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Prologo.

Existen multitud de problemas en matematicas y en fisica en los que la presencia de simetrias en
los sistemas dindmicos que los describen permiten simplificar su estudio. Para la resolucién de estos
problemas es comtin el uso de herramientas como por ejemplo el cdlculo de variaciones, la teoria de
control éptimo o las técnicas de optimizacién en espacios de funciones.

En este trabajo, nos centraremos en los problemas de interpolacion y aproximacién en variedades
diferenciables, los cuales tienen especial interés en campos como la robética o la animacién 3D. En
este dltimo, interpretando el conjunto de estados de un sistema dindmico como una variedad diferen-
ciable, se pueden disefiar trayectorias de objetos que vienen dadas por curvas satisfaciendo ciertas
condiciones, y asi producir animaciones por ordenador. Se buscan trayectorias sin cambios bruscos, y
por tanto, estas curvas han de ser diferenciables en todos sus puntos, por lo que el problema planteado
no es un simple problema de interpolacién en el que podamos unir puntos mediante geodésicas, ya
que de esta forma obtendriamos curvas que aunque fueran continuas, podrian no ser diferenciables en
estos puntos de unién. Esto se traducirfa en cambios instantdneos en la velocidad y en la velocidad
angular durante la animacion.

Para solventar éste problema, en vez de trabajar con geodésicas se trabaja con ciertas curvas que
minimizan el funcional de la integral de la aceleracion total del sistema. A estas curvas se les llama
polinomios cubicos.

Uno de los métodos utilizados para la resolucién de este tipo de problemas, se basa en realizar los
célculos en la propia variedad diferenciable para luego trasladar los resultados al espacio reducido.
Este método es eficaz, pero en muchos casos es largo y tedioso.

En este trabajo se hard uso de la teoria de algebroides de Lie para obtener un método de resolucién
alternativo para este tipo de problemas, trabajando directamente en el espacio reducido y veremos
que permite obtener una descripcion muy adecuada y ventajosa. Ademads, aplicaremos los resultados
obtenidos a interpolacién y aproximacién en variedades diferenciables.

Empezaremos introduciendo la teoria de algebroides de Lie y veremos que las ecuaciones de
Lagrange nos permiten generalizar las ecuaciones cldsicas de Lagrange para un sistema lagrangiano,
asi como el cdlculo de variaciones en algebroides de Lie en el caso en el que se trabaje con un funcional
de orden uno, para aplicarlo al problema concreto del sélido rigido. Se presentard la teoria andloga en
el caso del cdlculo de variaciones de orden superior en algebroides de Lie con la intencién de aplicarlo
al caso de los splines cubicos en so(3).

Por dltimo, se calculard la diferencial segunda de ambos funcionales, con la intencién de realizar
un andlisis que se pospone para un posterior trabajo sobre las condiciones necesarias y suficientes de
un minimo.
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Capitulo 1

Formalismo lagrangiano y calculo
variacional en algebroides de Lie.

La teoria de algebroides de Lie ha demostrado ser una herramienta util en la formulacién y el
andlisis de muchos problemas en fisica y matematicas. En lo que respecta a la mecédnica geométrica,
una de las principales caracteristicas de los algebroides de Lie es que, bajo el mismo formalismo,
uno puede describir situaciones muy diferentes. En este primer capitulo presentaremos algunos con-
ceptos basicos sobre teoria de dlgebroides de Lie asi como algunos ejemplos de algebroides de Lie
e incluiremos algunos resultados de célculo diferencial y morfismos de algebroides de Lie. Introdu-
ciremos el formalismo lagrangiano en algebroides de Lie y veremos que las ecuaciones de Lagrange
para un sistema lagrangiano en un algebroide de Lie se pueden obtener mediante calculo variacional
seleccionando un espacio de curvas adecuado en un algebroide de Lie.

1.1. Algebroides de Lie.

Una estructura de algebroide de Lie sobre un fibrado 7: E — M consiste en una estructura de
algebra de Lie (Sec(E),[ , ]) en el C*(M)-médulo de secciones de E, junto con un morfismo de
fibrados vectoriales p: E — TM sobre la identidad en M, llamado ancla, que satisfacen la siguiente
condicién de compatibilidad

[@fﬂ] = (P(U)f)n +f[0,77]

paratoda o,n € Sec(E)y f € C*(M).

Un algebroide de Lie se puede pensar como la generalizacién del fibrado tangente de M y un
elemento a de E como una velocidad generalizada, de forma que la verdadera velocidad v se obtiene
aplicando el ancla a a, es decir

v=p(a).

Ejemplos

= FIBRADO TANGENTE. Tomando E = TM y p = idrpy donde las secciones son los campos
vectoriales de X(M) y el conmutador es el conmutador de campos vectoriales, tenemos que el
fibrado tangente es un algebroide de Lie.

» ALGEBRA DE LIE. Tomando E = g un dlgebra de Lie, M = {e} un tnico punto, TM = {0}.
Con p = 0, un élgebra de Lie tiene estructura de algebroide de Lie, de forma que las secciones
son los propios elementos del dlgebra y el corchete coincide con el del dlgebra de Lie.

= ALGEBROIDE DE ATIYAH. Sea p: Q — M un fibrado principal de un grupo G. Denotemos por
®: GxQ— Qalaaccién libre de G en Q y denotemos por T®: G x TQ — TQ a la accién
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2 Capitulo 1. Formalismo lagrangiano y cdlculo variacional en algebroides de Lie.

tangente de G en TQ. Podemos definir una proyeccion 79|G: TQ/G — M = Q/G, donde las
secciones de esta proyeccion se identifiquen con los campos vectoriales en Q que son invariantes
bajo la accién de ®. Ahora, teniendo en cuenta que todo campo vectorial G-invariantes en Q
es p-proyectable y que el corchete de Lie usual de campos vectoriales es cerrado con respecto
a los campos vectoriales G-invariante, podemos inducir una estructura de algebroide de Lie en
TQ/G. Este algebroide de Lie se llama algebroide de Atiyah asociado al G-fibrado principal
p:Q—M.

Un sistema de coordenadas locales (x') en la variedad diferenciable M y una base local {eq} de
secciones de E determinan un sistema de coordenadas locales (x',y%*) en el fibrado E: un elemento
a € E tiene coordenadas (x',y%) si el punto base m = 7(a) tiene coordenadas (x) y en la base {eq (m)}
de E,, las componentes de a son y*, es decir a = y%eq(m).

El ancla y el conmutador quedan localmente determinados por ciertas funciones locales pf, y ng
en M, llamadas funciones de estructura, y que estdn dadas por

i 8
plea) = Pa 5

[ea,eﬁ] = Cgﬁ ey.

Las funciones de estructura satisfacen las siguientes ecuaciones

_dpk 90! .
J ﬁ_ J pa_ i Y
Pag 7 P, = PyCop

. dCy oCY, ocY

i~ By i Ty i__apB u 0 M _
Pa ox! +Pp oxi Py ox! +CB?’CX‘“+C7’O‘CI‘3/H+COCI3C7‘//M_07

llamadas ecuaciones de estructura, que equivalen localmente a la condicién de compatibilidad y a la
identidad de Jacobi.

Definicion 1.1.1. Dada una seccion & de E, la derivada de Lie con respecto a G es la aplicacion
ds : Sec(E) — Sec(E) dada por
den =[o,n],

para toda seccion N € Sec(E).

La derivada de Lie se extiende de la forma habitual de manera que actia sobre secciones de un
fibrado tensorial sobre E.

Fijada una seccién ¢ € Sec(E), y denotando por ¢; al flujo local del campo vectorial p (o) € X(E),
existe un campo vectorial lineal X£ € X(E) que proyecta sobre p (), de manera que su flujo local ®;
en E es lineal, proyecta sobre ¢, y para toda seccién ©® de un fibrado tensorial sobre E se tiene que

d
d(y@ == 7@3“’@ .
ds s=0
Definicién 1.1.2. EIl campo vectorial lineal XE € X(E) asociado a la derivacion dg, y cuyo flujo es
®,, se llama levantamiento completo de la seccion ¢ a E.

En coordenadas locales, la expresion del levantamiento completo de ¢ = 6%¢(, a E es de la forma

~ d _ 0
XE=plot s+ (GO‘ +cgyyﬁoy)8—ya. (1.1)

En la expresion anterior, y en lo que sigue en este trabajo, para una funcién f € C*(M) se denotara
por f la funcién en E dada por

cuya expresion coordenada es

.0 .
f=SL it

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



1.2. Ecuaciones de Euler-Lagrange. 3

Definicion 1.1.3. Se llama levantamiento vertical de ¢ al campo vectorial X}, € X(E), definido por
d
X3(a)f = 4 fla-+so(ea)]

para todo a € E y toda funcion F € C*(E).

En coordenadas locales la expresion de X} es

d

vV _ 0
Xs=0 EN

Definicion 1.1.4. Una curva a:1 C R — E se dice que es admisible si satisface 7(t) = p(a(t)), donde

v(t) = t(a(t)) es la curva base.

Si la representacién coordenada de a(t) es (x'(¢),y*(t)) entonces la curva a es admisible si y solo

si satisface .
dx’ .
= Pl (1)

paratodor € 1.

1.2. Ecuaciones de Euler-Lagrange.

Dada una funcién L € C*(E), que llamaremos funcién Lagrangiana o simplemente Lagrangiano,
se puede definir un sistema dindmico en £, dado localmente por el sistema de ecuaciones diferenciales

d (LN 9Ly p_ i 9L
dr \ 9y ) T gyrtap? T Pagi (12)
= pay®.

Estas ecuaciones 1.2 se denominan ecuaciones de Lagrange en un algebroide de Lie y fueron definidas
por A. Weinstein [W].

Se supondré que la funcién Lagrangiana L es regular, en el sentido de que la matriz {%] es
regular en todo punto. Esta condicién garantiza que el sistema de ecuaciones diferenciales anterior
puede expresarse en forma normal.

En primer lugar veremos cémo podemos caracterizar de manera intrinseca las soluciones del sis-

tema diferencial anterior.

Proposicion 1.2.1. Una curva a:1 C R — E es una solucion de las ecuaciones de Lagrange si y solo
si es una curva admisible y satisface

d

—(HaLa) - LgLla) =0 (13)
para toda seccion ¢ € Sec(E) y para todot € I.

Demostracién. En coordenadas locales, la curva a(t) = (x'(¢),y%*(t)) es admisible si y solo si satisface
la segunda de las ecuaciones 1.2. Ademds, tenemos por un lado que

y _ a9l
FyLa(1) = X5 (La(0) = 022
y por otro lado
ZyeL(a(t)) = X5 (L(a(t) = p&c"‘aL(fy» + (0% +C P Gy)aL;jg)) -

d
) IL(a(r)
paGaT+GaW+CngBGYW'

Autor: Ana Rojo Echeburia



4 Capitulo 1. Formalismo lagrangiano y cdlculo variacional en algebroides de Lie.

Sustitiyendo en 1.3, se tiene que

d( qOL\ [ 4oLa(t) . JLa() . 5 ,9La))
dt <G 8y0‘> {aa dxi o ay% +Cpyy o dy* =0
siy solo si

. dL d ( JL . q9L(a(t)) . dL(a(t)) dL(a(t))

a Y= o [ Y=\ S Lo _ <a _ % Bsri\E))

¢ 8y“+6 dt <8y0‘> o0 T ¢ ay% Cppro dy* 0
siy solo si

0.

d ( JL ; dL(a(1)) dL(a(t))
=) g IV oY p =Gt o
{dl‘ <ay°‘> “  ox +Capy ay% ©
Como las funciones 6 son arbitrarias, se deduce que la curva a(t) = (x'(¢),y%(t)) satisface 1.3
si y solo si satisface 1.2. O

Aplicacion a los ejemplos de algebroides vistos antes.

= FIBRADO TANGENTE: Como p = idry, tomando una base coordenada e; = % como base
de secciones del fibrado tangente 73, : TM — M, las ecuaciones anteriores son las ecuaciones

clasicas de Euler-Lagrange .
dx' _
dar Y

dfoLy o _g
dr \ dy oxi
» ALGEBRA DE LIE: Como p = 0, las ecuaciones son las siguientes
d ( JL dL
— (== )=’ YP=—==o0.
dt <3y“> ap gy

Estas ecuaciones fueron obtenidas por H. Poincaré [P], y se suelen denominar ecuaciones de
Euler-Poincaré.

= ALGEBROIDE DE ATIYAH: Las ecuaciones que se obtienen son las denominadas ecuaciones de
Lagrange-Poincaré que no vamos a dar en este trabajo (para mds informacién véase [M1]).

1.3. Descripcion variacional

El conjunto de curvas admisibles
d
A (J,E)y=3a:J—E|poa= E(Toa)

es una subvariedad de Banach de una variedad de Banach de curvas diferenciables cuyas curvas base
son dos veces diferenciables.

Sean (s,t) las coordenadas en R? y sea la aplicacién @ : TR? — E de forma que ® = adt + 8 ds,
donde (a, B) : R? — E cumple que

d d
(X(S,t) =& <a[ (5-7[)) s B(S,t) =¢ <as (SJ)> . (14)

Si y(s,t) = t(a(s,t)) = T(B(s,t)), entonces la aplicacién ® es un morfismo de algebroides de Lie si

ysélosipoa = %’, pofB = %’, y a<gt,ﬁ> - w =dO(a, ) paratodo 6 € secE™.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



1.3. Descripcion variacional 5

En coordenadas locales, la familia (s, ) es (v'(s,t), 0" (s,¢)) y la familia B (s,7) es (¥'(s,1), B* (s,1)).
Como adt + Bds es un morfismo se tiene que

a,yi_ iU
or  Pu®
oV _ ipu 15
x_puﬁ ()
u u

donde las funciones de estructura locales pL y Cf,‘y estdn evaluadas en el punto y(s,?).
Estamos interesados en el caso particular de morfismos llamados E-homotopias.

Definicion 1.3.1. Dos curvas admisibles ay y a; se dicen que son E-homotopicas si existe un morfismo
de algebroides de Lie ® : TI x TJ — E, ® = odt + B ds, de forma que

OC(O,Z‘) = ao(l‘), B(S,l‘o) =0,

a(l,0) = ar(t), bls,1y) =0, (1.6)

donde I = [0,1] y J = [to,11]. Ademds, ® es una E-homotopia desde la curva admisible ay hasta la
curva admisible a,.

En en cdlculo de variaciones en algebroides de Lie las familias de curvas admisibles a(s,) estin
dadas por E-homotopias ¢ : TR? — E de la forma adr + Bds.

El campo variacional 4 o(t)| es el campo vectorial a lo largo de a(t) donde a(t) = .(0,z), y

se denotard Z,(0). Los campos variacionales E,(0) se pueden definir en términos de levantamientos
completos como sigue: Dada una seccidn a lo largo de una curva y(7) tomamos una seccién G(¢) de
E dependiendo del tiempo de forma que G (¢, (t)) = o(t). Asi E,(0) = XE(1,a(1)).

En coordenada locales,

9
dy®

+ (6% + ¢ () ()0 (1))

24(0)(1) = PL(1(1)0" (1) L)an

Cada clase de E-homotopia es una subvariedad diferenciable de Banach de <7 (J,E) y la particién
en clases de equivalencia es una foliacién suave. La distribucion tangente a esa foliacién estd dada por

a(r)

a— F,={E,(0) € T,4/(J,E)|o(tr) =0, o(t;) =0}. (1.8)

La estructura de variedad diferenciable, que se denota por &(J, E) apropiada en el conjunto de curvas
admisibles es la estructura que define la foliacién de homotopia. Fijando los puntos mg,m; € My
considerando el conjunto de curvas admisibles con esos puntos iniciales y finales, se tiene que la
subvariedad diferenciable

PLE) ={ae P(J,E)|t(a(ty)) =mo, t(a(t;)) =m}, (1.9

0

es una subvariedad de Banach de & (J,E).

Las ecuaciones de Euler-Lagrange en un algebroide de Lie admiten una descripcion variacional.
Buscamos puntos criticos de un funcional definido en un espacio de funciones (curvas) adecuado.

Sea el funcional de la forma "

S(a) = [ Lla(o)ar
1o

donde L € C*(E) es un Lagrangiano en un algebroide de Lie E y a(¢) es una curva admisible de forma
que los puntos iniciales y finales estan fijados.

Autor: Ana Rojo Echeburia



6 Capitulo 1. Formalismo lagrangiano y cdlculo variacional en algebroides de Lie.

En coordenadas locales podemos expresar dicho funcional de la forma

fo

tal que x(t9) = mo, x(t) = my, con my,m; € M.
Con la notacidn clasica del calculo de variaciones las variaciones infenitesimales son de la forma

8x' = pg0%,
§y* =6 +CpaPo?,

para una curva o () que cumpla que o (fp) = o (t;) = 0.
Por tanto, la primera variacién del funcional S(a) puede escribirse de la forma

_ 5/{” LE(),y%(2)) dt
_ / " SLOC (), (1)) d

n dL oL .
=/, axla +a—a§ dt
hoL ; ,  OJL
=/, P +8Tz"‘(

(1.10)

aPo?
Cﬁy o’)dt.
Teorema 1.3.2. Sea L € C*(E) un lagrangiano en un algebroide de Lie E y fijemos dos puntos
mgy,m; € M. Conideremos el funcional S(a) = ,f)] L(a(t))dt en P(J,E). Los puntos criticos de la
restriccion de S a la variedad de Banach & (J,E),! son los elementos de la restriccion que cumplen

las ecuaciones de Euler Lagrange 1.2.

Demostracién. Teniendo en cuenta que Z,(fo) = fZ,(0) + foy, para toda funcién f: J — R,
0= ds(a) / {£(1)- (dL(E(0)) + F-(dL(c)) } dr.

Integrando por partes con u = dL(0)) — du = —( dt,ydv=f(t) —=v=f,

1

fo

0=as(@(@(fo)) = [ 1) (aLEalo))+ 5 (an(a))) di+ £ (dn(o))

To

n

= | f()-((6L(a(1))-o(r)) dt.

Io

yaque f(t) = f(n1) = 0.
En la anterior expresion 6L(a) viene dada por

SL(a) = — ((;9;) Pk §§)>+cyﬁ ﬁaL(i)).

Como ésto tiene que cumplirse para toda f y para toda o arbitrarios por el lema fundamental del
célculo de variaciones se tiene que 8L(a) = 0. O

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



Capitulo 2

Funcionales dependientes de derivadas de
orden superior de curvas admisibles en
algebroides de Lie.

En este capitulo, estudiaremos el caso de un funcional en el que le integrando depende de derivadas
de orden superior de curvas admisibles en algebroides de Lie, como por ejemplo, funcionales que
dependan de la aceleracion. Daremos resultados andlogos a los de primer orden.

2.1. Jets de curvas admisibles en un algebroide de Lie.

Como primer paso definiremos los espacios de jets de curvas admisibles, que generalizan los
fibrados tangentes de orden superior también llamados fibrados de k-velocidades.

2.1.1. Fibrados tangentes de orden superior.

Sea M una variedad diferenciable. Para una curva y: R — M, definida en un intervalo abierto
conteniendo al origen en R, se denota por [y]¢ = j’é}/ al k-jet de y en 0. Se dice que es la velocidad
de orden k de . El conjunto de k-velocidades de las curvas en M es una variedad diferenciable 7M
llamada variedad tangente de M de orden k. Nétese que para k = 1 se tiene que 7'M = TM, que es el
fibrado tangente a M.

Un vector tangente a T*M se puede describir por una familia uniparamétrica de curvas y: R?> — M
definida localmente en un entorno del origen en R?. Fijando s y tomando k-jets [1;]¥, se tiene que la

familia ¥(¢) = y(s,t) define una curva en T*M. El vector % AR ‘S:O tangente a esa curvaen s =0 es

tangente a TXM en el punto [}]¥. A este vector lo denotaremos también por [s + [t +— Y(s,t)]*]!.
Para una curva y: R — M denotaremos por y®) ala curva }/(k) : R — T*M que viene dada por

YR () = [s = vt +5)]
2.1.2. Jets de curvas admisibles.
Sea 7 : E — M una algebroide de Lie con ancla p y corchete [, |.
Definicién 2.1.1. Para k€N, denotamos por E* al conjunto de (k—1)-jets de curvas admisibles en E

Ef = {[a]k_l e€T* 'E|a es una curva admisible en E}.

Nétese que E! = E, E>CTE, y en general EXCT* 'E. En el caso en el que E = TM, se tiene que
E'=TM, E> = T?M, etc.. La graduacién se ha elegido de forma que en el caso estindar coincida con
la clasica.



8 Capitulo 2. Funcionales dependientes de derivadas de orden superior de curvas admisibles

Nota: En nuestra notacidn, los superindices indican el espacio en el que el objeto estd definido,
mientras que los indices entre paréntesis indican el nimero de derivadas.

Tomando coordenadas locales (x,y*) en E, una curva admisible a(¢) = (v'(t),a%(t)) esté determi-
nada por la funcién a%(t) y el valor inicial 7(0), ya que la funcién ¥(¢) es la solucién del problema de
valor inicial ¥ = p},(x)a®(t) con condicién inicial x(0) = y(0). Asf el (k — 1)-jet de a(t) corresponde
al (k—1)-jet de la funcién a®(¢) junto con el valor inicial ¥(0).

Las coordenadas naturales (xéj),yf;)) de [a]*~'e€T*'E est4n dadas por

xl(O):’J/(O)7
dr—laoc
y?;)zw(()), r:1,,k—1, (21)
. . . drflaa
xl(r):‘P’r <'}/<0),aa(0),,dtr_l(0)>, I":l,...,k—l,

donde Wi son funciones suaves dependiendo también de forma suave de p/, y de sus derivadas par-
ciales hasta orden r — 1. Estas funciones se obtienen tomando derivadas totales en la condicién de
admisibilidad & = p,a®.

Reciprocamente, dado un punto (xj),y%,...,y¥)ER" x R¥™ la curva admisible (¥(t),a%(t)) dada
pora®(t) = ):]]‘.;(1) %y;?‘ﬂtj y la solucién ¥ () del problema de valor inicial X' = pf, (x)a®(z), x'(0) = xi),
son curvas admisibles cuyo (k — 1)-jet tiene coordenadas (2.1) con d;:f‘la (0)=y%forr=1,...,k—1.

Asi, E¥ es una subvariedad diferenciable suave de T~ 'E de dimensién n+ km, y podemos tomar

un sistema de coordenadas locales (x',y%) de la forma, x' = xéo), y¥ = y?‘r_l).

Dada una curva admisible a: R — E denotamos por a*: R — E* a la jet-prolongacién natural de
a a E¥, dada por
d(t) =[s—a(s+0)] L

Nétese que con las anteriores notaciones a*(¢) = a*~1)(r).

2.2. Campos vectoriales variacionales y levantamiento completos.

Un vector tangente a EX estd determinado por una familia uniparamétrica de curvas admisibles
a(s,t) en E tal que [s — [t — ot(s,¢)]¥"']! es un vector tangente a E* en el punto [t — a(0,1)]* "' €E*.

Recordemos que las familias de curvas admisibles o(s,?) estdn dadas por morfismos de élge-
broides de Lie ¢ : TR? — E de la forma «(s,t)dt + B(s,t)ds. Si a(t) = a(0,t), el campo vectorial
variacional definido por dicha familia es el campo vectorial X (¢) := %(xsk(t) ‘S:O, definido a lo lar-
go de aX(t). Dicho campo variacional puede escribirse en términos de o(t) = B(0,7) y sus derivadas
hasta orden k.

Teniendo en cuenta las ecuaciones 1.5 que satisfacen las componentes de ?(s,7) y ?(s,7) se deduce
que la curva a*(¢) en E* definida por la familia « est4 dada por

U k=1 o1t
gaa v 0

xi:}/(s,t),y‘ll:a“(s,t),y = (8,8),--0s :W(Sat)a

y las coordenadas de Eko (1) := La(t)|  son

i_ o1
- s

Teniendo en cuenta la ecuaciones (1.5)

w' = p}B*(0,1) = p ot (1)

—=

w (0,1), v

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



2.3. Calculo variacional. 9

M aﬁ“ Y Y
W = (0,0) + e (0.0)87(0,1) = 61 (1) + Clya' (1)07(1),

y por tanto se tiene que

drflv.u dr1 )
=L = I e chae,  r=2 ik
Luego
- i J
240 =pu0® o+ Z G110+ ol 5g (22)

Se tiene que ZXo es un operador diferencial en ¢ de orden k (ya que depende de [o] )y y un
operador diferencial en a de orden k — 1 (ya que depende de a*(t) = [h > a(t + h)]¥~").
En la notacién clésica el cdlculo de variaciones se tiene que

S d
8x' = pho®, &y =6"+Chalo”, ayf‘:aéy;{l, forr=2,...,k. (2.3)

2.3. Calculo variacional.

Sea J = [to,#;]CR un intervalo compacto y fijemos dos puntos Ag€EX~! y A|cE*~!. Dado un
lagrangiano L € C*(E*) consideramos el funcional

- / " L(d*(1))dt (2.4)

restringido a las curvas a en E tales que a*~!(t)) = Ao y a1 (1) = A;.

De la misma forma que hemos definido en el primer capitulo para el caso de orden uno una estruc-
tura de variedad diferenciable apropiada para el conjunto de curvas admisibles, en el caso de orden
superior usaremos la misma estructura e impondremos condiciones adicionales en las condiciones de
contorno.

Denotemo por my,m; €M los puntos base ny = Tx_1,0(Ao) y mi = T—1,0(A1).

Teorema 2.3.1. El conjunto
PILEN = {ae@(J,E) |aes Ctyd (1) = Ao, & (1) = A } 2.5)

es una subvariedad de Banach de & (J,E)!
El espacio tangente a Q(J,E)AO en el punto ae,@(J,E)ﬁ(‘) es

mg*

T.2(LE) = {E’;c ‘ o esChy o (1) =0, o (1)) = 0} . (2.6)

Se tiene que las variaciones infinitesimales son de la forma ZXo con [c]*~!(f;) =0, i =0, 1.

Usando la notacion clasica del calculo de variaciones

r—1

8x! = plo®, 5y?:6a+ngy?Gy, Syf‘:F&)‘lx, r=2,...,k,
con £ df, (ti) =0parar=0,...,k—1,i=0,1. En particular, el dltimo grupo de ecuaciones justifica

la regla habitual en el cdlculo de variaciones que permite conmutar el operador 0 con la derivada con
respecto al tiempo.

Para encontrar las condiciones que debe cumplir una curva admisible para ser un punto critico del
funcional mencionado anteriormente procedemos como sigue. Dada una curva admisible a tomamos

Autor: Ana Rojo Echeburia



10 Capitulo 2. Funcionales dependientes de derivadas de orden superior de curvas admisibles

una curva ¢, en & (J,E )ﬁé con @ = a, y la correspondiente E-homotopia o(s,t)dt + B (s,t)ds donde
0,(t) = o (s,t). Tomando la derivada en s = 0,
d

%S(%)

11 d «
= —L(o" (¢
o~ ), ds (05" (1))

ar= [(ar(at ), ko],

s=0 to s s=0

donde d es la diferencial exterior en la variedad diferenciable EX. Definiendo o (¢) = 3(0,¢) tenemos

k
a

que %ask(t)‘ 0= E.0(t) y por tanto
S§S=

(dS(a),Za0) = L 5(ay)

4 -/ " ALt (1)), ZR o (1)) dt. 27

s=0 to

Teniendo en cuenta la expresion coordenada de ZX o (¢) llegamos a

JL oL )
[ Pe0% 4+ = (6“ +C§‘Yy’f o’)+ Zé Hedr T (6% +ngylf o’)| dt

(dS(a),E40) :/”

4]

P o
dx! 9Y$
Un calculo elemental pero muy largo, realizando integracién por partes un gran nimero de veces, y

utilizando que las variaciones y sus derivadas hasta orden r — 1 se anulan en los extremos, permite
escribir la expresion anterior en la forma

1
dS(a)(E,0) = / SLo (a2 (1))a (1) dt, 2.8)
fo
donde se ha escrito L, para denotar la expresion
; OL .

y donde 7, vienen dados

k B drfl 8L
o = ;(—1)’ ldtH <(9y0‘> (2.9)

Teniendo en cuenta estas expresiones, utilizando el lema fundamental del Cédlulo de Variaciones,
se tiene que una curva a es un punto critico de S si y solo si se cumple que 8Ly (a?*(¢)) = 0. Se obtiene
de esta manera el siguiente resultado.

Teorema 2.3.2. Una curva admisible ac & (J,E )2‘(‘) es un punto critico del funcional S: & (JE )g(‘) —
R dado por S(a) = tf)l L(a*(t))dt, siy solo si sus componentes (x'(t),y*(t)) satisfacen el siguiente
sistema de ecuaciones diferenciales

i = poyf
. oL (2.10)

o dr—lya

donde Ty, viene dado por la expresion 2.9, y debe sobreentenderse que y," = ~ .

Las ecuaciones anteriores se denominan ecuaciones de Euler-Lagrange para un lagrangiano de
orden superior definido sobre un algebroide.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



Capitulo 3

Aplicaciones.

En este capitulo aplicaremos la teoria anterior a dos ejemplos concretos en los que el algebroide
de Lie donde se trabaja es el algebra de Lie so(3). En el caso de orden uno obtendremos las ecuaciones
clasicas de Euler-Lagrange del sélido rigido en so(3). En el caso de orden superior, consideraremos
un funcional de orden dos y hallaremos los splines cibicos en so(3) que hacen minima la aceleracion.
Ademads, en ambos casos hallaremos la segunda variacién de los funcionales anteriores con la inten-
cién de realizar un posible futuro estudio de las condiciones suficientes de minimo local asi como de
las secciones de Jacobi y sus propiedades.

3.1. Descripcion de so(3).

El interés en splines ctibicos proviene en parte del problema de animacién de fotogramas en gra-
ficos por ordenador. Por eso, en este trabajo estamos interesados en problemas de interpolacién en el
grupo de rotaciones con respecto al origen en R?, es decir, en el grupo de Lie SO(3), cuya dlgebra de
Lie es so(3) = {B € gl(3)|B = —B"}, es decir, el conjunto de matrices 3 x 3 reales antisimétricas con
el conmutador de matrices como corchete de Lie. Los elementos de so(3) son los generadores infini-
tesimales de las rotaciones, es decir, son los elementos del espacio tangente de SO(3) en la identidad.

Descripcion de so(3) como algebroide de Lie. Sea (E,p,[,]) un algebroide de Lie de forma que
7:E =s50(3) — {e} = M, donde M es una variedad diferenciable base que consta de un tnico punto.
La aplicacién ancla p : E — TM que a cada elemento del dlgebra le asocia un elemento del espacio
tangente es la aplicacion nula, ya que como M = {e} se tiene que TM = {0} y por tanto para toda
seccion o € E se tiene que p(o) = 0.

Identificacién de so(3) con R®. Dado @ € R? consideremos el endomorfismo Fy, : R? — R3 de-
finido por v — @ x v para todo v € R?. La matriz asociada a Fy, con respecto a la base canénica
es

0 —w wm
3 0 —m
) 0

Es obvio que toda matriz antisimétrica define un tinico @ € R>. De esta forma identificamos un ele-
mento @ € so(3) con un elemento @ € R3, donde @ es la matriz asociada a la aplicacién lineal F
con respecto a la bases candnicas. Por tanto,

OV =0 X V. (3.1

11



12 Capitulo 3. Aplicaciones.

La base canénica de R? {e},e,e3} se identifica con la base de so(3) {E},E;, E3} donde

00 0 0 0 1 0 -1 0
EE=|l00 -1 |, = 0 00],EB=[1 0 0
0 1 00 0 0 0

o

-1

Propiedad 3.1.1. Como so(3) tiene el conmutador de matrices como corchete de Lie, se cumplen las
relaciones
[ElaEZ] - E37 [E37E1} - E27 [E2aE3} - El-

Demostracion. En efecto,

[E1,Ey] = E\Ey — EXE) =

0 0 O 0 0 1 0 0 1 0 0 O
= 0 0 -1 0 0 0 |- 0 00 00 -1 |=
01 O -1 0 0 -1 0 O 01 O
0 00 010 0 -1 0
=1 00 000 ])]=]1 0 0 |=E
0 0O 0 00 0 0 O
[E3,E1] = E3E\ —E\E3 =
0 -1 0 00 O 00 O 0 -1 0
=11 0 O 00 —1]—-100 -1 1 0 0 |=
0 0 O 01 0 01 O 0 0 O
0 0 1 0 00 0 0 1
~(ooo]looo|=| 0 00]|=5
0 0O 1 00 -1 0 0
[E2,E3] = E2E3 — E3Ep =
0 0 1 0 -1 0 0 -1 0 0 0 1
= 0 00 1 0 00— 1 0 O 0 0 0 |=
-1 0 O 0O 0 O 0 0 -1 0 0
0 0O 0 00 0 0
=10 00 001 ])]=100 -1 |=E
010 00 0 01 0
O
Propiedad 3.1.2. EI corchete de Lie de so(3) cumple ademds que
[037MA]S0(3) = C(TX\M,
para todo @y v en R3.
Demostracion. En efecto,
ik
OXu=| 0 @ 03 = (0u;—uns, 03U —uz0,O U —ujd).
up Uz us

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



3.2. Caso orden uno. Sélido rigido. 13

Entonces -
O x u = (wuz —ur@3)E1 + (031 — uz @) Er + (01uy —ujon)E3 =
0 U — Oy W3u] — Uz
=| ou—um 0 Uy 3 — W3
Uz — 3u; WUz — U3 0
Por otro lado tenemos que
0 —-wo
»= w3 0 — )
—n W 0
0 —u3 wu
in= us 0 —-um
—up  uj 0
Luego
[@,0] = &i—id =
0 — 3 (05) > ( 0 —u3 up ) < 0 —u3 up ) ( 0 — @3 (07) )
= w3 0 — us3 0 —Uuj — u3 0 —Uuj w3 0 — =
—) [0]] 0 —uyp 231 0 —up 231 0 —n w1 0
—3uU3z —upn u| w3u| —W3u3z — WUy u @ u3 g
= 1up —@3u3 — MU W3u] upn —Uu33 — U1 uz =
oyu3 u3 —upy — 01Uy up 3 up @3 —Upp — WU|
0 Uy — Uy O3u) — U3
= WUy — U 0 Uy 03 — W Ut3 —0xu
u3@) — 3uU;  ruz — Uy 3 0

Propiedad 3.1.3. La identidad de Jacobi
[(ba [ﬁa"}ﬂ + [’27 [‘77 d)]] + [‘Ga [d)’ﬁ“ =0,
se puede expresar en términos del producto vectorial de la forma

OX(uxv)+ux(vxo)+vx(owxu)=0.

3.2. Caso orden uno. Sélido rigido.

Obtencion de las ecuaciones de Euler-Lagrange del solido rigido. Las ecuaciones que describen
el movimiento de un sélido rigido que rota con respecto a un punto fijo en el espacio, es decir, en R,
vienen dadas por

lo+owxIn=0,
donde w es la velocidad angular de dicho sélio e I es el tensor de inercia, que es una matriz simétrica
definida positiva. El propésito de esta subseccidon es hallar dichas ecuaciones aplicando la teoria vista

en el capitulo uno.
Sea g : 50(3) x so(3) — R el producto escalar, con matriz asociada /, de forma que cumple que

g, ) = o - (Ian), con @, € so(3).
Definimos un lagrangiano que depende sélo de la primera derivada

L: so3) - R
® — 1g(w,0) =10 (o),

donde %a) - (Iw) puede interpretarse como la energia cinética del sistema.

Autor: Ana Rojo Echeburia



14 Capitulo 3. Aplicaciones.

Tradicionalmente, para la obtencién de estas ecuaciones, se ha optado por trabajar directamente
en el grupo de Lie SO(3) para luego reducir las ecuaciones obtenidas al dlgebra de Lie so(3). El
desarrollo de este método alternativo puede verse en el apéndice.

El mismo problema variacional puede resolverse de forma mads sencilla con teoria del algebroides
de Lie. Como hemos visto en el capitulo uno, un sistema de coordenadas locales (x) en la variedad
M y la base local {ey} de secciones de un fibrado E determinan un sistema de coordenadas locales
(x',y%) en E. En nuestro caso, (x') son las coordenadas del punto {e}, que tomamos x = 0 e y* son
las componentes de la velocidad angular @.

Para hallar las ecuaciones de Euler-Lagrange en dicho algebroide de Lie, nos planteamos el pro-
blema de hallar los puntos criticos de la integral de la energia cinética del sistema que viene dado por
el funcional

/ L) = [ (0@ (@)

4]
Para ello, calcularemos la primera variacion de dicho funcional y aplicaremos el lema fundamental

del cdlculo de variaciones.
En el caso general de orden uno, las variaciones infinitesimales son de la forma

8x' = pg0%,
Sya = Ga+ ﬁyyﬁcy

donde & es una curva que cumple que o(fy) = o (f;) = 0.
Por tanto en nuestro caso, como la posicién es constante, se tiene que

S5x' =0,

y como y* = 0% se tiene que
0y*=60w%=(6+wx0)%

Calculando la diferencial de S e igualando a cero obtenemos,

4S(0)(Ze 5/L o) dr = /{ SoYdr
~ ["155 G0 G- (e +oxoa= [((6)-6+(10) (@x o)
Aplicando inegracién por partes, u = I — du=1Id df, dv=cdi — v=o0,
0= 5/ Ldi = / { “ (1) o)~ (I(o)-c's+(1w)-(a)><c)}dt.
Como 6(p) = 6 (1) =0, y

—((lo)-0)dr = (Iw) - (o(11) —0(10)) =0

se tiene que

0= B/HLdt - /tl{(la’)) o+ () (0 x o)} dr.

Como (Iw)- (0 x o) =det(low,m,0) =det(0,l0,0)=0-Ioxw)=(Iox0)-c=—(0xIw)-c
0:S/tlLdt:/“{—(Id))-c—(wxla))-c}dt:/tl{—(ld)—kwxla))-c)}dt.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



3.2. Caso orden uno. Sélido rigido. 15

Como ésto ha de cumplirse para toda o arbitraria por el lema fundamental del célculo de varia-
ciones, para que la variacién del funcional S(®) sea cero, ® tiene que satisfacer

Io+wxIn =0, 3.2)

que son las ecuaciones clasicas del movimiento del s6lido rigido.
Asi, se deduce que las curvas que son puntos criticos del funcional definido por la energia cinética
del sistema son aquellas cuya velocidad angular cumple la ecuaciones 3.2

Calculo de la segunda variacion. Con el objetivo de encontrar condiciones suficientes de mini-
mo en futuros trabajos, calculamos la diferencial segunda de S(®). Para ello, calculamos la primera
variacién de dS(o).

25(0) (B0, EoG) = 5/"{—(1m+w < I0)-o}di =
—/{ 5(16)+5(0 x [0))- o} di —
—/{ o(lo)+déwxIo+wxd(lw))- o}dr.

Como hemos visto anteriormente, la expresion de la variacion de la velocidad angular es de la forma
0w =6+  x ¢. A partir de ella podemos obtener la expresion de la variacién de la derivada de la
velocidad angular ya que 6@ = %5(0. Asi

SO=6+DX0+m0XO.

Teniendo en cuenta que la matriz / no depende del tiempo, se deduce a partir de las expresiones
anteriores que la variacién de /o es

d(lo)=I1(0w)=16+1(w X 7),
y que la variacién de /@ es
o(lw)=I1(0w)=I16+I1(®x0)+I(wx 7).
Por tanto, sustituyendo en la expresion de la segunda variacién de S(®),
d*S(0)(E,0,E4,0) = 6/[”{—(1("7+I(a') X0)+I(wXx6)+(6+wx0)x(Iw))-otdi+
+o xo(ld—i—l(a) X 0)))-o}dr =
= 6/[”{—(1("7+1(a') Xo)+l(wx6)+6x(Iw)+(wxo)x (lo)+
+o ><0(Ic'7) +ox(I(wx0o)))-o}de.
Multiplicando por I y por su inversa /!,
d*S(0)(24,0,2,0) = {( [(64+(@x0)+0x6+T (6 xIw))+I " (0x0o)x(Io)+
+1I (a) x (I6))+1" Y@ x (I(o x 6)))) -6} dt.

Como @ cumple que /& + @ x I® = 0, se tiene que @ = —I~' (@ x (Iw)). Sutituyendo, obtenemos
la expresion de la segunda variacién de S(@)

d*S(0)(2,0,2,0) = ‘tl{(—l('o"—i—(—l‘l(a)x(Ia)))><0'—|—a)><6+1‘1(d-><(Iw))—i—
+I'(@xo)x (Io)+T (@ x (I6))+1 Yo x (I(ox 5))))-c}dt.

Autor: Ana Rojo Echeburia



16 Capitulo 3. Aplicaciones.

El término

JO)=6+ (T oxUo)xc+oxc+I'(6x o)+ (0x0c)x o)+
+I Y o x16))+TI (0 x (I(w % 5)))
es importante, puesto que las seccidnes o para la que J(o) = 0, coinciden con lo campos de Jacobi X

en el grupo SO(3) para la métrica invariante a izquiera definida anteriormente por g(®, ®) = ®- (Io).
Asf se tiene que 6 = R~'X con R perteneciente al grupo SO(3).

3.3. Splines cabicos en so(3).

Para hablar de splines cuibicos en so(3), primero es necesario definir una conexién andloga a la
conexién de Levi-Civita, pero que en vez de actuar sobre campos vectoriales, actiie sobre secciones
no dependientes del tiempo y que ademds cumpla:

Ve <o,n>=<Veo,n>+<0,Ven >, (a)
Vcn_vn62[6>n]a (b)
Vof =p(0)f, ()
para toda ¢,m,& seccién en un fibrado E y f una funcion.
Teniendo en cuenta que < 6,1 >= o - (In), donde I es a matriz asociada al producto escalar <, >

lo vamos a aplicar a (a), tres veces , permutando ciclicamente los elementos &, o y 1. Asi obtenemos
las siguientes ecuaciones:

Ve(o-(In)) = (Veo)-(In)+(o- (IVen)),
Vo(n-(I8)) = (Von)-(I6)+(n-(IVsS)),
V(G- (I0)) = (Vy§)-(I6) + (& - (IV50)),

En el caso en el que el algebroide de Lie es un dlgebra de Lie, se tiene que el ancla p = 0. Por tanto,
Vsf =p(0)f =0, para toda funcién f.
Como (o-(In)), (n-(I§)), (& (Io)) son funciones, se tiene que

Ve(o-(In)) =Ve(n-(I5)) = Vy(§ - (10)) = 0.
Por tanto las anteriores ecuaciones, se reducen a las siguientes
(Veo)-(In)+(o-(IVen)) =0 (1),

(Von)-(IS) +(n-(IVsE)) =0 (2),
(Vy8)- (o) +(5-(IVy0)) =0 (3).

Operando (1) + (2) — (3) obtenemos

+
_|_

(Exm)-(Io)+(oxn)-(I&)+(Ve& +Ve0)-(In) =0,
donde se ha tenido en cuenta que V0 — V& = [§, 6] = & x 6. Aplicando, de nuevo, esta propiedad
2VsE-(In)+ (& x0o)-(In)+(Exn)-(Io)+ (0 xn)-(I§) =0.
Denotando In = ¢,
2V6& - C+(Ex0)- S+ (Ex (1)) (Io)+(ax (I710))-(1§) =0,
Vel -+ (Exo)-CHT T IoxE)-(§)+T IEx o) ¢ =0.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



3.3. Splines ctibicos en so(3). 17

Siendo esto cierto para toda seccién { se deduce finalmente que

Vol = %(a « §)+%1—1((§ % 16) + (6 X IE)).

Caso particular: Nos interesa especialmente el caso particular en le que la matriz de inercia es la
matriz identidad. En este caso la expresion anterior se reduce a

Vo€ = —%5 X O (3.3)

para toda seccién 17,0 no dependientes del tiempo en un fibrado E.
Para una seccion o(¢) € E dependiente del tiempo, se tiene que

do 1
Vio=—— = .
e} ; 2cy><

En esta seccién nos centraremos en el problema de encontrar una curva admisible a(z) interpola-
dora, de forma que sea la tinica solucién que minimice el funcional S: #(J,E) — R dado por

3]
S((o):/ <V:0,V;0 > dr.

1o

El funcional S(®) no es mds que la medida de la aceleracion total de la curva. A la curva admisible
que es un punto critico del funcional S(®) la llamaremos polinomio ciibico o spline ciibico. [NHP]

Teorema 3.3.1. Una curva admisible a(t) es un polinomio cubico si'y sdlo si satisface la ecuacion
diferencial
0—0xo=0. (3.4)

Demostracion. En primer lugar, nétese que en el caso en el que () = o(t), se tiene que
1 .
Vo= a)—i(a)x 0) = .
Calculemos la primera variacién

13 1 1
85()(E0) = E/IL((i))dt: 5/1 <V,0,Y,0> d — 3/'@%1;,
fo fo fo

donde o (7) es una seccién con condiciones o (fy) = 6 (t;) =0y 6(fp) =6(t;) =0
Teniendo en cuenta que la variacion de la velocidad angular es de la forma

bw=06+mXxo0,
se tiene que

d . d . .
—00=06+—(0X0)=6+DX0+w®XG.

o =
® dt dt

Asi,
1 1 1 1
5/ L((i))dt:6/ (i)zdt:/ 5@%1;:/ (20(5@)} d =
to Iy Iy 1o

:/t'{zw.(6+wxa+wx6)}dt=
:/t”{z(a).(cs)w).(a)xa)+m.(coxc))}dt=
=2 ["{(@-(6)+ 0 (@x0))} o
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18 Capitulo 3. Aplicaciones.

donde hemos tenido en cuenta que @ - (® X 6) = det(®,®,0) = 0.
Integrando por partes el primer sumando : u = ® - du=&d dt, dv=6dt - v=2,

5/ L(®)dt =2 ttl{jt(a) G)—(6-(d)+a- (wxc‘r))}dt.
Como 6 (fy) = 6(t1) = 0 se tiene que

lld

1o dt(w 6)=w-(6(t1)—6(t)) =0.

Por tanto
6/L ) dr = z/{ &)+ (0x &)} dr = z/{ —i+ (0 x o) &) dr.

Integrando por partes: u = -0+ (O X ©) >du=—-0+dx o dt, dv=6dt >v=0
1

0=96 tlL(d))dt:Z {Z(—d’)—k(a’)xa)))-o—o-(—'cii—i—(d')xa)))}dt.

to I
Como o(fy) = o(t;) = 0 se tiene que

l‘]d

t E(—(I)—i—(a’) X®)) 0= (—0+(®x o)) (a(r)—0c(t)) =0.

Por tanto
5/ @)dr = 2/{ (O x w))-c}dr.

Abhora, aplicando el lema fundamental del cdlculo de variaciones, se tiene que esta integral ha de ser
0 para toda seccién o tal que 6(#p) = 6(#;) = 0 no nula. Por tanto

0— (0 xw)=0.

O 1o que es lo mismo
0=00Xa0.

Reciprocamente, si @ — (& x @) = 0, entonces la variacién del funcional es cero y por tanto tal @
es punto critico de S(®), luego es polinomio cubico. O

Corolario 3.3.2. @ — ® X w es una constante de movimiento.

Demostracion. Como

DOXO)=DOXO+OXO=0X0,
dt

se tiene que
—(O—ox0)=0—0Oxn=0
dt
Luego
O =mxo+cte.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.
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Expresion de la segunda variacion del funcional S(®) y secciones de Jacobi. Las ecuaciones
de Euler-Lagrange nos dan condiciones necesarias para hallar el minimo del funcional S(®). Para
encontrar condiciones suficientes para que una curva admisible sea un minimo local de S(®), es
necesario hallar la segunda variacién de dicho funcional.

Teorema 3.3.3. La expresion de la segunda variacion del funcional S(®) es
1
d’S(0)(2¢0,240) =2 | {(G+OXx0+0OX0+0XG—2(DXG)X ) -0} dr.
to

Demostracion. En el anterior apartado hemos obtenido que la primera variacién del funcional S(®)
es

131
4S(0)(E0) = 2/ (@ (& x 0))-o) dr.
Io
Volviendo a derivar

25(6)(260,560) :2/’15{('@'— (&% 0)-o}di =
:2/’1{(5w—5(a>xw))-a}dx:z/“{(aaj—aa)x 0+ x50)-0) d.

Sabemos que la expresion de la variacién de la velociad angular es de la forma

ow=6+wxo0.

Como 0@ = %50), IOES %5(1) yomw = %56’0, se deduce que
bO=6+0X0+0X0,
0O=0+DOXOC+DXG+OXG+OXE=

=0+WOX0+2(@OX6)+mx3,
D=0+ 0X0+DXG+2(OXG+DOXB)+OXE+OX®=
=04+0x0+3(0Ox06)+3(@x6)+wx0.

Por tanto, sustituyendo en la anterior expresion y teniendo en cuenta que ® = @ X @,

3
8(0)(E60,E00) — 2/ (86— 8 x 0+ x 50) -6} dr =
Io

11
:2/ (6 +@x 6 +3(dx 6)+3(d x 6)+ 0 x &) -0} di—
1o

1
-2 {{(C+0dx0o+2(@x6)+0OXE)x0+DOx(6+wx0))-0}dt =
fo

:2/“{('5'+'d)'><6+3((I)><6)+3(d)><6)+a)><6‘—(6X(D))'G} dr+

1
+2 [ {—(Ox0)X0-2(OXG)x®O— (OXE)XW—BXEG)-o}dt
fo

1
+2 [ {-ox(wx0)) o}dr.
]
31
d*S(®)(240,240) =2 | {(G+dX0+0x0+2(DXSF)+30x6+2(wxF))-c}dr
]

1
+2 [ {2(ox6)xw)-o}dt=
fo
11
=2 {(6+OX0+0x0+2(WDXx6)+20 X6+ DX G+2(wx0T))-0}dt

fo

+2 [ (2200 % 6) x 0)- o} dr.

fo
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20 Capitulo 3. Aplicaciones.
Como 24 (dx6)=2(dx6+dx8)y

/l”{(jt(a) X &) - o} & = (& x &) - (a(t) — o (i) = 0,

se tiene que
1
d*S(®)(240,240) =2 | {(G+dX0+0Xx0+ODXE+0XF+0xF)-0}dt

Io

+2 [M(“2(0 % ) x 0)- o} dr.

Como 4(wx8)=(dxE+(wxF)y
/IO” {(jt(a) X ) - o} dt = (0 x 8)-(o(t1) —o(t)) =0,
se tiene que

i
d*S(®)(240,240) =2 | {(6+dX0+0Xx0+0XG—2(OXS)xw) c}dr.
0]

O]

La expresion
J(O)=6+0X0+0Xx0+®xG—2(dx0F)x, (3.5)

es de gran importancia. Las secciones o a lo largo de @ polinomio cubico que satisfacen la ecuacién
J(o) =0 se llaman secciones de Jacobi.

Corolario 3.3.4. Cualquier polinomio ciibico admite @ como seccion de Jacobi de forma natural.

Demostracion. Sustituyendo ¢ por w en la ecuacién 3.5 e igualando a cero, obtenemos la expresién
O+OXO+0Xx0=0

Derivando la ecuacién 3.4,

d .. ..
E(a)) = E(wx ®),

D=0OXO+DOXD=—0XD+®OX D,
luego es claro que @ es una seccién de Jacobi. 0

Las expresiones obtenidas para la diferencial segunda nos permiten inferir que gran parte de los
resultados conocidos en geometria Riemanniana sobre campos de Jacobi y minimizacién de la lon-
gitud pueden generalizarse para este tipo de sistemas, si bien por falta de tiempo no hemos podido
realizar dicho andlisis.

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.



Apéndice A

Apéndice.

A.1. Obtencion de las variaciones trabajando directamente en el grupo
SO(3).

Se define la velocidad angular @ € so(3) por medio de un elemento de SO(3), @ = R~'R, donde
R € SO(3). Nétese que @ y @ estan relacionados por la ecuacién @v = @ x v, para todo v € R3.
Tomando derivadas variacionales se tiene que

8&=38R'R+R '6R=—-R (SR)R"'R+R'SR.
Sea 6 = R~!8R. Derivando a ambos lados de la ecuacién se tiene que
6=-R'RR'GR+R 'SR.
Por tanto
6+®6=R'5R.
Luego sustituyendo en la expresién de d @, se tiene que
SO=6+06—-60=056+[0,6],
expresién en SO(3). Reduciendo a so(3), obtenemos la expresién de la variacién de @,

Sw=06+mwxo.
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Apéndice B

Resumen.

Existen multitud de problemas en matematicas y en fisica en los que la presencia de simetrias en
los sistemas dindmicos que los describen permiten simplificar su estudio y asi facilitar su resolucién.
En este trabajo, nos centraremos en los problemas de interpolacién y aproximacion en variedades di-
ferenciables, los cuales tienen especial interés en campos como la robdtica o la animacion 3D. En este
ultimo, interpretando el conjunto de estados de un sistema dindmico como una variedad diferenciable,
se pueden disefiar trayectorias de objetos que vienen dadas por curvas satisfaciendo ciertas condicio-
nes, y asi producir animaciones por ordenador. Se buscan trayectorias sin cambios bruscos, y por tanto,
estas curvas han de ser diferenciables en todos sus puntos. Para ello, se trabaja con splines cibicos.
En este trabajo se hard uso de la teoria de algebroides de Lie para obtener un método de resolucién
para este tipo de problemas, trabajando directamente en el espacio reducido y veremos que permite
obtener una descripcién muy adecuada y ventajosa. Ademads, aplicaremos los resultados obtenidos a
la teoria de Splines y otros métodos de interpolacién y aproximacion en variedades diferenciables.

Formalismo Lagrangiano y calculo variacional en algebroides de Lie.

Una estructura de algebroide de Lie sobre un fibrado 7: E — M consiste en una estructura de
algebra de Lie (Sec(E),[ , |) en el C*(M)-mddulo de secciones de E, junto con un morfismo de
fibrados vectoriales p: E — TM sobre la identidad en M, llamado ancla, que satisfacen la siguiente
condicién de compatibilidad [0, fn] = (p(o)f)n + flo,n] paratoda o, € Sec(E) y f € C*(M).

Un sistema de coordenadas locales (x') en la variedad diferenciable M y una base local {eq} de
secciones de E determinan un sistema de coordenadas locales (x',y%*) en el fibrado E: un elemento
a € E tiene coordenadas (x,y%) si el punto base m = 7(a) tiene coordenadas (x') y en la base {eq(m)}
de E,, las componentes de a son y*, es decir a = y%eq(m).

El ancla y el conmutador quedan localmente determinados por ciertas funciones locales p’, y ng

en M, llamadas funciones de estructura, y que estdn dadas por p(eq) = p, %, y por [eq,eg] = CZ: s er-
Las funciones de estructura satisfacen las siguientes ecuaciones

ap; P ;
B P i~y
P P8 ou ~ Pl
acy acy,  .dC
Pi 3131Y+P/3 ayz +py aoiﬁ+C§VCX‘“+C“CB“+C5‘BC¥”_O’

Unacurvaa: I C R — E se dice que es admisible si satisface y(t) = p(a(z)), donde y(¢) = t(a(t))
es la curva base.

Dada una funcién L € C*(E), se puede definir un sistema dindmico en E, dado localmente por el
sistema de ecuaciones diferenciales

d (LY OL , 5 0L
(350 it =i
i = poy®.
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24 Capitulo B. Resumen.

La estructura de variedad diferenciable apropiada para el conjunto de curvas admisibles se denota por
P(J,E). La subvariedad diferenciable &(J,E)yl = {a € P(J,E)|t(a(ty)) = mo, t(a(t1)) =m1},
es una subvariedad de Banach de & (J,E).
Consideramos un funcional de la forma
13
S(a) = [ Lla(o)r
to
donde L € C*(E) es un Lagrangiano en un algebroide de Lie E y a(¢) es una curva admisible de forma
que los puntos iniciales y finales estdn fijados. Con la notacion clésica del cdlculo de variaciones las
variaciones infenitesimales son de la forma 8x' = p 0%, 8y* =%+ ngaﬁ o7, para una curva o (t)
que cumpla que o(f) = (1) = 0.
La primera variacion del funcional S(a) puede escribirse de la forma

h(d (dL - dL(a(t)) dL(a(t))
ds :—/ — (== ) —pl =L+ O P
(@) o {dl <8y°‘> Pa 5 T CapY ay%

Sea L € C*(E) un lagrangiano en un algebroide de Lie E y fijemos dos puntos mg,m; € M.
Conideremos el funcional S(a) = t;‘ L(a(t))dt en & (J,E). Los puntos criticos de la restriccién de S
ala variedad de Banach &2 (J, E);! son los elementos de la restriccion que cumplen las ecuaciones de
Euler Lagrange.

Funcionales dependientes de derivadas de orden superior de curvas admisibles en algebroi-
des de Lie.

Sea M una variedad diferenciable. Para una curva y: R — M, definida en un intervalo abierto
conteniendo al origen en R, se denota por [y]* = j’gy al k-jet de ¥ en 0. Se dice que es la velocidad
de orden k de 7. El conjunto de k-velocidades de las curvas en M es una variedad diferenciable T*M
llamada variedad tangente de M de orden k.Tomando coordenadas locales (x',y*) en E, una curva
admisible a(t) = (Y(t),a*(t)) estd determinada por la funcién a®(¢) y el valor inicial 3(0). El (k— 1)-
jet de a(t) corresponde al (k — 1)-jet de la funcién a®(¢) junto con el valor inicial ¥(0).

Las coordenadas naturales (xéj),yg)) de [a]*~'€T*"'E estin dadas por

xl(O):’J/(O%
drflaoc
yg):F(O), I"Zl,...,k—l,
. . . avrflaoc
Xl(r):lyi, <'}/(0)’aa(0)77dtr_1(0)), I":l,...,k—l,

donde P! son funciones suaves dependiendo también de forma suave de p/, y de sus derivadas parcia-
les hasta orden r — 1.
Un vector tangente a EX estd determinado por una familia uniparamétrica de curvas admisibles
a(s,t) en E tal que [s — [t — ot(s,¢)]¥~!]! es un vector tangente a E* en el punto [t — a(0,1)]* "' €E*.
Se puede ver que

(x]

L g0 & d! 5y 0
RPN 'Y O o Y
a0 =Pa0” o+ Zﬁ Slo® +Cgalo ]ay;x.
r=
En la notacidn clésica el cdlculo de variaciones se tiene que

. . d
ox' =plo?, 5y‘1)‘:6a+ngaﬁGy, 6yf‘255yf‘_1, forr=2,... k.

Sea J = [to,#;]CR un intervalo compacto y fijemos dos puntos Ag€E¥~! y A €E*~!. Dado un lagran-
giano L € C*(E¥) consideramos el funcional

S(a) = /[0 " L (0)) i

Algebroides de lie y sus aplicaciones a la interpolacion en variedades diferenciables.
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restringido a las curvas a en E tales que a*~!(ty) = Ag y a*~!(¢;) = A,. El conjunto
PUEN = {ae@(J,E) laes Cty d* (1) = Ao, & (1) = A, }

es una subvariedad de Banach de #(J,E);l.

Una curva admisible ae #(J, E )ﬁé es un punto critico del funcional S: Z(J,E )ﬁ(‘) — R dado por
S(a) = [;! L(a*(1))dt, si y solo si sus componentes (x'(r),y*(t)) satisfacen el siguiente sistema de
ecuaciones diferenciales , ,

X = peyt
; y B_ i 9L
Toq + ﬂycaﬁyl = p(xﬁa
Aplicaciones.
SOLIDO RIGIDO. Dado por el funcional

s(0)= [ Lo = [ (06 Go@)

fo fo
calculamos la primera variacién

4S(0)(E o) = /t:{—(IdH— 0 x10)-0)}dr.

y obtenemos las ecuaciones del sélido rigido /@ + @ x I® = 0, aplicando el lema fundamental del
calculo de variaciones. Calculamos también la segunda variacion

d*S(0)(Ey0,E40) = tl{(—1(6+ (I (ox (o)) xoc+ox6+I1(6x (o) +1 wx0o)x (Io)+

+I (@ x (I6)+1 Yo x (I(ox 5))))-c}dr.
El término
Jo)=6+ (T ox(Io)xc+ox6+I(6x{In))+I ' (0x0c)x (Io)+
+I (0 x (I16))+1 (o x (I(w x 7))

es importante, puesto que las secciénes ¢ para la que J(o) = 0, se relacionan con lo campos de
Jacobi X en el grupo SO(3) para la métrica invariante a izquiera definida anteriormente por g(®, ®) =
- (lo).
SPLINES CUBICOS EN SO(3).
A partir del funcional
1
S(w) :/ <V:;0,V;0 > dr.
1o
calculamos la primera variacion

55()(E0) = 2/" [(@— (6% 0) -0} dr,

y obtenemos las ecuaciones @ — (& x ®) = 0.
Calculamos también la segunda variacion
1
d’S(0)(2¢0,240) =2 | {(G+OXx0+0OX0+0XG—2(DXS)X ) -0} dr.
to
Para encontrar condiciones suficientes que garanticen que el punto critico es un minimo del fun-
cional S, calculamos la diferencial segunda d>S(®)(Z40,Z,0). De su expresion, se ve deduce que

las secciones o que satisfacen
CH+OXO+OX0+0OXOG—-2(OX6)x0=0,

seran de gran importancia. Una seccién ¢ que satisfaga la ecuacion anterior se llama una seccion de
Jacobi.
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Apéndice C

Abstract.

There are plenty of mathematical and phyical problems in which the presence of symmetries in the
dynamical systems which are describing them, allow us to symplify its study and as a consequence,
make its resolution easier. In this work, we will focus on the interpolation and approximation problems
in differentiable manifolds, which has special interest in fields such as robotics or 3D animation. This
last one, interpreting the set of states of a dynamical system as a differentiable manifold, trajectories
of objects which are given by curves satisfying some conditions can be drawn, and therefore, we will
be able to create computer animations. Smooth trajectories are trying to be found. So this curves have
to be differentiable at every point. In order to achieve this aim, one may work with cubic splines.
Here we will use Lie algebroid theory so as to obtain a resolution method for this kind of problems,
working directly at the reduced space and we will show that it allows us to obtain a very suitable
and advantageous description. Besides, we will apply the obtained results to Splines theory and other
interpolation and aproximation methods in differentiable manifolds.

Lagrangian Formalism and variational calculus in Lie algebroids.

A Lie algebroid structure on a vector bundle 7: E — M is given by a vector bundle map p: E —
TM over the identity in M, called the anchor, together with a Lie algebra structure on the C*(M)-
module of sections of E such that the compatibility condition [o, fn] = (p(o)f)n + f|o,n] is satis-
fied for every f € C*(M) and every o,n € Sec(E).

A local coordinate system (x') in the differentiable manifold M and a local base {e,} of sections
in E determine a local coordinate system (x,y*) on E. An element a € E has coordinates (x',y%) if
the base point m = 7(a) has coordinates (x) and in the base {ey(m)} of E,, the components of a are
v, ie, a=y%eq(m).

The anchor and the bracket are locally determined by the structure functions p!, and ng on M

given by pleqa) = p &% and leasep] = Czcﬁ ey. The structure functions satisfy the following
equations

dpi dp! .

J 7[3 _ Jﬁ _ AT

Pa 7 —Pp 5 — PrCap
L oCy, . ocY,  .IC,
By yo af Ty 0o "y
Pu—i tP g TPy g CyCou+ CraChy +CopCru =0

Acurvea: I C R — E itis said to be admissible if it satisfies ¥(¢) = p(a(t)), where y(t) = t(a(t))
is the base curve.
Given a function L € C*(E), a dynamical system can be defined on E locally by the system of

differential equiations
d (dL dL - dL
— | =— — " VP =pl ==
dt <8y0‘> + ayY ap?” = Pagp
i = poy®.
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28 Capitulo C. Abstract.

The appropriate differentiable manifold structure for the set of admissible curves it is denoted by
P(LE)y ={ac P(J,E)|t(a(ty)) = mo, T(a(t1)) = m},and itis a Banach submanifold of & (/,E).

We consider the functional )

1
S(a) = [ Lla(o)r
1o

where L € C*(E) is a Lagrangian in a Lie algebroid E and a() is and admissible curve where the initial
and final basepoints are fixed. With the classical notation of variational calculus, the infinitesimal
variation are of the form 8x' = p!,6%, §y* = &% +ngaﬁ o7, for a curve o (¢) which satisfies o (tp) =
(0 (l‘ 1) =0.

The first variation of the functional S(a) is

dS(a):—/tO{ <(ij> ol (gp %ﬁa(g))}

Let L € C*(E) be a Lagrangian in a Lie algebroid E with fixed basepoint my,m; € M. We consider
the funtional S(a) = tf)‘ L(a(t))dt in & (J,E). The critical points of the restriction of S in the Banach

submanifold &(J,E);,! are the elements of the restrction that satisfy the Euler Lagrange equations.

Functionals depending on high-order derivatives of admissible curves in Lie algebroids.

Let M be a differentiable manifold. Given a curve y: R — M, defined in an open interval contai-
ning the origin R, we denote by [y]* = jy the k-jet of yin 0. It is said that is the k-order velocity of
7. The set of k-velocities of the curves in M is a differentiable manifold T*M called tangent of M of
order k.Taking local coordinates (x,y%) in E, an admissible curve a(t) = (¥(¢),a®(t)) is determined
by a function a®(¢) and the initial value ¥(0).The (k — 1)-jet of a(t) corresponds to the (k— 1)-jet of
the funtion a®(¢) with the initial value ¥(0).

The natural coordinates (xéj), y?;.)) of [a*~'e€T*~E are given by

xl(O):’J/(O%
drflaoc
yg) - i1 ( )7 r=1,....k—1,
. . . drflaoc
Xl(r):lyi, <'}/(0)’aa(0)77dtr_1(0)), I":l,...,k—l,

where Wi are smooth functions also depending in a smooth way on p, and its partial derivatives until
order r — 1.

A tangent vector to EX is determined by a 1-parametric family of admissible curves o(s,t) in E
such that [s +— [t — o(s,#)]*""]! is a tangent vector to E* at the point [t — «(0,¢)]*~ ' €E*.

It can be shown that

’-7

k d
G: Z drr— 1 +ngaﬁcy]7}q

[x]

Q=

With the classical notation of variational calculus, we have that
Sx' =plo® §y* =6%+CeaPo? 5“—£5“ forr=2 k
*pa ) Y1 = By ) yridl‘ Yr—1> TSy e

Let J = [to,#;]CR be a compact interval and let Ao€E*! and A1 €EF! be two fixed points. Given a
lagrangian L € C(E¥) we consider the funtional

_ / " L)) di
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restricted to the curves a in E such that a*~'(ty) = Ag and @~ (t;) = A;. The set
P(1ENp = {acP(.E) |aes 'y d(19) = Mg, 7 (01) = A1 }

is a Banach submanifold of &7 (J,E)

mgp*
An admissible curve ae Z(J,E )/2(‘) is a critical point of the functional S: & (J,E )ﬁ(‘) — R given
by S(a) = [ L(a¥(t))dt, if and only if its components (x(z),y*(z)) satisfy the following system of

= /i
differential equations

= plyf
o+ B Chpf = pfxg;,
Aplications.
R1GID BODY. Given the functional
)= ["Lo@)a = [ (00)- (o),

we compute the first variation
4l
dS(w)(Eyo)= | {—-(lo+wxIw)-o)}dt.
o

and we obtain the rigid body equations /® + @ X [@ = 0, by applying the fundamental lema of varia-
tional calculus. We also compute the second variation

d*S(0)(E40,2,0) = tl{(—1(6+ (-I''(ox (o)) xoc+wx6+I1(6x{In))+1 Y (wx0c)x (Io)+

+I (@ x (I6))+1 Yo x (I(ox 7))))-c}dr.
The term
Jo)=6+ (TN ox(Io)xo+oxs+I" (6 x (o) +T ' (0x0o)x o)+
+I Y o x16)+I (0 x (I(ox 5)))

is important, since the sections ¢ for which J(o) = 0, matches with the Jacobi fields X in the SO(3)
group for the left invariant metric previously defined by g(®, ) = @ - (Io).

CUBIC SPLINES IN SO(3).
Given the functional

n
S((o):/ <V:;0,V;0 > dr.

fo
we compute the first variation

55(@)(Eo0) = 2/" (G- (dx)-0) d,

and we obtain the ecuations ® — (@ X ®) = 0 by using the fundamental lema of variational calculus.
We also compute the second variation

1
d’S(0)(2¢0,240) =2 | {(G+OXx0+0OX0+0XxG—2(DXG)Xw) -0} dr.
to

If order to find sufficient condition for a minimum of the functional S, we calculate the second
differential d2S(®)(Z40,Z,0). In such expression, we recognize that the vanishing of

C+OXx0+0Xx0+mXx0—-2(@Dx6)xm=0.

for a section ¢ will be fundamental. A section o which satisfies the previous equation is called Jacobi
section.

Autor: Ana Rojo Echeburia
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