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Prólogo.

Existen multitud de problemas en matemáticas y en física en los que la presencia de simetrías en
los sistemas dinámicos que los describen permiten simplificar su estudio. Para la resolución de estos
problemas es común el uso de herramientas como por ejemplo el cálculo de variaciones, la teoría de
control óptimo o las técnicas de optimización en espacios de funciones.

En este trabajo, nos centraremos en los problemas de interpolación y aproximación en variedades
diferenciables, los cuales tienen especial interés en campos como la robótica o la animación 3D. En
este último, interpretando el conjunto de estados de un sistema dinámico como una variedad diferen-
ciable, se pueden diseñar trayectorias de objetos que vienen dadas por curvas satisfaciendo ciertas
condiciones, y así producir animaciones por ordenador. Se buscan trayectorias sin cambios bruscos, y
por tanto, estas curvas han de ser diferenciables en todos sus puntos, por lo que el problema planteado
no es un simple problema de interpolación en el que podamos unir puntos mediante geodésicas, ya
que de esta forma obtendríamos curvas que aunque fueran continuas, podrían no ser diferenciables en
estos puntos de unión. Ésto se traduciría en cambios instantáneos en la velocidad y en la velocidad
angular durante la animación.

Para solventar éste problema, en vez de trabajar con geodésicas se trabaja con ciertas curvas que
minimizan el funcional de la integral de la aceleración total del sistema. A estas curvas se les llama
polinomios cúbicos.

Uno de los métodos utilizados para la resolución de este tipo de problemas, se basa en realizar los
cálculos en la propia variedad diferenciable para luego trasladar los resultados al espacio reducido.
Este método es eficaz, pero en muchos casos es largo y tedioso.

En este trabajo se hará uso de la teoría de algebroides de Lie para obtener un método de resolución
alternativo para este tipo de problemas, trabajando directamente en el espacio reducido y veremos
que permite obtener una descripción muy adecuada y ventajosa. Además, aplicaremos los resultados
obtenidos a interpolación y aproximación en variedades diferenciables.

Empezaremos introduciendo la teoría de algebroides de Lie y veremos que las ecuaciones de
Lagrange nos permiten generalizar las ecuaciones clásicas de Lagrange para un sistema lagrangiano,
así como el cálculo de variaciones en algebroides de Lie en el caso en el que se trabaje con un funcional
de orden uno, para aplicarlo al problema concreto del sólido rígido. Se presentará la teoría análoga en
el caso del cálculo de variaciones de orden superior en algebroides de Lie con la intención de aplicarlo
al caso de los splines cúbicos en so(3).

Por último, se calculará la diferencial segunda de ambos funcionales, con la intención de realizar
un análisis que se pospone para un posterior trabajo sobre las condiciones necesarias y suficientes de
un mínimo.
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Capítulo 1

Formalismo lagrangiano y cálculo
variacional en algebroides de Lie.

La teoría de algebroides de Lie ha demostrado ser una herramienta útil en la formulación y el
análisis de muchos problemas en física y matemáticas. En lo que respecta a la mecánica geométrica,
una de las principales características de los algebroides de Lie es que, bajo el mismo formalismo,
uno puede describir situaciones muy diferentes. En este primer capítulo presentaremos algunos con-
ceptos básicos sobre teoría de álgebroides de Lie así como algunos ejemplos de algebroides de Lie
e incluiremos algunos resultados de cálculo diferencial y morfismos de algebroides de Lie. Introdu-
ciremos el formalismo lagrangiano en algebroides de Lie y veremos que las ecuaciones de Lagrange
para un sistema lagrangiano en un algebroide de Lie se pueden obtener mediante cálculo variacional
seleccionando un espacio de curvas adecuado en un algebroide de Lie.

1.1. Algebroides de Lie.

Una estructura de algebroide de Lie sobre un fibrado τ : E → M consiste en una estructura de
álgebra de Lie (Sec(E), [ , ]) en el C∞(M)-módulo de secciones de E, junto con un morfismo de
fibrados vectoriales ρ : E → T M sobre la identidad en M, llamado ancla, que satisfacen la siguiente
condición de compatibilidad

[σ , f η ] = (ρ(σ) f )η + f [σ ,η ]

para toda σ ,η ∈ Sec(E) y f ∈C∞(M).
Un algebroide de Lie se puede pensar como la generalización del fibrado tangente de M y un

elemento a de E como una velocidad generalizada, de forma que la verdadera velocidad v se obtiene
aplicando el ancla a a, es decir

v = ρ(a).

Ejemplos

FIBRADO TANGENTE. Tomando E = T M y ρ = idT M donde las secciones son los campos
vectoriales de X(M) y el conmutador es el conmutador de campos vectoriales, tenemos que el
fibrado tangente es un algebroide de Lie.

ÁLGEBRA DE LIE. Tomando E = g un álgebra de Lie, M = {e} un único punto, T M = {0}.
Con ρ = 0, un álgebra de Lie tiene estructura de algebroide de Lie, de forma que las secciones
son los propios elementos del álgebra y el corchete coincide con el del álgebra de Lie.

ALGEBROIDE DE ATIYAH. Sea p : Q→M un fibrado principal de un grupo G. Denotemos por
Φ : G×Q→ Q a la acción libre de G en Q y denotemos por T Φ : G×T Q→ T Q a la acción
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2 Capítulo 1. Formalismo lagrangiano y cálculo variacional en algebroides de Lie.

tangente de G en T Q. Podemos definir una proyección τQ|G : T Q/G→ M = Q/G, donde las
secciones de esta proyección se identifiquen con los campos vectoriales en Q que son invariantes
bajo la acción de Φ. Ahora, teniendo en cuenta que todo campo vectorial G-invariantes en Q
es p-proyectable y que el corchete de Lie usual de campos vectoriales es cerrado con respecto
a los campos vectoriales G-invariante, podemos inducir una estructura de algebroide de Lie en
T Q/G. Este algebroide de Lie se llama algebroide de Atiyah asociado al G-fibrado principal
p : Q→M.

Un sistema de coordenadas locales (xi) en la variedad diferenciable M y una base local {eα} de
secciones de E determinan un sistema de coordenadas locales (xi,yα) en el fibrado E: un elemento
a∈ E tiene coordenadas (xi,yα) si el punto base m = τ(a) tiene coordenadas (xi) y en la base {eα(m)}
de Em las componentes de a son yα , es decir a = yαeα(m).

El ancla y el conmutador quedan localmente determinados por ciertas funciones locales ρ i
α y Cα

βγ

en M, llamadas funciones de estructura, y que están dadas por

ρ(eα) = ρ
i
α

∂

∂xi ,

[eα ,eβ ] =Cγ

αβ
eγ .

Las funciones de estructura satisfacen las siguientes ecuaciones

ρ
j

α

∂ρ i
β

∂x j −ρ
j

β

∂ρ i
α

∂x j = ρ
i
γC

γ

αβ
,

ρ
i
α

∂Cν

βγ

∂xi +ρ
i
β

∂Cν
γα

∂xi +ρ
i
γ

∂Cν

αβ

∂xi +Cµ

βγ
Cν

αµ +Cµ

γαCν

β µ
+Cµ

αβ
Cν

γµ = 0,

llamadas ecuaciones de estructura, que equivalen localmente a la condición de compatibilidad y a la
identidad de Jacobi.

Definición 1.1.1. Dada una sección σ de E, la derivada de Lie con respecto a σ es la aplicación
dσ : Sec(E)→ Sec(E) dada por

dσ η = [σ ,η ],

para toda sección η ∈ Sec(E).

La derivada de Lie se extiende de la forma habitual de manera que actúa sobre secciones de un
fibrado tensorial sobre E.

Fijada una sección σ ∈ Sec(E), y denotando por φs al flujo local del campo vectorial ρ(σ)∈X(E),
existe un campo vectorial lineal XE

σ ∈X(E) que proyecta sobre ρ(σ), de manera que su flujo local Φs

en E es lineal, proyecta sobre φs, y para toda sección Θ de un fibrado tensorial sobre E se tiene que

dσ Θ =
d
ds

Φs
?
Θ

∣∣∣
s=0

.

Definición 1.1.2. El campo vectorial lineal XE
σ ∈ X(E) asociado a la derivación dσ , y cuyo flujo es

Φs, se llama levantamiento completo de la sección σ a E.

En coordenadas locales, la expresión del levantamiento completo de σ = σαeα a E es de la forma

XE
σ = ρ

i
ασ

α ∂

∂xi +
(

σ̇
α +Cα

βγ
yβ

σ
γ

)
∂

∂yα
. (1.1)

En la expresión anterior, y en lo que sigue en este trabajo, para una función f ∈C∞(M) se denotará
por ḟ la función en E dada por

ḟ (a) = ρ(a) f ,

cuya expresión coordenada es

ḟ =
∂ f
∂xi (x)ρ

i
αyα .

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



1.2. Ecuaciones de Euler-Lagrange. 3

Definición 1.1.3. Se llama levantamiento vertical de σ al campo vectorial Xv
σ ∈ X(E), definido por

Xv
σ (a) f =

d
ds

f (a+ sσ(τ(a)))
∣∣∣
s=0

,

para todo a ∈ E y toda función F ∈C∞(E).

En coordenadas locales la expresión de Xv
σ es

Xv
σ = σ

α ∂

∂yα
.

Definición 1.1.4. Una curva a : I ⊂R→ E se dice que es admisible si satisface γ̇(t) = ρ(a(t)), donde
γ(t) = τ(a(t)) es la curva base.

Si la representación coordenada de a(t) es (xi(t),yα(t)) entonces la curva a es admisible si y solo
si satisface

dxi

dt
= ρ

i
α(x(t))y

α(t)

para todo t ∈ I.

1.2. Ecuaciones de Euler-Lagrange.

Dada una función L ∈C∞(E), que llamaremos función Lagrangiana o simplemente Lagrangiano,
se puede definir un sistema dinámico en E, dado localmente por el sistema de ecuaciones diferenciales

d
dt

(
∂L
∂yα

)
+

∂L
∂yγ

Cγ

αβ
yβ = ρ

i
α

∂L
∂xi ,

ẋi = ρ
i
αyα .

(1.2)

Estas ecuaciones 1.2 se denominan ecuaciones de Lagrange en un algebroide de Lie y fueron definidas
por A. Weinstein [W].

Se supondrá que la función Lagrangiana L es regular, en el sentido de que la matriz
[

∂ 2L
∂yα ∂yβ

]
es

regular en todo punto. Esta condición garantiza que el sistema de ecuaciones diferenciales anterior
puede expresarse en forma normal.

En primer lugar veremos cómo podemos caracterizar de manera intrínseca las soluciones del sis-
tema diferencial anterior.

Proposición 1.2.1. Una curva a : I ⊂R→ E es una solución de las ecuaciones de Lagrange si y solo
si es una curva admisible y satisface

d
dt

(
LXv

σ
L(a(t))

)
−LXE

σ
L(a(t)) = 0 (1.3)

para toda sección σ ∈ Sec(E) y para todo t ∈ I.

Demostración. En coordenadas locales, la curva a(t) = (xi(t),yα(t)) es admisible si y solo si satisface
la segunda de las ecuaciones 1.2. Además, tenemos por un lado que

LXv
σ
L(a(t)) = Xv

σ (L(a(t)) = σ
α ∂L

∂yα
.

y por otro lado

LXE
σ

L(a(t)) = XE
σ (L(a(t)) = ρ

i
ασ

α ∂L(a(t))
∂xi +(σ̇α +Cα

βγ
yβ

σ
γ)

∂L(a(t))
∂xα

=

= ρ
i
ασ

α ∂L(a(t))
∂xi + σ̇α

∂L(a(t))
∂yα

+Cα

βγ
yβ

σ
γ ∂L(a(t))

∂yα
.
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4 Capítulo 1. Formalismo lagrangiano y cálculo variacional en algebroides de Lie.

Sustitiyendo en 1.3, se tiene que

d
dt

(
σ

α ∂L
∂yα

)
−
{

ρ
i
ασ

α ∂L(a(t))
∂xi + σ̇α

∂L(a(t))
∂yα

+Cα

βγ
yβ

σ
γ ∂L(a(t))

∂yα

}
= 0

si y solo si

σ̇α
∂L
∂yα

+σ
α d

dt

(
∂L
∂yα

)
−ρ

i
ασ

α ∂L(a(t))
∂xi − σ̇α

∂L(a(t))
∂yα

−Cα

βγ
yβ

σ
γ ∂L(a(t))

∂yα
= 0

si y solo si {
d
dt

(
∂L
∂yα

)
−ρ

i
α

∂L(a(t))
∂xi +Cγ

αβ
yβ ∂L(a(t))

∂yα

}
σ

α = 0.

Como las funciones σα son arbitrarias, se deduce que la curva a(t) = (xi(t),yα(t)) satisface 1.3
si y solo si satisface 1.2.

Aplicación a los ejemplos de algebroides vistos antes.

FIBRADO TANGENTE: Como ρ = idT M, tomando una base coordenada ei =
∂

∂xi como base
de secciones del fibrado tangente τM : T M→ M, las ecuaciones anteriores son las ecuaciones
clásicas de Euler-Lagrange

dxi

dt
= yi,

d
dt

(
∂L
∂yi

)
− ∂L

∂xi = 0.

ÁLGEBRA DE LIE: Como ρ = 0, las ecuaciones son las siguientes

d
dt

(
∂L
∂yα

)
−Cγ

αβ
yβ ∂L

∂yγ
= 0.

Estas ecuaciones fueron obtenidas por H. Poincaré [P], y se suelen denominar ecuaciones de
Euler-Poincaré.

ALGEBROIDE DE ATIYAH: Las ecuaciones que se obtienen son las denominadas ecuaciones de
Lagrange-Poincaré que no vamos a dar en este trabajo (para más información véase [M1]).

1.3. Descripción variacional

El conjunto de curvas admisibles

A (J,E) =
{

a : J→ E|ρ ◦a =
d
dt
(τ ◦a)

}
es una subvariedad de Banach de una variedad de Banach de curvas diferenciables cuyas curvas base
son dos veces diferenciables.

Sean (s, t) las coordenadas en R2 y sea la aplicación Φ : TR2→ E de forma que Φ = αdt +β ds,
donde (α,β ) : R2→ E cumple que

α(s, t) = Φ

(
∂

∂ t

∣∣∣
(s,t)

)
, β (s, t) = Φ

(
∂

∂ s

∣∣∣
(s,t)

)
. (1.4)

Si γ(s, t) = τ(α(s, t)) = τ(β (s, t)), entonces la aplicación Φ es un morfismo de algebroides de Lie sí
y sólo si ρ ◦α = ∂γ

∂ t , ρ ◦β = ∂γ

∂ s , y ∂ 〈θ ,β 〉
∂ t − ∂ 〈θ ,α 〉

∂ s = dθ(α,β ) para todo θ ∈ secE∗.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



1.3. Descripción variacional 5

En coordenadas locales, la familia α(s, t) es (γ i(s, t),αµ(s, t)) y la familia β (s, t) es (γ i(s, t),β µ(s, t)).
Como αdt +βds es un morfismo se tiene que

∂γ i

∂ t
= ρ

i
µα

µ

∂γ i

∂ s
= ρ

i
µβ

µ

∂αµ

∂ s
=

∂β µ

∂ t
+Cµ

νγα
ν
β

γ ,

(1.5)

donde las funciones de estructura locales ρ i
µ y Cµ

νγ están evaluadas en el punto γ(s, t).
Estamos interesados en el caso particular de morfismos llamados E-homotopías.

Definición 1.3.1. Dos curvas admisibles a0 y a1 se dicen que son E-homotópicas si existe un morfismo
de algebroides de Lie Φ : T I×T J→ E, Φ = α dt +β ds, de forma que

α(0, t) = a0(t), β (s, t0) = 0,

α(1, t) = a1(t), b(s, t1) = 0,
(1.6)

donde I = [0,1] y J = [t0, t1]. Además, Φ es una E-homotopía desde la curva admisible a0 hasta la
curva admisible a1.

En en cálculo de variaciones en algebroides de Lie las familias de curvas admisibles α(s, t) están
dadas por E-homotopías φ : TR2→ E de la forma αdt +βds.

El campo variacional d
ds αs(t)

∣∣∣
s=0

es el campo vectorial a lo largo de a(t) donde a(t) = α(0, t), y

se denotará Ξa(σ). Los campos variacionales Ξa(σ) se pueden definir en términos de levantamientos
completos como sigue: Dada una sección a lo largo de una curva γ(t) tomamos una sección σ(t) de
E dependiendo del tiempo de forma que σ(t,γ(t)) = σ(t). Así Ξa(σ) = XE

σ
(t,a(t)).

En coordenada locales,

Ξa(σ)(t) = ρ
i
α(γ(t))σ

α(t)
∂

∂xi

∣∣∣
a(t)

+
(

σ̇
α(t)+Cα

βγ
(γ(t))aβ (t)σ γ(t)

)
∂

∂yα

∣∣∣
a(t)

)
. (1.7)

Cada clase de E-homotopía es una subvariedad diferenciable de Banach de A (J,E) y la partición
en clases de equivalencia es una foliación suave. La distribución tangente a esa foliación está dada por

a 7→ Fa = {Ξa(σ) ∈ TaA (J,E)|σ(t0) = 0, σ(t1) = 0} . (1.8)

La estructura de variedad diferenciable, que se denota por P(J,E) apropiada en el conjunto de curvas
admisibles es la estructura que define la foliación de homotopía. Fijando los puntos m0,m1 ∈ M y
considerando el conjunto de curvas admisibles con esos puntos iniciales y finales, se tiene que la
subvariedad diferenciable

P(J,E)m1
m0

= {a ∈P(J,E)|τ(a(t0)) = m0, τ(a(t1)) = m1} , (1.9)

es una subvariedad de Banach de P(J,E).
Las ecuaciones de Euler-Lagrange en un algebroide de Lie admiten una descripción variacional.

Buscamos puntos críticos de un funcional definido en un espacio de funciones (curvas) adecuado.
Sea el funcional de la forma

S(a) =
∫ t1

t0
L(a(t))dt,

donde L∈C∞(E) es un Lagrangiano en un algebroide de Lie E y a(t) es una curva admisible de forma
que los puntos iniciales y finales están fijados.

Autor: Ana Rojo Echeburúa



6 Capítulo 1. Formalismo lagrangiano y cálculo variacional en algebroides de Lie.

En coordenadas locales podemos expresar dicho funcional de la forma

S(a) =
∫ t1

t0
L(xi(t),yα(t))dt,

tal que x(t0) = m0, x(t1) = m1, con m0,m1 ∈M.
Con la notación clásica del cálculo de variaciones las variaciones infenitesimales son de la forma

δxi = ρ
i
ασ

α ,

δyα = σ̇
α +Cα

βγ
aβ

σ
γ ,

para una curva σ(t) que cumpla que σ(t0) = σ(t1) = 0.
Por tanto, la primera variación del funcional S(a) puede escribirse de la forma

dS(a)(Ξaσ) = δ

∫ t1

t0
L(xi(t),yα(t))dt

=
∫ t1

t0
δL(xi(t),yα(t))dt

=
∫ t1

t0

∂L
∂xi δxi +

∂L
∂yα

δyα dt

=
∫ t1

t0

∂L
∂xi ρ

i
ασ

α +
∂L
∂yα

(σ̇α +Cα

βγ
aβ

σ
γ)dt.

(1.10)

Teorema 1.3.2. Sea L ∈ C∞(E) un lagrangiano en un algebroide de Lie E y fijemos dos puntos
m0,m1 ∈ M. Conideremos el funcional S(a) =

∫ t1
t0 L(a(t))dt en P(J,E). Los puntos críticos de la

restricción de S a la variedad de Banach P(J,E)m1
m0

son los elementos de la restricción que cumplen
las ecuaciones de Euler Lagrange 1.2.

Demostración. Teniendo en cuenta que Ξa( f σ) = f Ξa(σ)+ ḟ σV
a , para toda función f : J→ R,

0 = dS(a)(Ξa( f σ)) =
∫ t1

t0

{
f (t) · (dL(Ξa(σ))+ ḟ · (dL(σV

a )
}

dt.

Integrando por partes con u = dL(σV
a )→ du = d

dt (σ
V
a )dt, y dv = ḟ (t)→ v = f ,

0 = dS(a)(Ξa( f σ)) =
∫ t1

t0
f (t) ·

(
dL(Ξa(σ))+

d
dt

(
dL(σV

a )
))

dt + f ·
(

dL(σV
a )
)∣∣∣t1

t0
=

=
∫ t1

t0
f (t) · ((δL(ȧ(t)) ·σ(t)) dt.

ya que f (t0) = f (t1) = 0.
En la anterior expresión δL(ȧ) viene dada por

δL(ȧ) =
d
dt

(
∂L
∂yα

)
−ρ

i
α

∂L(a(t))
∂xi +Cγ

αβ
yβ ∂L(a(t))

∂yα
.

Como ésto tiene que cumplirse para toda f y para toda σ arbitrarios por el lema fundamental del
cálculo de variaciones se tiene que δL(ȧ) = 0.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



Capítulo 2

Funcionales dependientes de derivadas de
orden superior de curvas admisibles en
algebroides de Lie.

En este capítulo, estudiaremos el caso de un funcional en el que le integrando depende de derivadas
de orden superior de curvas admisibles en algebroides de Lie, como por ejemplo, funcionales que
dependan de la aceleración. Daremos resultados análogos a los de primer orden.

2.1. Jets de curvas admisibles en un algebroide de Lie.

Como primer paso definiremos los espacios de jets de curvas admisibles, que generalizan los
fibrados tangentes de orden superior también llamados fibrados de k-velocidades.

2.1.1. Fibrados tangentes de orden superior.

Sea M una variedad diferenciable. Para una curva γ : R→ M, definida en un intervalo abierto
conteniendo al origen en R, se denota por [γ]k = jk

0γ al k-jet de γ en 0. Se dice que es la velocidad
de orden k de γ . El conjunto de k-velocidades de las curvas en M es una variedad diferenciable T kM
llamada variedad tangente de M de orden k. Nótese que para k = 1 se tiene que T 1M = T M, que es el
fibrado tangente a M.

Un vector tangente a T kM se puede describir por una familia uniparamétrica de curvas γ : R2→M
definida localmente en un entorno del origen en R2. Fijando s y tomando k-jets [γs]

k, se tiene que la
familia γs(t) = γ(s, t) define una curva en T kM. El vector d

ds [γs]
k
∣∣∣
s=0

tangente a esa curva en s = 0 es

tangente a T kM en el punto [γ0]
k. A este vector lo denotaremos también por [s 7→ [t 7→ γ(s, t)]k]1.

Para una curva γ : R→ M denotaremos por γ(k) a la curva γ(k) : R→ T kM que viene dada por
γ(k)(t) = [s 7→ γ(t + s)]k.

2.1.2. Jets de curvas admisibles.

Sea τ : E→M una algebroide de Lie con ancla ρ y corchete [ , ].

Definición 2.1.1. Para k∈N, denotamos por Ek al conjunto de (k−1)-jets de curvas admisibles en E

Ek = {[a]k−1∈T k−1E|a es una curva admisible en E}.

Nótese que E1 = E, E2⊂T E, y en general Ek⊂T k−1E. En el caso en el que E = T M, se tiene que
E1 = T M, E2 = T 2M, etc.. La graduación se ha elegido de forma que en el caso estándar coincida con
la clásica.

7



8 Capítulo 2. Funcionales dependientes de derivadas de orden superior de curvas admisibles

Nota: En nuestra notación, los superíndices indican el espacio en el que el objeto está definido,
mientras que los índices entre paréntesis indican el número de derivadas.

Tomando coordenadas locales (xi,yα) en E, una curva admisible a(t) = (γ i(t),aα(t)) está determi-
nada por la función aα(t) y el valor inicial γ i(0), ya que la función γ i(t) es la solución del problema de
valor inicial ẋi = ρ i

α(x)a
α(t) con condición inicial x(0) = γ(0). Así el (k−1)-jet de a(t) corresponde

al (k−1)-jet de la función aα(t) junto con el valor inicial γ i(0).
Las coordenadas naturales

(
xi
( j),y

α

( j)

)
de [a]k−1∈T k−1E están dadas por

xi
(0) = γ

i(0),

yα

(r) =
dr−1aα

dtr−1 (0), r = 1, . . . ,k−1,

xi
(r) = Ψ

i
r

(
γ

i(0),aα(0), . . . ,
dr−1aα

dtr−1 (0)
)
, r = 1, . . . ,k−1,

(2.1)

donde Ψi
r son funciones suaves dependiendo también de forma suave de ρ i

α y de sus derivadas par-
ciales hasta orden r− 1. Estas funciones se obtienen tomando derivadas totales en la condición de
admisibilidad ẋi = ρ i

αaα .
Recíprocamente, dado un punto (xi

0,y
α
1 , . . . ,y

α
k )∈Rn×Rk·m la curva admisible (γ i(t),aα(t)) dada

por aα(t) = ∑
k−1
j=0

1
j! y

α
j+1t j y la solución γ i(t) del problema de valor inicial ẋi = ρ i

α(x)a
α(t), xi(0) = xi

0,

son curvas admisibles cuyo (k−1)-jet tiene coordenadas (2.1) con dr−1aα

dtr−1 (0) = yα
r for r = 1, . . . ,k−1.

Así, Ek es una subvariedad diferenciable suave de T k−1E de dimensión n+ km, y podemos tomar
un sistema de coordenadas locales (xi,yα

r ) de la forma, xi = xi
(0), yα

r = yα

(r−1).
Dada una curva admisible a : R→ E denotamos por ak : R→ Ek a la jet-prolongación natural de

a a Ek, dada por
ak(t) = [s 7→ a(s+ t)]k−1.

Nótese que con las anteriores notaciones ak(t) = a(k−1)(t).

2.2. Campos vectoriales variacionales y levantamiento completos.

Un vector tangente a Ek está determinado por una familia uniparamétrica de curvas admisibles
α(s, t) en E tal que [s 7→ [t 7→ α(s, t)]k−1]1 es un vector tangente a Ek en el punto [t 7→ α(0, t)]k−1∈Ek.

Recordemos que las familias de curvas admisibles α(s, t) están dadas por morfismos de álge-
broides de Lie φ : TR2 → E de la forma α(s, t)dt + β (s, t)ds. Si a(t) = α(0, t), el campo vectorial
variacional definido por dicha familia es el campo vectorial Ξk

aσ(t) := d
ds αs

k(t)
∣∣
s=0, definido a lo lar-

go de ak(t). Dicho campo variacional puede escribirse en términos de σ(t) = β (0, t) y sus derivadas
hasta orden k.

Teniendo en cuenta las ecuaciones 1.5 que satisfacen las componentes de ?(s, t) y ?(s, t) se deduce
que la curva as

k(t) en Ek definida por la familia α está dada por

xi = γ
i(s, t), yµ

1 = α
µ(s, t), yµ

2 =
∂αµ

∂ t
(s, t), . . . , yµ

k =
∂ k−1αµ

∂ tk−1 (s, t),

y las coordenadas de Ξk
aσ(t) := d

ds as
k(t)
∣∣∣
s=0

son

wi =
∂γ i

∂ s
(0, t), vµ

1 =
∂αµ

∂ s
(0, t), . . . , vµ

k =
∂ kαµ

∂ tk−1∂ s
(0, t).

Teniendo en cuenta la ecuaciones (1.5)

wi = ρ
i
µβ

µ(0, t) = ρ
i
µσ

µ(t)

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



2.3. Cálculo variacional. 9

y

vµ

1 =
∂β µ

∂ t
(0, t)+Cµ

νγα
ν(0, t)β γ(0, t) = σ̇

µ(t)+Cµ

νγaν(t)σ γ(t),

y por tanto se tiene que

vµ
r =

dr−1vµ

1
dtr−1 (t) =

dr−1

dtr−1 [σ̇
µ +Cµ

νγaν
σ

γ ], r = 2, . . . ,k.

Luego

Ξ
k
aσ = ρ

i
ασ

α ∂

∂xi +
k

∑
r=1

dr−1

dtr−1 [σ̇
α +Cα

βγ
aβ

σ
γ ]

∂

∂yα
r
. (2.2)

Se tiene que Ξk
aσ es un operador diferencial en σ de orden k (ya que depende de [σ ](k)) y un

operador diferencial en a de orden k−1 (ya que depende de ak(t) = [h 7→ a(t +h)]k−1).
En la notación clásica el cálculo de variaciones se tiene que

δxi = ρ
i
ασ

α , δyα
1 = σ̇

α +Cα

βγ
aβ

σ
γ , δyα

r =
d
dt

δyα
r−1, for r = 2, . . . ,k. (2.3)

2.3. Cálculo variacional.

Sea J = [t0, t1]⊂R un intervalo compacto y fijemos dos puntos A0∈Ek−1 y A1∈Ek−1. Dado un
lagrangiano L ∈C∞(Ek) consideramos el funcional

S(a) =
∫ t1

t0
L(ak(t))dt (2.4)

restringido a las curvas a en E tales que ak−1(t0) = A0 y ak−1(t1) = A1.
De la misma forma que hemos definido en el primer capítulo para el caso de orden uno una estruc-

tura de variedad diferenciable apropiada para el conjunto de curvas admisibles, en el caso de orden
superior usaremos la misma estructura e impondremos condiciones adicionales en las condiciones de
contorno.

Denotemo por m0,m1∈M los puntos base m0 = τk−1,0(A0) y m1 = τk−1,0(A1).

Teorema 2.3.1. El conjunto

P(J,E)A1
A0

=
{

a∈P(J,E)
∣∣ a es Ck y ak−1(t0) = A0, ak−1(t1) = A1

}
(2.5)

es una subvariedad de Banach de P(J,E)m1
m0

.
El espacio tangente a P(J,E)A1

A0
en el punto a∈P(J,E)A1

A0
es

TaP(J,E)A1
A0

=
{

Ξ
k
aσ

∣∣∣ σ es Ck y σ
(k−1)(t0) = 0, σ

(k−1)(t1) = 0
}
. (2.6)

Se tiene que las variaciones infinitesimales son de la forma Ξk
aσ con [σ ]k−1(ti) = 0, i = 0,1.

Usando la notación clásica del cálculo de variaciones

δx j = ρ
j

ασ
α , δyα

1 = σ̇
α +Cα

βγ
yβ

1 σ
γ , δyα

r =
dr−1

dtr−1 δyα
1 , r = 2, . . . ,k,

con drσα

dtr (ti) = 0 para r = 0, . . . ,k− 1, i = 0,1. En particular, el último grupo de ecuaciones justifica
la regla habitual en el cálculo de variaciones que permite conmutar el operador δ con la derivada con
respecto al tiempo.

Para encontrar las condiciones que debe cumplir una curva admisible para ser un punto crítico del
funcional mencionado anteriormente procedemos como sigue. Dada una curva admisible a tomamos

Autor: Ana Rojo Echeburúa



10 Capítulo 2. Funcionales dependientes de derivadas de orden superior de curvas admisibles

una curva αs en P(J,E)A1
A0

con α0 = a, y la correspondiente E-homotopía α(s, t)dt +β (s, t)ds donde
αs(t) = α(s, t). Tomando la derivada en s = 0,

d
ds

S(αs)
∣∣∣
s=0

=
∫ t1

t0

d
ds

L(αs
k(t))

∣∣∣
s=0

dt =
∫ t1

t0
〈dL(ak(t)) ,

d
ds

αs
k(t)
∣∣∣
s=0
〉dt,

donde d es la diferencial exterior en la variedad diferenciable Ek. Definiendo σ(t) = β (0, t) tenemos
que d

ds αs
k(t)
∣∣∣
s=0

= Ξk
aσ(t) y por tanto

〈dS(a) ,Ξaσ 〉= d
ds

S(αs)
∣∣∣
s=0

=
∫ t1

t0
〈dL(ak(t)) ,Ξk

aσ(t)〉dt. (2.7)

Teniendo en cuenta la expresión coordenada de Ξk
aσ(t) llegamos a

〈dS(a) ,Ξaσ 〉=
∫ t1

t0

[
∂L
∂xi ρ

i
ασ

α +
∂L
∂yα

1
(σ̇α +Cα

βγ
yβ

1 σ
γ)+

k

∑
r=2

∂L
∂yα

r

dr−1

dtr−1 (σ̇
α +Cα

βγ
yβ

1 σ
γ)

]
dt

Un calculo elemental pero muy largo, realizando integración por partes un gran número de veces, y
utilizando que las variaciones y sus derivadas hasta orden r− 1 se anulan en los extremos, permite
escribir la expresión anterior en la forma

dS(a)(Ξaσ) =
∫ t1

t0
δLα(a2k(t))σα(t)dt, (2.8)

donde se ha escrito δLα para denotar la expresión

δLα = ρ
i
α

∂L
∂xi − π̇α −πγC

γ

αβ
yβ

1 ,

y donde πα vienen dados

πα =
k

∑
r=1

(−1)r−1 dr−1

dtr−1

(
∂L
∂yα

r

)
. (2.9)

Teniendo en cuenta estas expresiones, utilizando el lema fundamental del Cálulo de Variaciones,
se tiene que una curva a es un punto crítico de S si y solo si se cumple que δLα(a2k(t)) = 0. Se obtiene
de esta manera el siguiente resultado.

Teorema 2.3.2. Una curva admisible a∈P(J,E)A1
A0

es un punto crítico del funcional S : P(J,E)A1
A0
→

R dado por S(a) =
∫ t1

t0 L(ak(t))dt, si y sólo si sus componentes (xi(t),yα(t)) satisfacen el siguiente
sistema de ecuaciones diferenciales 

ẋi = ρ
i
αyα

1

π̇α +πγC
γ

αβ
yβ

1 = ρ
i
α

∂L
∂xi ,

(2.10)

donde πα viene dado por la expresión 2.9, y debe sobreentenderse que yα
r = dr−1yα

dtr−1 .

Las ecuaciones anteriores se denominan ecuaciones de Euler-Lagrange para un lagrangiano de
orden superior definido sobre un algebroide.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



Capítulo 3

Aplicaciones.

En este capítulo aplicaremos la teoría anterior a dos ejemplos concretos en los que el algebroide
de Lie donde se trabaja es el álgebra de Lie so(3). En el caso de orden uno obtendremos las ecuaciones
clásicas de Euler-Lagrange del sólido rígido en so(3). En el caso de orden superior, consideraremos
un funcional de orden dos y hallaremos los splines cúbicos en so(3) que hacen mínima la aceleración.
Además, en ambos casos hallaremos la segunda variación de los funcionales anteriores con la inten-
ción de realizar un posible futuro estudio de las condiciones suficientes de mínimo local así como de
las secciones de Jacobi y sus propiedades.

3.1. Descripción de so(3).

El interés en splines cúbicos proviene en parte del problema de animación de fotogramas en grá-
ficos por ordenador. Por eso, en este trabajo estamos interesados en problemas de interpolación en el
grupo de rotaciones con respecto al origen en R3, es decir, en el grupo de Lie SO(3), cuya álgebra de
Lie es so(3) = {B ∈ gl(3)|B =−BT}, es decir, el conjunto de matrices 3×3 reales antisimétricas con
el conmutador de matrices como corchete de Lie. Los elementos de so(3) son los generadores infini-
tesimales de las rotaciones, es decir, son los elementos del espacio tangente de SO(3) en la identidad.

Descripción de so(3) como algebroide de Lie. Sea (E,ρ, [, ]) un algebroide de Lie de forma que
τ : E = so(3)→{e} ≡M, donde M es una variedad diferenciable base que consta de un único punto.
La aplicación ancla ρ : E → T M que a cada elemento del álgebra le asocia un elemento del espacio
tangente es la aplicación nula, ya que como M ≡ {e} se tiene que T M ≡ {0} y por tanto para toda
sección σ ∈ E se tiene que ρ(σ) = 0.

Identificación de so(3) con R3. Dado ω ∈ R3 consideremos el endomorfismo Fω : R3 → R3 de-
finido por v 7→ ω × v para todo v ∈ R3. La matriz asociada a Fω con respecto a la base canónica
es  0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

 .

Es obvio que toda matriz antisimétrica define un único ω ∈ R3. De esta forma identificamos un ele-
mento ω̂ ∈ so(3) con un elemento ω ∈ R3, donde ω̂ es la matriz asociada a la aplicación lineal Fω

con respecto a la bases canónicas. Por tanto,

ω̂v = ω× v. (3.1)

11



12 Capítulo 3. Aplicaciones.

La base canónica de R3 {e1,e2,e3} se identifica con la base de so(3) {E1,E2,E3} donde

E1 =

 0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

 0 −1 0
1 0 0
0 0 0

 .

Propiedad 3.1.1. Como so(3) tiene el conmutador de matrices como corchete de Lie, se cumplen las
relaciones

[E1,E2] = E3, [E3,E1] = E2, [E2,E3] = E1.

Demostración. En efecto,

[E1,E2] = E1E2−E2E1 =

=

 0 0 0
0 0 −1
0 1 0

 0 0 1
0 0 0
−1 0 0

−
 0 0 1

0 0 0
−1 0 0

 0 0 0
0 0 −1
0 1 0

=

=

 0 0 0
1 0 0
0 0 0

 0 1 0
0 0 0
0 0 0

=

 0 −1 0
1 0 0
0 0 0

= E3

[E3,E1] = E3E1−E1E3 =

=

 0 −1 0
1 0 0
0 0 0

 0 0 0
0 0 −1
0 1 0

−
 0 0 0

0 0 −1
0 1 0

 0 −1 0
1 0 0
0 0 0

=

=

 0 0 1
0 0 0
0 0 0

 0 0 0
0 0 0
1 0 0

=

 0 0 1
0 0 0
−1 0 0

= E2

[E2,E3] = E2E3−E3E2 =

=

 0 0 1
0 0 0
−1 0 0

 0 −1 0
1 0 0
0 0 0

−
 0 −1 0

1 0 0
0 0 0

 0 0 1
0 0 0
−1 0 0

=

=

 0 0 0
0 0 0
0 1 0

 0 0 0
0 0 1
0 0 0

=

 0 0 0
0 0 −1
0 1 0

= E1

Propiedad 3.1.2. El corchete de Lie de so(3) cumple además que

[ω̂, û]so(3) = ω̂×u,

para todo ω y v en R3.

Demostración. En efecto,

ω×u =

∣∣∣∣∣∣
i j k

ω1 ω2 ω3
u1 u2 u3

∣∣∣∣∣∣= (ω2u3−u2ω3,ω3u1−u3ω1,ω1u2−u1ω2).

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.
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Entonces
ω̂×u = (ω2u3−u2ω3)E1 +(ω3u1−u3ω1)E2 +(ω1u2−u1ω2)E3 =

=

 0 u1ω2−ω1u2 ω3u1−u3ω1
ω1u2−u1ω2 0 u2ω3−ω2u3
u3ω1−ω3u1 ω2u3−u2ω3 0


Por otro lado tenemos que

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ,

û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 .

Luego

[ω̂, û] = ω̂ û− ûω̂ =

=

(
0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

)(
0 −u3 u2
u3 0 −u1
−u2 u1 0

)
−

(
0 −u3 u2
u3 0 −u1
−u2 u1 0

)(
0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

)
=

=

(
−ω3u3−u2ω2 ω2u1 ω3u1

ω1u2 −ω3u3−ω1u1 ω3u1
ω1u3 ω2u3 −ω1u2−ω1u1

)(
−ω3u3−ω2u2 u2ω1 u3ω1

u1ω2 −u3ω3−u1ω1 u3ω2
u1ω3 u2ω3 −u2ω2−ω1u1

)
=

=

 0 u1ω2−ω1u2 ω3u1−u3ω1
ω1u2−u1ω2 0 u2ω3−ω2u3
u3ω1−ω3u1 ω2u3−u2ω3 0

= ω̂×u

Propiedad 3.1.3. La identidad de Jacobi

[ω̂, [û, v̂]]+ [û, [v̂, ω̂]]+ [v̂, [ω̂, û]] = 0,

se puede expresar en términos del producto vectorial de la forma

ω× (u× v)+u× (v×ω)+ v× (ω×u) = 0.

3.2. Caso orden uno. Sólido rígido.

Obtención de las ecuaciones de Euler-Lagrange del sólido rigido. Las ecuaciones que describen
el movimiento de un sólido rígido que rota con respecto a un punto fijo en el espacio, es decir, en R3,
vienen dadas por

Iω̇ +ω× Iω = 0,

donde ω es la velocidad angular de dicho sólio e I es el tensor de inercia, que es una matriz simétrica
definida positiva. El propósito de esta subsección es hallar dichas ecuaciones aplicando la teoría vista
en el capítulo uno.

Sea g : so(3)× so(3)→ R el producto escalar, con matriz asociada I, de forma que cumple que
g(ω1,ω2) = ω1 · (Iω2), con ω1,ω2 ∈ so(3).

Definimos un lagrangiano que depende sólo de la primera derivada

L : so(3) → R
ω → 1

2 g(ω,ω) = 1
2 ω · (Iω),

donde 1
2 ω · (Iω) puede interpretarse como la energía cinética del sistema.

Autor: Ana Rojo Echeburúa



14 Capítulo 3. Aplicaciones.

Tradicionalmente, para la obtención de estas ecuaciones, se ha optado por trabajar directamente
en el grupo de Lie SO(3) para luego reducir las ecuaciones obtenidas al álgebra de Lie so(3). El
desarrollo de este método alternativo puede verse en el apéndice.

El mismo problema variacional puede resolverse de forma más sencilla con teoría del algebroides
de Lie. Como hemos visto en el capítulo uno, un sistema de coordenadas locales (xi) en la variedad
M y la base local {eα} de secciones de un fibrado E determinan un sistema de coordenadas locales
(xi,yα) en E. En nuestro caso, (xi) son las coordenadas del punto {e}, que tomamos x = 0 e yα son
las componentes de la velocidad angular ω .

Para hallar las ecuaciones de Euler-Lagrange en dicho algebroide de Lie, nos planteamos el pro-
blema de hallar los puntos críticos de la integral de la energía cinética del sistema que viene dado por
el funcional

S(ω) =
∫ t1

t0
L(ω(t))dt =

∫ t1

t0

1
2
(ω(t) · (Iω(t)))dt.

Para ello, calcularemos la primera variación de dicho funcional y aplicaremos el lema fundamental
del cálculo de variaciones.

En el caso general de orden uno, las variaciones infinitesimales son de la forma

δxi = ρ
i
ασ

α ,

δyα = σ̇
α +Cα

βγ
yβ

σ
γ ,

donde σ es una curva que cumple que σ(t0) = σ(t1) = 0.
Por tanto en nuestro caso, como la posición es constante, se tiene que

δxi = 0,

y como yα = ωα se tiene que
δyα = δω

α = (σ̇ +ω×σ)α .

Calculando la diferencial de S e igualando a cero obtenemos,

dS(ω)(Ξωσ) = δ

∫ t1

t0
L(ω)dt =

∫ t1

t0
{ ∂L

∂ω
δω}dt =

=
∫ t1

t0
{ ∂

∂ω
(
1
2
(ω · (Iω))) · (σ̇ +ω×σ)}dt =

∫ t1

t0
{(Iω) · σ̇ +(Iω) · (ω×σ)}dt = 0.

Aplicando inegración por partes, u = Iω → du = Iω̇ dt, dv = σ̇ dt→ v = σ ,

0 = δ

∫ t1

t0
Ldt =

∫ t1

t0

{
d
dt
((Iω) ·σ)− (Iω) · σ̇ +(Iω) · (ω×σ)

}
dt.

Como σ(t0) = σ(t1) = 0, y∫ t1

t0

d
dt
((Iω) ·σ)dt = (Iω) · (σ(t1)−σ(t0)) = 0

se tiene que

0 = δ

∫ t1

t0
Ldt =

∫ t1

t0
{−(Iω̇) ·σ +(Iω) · (ω×σ)}dt.

Como (Iω) ·(ω×σ) = det(Iω,ω,σ) = det(σ , Iω,ω) = σ ·(Iω×ω) = (Iω×ω) ·σ =−(ω× Iω) ·σ

0 = δ

∫ t1

t0
Ldt =

∫ t1

t0
{−(Iω̇) ·σ − (ω× Iω) ·σ}dt =

∫ t1

t0
{−(Iω̇ +ω× Iω) ·σ)}dt.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



3.2. Caso orden uno. Sólido rígido. 15

Como ésto ha de cumplirse para toda σ arbitraria por el lema fundamental del cálculo de varia-
ciones, para que la variación del funcional S(ω) sea cero, ω tiene que satisfacer

Iω̇ +ω× Iω = 0, (3.2)

que son las ecuaciones clásicas del movimiento del sólido rígido.
Así, se deduce que las curvas que son puntos críticos del funcional definido por la energía cinética

del sistema son aquellas cuya velocidad angular cumple la ecuaciones 3.2

Cálculo de la segunda variación. Con el objetivo de encontrar condiciones suficientes de míni-
mo en futuros trabajos, calculamos la diferencial segunda de S(ω). Para ello, calculamos la primera
variación de dS(ω).

d2S(ω)(Ξωσ ,Ξωσ) = δ

∫ t1

t0
{−(Iω̇ +ω× Iω) ·σ}dt =

=
∫ t1

t0
{−(δ (Iω̇)+δ (ω× Iω)) ·σ}dt =

=
∫ t1

t0
{−(δ (Iω̇)+δω× Iω +ω×δ (Iω)) ·σ}dt.

Como hemos visto anteriormente, la expresión de la variación de la velocidad angular es de la forma
δω = σ̇ +ω ×σ . A partir de ella podemos obtener la expresión de la variación de la derivada de la
velocidad angular ya que δω̇ = d

dt δω . Así

δω̇ = σ̈ + ω̇×σ +ω× σ̇ .

Teniendo en cuenta que la matriz I no depende del tiempo, se deduce a partir de las expresiones
anteriores que la variación de Iω es

δ (Iω) = I(δω) = Iσ̇ + I(ω×σ),

y que la variación de Iω̇ es

δ (Iω̇) = I(δω̇) = Iσ̈ + I(ω̇×σ)+ I(ω× σ̇).

Por tanto, sustituyendo en la expresión de la segunda variación de S(ω),

d2S(ω)(Ξωσ ,Ξωσ) = δ

∫ t1

t0
{−(Iσ̈ + I(ω̇×σ)+ I(ω× σ̇)+(σ̇ +ω×σ)× (Iω)) ·σ}dt+

+ω× (Iσ̇ + I(ω×σ))) ·σ}dt =

= δ

∫ t1

t0
{−(Iσ̈ + I(ω̇×σ)+ I(ω× σ̇)+ σ̇ × (Iω)+(ω×σ)× (Iω)+

+ω× (Iσ̇)+ω× (I(ω×σ))) ·σ}dt.

Multiplicando por I y por su inversa I−1,

d2S(ω)(Ξωσ ,Ξωσ) =
∫ t1

t0
{(−I(σ̈ +(ω̇×σ)+ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))) ·σ}dt.

Como ω cumple que Iω̇ +ω × Iω = 0, se tiene que ω̇ = −I−1(ω × (Iω)). Sutituyendo, obtenemos
la expresión de la segunda variación de S(ω)

d2S(ω)(Ξωσ ,Ξωσ) =
∫ t1

t0
{(−I(σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+

+ I−1(ω×σ)× (Iω)+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))) ·σ}dt.
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16 Capítulo 3. Aplicaciones.

El término

J(σ) = σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))

es importante, puesto que las secciónes σ para la que J(σ) = 0, coinciden con lo campos de Jacobi X
en el grupo SO(3) para la métrica invariante a izquiera definida anteriormente por g(ω,ω) = ω ·(Iω).
Así se tiene que σ = R−1X con R perteneciente al grupo SO(3).

3.3. Splines cúbicos en so(3).

Para hablar de splines cúbicos en so(3), primero es necesario definir una conexión análoga a la
conexión de Levi-Civita, pero que en vez de actuar sobre campos vectoriales, actúe sobre secciones
no dependientes del tiempo y que además cumpla:

∇ξ < σ ,η >=< ∇ξ σ ,η >+< σ ,∇ξ η >, (a)
∇σ η−∇ησ = [σ ,η ], (b)
∇σ f = ρ(σ) f , (c)

para toda σ ,η ,ξ sección en un fibrado E y f una función.
Teniendo en cuenta que < σ ,η >= σ ·(Iη), donde I es a matriz asociada al producto escalar <,>

lo vamos a aplicar a (a), tres veces , permutando cíclicamente los elementos ξ ,σ y η . Así obtenemos
las siguientes ecuaciones:

∇ξ (σ · (Iη)) = (∇ξ σ) · (Iη)+(σ · (I∇ξ η)),

∇σ (η · (Iξ )) = (∇σ η) · (Iξ )+(η · (I∇σ ξ )),

∇η(ξ · (Iσ)) = (∇ηξ ) · (Iσ)+(ξ · (I∇ησ)),

En el caso en el que el algebroide de Lie es un álgebra de Lie, se tiene que el ancla ρ = 0. Por tanto,
∇σ f = ρ(σ) f = 0, para toda función f .

Como (σ · (Iη)), (η · (Iξ )), (ξ · (Iσ)) son funciones, se tiene que

∇ξ (σ · (Iη)) = ∇σ (η · (Iξ )) = ∇η(ξ · (Iσ)) = 0.

Por tanto las anteriores ecuaciones, se reducen a las siguientes

(∇ξ σ) · (Iη)+(σ · (I∇ξ η)) = 0 (1),

(∇σ η) · (Iξ )+(η · (I∇σ ξ )) = 0 (2),

(∇ηξ ) · (Iσ)+(ξ · (I∇ησ)) = 0 (3).

Operando (1)+(2)− (3) obtenemos

(ξ ×η) · (Iσ)+(σ ×η) · (Iξ )+(∇σ ξ +∇ξ σ) · (Iη) = 0,

donde se ha tenido en cuenta que ∇ξ σ −∇σ ξ = [ξ ,σ ] = ξ ×σ . Aplicando, de nuevo, esta propiedad

2∇σ ξ · (Iη)+(ξ ×σ) · (Iη)+(ξ ×η) · (Iσ)+(σ ×η) · (Iξ ) = 0.

Denotando Iη = ζ ,

2∇σ ξ ·ζ +(ξ ×σ) ·ζ +(ξ × (I−1
ζ )) · (Iσ)+(σ × (I−1

ζ )) · (Iξ ) = 0,

2∇σ ξ ·ζ +(ξ ×σ) ·ζ + I−1(Iσ ×ξ ) · (ζ )+ I−1(Iξ ×σ) ·ζ = 0.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.
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Siendo esto cierto para toda sección ζ se deduce finalmente que

∇σ ξ =
1
2
(σ ×ξ )+

1
2

I−1((ξ × Iσ)+(σ × Iξ )
)
.

Caso particular: Nos interesa especialmente el caso particular en le que la matriz de inercia es la
matriz identidad. En este caso la expresión anterior se reduce a

∇σ ξ =−1
2

ξ ×σ (3.3)

para toda sección η ,σ no dependientes del tiempo en un fibrado E.
Para una sección σ(t) ∈ E dependiente del tiempo, se tiene que

∇tσ =
dσ

dt
− 1

2
σ ×ω.

En esta sección nos centraremos en el problema de encontrar una curva admisible a(t) interpola-
dora, de forma que sea la única solución que minimice el funcional S : P(J,E)−→ R dado por

S(ω) =
∫ t1

t0
< ∇tω,∇tω > dt.

El funcional S(ω) no es más que la medida de la aceleración total de la curva. A la curva admisible
que es un punto crítico del funcional S(ω) la llamaremos polinomio cúbico o spline cúbico. [NHP]

Teorema 3.3.1. Una curva admisible a(t) es un polinomio cubico si y sólo si satisface la ecuación
diferencial ...

ω− ω̈×ω = 0. (3.4)

Demostración. En primer lugar, nótese que en el caso en el que σ(t) = ω(t), se tiene que

∇tω = ω̇− 1
2
(ω×ω) = ω̇.

Calculemos la primera variación

δS(ω̇)(Ξω̇σ) = δ

∫ t1

t0
L(ω̇)dt = δ

∫ t1

t0
< ∇tω,∇tω > dt = δ

∫ t1

t0
ω̇

2 dt,

donde σ(t) es una sección con condiciones σ(t0) = σ(t1) = 0 y σ̇(t0) = σ̇(t1) = 0
Teniendo en cuenta que la variación de la velocidad angular es de la forma

δω = σ̇ +ω×σ ,

se tiene que

δω̇ =
d
dt

δω = σ̈ +
d
dt
(ω×σ) = σ̈ + ω̇×σ +ω× σ̇ .

Así,

δ

∫ t1

t0
L(ω̇)dt = δ

∫ t1

t0
ω̇

2 dt =
∫ t1

t0
δω̇

2 dt =
∫ t1

t0
{2ω̇(δω̇)} dt =

=
∫ t1

t0
{2ω̇ · (σ̈ + ω̇×σ +ω× σ̇)} dt =

=
∫ t1

t0
{2(ω̇ · (σ̈)+ ω̇ · (ω̇×σ)+ ω̇ · (ω× σ̇))} dt =

= 2
∫ t1

t0
{(ω̇ · (σ̈)+ ω̇ · (ω× σ̇))} dt,
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18 Capítulo 3. Aplicaciones.

donde hemos tenido en cuenta que ω̇ · (ω̇×σ) = det(ω̇, ω̇,σ) = 0.
Integrando por partes el primer sumando : u = ω̇ → du = ω̈ dt, dv = σ̈ dt→ v = σ̇ ,

δ

∫ t1

t0
L(ω̇)dt = 2

∫ t1

t0

{
d
dt
(ω̇ · σ̇)− (σ̇ · (ω̈)+ ω̇ · (ω× σ̇))

}
dt.

Como σ̇(t0) = σ̇(t1) = 0 se tiene que∫ t1

t0

d
dt
(ω̇ · σ̇) = ω̇ · (σ̇(t1)− σ̇(t0)) = 0.

Por tanto

δ

∫ t1

t0
L(ω̇)dt = 2

∫ t1

t0
{−(σ̇ · (ω̈)+ ω̇ · (ω× σ̇))} dt = 2

∫ t1

t0
{(−ω̈ +(ω̇×ω)) · σ̇} dt.

Integrando por partes: u =−ω̈ +(ω̇×ω)→ du =−...
ω + ω̈×ω dt, dv = σ̇ dt→ v = σ ,

0 = δ

∫ t1

t0
L(ω̇)dt = 2

∫ t1

t0

{
d
dt
(−ω̈ +(ω̇×ω)) ·σ −σ · (−...

ω +(ω̈×ω))

}
dt.

Como σ(t0) = σ(t1) = 0 se tiene que∫ t1

t0

d
dt
(−ω̈ +(ω̇× ω̇)) ·σ = (−ω̈ +(ω̇× ω̇)) · (σ(t1)−σ(t0)) = 0.

Por tanto

δ

∫ t1

t0
L(ω̇)dt = 2

∫ t1

t0

{
(
...
ω− (ω̈×ω)) ·σ

}
dt.

Ahora, aplicando el lema fundamental del cálculo de variaciones, se tiene que esta integral ha de ser
0 para toda sección σ tal que σ(t0) = σ(t1) = 0 no nula. Por tanto

...
ω− (ω̈×ω) = 0.

Ó lo que es lo mismo
...
ω = ω̈×ω.

Recíprocamente, si
...
ω− (ω̈×ω) = 0, entonces la variación del funcional es cero y por tanto tal ω

es punto crítico de S(ω), luego es polinomio cúbico.

Corolario 3.3.2. ω̈− ω̇×ω es una constante de movimiento.

Demostración. Como
d
dt
(ω̇×ω) = ω̈×ω + ω̇× ω̇ = ω̈×ω,

se tiene que
d
dt
(ω̈− ω̇×ω) =

...
ω− ω̈×ω = 0

Luego
ω̈ = ω̇×ω + cte.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.
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Expresión de la segunda variación del funcional S(ω̇) y secciones de Jacobi. Las ecuaciones
de Euler-Lagrange nos dan condiciones necesarias para hallar el mínimo del funcional S(ω̇). Para
encontrar condiciones suficientes para que una curva admisible sea un mínimo local de S(ω̇), es
necesario hallar la segunda variación de dicho funcional.

Teorema 3.3.3. La expresión de la segunda variación del funcional S(ω̇) es

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +ω× ...
σ −2(ω̇× σ̇)×ω) ·σ} dt.

Demostración. En el anterior apartado hemos obtenido que la primera variación del funcional S(ω̇)
es

dS(ω̇)(Ξω̇σ) = 2
∫ t1

t0

{
(
...
ω− (ω̈×ω)) ·σ

}
dt.

Volviendo a derivar

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
δ
{
(
...
ω− (ω̈×ω)) ·σ

}
dt =

= 2
∫ t1

t0

{
(δ

...
ω−δ (ω̈×ω)) ·σ

}
dt = 2

∫ t1

t0

{
(δ

...
ω−δω̈×ω + ω̈×δω) ·σ

}
dt.

Sabemos que la expresión de la variación de la velociad angular es de la forma

δω = σ̇ +ω×σ .

Como δω̇ = d
dt δω , δω̈ = d

dt δω̇ y δ
...
ω = d

dt δω̈ , se deduce que

δω̇ = σ̈ + ω̇×σ +ω× ω̇,

δω̈ =
...
σ + ω̈×σ + ω̇× σ̇ + ω̇× σ̇ +ω× σ̈ =

=
...
σ + ω̈×σ +2(ω̇× σ̇)+ω× σ̈ ,

δ
...
ω =

....
σ +

...
ω×σ + ω̈× σ̇ +2(ω̈× σ̇ + ω̇× σ̈)+ ω̇× σ̈ +ω× ...

ω =

=
....
σ +

...
ω×σ +3(ω̈× σ̇)+3(ω̇× σ̈)+ω× ...

σ .

Por tanto, sustituyendo en la anterior expresión y teniendo en cuenta que
...
ω = ω̈×ω ,

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0

{
(δ

...
ω−δω̈×ω + ω̈×δω) ·σ

}
dt =

= 2
∫ t1

t0

{
(
....
σ +

...
ω×σ +3(ω̈× σ̇)+3(ω̇× σ̈)+ω× ...

σ ) ·σ
}

dt−

−2
∫ t1

t0
{((...

σ + ω̈×σ +2(ω̇× σ̇)+ω× σ̈)×ω + ω̈× (σ̇ +ω×σ)) ·σ} dt =

= 2
∫ t1

t0

{
(
....
σ +

...
ω×σ +3(ω̈× σ̇)+3(ω̇× σ̈)+ω× ...

σ − (
...
σ ×ω)) ·σ

}
dt+

+2
∫ t1

t0
{−(ω̈×σ)×ω−2(ω̇× σ̇)×ω− (ω× σ̈)×ω− ω̈× σ̇) ·σ} dt

+2
∫ t1

t0
{−ω̈× (ω×σ)) ·σ} dt.

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +2(ω̈× σ̇)+3ω̇× σ̈ +2(ω× ...
σ )) ·σ} dt

+2
∫ t1

t0
{−2(ω̇× σ̇)×ω) ·σ} dt =

= 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +2(ω̈× σ̇)+2ω̇× σ̈ + ω̇× σ̈ +2(ω× ...
σ )) ·σ} dt

+2
∫ t1

t0
{−2(ω̇× σ̇)×ω) ·σ} dt.
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Como 2 d
dt (ω̇× σ̇) = 2(ω̈× σ̇ + ω̇× σ̈) y∫ t1

t0

{
(

d
dt
(ω̇× σ̇)) ·σ

}
dt = (ω̇× σ̇) · (σ(t1)−σ(t0)) = 0,

se tiene que

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ + ω̇× σ̈ +ω× ...
σ +ω× ...

σ ) ·σ} dt

+2
∫ t1

t0
{−2(ω̇× σ̇)×ω) ·σ} dt.

Como d
dt (ω× σ̈) = (ω̇× σ̈ +(ω× ...

σ ) y∫ t1

t0

{
(

d
dt
(ω× σ̈)) ·σ

}
dt = (ω× σ̈) · (σ(t1)−σ(t0)) = 0,

se tiene que

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +ω× ...
σ −2(ω̇× σ̇)×ω) ·σ} dt.

La expresión
J̄(σ) =

....
σ + ω̈×σ +ω×σ +ω× ...

σ −2(ω̇× σ̇)×ω, (3.5)

es de gran importancia. Las secciones σ a lo largo de ω polinomio cúbico que satisfacen la ecuación
J̄(σ) = 0 se llaman secciónes de Jacobi.

Corolario 3.3.4. Cualquier polinomio cúbico admite ω como sección de Jacobi de forma natural.

Demostración. Sustituyendo σ por ω en la ecuación 3.5 e igualando a cero, obtenemos la expresión

....
ω + ω̈×ω +ω× ...

ω = 0

Derivando la ecuación 3.4,
d
dt
(
...
ω) =

d
dt
(ω̈×ω),

....
ω =

...
ω×ω + ω̈× ω̇ =−ω× ...

ω + ω̇× ω̈,

luego es claro que ω es una sección de Jacobi.

Las expresiones obtenidas para la diferencial segunda nos permiten inferir que gran parte de los
resultados conocidos en geometría Riemanniana sobre campos de Jacobi y minimización de la lon-
gitud pueden generalizarse para este tipo de sistemas, si bien por falta de tiempo no hemos podido
realizar dicho análisis.

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.



Apéndice A

Apéndice.

A.1. Obtención de las variaciones trabajando directamente en el grupo
SO(3).

Se define la velocidad angular ω ∈ so(3) por medio de un elemento de SO(3), ω̂ = R−1Ṙ, donde
R ∈ SO(3). Nótese que ω y ω̂ están relacionados por la ecuación ω̂v = ω × v, para todo v ∈ R3.
Tomando derivadas variacionales se tiene que

δω̂ = δR−1Ṙ+R−1
δ Ṙ =−R−1(δR)R−1Ṙ+R−1

δ Ṙ.

Sea σ̂ = R−1δR. Derivando a ambos lados de la ecuación se tiene que

˙̂σ =−R−1ṘR−1
δR+R−1

δ Ṙ.

Por tanto
˙̂σ + ω̂σ̂ = R−1

δ Ṙ.

Luego sustituyendo en la expresión de δω̂ , se tiene que

δω̂ = ˙̂σ + ω̂σ̂ − σ̂ ω̂ = ˙̂σ +[ω̂, σ̂ ],

expresión en SO(3). Reduciendo a so(3), obtenemos la expresión de la variación de ω ,

δω = σ̇ +ω×σ .
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Apéndice B

Resumen.

Existen multitud de problemas en matemáticas y en física en los que la presencia de simetrías en
los sistemas dinámicos que los describen permiten simplificar su estudio y así facilitar su resolución.
En este trabajo, nos centraremos en los problemas de interpolación y aproximación en variedades di-
ferenciables, los cuales tienen especial interés en campos como la robótica o la animación 3D. En este
último, interpretando el conjunto de estados de un sistema dinámico como una variedad diferenciable,
se pueden diseñar trayectorias de objetos que vienen dadas por curvas satisfaciendo ciertas condicio-
nes, y así producir animaciones por ordenador. Se buscan trayectorias sin cambios bruscos, y por tanto,
estas curvas han de ser diferenciables en todos sus puntos. Para ello, se trabaja con splines cúbicos.
En este trabajo se hará uso de la teoría de algebroides de Lie para obtener un método de resolución
para este tipo de problemas, trabajando directamente en el espacio reducido y veremos que permite
obtener una descripción muy adecuada y ventajosa. Además, aplicaremos los resultados obtenidos a
la teoría de Splines y otros métodos de interpolación y aproximación en variedades diferenciables.

Formalismo Lagrangiano y cálculo variacional en algebroides de Lie.
Una estructura de algebroide de Lie sobre un fibrado τ : E → M consiste en una estructura de

álgebra de Lie (Sec(E), [ , ]) en el C∞(M)-módulo de secciones de E, junto con un morfismo de
fibrados vectoriales ρ : E → T M sobre la identidad en M, llamado ancla, que satisfacen la siguiente
condición de compatibilidad [σ , f η ] = (ρ(σ) f )η + f [σ ,η ] para toda σ ,η ∈ Sec(E) y f ∈C∞(M).

Un sistema de coordenadas locales (xi) en la variedad diferenciable M y una base local {eα} de
secciones de E determinan un sistema de coordenadas locales (xi,yα) en el fibrado E: un elemento
a∈ E tiene coordenadas (xi,yα) si el punto base m = τ(a) tiene coordenadas (xi) y en la base {eα(m)}
de Em las componentes de a son yα , es decir a = yαeα(m).

El ancla y el conmutador quedan localmente determinados por ciertas funciones locales ρ i
α y Cα

βγ

en M, llamadas funciones de estructura, y que están dadas por ρ(eα) = ρ i
α

∂

∂xi , y por [eα ,eβ ] =Cγ

αβ
eγ .

Las funciones de estructura satisfacen las siguientes ecuaciones

ρ
j

α

∂ρ i
β

∂x j −ρ
j

β

∂ρ i
α

∂x j = ρ
i
γC

γ

αβ
,

ρ
i
α

∂Cν

βγ

∂xi +ρ
i
β

∂Cν
γα

∂xi +ρ
i
γ

∂Cν

αβ

∂xi +Cµ

βγ
Cν

αµ +Cµ

γαCν

β µ
+Cµ

αβ
Cν

γµ = 0,

Una curva a : I ⊂R→ E se dice que es admisible si satisface γ̇(t) = ρ(a(t)), donde γ(t) = τ(a(t))
es la curva base.

Dada una función L ∈C∞(E), se puede definir un sistema dinámico en E, dado localmente por el
sistema de ecuaciones diferenciales

d
dt

(
∂L
∂yα

)
+

∂L
∂yγ

Cγ

αβ
yβ = ρ

i
α

∂L
∂xi ,

ẋi = ρ
i
αyα .
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24 Capítulo B. Resumen.

La estructura de variedad diferenciable apropiada para el conjunto de curvas admisibles se denota por
P(J,E). La subvariedad diferenciable P(J,E)m1

m0
= {a ∈P(J,E)|τ(a(t0)) = m0, τ(a(t1)) = m1} ,

es una subvariedad de Banach de P(J,E).
Consideramos un funcional de la forma

S(a) =
∫ t1

t0
L(a(t))dt,

donde L∈C∞(E) es un Lagrangiano en un algebroide de Lie E y a(t) es una curva admisible de forma
que los puntos iniciales y finales están fijados. Con la notación clásica del cálculo de variaciones las
variaciones infenitesimales son de la forma δxi = ρ i

ασα , δyα = σ̇α +Cα

βγ
aβ σ γ , para una curva σ(t)

que cumpla que σ(t0) = σ(t1) = 0.
La primera variación del funcional S(a) puede escribirse de la forma

dS(a) =−
∫ t1

t0

{
d
dt

(
∂L
∂yα

)
−ρ

i
α

∂L(a(t))
∂xi +Cγ

αβ
yβ ∂L(a(t))

∂yα

}
dt.

Sea L ∈ C∞(E) un lagrangiano en un algebroide de Lie E y fijemos dos puntos m0,m1 ∈ M.
Conideremos el funcional S(a) =

∫ t1
t0 L(a(t))dt en P(J,E). Los puntos críticos de la restricción de S

a la variedad de Banach P(J,E)m1
m0

son los elementos de la restricción que cumplen las ecuaciones de
Euler Lagrange.

Funcionales dependientes de derivadas de orden superior de curvas admisibles en algebroi-
des de Lie.

Sea M una variedad diferenciable. Para una curva γ : R→ M, definida en un intervalo abierto
conteniendo al origen en R, se denota por [γ]k = jk

0γ al k-jet de γ en 0. Se dice que es la velocidad
de orden k de γ . El conjunto de k-velocidades de las curvas en M es una variedad diferenciable T kM
llamada variedad tangente de M de orden k.Tomando coordenadas locales (xi,yα) en E, una curva
admisible a(t) = (γ i(t),aα(t)) está determinada por la función aα(t) y el valor inicial γ i(0). El (k−1)-
jet de a(t) corresponde al (k−1)-jet de la función aα(t) junto con el valor inicial γ i(0).

Las coordenadas naturales
(
xi
( j),y

α

( j)

)
de [a]k−1∈T k−1E están dadas por

xi
(0) = γ

i(0),

yα

(r) =
dr−1aα

dtr−1 (0), r = 1, . . . ,k−1,

xi
(r) = Ψ

i
r

(
γ

i(0),aα(0), . . . ,
dr−1aα

dtr−1 (0)
)
, r = 1, . . . ,k−1,

donde Ψi
r son funciones suaves dependiendo también de forma suave de ρ i

α y de sus derivadas parcia-
les hasta orden r−1.

Un vector tangente a Ek está determinado por una familia uniparamétrica de curvas admisibles
α(s, t) en E tal que [s 7→ [t 7→ α(s, t)]k−1]1 es un vector tangente a Ek en el punto [t 7→ α(0, t)]k−1∈Ek.

Se puede ver que

Ξ
k
aσ = ρ

i
ασ

α ∂

∂xi +
k

∑
r=1

dr−1

dtr−1 [σ̇
α +Cα

βγ
aβ

σ
γ ]

∂

∂yα
r
.

En la notación clásica el cálculo de variaciones se tiene que

δxi = ρ
i
ασ

α , δyα
1 = σ̇

α +Cα

βγ
aβ

σ
γ , δyα

r =
d
dt

δyα
r−1, for r = 2, . . . ,k.

Sea J = [t0, t1]⊂R un intervalo compacto y fijemos dos puntos A0∈Ek−1 y A1∈Ek−1. Dado un lagran-
giano L ∈C∞(Ek) consideramos el funcional

S(a) =
∫ t1

t0
L(ak(t))dt

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.
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restringido a las curvas a en E tales que ak−1(t0) = A0 y ak−1(t1) = A1. El conjunto

P(J,E)A1
A0

=
{

a∈P(J,E)
∣∣ a es Ck y ak−1(t0) = A0, ak−1(t1) = A1

}
es una subvariedad de Banach de P(J,E)m1

m0
.

Una curva admisible a∈P(J,E)A1
A0

es un punto crítico del funcional S : P(J,E)A1
A0
→ R dado por

S(a) =
∫ t1

t0 L(ak(t))dt, si y sólo si sus componentes (xi(t),yα(t)) satisfacen el siguiente sistema de
ecuaciones diferenciales 

ẋi = ρ
i
αyα

1

π̇α +πγC
γ

αβ
yβ

1 = ρ
i
α

∂L
∂xi ,

Aplicaciones.
SÓLIDO RÍGIDO. Dado por el funcional

S(ω) =
∫ t1

t0
L(ω(t))dt =

∫ t1

t0

1
2
(ω(t) · (Iω(t)))dt,

calculamos la primera variación

dS(ω)(Ξωσ) =
∫ t1

t0
{−(Iω̇ +ω× Iω) ·σ)}dt.

y obtenemos las ecuaciones del sólido rígido Iω̇ +ω × Iω = 0, aplicando el lema fundamental del
cálculo de variaciones. Calculamos también la segunda variación

d2S(ω)(Ξωσ ,Ξωσ) =
∫ t1

t0
{(−I(σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))) ·σ}dt.

El término

J(σ) = σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))

es importante, puesto que las secciónes σ para la que J(σ) = 0, se relacionan con lo campos de
Jacobi X en el grupo SO(3) para la métrica invariante a izquiera definida anteriormente por g(ω,ω) =
ω · (Iω).

SPLINES CÚBICOS EN SO(3).
A partir del funcional

S(ω) =
∫ t1

t0
< ∇tω,∇tω > dt.

calculamos la primera variación

δS(ω̇)(Ξω̇σ) = 2
∫ t1

t0

{
(
...
ω− (ω̈×ω)) ·σ

}
dt,

y obtenemos las ecuaciones
...
ω− (ω̈×ω) = 0.

Calculamos también la segunda variación

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +ω× ...
σ −2(ω̇× σ̇)×ω) ·σ} dt.

Para encontrar condiciones suficientes que garanticen que el punto crítico es un minimo del fun-
cional S, calculamos la diferencial segunda d2S(ω̇)(Ξω̇σ ,Ξω̇σ). De su expresión, se ve deduce que
las secciones σ que satisfacen

....
σ + ω̈×σ +ω×σ +ω× ...

σ −2(ω̇× σ̇)×ω = 0,

serán de gran importancia. Una sección σ que satisfaga la ecuación anterior se llama una sección de
Jacobi.

Autor: Ana Rojo Echeburúa





Apéndice C

Abstract.

There are plenty of mathematical and phyical problems in which the presence of symmetries in the
dynamical systems which are describing them, allow us to symplify its study and as a consequence,
make its resolution easier. In this work, we will focus on the interpolation and approximation problems
in differentiable manifolds, which has special interest in fields such as robotics or 3D animation. This
last one, interpreting the set of states of a dynamical system as a differentiable manifold, trajectories
of objects which are given by curves satisfying some conditions can be drawn, and therefore, we will
be able to create computer animations. Smooth trajectories are trying to be found. So this curves have
to be differentiable at every point. In order to achieve this aim, one may work with cubic splines.
Here we will use Lie algebroid theory so as to obtain a resolution method for this kind of problems,
working directly at the reduced space and we will show that it allows us to obtain a very suitable
and advantageous description. Besides, we will apply the obtained results to Splines theory and other
interpolation and aproximation methods in differentiable manifolds.

Lagrangian Formalism and variational calculus in Lie algebroids.
A Lie algebroid structure on a vector bundle τ : E →M is given by a vector bundle map ρ : E →

T M over the identity in M, called the anchor, together with a Lie algebra structure on the C∞(M)-
module of sections of E such that the compatibility condition [σ , f η ] = (ρ(σ) f )η + f [σ ,η ] is satis-
fied for every f ∈C∞(M) and every σ ,η ∈ Sec(E).

A local coordinate system (xi) in the differentiable manifold M and a local base {eα} of sections
in E determine a local coordinate system (xi,yα) on E. An element a ∈ E has coordinates (xi,yα) if
the base point m = τ(a) has coordinates (xi) and in the base {eα(m)} of Em the components of a are
yα , i.e, a = yαeα(m).

The anchor and the bracket are locally determined by the structure functions ρ i
α and Cα

βγ
on M

given by ρ(eα) = ρ i
α

∂

∂xi and [eα ,eβ ] =Cγ

αβ
eγ . The structure functions satisfy the following

equations

ρ
j

α

∂ρ i
β

∂x j −ρ
j

β

∂ρ i
α

∂x j = ρ
i
γC

γ

αβ
,

ρ
i
α

∂Cν

βγ

∂xi +ρ
i
β

∂Cν
γα

∂xi +ρ
i
γ

∂Cν

αβ

∂xi +Cµ

βγ
Cν

αµ +Cµ

γαCν

β µ
+Cµ

αβ
Cν

γµ = 0.

A curve a : I ⊂R→ E it is said to be admissible if it satisfies γ̇(t) = ρ(a(t)), where γ(t) = τ(a(t))
is the base curve.

Given a function L ∈ C∞(E), a dynamical system can be defined on E locally by the system of
differential equiations

d
dt

(
∂L
∂yα

)
+

∂L
∂yγ

Cγ

αβ
yβ = ρ

i
α

∂L
∂xi ,

ẋi = ρ
i
αyα .
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28 Capítulo C. Abstract.

The appropriate differentiable manifold structure for the set of admissible curves it is denoted by
P(J,E)m1

m0
= {a ∈P(J,E)|τ(a(t0)) = m0, τ(a(t1)) = m1} , and it is a Banach submanifold of P(J,E).

We consider the functional

S(a) =
∫ t1

t0
L(a(t))dt,

where L∈C∞(E) is a Lagrangian in a Lie algebroid E and a(t) is and admissible curve where the initial
and final basepoints are fixed. With the classical notation of variational calculus, the infinitesimal
variation are of the form δxi = ρ i

ασα , δyα = σ̇α +Cα

βγ
aβ σ γ , for a curve σ(t) which satisfies σ(t0) =

σ(t1) = 0.
The first variation of the functional S(a) is

dS(a) =−
∫ t1

t0

{
d
dt

(
∂L
∂yα

)
−ρ

i
α

∂L(a(t))
∂xi +Cγ

αβ
yβ ∂L(a(t))

∂yα

}
dt.

Let L∈C∞(E) be a Lagrangian in a Lie algebroid E with fixed basepoint m0,m1 ∈M. We consider
the funtional S(a) =

∫ t1
t0 L(a(t))dt in P(J,E). The critical points of the restriction of S in the Banach

submanifold P(J,E)m1
m0

are the elements of the restrction that satisfy the Euler Lagrange equations.

Functionals depending on high-order derivatives of admissible curves in Lie algebroids.
Let M be a differentiable manifold. Given a curve γ : R→M, defined in an open interval contai-

ning the origin R, we denote by [γ]k = jk
0γ the k-jet of γ in 0. It is said that is the k-order velocity of

γ . The set of k-velocities of the curves in M is a differentiable manifold T kM called tangent of M of
order k.Taking local coordinates (xi,yα) in E, an admissible curve a(t) = (γ i(t),aα(t)) is determined
by a function aα(t) and the initial value γ i(0).The (k−1)-jet of a(t) corresponds to the (k−1)-jet of
the funtion aα(t) with the initial value γ i(0).

The natural coordinates
(
xi
( j),y

α

( j)

)
of [a]k−1∈T k−1E are given by

xi
(0) = γ

i(0),

yα

(r) =
dr−1aα

dtr−1 (0), r = 1, . . . ,k−1,

xi
(r) = Ψ

i
r

(
γ

i(0),aα(0), . . . ,
dr−1aα

dtr−1 (0)
)
, r = 1, . . . ,k−1,

where Ψi
r are smooth functions also depending in a smooth way on ρ i

α and its partial derivatives until
order r−1.

A tangent vector to Ek is determined by a 1-parametric family of admissible curves α(s, t) in E
such that [s 7→ [t 7→ α(s, t)]k−1]1 is a tangent vector to Ek at the point [t 7→ α(0, t)]k−1∈Ek.

It can be shown that

Ξ
k
aσ = ρ

i
ασ

α ∂

∂xi +
k

∑
r=1

dr−1

dtr−1 [σ̇
α +Cα

βγ
aβ

σ
γ ]

∂

∂yα
r
.

With the classical notation of variational calculus, we have that

δxi = ρ
i
ασ

α , δyα
1 = σ̇

α +Cα

βγ
aβ

σ
γ , δyα

r =
d
dt

δyα
r−1, for r = 2, . . . ,k.

Let J = [t0, t1]⊂R be a compact interval and let A0∈Ek−1 and A1∈Ek−1 be two fixed points. Given a
lagrangian L ∈C∞(Ek) we consider the funtional

S(a) =
∫ t1

t0
L(ak(t))dt

Algebroides de lie y sus aplicaciones a la interpolación en variedades diferenciables.
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restricted to the curves a in E such that ak−1(t0) = A0 and ak−1(t1) = A1. The set

P(J,E)A1
A0

=
{

a∈P(J,E)
∣∣ a es Ck y ak−1(t0) = A0, ak−1(t1) = A1

}
is a Banach submanifold of P(J,E)m1

m0
.

An admissible curve a∈P(J,E)A1
A0

is a critical point of the functional S : P(J,E)A1
A0
→ R given

by S(a) =
∫ t1

t0 L(ak(t))dt, if and only if its components (xi(t),yα(t)) satisfy the following system of
differential equations 

ẋi = ρ
i
αyα

1

π̇α +πγC
γ

αβ
yβ

1 = ρ
i
α

∂L
∂xi ,

Aplications.
RIGID BODY. Given the functional

S(ω) =
∫ t1

t0
L(ω(t))dt =

∫ t1

t0

1
2
(ω(t) · (Iω(t)))dt,

we compute the first variation

dS(ω)(Ξωσ) =
∫ t1

t0
{−(Iω̇ +ω× Iω) ·σ)}dt.

and we obtain the rigid body equations Iω̇ +ω× Iω = 0, by applying the fundamental lema of varia-
tional calculus. We also compute the second variation

d2S(ω)(Ξωσ ,Ξωσ) =
∫ t1

t0
{(−I(σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))) ·σ}dt.

The term

J(σ) = σ̈ +(−I−1(ω× (Iω))×σ +ω× σ̇ + I−1(σ̇ × (Iω))+ I−1(ω×σ)× (Iω)+

+ I−1(ω× (Iσ̇))+ I−1(ω× (I(ω×σ)))

is important, since the sections σ for which J(σ) = 0, matches with the Jacobi fields X in the SO(3)
group for the left invariant metric previously defined by g(ω,ω) = ω · (Iω).

CUBIC SPLINES IN SO(3).
Given the functional

S(ω) =
∫ t1

t0
< ∇tω,∇tω > dt.

we compute the first variation

δS(ω̇)(Ξω̇σ) = 2
∫ t1

t0

{
(
...
ω− (ω̈×ω)) ·σ

}
dt,

and we obtain the ecuations
...
ω− (ω̈×ω) = 0 by using the fundamental lema of variational calculus.

We also compute the second variation

d2S(ω̇)(Ξω̇σ ,Ξω̇σ) = 2
∫ t1

t0
{(....

σ + ω̈×σ +ω×σ +ω× ...
σ −2(ω̇× σ̇)×ω) ·σ} dt.

If order to find sufficient condition for a minimum of the functional S, we calculate the second
differential d2S(ω̇)(Ξω̇σ ,Ξω̇σ). In such expression, we recognize that the vanishing of

....
σ + ω̈×σ +ω×σ +ω× ...

σ −2(ω̇× σ̇)×ω = 0.

for a section σ will be fundamental. A section σ which satisfies the previous equation is called Jacobi
section.

Autor: Ana Rojo Echeburúa
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