 2008, when the economic crisis erupted. Therefore, an analysis of

these companies is not only important for these companies themselves but also for the

whole economy.

The contribution of this research is three-fold. First, we contribute to prior studies

that analyze the link between environmental and economic performance. These studies

usually take CO2 emissions as an indicator of environmental performance. Neverthe-

less, the focus of our research is quite different from prior studies, in that we investigate

company emissions by taking into account the constraints imposed by the EU ETS,

rather than considering only the company CO2 emissions. Second, to the best of our

knowledge, ours is the first study to cover an entire sample of companies from a country

involved in the EU ETS (almost 90% companies of the total). Normally, such studies

focus on a group of important companies from a given country, but in our case, we

consider it is important for policy makers to have a complete picture of the situation

in the whole country. Third, ours is the first research to examine in depth the link

between environmental and economic performance for Spanish companies in the EU
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ETS.

The Chapter is organised as follows: Section 2.2 describes the data, Section 2.3

presents the statistical methodology and Section 2.5 shows our results. Finally, Sec-

tion 2.6 sets out our conclusions.

2.2 Data

We select a sample of Spanish installations whose emissions were traded under the

EU ETS during the period 2005-2011. The list of Spanish installations was obtained

from the ”Registro Nacional de Derechos de Emisión de Gases de Efecto Invernadero

(RENADE)”, the Spanish national registry, containing all Spanish firms participating

in the EU ETS. We focus on those companies in the registry as of July, 2011, making a

total of 1,131 installations corresponding to 839 companies. Due to data unavailability,

our sample was reduced to 745 companies (almost 90% of the total). The variables

employed in our research are divided into three groups: environmental performance,

economic performance and control variables. In the following subsections we define our

variables and provide a descriptive analysis. The descriptive analysis of the environ-

mental performance variable is more extense than the others due to the importance

of this variable in the context of the EU ETS. Furthermore, the same variable will be

analyzed in next Chapter so we would like to provide the reader with an exhaustive

description from the beginning.

2.2.1 Environmental performance

As stated in the Introduction, environmental performance is measured as a surplus of

allowances, using the following expression:

SAit =
Ai,t − Ei,t

Ai,t
(2.1)
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Table 2.1: Descriptive statistics of SA

YEAR
2005 2006 2007 2008 2009 2010 2011

Observations 533 649 615 626 622 559 559
% firms with
SA≥0

75 75 72 80 84 84 84

Minimum -2.54 -2.71 -1.60 -1.77 -1.66 -3.01 -1.03
Mean 0.08 0.14 0.12 0.20 0.32 0.33 0.38
Median 0.08 0.12 0.12 0.19 0.32 0.32 0.38
Maximum 0.95 0.99 0.99 0.99 0.99 0.99 0.99
Std.deviation 0.26 0.31 0.32 0.33 0.36 0.40 0.40
Skewness -2.46** -1.72** -1.10** -1.17** -0.85** -0.50** -0.45**
Kurtosis 25.69** 17.51** 8.09** 8.60** 6.03** 12.35** 3.00**
Jarque Bera
(p-value)

0 0 0 0 0 0 0

Note:Statistically different from zero at the ** 5% significance level

where Ait represents the assigned emissions to company i; Eit represents the verified

emissions of company i in period t. SA may have either a positive or negative sign, in

such a way that a positive (negative) sign indicates a surplus (deficit) of allowances.

Data related to SA were taken from the Community Independent Transaction Log

(CITL), an online database where accounts of companies and physical persons holding

these allowances were listed. Each installation held an account in the CITL where

the allowance allocation, verified emissions, and compliance status were tracked. The

allowances assigned to, and the verified emissions from, installations owned by the

same company were aggregated, having, as a consequence, a unique assigned (A) and

verified (E) emission figure for each firm.

Table 2.1 shows, for each period, the main statistics for SA. Two different periods

stand out: 2005-2007 and 2008-2011, corresponding to Phase I (2005-2007) and Phase

II (2008-2012) of the EU ETS.

The European Commission (2009) stated that the quantity of allowances received

by each installation must not be higher than the level of CO2 emissions it is likely to
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emit, in order to create the scarcity needed for trading and, therefore, to ensure a high

EUA price. The allowance allocations and the emissions estimations for Phase I (2005-

2007) were carried out in 2004 and for Phase II (2008-2012), in 2006. In this way,

the more accurate the emissions estimation, the more appropriate will be allocated

quantity, sufficient to ensure a high EUA price.

First, allowances were distributed at the sector level and, second, among instal-

lations within each sector. This allocation of allowances was carried out according to

the estimated emissions for each sector and, then, for each installation. In the case of

NAP I, these predictions were based on the level of emissions in prior years, and in

NAP II, not only on the level of emissions but also on the production levels of prior

years. As can be observed in Table 2.1, both mean and median have a positive sign

over the whole sample period, indicating a surfeit of allowances.

In the case of NAP I, as stated in Order PRE/2827/2009, the maximum number

of allowances per year assigned to EU ETS sectors was 182.17 Metric Tonne Carbon

Dioxide Equivalent (Mt). As explained in Spanish Government (2007), at the end of

Phase I, Spanish companies as a whole had a deficit of 22.49 Mt CO2. However, as

can be observed in Table 2.1, on average, companies had a surplus of 0.08, 0.14 and

0.12 in years 2005, 2006 and 2007, respectively.

The difference between both sets of results is due to the fact that around 75% of

the companies had a surplus of allowances during Phase I. Although the country as a

whole emitted more than expected, the majority of companies tended to emit less CO2

than expected.

In the case of NAP II, the maximum level of allowances per year in Spain was

152,250 Mt CO2 (Order PRE/2827/2009). Following the line of the European Com-

mission, who cut the volume of emission allowances permitted in Phase II to 6.5%

below the 2005 level, the Spanish cap for Phase II was more stringent than for Phase I.

Specifically, the total Spanish Phase II cap was 16% less than in Phase I. In spite of this,

in the period 2008-2010 there was a surplus of 33.23 Mt CO2 (Spanish Government,
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2010).

Despite the fact that NAP II was more stringent than NAP I, the higher SA

levels in the second period (See Table 2.1) suggest that the deviation from what was

expected was more marked than in the first phase. According to data in the Spain GHG

Inventory 1990-2010, during the period 2005-2007, CO2 emissions were 49.43% above

1990 levels, due to considerable economic and population growth, as was pointed out

in Royal Decree 1370/2006. During the period 2008-2010, emissions were only 29.53

above 1990 levels due to the economic crisis. This reduction of CO2 emissions from

2008 onwards, stemming from crisis-related declines in companies’ production, appears

to be the reason why companies, on average, had a surplus of around 0.30.

The results of Table 2.1 indicate that normality of the SA variable is rejected in

all periods, due to a significant negative asymmetry and leptokurtosis, which tended to

decrease from 2008 onwards. This arises from the existence of a low percentage of firms

with strong negative SA values, i.e., CO2 emissions much higher than the allowance

allocations, which are responsible for the fact that Spain as a whole had a deficit of

CO2 emissions in period 2005-2008, as mentioned above.

2.2.2 Economic performance

Surplus of allowances is linked to economic performance in two ways: It results primar-

ily from a company’s level of production, and it can directly affect company profitabil-

ity. To measure profitability, we employ the Return on Assets (ROA), which calculates

how efficient management is at using its assets to generate earnings. To measure a

company’s production, we use the Assets Turnover Rotation (ATR). The ideal mea-

sure would be the production figure but we do not have access to this data, thus, we

use this activity ratio widely used in literature as a proxy of company production level.

For a firm i = 1, ..., N in period t = 1, ..., Ti the ROA and ATR ratios are given by the
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following expressions:

ROAit =
Operating incomeit

Assetsit
(2.2)

ATRit =
Operating revenueit

Assetsit
(2.3)

Table 2.2: Descriptive statistics of ROA

2005 2006 2007 2008 2009 2010 2011
Minimum -31.72 -66.77 -120.02 -155.89 -81.4 -59.11 -59.11
Mean 4.86 2.57 4.04 0.17 0.38 0.7 0.7
Median 3.59 2.59 3.65 10.67 0.49 1.51 1.51
Maximum 79.08 58.32 52.64 73.99 100.63 52.24 52.24
Std.deviation 10.57 12.58 14.47 16.53 14.89 11.96 11.96
Skewness 1.38 -0.62 -2.72 -3.21 0.22 -0.41 -0.41
Kurtosis 12.46** 8.12** 26.75** 28.88** 12.19** 7.78** 7.78**
JB (p-value) 0 0 0 0 0 0 0

Note:Statistically different from zero at the ** 5% significance level

Table 2.3: Descriptive statistics of ATR

2005 2006 2007 008 2009 2010 2011

Minimum 0.06 0.02 0.06 0.02 0.01 0.01 0.004
Mean 0.98 0.97 0.01 0.96 0.77 0.82 0.77
Median 0.79 0.84 0.86 0.77 0.625 0.63 0.59
Maximum 34.27 12.87 7.24 12.84 3.86 21.53 4.99
Std.deviation 1.56 0.75 0.68 0.86 0.59 1.06 0.69
Skewness 18.66∗∗ 7.13∗∗ 3.09∗∗ 5.77∗∗ 1.67∗∗ 13.53∗∗ 1.99∗∗

Kurtosis 3.95∗∗ 10.23∗∗ 20.61∗∗ 6.51∗∗ 6.90∗∗ 2.60∗∗ 10.01∗∗

JB (p-value) 0 0 0 0 0 0 0

Note:Statistically different from zero at the ** 5% significance level

Table 2.2 shows the main descriptive statistics of ROA. Again, two different

periods stand out: 2005-2007 and 2008-2011. On average, companies have a positive

ROA during the first period and it is relatively stable. Values corresponding to period

2008-2011 are much lower. The break point took place in 2008, when the global crisis

37



began. The data of both phases is heavily skewed to the left (with the sole exception

of 2009) and kurtosis is considerably pronounced. This is due to the presence of a set

of firms with higher absolute levels of ROA, with very strong negative values.

Table 2.3 presents the main descriptive statistics of ATR. As can be seen, ATR

mean and median considerably decreased after 2008, consistent with the evolution

of Spanish GDP during this period. According to data from the Spanish National

Statistics Institute, while in 2005, 2006 and 2007 the annual growth of GDP was

around 4%, in 2008 this fell to 1%, and to -3.7% in 2009 and -0.3% in 2010. The data

is skewed to the right and kurtosis is pronounced.

2.2.3 Control variables

We include a set of firm characteristics that may influence the link between environ-

mental and economic performance that were not considered in Segura et al.(2014):

size,risk and sector.

♦ Size. Company size, obviously, affects both the levels of CO2 emissions and

economic results. Following Elsayed and Paton (2004) and Clarkson et al (2011), we

measure size as Log(Assets).

♦ Risk. Following Waddock and Graves (1997); McWilliams and Siegel (2000)

and Elsayed and Paton (2004), we measure company risk with the square root of the

debt-to-capital ratio, which has the following expression:

Liabilities
Assets

The higher the ratio, the more the company uses debt to finance its operations. If the

revenues fall, a company with a high ratio might not be able to meet its debt payments,

whereas a company with a low ratio is one that financed its operations with equity and

thus will be better prepared to face declining revenues.

♦ Sector. The sector to which a company belongs also influences its level of CO2

emissions and its economic results (Elsayed and Paton, 2004). According to Directive

2003/87/CE, companies in the EU ETS are divided into 9 sectors. The first comprises
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Table 2.4: Descriptive statistics of SIZE

2005 2006 2007 2008 2009 2010 2011

Minimum 12.04 12.56 12.73 12.68 7.87 12.32 12
Mean 16.78 17.12 17.26 17.33 17.32 17.44 16.90
Median 16.49 16.76 16.90 16.96 16.93 17.06 17.00
Maximum 23.07 23.17 23.65 23.97 24.22 24.20 23.00
Std.deviation 1.95 2.01 2.02 2.00 2.05 2.07 1.9
Skewness 0.77∗∗ 0.59∗∗ 0.55∗∗ 0.52∗∗ 0.34∗∗ 0.46∗∗ 0.77∗∗

Kurtosis 3.55∗∗ 2.97∗∗ 2.85∗∗ 2.92∗∗ 3.50∗∗ 2.93∗∗ 3.68∗∗

JB(p-value) 0 0 0 0 0 0 0

Note:Statistically different from zero at the ** 5% significance level

power stations (”Combustion installations with a rated thermal input exceeding 20

MW, mineral oil refineries and coke ovens”). Sectors 2 to 9 are industrial sectors

producing iron, steel, cement, glass, lime, bricks, ceramics, pulp and paper. We divide

our sample into two groups: energy companies (sector 1) and industrial companies

(sector 2-9).

Data of economic performance and the control variables were taken from SABI,

a database that provides 1,250,000 Spanish and 400,000 Portuguese company reports.

These reports include, among other information: company financial profile, summary

of company industrial activities, Balance Sheet, Profit and Loss account, and financial

ratios.

We, finally, focus on SIZE and RISK descriptive statistics (Table 2.4 and 2.5). In

both cases, mean and median are quite stable during the whole sample period. Again

the normality hypothesis is rejected for both variables.

Taking into account that the normality of our variables is rejected for all seven

years of our sample, these findings suggest that the relationship would not be treated

effectively in the normal multivariate context. This is why we choose a copula approach

to model the relationship between both variables, which, as Trivedi and Zimmer (2005)

point out, is an adequate tool when capturing dependence in a broader context than
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Table 2.5: Descriptive statistics of RISK

2005 2006 2007 2008 2009 2010 2011

Minimum 2.25 1.84 2 1.17 1.29 1.25 0.86
Mean 7.18 7.32 7.20 7.29 7.10 7.10 6.70
Median 7.48 7.57 7.41 7.49 7.35 7.29 6.81
Maximum 12.44 14.36 20.31 16.25 21.04 16.88 17.95
Std.deviation 1.83 1.83 2.04 2.09 2.28 2.21 2.28
Skewness −0.39∗∗ -0.29∗∗ 0.46∗∗ −0.10∗∗ 0.17∗∗ −0.11∗∗ 0.06∗∗

Kurtosis 2.60∗∗ 3.26∗∗ 6.60∗∗ 3.85∗∗ 5.33∗∗ 3.87∗∗ 4.33∗∗

JB(p-value) 0 0 0 0 0 0 0

Note:Statistically different from zero at the ** 5% significance level

the multivariate normal.

2.3 Methodology

Given that our statistical methodology is based on the use of copulas, we first provide a

brief review of the main concepts and results related to copulas, and then describe the

selection and estimation of the model procedure used in this paper. We only consider

the bivariate case, which corresponds to our problem. Good introductory texts of

copulas are Cherubini et al. (2004) and Nelsen (2006).

2.3.1 Definition

A copula C : [0, 1]2 → [0, 1] is a cumulative distribution of a bi-dimensional random

vector on [0, 1]2 with uniform marginals:

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) (2.4)

where U1 and U2 are uniformly distributed on [0, 1].

The importance of copulas in the modelling of dependence between variables arises

from Sklar’s Theorem (Sklar, 1959), which provides the theoretical foundation for
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their application. This theorem states that a bivariate cumulative distribution func-

tion F1,2(x1, x2) of a random vector (X1, X2) with marginals F1(x1) and F2(x2) can be

written as:

F1,2(x1, x2) = C(F1(x1), F2(x2) (2.5)

where C is a copula. This copula is unique on Ran(F1)xRan(F2) which is the cartesian

product of the ranges of the marginal cdf ′s if the marginals F1(x1) and F2(x2) are

continuous and can be obtained from:

C(u1, u2) = F1,2(F
−1
1 (u1), F

−1
2 (u2)) (2.6)

The converse is also true: given a copula C : [0, 1]2 → [0, 1] and margins F1(x1) and

F2(x2) this defines a bi-dimensional cumulative distribution function F1,2(x1, x2)

2.3.2 Dependence in Copulas

Correlation is the most familiar measure of dependence between variables. The Pearson

coefficient ρ is the covariance divided by the product of the standard deviations and

the main advantage of this correlation coefficient is its tractability. There are, however,

a number of theoretical shortcomings. A major shortcoming is that correlation is not

invariant to monotonic transformations. The linear correlation coefficient expresses

the linear dependence between random variables, and when nonlinear transformations

are applied to those random variables, linear correlation is not preserved. Thus, the

correlation of two return series may differ from the correlation of the squared returns

or log returns.

Actually, correlation is a linear measure of dependence, and may not capture

important nonlinearities. In those cases, a rank correlation coefficient, such as Kendall’s

τ or Spearman’s ρs, is more appropriate. Roughly speaking, these rank correlations
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measure the degree to which large or small values of one random variable associate

with large or small values of another. However, unlike the linear correlation coefficient,

they measure the association only in terms of ranks. As a consequence, the rank

correlation is preserved under any monotonic transformation. Therefore, Kendall’s

τ or Spearman’s ρs are more useful in describing the dependence between random

variables, because they are invariant to the choice of marginal distribution.

Kendall’s ρ is a measure of concordance between random variables and it is pos-

sible to express Kendall’s ρ in term of the copula that joins X1 with X2:

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)c(u1, u2)du1u2 − 1 (2.7)

Kendall’s τ is a very useful alternative to the linear correlation coefficient because it

does not depend on the marginal distribution of X1 and X2. In fact, Kendall’s τ only

depends on the copula function. As a measure of concordance based on copulas, which

means that it is invariant to increasing transformations of its arguments, Kendall’s

τ can capture nonlinear dependences that are not possible to measure with linear

correlation.

Another related, nonlinear measure is the Spearman rank correlation ρs. The

Spearman rank correlation is especially useful when analyzing data with a number of

extreme observations, since it is independent of the levels of the variables, and therefore

robust to outliers. Spearman’s correlation coefficient could also be expressed solely in

terms of the copula function:

ρs = 12

∫ 1

0

∫ 1

0

C(u1, u2)− u1u2)du1u2 = 12

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 3 (2.8)

This means that if we know the correct copula, we can recover the Spearman rank

correlation.
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2.3.3 Quantile regression

In addition to measures of association and dependence properties, classical regression

is a statistical tool used to model the relation between a predictor variable X1 and

the response variable X2. For random variables X1 and X2, the regression curve x2 =

E(X2|X1 = x1) specifies the mean value of X2 for each value of X1. While this model

can address the question ”is X1 important?” it cannot answer an important question:

”does X1 influence differently for different values of X2?”. An alternative to the mean

for specifying values of X2 for each value of X1 is the quantile, which leads to the

notion of Quantile regression.

Definition.- Let X1 and X2 be random variables. For x1 in Ran X1, let x2 =

Qp(x2|x1) denote a solution to the equation P (X2 ≤ x2|X1 = x1) = p with p ε(0, 1).

Then the graph of x2 = Qp(x2|x1) is the quantile regression curve of X2 on X1.

Quantile regression models the relation between X1 and specific quantiles of X2,

so it specifies changes in the quantiles of X2 as a function of X1. Quantile regression can

be used to measure the effect of X1 not only in the centre of a distribution, but also in

the upper and lower tails. In linear regression, the regression coefficient represents the

increase in X2 produced by one unit increase in X1. The quantile regression parameter

estimates the change in a specified quantile of X2 produced by a one unit change in X1.

This allows comparing how some percentiles of X2 may be more affected by X1 than

other percentiles. This is reflected in the change in the size of the regression coefficient.

Now suppose that X1 and X2 are continuous, with joint distribution function,

marginal distribution functions and, respectively, and copula. Then U1 = F1(X1) and

U2 = F2(X2) are uniform (0, 1) random variables with joint distribution function C.

We have that:

P (X2 ≤ x2|X1 = x1) = P (U2 ≤ F2(x2)|U1 = F1(x1)) =
∂C(u1, u2)

∂u1
(2.9)
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which yields the following algorithm for finding quantile regression curves for continuous

random variables. To find the p-quantile regression curve x2 = Qp(x2|x1) of X2 on X1:

1. Fix X1 = x1 → u1 = F1(x1, α1)

2. Set ∂C(u1,u2)
∂u1

= p and solve for the regression curve x2 = Qp(x2|x1) (of U2 on

U1). Calculate Qp(x2|x1) = F−12 (Qp(u2|u1)).

2.3.4 Notable Copulas

Researchers use a number of parametric copula specifications. Two of the most fre-

quently used copula families are elliptical and Archimedean, which we briefly review

below.

Elliptical

Elliptical copulas are the copulas of elliptically contoured (or elliptical) distributions.

The most commonly used elliptical distributions are the multivariate normal and

Student-t distributions. The Gaussian copula is obtained from the bivariate normal

distribution with correlation matrix, R, and is given by:

CGa
R (u1, u2) =

∫ φ(u1)

−∞

∫ φ(u2)

−∞

1

(2π)
√
|<|

exp{−u
′<−1u
2

}du (2.10)

where u = (u1, u2) and φ−1(.) is the inverse of the cumulative distribution func-

tion of the univariate standard normal distribution. The Kendall’s τ and Spearman’s

ρs are, respectively expressed as τGa = 2
π
arcsin (ρ) and ρS,Ga = 6

π
arcsin (ρ

2
). The

p-quantile regression curve for gaussian copula is given by:

x2 = F−12 (φ(ρ(φ−1(F1(x1)) +
√

1− ρ2φ−1(p))) (2.11)

where ρ is the Pearson correlation between x1 and x2. The normal allows for equal

degrees of positive and negative dependence; However it assumes that there is no de-

pendence in the tails of the distribution, which can be unrealistic in some situations
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as, for instance, in financial markets where financial returns tend to be very dependent

in extreme conditions. Therefore, in financial economics, it is often more useful to con-

sider the t-copula, which is obtained from the bivariate t-distribution with η degrees

of freedom and correlation matrix, R, and is given by:

Cη,t
R (u1, u2) =

∫ t−1
η (u1)

−∞

∫ t−1
η (u2)

−∞

Γ(η+2
2

)(1 + u
′
R−1u
2

)−
η+2
2

Γ(η
2
)(πη)

√
|R|

du (2.12)

where t−1η (.) denotes the inverse of the cumulative distribution function of the standard

univariate Student-t distribution with η degrees of freedom. Note that the Gaussian

copula is obtained as a special case of the t-copula when η goes to infinity. The Kendall’s

τ and Spearman’s ρ coincide with those of the Gaussian, i.e. τGa = 2
π
arcsin (ρ) and

ρS,Ga = 6
π
arcsin (ρ

2
). The p-quantile regression curve of the Student’s-t copula is given

by:

x2 = F−12 (tη(pt
−1
η (F1(x1))) +

√
(1− p2)(η + 1)−1(η + (t−1η (F1(x1)))2)t

−1
η+1(p))) (2.13)

Unlike the Gaussian copula, the t-copula has symmetric tail dependence which makes

it very useful in models of the joint movements of financial returns. The dependence

structure in elliptical copulas is determined by the correlation matrix of the variables,

which is one of their key advantages since different levels of correlation between their

marginal distributions can be specified. However, one of the key disadvantages is that

they are restricted to radial symmetry and, with the sole exception of Gaussian and

Student t copulas, they do not have closed form expressions. (A general discussion of

elliptical distributions can be found in Fang et al., 1990.)

Archimedean

An Archimedean copula is constructed through a generator function ϕ as

Cϕ(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) (2.14)
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where ϕ−1 is the inverse of the generator ϕ. The generator needs to be a complete

monotonic function (see, for example, Nelsen, 2006, Theorem 4.6.2). A generator

uniquely (up to a scalar multiple) determines a copula, so the Archimedean represen-

tation allows us to reduce the study of a bivariate copula to a single univariate function.

The p-quantile regression curve for an Archimedean copula is given by

x2 = F−12 (ϕ−1[ϕ(ϕ
′−1(

1

p
ϕ
′
(F−11 (x1))))− ϕ(F1(x1))]) (2.15)

Archimedean copula find a wide range of applications because of the ease with which

they can be constructed, the great variety of families that belong to this class, and

the many nice properties possessed by the members of this class. Details of generators

for various Archimedean copulas can be found in Nelsen (2006). Three of the more

frequently-used families of copulas are Gumbel, Clayton, and Frank, which expressions

and generator functions are given in the following table.

Table 2.6: Nelsen (2006)

Family Parameter space Generator ϕ Bivariate copula Cϕ(u, v)

Gumbel α ≤ 1 (−lnt)α exp(−((−lnu)α) + ((−lnv)α)(1/α))

Frank α ε(−∞,∞) −ln e−αt−1
e−α−1 − 1

α
ln(1 + (e−αu−1)(e−αv−1)

e−α−1 )

Clayton α > 0 1
α

(t−α − 1) max((u−α + v−α − 1)−
1
α , 0)

The Gumbel copula is an asymmetric copula that has non-linear positive depen-

dence throughout the data and exhibits greater dependence in the positive tail than

in the negative. The Frank copulas describe situations of symmetric tail independence

and are an appropriate option when modelling strong positive or negative dependence

throughout the data. Dependence in the tails of the Frank copula tends to be rela-

tively weak compared to the Gaussian copula, with the strongest dependence centred

in the middle of the distribution, suggesting that the Frank copula is most appropriate

for data that exhibit weak tail dependence (Trivedi and Zimmer, 2005). The Clayton
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copula is an asymmetric copula describing situations of non-linear positive dependence

throughout the data, but, in contrast to the Gumbel copula, exhibits greater depen-

dence in the negative tail than in the positive.

The relationship between the parameter of the Archimedean copulas and the

Kendall’s τ and Spearman’s ρ is summarized in Table 2.7.

Table 2.7: Association between some Archimedean copulas and the rank
correlation measures: Kendall and Spearman

Copulas Kendall’s tau Spearman’s tau
Clayton τCl = α

2+α
Complicated

Gumbel τGu = α−1
α

No closed form

Frank τFr = 1− 4
α

(
1− 1

α
∫ α
0

1
et−1

dt
)

ρs,Fr = 1− 12
α

(
1
α

∫ α
0

1
et−1dt−

2
α

∫ α
0

t2

et−1dt
)

2.3.5 Estimation of copulas

Usually, the copula C belongs to a family of copulas indexed by a parameter θ; C =

C(u1, u2; θ) and the margins {Fi; i = 1, 2} and the corresponding univariate densities

{fi; i = 1, 2} are indexed by parameters {αi; i = 1, 2} with {Fi = Fi(xi;αi), fi =

fi(xi;αi); i = 1, 2}. In this case, it is necessary to estimate the values of θ, α1 and α2.

If we have data corresponding to a random sample {xj1, x
j
2; j = 1, ..., n} of (X1,X2),

the most direct estimation method is the simultaneous estimation of all parameters

using the full maximum likelihood (FML). The log-likelihood function is given by:

L(θ, α1, α2) =
n∑
j=1

log f1,2(x
j
1, x

j
2;α1, α2, θ) (2.16)

where the joint density function f1,2 is given by:

f1,2(x1, x2;α1, α2, θ) = c(F1(x1;α1), F2(x2;α2); θ)f1(x1;α1)f2(x2;α2) (2.17)

where C(u1, u2; θ) = δC(u1,u2;θ)
δ1δ2

is the copula density and f1, f2 are the density functions
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of the marginal distributions F1 and F2. The full maximum likelihood estimator MLE

- (x̂MLE
1 , x̂MLE

2 , θ̂MLE) of the model parameters (α1, α2, θ) corresponds to simultaneous

maximization of the log-likelihood L:

(x̂MLE
1 , x̂MLE

2 , θ̂MLE) = arg maxα1,α2,θL(α1, α2, θ)

= arg maxα1,α2,θ

n∑
j=1

log c(F1(x
(j)
1 ;α1), F2(x

(j)
2 ;α2); θ) +

2∑
i=1

n∑
j=1

log fi(x
(j)
i ;αi)

A second option is a sequential 2-step maximum likelihood method referred to as

the method of inference functions for margins, IFM, (Joe, 2001) in which the marginal

parameters α1, α2 are estimated in the first step, and the dependence parameter θ is es-

timated in the second step, using the copula after the estimated marginal distributions

have been substituted into it. This method exploits the attractive feature of copulas

for which the dependence structure is independent of the marginal distributions, in

such a way that.

L(θ, α1, α2) = Lc(θ) + L1(α1) + L2(α2))

where

Lc(θ) =
n∑
j=1

log c(F1(x
(j)
1 ;α1), F2(x

(j)
2 ;α2); θ)

is the log-likelihood contribution from dependence structure in data represented by the

copula C, and Li(αi =
∑n

j=1 log fi(x
(j)
i ;αi) , i = 1, 2 are the log-likelihood contributions

from each margin: observe that this is exactly the log-likelihood of the sample under

the independence assumption.

In the first stage of the inference procedure, the estimators α̂IFMi of the pa-

rameters αi are estimated from the log-likelihood Li(αi) of each margin: α̂IFMi =

arg maxαi Li(αi). That is, (α̂IFM1 , α̂IFM2 ) is defined to be the MLE of the model param-

eters under independence. In the second stage of the procedure, the estimator θ̂IFMi
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of the copula parameter θIFMi is computed by maximizing the copula likelihood con-

tribution LC with the marginal parameters αi replaced by their first-stage estimators

α̂IFMi : θ̂IFMi = arg maxαi Lc(α̂
IFM
1 , α̂IFM2 , θ).

As discussed in Joe (2001), the MLE and IFM estimation procedures are equiva-

lent in the special case of multivariate normal d.f.s that have multivariate Gaussian cop-

ulas and univariate normal margins. Naturally, however, this equivalence is not a gen-

eral rule. Furthermore, and similar to the MLE, the IFM estimator (α̂IFM1 , α̂IFM2 , θ̂IFM)

is consistent and asymptotically normal under the usual regularity conditions (see Ser-

fling, 1980) for the bivariate model and for each of its margins. However, estimation

of the corresponding covariance matrices is difficult both analytically and numerically,

due to the need to compute many derivatives, and jack-knife and related methods may

be used in inference (see Joe, 2001).

Efficiency comparisons based on estimation of the asymptotic covariance matrices

and Monte-Carlo simulation for different dependence models suggest that the IFM

approach to inference provides a highly efficient alternative to the MLE estimation of

multivariate model parameters.

This second method IFM has a variant in which a non-parametric method is

used to estimate the univariate marginal densities, denoted f̂1(x1) and f̂2(x2). This

is used to compute the empirical distribution functions F̂1(x1) and F̂2(x2), which may

be treated as realizations of uniform random variables U1 and U2, respectively. In this

case, given, û1j = F̂1(x
(j)
1 ), û2j) = F̂2(x

(j)
2 ), j = 1, ..., n , and a copula C, the dependence

parameter θ can be estimated as follows:

θ̂IFM = arg max
θ

n∑
j=1

log c(û1j, û2j; θ)
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2.4 Setting up the problem

Let us consider N firms observed in period 1, ..., T . Let {SAi,t; t ε Ti} be the Surplus of

Allowances for the company i in period t, let {ROAi,t; t ε Ti} be the Return on Assets

ratios for the company i period t, let {ATRi,t; t ε Ti} be the Assets Turnover Rotation

ratio for the company in period t, Sizei,t be the log of assets for the company i in

period t, Riski,t be the risk for the compay i in period t and Sectori,t be the sector of

the company i in period t, where Ti ⊆ {1, ..., T} is the observation period for company

i for i=1,...,N.

Our first objective is to analyze the influence exerted by ATR on SA taking

into account the control variables: size, risk and sector. To do so, we estimate

the nonlinear p quantile regression that is based on the specification of the copula

function that defines the dependency structure between the ATR and SA. SAt =

Qp(SAt|ATRt, Sizet, Riskt, Sectort)

To obtain the p quantile regression function we need the conditional density

function f1,2(SAt|ATRt, Sizet, Riskt, sectort) which is given by the expression:

f1,2(SAt|ATRt, Sizet, Riskt, Sectort) =
f1,2(ATRt, SAt|Sizet, Riskt, Sectort)

f2(ATRt|Sizet, Riskt, Sectort)
(2.18)

In this chapter, we use copulas to obtain the joint distribution functon of ATR

and SA given by:

F (ATRt, SAt|Sizet, Riskt, Sectort) =

C(F1(SAt|Sizet, Riskt, Sectort), (F2(SAt|Sizet, Riskt, Sectort))
(2.19)
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and from this joint distribution, we can obtain the joint density function given by:

f1,2(ATRt, SAt|Sizet, Riskt, Sectort) =

c((F1(SAt|Sizet, Riskt, Sectort), (F2(SAt|Sizet, Riskt, Sectort))∗

∗ f1(SAt|Sizet, Riskt, Sectort), f2(SAt|Sizet, Riskt, Sectort)

(2.20)

where c((F1(SAt|Sizet, Riskt, Sectort), (F2(SAt|Sizet, Riskt, Sectort)) is the copula den-

sity.

Due to the difficulty of treating a 5-dimensional distribution we use the procedure

employed by Patton (2006), which supposes as simplified hypothesis that F1 and F2

are built by means of linear regression methods.

So, we suppose that:

SAt = βSA0 +βSA1 Sizet+β
SA
2 Riskt+β

SA
3 Sectort+ε

SA
t with εSAt fε ∼ fεSA(.) (2.21)

therefore,

f1(SAt|Sizet, Riskt, Sectort) = fεSA(SAt − βSA0 + βSA1 Sizet + βSA2 Riskt + βSA3 Sectort)

(2.22)

Similarly, we suppose that:

ATRt = βATR0 +βATR1 Sizet+β
ATR
2 Riskt+β

ATR
3 Sectort+ε

ATR
t with εATRt fε ∼ fεATR(.)

(2.23)

therefore,

f1(ATRt|Sizet, Riskt, Sectort) = fεATR(ATRt−βATR0 +βATR1 Sizet+β
ATR
2 Riskt+β

ATR
3 Sectort)

(2.24)

Our target is to estimate the parameters βSA0 , βSA1 , βSA2 , βSA3 , βATR0 ,

βATR1 , βATR2 , βATR3 and the densities fεSA and fεATR To carry out all this process, we
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use the following algorithm:

Step 1.- Estimation of the parameters βSA0 , βSA1 , βSA2 , βSA3 , βATR0 , βATR1 , βATR2 , βATR3

by means of a robust regression method (MATLAB robustfit function).

Step 2.- With the previous estimations, we obtain the residuals εÂTRt and εŜAt

given by the following expressions:

εÂTRt = ATRt − βÂTR0 + βÂTR1 Sizet + βÂTR2 Riskt + βÂTR3 Sectort

εŜAt = SAt − βŜA0 + βŜA1 Sizet + βŜA2 Riskt + βŜA3 Sectort

Step 3.- Fit marginal distributions to εÂTRt and εŜAt using non-parametric kernel

estimators f̂εATR(εÂTRt ) and f̂εSA(εŜAt )

Step 4.- Use the marginal distribution functions F̂εATR(εÂTRt ) and F̂εSA(εŜAt ) to

transform εÂTRt and εŜAt to U(0,1) distributions, that is to say, u1 = F̂εSA(εŜAt ) and

u2 = F̂εATR(εÂTRt )

Step 5.- For each family of copula, use the maximum likelihood procedure to fit

a copula to u1 and u2. If the copula C belongs to a family of copulas indexed by a

Θ: C = C(u1, u2; θ) then the maximum likelihood estimator θ̂MLE of the parameters θ

corresponds to the maximization of the log-likelihood:

θ̂MLE = arg maxθL(θ) = arg maxθ
∑N

i=1 log c
(
F̂εSA(εŜAt ), F̂εATR(εÂTRt ), θ

)
where c = ∂C(u1,u2;θ)

∂u1∂u2
is the density of the copula C(u1, u2; θ)

Step 6.- Selection of the appropriate copula model using the AIC criterion.

Step 7.- Calculation of the p-quantile regression curve of εŜAt on εÂTRt for a

certain value of p. In this Chapter we calculate the p-quantile regression curve for

p=0.5 (median regression curve). So fixing, εŜAt = (εŜAt )0 then u2 = F̂2

(
(εŜAt )0

)
. We

set the equation ∂C(u1,u2)
∂u1

= 0.5 and solve for the regression curve u1 = Qp(u1|u2).

Finally, we calculate SAt = Qp(SAt|ATRt) = F−11 (Qp(u1|u2)).

The second objective of the chapter is to analyze the influence exerted by SA on

ROA taking into account the control variables size, risk and sector. We want to deter-

mine the p-quantile regression function ROAt = Qp(ROAt|SAt, Sizet, Riskt, Sectort)

for p=0.5,that is, the median regression function. We follow the procedure above.
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2.5 Empirical results and discussion

In this section we estimate the relationship between economic performance and surplus

of allowances from two points of view: production (measured by ATR) versus surplus

of allowances and surplus of allowances versus profitability (measured by ROA). Both

links are estimated using copulas structures following the procedure described in Sec-

tion 2.4. Additionally, we present the estimation of both links through two linear

regression models for comparative purposes. All calculations were made in MATLAB

R2013b. The code written to obtain our results is provided in Appendix A.

2.5.1 The effect of production (ATR) on SA

In this section we focus on the link between ATR and SA using copula structures. In

Table 2.8 the linear regression of SA on ATR is presented for comparative purposes.

We first focus on the sign of the link. Table 2.9 shows, for each year, the AIC value

for each family of copulas considered in this Chapter. According to this criteria, the

Student-t copula was the family selected, with the exception of years 2005 (Frank) and

2006 (Gaussian). These selections are explained by the existence of a significant inverse

relationship between ATR and SA (see Table 2.10) that eliminates the Gumbel and

Clayton copulas, which assume that this dependence is positive. The Student-t copula

is appropriate to model symmetric tail dependence, whereas both Gaussian and Frank

copulas are more suitable when the link is stronger in the center of the distribution. The

selection of the Student-t copula in most of the years reflects that the strongest effects

of the dependency between ATR and SA appeared in both tails of their distribution,

where the firms with the highest and lowest production levels are placed.The estimated

parameters corresponding to copulas and the linear coefficient regression (Table 2.8)

are negative for the whole sample period i.e., the more a company produced, the less

SA it had.

Second, we analyze how this relationship changes its shape for different levels
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of production. In Figures 2.1, 2.2 and 2.3, the regression curves of SA on ATR,

according to the selected copula each year, are presented. The negative slope of the

curve is consistent with the negative sign of the copula parameter already mentioned

above. In general, it appears that the slope is more pronounced for ATR values below

1.5, which indicates that an increase of ATR would have greater effects on SA in the

case of companies with lower production levels. According to this, it appears that

companies with lower production figures may be more rewarded for controlling their

level of emissions, as it would have considerable consequences in emissions terms CO2,

compared to firms with high production figures. This finding will not be obtained if

we simply use a linear regression approach.

Third, we look at the evolution of the link through the years of our sample.

Table 2.10 also shows the Spearman and Kendall coefficients implied by the selected

copulas. As can be seen, the strength of the relationship between SA and ATR is not

constant over time and the link between ATR and SA was more intense after the onset

of the global economic crisis. The evolution of the intensitity of ATR-SA sheds further

light on EU ETS efficiency in fostering green investment in Spanish companies.In this

context, we argue that, if the EU ETS had encouraged green investments, although an

increase in production would be linked to a decrease in SA, this decrease in SA due to

higher levels of production would have been lower each year. Given that the intensity

of ATR-SA did not decrease, on the contrary, it increased we can indirectly deduce

that companies, in general, did not take any substantive measures to reduce their CO2

emissions.

Finally, we analyze the effect that control variables have on the link between ATR

and SA. As can be seen in Figure 2.1, size negatively influences the link between ATR

and SA. In other words, if we consider a set of companies with identical ATR values,

the largest company would be the one with less SA. The contrary happens when we

look at a firm’s level of risk (See Figure 2.2). Considering a group of companies with

equal ATR, the riskier have higher SA. Differences due to size and risk tend to reduce
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following the onset of the crisis. Finally, as can be observed in Figure 2.3, companies

in the energy sector had a higher surplus of allowances before year 2008. The inverse

situation occurred from 2008 onwards.

Table 2.8: Linear Regression of SA on ATR

2005 2006 2007 2008 2009 2010 2011

Constant 0.11∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.26∗∗∗ 0.45∗∗∗ 0.51∗∗∗ 0.56∗∗∗

ATR -0.01 -0.02 -0.02 −0.05∗∗∗ −0.14∗∗∗ −0.19∗∗∗ −0.22∗∗∗

SIZE −0.03∗∗∗ −0.03∗∗∗ −0.02∗∗∗ −0.05∗∗∗ −0.06∗∗∗ −0.06∗∗∗ −0.09∗∗∗

RISK 0.01 0.02∗∗∗ 0.02∗ 0.01 -0.01 -0.01 0.01
SECTOR 0.01 0.05∗∗∗ 0.03∗∗∗ −0.05∗∗∗ −0.10∗∗∗ −0.07∗∗∗ −0.11∗∗∗

R2 0.52 0.37 0.30 0.37 0.36 0.33 0.43

Note: Statistically different from zero at the *** 1%, ** 5%, * 10% significance levels.
Sector is a dummy variable: 1 energy sector, 0 industrial sector

Table 2.9: AIC values corresponding to the compared families of copulas
(SA-ATR)

2005 2006 2007 2008 2009 2010 2011

Gaussian -0.35 -10.90 -3.71 -14.78 -48.13 -55.36 -75.16
Student’s-t 0.65 -10.79 -3.86 -29.76 -72.90 -100.2 -106.2
Clayton 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Frank -0.56 -4.83 -2.30 -19.05 -64.77 -81.76 -99.99
Gumbel 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2.10: Parameter estimation of the selected copulas and the Kendall’s
τ and Spearman’s ρ associated with the copulas (SA-ATR)

2005 2006 2007 2008 2009 2010 2011

Selected Frank Gaussian Student’s-t Student’s-t Student’s-t Student’s-t Frank
Parameter -0.34** -0.14** -0.09** -0.19** -0.35** -0.41** -0.97**
Kendall -0.04** -0.09** -0.06** -0.12** -0.22** -0.27** -0.11**
Spearman -0.06** -0.13** -0.08** -0.18** -0.32** -0.38** -0.16**

Note: Statistically different from zero at the ** 5% significance level
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Figure 2.1: Median regression curves of SA on ATR. Size effect.

Note: Seven median regression curves of SA on ATR are presented. We draw a median
regression curve for a given quantile of the variable size (quantiles 5%, 10%, 25%, 50%,
75%, 90%, 95%). Darker lines correspond to higher quantiles of the variable size.
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Figure 2.2: Median regression curves of SA on ATR. Risk effect.

Note: Seven median regression curves of SA on ATR are presented. We draw a median
regression curve for a given quantile of the variable risk (quantiles 5%, 10%, 25%, 50%,
75%, 90%, 95%). Darker lines correspond to higher quantiles of the variable risk.
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Figure 2.3: Median regression curves of SA on ATR. Sector.

Note: We draw two median regression curves. Blue line: energy sector. Red line:
industrial sector
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2.5.2 The effect of SA on profitability

In this section we concentrate on the impact of SA on ROA. We will follow the struc-

ture of the previous section. The linear regression of ROA on SA is presented for

comparative purposes in Table 2.11.

First, we focus on the sign of SA-ROA. Table 2.12 shows the AIC values for the

five estimated copulas. As can be seen in Table 2.12 , the Frank copula is the family

selected for every year, with the sole exception of 2008 (Student’s-t copula), which is

the most appropriate for data that exhibit weak tail dependence. This reveals that

the relationship between SA and ROA is more intense in companies with intermediate

levels of ROA and SA. The parameter of the copula is negative, as can be observed

in Table 2.13, which is consistent with the sign of the linear coefficient (Table 2.11).

This indicates that SA has a negative effect on ROA. The companies that made greater

(lower) use, in relative terms, of their allowances tended to be more (less) profitable.

In other words, being greener (in terms of more SA) was linked to lower profitability.

Nevertheless, this conclusion could be misleading. As stated in Section 2.2.1,

most companies in our sample (75% in 2005-2007) and (84% in 2008-2011) have a

positive surplus. The main reason, especially after the economic crisis, is that they

produced much less than expected and, consequently, they had lower economic per-

formance figures. Given this, we should limit our attention to companies with low

SA, typical of companies that emitted approximately the quantitiy of CO2 predicted.

Looking at these companies, we will be more able to obtain feasible conclusions about

whether an improvement in environmental performance (an increase in SA) would lead

to better economic performance.

As seen in Figures 2.4, 2.5, 2.6 there is a clear difference between the link

for companies with negative SA and those with positive SA. As stated, we focus on

companies with negative SA, i.e. those that had to buy EUAs in order to emit more

than the quantity of EUAs initially allocated. As can be observed, for these companies,
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an increase of surplus of allowances, which would imply the purchase of less EUAs in

the market, has no effect on their ROA. This finding suggests that EUA prices during

the period 2005-2011 were not high enough to create a profitability advantage for those

companies that took measures to reduce their CO2 emissions.

Finally, we turn to the control variables role. As can be observed in Figure 2.4,

and in the positive sign of the size parameter in Table 2.11, size positively affects

companies’ ROA. If we focus on firm risk, the contrary happens; the riskier a company

is, the less ROA (see Figure 2.5). With regard to the sector (see Figure 2.6), companies

belonging to the energy sector have higher ROA than those from the industrial sector

in all the years of our sample, except for 2006 and 2007.

Table 2.11: Linear Regression of ROA on SA

2005 2006 2007 2008 2009 2010 2011

Constant 0.04∗∗∗ 0.03∗∗∗ 0.043∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.04∗∗∗

SA −0.02∗∗ -0.02 −0.03∗∗∗ −0.03∗∗∗ −0.10∗∗∗ −0.07∗∗∗ −0.08∗∗∗

SIZE 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ -0.00 0.01 0.01
RISK −0.03∗∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.02∗∗∗ −0.01∗∗∗

SECTOR −0.01∗ −0.01∗∗∗ −0.01∗∗∗ 0.01∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

R2 0.54 0.65 0.86 0.74 0.69 0.69 0.54

Note: Statistically different from zero at the *** 1%, ** 5%, * 10% significance levels.
Sector is a dummy variable: 1 energy sector, 0 industrial sector

Table 2.12: AIC values corresponding to the compared families of copulas
(ROA-SA)

2005 2006 2007 2008 2009 2010 2011

Gaussian -9.33 -2.35 -11.38 -16.03 -113.5 -62.18 -47.16
Student’s-t -8.33 -2.18 -10.38 -24.50 -113.97 -62.40 -46.16
Clayton 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Frank -11.21 -2.85 -13.19 -21.72 -126.9 -72.64 -54.67
Gumbel 1.00 1.00 1.00 1 1.00 1.00 1.00
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Table 2.13: Parameter estimation of the selected copulas and the Kendall’s
τ and Spearman’s ρ associated with the copulas (ROA-SA)

2005 2006 2007 2008 2009 2010 2011

Selected Frank Frank Frank Student’s-t Frank Frank Frank
Parameter −0.97∗∗ −0.50∗∗ −0.95∗∗ −0.19∗∗ −30.05∗∗ −23.79∗∗ −26.45∗∗

Kendall -0.11** -0.05** -0.10** -0.12** -0.31** -0.25** -0.27**
Spearman -0.16** -0.08** -0.16** -0.18** -0.45** -0.37** -0.40**

Note: Statistically different from zero at the ** 5% significance levels
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Figure 2.4: Median regression curves of ROA on SA. Size effects

Note: Seven median regression curves of ROA on SA are presented. We draw a median
regression curve for a given quantile of the variable size (quantiles 5%, 10%, 25%, 50%,
75%, 90%, 95%). Darker lines correspond to higher quantiles of the variable size.
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Figure 2.5: Median regression curves of ROA on SA. Risk effect.. Risk effects

Note: Seven median regression curves of ROA on SA are presented. We draw a median
regression curve for a given quantile of the variable risk (quantiles 5%, 10%, 25%, 50%,
75%, 90%, 95%). Darker lines correspond to higher quantiles of the variable risk.

63



Figure 2.6: Median regression curves of ROA on SA. Sector effect.

Note: We draw two median regression curves. Blue line: energy sector. Red line:
industrial sector
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2.6 Conclusions

To the best of our knowledge this is the first research to examine in depth the rela-

tionship between economic performance and environmental performance for Spanish

companies in the EU ETS during period 2005-2011.

To measure environmental performance, instead of considering just the CO2 com-

panies’ emissions as most of researchs do when measuring companies’ environmental

performance, we take the difference between assigned CO2 emissions and those actu-

ally emitted each year (surplus of allowances). This way, we can analyze how the CO2

emission constraints imposed by the EU ETS affects economic performance.

In analyzing this link between surplus of allowances and economic performance

we take two different points of view: how the companies’ production level affects a

company surplus of allowances and the impact of surplus allowances on companis’

profitability. This two different points of view provides us with two main findings.

On the one hand, the evolution of the intensitity of the link between production

and surplus of allowances sheds further light on EU ETS efficiency in fostering green

investment in Spanish companies. In this context, we argue that if the EU ETS had

encouraged green investments, although an increase in production would be linked to a

decrease in SA, this decrease in surplus of allowances due to higher levels of production

would have been lower each year. Given that the intensity did not decrease, on the

contrary, it increased we can indirectly deduce that companies, in general, did not take

any measures in order to reduce their CO2 emissions.

On the other hand, an increase of surplus of allowances, which would imply to

buy less EUAs in the market, has no effect in companies’ ROA. This finding suggests

that EUAs price during period 2005-2011 was not high enough to create a profitability

advantage for those companies that take measure to reduce their CO2 emissions.
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Chapter 3

Technical and environmental

efficiency. Does it pay to be

environmentally efficient?

Second point of view: Companies.

3.1 Introduction

In March, 2007, the EU stablished three binding targets related to climate and energy,

known as the ”20-20-20” targets. These goals set three key objectives for 2020: a 20%

reduction in EU GHG emissions from 1990 levels, a 20% improvement in the EU’s

energy efficiency and increasing the share of EU energy consumption produced from

renewable resources to 20%.(Directive 2012/27/EU).

One of the main measures to achieve the emissions reduction target was the

creation of the EU ETS. As explained in the Introduction of this thesis, the EU ETS

works as follows. European Union Allowances (EUA) are allocated at not charge

(only in period 2005-2012, which is also our sample period), among all participating

companies at the beginning of each year. At the end of each year, each company
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must hold a number of EUAs equal to its level of emissions. Companies that maintain

their emissions below the level of their allowances can sell their excess and, thus,

obtain revenue. Those that want to emit more than permitted must buy EUAs and,

thus bear cost. Given the above, EUAs are either a revenue or a cost for companies

involved in the EU ETS. In this way, pollution issues have been directly introduced in

company income statements. As a consequence, the difference between allocated units

and actual emissions, which determines the number of EUAs to buy or sell, is a key

issue for company management.

Apart from adjusting their emissions to the restrictions imposed by the EU ETS,

power stations (companies involved in the EU ETS are divided by the European Com-

mission into two main groups: power stations and industrial plants) are expected to

make an effort to improve efficiency, according to the 20% efficiency target mentioned

above, which encourages the more efficient use of energy at all stages of the energy

chain, from production to final consumption. (Directive 2012/27/EU).

In this research, we focus on the Spanish energy companies integrating the EU

ETS with two objectives in mind. First, given that these companies aim to increase

efficiency in the context of the climate and energy package, we measure both their tech-

nical and their environmental efficiency. Second, as these firms have CO2 emissions

limits imposed by the EU ETS, we calculate to what extent environmental efficiency

determines the way a company can achieve its emissions goals. In this context, our

research is very valuable for company management as we can determine how the level

of environmental efficiency influences and determines the number of EUAs a company

must buy, or is able to sell, and, consequently, the expenses and revenues of the com-

pany related to those EUAs.

To achieve our first objective of measuring technical and environmental efficiency

we estimate a production stochastic frontier with two outputs: good (production)

and bad (emissions) proposed by Fernandez et al. (2002). This model provides the

estimation of both environmental and technical efficiency for each company in our
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sample. We use Bayesian methods to estimate the model, which are a good option when

estimating models with latent variables, as is our case (technical and environmental

efficiency are latent variables in our model). We then focus on our second objective, to

estimate the effect of environmental efficiency on the number of EUAs companies must

buy or can sell. To achieve our goal, we use quantile regression techniques that, allow

us to study the relationship in depth by analysing behavior not only in the centre but

also in the intermediate and tail areas of the distribution (Koenker and Hallock, 2001).

Efficiency issues have already been tackled in the context of the EU ETS with the

objective of analyzing how the EU ETS influences company and country environmental

efficiency. Examples of studies in the literature that analyze how the EU ETS affects

environmental efficiency at the country level are Wu et al. (2014) and Jaraite and

Di Maria (2012). The former, focuses on the production of desirable and undesirable

outputs in the agricultural European sector, while the latter, examines the productive

and environmental efficiency of fossil-fuel public power plants. Both studies conclude

that carbon pricing leads to an increase in environmental efficiency. In addition, the

study of the energy sector in the context of emissions markets is wide spread in the

literature not only in the EU ETS context (see Schmidt et al. (2012)) but also in other

carbon markets, such as the US (see Thuthill (2008) and Cuesta et al. (2009)).

Our contribution to the literature is two-fold. First, this is the first paper to an-

alyze in depth the environmental and technical efficiency of Spanish energy companies

in the EU ETS, in the period 2005-2012. Second, we have found no other analysis in

the literature that focuses on how environmental efficiency affects the way a company

uses EUAs.

In addition to the implications for company management, our research has im-

plications for policy makers. In Spain, emissions from the energy sector represented

60% of the total in period 2005-2012 and is the one that makes the most physical

investments in Spain, and in the process generates over 50,000 direct jobs and 400,000

indirect jobs (UNESA, 2015). Taking into account the dependence of the whole econ-
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omy on this sector, an increase in the costs of power stations increases the costs of

companies in all sectors.

The structure of the paper is as follows: Section 3.2 provides a brief explanation of

the EU ETS allocation system, Section 3.3 focuses on the first objective of this research,

Section 3.4 works on the second objective, and Section 3.5 presents the conclusions of

our work.

3.2 The energy sector in Spain

Given that the difference between allocated EUAs and actual emissions of the energy

sector is an important variable in our research, we consider it quite useful to provide

the reader with a brief review on how EUAs were allocated during period 2005-2012,

and the particular situation of the energy sector in this context.

The European Union Emissions Trading Scheme (EU ETS) was launched in 2005 and

its implementation was planned in three phases: Phase I in 2005-2007, Phase II in

2008-2012, and Phase III beginning in 2013 and extending to 2020.

In 2005-2012, companies in the EU ETS received, free, a quantity of EUAs at the

beginning of each year. Each country had its owns distribution plan among the com-

panies involved, known as the National Allocation Plan (NAP).There were two NAPs:

NAP I for period 2005-2007 and NAP II for 2008-2012 and each country had its own

rules when configuring its NAPs. In the case of Spain, the calculation of each com-

pany’s allowances was carried out according to a given company’s previous emissions

and production levels. NAP I was designed in 2004 and each allocation was calculated

according to the emissions levels prevailing during period 1990-2001. First, emissions

annual average growth for period 1990-2001 was calculated. Second, this annual growth

was applied to emissions in year 2001, to determine emissions in 2006. Third, poten-

tial reduction of emissions for 2006 was subtracted from the predicted emissions figure.

Finally, taking into account emissions for 2006, emissions for 2005 and 2007 were deter-
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mined. NAP II was drawn in 2006 and EUAs distribution was carried out following an

emissions/production criteria using data from 2001-2005.First, the emissions intensity

ratio was calculated: emissions 2005/production 2005 (adjusted by a potential reduc-

tion factor). Second, estimated production for year 2010 was calculated by multiplying

annual average production growth for period 2001-2005 and production in 2005.

For period 2013-2020, a single, EU-wide cap on emissions applies replacing the previous

system of national caps, and auctions not free allocation, is now the default method

for allocating allowances. Nevertheless, the transition from one allocation system to

the other is carried out gradually. In 2013 more than 40% of allowances were auc-

tioned, and this share will rise progressively each year. Those industries that have a

large share of international trading, and whose international competitors do not have

a climate-change policy restriction, would be at a disadvantage (an additional cost)

because of the EU ETS.

This situation is known as carbon leakage. To help sectors and sub-sectors with carbon

leakage risk, the European Commission gives the affected companies a larger share of

free allowances than the rest. In this context, the European Commission considers the

risk of carbon leakage for the energy sector is not significant. From 2013 onwards,

power stations receive a smaller proportion of free allowances than the industrial sec-

tors. Thus, the study of the drivers of the Surplus of Allowances, which indicates the

number of EUAs a company buys or sells in relative terms, is of some importance for

the energy sector, as it has an additional cost, linked to EUAs, in comparison to the

industrial sector.
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3.3 Analysis of the technical and environmental ef-

ficiency

3.3.1 Setting up the problem

Our first objective is to measure the technical and environmental performance of Span-

ish energy companies in the EU ETS. To achieve our goal, we use the production

stochastic frontier model proposed by Fernández et al., (2002). This model is appro-

priate for production processes that yield both good outputs and undesirable ones.

We consider one good output (the electricity produced by power stations) and one

undesirable output(CO2 emissions released during the electricity generating process).

In this model, the best-practice technology for turning inputs into outputs is

given by the following relationship:

f(y, b, x) = 0 (3.1)

where y denotes the quantity of electricity produced, b represents the CO2 emissions

and x is the vector of inputs needed to obtain these outputs. In this paper we consider

three different inputs: labour, capital and supplies.

The maximum good output obtained with the available x inputs is given by the

function hy(x) known as the production frontier.

y = hy(x) (3.2)

The minimum quantity of bad output necessary to obtain a certain amount of good

output is given by the function hb(y) known as the environmental frontier.

b = hb(y) (3.3)
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For a firm producing (y,b) with inputs x, we can now define:

uy ≡ y/hy(x) (3.4)

ub ≡ hb(y)/b (3.5)

0 ≤ (τy, τb) ≤ 1 (3.6)

where uy denotes the technical efficiency and ub the environmental efficiency.

3.3.2 The model

We have data from an unbalanced panel of i = 1, ..., Ni firms, where the ith firm has

been observed for t = 1, ...., Ti time periods. The ith firm in the tth period produces

good output yi,t and bad output bi,t. xi,t is the vector of inputs used by the ith firm in

the tth period. For both the production and the environmental frontier, we consider a

Cobb-Douglas specification, i.e. it contains an intercept and is linear in the logs of the

inputs. We include another variable affecting both frontiers: a year indicator variable.

The equations of the model are given by:

yi,t = x
′

i,tβ − zi + εyi,t with εyi,t ∼ N(0, σ2
y) (3.7)

where yit is log(Productioni,t)

x
′
it = (1, log(Labouri,t), log(Capitali,t), log(Suppliesi,t), I2005, I2006, I2007, I2008, I2009,

I2010, I2011, I2012)

x
′
i,tβ defines the maximum level of production for a given quantity of inputs. We

impose regularity conditions on β except for the intercept and β of the year indicator.

Economically we are assuming that the maximum production obtained by a firm in-

creases (decreases) when inputs increase (decrease). Any (negative)deviation from this

maximum level of production is labelled as technical inefficiency : zi . The stochas-
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tic element of the model is introduced through εyi,t. We assume εyit distribution to be

Normal.

bi,t = y
′

i,tδ + υi + εbi,t with εbi,t ∼ N(0, σ2
b ) (3.8)

where bit = log(Emissionsit) y
′
i,t = (1, log(Productionit), I2005, I2006, I2007, I2008, I2009,

I2010, I2011, I2012) y
′
i,tδ defines the minimum level of CO2 emissions for a given level

of energy production, similar to the regularity condition imposed on β in equation

3.7. δ is restricted to be non-negative (except for the intercept and δ of the year

indicator). In this way, we are assuming that an increase in the production level will

never imply a reduction in the amount of CO2 emissions. Any (positive) deviation

from this minimum level of emissions is considered as environmental inefficiency : υi.

The stochastic element of the model is introduced through εbit, which captures the usual

measurement error and model imperfections. We assume εbit distribution to be Normal

The connection between inefficiencies (zi and υi) in the equations 3.7 and 3.8

and efficiencies in 3.4 and 3.6 is carried out as follows. As dependent variables in 3.7

and 3.8 have been transformed to logarithms, technical efficiency uy for the ith firm is

defined as uy = exp(−zi) and environmental efficiency ub for the ith firm is defined as

ub = exp(−υi). Similarly to Fernández et al. (2002),in this paper we assume that zi

and υi for each company are constant over time. In that study, the authors consider

that other firm-specific characteristics may affect the inefficiencies distributions. In our

paper, we consider company size as the inefficiencies distributions unique explanatory

variable.

 zi

vi

 ∼ TN2,R+xR+


 µzi

µvi

 ,Ω

 (3.9)

where TN denotes the Truncated Normal and: µzi

µvi

 =

 φ
′

ψ
′

 gi (3.10)
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where gi is a matrix of dimension dx1, with d being the number of categorical possible

values of the size variable. We divide companies in our sample in four groups: g1i ,

g2i , g
3
i , g

4
i that go from the smallest companies to the larggest ones. To simplify the

notation we make this transformation: Gi = g
′
i ⊗ I2 and γ =

 φ

ψ

 So, expression

3.10 can now be written as:

 µzi

µvi

 = Giγ (3.11)

Finally, we also denote:

τy = 1
σ2
y
τb = 1

σ2
b

and Ei =

 zi

υi


The estimation of the parameters presented above will be carried out following a

bayesian approach. (see Appendix B.2).

3.3.3 Data

According to Directive 2003/87/EC companies in the EU ETS are divided into 9 sec-

tors. The first covers power stations (”Combustion installations with a rated thermal

input exceeding 20 MW, mineral oil refineries and coke ovens”). Sectors 2 to 9 are

industrial sectors producing iron, steel, cement, glass, lime, bricks, ceramics, and pulp

and paper.

Each member of the EU ETS had a national registry where all participating com-

panies were listed until 2012. ”Registro Nacional de Derechos de Emisión (RENADE)”

was the Spanish EU ETS national registry. According to the RENADE , there were

355 companies belonging to the energy sector that had been part of the EU ETS in any

year from 2005 to 2012. Thirty of these companies provided no data on CO2 emissions

and allocations so we had to discard them. Then, our initial sample was reduced to
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Table 3.1: Data availability. Years

Year companies
2005 64
2006 163
2007 183
2008 212
2009 227
2010 235
2011 205
2012 209
TOTAL 1498

325 companies, and from these, we selected those that had available information on

our variables of interest, for at least one of the years between 2005 and 2012. Thus,

our final sample was reduced to N=267 in T=8, in total 1498 observations. Table 3.1

presents the number of companies that have available all the data needed to undertake

our research in every year of our sample.

To estimate the technical and environmental frontier we used the following data.

Good output: Sales in millions of euros.

Bad output: Emissions in tonnes of CO2.

Inputs: Personnel expenses in millions of euros (Labour), Amortisation of as-

sets in millions of euros (Capital), Supplies in millions of euros (Supplies) (In energy

companies ”supplies”, usually aggregates three kinds of costs: energy purchases, fuels

consumption and transport expenses. We found only the ”supplies” figure, the share

of each cost was not available in the database we used for this research)

Other variables affecting the frontiers: Dummy time variable. Years: 2005,2006,2007,

2008,2009,2010,2011,2012

Explanatory variables affecting the inefficiency distribution: Company size (as-

set size). First, the average of the asset value for 2005-2012, for each company,

was calculated. Companies were divided into four groups corresponding to the four

quartiles of the size distribution (Q1.Small companies, Q2.Small-medium commpanies,
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Q3.Medium-big companies, Q4.Big companies). This classification remains constant

for the whole period.

Data on sales, personnel expenses, amortisation of assets, supplies and size were

taken from SABI, a database that provides 1,250,000 Spanish and 400,000 Portuguese

company reports. These reports include, among other information: company financial

profiles, summary of company industrial activities, Balance Sheets, Profit and Loss

accounts, and financial ratios.

Data of CO2 emissions were taken from the Community Independent Transaction

Log (CITL) for the years 2005-2011, and from the European Union Transaction Log

(EUTL).From 2005 to June 2012, every national registry was linked to the Community

Independent Transaction Log (CITL). According to Directive 2009/29/EC, the CITL,

together with the national registries, was replaced by a unique European Registry: the

European Union Transaction Log (EUTL), activated in June 2012. Since we concen-

trate on the period 2005-2012, and we began to collect data in 2011, when EUTL had

not yet been activated, we took our data from RENADE and CITL for the period

2005-2011 and from EUTL for year 2012.

Descriptive statistics

Tables B.1, B.2, B.3, B.4, B.5, present the main statistics of the variables used in our

work. As can be observed in Table B.1, the sales mean decreased gradually from year

2005 to 2009, when sales reached the minimum for the period. This decline followed

the onset of the economic crisis. From 2010 onwards, sales began to increase until

2012. This pattern is the same as that of labour costs (see Table B.2), amortisation

(see Table B.3)and supplies (see Table B.4).All of these variables are heavily skewed

to the right and kurtosis is considerably pronounced, arising from the existence of a

low percentage of firms with strong positive values.

We now turn to the descriptive statistics for emissions. Similarly to the distribu-

tion of the rest of our variables, the distribution of emissions is highly skewed to the
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right in every year of our sample. Again, it seems that a small group of companies have

a greater level of emissions. As seen in Table B.5, the mean of emissions was much

higher in 2005, in comparison with the rest of the period. The EU ETS was created

in 2005 and, from that year, companies were incorporated on a gradual basis. As 2005

is the first year, the number of companies involved in this market was significantly

lower than in the rest of the sample. It appears that companies with higher emissions

entered in the EU ETS in the first year. Although the number of companies in the EU

ETS significantly increased in 2006, as those with much higher emissions had already

been incorporated in the EU ETS the year before, the mean of emissions from 2006

onwards was significantly lower with respect to year 2005. To avoid biased results, we

estimate two different stochastic frontier models: one for the years of our sample, and

the other for the sample period: 2006 to 2012.

3.3.4 Empirical results and discussion

In this section we present the results of the Bayesian estimation of the technical and

environmental frontiers, based on a Markov chain of 100,000 drawings after discarding

the first 10,000. All calculations were made in MATLAB R2013b. The code written

to obtain our results is provided in Appendix B.3.

According to the exploratory analysis carried out in the previous section, we

consider that year 2005 may bias our results because the number of companies with

available data that year was very low (See Table 3.1) so we estimate two different

models: one including year 2005 and another without it. Furthermore, we consider

two different models: one with a categorical year variable and another with a general

intercept. Matching both criteria we estimate the following four models.

♦Model 1. Categorical year variable and T= 2005,...2012.

♦Model 2. Categorical year variable and T= 2006,...2012.

♦Model 3. No Categorical year variable and T= 2005,...2012.

♦Model 4. No Categorical year variable and T= 2006,...2012.
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As seen in Table 3.2 and Table 3.3, there is no great difference between Model 1

and Model 2 and between Model 3 (see Table 3.4) and Model 4 (see Table 3.5) so we

can consider either Model 1 or Model 3, both of which include the entire sample period

without being concerned about any potential 2005 bias effect. Regarding the categorical

time variable, it appears irrelevant to introduce a year variable in the technical frontier

(no significant difference between the intercept in Model 3 and the categorical variable

in Model 1), although it does seem that the categorical time variable is somewhat

significant in the case of the environmental frontier, therefore, we finally select Model

1, which includes the dummy time variable, to carry out the analysis of the technical

and environmental frontier.

Since our model has a log-log specification, the βs (in the case of the techni-

cal frontier) and the δ (in the case of the environmental frontier) are interpreted as

elasticities. Each β represents the percentage a company’s sales increases when the

correspondent input increases 1%. As we have seen, all βs have a positive sign due

to the regularity condition we imposed when formulating the model, i.e. an increase

in sales could not be achieved without a decrease in one or more of the inputs. The

supplies-sales elasticity is considerably higher than the other elasticies, which is consis-

tent with the fact that the supplies usually is the line of the Profit and Loss Statement

most representative in this kind of company. δ is also positive due to the regularity

condition imposed, which defined that an increase in electricity production could never

be obtained without an increase in CO2 emissions, δ is aproximmately 0.25, i.e. when

electricity production increases by 1% , CO2 emissions go up by 0.25%.

The Returns to Scale (RTS) in the technical frontier is the rate of increase in elec-

tricity production relative to the associated increase in labour, capital and supplies.

RTS in the environmental frontier has the same value as δ because we only consider

one output in our analysis. The RTS technical is 0.7322 (the median), i.e. an increase

of 1% in all the inputs is translated into a 0.7322 % increase in electricity production.
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The RTS-environmental is 0.2494, i.e. an increase of 1% in electricity production is

translated into a 0.2494% increase in CO2. As we have seen, the RTS bad outputs

is considerably lower. This figure should be taken into consideration by energy com-

pany managenment when making decisions on increasing their production levels. More

specifically, they could evaluate the trade-off between the increase in revenues due to

the increase in sales (1%) and the increase in costs (buy more EUAs) because of the

additional CO2 emissions (0.25%).

Regarding the effect of time on the frontiers, note that the difference among

the years is more significant in the environmental frontier, as we explained earlier.

Note that δ5 is lower than previous δs, indicating that emissions began to decrease

progressively from 2008 on, which is consistent with the beginning of the crisis in 2008.

The stochastic Bayesian estimation provides us with both technical and environ-

mental estimated inefficiency values for each company in our sample.

Regarding company size, large companies appear to be more efficient in technical

(φ ) terms. The contrary happens when we look at the environmental frontier (ψ),

small companies appear to be more efficient than large ones. Nevertheless, differences

resulting from size are greater in the technical frontier than in the environmental one.

In the context of the ”20-20-20” climate & energy targets ((Directive 2012/27/EU)

this result shed more light on how the size affects how well companies do. It appears

that big companies are better at achieving the 20% energy efficiency improvement tar-

get (technical efficiency) and small ones are more likely to achieve their environmental

targets in the EU ETS context. This suggests that managers of large companies should

focus more on policies to improve their environmental inefficiencies, whereas small com-

panies should pay more attention to their technical efficiency.
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Table 3.2: MODEL 1

TECHNICAL FRONTIER
2.5 Median 97.5

β1 (Labor) 0.0684 0.1007 0.1284
β2 (Capital) 0.1236 0.1570 0.1905
β3 (Supplies) 0.4520 0.4755 0.5008
RTS (Good output) 0.6932 0.7322 0.7708
β4 (Year 2005) 20.0938 20.3365 20.6252
β5 (Year 2006) 20.1509 20.3809 20.6656
β6 (Year 2007) 20.1482 20.3754 20.6745
β7 (Year 2008) 20.1754 20.4025 20.6918
β8 (Year 2009) 20.1585 20.3866 20.6882
β9 (Year 2010) 20.2100 20.4438 20.7276
β10(Year 2011) 20.2625 20.4872 20.7787
β11(Year 2012) 20.2489 20.4766 20.7757
φ1 (Q1. SMALL COMPANIES) 2.6927 3.0026 3.3460
φ2 (Q2 SMALL-MEDIUM COMPANIES) 2.4248 2.7000 3.0235
φ3 (Q3 MEDIUM-BIG COMPANIES) 2.1086 2.3605 2.6879
φ4 (Q4 BIG COMPANIES) 1.4019 1.6879 2.0073

δ1 (Sales) 0.1903 0.2494 0.3029
ENVIRONMENTAL FRONTIER

RTS (Bad output) 0.1903 0.2494 0.3029
δ2 (Year 2005) 0.1660 1.024 2.1161
δ3 (Year 2006) 0.1710 1.0233 2.1182
δ4 (Year 2007) 0.2264 1.09401 2.1937
δ5 (Year 2008) 0.0926 0.9394 2.0764
δ6 (Year 2009) 0.0668 0.9135 2.0460
δ7 (Year 2010) 0.0502 0.8895 2.055
δ8(Year 2011) 0.0005 0.7234 1.8686
δ9(Year 2012) 0.0040 0.7745 1.8848
ψ1 (Q1. SMALL COMPANIES) 3.3104 4.0099 4.6311
ψ2 (Q2.SMALL-MEDIUM COMPANIES) 3.5253 4.1185 4.6630
ψ3 (Q3 MEDIUM-BIG COMPANIES) 3.8767 4.5163 5.0337
ψ4 (Q4 BIG COMPANIES) 4.2069 4.8786 5.4021

VARIANCE OF THE MODEL
τy 0.2513 0.2617 0.2725
τb 0.4949 0.5159 0.5381
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Table 3.3: MODEL 2

TECHNICAL FRONTIER
2.5 Median 97.5

β1 (Labor) 0.0632 0.0942 0.1253
β2 (Capital) 0.1279 0.1601 0.1935
β3 (Supplies) 0.4479 0.4740 0.4999
RTS (Good output) 0.6878 0.7278 0.7673
β4 (Year 2005)
β5 (Year 2006) 20.1279 20.3663 20.6873
β6 (Year 2007) 20.1297 20.3590 20.6758
β7 (Year 2008) 20.1587 20.3846 20.6904
β8 (Year 2009) 20.1408 20.3726 20.6835
β9 (Year 2010) 20.1960 20.4212 20.7282
β10(Year 2011) 20.2423 20.4694 20.7784
β11(Year 2012) 20.2312 20.4535 20.7554
φ1 (Q1) 2.7001 3.0102 3.3571
φ2 (Q2) 2.4147 2.6984 3.0201
φ3 (Q3) 2.0902 2.3542 2.6840
φ4 (Q4) 1.3893 1.6746 2.0156

ENVIRONMENTAL FRONTIER
δ1 (Sales)(RTS Bad output) 0.1926 0.2445 0.2983
δ2 (Year 2005)
δ3 (Year 2006) 0.2084 1.0144 2.0592
δ4 (Year 2007) 0.2691 1.0658 2.1394
δ5 (Year 2008) 0.1285 0.9323 2.0169
δ6 (Year 2009) 0.1006 0.8919 1.9535
δ7 (Year 2010) 0.0863 0.8664 1.9548
δ8(Year 2011) 0.0036 0.7077 1.7853
δ9(Year 2012) 0.0136 0.7611 1.8153
ψ1 (Q1) 3.4544 4.1037 4.7583
ψ2 (Q2) 3.6420 4.2312 4.7407
ψ3 (Q3) 4.0038 4.6418 5.2462
ψ4 (Q4) 4.2755 5.0083 5.5725

VARIANCE OF THE MODEL
τy 0.2545 0.2650 0.2750
τb 0.4873 0.5090 0.5307
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Table 3.4: MODEL 3

TECHNICAL FRONTIER
2.5 Median 97.5

β0 (Intercept) 20.2690 20.4924 20.7697
β1 (Labor) 0.0708 0.1021 0.1344
β2 (Capital) 0.1168 0.1475 0.1801
β3 (Supplies) 0.4609 0.4853 0.5102
RTS (Good output) 0.6994 0.7340 0.7746

φ1 (Q1) 2.7594 3.0558 3.3893
φ2 (Q2) 2.4808 2.7566 3.0878
φ3 (Q3) 2.1599 2.4458 2.7878
φ4 (Q4) 1.4885 1.7699 2.0993

ENVIRONMENTAL FRONTIER
δ0 (Intercept) 0.0411 0.9762 2.1746
δ1 (Sales)(RTS bad output) 0.1693 0.2295 0.2778
ψ1 (Q1) 3.6357 4.2596 4.9093
ψ2 (Q2) 3.8406 4.3832 4.9065
ψ3 (Q3) 4.3228 4.8885 5.4750
ψ4 (Q4) 4.7031 5.2190 5.7974

VARIANCE OF THE MODEL
τy 0.2546 0.2653 0.2776
τb 0.5045 0.5248 0.5462
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Table 3.5: MODEL 4

TECHNICAL FRONTIER
2.5 Median 97.5

β0 (Intercept) 20.2215 20.4710 20.7908
β1 (Labor) 0.0617 0.0918 0.1243
β2 (Capital) 0.1172 0.1533 0.1846
β3 (Supplies) 0.4609 0.4853 0.5102
RTS (Good output) 0.6858 0.7253 0.7646

φ1 (Q1) 2.7492 3.0720 3.4204
φ2 (Q2) 2.4746 2.7543 3.0994
φ3 (Q3) 2.1448 2.4256 2.7624
φ4 (Q4) 1.4513 1.7401 2.0876

ENVIRONMENTAL FRONTIER
δ0 (Intercept) 0 0.7041 1.9258
δ1 (Sales) (RTS Bad output) 0.1668 0.2302 0.2687

ψ1 (Q1) 3.8333 4.4758 5.1385
ψ2 (Q2) 4.0134 4.6168 5.1320
ψ3 (Q3) 4.5384 5.0688 5.6543
ψ4 (Q4) 4.9657 5.4629 5.9945

VARIANCE OF THE MODEL
τy 0.2575 0.2678 0.2793
τb 0.4950 0.5155 0.5377

Finally, we focus our attention on those companies that account for the lion’s

share of total emissions. As seen in the exploratory analysis, emissions are heavily

skewed to the right. The reason for this is that there is a small group of firms with

extremely high emissions compared to the other firms. As seen in Table 3.6, only four

of our sample of 267 companies (1.5% of our sample) are responsible for over 50% of

total emissions in almost every year. We refer to this set of companies as: ”the Big 4”.

As seen in Table 3.6, these companies are also important in terms of sales, capital and

supplies. In 2012, they account for 16% of sales, almost 30% of the total capital of the

sector and 20% of supplies. Note that the importance of The Big 4 has growth since

the beginning of the period.
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Table 3.7: Technical and environmental inefficiencies of Big 4

Company z Ranking (- to +) v Ranking (- to +)
Big 4. Company 1 1.4541 20 10.4829 267
Big 4. Company 2 1.2473 10 9.2195 261
Big 4. Company 3 1.5382 26 9.9832 266
Big 4. Company 4 2.0174 74 9.5709 264

Table 3.6: The Big 4

2005 2006 2007 2008 2009 2010 2011 2012
Emissions 0.54 0.52 0.52 0.50 0.42 0.36 0.51 0.51
Sales 0.07 0.07 0.06 0.09 0.08 0.12 0.14 0.16
Labour 0.06 0.06 0.06 0.05 0.07 0.07 0.07 0.07
Capital 0.20 0.19 0.17 0.18 0.22 0.25 0.25 0.29
Supplies 0.09 0.10 0.07 0.11 0.09 0.15 0.17 0.20

Note: The percentage of ”The Big 4” out of the total sample

Given this, it is worthwhile focusing on companies with higher emissions, as a

great part of the global amount of emissions of Spanish energy firms in the EU ETS

is due to the environmental behaviour of these few firms. In Table 3.7 is presented

the technical (z) and environmental inefficiency (v) obtained in our model for each of

The big 4. Furthermore, we ranked all companies in our sample, from less to more

inefficient, and provide the place of each of these four companies in our ranking. As

can be seen, they are well-positioned in terms of technical efficiency but are at the

bottom of the environmental ranking.

3.4 Does it pay to be environmentally efficient?

3.4.1 Setting up the problem

The stochastic Bayesian estimation provides us with both technical and environmental

estimated inefficiency values for each company in our sample. This information is quite

valuable to carry out new analysis that may shed further light for companies involved
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in the EU ETS.

More specifically, we use the environmental inefficiency values to achieve our

second objective: to calculate how environmental efficiency affects the quantity of

EUAs a company has to buy or has the possibility to sell.

When distributing EUAs among companies in the EU ETS, the European Com-

mission (2009) stated that the allowance allocated to a company should not exceed the

amount of CO2 it was expected to emit, a restriction intended to stimulate a company’s

efforts to control its emissions. Basically, we consider that, in addition to environmen-

tal efficiency, there is another variable that may have an influence on whether or not

a company has emitted more or less than its allocation, and that is the company’s

production levels. Thus, we also take production levels into account.

To analyze the effect of both environmental efficiency and production levels in

the difference between allocated EUAs and final CO2 emissions, we employ quantile

regression techniques.

3.4.2 Methodology/quantile regression

In this section, we briefly describe the quantile regression technique. This technique

was already used in Chapter 2, where we estimate the nonlinear p quantile regression

that is based on the specification of the copula function that defines the dependency

structure between the variables of interest. In this case, as we want to analyze the

simultaneous effect of two variables on the dependent variables, we would have to

estimate a multivariate copula (in Chapter 2 we considered a bivariate copula). As the

implementation of this procedure is considerably complex, in this Chapter we decided

to estimate a linear quantile regression. The estimation of the non-linear quantile

regression through a multivariate copula will be done in future work.

Here, we provide the reader with a revision of the quantile regression technique

in a linear context. This methodology allows us to study the effect of environmental

efficiency and production on the difference between allocated EUAs and final CO2
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emissions, not only in the centre of the distribution but also in the intermediate and tail

areas (Koenker and Hallock, 2001). This technique is appropiate when the normality

assumption is rejected for the variables employed, as in our case and as will be shown

in the following section.

Let (xi,t,yi,t); i = 1, ..., Ni; t = 1, ..., T be the data set where yi,t is the depen-

dent variable (difference between allocated EUAs and final CO2 emissions) and xi,t =

(xi,t,1, ..., xi,t,k) is the (kx1) vector of independent variables (production and environ-

mental efficiency)

We consider linear quantile regression models that assume that

Quantileθ(yi,t|xi,t) = x
′

i,tβθ (3.4.1)

where Quantileθ(yit|xit) denotes the θ (0 < θ < 1) quantile of the conditional dis-

tribution (yit|xit) and βθ = (βθ,j; j = 1, ..., k) is the (kx1) vector of parameters that

quantifies the impact of the independent variables on the θ quantile of yi,t. The value

of βθ is obtained by minimizing

minβ
1

n

∑
i,t;yi,t≥x

′
i,tβ

Θ|yi,t − x
′

i,tβ|+
∑

i,t;yit<x
′
i,tβ

(1−Θ)|yi,t − x
′

i,tβ| (3.4.2)

3.4.3 Data

To measure the number of EUAs to buy/sell, we take the environmental indicator

constructed in Chapter 2, SA, which measures the difference between allocated EUAs

and actual CO2 emissions in relative terms.

Surplus of Allowances

SAi,t =
Ai,t − Ei,t

Ai,t
(3.4.1)

where Ait is the number of allowances for company i to be used to justify CO2 emis-

sions in year t, Eit is the quantity of CO2 emitted by company i during period t.
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Assets Turnover Rotation (ATR)

To measure company production,as we did in Chapter 2, we select the Assets Turnover

Ratio (ATR)

ATRi,t =
Operating revenuei,t

Assetsi,t
(3.4.2)

Data for ATR is taken from SABI. Data for CO2 emissions and CO2 allocations

are taken from the Community Independent Transacation Log (CITL).

Environmental efficiency

The environmental efficiency of each company is taken from the bayesian estima-

tion of the environmental frontier model. In fact, in the previous section, we obtained

company inefficiency (v), which we will take into account when interpreting our results.

Descriptive statistics

In table B.6 a descriptive analysis of SA is shown. As can be seen, the mean is positive

for every year of the period, indicating that companies emitted less than allocated.

Note that, from 2008 on, the SA mean increased considerably. This could be explained

by the reduction of emissions due to the reduction of production levels caused by the

onset of the economic crisis in 2008. Nevertheless, a small group of companies have

lower SA than the rest, as the negative sign of the skewness coefficient indicates. The

Jarque-Bera normality test is rejected.

Table B.7 presents the descriptive analysis of ATR. As can be seen, ATR is

heavily skewed to the right and kurtosis is considerably pronounced. This arises from

the existence of a low percentage of firms with strong positive values. Similarly to the

SA variable, the normality test is rejected.
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3.4.4 Empirical results and discussion

In this section, we present the results of the estimation of the quantile regression,

where SA is the dependent variable and environmental inefficiency and ATR are the

explanatory variables. All the calculations were done using the package R with the

quantreg library (for more information see Koenker, 2006). Although we have a unique

inefficiency measure for each company that works as an average for the whole period,

we have SA data for each firm in each period. Therefore, the evolution in time of the

link between SA and v is also presented in this research.

As can be seen in Table 3.8, the effects of both environmental inefficiency and

production are negative.

Table 3.8: Quantile regression coefficients

0.05 0.25 0.50 0.75 0.95 lineal

2005
βv -0.038 -0.035∗∗∗ -0.051∗∗∗ -0.060∗ -0.115∗∗∗ -0.054∗∗∗

βATR 0.012∗ 0.006 0.004∗∗∗ 0.000 -0.006 0.004

2006
βv -0.028 -0.054∗∗∗ -0.059∗∗∗ -0.070∗∗∗ -0.051∗∗∗ -0.036
βATR -0.089 -0.015 -0.022∗∗∗ -0.043 -0.069 -0.003

2007
βv -0.028 -0.054∗∗∗ -0.059∗∗∗ -0.070∗∗∗ -0.051∗∗∗ -0.095∗∗∗

βATR -0.089 -0.015 -0.022∗∗∗ -0.043 -0.069 -0.014

2008
βv -0.028 -0.054∗∗∗ -0.059∗∗∗ -0.0697∗∗∗ -0.051∗∗∗ -0.036
βATR -0.090 -0.015 -0.022∗∗∗ -0.043 -0.069 -0.003

2009
βv -0.028 -0.054∗∗∗ -0.059∗∗∗ -0.070∗∗∗ -0.051∗∗∗ -0.036
βATR -0.090 -0.015 -0.022∗∗∗ -0.043 -0.069 -0.003

2010
βv -0.082 -0.133∗∗∗ -0.141∗∗∗ -0.132∗∗∗ -0.090∗∗∗ -0.119∗∗∗

βATR 0.038 0.001 -0.024 0.005 -0.014 0.006

2011
βv -0.015 -0.137∗∗∗ -0.127∗∗∗ -0.109∗∗∗ -0.070∗∗∗ -0.095∗∗∗

βATR 0.199 -0.019 -0.074∗∗∗ -0.092∗∗∗ -0.125∗∗ -0.014

2012
βv -0.047 -0.006 −0.033∗∗∗ −0.058∗∗∗ -0.019 −0.053∗∗∗

βATR -0.340 -0.029 -0.052 -0.025 -0.026 -0.061

Note: Statistically different from zero at the *** 1%, ** 5%, * 10% significance levels

The negative effect of inefficiency shows that the more inefficient a company is,

the less SA it has. In other words, the more inefficient a company, the more EUAs

it must buy (more expenses). This result suggests that being more environmentally
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inefficient has a negative financial consequence.

The negative impact of production indicates that an increase in electricity pro-

duction is linked to a decrease in SA, and consequently to the purchase of more EUAs.

As mentioned in the descriptive analysis (section 3.4.3), SA is considerably skewed

and presents a pronounced kurtosis. For this reason, a lineal regression approach would

lead us to misleading conclusions, and so, we use a quantile regression that examines

the effect of v and ATR, not only in the central part of the SA distribution, but also

in different quantiles of the distribution.

As can be observed in Table 3.8 , the effect of inefficiency is statistically significant

in all quantiles of SA, except the lowest. Figure 3.1 and 3.2 show the evolution of the

effect of inefficiency on SA for each quantile of SA (quantile 0.05 is not drawn as

the effect of v on SA is not statistically significant). As we have seen, from 2005 to

2009, the impact of inefficiency is lower in quantile 0.5 of SA. That is, a decrease in

environmental inefficiency, according to our results, would be less rewarded in terms of

buying fewer EUAs by companies with median SA. From 2009 to 2011, the effect of v

increased (in absolute terms) in all quantiles of SA. In this period, the effect was similar

in all quantiles except for quantile 0.95. This reflects that companies with very high

SA would have fewer incentives than other companies to improve their environmental

efficiency.

The effect of ATR (Table 3.8) is only statistically significant in companies with

median SA. As observed in Figure 3.3and 3.4, the impact of ATR is greater in

companies with high (quantile 0.95) and medium-high (quantile 0.75).
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Figure 3.1: Evolution of inefficiency effect (βv in Table 3.8). Quantiles

Figure 3.2: Evolution of inefficiency effect (βv in Table 3.8). Years

Figure 3.3: Evolution of production effect (βATR in Table 3.8). Quantiles
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Figure 3.4: Evolution of production effect (βATR in Table 3.8). Years
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3.5 Conclusions

Companies in the energy sector play an important role in achieving the targets of the

European Union 2020 energy and climate package: they must improve their efficiency

and have CO2 limitations under the EU ETS. Thus, our research has two targets. To

measure the technical and environmental efficiency of the companies, and, to calculate

to what extent environmental efficiency determines the difference between allocated

EUAs and final CO2 emissions.

The results of our research are important for managent of companies in order to

help them make decisions related to improvements in efficiency, and also in terms of

improving its CO2 emissions levels relative to the targets under the EU ETS. In addi-

tion, these results are important for policy makers, since the whole economy depends

on the energy sector, i.e an increase in the costs of power stations increases the costs

of companies in all sectors.

Regarding our first objective we obtain two main findings. First, large companies

are more efficient in technical terms, whereas small companies are more efficient in

terms of environmental efficiency, which suggests that managers of large companies

should pay more attention to their environmental inefficiencies as they are doing worse,

whereas small ones should focus more on policies to improve their technical efficiency.

Second, the four firms responsible for over 50% of total emissions in the EU ETS (

”the Big 4”) are well-positioned in terms of technical efficiency, but are at the bottom

of the environmental ranking. This finding is very important for policymakers. Since

these companies represent more than half of the emissions of the EU ETS, and have

very poor environmental scores relative to the other companies, governemnt should

pay more attention to these companies individually, in order to discover the causes of

this negative environmental behaviour as their CO2 emissions considerably influence

the way the energy sector.

Regarding our second objective, we obtain a relevant finding: there is a negative
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effect of inefficiency on the surplus of allowances. That is, the more inefficient a com-

pany, the more EUAs it must buy (more expenses). This result suggests that being

more environmentally inefficient has negative financial consequences.
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Chapter 4

Is there any link between the EU

ETS and energy stock markets?

Third point of view: Investors.

4.1 Introduction

Today, climate change is a crucial concern and the reduction of CO2 emissions has

become an important issue for most of the governments of the world. Investors are

more and more aware of this issue. In this context, it is important to study whether

environmental policies influence the behavior of investors. To address this question,

we focus on European climate change policy and, more specifically on the European

Union Emissions Trading Scheme (EU ETS).

The energy sector is responsible for the bulk of the CO2 emissions of the carbon

market and, thus, the evolution of energy markets has influenced the EU ETS situation

and vice-versa. This is in line with Diaz-Rainey et al (2011), who concluded that the

financial risks of investing in energy and environmental markets also influence the goals

of environmental policies. Likewise, Oberndorfer (2009a) studied the link between

EUAs and the stock performance of electricity firms and found that that EU ETS
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has an impact on financial (stock) markets and therefore has economic consequences,

affecting the value of the corporations covered. In addition, energy markets are also

strongly connected to financial markets, as concluded Wen et al. (2012), Nazlioglu et

al. (2015), among others.

The objective of this paper is to discover how the EU ETS and the investment

in energy sector stocks are linked. More specifically, we concentrate on the inter-

relationship between EUA, stocks of clean energy companies stocks and stocks of oil

and gas companies. With this analysis our aim is three-fold.

First, given that the objective of the EU ETS is to encourage investment in

clean energy, we analyze whether EUA prices does, in fact, do this, while discouraging

investment in oil and gas stocks. When analyzing the capacity of the EU ETS to trigger

clean investment, most of the literature focus on the investments made by companies

to reduce emissions (Calel and Dechezleprêtre, 2014; Rogge et al, 2011; Sandoff and

Schaad, 2009.) Although we pursue the same aim, we study the issue from another

perspective which has been less thoroughly explored: the perspective of the investors in

energy stocks. Kumar et al. (2012) is an example of this branch of the literature. We

contribute to the discussion by analyzing not only the effect of EUA on clean energy

stocks but also the effect on oil and gas stocks which, to the best of our knowledge,

has not yet been studied.

Second, we analyze the inverse effects, that is, how stocks of both kinds influence

EUA prices. These prices are the cornerstone of the European climate change policy,

and thus knowing what factors affect this price is relevant in terms of EU ETS efficacy.

The main difference between EUAs and a traditional stock is that there are two different

agents interested in this asset: companies that have binding CO2 targets under the EU

ETS and speculators who seek financial gain. Therefore, when analyzing the drivers

of EUA we must take into account that price formation is determined not only by

companies that participate in the EU ETS, but also by speculators. The EUA drivers

have been widely studied in the literature (Alberola et al. (2013), Aatola et al. (2013)
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and Lutz et al (2013)) Despite this, the price evolution of other stocks has not usually

been considered to be EUA drivers. With this analysis, we aim to fill a gap in the

literature.

Third, given that investment in energy markets is encreasing day by day, we study

the link between clean energy stocks and oil and gas stocks. We find papers in the

literature that analyze the interaction between clean stocks and high-tech stocks (e.g.

Sadorsky, 2012 or Kumar et al., 2012), but the distinction between ”clean” and ”dirty”

energy stocks has only been studied by Wen et al. (2012) in the context of China.

We analyze the simultaneous relationships among a set of variables and given the

high frequency of the data we propose the use of the Vector Autoregressive Regression

(VAR). We also include a set of control variables in the model. The VAR methodology

provides not only results of the relationship among the endogenous variables of interest

(EUA, clean energy stocks, oil and gas producers stocks) but also the effect of each

exogenous variable on each of the endogenous variables. In addition, to modelize the

volatility of the considered variables we employ a multivariate GARCH structure which

estimates co-volatility dynamics. The multivariate GARCH approach is widely used in

financial literature when analyzing time series data. The study period runs from May

2009 to Dicember 2013. We begin our sample period in May 2009 because it was from

then when EUA prices began a period of stability after EUA prices sink in January

2009.

The rest of the chapter is organized as follows. Section 4.2 explains the main mar-

ket fundamentals, Section 4.3 describes the data, Section 4.4 presents the methodology

and Section 4.5, our results and, finally, Section 4.6 contains our conclusions.

4.2 Market fundamentals

The objective of this research is to analyze the inter-relationship between EUA, stocks

of clean energy companies stocks and stocks of oil and gas companies. In addition,
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we take into account a set of control variables that also influence each of the previous

variables. In Section 4.2.1 we describe the expected sign of the interrelations among our

endogenous variables (main variables): EUA, clean energy stocks and oil-gas stocks.

In Section 4.2.2 we focus on the expected effect of control variables on each of our main

variables.

4.2.1 Main variables

The objective of the EU ETS is to create a stimulous to reduce CO2 by switching from

dirty to clean energy. With this in mind, an increase in EUA price should encourage

(discourage) investment in clean energy stocks (oil and gas stocks) and, obtaining the

impact of EUA on clean (dirty) energy investment will be positive (negative).

Analyzing this issue authors have focused only on the impact of EUA on clean

energy investment but have not considered the discouraging effect that EUA could

create regarding investment in dirty energy. Kumar et al. (2012) found the effect of

EUA on clean investment was not significant in 2005-2008. We examine a later sample

period 2009-2013, taking into account that the first years of functioning of the EU ETS

were a pilot period, so we may obtain a different result from Kumar el al. (2012).

The inverse relationship, i.e. the impact of clean stocks and dirty stocks on EUA

also has important policy implications. As we have said, EUA is an asset bought not

only by companies involved in the EU ETS but also by speculators. In this context, the

movements of clean and oil-gas stocks influence investment decisions in EUA. When

prices of oil-gas stocks go up investors may predict an increase in CO2 emissions, which,

in turn leads to an increase in EUA prices. The inverse effect apply to movements in

clean energy stocks prices, therefore, we assume a positive (negative) impact of oil-gas

stocks (clean energy stocks) on EUA prices.

Finally, we focus on the relationship between clean and dirty stocks, following

Wen et al. (2012), who studied this link for the Chinese context and concluded that

there is an assymetric effect that good news about new energy stock returns causes
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fossil fuel returns to fall on the following day whereas good news about fossil fuel stock

returns leads to a rise in new energy returns on the subsequent trading day.

Table 4.1 summarizes the expected impacts between the main variables.

Table 4.1: Expected inter-relationships between main variables

EUA (t) Clean
energy
stocks (t)

Oil&gas
stocks (t)

EUA (t-1) + -
Clean en-
ergy stocks
(t-1)

- -

Oil&gas
stocks (t-1)

+ +

4.2.2 Control variables

Our exogenous variables are selected according to the existing literature. Variables

affecting EUAs and energy market stocks are usually divided into two main groups:

energy prices (Oil, gas and coal prices) and the economic condition of the companies

in the industrial sector.

Effects of energy prices.

We begin with the effects of energy prices on EUA. According to the existing literature,

oil prices are the most relevant energy price in terms of influence, as remarked in Aatola

et al. (2013). Other authors such as, Reboredo (2013) and Hammoudeh et al. (2014),

also studied the connection between EUA and oil price and both of them found a

positive relationship. The effect of natural gas on EUA price is not conclusive in the

previous literture. In this regard, some authors found a positive link between natural

gas prices and EUA (see Aatola et al., 2013) whilst others, such as Hammoudeh et al.

(2014) found a negative link. Regarding coal price effect a positive impact is expected
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because when the price of crude oil (or natural gas) increases, economic agents turn

to cheaper sources of energy (such as coal), as explained in Hammoudeh et al. (2014)

which in turn lead to an increase in CO2 which pushes EUA price up.

We now focus on the effect of energy prices on clean energy stocks. Positive

shocks on pollutant energy prices should create an incentive to invest in clean energy.

Thus, we expect there to be a positive impact of fuel, gas and coal prices on clean

energy stock as concluded in works by Henriques and Sadorsky (2008), Henriques and

Sadorsky (2010), Broadstock et al. (2012), Sadorsky (2012a) and Apergis and Payne

(2014) concluded.

Regarding oil and gas companies, an increase in oil and gas prices may be seen

by investors as an impulse to invest in these companies. Certain investors will be

more interested in oil and gas stocks because they may predict that an increase in the

price will be translated in an increase in those companies profits (Lanza et al., 2004

and Scholtens and Yurtesever, 2012). According to this, we expect a positive effect of

energy price on oil& gas stocks price.

Effects of economic condition of the companies in the industrial sector.

To measure the economic condition of a company, we use an industrial stock index,

which varies depending on the expectations of investors of the future economic status

of companies. A positive expectation of the economic results of a company is linked to

a forecast of an increase in the profits of a firm. Speaking of industrial companies an

increase in profits usually goes hand-in-hand with an increase in a firm’s production

capacity, which leads to an increase in energy consumption (increase in the price of

stocks of oil and gas and clean energy companies). This, in turn leads to increased

demand for emission allowances, and a rise in their price (Chevallier (2011)).

Table 4.2 summarizes the expected impacts of control variables on the main

variables.
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Table 4.2: Expected effect of control variables

EUA (t) Clean en-
ergy stocks
(t)

Oil&gas
stocks (t)

Coal (t-1) + + +
Gas (t-1) +/- + +
Oil (t-1) + + +
Industrial
stocks (t-1)

+ + +

4.3 Data

Our dataset consists of time-series of the daily prices of four commodities: the European

Union Allowances (EUA),coal, gas and oil, and the daily closing prices of three stock

indeces: clean energy stock index, oil& gas stock index and industrial stock index. The

study period runs from May 2009 to December 2013, resulting in 1164 observations.

We began our sample period in May 2009 because it was from then when EUA prices

began a period of stability after EUA prices sink in January 2009. EUA, oil (barrel

of brent), gas and coal daily prices were obtained from SENDECO2, the European

bourse for European Unit Allowances (EUA) and Carbon Credits (CERs) specialized

for Small and Medium companies.

To represent the evolution of clean energy stocks, we select the clean energy

stock index from S&P and Dow Jones Indexes. It is the S&P Global Clean Energy

Index 1, which provides liquid and tradable exposure to 30 companies from around

the world involved in clean energy related businesses. This data are taken from the

official website of the S&P Dow Jones Indices (http://ca.spindices.com/indices/

equity/sp-global-clean-energy-index).

With respect to the oil and gas sector, we take the STOXX Oil and Gas European

1For the sake of brevity,we will also refer to this variable as ”CLEAN” in some parts of the research
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Index 2, which is integrated by 25 european companies producing oil and gas. The data

are taken from the official website of the STOXX Indices (http://www.stoxx.com/

indices/index_information.html?symbol=SXEP). To measure industrial economic

conditions we select the STOXX European Industrial Index 3, comprising stocks of 256

european industrial companies. This data was taken from the official website of the

STOXX Indices (http://www.stoxx.com/indices/). No companies are included in

more than one index.

In this research, all the variables are expressed in euros. The prices which were

originally expressed in dollars, as it is the case of oil, gas, coal and the S&P Global

Clean Energy Index are converted into euros using the closing spot rates of the euro

to dollar exchange rate provided by SENDECO2.

Time series plots of the data are shown in Figures 4.1, 4.2 and 4.3.

Figure 4.1: Evolution of EUA price

As seen in Figure 4.1, EUA prices were quite stable from May 2009 until May

2011. A steep drop followed, after which, a period of price stability occurred. Figure

4.2 illustrates that both coal and oil show a steady path during the study period,

whereas gas price was quite volatile. As can be observed in Figure 4.3,both the

STOXX oil& gas index and the STOXX industril index have very similiar time series

2For the sake of brevity,we will also refer to this variable as ”OG” in some parts of the research
3For the sake of brevity,we will also refer to this variable as ”IND” in some parts of the research
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plots. The STOXX oil& gas presents a stable evolution and the STOXX industrial

index presents a slightly positive trend during the whole study period. However, the

S&P Clean Energy Index was on a downward trend from April 2011 until April 2012,

after which, daily closing prices remained quite stable until the end of the study period.

Figure 4.2: Evolution of energy commodities price
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Figure 4.3: Evolution of stock indeces price
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For each data series, continuously compounded daily returns (rt) are calculated

as ln(pt/pt−1) where pt is the daily closing price4. In order to distinguish between

main and control variables we denote the main variables as rt and control variables as

xt. The summary statistics for the returns are shown in Table 4.3. All the variables

exhibit returns around zero and positive on average, except for rEUA and rclean which

present average negative returns. The distributions of all the selected variables exhibit

pronounced kurtosis and the normality hypothesis is rejected for all time series (see

Jarque-Bera).

Table 4.3: Exploratory analysis (rt)

rEUA rCLEAN rOG xCOAL xGAS xOIL xIND
Mean -0.0009 -0.0003 0.0001 0.0003 0.0002 0.0005 0.0005

Median 0.0000 0.0003 0.0003 0.0000 0.0000 0.0006 0.0007
Maximum 0.2158 0.1732 0.0481 0.1643 0.2451 0.1827 0.0683
Minimum -0.4225 -0.1797 -0.0542 -0.1623 -0.1290 -0.1941 -0.0658
Std. Dev. 0.0339 0.0148 0.0122 0.0159 0.0310 0.0190 0.0133
Skewness -1.3949** -0.2551** -0.2236** 0.8313** 0.7692** -0.2178** -0.1976**
Kurtosis 27.6444** 39.453** 4.4342** 33.096** 8.7246** 20.887** 5.1904**

Jarque-Bera 29704.87 64185.28 109.0036 43876.46 1696.929 15459.98 239.2594
Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 1159 1159 1159 1159 1159 1159 1159

Note: Statistically different from zero at the ** 5% level

Time series graphs of the returns show how volatility has changed across time

(Figures 4.4, 4.5 and 4.6 ). As can be observed, all the returns series exhibit the

volatility clustering property: ”large changes tend to be followed by large changes, of

either sign, and small changes tend to be followed by small changes.” (Mandelbrot,

1963).

In general, it seems that all the series were more volatile before year 2012 except

for EUA. As seen in Figure 4.4, the highest volatility of rEUA is seen in the first six

4After testing the augmented dickey fuller is demonstrated that all the series have to be differen-
tiated once
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months of year 2013, where the volatility clustering property is shown. This effect

might be linked to the uncertainty generated by the beginning of the third Phase of

the EU ETS in January 2013.

Figure 4.4: Evolution of rEUA

As seen in Figure 4.5, rOG and xIND follow the same pattern and are more

volatile than rCLEAN . Nevertheless, rclean shows two spikes: the first one in summer of

2009 and the second one (less pronounced than the first one) in summer of 2010.

Figure 4.6 shows the evolution of the returns of energy commodities. Note that,

the volatility of xGAS series seems more volatile than the other ones but it is important

to take into account the presence of atypicial returns in both xOIL and xCOAL.
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Figure 4.5: Evolution of stock indeces returns
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Figure 4.6: Evolution of energy commodities returns
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4.4 Methodolody

4.4.1 Setting up the problem

The objective of this research is to analyze the interelationship between the main

variables and the effect of several control variables on each of the main variables. The

Vector Autoregressive Regression (VAR) methodology provides an adequate framework

to analyze the simultaneous relationship between a set of variables (main variables) and,

also, the impact of control variables on the main ones. In addition, given the existence of

volatility clustering in our data (see Section 4.3) we employ a multivariate Generalized

Autoregressive Conditional Heteroskedasticity (GARCH)(Bollerslev, 1986) to modelize

the variance of the model. This methodology has been widely used in literature when

analysing high-frequency time series in financial markets.

4.4.2 The VAR-GARCH model

Firstly, the VAR (w) model is estimated using the expression 4.4.1.

ri,t = ci +
3∑
i=1

w∑
s=1

Φi,t−sri,t−s +
4∑
j=1

βmxm,t + εi,t (4.4.1)

where rit is the serie of daily returns corresponding to the the main variable i with

i =EUA,CLEAN ,OG

ci is the constant of the regression with i =EUA,CLEAN ,OG

xm,t is the serie of daily returns corresponding to the control variable m, with

m =COAL,GAS ,OIL ,IND

Φi,t−s is the autoregressive coefficient which determines the influence of the main

variable i in period t− s, on rit, with i =EUA,CLEAN ,OG and s = 1, ...w

βm,t is the regression coefficient which determine the influence of the control

variable m in period t on rit, with m =COAL,GAS ,OIL ,IND

We estimate a multivariate Generalized AutoRegressive Conditional Heteroskedas-
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ticity (GARCH)model to modelize the variance of the model. We consider three dif-

ferent GARCH structures: Constant Conditional Correlation(CCC), Diagonal BEKK

(Baba et al. (1991)), (Engle and Kroner, 1995) and Diagonal VECH (Bollerslev et al.

1988))

εEUA,t, εCLEAN,t, εOG,t)
′

follow a multivariate GARCH (p,n) process given by:

εt|It−1 ∼ Nn(0,Σt)

For a VAR system with k=1,...n being the number of dependent variables in the

VAR system. p is the length of he ARCH process and n is the order of the GARCH

part.

CCC:

Σt = Mk +

q∑
i=1

Aikεt−i,kε
′

t−i,k +

p∑
i=1

BikΣk,t−i (4.4.2)

Diagonal BEKK:

Σt = M +

q∑
i=1

Aiεt−iε
′

t−iAi +

p∑
i=1

BiΣt−iBi (4.4.3)

where M is a scalar, Ai and Bi are diagonal matrices.

Diagonal VECH:

Σt = M + A1εt−1ε
′

t−1 +

q∑
i=2

Aiεt−iε
′

t−i

p∑
i=1

+BiΣt−i (4.4.4)

where M is a scalar, A1 is a rank one matrix, Ai and Bi are diagonal matrices. d.

4.5 Empirical results and discussion

According to the Akaike (1974) criterion, we select the model that better fits with the

data. In the mean part we estimate a VAR model with two lengths (VAR(2)) (see

Table C.1) and a GARCH(2,1) Diagonal VECH in the variance part (see Table C.2).

The estimation of the mean equation of the model is presented in Table 4.4 and the
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variance equation is shown in Table 4.5.

We have divided this section into two subsections. In the first one, we concentrate

on the analysis of the interelatioship between the main variables. In the second one,

we focus on the effect of control variables on the main variables. All calculations were

made in Eviews 7.0.

4.5.1 How do EUAs and energy stocks interact?

As can be seen in Table 4.4, the impact of reua on rclean is positive and statistically

significant,i.e. an increase in EUA prices encourages investment in clean energy com-

panies. The effect of reua on rog is negative, i.e. an increase in EUA prices discourages

investment in oil and gas companies. With this, we indirectly prove that the EU ETS

has been efficient not only in spurring clean investment but also in discouraging in-

vestment in dirty energy companies. Nevertheless, as can be seen in Table 4.4, clean

investment is greater than the dirty disinvestment effect. These significant effects in-

dicate that investors pay attention to European climate change policy when making

their investment decisions in the energy sector.

Regarding the inverse effects we find that, as expected in Section 4.2, rclean neg-

atively impacts reua but rog does not significantly influence reua. With these results we

can deduce that agents speculating with EUAs take into consideration the evolution of

clean energy stocks, but they do not see oil and gas stocks as a relevant factor. This

fact should be taken into account by policymakers when forecasting EUA prices.

Finally, we concentrate on the relationship between rclean and rog. As can be

observed, a rise in rog encourages rclean, as we expected in Section 4.2. whereas, the

impact of rclean on rog does not appear to have any influence. Investors in clean com-

panies take into consideration oil and gas company prices in their invesment decision

process but when investing in fossil fuel stocks do not consider clean stocks.

Nevertheless, it is clear that there is a link between both assets. As can be seen

in the variance equation (see Table 4.5) there is a statistically significant interrelation
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Table 4.4: Mean equation

Dependent: reua Dependent: rclean Dependent: rog
Coefficient P-value Coefficient P-value Coefficient P-value

C 0.000157 0.7469 -0.000735 0.0054 -0.000323 0.0787
reua(−1) 0.104773 0.0002 0.016009 0.0043 0.008608 0.1049
reua(−2) -0.028366 0.3669 -0.008212 0.1728 -0.008526 0.0758
rclean(−1) -0.100327 0.0090 -0.204195 0.0000 -4.85E-05 0.9980
rclean(−2) -0.141956 0.0036 -0.010824 0.6862 -0.022392 0.2433
rog(−1) -0.028485 0.5622 0.229779 0.0000 -0.012634 0.5510
rog(−2) 0.075108 0.1219 0.049799 0.0652 0.030309 0.1202
xcoal -0.033265 0.4087 0.140039 0.0000 -0.010740 0.4183
xgas 0.014208 0.2243 0.035722 0.0000 0.007976 0.2289
xoil 0.005397 0.8621 0.089036 0.0000 0.050985 0.0000
xind 0.269036 0.0000 0.567059 0.0000 0.750886 0.0000
Adj. R squared 0.037211 0.476442 0.693640

between rclean and rog series indicating that oil and gas stocks and clean energy returns

move in the same direction so the simultaneous investment in clean energy and oil and

gas stocks does not appear to be a good option in terms of diversification.

4.5.2 The effect of non-renewable energy and industrial activ-

ity on EUAs and energy stocks

With respect to reua, it can be seen that only the Industrial Stoxx Index has a significant

positive influence, i.e. the higher the industrial prices, the higher the reua. It is clear

that evolution of EUA prices is determined uniquely by the evolution of industrial

results.

Taking this into account, and bearing in mind that the rest of the variables

do not have a significant effect and that the adjusted R2 value is so low, we can

deduce that market fundamentals do not really produce EUA price movements. It

appears that the EUA price is determined by company demand and supply according

to their environmental targets under the EU ETS. Decisions of speculators, who look at
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Table 4.5: Variance equation

Coefficient p-value
M -2.72E-08 0.5224

A1(1,1) 0.111799 0.0000
A1(1,2) 0.097305 0.0000
A1(1,3) 0.120877 0.0000
A1(2,2) 0.084690 0.0000
A1(2,3) 0.105206 0.0000
A1(3,3) 0.130692 0.0000
A2(1,1) 0.018785 0.4384
A2(2,2) -0.090067 0.0000
A2(3,3) -0.110869 0.0000
B1(1,1) 0.896224 0.0000
B1(2,2) 1.005990 0.0000
B1(3,3) 0.980580 0.0000

Note: See expression 4.4.4

market fundamentals when making an investment decision, do not have an important

participation in EUA pricing and it seems that the profile of the buyer is a company that

emits CO2 and buys CO2 allowances for legal purposes and, consequently, the quantity

of emissions allowances it buys is related to the level of production, but nothing else.

The contrary happens when we focus on the rclean equation. All the exogenous

variables considered are statistically significant. The effect of oil, gas and coal is posi-

tive and statistically significant as we assumed in Section 4.2. When prices of polluter

energies go up, investors see an opportunity to invest in clean energy as it is an alter-

native source of energy. Furthermore, it is clear that, as expected, the evolution of the

price of industrial company stocks is highly correlated to the stocks of clean energy.

In the case of the rog equation, only xind and xoil have a significant impact. This

is consistent with Oberndorfer (2009b) that concluded that stock market participants

primarily use the oil price as the main indicator of energy price developments as a

whole. As expected in Section 4.2 of this paper, both have a positive effect; when oil

prices rise, investors will be more interested in stocks of oil and gas because they may
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predict that an increase in the price will be translated into an increase in company

profits, and if stocks of industrial companies go up, investors will see an increase in

industrial production which, in turn, leads to an increase in energy consumption.

According to these results, it appears that those agents trading in clean energy

stocks have a different profile from those investing in oil and gas stocks. In the first

case, investors take into account a considerable number of factors before making the

decision to invest, whereas investors in oil and gas stocks appear only to be concerned

with variables strongly related to those stocks, such as the oil price and the level of

industrial activity. From our point of view, this is explained by the fact that investing

in clean energy is seen by investors as a riskier investment as said in Sadorsky (2012b)

in comparison with oil and gas industries, which are more consolidated and traditional.
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4.6 Conclusions

The objective of this chapter is to discover how the EU ETS and investment in stocks of

the energy sector are linked. More specifically, we concentrate on the interrelationship

between EUA, clean energy company stocks and oil and gas company stocks. We do

this in a multivariate GARCH framework. From our empirical results, we obtain three

main conclusions.

First, EUA prices are an incentive for the demand for stocks of clean, alternative

energy companies, and for disinvestment in oil and gas companies. This is a positive

signal with regard to climate change policy, and, more specifically the role of EU ETS.

With this result, we indirectly confirm that the EU ETS has been useful in encouraging

investment in clean energy, and that clean energy markets are sensitive to European

policies on climate change. This, in turn, suggests that such policies have credibility

in the market.

Second, from our results we conclude that the profile of the investor is different

for each of the assets considered. It appears that EUA price is determined by company

demand and supply, according to the environmental targets under the EU ETS. The

decisions of speculators, who look at market fundamentals when making an investment

decision, do not have a significant participation in EUA pricing.Investors in clean energy

consider a range before making a decision of investing, whereas investors in oil and gas

stocks seem to only be concerned with the variables strongly related to those stocks,

such as the oil price and industrial activity. From our point of view, this is explained by

the fact that investing in clean energy is seen by investors as being riskier, in comparison

with the oil and gas industries which are more consolidated and traditional.

Third, we conclude that oil and gas stocks and clean energy returns move in

the same direction, so there does not appear to be much scope for diversification. In

conclusion, according to our results, simultaneous investment in clean energy and oil

and gas stocks does not strike us as a viable option in terms of diversification.
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Chapter 5

Conclusions

This thesis has collected three essays, each analyzing the economic performance of the

EU ETS from a different perspective (policy makers, companies and investors). In this

Section, the key findings of all the three essays are summarized.

The first essay (Chapter 2) aimed to provide policy makers with important results

regarding the link between environmental and economic performance in the context of

Spain. When undertaking this analysis we took into account that company’s environ-

mental performance in the EU ETS, is both a result and a determinant of economic

performance.

First, the production level of a company determines its level of CO2 emissions

and, thus, its SA. We found that this link was negative for all the years in the period

2005-2011, i.e. an increase in production is translated into a reduction in the surplus

of allowances and vice-versa. Furthermore, this link increases its intensity through

the years. This finding sheds further light on EU ETS efficiency in fostering green

investment in Spanish companies. In this context, we argue that if the EU ETS had

encouraged green investments, although an increase in production would be linked to a

decrease in SA, this decrease in surplus of allowances due to higher levels of production

would have been lower each year. Given that the intensity did not decrease, on the

contrary, it increased we can indirectly deduce that companies, in general, did not take
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any measures in order to reduce their CO2 emissions. Second, the SA (which indicates

the number of EUAs a company must buy or can sell, in relative terms) is a component

of a company cost production and thus, influences its profitability (measured by ROA).

An increase of surplus of allowances, which would imply to buy less EUAs in the market,

has no effect in companies’ ROA. These finding suggests that EUAs price during period

2005-2011 was not high enough to create a profitability advantage for those companies

that take measure to reduce their CO2 emissions.

In the second essay (Chapter 3) we focused our attention on Spanish energy

companies involved in the EU ETS. The results of this essay are important for managent

of companies in order to help them make decisions related to improvements in efficiency,

and also in terms of improving its CO2 emissions levels relative to the targets under

the EU ETS. In addition, these results are important for policy makers, since the whole

economy depends on the energy sector, i.e an increase in the costs of power stations

increases the costs of companies in all sectors.

Companies in the energy sector play an important role in achieving the targets

of the European Union ”2020 energy and climate package”: they must improve their

efficiency and have CO2 limitations under the EU ETS. Thus, our research has two

targets. To measure the technical and environmental efficiency of the companies, and,

to calculate to what extent environmental efficiency determines the difference between

allocated EUAs and final CO2 emissions.

Regarding our first objective we obtain two main findings. First, large companies

are more efficient in technical terms, whereas small companies are more efficient in

terms of environmental efficiency, which suggests that managers of large companies

should pay more attention to their environmental inefficiencies as they are doing worse

than small ones, whereas small companies should focus more on policies to improve

their technical efficiency. Second, the four companies responsible for over 50% of total

emissions in the EU ETS ( ”the Big 4”) are well-positioned in terms of technical

efficiency, but are at the bottom of the environmental ranking. This finding is very
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important for policymakers. Since these companies represent more than half of the

emissions of the EU ETS, and have very poor environmental scores relative to the other

companies, governemnt should pay more attention to these companies individually, in

order to discover the causes of this negative environmental behaviour as their CO2

emissions considerably influence the way the energy sector.

Regarding our second objective, we obtain a relevant finding: there is a negative

effect of inefficiency on the surplus of allowances. That is, the more inefficient a com-

pany, the more EUAs it must buy (more expenses). This result suggests that being

more environmentally inefficient has negative financial consequences.

The objective of the third essay (Chapter 4) was to discover how the EU ETS and

investment in stocks of the energy sector are linked. More specifically, we concentrate

on the interrelationship between EUA, clean energy company stocks and oil and gas

company stocks. From our empirical results, we obtain three main conclusions.

First, EUA prices are an incentive for the demand for stocks of clean, alternative

energy companies, and for disinvestment in oil and gas companies. This is a positive

signal with regard to climate change policy, and, more specifically the role of EU ETS.

With this result, we indirectly confirm that the EU ETS has been useful in encouraging

investment in clean energy, and that clean energy markets are sensitive to European

policies on climate change. This, in turn, suggests that such policies have credibility

in the market.

Second, from our results we conclude that the profile of the investor is different

for each of the assets considered. It appears that EUA price is determined by company

demand and supply, according to the environmental targets under the EU ETS. The

decisions of speculators, who look at market fundamentals when making an investment

decision, do not have a significant participation in EUA pricing. Investors in clean

energy consider a range before making a decision of investing, whereas investors in

oil and gas stocks seem to only be concerned with the variables strongly related to

those stocks, such as the oil price and industrial activity. From our point of view, this
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is explained by the fact that investing in clean energy is seen by investors as being

riskier, in comparison with the oil and gas industries which are more consolidated and

traditional.

Third, we conclude that oil and gas stocks and clean energy returns move in

the same direction, so there does not appear to be much scope for diversification. In

conclusion, according to our results, simultaneous investment in clean energy and oil

and gas stocks does not strike us as a viable option in terms of diversification.
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Conclusiones

Esta tesis incluye tres ensayos, cada uno de los cuales analiza la performance económica

del EU ETS desde tres puntos de vista diferentes: instituciones públicas (consideran

este mercado como pieza clave de la poĺıtica climática de la UE), empresas (deben

acudir a este mercado con el fin de cumplir con sus restricciones ambientales) e inver-

sores (ven este mercado como una nueva oportunidad de inversión).

El primer ensayo (Caṕıtulo 2) tiene como objetivo proveer a las instituciones en-

cargadas de velar por el buen funcionamiento del EU ETS, de resultados importantes

en cuanto a la relación entre performance medioambiental y performance económica,

en el ámbito español. Al emprender este análisis, tuvimos en cuenta que la performance

medioambiental de las empresas del EU ETS es tanto un resultado como un determi-

nante de su performance económica y, en este sentido, se han obtenido dos importantes

conclusiones.

En primer lugar, el nivel de producción de una compañ́ıa determina su nivel de

emisiones de CO2 y, aśı, su grado de cumplimiento de su ĺımite de emisiones (medido

en este caṕıtulo mediante el ratio SA, superávit de derechos de emisión). Los resul-

tados de nuestra investigación muestran que esta influencia es negativa para todos los

años del peŕıodo 2005-2011, es decir, un aumento de la producción se traduce en una

reducción del superávit de derechos de emisión de CO2. Además, este efecto aumenta

su intensidad a lo largo de los años. Este resultado es relevante en cuanto a valorar

cómo de eficiente ha sido el EU ETS a la hora de potenciar la inversión en enerǵıas

limpias por parte de las empresas españolas. En este contexto, sostenemos que si se
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hubieran promovido las inversiones verdes, aunque un aumento de la producción se

relacionara con una disminución en su superávit de derechos, esta disminución, debido

a niveles más altos de producción habŕıa sido más baja cada año. Considerando que la

intensidad no disminuyó si no que, por el contrario, aumentó, podemos deducir indi-

rectamente que las compañ́ıas, en general, no tomaron ninguna medida a fin de reducir

sus emisiones de CO2.

En segundo lugar, partimos de la base que el número de EUAs que una compañ́ıa

debe comprar o puede vender en términos relativos, es un componente más del coste

de producción de la compañ́ıa y que, por tanto, influye en los resultados económicos

empresariales. Al analizar el efecto del SA sobre la rentabilidad hemos descubierto que

un aumento en el SA, lo que implicaŕıa comprar menos EUAs en el mercado, no tiene

un efecto significativo en la rentabilidad empresarial. Este resultado sugiere que el

precio EUAs durante el peŕıodo 2005-2011 no era bastante alto para crear una ventaja

en costes para aquellas compañ́ıas que tomaran medidas para reducir su CO2.

Los resultados del segundo ensayo (Caṕıtulo 3) tienen especial relevancia para la

gerencia de las compañ́ıas del sector energético a fin de ayudarles a tomar decisiones

relacionadas con mejoras de la eficacia y también en términos de adecuación de su CO2

con relación a los objetivos bajo el EU ETS. Por otra parte, los resultados obtenidos

son importantes en el contexto de diseño de poĺıticas económicas y medioambientales,

ya que la economı́a entera depende del sector energético y, por tanto, un aumento

de los gastos de las centrales eléctricas repercute en un aumento de los gastos de

las empresas en todos los sectores. Las empresas del sector energético desempeñan

un papel importante en el logro de los objetivos medioambientales 2020 de la Unión

Europea: deben mejorar su eficacia y controlar sus emisiones de CO2 bajo el EU ETS.

Aśı, nuestra investigación tiene dos objetivos: medir la eficacia técnica y ambiental

de las compañ́ıas y descubrir hasta qué punto la eficacia medioambiental determina el

número de EUAs que una empresa debe comprar en el mercado o se puede permitir

vender y de esta manera conocer hasta qué punto la eficiencia medioambiental permite
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un ahorro de costes relacionados con la buena performance medioambiental.

En cuanto al primero de estos objetivos, obtenemos dos conclusiones principales.

En primer lugar, que las empresas grandes son más eficientes en términos técnicos,

mientras que las pequeñas lo son en términos de eficacia medioambiental, lo que sugiere

que los gerentes de grandes empresas debeŕıan de prestar más atención a sus ineficien-

cias ambientales, aspecto en el que son peores que las de menor tamaño, mientras que

las pequeñas empresas se debeŕıan concentrar más en poĺıticas de mejora de eficacia

técnica. En segundo lugar, las cuatro compañ́ıas responsables de más de 50 % de las

emisiones totales en la UE ETS (”las 4 Grandes”), si bien están bien posicionadas en

lo que se refiere a la eficacia técnica, están, por otra parte, a la cola de la clasificación

ambiental. Esta constatación debeŕıa ser muy importante para poĺıticos, ya que estas

compañ́ıas representan más de la mitad de las emisiones de la UE ETS y tienen resul-

tados de eficiencia medioambiental muy pobres con relación a las otras compañ́ıas. El

órgano encargado de diseñar debeŕıa prestar más atención a estas compañ́ıas individ-

ualmente, a fin de descubrir las causas de este comportamiento ambiental negativo.

En cuanto al segundo objetivo, se ha obtenido un resultado relevante: hay un

efecto negativo del nivel de ineficiencia en el superávit de derechos de emisión. Esto

es, cuanto más ineficiente es una compañia, más EUAs debe comprar, sugiriendo de

manera análoga que mayores niveles de eficiencia suponen un ahorro en costes para la

empresa.

El objetivo del tercer ensayo (Caṕıtulo 4) era descubrir cómo se vinculan la

inversión en el EU ETS y la inversión en acciones del sector energético. En concreto,

nos concentramos en la interrelación entre la EUA, las acciones de compañ́ıas de enerǵıa

limpia y de petróleo y gas. De nuestro estudio se obtienen tres conclusiones principales.

En primer lugar, nuestros resultados sugieren que los precios de los EUA son un

incentivo, por una parte, para la demanda de acciones de empresas de enerǵıa limpia,

y por otra, para la desinversión en empresas de petróleo y gas. Esta es una señal

positiva con respecto a la poĺıtica de cambio climático, y más concretamente del papel
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del EU ETS. Con este resultado, indirectamente confirmamos que el EU ETS ha sido

útil para fomentar la inversión en enerǵıas limpias, y que los mercados de enerǵıa limpia

son sensibles a las poĺıticas europeas en materia de cambio climático. Esto, a su vez,

sugiere que esas poĺıticas tienen credibilidad en el mercado.

En segundo lugar, a partir de nuestros resultados se podŕıa concluir que el perfil

del inversor es diferente para cada uno de los tres activos considerados. Aśı parece

que el precio de los EUA viene determinado en mayor medida por la demanda de la

empresas que deben acudir al mercado para rendir cuentas de sus emisiones, mientras

que las decisiones de inversión de aquellos que acuden a este mercado con el único

fin de obtener una rentabilidad, no tienen una participación significativa en el proceso

de formación del precio del EUA. Por otra parte, nuestros resultados sugieren que los

inversores en enerǵıa limpia tienen en cuenta un número relavante de factores antes de

tomar una decisión de inversión, mientras que los inversores en empresas del sector del

petróleo y gas parecen solo preocuparse de las variables fuertemente relacionadas con

esas acciones, tales como el precio del petróleo y la actividad industrial. Desde nuestro

punto de vista, esto se explica por el hecho de que la inversión en enerǵıa limpia es

visto por los inversores como de mayor riesgo, en comparación con las industrias de

petróleo y gas, sectores más tradicionales y consolidados.

En tercer lugar, llegamos a la conclusión de que los precios de las acciones de

las empresas del sector petróleo y gas y las de enerǵıa limpia se mueven en la misma

dirección. Por lo tanto, no parece haber mucho margen para la diversificación en una

cartera formada por dichas acciones.
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Alberola, E., Chevallier, J., Chèze, B., 2013. ”Price drivers and structural breaks

in European carbon prices 2005-2007”. Energy Policy, 36, 787-797.

Apergis and Payne, 2014. ”Renewable energy, output, CO2 emissions, and fossil

fuel prices in Central America: Evidence froma nonlinear panel smooth transition vec-

tor error correction model”. Energy Economics, 42, 226-232.

Aragón-Correa, J.A., Hurtado-Torres, N., Sharma, S., GarcÃa-Morales, V.J.,
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Appendix A

Appendix for the second chapter

Copula estimation

nombresYXZ = strvcat('SA','ATR','SIZE','RISK','SECTOR');

nombresXZ = nombresYXZ(2:end,:);

nombresZ = nombresYXZ(3:end,:);

nombresXZ1 = strvcat('Cte',nombresXZ);

nombresZ1 = strvcat('Cte',nombresZ);

n = length(X);

nsim = 1000;

indicesn = 1:nsim;

nfigura = 1;

Z = (Z−ones(n,1)*mean(Z))./(ones(n,1)*sqrt(var(Z)));

[betaYXZ,stats YXZ] = robustfit([X,Z],Y);

strcat('Variable dependiente',char(1),nombresYXZ(1,:))

strcat('Variable',char(1),'Coeficiente',char(1),'Standard Error',char(1),

'pvalue');

aux = [];

for i=1:size(betaYXZ)

aux = strvcat(aux,strcat(nombresXZ1(i,:),char(1),num2str(betaYXZ(i)),

char(1),num2str(stats YXZ.se(i)),char(1),num2str(stats YXZ.p(i))))

;
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end

aux

strcat('R2',char(1),num2str(1−(stats YXZ.robust sˆ2)/var(Y)))

[betaYZ,stats YZ] = robustfit(Z,Y);

strcat('Variable dependiente',char(1),nombresYXZ(1,:))

strcat('Variable',char(1),'Coeficiente',char(1),'Standard Error',char(1),

'pvalue');

aux = [];

for i=1:size(betaYZ)

aux = strvcat(aux,strcat(nombresZ1(i,:),char(1),num2str(betaYZ(i)),

char(1),num2str(stats YZ.se(i)),char(1),num2str(stats YZ.p(i))));

end

aux

strcat('R2',char(1),num2str(1−(stats YZ.robust sˆ2)/var(Y)))

res YZ = Y − [ones(n,1),Z]*betaYZ;

[betaXZ,stats XZ] = robustfit(Z,X);

strcat('Variable dependiente',char(1),nombresYXZ(2,:))

strcat('Variable',char(1),'Coeficiente',char(1),'Standard Error',char(1),

'pvalue');

aux = [];

for i=1:size(betaXZ)

aux = strvcat(aux,strcat(nombresZ1(i,:),char(1),num2str(betaXZ(i)),

char(1),num2str(stats XZ.se(i)),char(1),num2str(stats XZ.p(i))));

end

aux

strcat('R2',char(1),num2str(1−(stats XZ.robust sˆ2)/var(X)))

res XZ = X − [ones(n,1),Z]*betaXZ;

figure(nfigura);

nfigura = nfigura+1;

h0 = scatterhist(res XZ,res YZ);

set(get(gca,'Children'),'Marker','*');

xlabel(strcat('Residuos regresion',char(1),etiquetaX));
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ylabel(strcat('Residuos regresion',char(1),etiquetaY,char(1)));

v = ksdensity(res YZ,res YZ,'function','cdf');

u = ksdensity(res XZ,res XZ,'function','cdf');

figure(nfigura);

nfigura = nfigura+1;

scatterhist(u,v);

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u');

ylabel('v')

%

%

Rho gaussian = copulafit('Gaussian',[u v]);

AIC gaussian = −2*sum(log(copulapdf('Gaussian',[u v],Rho gaussian)))+1;

[Rho t,nu t] = copulafit('t',[u v],'Method','ApproximateML');

AIC t = −2*sum(log(copulapdf('t',[u v],Rho t,nu t)))+2;

alfa Clayton = copulafit('Clayton',[u v]);

AIC Clayton = −2*sum(log(copulapdf('Clayton',[u v],alfa Clayton)))+1;

alfa Frank = copulafit('Frank',[u v]);

AIC Frank = −2*sum(log(copulapdf('Frank',[u v],alfa Frank)))+1;

alfa Gumbel = copulafit('Gumbel',[u v]);

AIC Gumbel = −2*sum(log(copulapdf('Gumbel',[u v],alfa Gumbel)))+1;

%

%

aux = strcat('Gaussian',char(1),num2str(AIC gaussian));

aux = strvcat(aux,strcat('t',char(1),num2str(AIC t)));

aux = strvcat(aux,strcat('Clayton',char(1),num2str(AIC Clayton)));

aux = strvcat(aux,strcat('Frank',char(1),num2str(AIC Frank)));

aux = strvcat(aux,strcat('Gumbel',char(1),num2str(AIC Gumbel)));

aux

AIC optimo = min([AIC gaussian;AIC t;AIC Clayton;AIC Frank;AIC Gumbel]);

if AIC optimo==AIC gaussian
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strcat('Copula optima:','Gaussiana')

Rho gaussian = copulafit('Gaussian',[u v])

Tau Copula = copulastat('Gaussian',Rho gaussian);

[Tau Kendall,pvalor] = corr(res YZ,res XZ,'type','Kendall');

strcat('Tau de Kendall:',num2str(Tau Kendall),char(1),'pvalor:',

num2str(pvalor))

strcat('Tau de Kendall de la copula:',num2str(Tau Copula(1,2)))

Rho Copula = copulastat('Gaussian',Rho gaussian,'type','Spearman');

[Rho Spearman,pvalor] = corr(res YZ,res XZ,'type','Spearman');

strcat('Rho de Spearman:',num2str(Rho Spearman),char(1),'pvalor:',

num2str(pvalor))

strcat('Rho de Spearman de la copula:',num2str(Rho Copula(1,2)))

figure(nfigura);

nfigura = nfigura+1;

w = copularnd('Gaussian',Rho gaussian,nsim);

scatterhist(w(:,1),w(:,2));

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u copula');

ylabel('v copula');

figure(nfigura);

nfigura = nfigura+1;

y1 = ksdensity(res YZ,w(:,2),'function','icdf');

x1 = ksdensity(res XZ,w(:,1),'function','icdf');

[Rho Pearson,pvalor] = corr(res YZ,res XZ);

strcat('Correlacion de Pearson:',num2str(Rho Pearson),char(1),'pvalor

:',num2str(pvalor))

indices = indicesn(˜isnan(x1)&˜isnan(y1));

Rho Copula = corr(x1(indices),y1(indices));

strcat('Correlacion de Pearson de la copula:',num2str(Rho Copula))

h = scatterhist(x1,y1);

xmin = min(min(res XZ),min(x1));
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xmax = max(max(res XZ),max(x1));

ymin = min(min(res YZ),min(y1));

ymax = max(max(res YZ),max(y1));

set(get(gca,'Children'),'Marker','*');

xlabel(strcat(etiquetaX,char(1),'copula'));

ylabel(strcat(etiquetaY,char(1),'copula'));

set(h(1),'Xlim',[xmin xmax]); set(h(2),'Xlim',[xmin xmax]);

set(h0(1),'Xlim',[xmin xmax]); set(h0(2),'Xlim',[xmin xmax]);

intervalo = [ymin ymax];intervaloXY = get(h(1),'Ylim'); set(h(1),'

Ylim',intervalo);

intervaloY = get(h(3),'Ylim');set(h(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

intervaloXY = get(h0(1),'Ylim'); set(h0(1),'Ylim',intervalo);

intervaloY = get(h0(3),'Ylim');set(h0(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

regresion cuantil(X,Y,Z,nombresZ,'Gaussian',nfigura,[0.75, xmax],[

ymin,ymax],etiquetaX,etiquetaY);

end

if AIC optimo==AIC t

strcat('Copula optima:','t de Student')

[Rho t,nu t,nu ci] = copulafit('t',[u v])

Tau Copula = copulastat('t',Rho t,nu t);

[Tau Kendall,pvalor] = corr(res YZ,res XZ,'type','Kendall');

strcat('Tau de Kendall:',num2str(Tau Kendall),char(1),'pvalor:',

num2str(pvalor))

strcat('Tau de Kendall de la copula:',num2str(Tau Copula(1,2)))

Rho Copula = copulastat('t',Rho t,nu t,'type','Spearman');

[Rho Spearman,pvalor] = corr(res YZ,res XZ,'type','Spearman');

strcat('Rho de Spearman:',num2str(Rho Spearman),char(1),'pvalor:',

num2str(pvalor))

strcat('Rho de Spearman de la copula:',num2str(Rho Copula(1,2)))
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figure(nfigura);

nfigura = nfigura+1;

w = copularnd('t',Rho t,nu t,nsim);

scatterhist(w(:,1),w(:,2));

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u copula');

ylabel('v copula');

figure(nfigura);

nfigura = nfigura+1;

x1 = ksdensity(res XZ,w(:,1),'function','icdf');

y1 = ksdensity(res YZ,w(:,2),'function','icdf');

[Rho Pearson,pvalor] = corr(res YZ,res XZ);

strcat('Correlacion de Pearson:',num2str(Rho Pearson),char(1),'pvalor

:',num2str(pvalor))

indices = indicesn(˜isnan(x1)&˜isnan(y1));

Rho Copula = corr(x1(indices),y1(indices));

strcat('Correlacion de Pearson de la copula:',num2str(Rho Copula))

h = scatterhist(x1,y1);

xmin = min(min(res XZ),min(x1));

xmax = max(max(res XZ),max(x1));

ymin = min(min(res YZ),min(y1));

ymax = max(max(res YZ),max(y1));

set(get(gca,'Children'),'Marker','*');

xlabel(strcat(etiquetaX,char(1),'copula'));

ylabel(strcat(etiquetaY,char(1),'copula'));

set(h(1),'Xlim',[xmin xmax]); set(h(2),'Xlim',[xmin xmax]);

set(h0(1),'Xlim',[xmin xmax]); set(h0(2),'Xlim',[xmin xmax]);

intervalo = [ymin ymax];intervaloXY = get(h(1),'Ylim'); set(h(1),'

Ylim',intervalo);

intervaloY = get(h(3),'Ylim');set(h(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY
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(1)]);

intervaloXY = get(h0(1),'Ylim'); set(h0(1),'Ylim',intervalo);

intervaloY = get(h0(3),'Ylim');set(h0(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

regresion cuantil(X,Y,Z,nombresZ,'t',nfigura,[0.75, xmax],[ymin,ymax

],etiquetaX,etiquetaY);

end

if AIC optimo==AIC Clayton

strcat('Copula optima:','Clayton')

[alfa Clayton,alfa ci] = copulafit('Clayton',[u v])

Tau Copula = copulastat('Clayton',alfa Clayton);

[Tau Kendall,pvalor] = corr(res YZ,res XZ,'type','Kendall');

strcat('Tau de Kendall:',num2str(Tau Kendall),char(1),'pvalor:',

num2str(pvalor))

strcat('Tau de Kendall de la copula:',num2str(Tau Copula))

Rho Copula = copulastat('Clayton',alfa Clayton,'type','Spearman');

[Rho Spearman,pvalor] = corr(res YZ,res XZ,'type','Spearman');

strcat('Rho de Spearman:',num2str(Rho Spearman),char(1),'pvalor:',

num2str(pvalor))

strcat('Rho de Spearman de la copula:',num2str(Rho Copula))

figure(nfigura);

nfigura = nfigura+1;

w = copularnd('Clayton',alfa Clayton,nsim);

scatterhist(w(:,1),w(:,2));

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u copula');

ylabel('v copula');

figure(nfigura);

nfigura = nfigura+1;

x1 = ksdensity(res XZ,w(:,1),'function','icdf');
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y1 = ksdensity(res YZ,w(:,2),'function','icdf');

[Rho Pearson,pvalor] = corr(res YZ,res XZ);

strcat('Correlacion de Pearson:',num2str(Rho Pearson),char(1),'pvalor

:',num2str(pvalor))

indices = indicesn(˜isnan(x1)&˜isnan(y1));

Rho Copula = corr(x1(indices),y1(indices));

strcat('Correlacion de Pearson de la copula:',num2str(Rho Copula))

h = scatterhist(x1,y1);

xmin = min(min(res XZ),min(x1));

xmax = max(max(res XZ),max(x1));

ymin = min(min(res YZ),min(y1));

ymax = max(max(res YZ),max(y1));

set(get(gca,'Children'),'Marker','*');

xlabel(strcat(etiquetaX,char(1),'copula'));

ylabel(strcat(etiquetaY,char(1),'copula'));

set(h(1),'Xlim',[xmin xmax]); set(h(2),'Xlim',[xmin xmax]);

set(h0(1),'Xlim',[xmin xmax]); set(h0(2),'Xlim',[xmin xmax]);

intervalo = [ymin ymax];intervaloXY = get(h(1),'Ylim'); set(h(1),'

Ylim',intervalo);

intervaloY = get(h(3),'Ylim');set(h(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

intervaloXY = get(h0(1),'Ylim'); set(h0(1),'Ylim',intervalo);

intervaloY = get(h0(3),'Ylim');set(h0(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

regresion cuantil(X,Y,Z,nombresZ,'Clatyon',nfigura,[0.75, xmax],[ymin

,ymax],etiquetaX,etiquetaY);

end

if AIC optimo==AIC Frank

strcat('Copula optima:','Frank')

[alfa Frank,alfa ci] = copulafit('Frank',[u v])

Tau Copula = copulastat('Frank',alfa Frank);
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[Tau Kendall,pvalor] = corr(res YZ,res XZ,'type','Kendall');

strcat('Tau de Kendall:',num2str(Tau Kendall),char(1),'pvalor:',

num2str(pvalor))

strcat('Tau de Kendall de la copula:',num2str(Tau Copula))

Rho Copula = copulastat('Frank',alfa Frank,'type','Spearman');

[Rho Spearman,pvalor] = corr(res YZ,res XZ,'type','Spearman');

strcat('Rho de Spearman:',num2str(Rho Spearman),char(1),'pvalor:',

num2str(pvalor))

strcat('Rho de Spearman de la copula:',num2str(Rho Copula))

figure(nfigura);

nfigura = nfigura+1;

w = copularnd('Frank',alfa Frank,nsim);

scatterhist(w(:,1),w(:,2));

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u copula');

ylabel('v copula');

figure(nfigura);

nfigura = nfigura+1;

y1 = ksdensity(res YZ,w(:,2),'function','icdf');

x1 = ksdensity(res XZ,w(:,1),'function','icdf');

[Rho Pearson,pvalor] = corr(res YZ,res XZ);

strcat('Correlacion de Pearson:',num2str(Rho Pearson),char(1),'pvalor

:',num2str(pvalor))

indices = indicesn(˜isnan(x1)&˜isnan(y1));

Rho Copula = corr(x1(indices),y1(indices));

strcat('Correlacion de Pearson de la copula:',num2str(Rho Copula))

h = scatterhist(x1,y1);

xmin = min(min(res XZ),min(x1));

xmax = max(max(res XZ),max(x1));

ymin = min(min(res YZ),min(y1));

ymax = max(max(res YZ),max(y1));
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set(get(gca,'Children'),'Marker','*');

xlabel(strcat(etiquetaX,char(1),'copula'));

ylabel(strcat(etiquetaY,char(1),'copula'));

set(h(1),'Xlim',[xmin xmax]); set(h(2),'Xlim',[xmin xmax]);

set(h0(1),'Xlim',[xmin xmax]); set(h0(2),'Xlim',[xmin xmax]);

intervalo = [ymin ymax];intervaloXY = get(h(1),'Ylim'); set(h(1),'

Ylim',intervalo);

intervaloY = get(h(3),'Ylim');set(h(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

intervaloXY = get(h0(1),'Ylim'); set(h0(1),'Ylim',intervalo);

intervaloY = get(h0(3),'Ylim');set(h0(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

regresion cuantil(X,Y,Z,nombresZ,'Frank',nfigura,[0.75, xmax],[ymin,

ymax],etiquetaX,etiquetaY);

end

if AIC optimo==AIC Gumbel

strcat('Copula optima:','Gumbel')

[alfa Gumbel,alfa ci] = copulafit('Gumbel',[u v])

Tau Copula = copulastat('Gumbel',alfa Gumbel);

[Tau Kendall,pvalor] = corr(res YZ,res XZ,'type','Kendall');

strcat('Tau de Kendall:',num2str(Tau Kendall),char(1),'pvalor:',

num2str(pvalor))

strcat('Tau de Kendall de la copula:',num2str(Tau Copula))

Rho Copula = copulastat('Gumbel',alfa Gumbel,'type','Spearman');

[Rho Spearman,pvalor] = corr(res YZ,res XZ,'type','Spearman');

strcat('Rho de Spearman:',num2str(Rho Spearman),char(1),'pvalor:',

num2str(pvalor))

strcat('Rho de Spearman de la copula:',num2str(Rho Copula))

figure(nfigura);

nfigura = nfigura+1;

w = copularnd('Gumbel',alfa Gumbel,nsim);
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scatterhist(w(:,1),w(:,2));

xlim([0 1]);

ylim([0 1]);

set(get(gca,'Children'),'Marker','*');

xlabel('u copula');

ylabel('v copula');

figure(nfigura);

nfigura = nfigura+1;

y1 = ksdensity(res YZ,w(:,2),'function','icdf');

x1 = ksdensity(res XZ,w(:,1),'function','icdf');

[Rho Pearson,pvalor] = corr(res YZ,res XZ);

strcat('Correlacion de Pearson:',num2str(Rho Pearson),char(1),'pvalor

:',num2str(pvalor))

indices = indicesn(˜isnan(x1)&˜isnan(y1));

Rho Copula = corr(x1(indices),y1(indices));

strcat('Correlacion de Pearson de la copula:',num2str(Rho Copula))

h = scatterhist(x1,y1);

xmin = min(min(res XZ),min(x1));

xmax = max(max(res XZ),max(x1));

ymin = min(min(res YZ),min(y1));

ymax = max(max(res YZ),max(y1));

set(get(gca,'Children'),'Marker','*');

xlabel(strcat(etiquetaX,char(1),'copula'));

ylabel(strcat(etiquetaY,char(1),'copula'));

set(h(1),'Xlim',[xmin xmax]); set(h(2),'Xlim',[xmin xmax]);

set(h0(1),'Xlim',[xmin xmax]); set(h0(2),'Xlim',[xmin xmax]);

intervalo = [ymin ymax];intervaloXY = get(h(1),'Ylim'); set(h(1),'

Ylim',intervalo);

intervaloY = get(h(3),'Ylim');set(h(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

intervaloXY = get(h0(1),'Ylim'); set(h0(1),'Ylim',intervalo);
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intervaloY = get(h0(3),'Ylim');set(h0(3),'Ylim',[intervaloY(1)+

intervalo(1)−intervaloXY(1) intervaloY(1)+intervalo(2)−intervaloXY

(1)]);

regresion cuantil(X,Y,Z,nombresZ,'Gumbel',nfigura,[0.75, xmax],[ymin,

ymax],etiquetaX,etiquetaY);

end

Quantile regression curve estimation

function yred = regresion cuantil(x0,y0,z,nombresz,familia,nfigura,xlim1,

ylim1,etiquetaX,etiquetaY,contador)

n = size(x0,1);

colores = zeros(7,3);

incr = (0.8−0.1)/6;

tonos = 0.1:incr:0.8;

for i=1:7

colores(i,:) = tonos(8−i);

end

p = [0.025 0.5 0.975];

if size(z,1)>0

zcuantiles = zeros(7,size(z,2));

for i=1:size(z,2)

zcuantiles(:,i) = prctile(z(:,i),[5 10 25 50 75 90 95]);

end

end

if size(z,1)>0

[betaYZ,˜,y,˜] = regress(y0,[ones(n,1),z]);

[betaXZ,˜,x,˜] = regress(x0,[ones(n,1),z]);

else

x = x0;

y = y0;

end

u = ksdensity(x,x,'function','cdf');
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[ured,indices] = sort(u);

% if size(z,1)>0

% zred = [ones(n,1),z(indices,:)];

% end

v = ksdensity(y,y,'function','cdf');

%

% Estimacion de la copula

%

switch familia

case 'Gaussian'

Rho = copulafit('Gaussian',[u v]);

parametro = Rho(1,2);

case 't'

[Rho t,nu t] = copulafit('t',[u v],'Method','ApproximateML');

parametro = [Rho t(1,2),nu t];

otherwise

parametro = copulafit(familia,[u v]);

end

%

%

vred = zeros(length(ured),length(p));

for j=1:length(p)

for i=1:length(ured)

vred(i,j) = regresion cuantil copula(familia,parametro,ured(i),p(

j));

end

end

%

%

xred = ksdensity(x,ured,'function','icdf');

% xred = x0;

yred = zeros(length(ured),2*length(p));

for j=1:length(p)
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yred(:,j) = ksdensity(y,vred(:,j),'function','icdf');

end

%

%

if size(z,1)>0

zmediana = [1,median(z)];

xred = zmediana*betaXZ+xred;

for j=1:length(p)

yred(:,j) = zmediana*betaYZ+yred(:,j);

end

[xred,indices] = sort(xred);

yred = yred(indices,:);

end

%

%

if size(z,1)>0

for i=1:size(z,2)

figure(nfigura);

nfigura = nfigura+1;

plot(x0,y0,'w*');

xlim(xlim1);

ylim(ylim1);

xlabel(etiquetaX);

ylabel(etiquetaY);

zaux = ones(size(zcuantiles,1),1)*median(z);

zaux(:,i) = zcuantiles(:,i);

zaux = [ones(size(zcuantiles,1),1),zaux];

ymin = Inf;

ymax = −Inf;

for j=1: size(zcuantiles,1)

xred1 = zaux(j,:)*betaXZ+xred;

yred1 = zaux(j,:)*betaYZ+yred(:,2);

[xred1,indices] = sort(xred1);
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yred1 = yred1(indices,:);

line(xred1,yred1,'LineStyle','−','Color',colores(j,:));

ymin = min(ymin,min(yred1));

ymax = max(ymax,max(yred1));

end

xlim(xlim1);

ylim([ymin ymax]);

title(nombresz(i,:));

end
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Appendix B

Appendix for the third chapter

B.1 Descriptive analysis

Table B.1: Descriptive statistics of Sales (millions of euros)

mean median skewness kurtosis JB (p-value)*
2005 346.21 37.22 4.13** 21.37** 0.00
2006 325.76 28.30 4.27** 22.7**1 0.00
2007 330.10 27.32 4.22** 22.27** 0.00
2008 314.44 21.12 4.32** 23.21** 0.00
2009 304.25 16.93 4.41** 24.16** 0.00
2010 307.29 16.94 4.38** 23.86** 0.00
2011 320.33 23.07 4.28** 22.84** 0.00
2012 335.03 26.23 4.17** 21.73** 0.00

Note: Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.
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Table B.2: Descriptive statistics of Labour (millions of euros)

mean median skewness kurtosis JB (p-value)
2005 33.75 5.017 3.48** 15.51** 0.00
2006 32.87 4.38 3.53** 15.93** 0.00
2007 32.56 3.77 3.53** 15.98** 0.00
2008 31.78 3.35 3.55** 16.13** 0.00
2009 30.01 2.87 3.69** 17.30** 0.00
2010 29.72 2.75 3.69** 17.23** 0.00
2011 30.65 2.94 3.63** 16.73** 0.00
2012 31.58 2.95 3.55** 16.08** 0.00

Note: Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.

Table B.3: Descriptive statistics of Amortisation (millions of euros

mean median skewness kurtosis JB (p-value)
2005 17.39 1.79 4.81** 30.90** 0.00
2006 16.68 1.47 4.92** 32.16** 0.00
2007 16.98 1.47 4.86** 31.44** 0.00
2008 15.89 1.32 5.09** 34.09** 0.00
2009 15.68 1.25 5.05** 33.84** 0.00
2010 16.00 1.32 4.99** 33.03** 0.00
2011 16.62 1.38 4.88** 31.74** 0.00
2012 16.98 1.38 4.81** 30.81** 0.00

Note:Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.

Table B.4: Descriptive statistics of Supplies(millions of euros)

mean median skewness kurtosis JB (p-value)
2005 312.10 39.44 4.04** 20.56** 0.00
2006 285.52 34.08 4.23** 22.20** 0.00
2007 223.39 13.47 4.83** 28.64** 0.00
2008 213.70 78.53 4.92** 29.70** 0.00
2009 208.37 72.77 5.00** 30.57** 0.00
2010 208.49 71.15 5.00** 30.57** 0.00
2011 220.54 10.97 4.85** 28.83** 0.00
2012 229.75 12.11 4.73** 27.52** 0.00

Note:Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.
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Table B.5: Descriptive statistics of Emissions (thousands of Tonnes of CO2)

mean median skewness kurtosis JB (p-value)
2005 814.72 60.53 7.01** 59.73** 0.00
2006 466.94 21.43 9.34** 10.45** 0.00
2007 456.50 19.18 9.42** 10.61** 0.00
2008 414.33 34.34 9.89** 11.69** 0.00
2009 403.98 31.02 10.02** 11.98** 0.00
2010 398.48 29.24 10.09** 12.15** 0.00
2011 419.77 32.91 9.97** 11.62** 0.00
2012 424.44 30.44 9.75** 11.36** 0.00

Note: JB: Jarque-Bera. Statistically different from zero at the ** 5% significance level

Table B.6: Descriptive statistics of SA

mean median skewness kurtosis JB (p-value)
2005 0.11 0.10 -0.35** 6.86** 0.00
2006 0.08 0.20 -8.86** 88.33** 0.00
2007 0.033 0.17 -9.32** 98.30** 0.00
2008 0.10 0.10 -1.19** 6.6**1 0.00
2009 0.16 0.13 -1.17** 7.92** 0.00
2010 0.18 0.17 -0.80** 5.73** 0.00
2011 0.17 0.17 -1.20** 7.36** 0.00
2012 0.1451 0.1652 -3.9308** 29.9846** 0.00

Note:Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.

Table B.7: Descriptive statistics of ATR

ATR mean median skewness kurtosis JB (p-value)
2005 1.20 0.67 9.06** 85.54** 0.00
2006 1.06 0.84 6.99** 73.52** 0.00
2007 1.10 0.89 2.88** 17.42** 0.00
2008 1.10 0.91 6.54** 68.82** 0.00
2009 1.04 0.86 8.51** 103.25** 0.00
2010 1.12 0.88 10.91** 146.99** 0.00
2011 1.16 1.01 1.41**** 6.14** 0.00
2012 1.11 0.91 1.15 4.43** 0.00

Note: Statistically different from zero at the ** 5% significance level. JB: Jarque-Bera.
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B.2 Bayesian estimation

B.2.1 Prior distribution of Θ

Given that we use a Bayesian approach, it is necessary to describe the prior distribution

of the parameters of the model.

Let Θ = (β, δ, γ, τy, τb,Ω
−1) be the parameters of the model. Their prior distri-

butions are the following:

♦ Prior of β and δ:

 β

δ

 ∼ TN10,R+×R+


 0

0

 ,

 Hβ
0 0

0 hδ0


 (B.2.1)

where TN denotes the Truncated Normal distribution,H0 = 0.0001I10 and R+×R+ is

the region where the regularity conditions on (β, δ) are met.

♦ Prior of γ:

γ ∼ N6 (0,Ω⊗ V ) (B.2.2)

where ⊗ denotes the kronecker product and V = c

 a− 2
3

0

0 I2

, with a=3, d=4,

c=1. This values are taken from Fernández et al. (2002).

♦ Prior of Ω:

Ω−1 ∼ Wishart3(υ0, S0) (B.2.3)

where S0 = 0.65I3 and ν0 = 6.This values are taken from Fernández et al. (2002).

♦ Prior of (τy, τb):
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τy ∼ Γ

(
ny
2
,
nyS

2
y

2

)
, τb ∼ Γ

(
nb
2
,
nbS

2
b

2

)
(B.2.4)

 β

δ

, (τy, τb)
′ and (γ,Ω−1)′ are assumed to be independent.

B.2.2 Posterior distribution of Θ

P (Θ |Data) ∝ L (Θ |Data) · P (Θ) ∝ L (Θ |Data) · [β] [δ] [τy] [τb] [ γ |Ω−1 ] ∝

∝
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As this distribution is not analytically tractable we employ MCMC methods, more

specifically, the Gibbs sampling. To do so, we need the full conditionals of our param-

eters.

B.2.3 Full conditionals

♦τy|Data, Θ−{τy} ∼ Gamma (A, B)

A =
ny +

∑N
i=1 Ti

2
B =

nyS
2
y +

∑N
i=1

∑Ti
t=1

(
yi,t − x′i,tβ + zi

)2
2

(B.2.1)
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♦τb|Data, Θ− {τb} ∼ Gamma (C, D)

C =
nb +

∑N
i=1 Ti

2
D =

nbS
2
b +

∑N
i=1

∑Ti
t=1 (bit − yitδ − υi)2

2

(B.2.2)

♦β|Data, Θ− {β} ∼ TN∀x∈R+ (MEAN, V AR)

V AR =

[(
Hβ

o

)−1
+ τy

(
N∑
i=1

Ti∑
t=1

xitx
′
it

)]−1
MEAN = V AR · τy

N∑
i=1

Ti∑
t=1

(yit + zi)xi,t

(B.2.3)

♦δ|Data, Θ− {δ} ∼ TNR+xR+ (MEAN, V AR)

V AR =

[
1

hδo
+ τb

N∑
i=1

Ti∑
t=1

yit

]
;MEAN = V AR · τb

N∑
i=1

Ti∑
t=1

yit (bit − υi)
(B.2.4)

♦γ|Data, {γ} ∼ 1∏N
i=1C (Giγ, Ω−1)

· N (MEAN , V AR )

MEAN = V AR ·
N∑
i=1

G′iΩ
−1EiV AR =

(
Ω−1 ⊗ V −1 +

N∑
i=1

G′iΩ
−1Gi

)−1 (B.2.5)

♦Ei|Data, Θ ∼ TN2,R+xR+ (A, B)

A = B ·

Ω−1Giγ +

 τy

(∑Ti
t=1 x

′
i,tβ −
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)

 (B.2.6)
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♦Ω−1|Data, Θ− {Ω−1} ∝ 1∏N
t=1C (Giγ1Ω−1)

·
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(B.2.7)
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B.3 Matlab Code.

Bayesian stochastic production frontier estimation

%

%

N = size(y,1);

T = size(y,2);

p = size(x,3);

p1 = size(xb,3);

d = size(G,2)/2;

nsim = 100000;

% Distribucion a priori

Hbeta = 0.0001*eye(p);

Hdelta = 0.0001*eye(p1);

ny = 1;

sy = 1;

nb = 1;

sb = 1;

nu0 = 6;

S0 = diag(0.65*ones(2,1));

c = 1;

a = 3;

V = (1/c)*diag([1/(a−(d−1)/3);ones(d−1,1)]);

% Creacion de variables de salida e iniciacion del algoritmo

betas = zeros(p,nsim);

deltas = zeros(p1,nsim);

gammas = zeros(2*d,nsim);

z = zeros(N,nsim);

v = zeros(N,nsim);

Omegas = zeros(2,2,nsim);

tausy = (1/sy)*ones(nsim,1);

tausb = (1/sb)*ones(nsim,1);
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for i=1:nsim

Omegas(:,:,i) = S0;

end

%

%

for it =2:nsim

if rem(it,50)==0

it

end

%

%

MED = zeros(p,1);

VAR = Hbeta;

for i=1:N

indices = Ti{i};

for j=1:length(indices)

t = indices(j);

MED = MED + (y(i,t)+z(i,it−1))*reshape(x(i,t,:),p,1);

VAR = VAR + tausy(it−1)*reshape(x(i,t,:),p,1)*reshape(x(i,t

,:),p,1)';

end

end

VAR = inv(VAR);

MED = tausy(it−1)*VAR*MED;

betas(:,it) = TNormal(MED,VAR);

% disp(strvcat('Betas:',num2str(betas(:,it)')))

%

%

MED = zeros(p1,1);

VAR = Hdelta;

for i=1:N

indices = Ti{i};

for j=1:length(indices)
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t = indices(j);

MED = MED + (b(i,t)−v(i,it−1))*reshape(xb(i,t,:),p1,1);

VAR = VAR + tausb(it−1)*reshape(xb(i,t,:),p1,1)*reshape(xb(i,

t,:),p1,1)';

end

end

VAR = inv(VAR);

MED = tausb(it−1)*VAR*MED;

deltas(:,it) = TNormal(MED,VAR);

% disp(strcat('Delta:',num2str(deltas(:,it)')))

%

%

for i=1:N

indices = Ti{i};

VAR = reshape(Omegas(:,:,it−1),2,2)+length(indices)*diag([tausy(

it−1) tausb(it−1)]);

VAR = inv(VAR);

MED = reshape(Omegas(:,:,it−1),2,2)*reshape(G(:,:,i),2,2*d)*

gammas(:,it−1);

for j=1:length(indices)

t = indices(j);

MED = MED + [tausy(it−1)*(reshape(x(i,t,:),1,p)*betas(:,it)−y

(i,t));tausb(it−1)*(b(i,t)−reshape(xb(i,t,:),1,p1)*deltas

(:,it))];

end

MED = VAR*MED;

aux = TNormal(MED,VAR);

z(i,it) = aux(1);

v(i,it) = aux(2);

end

% disp(strvcat('z:',num2str(z(:,it)')))

% disp(strvcat('v:',num2str(v(:,it)')))

%
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%

n = ny;

df = ny*sy;

for i=1:N

indices = Ti{i};

n = n + length(indices);

for j=1:length(indices)

t = indices(j);

df = df + (y(i,t)−reshape(x(i,t,:),1,p)*betas(:,it)+z(i,it))

ˆ2;

end

end

tausy(it) = gamrnd(0.5*n,2/df);

% disp(strcat('tauy:',num2str(tausy(it))))

%

%

n = nb;

df = nb*sb;

for i=1:N

indices = Ti{i};

n = n + length(indices);

for j=1:length(indices)

t = indices(j);

df = df + (b(i,t)−reshape(xb(i,t,:),1,p1)*deltas(:,it)−v(i,it

))ˆ2;

end

end

tausb(it) = gamrnd(0.5*n,2/df);

% disp(strcat('taub:',num2str(tausb(it))))

%

%

MED = zeros(2*d,1);

VAR = kron(reshape(Omegas(:,:,it−1),2,2),V);
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for i=1:N

MED = MED + reshape(G(:,:,i),2,2*d)'*reshape(Omegas(:,:,it−1)

,2,2)*[z(i,it);v(i,it)];

VAR = VAR + reshape(G(:,:,i),2,2*d)'*reshape(Omegas(:,:,it−1)

,2,2)*reshape(G(:,:,i),2,2*d);

end

VAR = inv(VAR);

MED = VAR*MED;

VAR = 0.5*(VAR+VAR');

gamma estrella = mvnrnd(MED,VAR)';

K = 0;

Sigma = inv(reshape(Omegas(:,:,it−1),2,2));

Sigma = 0.5*(Sigma+Sigma');

for i=1:N

mu = reshape(G(:,:,i),2,2*d)*gammas(:,it−1);

mu estrella = reshape(G(:,:,i),2,2*d)*gamma estrella;

K = log(ProbNormC1(mu estrella,Sigma))−log(ProbNormC1(mu,Sigma));

end

u = unifrnd(0,1);

if u<exp(K)

gammas(:,it) = gamma estrella;

else

gammas(:,it) = gammas(:,it−1);

end

% disp(strvcat('Gammas:',num2str(reshape(gammas(:,it),d,2)')))

%

%

n = N+nu0−2;

phi = gammas(1:d,it);

psi = gammas((d+1):end,it);

S = nu0*S0 + [phi'*V*phi,phi'*V*psi;phi'*V*psi,psi'*V*psi];

for i=1:N

aux = [z(i,it);v(i,it)]−reshape(G(:,:,i),2,2*d)*gammas(:,it);
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S = S + aux*aux';

end

S = inv(S);

S = 0.5*(S+S');

Omega estrella = wishrnd(S,n);

Sigma estrella = inv(Omega estrella);

Sigma estrella = 0.5*(Sigma estrella + Sigma estrella');

Sigma= inv(reshape(Omegas(:,:,it−1),2,2));

Sigma = 0.5*(Sigma+Sigma');

K = 0;

for i=1:N

mu = reshape(G(:,:,i),2,2*d)*gammas(:,it);

K = log(ProbNormC1(mu,Sigma estrella))−log(ProbNormC1(mu,Sigma));

end

u = unifrnd(0,1);

if u<exp(K)

Omegas(:,:,it) = Omega estrella;

else

Omegas(:,:,it) = Omegas(:,:,it−1);

end

% disp(strvcat('Omega:',num2str(reshape(Omegas(:,:,it),2,2))))

end

clear it i aux S u Omega estrella Sigma estrella Sigma gamma estrella;

clear phi psi K mu mu estrella n MED VAR df t;

clear N T S0 V a c d hdelta HBeta indices j nb nsim nu0;

clear ny p sb sy p1;
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Appendix C

Appendix for the fourth chapter

C.1 Appendix

Table C.1: VAR lag length selection. Akaike criteria

VAR selection. Akaike criteria
Lag 0 1 2 3 4 5 6 7 8
AIC -17.3 -17.4 -17.4 -17.4 -17.4 -17.4 -17.4 -17.4 -17.3

Table C.2: GARCH selection. Akaike criteria

GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2)
D.VECH -18.07052 -18.07551 -18.12053 -18.02853
CCC -18.07400 -18.07451 -18.08692 -18.08392
BEKK -17.99557 -18.01967 -18.00677 -17.70
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