

Appendix A

Details about the truncation

This appendix has been based on Eduardo Sánchez Burillo's master thesis [4], one of the advisor of this work, and it has been inserted here with the consent of the advisers.

The problem consists of minimising iteratively a function which is a sum of scalar products (2.26). During this section, we will consider the generic scalar product $\langle \xi | \zeta \rangle$, whose MPS tensors are $A(\xi)$ and $A(\zeta)$ respectively. First of all, since the whole function is minimised with respect to the tensors linked to a given site, we are going to write a scalar product between MPS in the following way:

$$\langle \xi | \zeta \rangle = (v_n^\xi)^\dagger E v_n^\zeta, \quad (\text{A.1})$$

where v_n^ξ and v_n^ζ are the vectorisations of $A(\xi)^n$ and $A(\zeta)^n$ respectively. Using the MPS representation, this scalar product is:

$$\langle \xi | \zeta \rangle = (A(\xi)_1^{i_1})_{k_1, k_2}^* (A(\xi)_2^{i_2})_{k_2, k_3}^* \dots (A(\xi)_L^{i_L})_{k_L, k_1}^* (A(\zeta)_1^{i_1})_{l_1, l_2} (A(\zeta)_2^{i_2})_{l_2, l_3} \dots (A(\zeta)_L^{i_L})_{l_L, l_1} \quad (\text{A.2})$$

We rewrite it in the following way:

$$\langle \xi | \zeta \rangle = (A_L)_{k_1, l_1, k_n, l_n} (A(\xi)_n^{i_n})_{k_n, k_{n+1}}^* (A(\zeta)_n^{i_n})_{l_n, l_{n+1}} (A_R)_{k_{n+1}, l_{n+1}, k_1, l_1}, \quad (\text{A.3})$$

where A_L and A_R are:

$$(A_L)_{k_1, l_1, k_n, l_n} := (A(\xi)_1^{i_1})_{k_1, k_2}^* (A(\zeta)_1^{i_1})_{l_1, l_2} \dots (A(\xi)_{n-1}^{i_{n-1}})_{k_{n-1}, k_n}^* (A(\zeta)_{n-1}^{i_{n-1}})_{l_{n-1}, l_n} \quad (\text{A.4})$$

$$(A_R)_{k_{n+1}, l_{n+1}, k_1, l_1} := (A(\xi)_{n+1}^{i_{n+1}})_{k_{n+1}, k_{n+2}}^* (A(\zeta)_{n+1}^{i_{n+1}})_{l_{n+1}, l_{n+2}} \dots (A(\xi)_L^{i_L})_{k_L, k_1}^* (A(\zeta)_L^{i_L})_{l_L, l_1} \quad (\text{A.5})$$

Now, another tensor C is introduced:

$$C_{k_{n+1}, l_{n+1}, k_n, l_n} := (A_R)_{k_{n+1}, l_{n+1}, k_1, l_1} (A_L)_{k_1, l_1, k_n, l_n} \quad (\text{A.6})$$

Then, the scalar product becomes:

$$\langle \xi | \zeta \rangle = (A(\xi)_n^{i_n})_{k_n, k_{n+1}}^* C_{k_{n+1}, l_{n+1}, k_n, l_n} A(\zeta)_n^{i_n} \quad (\text{A.7})$$

We introduce a Kronecker delta because of convenience:

$$\langle \xi | \zeta \rangle = (A(\xi)_n^{i_n})_{k_n, k_{n+1}}^* C_{k_{n+1}, l_{n+1}, k_n, l_n} \delta_{i_n, j_n} A(\zeta)_n^{j_n} \quad (\text{A.8})$$

Another tensor is defined:

$$D_{k_n, i_n, k_{n+1}, l_n, j_n, l_{n+1}} := C_{k_{n+1}, l_{n+1}, k_n, l_n} \delta_{i_n, j_n} \quad (\text{A.9})$$

Then:

$$\langle \xi | \zeta \rangle = (A(\xi)_n^{i_n})_{k_n, k_{n+1}}^* D_{k_n, i_n, k_{n+1}, l_n, j_n, l_{n+1}} (A(\zeta)_n^{j_n})_{l_n, l_{n+1}} \quad (\text{A.10})$$

Finally, we can define the vectorisations $A(\xi)_n$ by joining all the indices:

$$(v_n^\xi)_{[k_n, i_n, k_{n+1}]} := (A(\xi)_n^{i_n})_{k_n, k_{n+1}}^*, \quad (\text{A.11})$$

and the same for v_n^ζ . Here, $[k_n, i_n, k_{n+1}]$ is again a single index, in such a way that we construct a vector from a tensor with three indices (the same for v_n^ζ). In the same way, we define a matrix E by joining the indices of the tensor D in two sets:

$$E_{[k_n, i_n, k_{n+1}], [l_n, j_n, l_{n+1}]} := D_{k_n, i_n, k_{n+1}, l_n, j_n, l_{n+1}} \quad (\text{A.12})$$

Then, the scalar product is:

$$\langle \xi | \zeta \rangle = (v_n^\xi)^*_{[k_n, i_n, k_{n+1}]} E_{[k_n, i_n, k_{n+1}], [l_n, j_n, l_{n+1}]} (v_n^\zeta)_{[l_n, j_n, l_{n+1}]}, \quad (\text{A.13})$$

or, in vectorial notation:

$$\langle \xi | \zeta \rangle = (v_n^\xi)^\dagger E v_n^\zeta \quad (\text{A.14})$$

So, we achieve a result like (2.27), as we wanted to show, as well as the form in which the matrix E has to be constructed.